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Abstract

We show that instanton bundles of rank r ≤ 2n− 1, defined as the co-
homology of certain monads, on an n-dimensional projective variety with
cyclic Picard group are semistable in the sense of Mumford-Takemoto.
Furthermore, we show that rank r ≤ n linear bundles with nonzero first
Chern class over such varieties are stable. We also show that these bounds
are sharp.
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1 Introduction

Let X be a nonsingular projective variety over an algebraically closed field F

of characteristic zero of dimension n, and let L denote a very ample invertible

sheaf; let L−1 denote its inverse.

Given (finite-dimensional) F-vector spaces V , W and U , a linear monad on
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X is the short sequence of sheaves

M• : 0 → V ⊗ L−1 α→W ⊗OX
β→ U ⊗ L → 0 (1)

which is exact on the first and last terms, i.e. α ∈ Hom(V,W ) ⊗ L is injective

while β ∈ Hom(W,U) ⊗ L is surjective. The coherent sheaf E = kerβ/Imα is

called the cohomology of the monad M•. The set:

S = {x ∈ X | α(x) ∈ Hom(V,W ) is not injective}

is a subvariety called the degeneration locus of the monad M•.

A torsion-free sheaf E on X is said to be a linear sheaf on X if it can be

represented as the cohomology of a linear monad and it is said to be an instanton

sheaf on X if in addition it has c1(E) = 0.

Linear monads and instanton sheaves have been extensively studied for the

case X = Pn during the past 30 years, see for instance [5, 6] and the references

therein. Buchdahl has studied monads over arbitrary blow-ups of P2 [1]. In a

recent preprint, Costa and Miró-Roig have initiated the study of linear monads

and locally-free instanton sheaves over smooth quadric hypersurfaces Qn within

Pn+1 (n ≥ 3) [2]. They have asked whether every such locally free sheaf of rank

n− 1 is stable (in the sense of Mumford-Takemoto) [2, Question 5.1].

The main goal of this paper is to give a partial answer to their question

in a more general context, showing that locally-free instanton sheaves of rank

r ≤ 2n − 1 on an n-dimensional smooth projective variety with cyclic Picard

group are semistable, while locally-free linear sheaves of rank r ≤ n and c1 6= 0

on such varieties are stable. Furthermore, we also show that the bounds on the

rank are sharp by providing examples of rank 2n instanton sheaves and rank

n+ 1 linear sheaves on Pn which are not semistable.

We conclude the paper by studying the semistability of special sheaves on

Qn, as introduced by Costa and Miró-Roig. Theorem 17 provides a partial

answer to Question 5.2 in [2], showing that every rank r ≤ 2n − 1 locally-

free special sheaf E on Qn with c1 = 0 is semistable, while every rank r ≤ n

locally-free special sheaf on Qn with c1 6= 0 is stable.
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2 Instanton sheaves on cyclic varieties

Note that if E is the cohomology of a linear monad as in (1), then:

rk(E) = w − v − u and c1(E) = (v − u) · `

where w = dimW , v = dimV , u = dimU and ` = c1(L). Thus any instanton

sheaf E can be represented as the cohomology of a monad of the following type:

0 → (L−1)⊕c α→ O⊕r+2c
X

β→ L⊕c → 0 (2)

where r is the rank and c is called the charge of E. It also follows that the total

Chern class of E is given by, in the case u = v:

c(E) =
1

(1− `2)c
= (1 + `2 + `4 + · · ·)c .

Remark 1. For X = Pn, instanton sheaves exist for r ≥ n−1 and all c [5]. For

X being a smooth quadric hypersurface of dimension n ≥ 3, instanton sheaves

exist for r ≥ n− 1 and all c [2]. It would be very interesting to obtain existence

results for a wider class of varieties.

A smooth projective variety X is said to be cyclic if Pic(X) = Z. Examples

of cyclic varieties are projective spaces, smooth quadric hypersurfaces Qn within

Pn+1 (n ≥ 3), Grassmannians and general smooth projective surfaces X ⊂ P3

of degree d ≥ 4.

From now on, we denote E(k) = E ⊗ L⊗k if k is positive and E(k) =

E ⊗ (L−1)⊗k if k is negative. Of course, in this notation, L = OX(1) and

L−1 = OX(−1).

Proposition 2. Let X be a smooth projective cyclic variety of dimension n and

let E be a linear sheaf on X. Assume that ωX ∼= OX(λ) for some integer λ > 0.

Then, we have:
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(1) H0(E(k)) = H0(E∗(k)) = 0 for all k ≤ −1,

(2) H1(E(k)) = 0 for all k ≤ −2,

(3) Hi(E(k)) = 0 for all k and 2 ≤ i ≤ n− 2,

(4) Hn−1(E(k)) = 0 for all k ≥ λ+ 2,

(5) Hn(E(k)) = 0 for all k ≥ λ+ 1,

and if E is locally-free:

(6) Hn(E∗(k)) = 0 for all k ≥ λ+ 1.

Proof. The crucial observation is that by Kodaira Vanishing Theorem we have

Hi(OX(k)) = 0 for all i < n and k ≤ −1; and

Hi(OX(k)⊗ ωX) = 0 for all i > 0 and k ≥ 1.

By Serre’s duality Hi(X,OX(k) ⊗ ωX) ∼= Hn−i(X,OX(−k)). So, we conclude

that

H0(OX(k)) = 0 for all k ≤ −1,

Hi(OX(k)) = 0 for all k and 1 ≤ i ≤ n− 1, and

Hn(OX(k)) = 0 for all k ≥ λ+ 1.

Assuming that E is the cohomology of a linear monad

0 → OX(−1)⊕a α−→ O⊕bX
β−→ OX(1)⊕c → 0 , (3)

let K = kerβ; it is a locally-free sheaf of rank b− c fitting into the sequences:

0 → K(k) → OX(k)⊕b
β−→ OX(k + 1)⊕c → 0 and (4)

0 → OX(k − 1)⊕a α−→ K(k) → E(k) → 0 . (5)

Passing to cohomology, the exact sequence (4) yields:

Hi(X,K(t)) = 0 for all t and 2 ≤ i ≤ n− 1 ,

Hn(X,K(k)) = 0 for t ≥ λ+ 1 ,

H0(X,K(k)) = 0 for t ≤ −1 ,
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H1(X,K(t)) = 0 for t ≤ −2 .

Passing to cohomology, the exact sequence (5) yields:

H0(E(k)) = 0 for all k ≤ −1 ,

H1(E(k)) = 0 for all k ≤ −2 ,

Hi(E(k)) = 0 for all k and 2 ≤ i ≤ n− 2 ,

Hn−1(E(k)) = 0 for all k ≥ λ+ 2 ,

Hn(E(k)) = 0 for all k ≥ λ+ 1 .

Dualizing sequences (4) and (5), we obtain:

0 → OX(−k − 1)⊕c
β∗−→ OX(−k)⊕b → K∗(−k) → 0 and (6)

0 → E∗(−k) → K∗(−k) α∗−→ OX(−k + 1)⊕a → Ext1(E(k),OX) → 0 . (7)

Again, passing to cohomology, (7) forces H0(E∗(k)) ⊆ H0(K∗(k)) for all k,

while (6) implies H0(K∗(k)) = 0 for k ≤ −1.

Finally, if E is locally-free, we have Hn(E∗(k)) = 0 for all k ≥ λ + 1, by

Serre’s duality.

Remark 3. It follows from (7) that Ext1(E,OX) = cokerα∗, i.e. the degener-

ation locus of the monad (2) coincides with the support of Ext1(E,OX).

Proposition 4. Let E be a linear sheaf on a smooth projective variety X (not

necessarily cyclic).

1. E is locally-free if and only if its degeneration locus is empty;

2. E is reflexive if and only if its degeneration locus is a subvariety of codi-

mension at least 3;

3. E is torsion-free if and only if its degeneration locus is a subvariety of

codimension at least 2.
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Proof. Let S be the degeneration locus of the linear monad associated to the

linear sheaf E. From previous remark, we know that Extp(E,OX) = 0 for p ≥ 2

and

S = supp Ext1(E,OX) = {x ∈ X | α(x) is not injective }.

The first statement is clear; so it is now enough to argue that E is torsion-

free if and only if S has codimension at least 2 and that E is reflexive if and

only if S has codimension at least 3.

Recall that the mth-singularity set of a coherent sheaf F on X is given by:

Sm(F) = {x ∈ X | dh(Fx) ≥ n−m}

where dh(Fx) stands for the homological dimension of Fx as an Ox-module:

dh(Fx) = d ⇐⇒
{

ExtdOx
(Fx,Ox) 6= 0

ExtpOx
(Fx,Ox) = 0 ∀p > d.

In the case at hand, we have that dh(Ex) = 1 if x ∈ S, and dh(Ex) = 0 if

x /∈ S. Therefore S0(E) = · · · = Sn−2(E) = ∅, while Sn−1(E) = S. It follows

that [7, Proposition 1.20]:

• if codim S ≥ 2, then dimSm(E) ≤ m − 1 for all m < n, hence E is a

locally 1st-syzygy sheaf;

• if codim S ≥ 3, then dimSm(E) ≤ m − 2 for all m < n, hence E is a

locally 2nd-syzygy sheaf.

The desired statements follow from the observation that E is torsion-free if and

only if it is a locally 1st-syzygy sheaf, while E is reflexive if and only if it is a

locally 2nd-syzygy sheaf [6, p. 148-149].

Remark 5. Note that if E is a locally-free linear sheaf on X, which is repre-

sented as the cohomology of the linear monad

M• : 0 → OX(−1)⊕a α→ O⊕bX
β→ OX(1)⊕c → 0 ,

its dual E∗ is also a linear sheaf, being represented as the cohomology of the

dual linear monad

M∗
• : 0 → OX(−1)⊕c

β∗→ O⊕bX
α∗→ OX(1)⊕a → 0 .
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In particular, if E is a locally-free instanton sheaf on X then its dual E∗ is also

an instanton.

3 Semistability of instanton sheaves

Recall that a torsion-free sheaf E on a cyclic variety X is semistable if for every

coherent sheaf 0 6= F ↪→ E we have

µ(F ) :=
c1(F )`n−1

rk(F )
≤ c1(E)`n−1

rk(E)
:= µ(E).

Furthermore, if for every coherent sheaf 0 6= F ↪→ E with 0 < rk(F ) < rk(E)

we have

µ(F ) :=
c1(F )`n−1

rk(F )
<
c1(E)`n−1

rk(E)
:= µ(E)

then E is said to be stable. A sheaf E is said to be properly semistable if it is

semistable but not stable. It is also important to recall that E is (semi)stable

if and only if E∗ is (semi)stable if and only if E ⊗ L⊗k is (semi)stable.

The goal of this section is to study the (semi)stability of instanton bundles.

Proposition 6. Every rank 2 torsion-free instanton sheaf on a cyclic variety

is semistable.

Proof. Let us first consider a rank 2 reflexive sheaf F onX such thatH0(F (−1)) =

0; we argue that F is semistable. Indeed, if F is not semistable, then any desta-

bilizing sheaf L ↪→ F with torsion-free quotient F/L must be reflexive (see

[6, p. 158]). But every rank 1 reflexive sheaf is locally-free, thus L = OX(d)

with d = c1(L) > 0 since Pic(X) = Z. It follows that H0(F (−d)) 6= 0, hence

H0(F (−1)) 6= 0 as well.

Now if E is a rank 2 torsion-free sheaf with H0(E∗(−1)) = 0, then F = E∗

is a rank 2 reflexive sheaf with H0(F (−1)) = 0. But we’ve seen that such F

is semistable, hence E is also semistable. Together with the first statement in

Proposition 2, the desired result follows.

For instanton sheaves of higher rank, we have our first main result:
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Theorem 7. Let E be a rank r instanton sheaf on a cyclic variety X of dimen-

sion n.

• If E is reflexive and r ≤ n, then E is semistable;

• if E is locally-free and r ≤ 2n− 1, then E is semistable.

Since smooth quadric hypersurfaces are cyclic, the above statement provides

in particular a partial answer to the questions raised in [2, Questions 5.1 and

5.2].

The proof of Theorem 7 is based on a very useful criterion, due to Hoppe

[4], to decide whether a reflexive sheaf on cyclic variety is (semi)stable.

Proposition 8. Let E be a rank r reflexive sheaf on a cyclic variety X. If

H0((∧qE)norm) = 0 for 1 ≤ q ≤ r−1, then E is stable. If H0((∧qE)norm(−1)) =

0 for 1 ≤ q ≤ r − 1, then E is semistable.

Proof. For a contradiction, assume that E is not stable, and let F be the desta-

bilizing reflexive sheaf of rank q, 1 ≤ q ≤ r − 1, with torsion-free quotient G.

So, we have an exact sequence

0 −→ F −→ E −→ G −→ 0

and, moreover, µ(F ) = c1(F )
rk(F ) ≥

c1(E)
rk(E) = µ(E). The injective map F → E

induces an injective map OX(c1(F )) = det(F ) = ∧qF ↪→ ∧qE, determining a

non-zero section in H0(∧qE(−c1(F ))). Since µ(F ) = c1(F )
rk(F ) ≥

c1(E)
rk(E) = µ(E), it

follows that H0(∧qEnorm) 6= 0, as desired.

The second statement regarding stability is proved in exactly the same way.

Proof of Theorem 7. We argue that every instanton sheaf on an n-dimensional

cyclic variety X satisfying the conditions of the theorem fulfill Hoppe’s criterion

(see Proposition 8).

Indeed, let E be a rank r reflexive instanton sheaf on X. Assume that E

can be represented as the cohomology of the linear monad as in (2).
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Considering the long exact sequence of exterior powers associated to the

sheaf sequence (4), twisted by L−1, we have:

0 → ∧qK(−1) → ∧q(O⊕r+2c
X )(−1) → · · · .

Thus H0(∧qK(−1)) = 0 for 1 ≤ q ≤ r + c.

Now consider the long exact sequence of symmetric powers associated to the

sheaf sequence (5), twisted by L−1:

0 → OX(−q − 1)(
c+q−1

q ) → K ⊗OX(−q)(
c+q−2

q−1 ) → · · ·

→ ∧q−1K ⊗OX(−2)c → ∧qK(−1) → ∧qE(−1) → 0 .

Cutting into short exact sequences and passing to cohomology, we obtain

H0(∧pE(−1)) = 0 for 1 ≤ p ≤ n− 1 , (8)

and this proves the first statement.

Now if E is locally-free, then the dual E∗ is also an instanton sheaf on X,

so

H0(∧q(E∗)(−1)) = 0 for 1 ≤ q ≤ n− 1 . (9)

But ∧p(E) ' ∧r−p(E∗), since det(E) = OX ; it follows that:

H0(∧pE(−1)) = H0(∧r−p(E∗)(−1)) = 0 for 1 ≤ r − p ≤ n− 1

=⇒ r − n+ 1 ≤ p ≤ r − 1 .(10)

Together, (9) and (10) imply that if E is a rank r ≤ 2n − 1 locally-free

instanton sheaf, then:

H0(∧pE(−1)) = 0 for 1 ≤ p ≤ 2n− 2

hence E is semistable by Hoppe’s criterion. 2

On the other hand, we have:

Proposition 9. Let H = h0(L). For r > (H − 2)c, there are no stable rank r

instanton sheaves of charge c on X.
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In particular, for X = Pn and L = OPn(1), it follows that every locally-free

instanton sheaf on Pn of charge 1 and rank r with n ≤ r ≤ 2n − 1 must be

properly semistable; for X = Qn and L = OQn
(1), every locally-free instanton

sheaf on Qn of charge 1 and rank r with n+ 1 ≤ r ≤ 2n− 1 must be properly

semistable.

Proof. For the second part, note that if E is a stable torsion-free sheaf with

c1(E) = 0, then H0(E) = 0. Indeed, if H0(E) 6= 0, then there is a map

OX → E, which contradicts stability.

It follows from the sequences (4) and (5) for k = 0 that:

H0(E) ' H0(K) ' ker{ H0β : H0(O⊕r+2c
X ) → H0(L⊕c) } .

If r > (H − 2)c, then the map H0β cannot be injective, H0(E) 6= 0 and E

cannot be stable.

Now dropping the c1(E) = 0 condition, we obtain:

Theorem 10. Let E be a rank r ≤ n linear sheaf on a cyclic variety X of

dimension n.

• If E is reflexive and c1(E) > 0, then E is stable;

• if E is locally-free and c1(E) 6= 0, then E is stable.

Proof. Since E is a linear sheaf, it is represented as the cohomology of a linear

monad

0 → OX(−1)⊕a α→ O⊕bX
β→ OX(1)⊕c → 0 ,

so that c1(E) = (c− a)`.

Assuming c− a > 0, we have µ(∧qE) = q(c− a)/r > 0, hence (∧qE)norm =

(∧qE)(t) for some t ≤ −1.

On the other hand, arguing as in the proof of Theorem 7 we get

H0((∧qE)(−1)) = 0 for all q ≤ n− 1 . (11)
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Therefore, if E is a rank r ≤ n reflexive sheaf represented as the cohomology

of a linear monad and c1(E) > 0, then:

H0((∧pE)norm) = 0 for 1 ≤ p ≤ r − 1.

Hence E is stable by Hoppe’s criterion.

For the second statement, note that if E is a locally-free linear sheaf with

c1(E) < 0, then E∗ is a locally-free linear sheaf with c1(E∗) > 0. By the

argument above, E∗ is stable; hence E is stable whenever c1(E) 6= 0, as desired.

We will end this section with an example which illustrates that the upper

bound in the rank given in Theorem 7 is sharp, in the sense that, for each n,

there are rank 2n locally-free instanton sheaves on certain n-dimensional cyclic

varieties which are not semistable. To prove it we first need to provide the

following useful cohomological characterization of linear sheaves on projective

spaces.

Proposition 11. Let F be a torsion-free sheaf on Pn. F is a linear sheaf if

and only if the following cohomological conditions hold:

• for n ≥ 2, H0(F (−1)) = 0 and Hn(F (−n)) = 0;

• for n ≥ 3, H1(F (k)) = 0 for k ≤ −2 and Hn−1(F (k)) = 0 for k ≥ −n+1;

• for n ≥ 4, Hp(F (k)) = 0 for 2 ≤ p ≤ n− 2 and all k.

Proof. The fact that linear sheaves satisfy the cohomological conditions above

is a consequence of Proposition 2.

For the converse statement, first note that H0(F (−1)) = 0 implies that

H0(F (k)) = 0 for k ≤ −1, while Hn(F (−n)) = 0 implies that Hn(F (k)) = 0

for k ≥ −n. Moreover, we claim that (q = 0, . . . , n and p = 0,−1, . . . ,−n):

Hq(F (−1)⊗ Ω−pPn (−p)) = 0 for q 6= 1 and for q = 1, p ≤ −3 . (12)
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Now the key ingredient is the Beilinson spectral sequence [6]: for any coherent

sheaf F on Pn, there exists a spectral sequence {Ep,qr } whose E1-term is given

by (q = 0, . . . , n and p = 0,−1, . . . ,−n):

Ep,q1 = Hq(F ⊗ Ω−pPn (−p))⊗OPn(p)

which converges to

Ei =
{
F , if p+ q = 0
0 otherwise .

Applying the Beilinson spectral sequence to F (−1), it then follows that it de-

generates at the E2-term, so that the monad

0 → H1(F (−1)⊗ Ω2
Pn(2))⊗OPn(−2) → (13)

→ H1(F (−1)⊗ Ω1
Pn(1))⊗OPn(−1) → H1(F (−1))⊗OPn → 0

has F (−1) as its cohomology. Tensoring (13) by OPn(1), we conclude that F is

the cohomology of a linear monad, as desired.

The claim (12) follows from repeated use of the exact sequence

Hq(F (k))⊕m → Hq(F (k + 1)⊗ Ω−p−1
Pn (−p− 1)) →

→ Hq+1(F (k)⊗ Ω−pPn (−p)) → Hq+1(F (k))⊕m (14)

associated with Euler sequence for p-forms on Pn twisted by F (k):

0 → F (k)⊗ Ω−pPn (−p) → F (k)⊕m → F (k)⊗ Ω−p−1
Pn (−p) → 0 , (15)

where q = 0, . . . , n , p = 0,−1, . . . ,−n and m =
(
n+ 1
−p

)
.

We are finally ready to construct rank 2n locally-free instanton sheaves on

Pn which are not semistable.

Example 12. Let X = Pn, n ≥ 4. By Fløystad’s theorem [3], there is a linear

monad:

0 → OPn(−1)⊕2 α→ O⊕n+3
Pn

β→ OPn(1) → 0 (16)

whose cohomology F is a locally-free sheaf of rank n on Pn and c1(F ) = 1.
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Dualizing we get a linear monad:

0 → OPn(−1)
β∗→ O⊕n+3

Pn

α∗→ OPn(1)⊕2 → 0

whose cohomology is F ∗, hence it is a locally-free linear sheaf of rank n on Pn

and c1(F ∗) = −1.

Take an extension E of F ∗ by F :

0 → F → E → F ∗ → 0.

Such extensions are classified by Ext1(F ∗, F ) = H1(F⊗F ). We claim that there

are non-trivial extensions of F ∗ by F . Indeed, we consider the exact sequences

0 → K = ker(β) → O⊕n+3
Pn

β→ OPn(1) → 0 , (17)

0 → OPn(−1)⊕2 → K → F → 0 (18)

associated to the linear monad (16). We apply the exact covariant functor ·⊗F

to the exact sequences (17) and (18) and we obtain the exact sequences

0 → K ⊗ F → F⊕n+3 → F (1) → 0 ,

0 → F (−1)⊕2 → K ⊗ F → F ⊗ F → 0 .

Using Proposition 2, we obtain Hi(K ⊗ F ) = Hi(F ⊗ F ) = 0 for all i ≥ 3.

Hence, χ(F ⊗ F ) = h0((F ⊗ F )) − h1((F ⊗ F )) + h2((F ⊗ F )). On the other

hand,

χ(F ⊗ F ) = χ(K ⊗ F )− 2χ(F (−1)) =

(n+ 3)χ(F )− χ(F (1))− 2χ(F (−1)) = 8− n2

2
− n

2
< 0 , if n ≥ 4 .

Thus if n ≥ 4, we must have h1((F ⊗ F )) > 0, hence there are non-trivial

extensions of F ∗ by F .

Using the cohomological criterion given in Proposition 11, it is easy to see

that the extension of linear sheaves is also a linear sheaf. Moreover, c1(E) = 0.

So, E is a rank 2n locally-free instanton sheaf of charge 3 which is not semistable.

For X = Pn, 2 ≤ n ≤ 3, arguing as above, we can construct a rank 2n

locally-free instanton which is not semistable as a non-trivial extension E of
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F ∗ by F , where F is a linear sheaf represented as the cohomology of the linear

monad

0 → OPn(−1)⊕4 α→ O⊕n+7
Pn

β→ OPn(1)⊕3 → 0.

In the next example, using the same idea as above, we show that there are

rank n + 2 reflexive instanton sheaves which are not semistable; our argument

fails because there are no rank r ≤ n−1 linear sheaves E on Pn with c1(E) < 0.

We do not know whether there are unstable rank n + 1 reflexive instanton

sheaves, i.e. whether the bound r ≤ n in the first part of Theorem 7 is indeed

sharp.

Example 13. Let X = Pn, n ≥ 3. By Fløystad’s theorem [3], there is a linear

monad:

0 → OPn(−1)⊕n−2 α→ O⊕n+1
Pn

β→ OPn(1) → 0

whose cohomology F is a rank 2 reflexive linear sheaf on Pn and c1(F ) = n− 3.

Next, consider the rank n locally free linear sheaf G associated to the linear

monad:

0 → OPn(−1)⊕a α→ O⊕2n+2a−3
Pn

β→ OPn(1)⊕n+a−3 → 0 (a ≥ 1).

Note that c1(G) = 3− n.

As in the previous example, an extension of G by F is a rank n+ 2 reflexive

instanton sheaf which is not semistable. The choice of a suitable value of the

parameter a guarantees the existence of non-trivial extensions.

To conclude this section, we show that the upper bounds in the rank given

in both parts of Theorem 10 are also sharp:

Example 14. Let X = Pn, n ≥ 2. By Fløystad’s theorem [3], there is a linear

monad:

0 → OPn(−1)⊕4 α→ O⊕n+9
Pn

β→ OPn(1)⊕5 → 0 (19)

whose cohomology G is a locally-free sheaf of rank n on Pn and c1(G) = −1.

Now G∗ is the cohomology of the dual monad

0 → OPn(−1)⊕5 β∗→ O⊕n+9
Pn

α∗→ OPn(1)⊕4 → 0 .
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It follows that:

H1(G∗) = H1(kerα∗) = coker{H0α∗ : H0(O⊕n+9
Pn ) → H0(OPn(1)⊕4)} .

Since n ≥ 2 forces 4n+4 > n+9, the generic map α will have coker(H0α∗) 6= 0.

In other words, there exists a rank n locally-free linear sheaf G on Pn with

c1(G) = −1 and H1(G∗) 6= 0.

Take an extension E of such a linear sheaf G by OPn :

0 → OPn → E → G→ 0. (20)

Using the cohomological criterion given in Proposition 11, it is easy to see that

E is a rank n + 1 locally-free linear sheaf with c1(E) = c1(G) = −1. It is not

stable, since H0(E) 6= 0.

Note also that there are nontrivial extensions of G by OPn since H1(G∗) 6=

0. Furthermore, the dual E∗ is an example of a rank n + 1 locally-free (thus

reflexive) linear sheaf with c1(E) > 0 which is not stable.

4 Special sheaves on smooth quadric
hypersurfaces

Now we restrict ourselves to the set-up in [2], and we assume that Qn is a

smooth quadric hypersurface within Pn+1, n ≥ 3; such varieties are cyclic.

Recall that a special sheaf E on Qn is defined [2, Definition 3.4] as either the

cohomology of a linear monad

(M1) 0 → OQn
(−1)⊕a → O⊕bQn

→ OQn
(1)⊕c → 0 ,

or the cohomology of a monad of the following type

(M2.1) 0 → Σ(−1)⊕a → O⊕bQn
→ OQn(1)⊕c → 0 , if n is odd,

(M2.2) 0 → Σ1(−1)⊕a1 ⊕Σ2(−1)⊕a2 → O⊕bQn
→ OQn(1)⊕c → 0 , if n is even,

where Σ is the Spinor bundle for n odd, and Σ1,Σ2 are the Spinor bundles for

n even.
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Clearly, instanton sheaves on Qn are special sheaves of the first kind with

zero degree.

Proposition 15. Let E be a special sheaf on Qn, n ≥ 3. Then one of the

following conditions holds:

1. E is the cohomology of a linear monad, and

• H0(E(k)) = H0(E∗(k)) = 0 for all k ≤ −1,

• H1(E(k)) = 0 for all k ≤ −2,

• Hi(E(k)) = 0 for all k and 2 ≤ i ≤ n− 2,

• Hn−1(E(k)) = 0 for all k ≥ −n+ 2,

• Hn(E(k)) = 0 for all k ≥ −n+ 1,

and if E is locally-free:

• Hn(E∗(k)) = 0 for all k ≥ −n+ 1; or

2. E is the cohomology of a monad of type (M2.1) and (M2.2), and

• H0(E(k)) = H0(E∗(k)) = 0 for all k ≤ −1,

• H1(E(k)) = 0 for all k ≤ −2,

• Hi(E(k)) = 0 for all k and 2 ≤ i ≤ n− 2,

• Hn−1(E(k)) = 0 for all k ≥ −n+ 1,

• Hn(E(k)) = 0 for all k ≥ −n+ 1,

and if E is locally-free:

• Hn(E∗(k)) = 0 for all k ≥ −n+ 1

Proof. (1) It is analogous to the proof of Proposition 2.

(2) If n is odd we consider the exact sequences

0 → ker(δ) → O⊕bQn

δ→ OQn
(1)⊕c → 0 ,

0 → Σ(−1)⊕a → ker(δ) → E → 0
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and if n is even we consider the exact sequences

0 → ker(ψ) → O⊕bQn

ψ→ OQn
(1)⊕c → 0 ,

0 → Σ1(−1)⊕a1 ⊕ Σ1(−2)⊕a2 → ker(ψ) → E → 0

and we argue as in the proof of Proposition 2 taking into account that

H0(Σ(k)) = H0(Σ1(k)) = H0(Σ2(k)) = 0 for all k ≤ −1,

Hi(Σ(k)) = Hi(Σ1(k)) = Hi(Σ2(k)) = 0 for all k and 1 ≤ i ≤ n− 1, and

Hn(Σ(k)) = Hn(Σ1(k)) = Hn(Σ2(k)) = 0 for all k ≥ n.

Proposition 16. Every rank 2 torsion-free special sheaf E on Qn with c1(E) =

0 is semistable.

Proof. Since every torsion-free special sheaf E on Qn satisfies H0(E(k)) =

H0(E∗(k)) = 0, simply use the argument in the proof of Proposition 6.

Finally, for higher rank locally-free special sheaves on Qn, we have:

Theorem 17. Let E be a rank r locally-free special sheaf on Qn.

• If r ≤ 2n− 1 and c1(E) = 0, then E is semistable;

• if r ≤ n and c1(E) 6= 0, then E is stable.

Let E be a rank r ≤ n reflexive special sheaf on Qn.

• If c1(E) = 0, then E is semistable;

• if c1(E) > 0, then E is stable.

It is interesting to note that, by [2, Proposition 4.7], there are no rank

r ≤ n − 1 linear sheaves E on Qn with c1(E) < 0 or rank r ≤ n − 2 linear

sheaves E on Qn with c1(E) = 0.

Proof. For locally-free and reflexive special sheaves which are represented as

cohomologies of the monad (M1), the statement follows from Theorem 7 and

10 and for locally-free and reflexive special sheaves which are represented as

cohomologies of the monad (M2.1) and (M2.2) an analogous argument works.
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Note that using the Fløystad type existence theorem for linear sheaves on

Qn established in [2, Proposition 4.7], one can easily produce examples of rank

2n locally-free instanton sheaves on Qn as well as rank n+ 1 locally-free linear

sheaves on Qn which are not semistable, following the ideas in Examples 12 and

14.

However, we do not know whether the bounds in the rank are sharp for

locally-free sheaves on Qn which are the cohomology of monads of type (M2.1)

and (M2.2). For instance, is there an unstable rank 2n locally-free sheaf on Qn

which can be represented as the cohomology of a non-linear special monad?
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