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Abstract

We show that instanton bundles of rank r < 2n — 1, defined as the co-
homology of certain monads, on an n-dimensional projective variety with
cyclic Picard group are semistable in the sense of Mumford-Takemoto.
Furthermore, we show that rank » < n linear bundles with nonzero first
Chern class over such varieties are stable. We also show that these bounds
are sharp.
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1 Introduction

Let X be a nonsingular projective variety over an algebraically closed field F
of characteristic zero of dimension n, and let £ denote a very ample invertible
sheaf; let £~ denote its inverse.

Given (finite-dimensional) F-vector spaces V, W and U, a linear monad on



X is the short sequence of sheaves
M, : 0-VeL'2Weox 2UusL -0 (1)

which is exact on the first and last terms, i.e. @ € Hom(V, W) ® L is injective
while f € Hom(W,U) ® L is surjective. The coherent sheaf F = ker 8/Ima is
called the cohomology of the monad M,. The set:

S={z e X | a(z) € Hom(V,W) is not injective}

is a subvariety called the degeneration locus of the monad M,.

A torsion-free sheaf E on X is said to be a linear sheaf on X if it can be
represented as the cohomology of a linear monad and it is said to be an instanton
sheaf on X if in addition it has ¢;(E) = 0.

Linear monads and instanton sheaves have been extensively studied for the
case X = P" during the past 30 years, see for instance [5, 6] and the references
therein. Buchdahl has studied monads over arbitrary blow-ups of P? [1]. In a
recent preprint, Costa and Miré-Roig have initiated the study of linear monads
and locally-free instanton sheaves over smooth quadric hypersurfaces @,, within
P! (n > 3) [2]. They have asked whether every such locally free sheaf of rank
n — 1 is stable (in the sense of Mumford-Takemoto) [2, Question 5.1].

The main goal of this paper is to give a partial answer to their question
in a more general context, showing that locally-free instanton sheaves of rank
r < 2n — 1 on an n-dimensional smooth projective variety with cyclic Picard
group are semistable, while locally-free linear sheaves of rank » < n and ¢; # 0
on such varieties are stable. Furthermore, we also show that the bounds on the
rank are sharp by providing examples of rank 2n instanton sheaves and rank
n + 1 linear sheaves on P™ which are not semistable.

We conclude the paper by studying the semistability of special sheaves on
@, as introduced by Costa and Miré-Roig. Theorem 17 provides a partial
answer to Question 5.2 in [2], showing that every rank r < 2n — 1 locally-
free special sheaf F on Q,, with ¢; = 0 is semistable, while every rank r < n

locally-free special sheaf on @,, with ¢; # 0 is stable.
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2 Instanton sheaves on cyclic varieties
Note that if E is the cohomology of a linear monad as in (1), then:
tk(E)=w—v—u and ¢;(E)=(v—u)- ¢

where w = dim W, v = dimV, v = dim U and ¢ = ¢;(£). Thus any instanton

sheaf E can be represented as the cohomology of a monad of the following type:
0— (£71)®C g O;.?r-&-Qc g E@c =0 (2)

where r is the rank and c is called the charge of E. It also follows that the total

Chern class of F is given by, in the case u = v:

c(E) = =1+ P+ )0

N
(1-¢2)

Remark 1. For X = P, instanton sheaves exist for » > n—1 and all ¢ [5]. For
X being a smooth quadric hypersurface of dimension n > 3, instanton sheaves
exist for 7 > n—1 and all ¢ [2]. It would be very interesting to obtain existence

results for a wider class of varieties.

A smooth projective variety X is said to be cyclic if Pic(X) = Z. Examples
of cyclic varieties are projective spaces, smooth quadric hypersurfaces Q,, within
P+l (n > 3), Grassmannians and general smooth projective surfaces X C P3
of degree d > 4.

From now on, we denote E(k) = E ® L®* if k is positive and E(k) =
E ® (L71)®F if k is negative. Of course, in this notation, £L = Ox(1) and
L7 =0x(-1).

Proposition 2. Let X be a smooth projective cyclic variety of dimension n and
let E be a linear sheaf on X. Assume that wx = Ox(\) for some integer A > 0.

Then, we have:



(1) H(E(k)) = HY(E*(k)) = 0 for all k < —1,
(2) HY(E(k)) = 0 for all k < -2,

(3) H{(E(k)) =0 for allk and 2 <i<n—2,
(4) H" Y (E(k)) =0 for all k > X\ + 2,

(5) H*(E(k)) =0 for all k > A+ 1,
and if E is locally-free:
(6) H*(E*(k)) =0 for all k > XA+ 1.

Proof. The crucial observation is that by Kodaira Vanishing Theorem we have
H'(Ox(k)) =0 for all i <n and k < —1; and

H'(Ox (k) ®wx) =0 for all i >0 and k > 1.

By Serre’s duality H' (X, Ox (k) @ wx) & H"(X,Ox(—k)). So, we conclude
that
H°(Ox(k)) =0 for all k < —1,

H'(Ox(k))=0forall kand 1 <i<n—1, and
H"(Ox(k)) =0for all k > X+ 1.
Assuming that F is the cohomology of a linear monad
0= Ox(~1)% 2 0% L, 0y ()P =0 | (3)
let K = ker [3; it is a locally-free sheaf of rank b — ¢ fitting into the sequences:
0— K(k) — Ox(k)® 22 Ox(k+1)%¢ -0 and (4)
0— Ox(k—1)% % K(k) - E(k) -0 . (5)
Passing to cohomology, the exact sequence (4) yields:
H (X,K())=0foralltand2<i<n-—1,
H'X,K(k))=0fort>A+1,

H(X,K(k))=0fort < -1,



HYX,K())=0fort<-2.
Passing to cohomology, the exact sequence (5) yields:
H(E(k))=0foral k< -1,
HY(E(k)) =0forall k< -2,
HY(E(k))=0forallkand2<i<n-—2,
H" Y E(k)) =0forall k> \+2,
H"(E(k))=0forallk>A+1.

Dualizing sequences (4) and (5), we obtain:
0— Ox(—k —1)% 25 Oy (—k)® — K*(—k) — 0 and (6)

0— E*(—k) — K*(—k) 25 Ox(—k +1)® — Ext'(E(k),0x) — 0 . (7)
Again, passing to cohomology, (7) forces HY(E*(k)) € H°(K*(k)) for all k,
while (6) implies H°(K*(k)) =0 for k < —1.

Finally, if F is locally-free, we have H"(E*(k)) = 0 for all k > A\ + 1, by
Serre’s duality. O

Remark 3. It follows from (7) that £xt'(E, Ox) = cokera*, i.e. the degener-
ation locus of the monad (2) coincides with the support of Ext!(E, Ox).

Proposition 4. Let E be a linear sheaf on a smooth projective variety X (not

necessarily cyclic).
1. E is locally-free if and only if its degeneration locus is empty;

2. E is reflexive if and only if its degeneration locus is a subvariety of codi-

mension at least 3;

3. E s torsion-free if and only if its degeneration locus is a subvariety of

codimension at least 2.



Proof. Let S be the degeneration locus of the linear monad associated to the
linear sheaf E. From previous remark, we know that ExtP(E, Ox) = 0 for p > 2
and
S =supp Ext! (B, Ox) = {z € X | a(z) is not injective }.
The first statement is clear; so it is now enough to argue that F is torsion-
free if and only if S has codimension at least 2 and that F is reflexive if and
only if S has codimension at least 3.

Recall that the m'"-singularity set of a coherent sheaf F on X is given by:
S (F)={x € X | dh(F,) > n—m}

where dh(F,) stands for the homological dimension of F, as an O,-module:

B Ext}, (Fu,O) #0
dh(Fe) =d = { Ext?, (Fp.Op) = 0 ¥p > d.

In the case at hand, we have that dh(E,;) =1 if z € S, and dh(FE,) = 0 if
xz ¢ S. Therefore So(E) = -+ = S,_2(F) = 0, while S,,_1(F) = 5. It follows
that [7, Proposition 1.20]:

e if codim S > 2, then dimS,,(E) < m — 1 for all m < n, hence E is a
locally 1%t-syzygy sheaf;
e if codim S > 3, then dim S,,(E) < m — 2 for all m < n, hence F is a

locally 2"-syzygy sheaf.

The desired statements follow from the observation that E is torsion-free if and
only if it is a locally 1%%-syzygy sheaf, while E is reflexive if and only if it is a

locally 2°d-syzygy sheaf [6, p. 148-149]. O

Remark 5. Note that if E is a locally-free linear sheaf on X, which is repre-

sented as the cohomology of the linear monad
M, : 0= Ox(=1)%* 2% 0% 2 0y (1)% —0 |
its dual E* is also a linear sheaf, being represented as the cohomology of the

dual linear monad

MP o 00— 0x(—1)% L 0% % 0 (1)% 0 .



In particular, if E' is a locally-free instanton sheaf on X then its dual E* is also

an instanton.

3 Semistability of instanton sheaves

Recall that a torsion-free sheaf F on a cyclic variety X is semistable if for every

coherent sheaf 0 # F' — E we have

cl(F)Z”‘l Cl(E)fn_l

n(F) = HE) S (B = u(E).

Furthermore, if for every coherent sheaf 0 # F' — E with 0 < rk(F) < rk(E)

we have
_ (F)Enil c1 (E)gnil
W) = = B ME)

then F is said to be stable. A sheaf F is said to be properly semistable if it is

semistable but not stable. It is also important to recall that E is (semi)stable

if and only if E* is (semi)stable if and only if £ ® L®* is (semi)stable.
The goal of this section is to study the (semi)stability of instanton bundles.

Proposition 6. Fvery rank 2 torsion-free instanton sheaf on a cyclic variety

is semistable.

Proof. Let us first consider a rank 2 reflexive sheaf F on X such that H°(F(—1)) =
0; we argue that F' is semistable. Indeed, if F' is not semistable, then any desta-
bilizing sheaf L «— F with torsion-free quotient F/L must be reflexive (see
[6, p. 158]). But every rank 1 reflexive sheaf is locally-free, thus L = Ox(d)
with d = ¢1(L) > 0 since Pic(X) = Z. It follows that H°(F(—d)) # 0, hence
HO(F(-1)) # 0 as well.

Now if E is a rank 2 torsion-free sheaf with HY(E*(—1)) = 0, then F = E*
is a rank 2 reflexive sheaf with HY(F(—1)) = 0. But we've seen that such F
is semistable, hence FE is also semistable. Together with the first statement in

Proposition 2, the desired result follows. O

For instanton sheaves of higher rank, we have our first main result:



Theorem 7. Let E be a rank r instanton sheaf on a cyclic variety X of dimen-

sion n.
o If E is reflexive and v < n, then E is semistable;
o if E is locally-free and r < 2n — 1, then E is semistable.

Since smooth quadric hypersurfaces are cyclic, the above statement provides
in particular a partial answer to the questions raised in [2, Questions 5.1 and
5.2].

The proof of Theorem 7 is based on a very useful criterion, due to Hoppe

[4], to decide whether a reflexive sheaf on cyclic variety is (semi)stable.

Proposition 8. Let E be a rank r reflexive sheaf on a cyclic variety X. If
HO(AE)porm) =0 for 1 < q < r—1, then E is stable. If H((AYE)porm(—1)) =
0 for1 <qg<r—1, then E is semistable.

Proof. For a contradiction, assume that E is not stable, and let F' be the desta-
bilizing reflexive sheaf of rank ¢, 1 < ¢ < r — 1, with torsion-free quotient G.

So, we have an exact sequence

0—F—F—G—0

and, moreover, u(F) = f}g%f,)) > :}gi?) = w(F). The injective map FF — E

induces an injective map Ox(c1(F)) = det(F) = N9F — AYE, determining a
non-zero section in H*(AYE(—c;(F))). Since u(F) = i}g((?) > :}C%?) = u(E), it
follows that HO(AYE,orm) # 0, as desired.

The second statement regarding stability is proved in exactly the same way.

O

Proof of Theorem 7. We argue that every instanton sheaf on an n-dimensional
cyclic variety X satisfying the conditions of the theorem fulfill Hoppe’s criterion
(see Proposition 8).

Indeed, let E be a rank r reflexive instanton sheaf on X. Assume that E

can be represented as the cohomology of the linear monad as in (2).



Considering the long exact sequence of exterior powers associated to the

sheaf sequence (4), twisted by £7!, we have:
0 — ATK(—1) — A(OFT2) (1) — - --

Thus HO(AMK(-1)) =0for 1 <g<r+ec
Now consider the long exact sequence of symmetric powers associated to the
sheaf sequence (5), twisted by £71:

q—1 ctq—2

0— Ox(—q— 1>(C+q ) — K®OX<_(]>( q—1 ) .

— ANTTTK @ Ox(—=2)¢ — AK(—1) — ALE(—=1) — 0 .

Cutting into short exact sequences and passing to cohomology, we obtain
HY(APE(=1))=0 for 1<p<n-—1, (8)

and this proves the first statement.
Now if FE is locally-free, then the dual E* is also an instanton sheaf on X,
SO

HO(AY(E*)(=1)) =0 for 1<g<n—1 . (9)
But AP(E) ~ A""P(E*), since det(E) = Ox; it follows that:
HY(APE(-1)) = HY(A"P(E*)(-1)) =0 for 1<r—-p<n-—1
= r—n+1<p<r-1(10)

Together, (9) and (10) imply that if E is a rank r < 2n — 1 locally-free

instanton sheaf, then:
HY(APE(=1)) =0 for 1<p<2n—2

hence F is semistable by Hoppe’s criterion. m]

On the other hand, we have:

Proposition 9. Let H = h°(L). For r > (H — 2)c, there are no stable rank r

instanton sheaves of charge ¢ on X.



In particular, for X = P™ and £ = Opx (1), it follows that every locally-free
instanton sheaf on P™ of charge 1 and rank r with n < r < 2n — 1 must be
properly semistable; for X = @,, and £ = O, (1), every locally-free instanton
sheaf on @,, of charge 1 and rank » with n 4+ 1 < r < 2n — 1 must be properly

semistable.

Proof. For the second part, note that if E is a stable torsion-free sheaf with
c1(E) = 0, then H(E) = 0. Indeed, if H°(E) # 0, then there is a map
Ox — E, which contradicts stability.

It follows from the sequences (4) and (5) for £ = 0 that:

HE) ~ HY(K) ~ker{ H°B : H*(OY""*) — HO(L%) } .

If » > (H — 2)c, then the map H°3 cannot be injective, H(E) # 0 and E

cannot be stable. O
Now dropping the ¢1(F) = 0 condition, we obtain:

Theorem 10. Let E be a rank v < n linear sheaf on a cyclic variety X of

dimension n.
o If E is reflexive and c1(F) > 0, then E is stable;
e if E is locally-free and c¢1(F) # 0, then E is stable.

Proof. Since E is a linear sheaf, it is represented as the cohomology of a linear
monad
0— Ox(—1)% % 0% L 0 )% -0 |
so that ¢1(E) = (¢ — a)l.
Assuming ¢ — a > 0, we have u(AYE) = g(c —a)/r > 0, hence (AYE)porm =
(AE)(t) for some t < —1.

On the other hand, arguing as in the proof of Theorem 7 we get

H(NE)(=1))=0forallg<n—1 . (11)

10



Therefore, if F is a rank r < n reflexive sheaf represented as the cohomology

of a linear monad and ¢;(E) > 0, then:
HO<(ApE)norm) =0 for 1<p<r—-1

Hence F is stable by Hoppe’s criterion.

For the second statement, note that if E is a locally-free linear sheaf with
c1(E) < 0, then E* is a locally-free linear sheaf with ¢;(E*) > 0. By the
argument above, E* is stable; hence E is stable whenever ¢; (E) # 0, as desired.

O

We will end this section with an example which illustrates that the upper
bound in the rank given in Theorem 7 is sharp, in the sense that, for each n,
there are rank 2n locally-free instanton sheaves on certain n-dimensional cyclic
varieties which are not semistable. To prove it we first need to provide the
following useful cohomological characterization of linear sheaves on projective

spaces.

Proposition 11. Let F be a torsion-free sheaf on P™. F is a linear sheaf if

and only if the following cohomological conditions hold:
o forn>2, H'(F(-1)) =0 and H*(F(-n)) = 0;
o forn >3, HY(F(k)) =0 fork < —2 and H" Y(F(k)) =0 fork > —n+1;
e forn>4, HP(F(k)) =0 for2<p<n-—2 and all k.

Proof. The fact that linear sheaves satisfy the cohomological conditions above
is a consequence of Proposition 2.

For the converse statement, first note that H°(F(—1)) = 0 implies that
H°(F(k)) = 0 for k < —1, while H"(F(—n)) = 0 implies that H"(F(k)) = 0

for k > —n. Moreover, we claim that (¢ =0,...,nand p=0,—1,...,—n):

HIF(-1)®@ Qi (—p)) =0 for¢g#1 andfor¢g=1, p<-3. (12)

11



Now the key ingredient is the Beilinson spectral sequence [6]: for any coherent
sheaf F' on P", there exists a spectral sequence {EP*?} whose Fi-term is given

by (¢=0,...,nand p=0,—1,...,—n):
B = HY(F @ Q! (—p)) ® Opn (p)

which converges to
pi_l P itptg=0
0 otherwise

Applying the Beilinson spectral sequence to F'(—1), it then follows that it de-

generates at the Fs-term, so that the monad

0 — HYF(-1)®0%.(2) ® Opn(-2) — (13)

— HYF(-1)® Q. (1) @ Opn(—=1) = HY(F(-1)) @ Opn — 0

has F(—1) as its cohomology. Tensoring (13) by Op~ (1), we conclude that F is
the cohomology of a linear monad, as desired.

The claim (12) follows from repeated use of the exact sequence
HY(F(k)®™ — HY(F(k+1) @ Q" (-p— 1)) —

— HTH(F(k) @ Qpf (—p)) — HIH(F (k)™ (14)

associated with Euler sequence for p-forms on P™ twisted by F'(k):

0 — F(k) @ QpF(=p) = F(k)®™ — F(k) @ Qul " (=p) = 0, (15)
Whereq:O,...,n,p:O,—l,...,—nandm:(n_J;l ) O

We are finally ready to construct rank 2n locally-free instanton sheaves on

P™ which are not semistable.

Example 12. Let X =P" n > 4. By Flgystad’s theorem [3], there is a linear
monad:

0= Opn (1) % 0213 L 0p.(1) = 0 (16)

whose cohomology F' is a locally-free sheaf of rank n on P™ and ¢, (F) = 1.

12



Dualizing we get a linear monad:
0= Opn(—1) 5 023 % 0p, (1)%2 -

whose cohomology is F*, hence it is a locally-free linear sheaf of rank n on P"
and ¢ (F*) = —1.
Take an extension F of F* by F:

0—-F—FE—F"—=0.

Such extensions are classified by Ext' (F*, F) = H'(F®F). We claim that there

are non-trivial extensions of F* by F'. Indeed, we consider the exact sequences
0— K =ker(8) — O£ 2 0p.(1) - 0 (17)

0— Opn(-1)%2 5 K - F =0 (18)

associated to the linear monad (16). We apply the exact covariant functor - ® F'

to the exact sequences (17) and (18) and we obtain the exact sequences

0-K®F — F% L F(1) -0

0—-F(-1)*"2 s K®F -F®F —0 .

Using Proposition 2, we obtain HY(K @ F) = H(F @ F) = 0 for all i > 3.
Hence, x(F ® F) = h°((F® F)) — k' ((F ® F)) + h?((F @ F)). On the other
hand,

X(F&F)=x(K®F)=-2x(F(-1)) =

'fl2 n

(n+3)X(F) = X(F()) = 2x(F(-1)) =8 = = = 2 <0, if n24 .

Thus if n > 4, we must have h'((F ® F)) > 0, hence there are non-trivial
extensions of F'* by F.

Using the cohomological criterion given in Proposition 11, it is easy to see
that the extension of linear sheaves is also a linear sheaf. Moreover, ¢1(E) = 0.

So, F is a rank 2n locally-free instanton sheaf of charge 3 which is not semistable.

For X = P", 2 < n < 3, arguing as above, we can construct a rank 2n

locally-free instanton which is not semistable as a non-trivial extension E of

13



F* by F, where F' is a linear sheaf represented as the cohomology of the linear
monad

0 — Opn (—1)24 % 02T 2 0, (1)%2 5 0.

In the next example, using the same idea as above, we show that there are
rank n + 2 reflexive instanton sheaves which are not semistable; our argument
fails because there are no rank r < n —1 linear sheaves E on P™ with ¢; (E) < 0.
We do not know whether there are unstable rank n 4 1 reflexive instanton
sheaves, i.e. whether the bound r < n in the first part of Theorem 7 is indeed

sharp.

Example 13. Let X =P" n > 3. By Flgystad’s theorem [3], there is a linear
monad:
0— O]pyL(fl)@"*Q Ba O]?nn"'l g O]pn(l) —0
whose cohomology F is a rank 2 reflexive linear sheaf on P and ¢;(F) = n — 3.
Next, consider the rank n locally free linear sheaf G associated to the linear

monad:
0 — Opn(—1)% & OF2nt20-3 LA Opn (1)®"T2=3 0 (a > 1).

Note that ¢1(G) =3 —n.
As in the previous example, an extension of G by F' is a rank n + 2 reflexive
instanton sheaf which is not semistable. The choice of a suitable value of the

parameter a guarantees the existence of non-trivial extensions.

To conclude this section, we show that the upper bounds in the rank given

in both parts of Theorem 10 are also sharp:

Example 14. Let X = P" n > 2. By Flgystad’s theorem [3], there is a linear
monad:

0= Opa (=1)® 2 029 £, 0p,(1)%5 - 0 (19)

whose cohomology G is a locally-free sheaf of rank n on P" and ¢;(G) = —1.

Now G* is the cohomology of the dual monad

0 — Op (—1)®5 55 0249 2 0, (1)%4 0

14



It follows that:
HY(G*) = H'(ker a*) = coker{ H'a* : HY(OZ"?) — H°(Opn (1)®*)} .

Since n > 2 forces 4n+4 > n+9, the generic map a will have coker(H%a*) # 0.
In other words, there exists a rank n locally-free linear sheaf G on P" with
c1(G) = —1 and HY(G*) # 0.

Take an extension F of such a linear sheaf G by Opn:
0—Opn - E—G—0. (20)

Using the cohomological criterion given in Proposition 11, it is easy to see that
E is a rank n + 1 locally-free linear sheaf with ¢1(F) = ¢1(G) = —1. It is not
stable, since H(E) # 0.

Note also that there are nontrivial extensions of G by Opn since H'(G*) #
0. Furthermore, the dual E* is an example of a rank n + 1 locally-free (thus

reflexive) linear sheaf with ¢; (£) > 0 which is not stable.

4 Special sheaves on smooth quadric
hypersurfaces

Now we restrict ourselves to the set-up in [2], and we assume that @, is a
smooth quadric hypersurface within P**!, n > 3; such varieties are cyclic.
Recall that a special sheaf E on @, is defined [2, Definition 3.4] as either the

cohomology of a linear monad
(M1) 0— Og, (—1)¥* — 05 — 0g, (1) =0
or the cohomology of a monad of the following type
(M2.1) 0— %(=1)%* - O0F" — 0q, (1)®° =0 , if nis odd,

(M2.2) 0— S1(=1)%" @ 8y(-1)%* — 0F> — Oq, (1)®° = 0 , if n is even,

where Y is the Spinor bundle for n odd, and X1, Y5 are the Spinor bundles for

n even.

15



Clearly, instanton sheaves on @, are special sheaves of the first kind with

zero degree.

Proposition 15. Let E be a special sheaf on Q,, n > 3. Then one of the

following conditions holds:

1. FE is the cohomology of a linear monad, and

o HY(E(k)) = H(E*(k)) =0 for all k < —1,
o HY(E(k)) =0 for all k < -2,

o H(E(k))=0 forallk and2 <i<n—2,
o H" Y (E(k)) =0 for allk > —n +2,

o HY(E(k)) =0 for all k > —n+1,

and if E is locally-free:

o H"(E*(k)) =0 for allk > —n+1; or

2. E is the cohomology of a monad of type (M2.1) and (M2.2), and

o HY(E(k)) = H°(E*(k)) =0 for all k < —1,
o HY(E(k)) =0 for all k < -2,

e H(E(k)) =0 forallk and2 <i<n—2,
o H" " Y(E(k)) =0 for all k > —n +1,

e H"(E(k)) =0 for all k > —n + 1,

and if E is locally-free:

o H*"(E*(k)) =0 forallk>-n+1

Proof. (1) It is analogous to the proof of Proposition 2.

(2) If n is odd we consider the exact sequences
0 — ker(0) — Ogﬁ LA 0g, (1) =0 ,

0— 2(-1)% = ker(§) = E—0

16



and if n is even we consider the exact sequences

0 — ker(y) — 0% Y, (’)Q”(l)@c —0

Qn
0— X (—1)%" @ % (-2)%"2 — ker(y)) = E — 0

and we argue as in the proof of Proposition 2 taking into account that
HO(X(k)) = HO(21(k)) = H°(Z2(k)) = 0 for all k < —1,
HY(X(k)) = H (Z1(k)) = H (Z2(k)) =0 for all k and 1 <i <n — 1, and
H™(X(k)) = H*(X1(k)) = H™(22(k)) = 0 for all k& > n. O

Proposition 16. Every rank 2 torsion-free special sheaf E on Q,, with ¢1(E) =

0 is semistable.

Proof. Since every torsion-free special sheaf E on Q,, satisfies H°(E(k)) =
HO(E*(k)) = 0, simply use the argument in the proof of Proposition 6. O

Finally, for higher rank locally-free special sheaves on @Q,,, we have:
Theorem 17. Let E be a rank r locally-free special sheaf on Q..

o Ifr <2n—1 and c;(E) =0, then E is semistable;

o ifr <n and ¢1(F) # 0, then E is stable.
Let E be a rank r < n reflexive special sheaf on Q.

o Ifc1(F) =0, then E is semistable;

e ifc1(E) >0, then E is stable.

It is interesting to note that, by [2, Proposition 4.7], there are no rank
r < n — 1 linear sheaves E on @, with ¢;(E) < 0 or rank » < n — 2 linear

sheaves E on @, with ¢;(E) =0.

Proof. For locally-free and reflexive special sheaves which are represented as
cohomologies of the monad (M1), the statement follows from Theorem 7 and
10 and for locally-free and reflexive special sheaves which are represented as
cohomologies of the monad (M2.1) and (M2.2) an analogous argument works.

O
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Note that using the Flgystad type existence theorem for linear sheaves on
@, established in [2, Proposition 4.7], one can easily produce examples of rank
2n locally-free instanton sheaves on (),, as well as rank n + 1 locally-free linear
sheaves on @), which are not semistable, following the ideas in Examples 12 and
14.

However, we do not know whether the bounds in the rank are sharp for
locally-free sheaves on @,, which are the cohomology of monads of type (M2.1)
and (M2.2). For instance, is there an unstable rank 2n locally-free sheaf on @,

which can be represented as the cohomology of a non-linear special monad?
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