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Abstract

A germ of diffeomorphism has convergent normal form if it is formally
conjugated to the exponential of a germ of vector field. We prove
that there are complex analytic unipotent germs of diffeomorphisms
at (Cn, 0) (n > 1) such that they do not have a convergent normal
form. The examples are contained in a family in which the absence
of convergence normal form is linked to a geometrical phenomenon.
The proof is based on several reductions; it relies on the properties of
some linear functional operators that we obtain through the study of
polynomial families of diffeomorphisms via potential theory.

1. Introduction

In this paper we prove

Main Theorem. There exists a unipotent germ of complex analytic
diffeomorphism at (C2, 0) without convergent normal form.

Normal forms are very important to study geometrical objects and
in particular diffeomorphisms. We denote by Diff (Cn, 0) the set of

germs of analytic diffeomorphisms at (Cn, 0) whereas D̂iff (Cn, 0) is the
formal completion of Diff (Cn, 0). A normal form for ϕ ∈ Diff (Cn, 0)
is a diffeomorphism formally conjugated to ϕ but somehow simpler.
Every ϕ ∈ Diff (Cn, 0) admits a unique Jordan decomposition

ϕ = ϕs ◦ ϕu = ϕu ◦ ϕs

where ϕs ∈ D̂iff (Cn, 0) is semisimple and ϕu ∈ D̂iff (Cn, 0) is unipo-
tent. In other words ϕs is formally linearizable and j1ϕu− Id is nilpo-
tent. Then ϕs has the natural normal form j1ϕs. In spite of that ϕu is
not formally linearizable unless ϕu ≡ Id, we need a different approach.
Anyway, a unipotent ϕ ∈ Diff (Cn, 0) is always the exponential of a
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unique formal nilpotent vector field log ϕ. In general log ϕ is diver-
gent but even if so it is geometrically significant. We are dealing with
a well-behaved case when log ϕ is formally conjugated to X for some
germ of vector field X. We say then that ϕ has convergent normal form
exp(X). The convergent normal form provides a continuous model to
compare the discrete dynamics of the original diffeomorphism with.

A unipotent ϕ ∈ Diff (C, 0) satisfies j1ϕ = Id; it always has a
convergent normal form exp(X). The study of the regions (Fatou
petals) in which ϕ is analytically conjugated to exp(X) provides the
basis to construct the Ecalle-Voronin system of complete invariants
(see [2]). The same strategy can be applied in bigger dimension. For
instance Voronin classifies analytically the unipotent diffeomorphisms
in Diff (C2, 0) whose normal form is of the form xk∂/∂y [2]. In spite
of this the Main Theorem claims that such a nice model is not always
available. In fact we prove that there exist elements of Diff (C2, 0) of
the form

ϕK,u(x, y) = (x + y(y − x)K(x, y), y + y(y − x)u(x, y))

with no convergent normal form. Moreover, the obstruction is of geo-
metrical type.

The proof of the Main Theorem is based on the study of the trans-
port mapping . Suppose log ϕK,u is a germ of vector field. Then
log ϕK,u/[y(y − x)] is regular and transversal to both y = 0 and y = x.

Real picture of the transport mapping

We can define a correspondence TrK,u associating to each point P
in y = 0 the unique point in y = x contained in the trajectory of
log ϕK,u/[y(y − x)] passing through P . This correspondence is the
transport mapping. Even if log ϕK,u is divergent we manage to de-
fine TrK,u; it is a formal invariant. Moreover we prove that if ϕK,u has
a convergent normal form then its transport mapping is an analytic
mapping.
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Fix u ∈ C{x, y} \ (x, y) such that ln ϕ0,u is not a germ of vector
field. The rest of the paper is devoted to prove that there exists K in
C{x, y} ∩ (x, y) such that TrK,u diverges. We argue by contradiction.
Note that TrK,u can be analytic (for example TrK,u(x, 0) ≡ (x, x))
whereas log ϕK,u is divergent. The divergence of TrK,u is even stronger
than the non existence of a germ of vector field collinear to ln ϕK,u. It
is obtained through a fine analysis of the nature of the family (ϕK,u)K

We consider polynomial families on λ ∈ C of the form

ϕ∆,u,λ(x, y) = (x + λy(y − x)∆(x, y), y + y(y − x)u(x, y)).

The absence of convergent normal form for all λ ∈ C allows to find by
deriving with respect to λ and evaluating at λ = 0 a linear equation

ε̂− ε̂ ◦ ϕ0,u = y(y − x)∆

such that ε̂∆(x, x) − ε̂∆(x, 0) ∈ C{x} for every solution ε̂∆ ∈ C[[x, y]].
The proof of the convergence of ε̂∆(x, x)− ε̂∆(x, 0) is based on potential
theory techniques. The equation ε̂− ε̂ ◦ ϕ0,u = y(y − x)∆ has a formal
solution ε̂∆ for all ∆ ∈ C[[x, y]], moreover ε̂∆(x, x)− ε̂∆(x, 0) does not
depend on the choice of ε̂∆. Then the operator Su : C[[x, y]] → C[[x]]
such that

Su(∆) = ε̂∆(x, x)− ε̂∆(x, 0)

is linear, well-defined and Su(C{x, y} ∩ (x, y)) is contained in C{x}.
The situation is much improved. Now it is enough to study a linear
operator attached to a diffeomorphism ϕ0,u which is dynamically sim-
ple, in particular the property x ◦ ϕ0,u = x will be key to prove that
Su(C{x, y} ∩ (x, y)) contains divergent elements.

The operator Su was defined in terms of a difference equation. The
difference equation can be replaced by a differential equation easier to
handle. More precisely Su(∆) = Γ̂(x, x) − Γ̂(x, 0) for every solution

Γ̂ ∈ C[[x, y]] of

log ϕ0,u(Γ̂) = −y(y − x)∆.

Since log ϕ0,u is divergent and x◦ϕ0,u = x then log ϕu = ûy(y−x)∂/∂y
for some divergent û ∈ C[[x, y]]. The collinearity of log ϕu and the germ
of vector field ∂/∂y and some standard functional analysis techniques
can be used to prove that Su(C{x, y} ∩ (x, y)) ⊂ C{x} implies that
û ∈ C{x, y}. Here we have our contradiction.

We do not say anything about the nature of the transport mapping,
besides the fact that it is generically divergent. It would be interest-
ing to know what divergent mappings can be obtained as transport
mappings of diffeomorphisms of type ϕK,u.
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2. Basic facts

In this section we introduce some well-known facts about diffeomor-
phisms and vector fields for the sake of completeness.

We say that a formal vector field X̂ =
∑n

j=1 âj(x1, . . . , xn)∂/∂xj

where âj ∈ C[[x1, . . . , xn]] for all 1 ≤ j ≤ n is nilpotent if X̂(0) = 0

and j1X̂ is nilpotent. We denote by X̂N(Cn, 0) and XN(Cn, 0) the
sets of formal nilpotent vector fields and germs of nilpotent vector
fields respectively. We define X̂0(ĝ) = ĝ and X̂j+1 = X̂(X̂j(ĝ)) for all

X̂ ∈ X̂N(Cn, 0) and ĝ ∈ C[[x1, . . . , xn]]. For a formal nilpotent vector

field X̂ the exponential mapping

exp(tX̂) =

( ∞∑
j=0

tj

j!
X̂j(x1), . . . ,

∞∑
j=0

tj

j!
X̂j(xn)

)

is well-defined and its components belong to C[t][[x1, . . . , xn]]. More-

over if X̂ converges then exp(tX̂)(x, y) is the point that we obtain

by travelling time t along the trajectory of X̂ passing through (x, y).

Obviously we have exp(0X̂) = Id.
We say that σ̂ = (σ̂1, . . . , σ̂n)∩C[[x1, . . . , xn]]n is a formal diffeomor-

phism if j1σ is a linear isomorphism. We denote by D̂iff (Cn, 0) and
Diff (Cn, 0) the set of formal diffeomorphisms and germs of diffeomor-
phism respectively. If j1σ̂ is unipotent (i.e. if 1 is the only eigenvalue of

j1σ̂) then we say that σ̂ is unipotent. We denote by D̂iff u(Cn, 0) the set
of formal unipotent diffeomorphisms. The next result is well-known.

Proposition 2.1. The exponential mapping X̂ 7→ exp(1X̂) maps bi-

jectively X̂N(Cn, 0) onto D̂iff u(Cn, 0).

Let σ̂ ∈ D̂iff u(Cn, 0); we denote by log σ̂ the unique formal nilpotent
vector field such that exp(log σ̂) = σ̂.

Consider an ideal Î ⊂ C[[x1, . . . , xn]]. We denote by Z(Î) the set

of formal curves γ̂ ∈ (C[[t]] ∩ (t))n such that ĥ ◦ γ̂ = 0 for all ĥ ∈ Î.

Reciprocally, for ∆̂ ⊂ (C[[t]] ∩ (t))n we define I(∆̂) as the set of series

ĥ ∈ C[[x1, . . . , xn]] such that ĥ ◦ γ̂ = 0 for all γ̂ ∈ ∆̂. We have

Proposition 2.2 (Formal theorem of zeros [8], pages 49-50). Let Î be
an ideal of C[[x1, . . . , xn]]. Then

IZ(Î) =
√

Î .

Let Ŷ be a formal vector field. We consider the set

FI(Ŷ ) = {ĝ ∈ C[[x1, . . . , xn]] : Ŷ (ĝ) = 0}
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of first integrals of Ŷ . We say that f̂ ∈ FI(Ŷ ) is primitive if
k

√
f̂ does

not belong to C[[x1, . . . , xn]] for k > 1. If FI(Ŷ ) 6= ∅ there exists a

primitive formal first integral f̂ ; moreover we have [6]

FI(Ŷ ) = C[[z]] ◦ f̂ .

The primitive first integral can be chosen in C{x1, . . . , xn} if Ŷ is a
germ of vector field [6].

We can give an alternative characterization for the first integrals of
the logarithm of a unipotent diffeomorphism.

Lemma 2.1. Let σ ∈ D̂iff u(Cn, 0) and f̂ ∈ C[[x1, . . . , xn]]. Then

log σ(f̂) = 0 ⇔ f̂ ◦ σ = f̂ .

Proof. We have

f̂ ◦ exp(t log σ) = f̂ + t log σ(f̂) +
t2

2!
(log σ)2(f̂) + . . .

Therefore log σ(f̂) = 0 implies f̂ ◦ σ = f̂ .

Suppose f̂ ◦ σ = f̂ . We obtain f̂ ◦ exp(t log σ)− f̂ = 0 for all t ∈ Z
and then for all t ∈ C since both sides belong to C[t][[x, y]]. That leads
us to

log σ̂(f̂) = lim
t→0

f̂ ◦ exp(t log σ)− f̂

t
= 0.

¤

3. Formal conjugacy

Throughout this paper we work with germs of diffeomorphism in
(C2, 0) of the form

ϕK,u(x, y) = (x + y(y − x)K(x, y), y + y(y − x)u(x, y))

where u,K ∈ C{x, y} and u(0, 0) 6= 0 = K(0, 0). In this section
we describe a geometrical condition for ϕK,u not to have a convergent
normal form.

We denote by Fixσ the fixed points set of a germ of diffeomorphism
σ. Next, we describe the structure of log ϕK,u.

Lemma 3.1. The formal vector field log ϕK,u is of the form

log ϕK,u = y(y − x)

(
u(0, 0)

∂

∂y
+ h.o.t.

)
.
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Proof. Since [y(y − x) = 0] = FixϕK,u then

exp(t log ϕK,u)(x, 0) ≡ (x, 0) and exp(t log ϕK,u)(x, x) ≡ (x, x)

for all t ∈ Z. Indeed, the result is still true for every t ∈ C since
exp(t log ϕK,u)(x, 0) and exp(t log ϕK,u)(x, x) belong to (C[t][[x]])2. We
have

log ϕK,u(x, 0) ≡ lim
t→0

exp(t log ϕK,u)(x, 0)− exp(0 log ϕK,u)(x, 0)

t
≡ 0.

We deduce that y divides log ϕK,u. In an analogous way we obtain that
y− x divides log ϕK,u. Then log ϕK,u/(y(y− x)) = u(0, 0)∂/∂y + h.o.t.
as it can be proved by using undetermined coefficients. ¤
Lemma 3.2. Fix ϕK,u and ĝ ∈ C[[x]]. There exists a unique f̂ in

C[[x, y]] such that log ϕK,u(f̂) = 0 and f̂(x, 0) = ĝ(x).

Proof. We denote Ŷ = log ϕK,u/(y(y−x)). By lemma 3.1 we have that

Ŷ (y) is a unit. Then

log ϕK,u(f̂) = 0 ⇔ ∂f̂

∂y
= − Ŷ (x)

Ŷ (y)

∂f̂

∂x
.

As a consequence there is a unique formal solution of the previous
equation fulfilling the initial condition f̂(x, 0) = ĝ(x). ¤

We want to introduce the formal invariants of ϕK,u. The first formal
invariant is the fixed points set.

Proposition 3.1. Let τ1, τ2 ∈ Diff (Cn, 0) and σ̂ ∈ Diff (Cn, 0) such
that σ̂ ◦ τ1 = τ2 ◦ σ̂. Then we have σ̂(Fixτ1) = Fixτ2.

An equivalent statement is the following: Let Î1 = I(Fixτ1) and

Î2 = I(Fixτ2). Then we have Î2 ◦ σ̂ = Î1.

Proof. Let γ̂ ∈ C[[t]]n ∩ Z(Î1). We have τ1 ◦ γ̂(t) = γ̂(t); we obtain

σ̂ ◦ τ1(γ̂(t)) = τ2 ◦ σ̂(γ̂(t)) ⇒ τ2 ◦ σ̂(γ̂(t)) = σ̂(γ̂(t)).

We deduce that σ̂◦γ̂(t) belongs to Z(Î2) and then σ̂(Z(Î1)) ⊂ Z(Î2). By

the analogous argument applied to σ̂(−1) we obtain Z(Î2) ⊂ σ̂(Z(Î1))

and then σ̂(Z(Î1)) = Z(Î2). That is equivalent to IZ(Î2) ◦ σ̂ = IZ(Î1).

Since Î1 and Î2 are radical ideals then Î2 ◦ σ̂ = Î1 is a consequence of
the formal theorem of zeros. ¤
Remark 3.1. It is no required the formal theorem of zeros to prove
the previous proposition but this proof makes clear that the image by
σ̂ of a parametrization γ̂(t) of a formal curve contained in Fixτ1 is a
parametrization σ̂ ◦ γ̂(t) of a formal curve contained in Fixτ2.
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Lemma 3.3. Let ϕK,u, τ ∈ Diff (C2, 0) and σ̂ ∈ D̂iff (C2, 0) such that
σ̂ ◦ ϕK,u = τ ◦ σ̂. Then

(1) Fixτ is an analytic set.
(2) Fixτ has two irreducible components f1 = 0 and f2 = 0, both

of them are smooth curves.
(3) σ̂∗(log ϕK,u) = log τ .
(4) j0(log τ/(f1f2)) is transversal to both f1 = 0 and f2 = 0.

(5) Let f̂ be a primitive element of FI(log ϕK,u). Then f̂ ◦ σ̂(−1) is
a primitive element of FI(log τ).

(6) f̂ ◦ σ̂(−1)
|f1=0 and f̂ ◦ σ̂(−1)

|f2=0 are ”injective”. In other words, if γ̂(t) is

a minimal parametrization of fj = 0 we have ν(f̂◦σ̂(−1)◦γ̂) = 1.

Proof. Condition (1) is obvious. Conditions (2) and (4) are a conse-
quence of proposition 3.1 and j1σ̂ being an isomorphism. Conditions
(3) and (5) can be deduced of the uniqueness of the logarithm. Condi-

tion (6) is equivalent to prove that ν(f̂(x, 0)) = ν(f̂(x, x)) = 1 for every

primitive f̂ in FI(log ϕK,u). We can suppose that f̂(x, 0) = x since

then f̂ is primitive and the set of primitive elements of FI(log ϕK,u) is

D̂iff (C, 0) ◦ f̂ . The relation log ϕK,u/(y(y − x)) = u(0, 0)∂/∂y + h.o.t

implies j1f̂ = x. Therefore ν(f̂(x, 0)) = ν(f̂(x, x)) = 1. ¤
Consider a couple (S, g) where S is a germ of analytic set and g is a

function on S. We typically consider a couple (γ, |JacϕK,u||γ) where γ is
a germ of curve contained in FixϕK,u and |JacϕK,u| is the determinant
of the jacobien matrix.

Proposition 3.2. The couples

(y = 0, |JacϕK,u||y=0) and (y = x, |JacϕK,u||y=x)

are formal invariants of ϕK,u.

Proof. Suppose σ̂◦ϕK,u = τ ◦ σ̂ for τ ∈ Diff (C2, 0) and σ̂ ∈ D̂iff (C2, 0).
We have

(|Jacσ̂| ◦ ϕK,u)|JacϕK,u| = (|Jacτ | ◦ σ̂)|Jacσ̂|
by the chain rule. Let γ(t) ∈ (C{t} ∩ (t))2 be a parametrization of
either y = 0 or y = x. We have ϕK,u ◦ γ(t) = γ(t); that implies

|JacϕK,u| ◦ γ(t) = |Jacτ | ◦ (σ̂ ◦ γ(t))

as we wanted to prove. ¤
Consider the formal mapping TrK,u : (y = 0) → (y = x) such that

f̂K,u ◦ TrK,u = f̂K,u where f̂K,u is a primitive formal first integral of
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log ϕK,u. By condition (6) in lemma 3.3 we have that f̂K,u(x, 0) and

f̂K,u(x, x) belong to D̂iff (C, 0). As a consequence we obtain

TrK,u(x) = (f̂K,u(x, x))
(−1) ◦ f̂K,u(x, 0)

The mapping TrK,u does not depend on the choice of f̂K,u. We call
TrK,u the transport mapping. If log ϕK,u is a germ of vector field then
TrK,u(x) is the only point in y = x contained in the same trajectory of
log ϕK,u/[y(y − x)] than (x, 0).

Proposition 3.3. The transport mapping TrK,u associated to a diffeo-
morphism ϕK,u is a formal invariant.

Suppose σ̂ ◦ ϕK,u = τ ◦ σ̂ for τ ∈ Diff (C2, 0) and σ̂ ∈ D̂iff (C2, 0).
By proposition 3.1 the formal curves γ1 = σ̂(y = 0) and γ2 = σ̂(y = x)
are in fact analytic. We define Trτ : γ1 → γ2 such that ĝ ◦ Trτ = ĝ for
every primitive ĝ in FI(log τ).

Proof. We keep the notations in the previous paragraph. We choose
σ̂(x, 0) and σ̂(x, x) as formal parameterizations of γ1 and γ2 respec-

tively. We choose a primitive f̂ ∈ FI(log ϕK,u); the series ĝ = f̂ ◦ σ̂(−1)

is a primitive element of FI(log τ) (lemma 3.3). We obtain

Trτ (x) = (f̂ ◦ σ̂(−1)(σ̂(x, x)))(−1) ◦ (f̂ ◦ σ̂(−1)(σ̂(x, 0))) = TrK,u(x).

¤
Now we introduce an obstruction to have a convergent normal form.

A unipotent diffeomorphism τ has convergent normal form if log τ is
formally conjugated to the exponential of a germ of vector field.

Proposition 3.4. Suppose that there exist X ∈ XN(C2, 0) and σ̂ in

D̂iff (C2, 0) such that σ̂◦ϕK,u = exp(X)◦σ̂. Then TrK,u is a convergent
mapping.

Proof. The expression of TrK,u in coordinates x 7→ (x, 0), x 7→ (x, x)
and of Trexp(X) in coordinates x 7→ σ̂(x, 0), x 7→ σ̂(x, x) are the same.
Since it is clear that the expression of Trexp(X) in convergent coordinates
is convergent then it is enough to prove that σ̂(x, 0) and σ̂(x, x) belong
to C{x}2.

We have |JacϕK,u| = 1+(2y−x)u(0, 0)+h.o.t. Therefore |JacϕK,u||y=0

is injective. Consider a convergent minimal parametrization η(x) of

σ̂(y = 0); there exists ĥ ∈ D̂iff (C, 0) such that σ̂(x, 0) = η ◦ ĥ(x).
Since |Jac(exp(X))| ◦ σ̂(x, 0) = |JacϕK,u|(x, 0) then

∂

∂x
(|Jac(exp(X))| ◦ η(x))(0) = − u(0, 0)

∂ĥ/∂x(0)
6= 0.
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As a consequence

ĥ = (|Jac(exp(X))| ◦ η(x)− 1)(−1) ◦ (|JacϕK,u|(x, 0)− 1)

belongs to Diff (C, 0). That implies σ̂(x, 0) = η ◦ ĥ ∈ C{x}2. The proof
for σ̂(x, x) is analogous. ¤

Remark 3.2. In order to find a unipotent diffeomorphism without con-
vergent normal form it is enough to exhibit a ϕK,u such that TrK,u is
divergent.

Remark 3.3. We do not prove it in this paper but a diffeomorphism
ϕK,u such that TrK,u is an analytic mapping has convergent normal
form. In particular a diffeomorphism ϕ0,u = (x, y + y(y − x)u(x, y))
has convergent normal form.

4. Polynomial families

We define

ϕK,u,λ = (x + λy(y − x)K(x, y), y + y(y − x)u(x, y)

where u(0, 0) 6= 0 = K(0, 0) and λ ∈ C. We denote by f̂λ the only ele-

ment of FI(log ϕK,u,λ) such that f̂λ(x, 0) = x. The transport mapping
TrλK,u satisfies

TrλK,u(x) = (f̂λ(x, x))
(−1) ◦ f̂λ(x, 0) = (f̂λ(x, x))

(−1)
.

As a consequence TrλK,u is convergent if and only if f̂λ(x, x) ∈ C{x}.
Lemma 4.1. We have

log ϕK,u,λ

y(y − x)
=

(∑

0≤k,l

a1
k,l(λ)xkyl

)
∂

∂x
+

(∑

0≤k,l

a2
k,l(λ)xkyl

)
∂

∂y

where aj
k,l ∈ O(C) for all k, l ≥ 0 and j ∈ {1, 2}.

The lemma can be proved by using undetermined coefficients.

Proposition 4.1. Let f̂λ be the unique formal first integral of log ϕK,u,λ

such that f̂λ(x, 0) = x. Then f̂λ can be expressed in the form

f̂λ = x + y
∑

j+k≥1

fj,k(λ)xjyk

where fj,k ∈ C[λ] and deg fj,k ≤ j + k for all j + k ≥ 1.
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Proof. We can use undetermined coefficients, the lemma 4.1 and the
equation

log ϕK,u,λ

y(y − x)
(f̂λ) = 0

to prove that fj,k ∈ O(C) for all j + k ≥ 1. Now consider

τK,u,λ(x, y) =
(x

λ
,
y

λ

)
◦ ϕK,u,1/λ ◦ (λx, λy).

We have

τK,u,λ(x, y) = (x + y(y − x)K(λx, λy), y + λy(y − x)u(λx, λy)).

We can proceed like in lemma 3.1 to prove

log τK,u,λ(x, y) = λy(y − x)

(
u(0, 0)

∂

∂y
+ h.o.t.

)
.

There is an analogue of lemma 4.1 for log τK,u,λ/(λy(y − x)). Again
such an expression can be used to prove that the unique first integral

ĝλ = x + y
∑

j+k≥1

gj,k(λ)xjyk

of log τK,u,λ such that ĝλ(x, 0) = x satisfies gj,k ∈ O(C) for all j+k ≥ 1.
The relation between ϕK,uλ and τK,u,λ implies

f̂1/λ(λx, λy) = λĝλ(x, y).

We obtain fj,k(1/λ)λj+k = gj,k(λ) for all j + k ≥ 1. Since fj,k and gj,k

are integer functions we deduce that fj,k is a polynomial of degree at
most j + k for all j + k ≥ 1. ¤

We have f̂λ(x, x) = x +
∑

j+k≥1 fj,k(λ)xj+k+1. Next result is crucial.

Proposition 4.2 ([5, 4]). Let P̂ =
∑

j≥0 Pj(λ)xj where Pj ∈ C[λ] and

deg Pj ≤ Aj+B for some A,B ∈ R and all j ∈ N. Then either P̂ (λ, x)

is convergent in a neighborhood of x = 0 or P̂ (λ) ∈ C[[x]] \ C{x} for
all λ ∈ C outside a polar set.

A polar set is pretty small. Its measure is zero as well as its Hauss-
dorff dimension. Moreover, it is totally disconnected.

Corollary 4.1. Fix K ∈ C{x, y} ∩ (x, y) and u ∈ C{x, y} \ (x, y).
Either (λ, x) 7→ TrλK,u(x) is convergent in a neighborhood of x = 0 or
x 7→ TrλK,u(x) is divergent for all λ ∈ C outside a polar set.
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Proposition 4.3. Fix u ∈ C{x, y} \ (x, y). Suppose ϕK,u has a con-
vergent normal form for all K ∈ C{x, y} ∩ (x, y). Then the equation

ε̂− ε̂ ◦ ϕ0,u = y(y − x)∆(x, y)

has a solution ε̂∆ ∈ C[[x, y]] such that ε̂∆(x, x) − ε̂∆(x, 0) ∈ C{x} for
all ∆ ∈ C{x, y} ∩ (x, y).

Proof. Fix ∆ ∈ C{x, y} ∩ (x, y). Let f̂λ be the unique first integral of

log ϕ∆,u,λ such that f̂λ(x, 0) = x. We have f̂λ ◦ϕ∆,u,λ = f̂λ for all λ ∈ C
by lemma 2.1. That implies

∂(f̂λ ◦ ϕ∆,u,λ)

∂λ |λ=0
=

∂f̂λ

∂λ |λ=0
.

Since f̂0 = x then

y(y − x)∆(x, y) +

(
∂f̂λ

∂λ |λ=0

)
◦ ϕ0,u =

∂f̂λ

∂λ |λ=0
.

We define ε̂∆(x, y) = (∂f̂λ/∂λ)(x, y, 0). We have ε̂∆(x, 0) = 0 by de-

finition of f̂λ. By the hypothesis and the proposition 4.2 we obtain
that (λ, x) 7→ f̂λ(x, x) is convergent in a neighborhood of x = 0. As a
consequence ε̂∆(x, x) ∈ C{x} and then ε̂∆(x, x)− ε̂∆(x, 0) ∈ C{x}. ¤

The diffeomorphism ϕ0,u satisfies x ◦ ϕ0,u = x, moreover it has a
convergent normal form. That is a significant progress since in order
to find a ϕK,u without a convergent normal form we only have to deal
with simpler diffeomorphisms.

5. The equation ε̂− ε̂ ◦ ϕ0,u = y(y − x)∆(x, y)

The main in result in this section is proving that the difference equa-
tion can be replaced by a differential equation. This is a key tool in
proving the main theorem.

We denote ϕ0,u = (x, y + y(y − x)u(x, y)) by ϕu.

Lemma 5.1. log ϕu is of the form y(y − x)(u(0, 0) + h.o.t.)∂/∂y.

Proof. By lemma 3.1 it is enough to prove that log ϕu(x) = 0. We
have that x ◦ exp(t log ϕu)− x = 0 for t ∈ Z; moreover since both sides
belong to C[t][[x, y]] we obtain x ◦ exp(t log ϕu) = x for t ∈ C. Hence

log ϕu(x) = lim
t→0

x ◦ exp(t log ϕu)− x

t
= 0.

¤
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Lemma 5.2. The equation ε̂− ε̂ ◦ϕu = y(y− x)∆(x, y) has a solution
ε̂ = ε̂∆ ∈ C[[x, y]] for all ∆ ∈ C[[x, y]].

Proof. We define ∆0 = ∆. Consider the equation

log ϕu(ε(∆0)) = −y(y − x)∆0.

Since log ϕu/(y(y−x)) is regular there exists a solution ε(∆0) ∈ C[[x, y]]
such that ν(ε(∆0)) ≥ ν(∆0) + 1. We consider

(ε(∆0) + ε1)− (ε(∆0) + ε1) ◦ ϕu = y(y − x)∆0.

This equation is equivalent to

ε1 − ε1 ◦ ϕu =
∑

k≥2

1

k!
(log ϕu)

k−1(−y(y − x)∆0(x, y)).

We denote the term in the right-hand side by y(y − x)∆1; we have
ν(∆1) ≥ ν(∆0)+1. We can proceed by induction. Given ∆j there exists
ε(∆j) such that log ϕu(ε(∆j)) = −y(y − x)∆j and ν(εj) ≥ ν(∆j) + 1.
As previously we define

∆j+1 =
∑

k≥2

1

k!
(log ϕu)

k−1(−y(y − x)∆j(x, y)).

We obtain ν(∆j+1) ≥ ν(∆j) + 1 for all j ≥ 0. Therefore
∑

j≥0 ε(∆j)

converges in the Krull topology to a solution ε̂∆ ∈ C[[x, y]] of the
equation ε̂− ε̂ ◦ ϕu = y(y − x)∆(x, y). ¤
Lemma 5.3. Fix ∆ ∈ C[[x, y]]. The series ε̂∆(x, x)− ε̂∆(x, 0) does not
depend on the solution ε̂∆ ∈ C[[x, y]] of ε̂− ε̂ ◦ ϕu = y(y − x)∆(x, y).

Proof. It is enough to prove that ε̂(x, x) − ε̂(x, 0) = 0 for a solution
ε̂ ∈ C[[x, y]] of ε̂ − ε̂ ◦ ϕu = 0. The series ε̂ belongs to FI(log ϕu) by
lemma 2.1. Moreover, lemma 5.1 implies ∂ε̂/∂y = 0. Hence ε̂ belongs
to C[[x]] and clearly ε̂(x, x)− ε̂(x, 0) = 0. ¤

Given ∆ ∈ C[[x, y]] and a solution ε̂∆ ∈ C[[x, y]] of the equation
ε̂ − ε̂ ◦ ϕu = y(y − x)∆(x, y) we define Su(∆) = ε̂∆(x, x) − ε̂∆(x, 0).
The lemmas 5.2 and 5.3 imply that Su : C[[x, y]] → C[[x]] is a well-
defined linear functional. Proposition 4.3 implies that if there is no ϕK,u

without convergent normal form then Su(C{x, y} ∩ (x, y)) ⊂ C{x}.
Lemma 5.4. Let u ∈ C{x, y} \ (x, y). Then we have

Su

(
log ϕu

y(y − x)
[y(y − x)∆(x, y)]

)
= 0

for all ∆ ∈ C[[x, y]].
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Proof. Let ε̂0 ∈ C[[x, y]] be a solution of ε̂ − ε̂ ◦ ϕu = y(y − x)∆(x, y).
Now ε̂t = ε̂ ◦ exp(t ln ϕu) satisfies the equation

ε̂t − ε̂t ◦ ϕu = [y(y − x)∆(x, y)] ◦ exp(t ln ϕu)

for all t ∈ C. Moreover, we have

ε̂ ◦ exp(t ln ϕu)(x, x)− ε̂ ◦ exp(t ln ϕu)(x, 0) = ε̂(x, x)− ε̂(x, 0).

That implies

Su

(
[y(y − x)∆(x, y)] ◦ exp(t ln ϕu)− [y(y − x)∆(x, y)]

ty(y − x)

)
= 0

for all t ∈ C∗. By deriving with respect to t and evaluating at t = 0 we
obtain the thesis of the lemma. ¤

Next we replace our difference equation with a differential equation.

Proposition 5.1. Let u ∈ C{x, y}\ (x, y) and ∆ ∈ C[[x, y]]. Consider

a solution Γ̂∆ of log ϕu(Γ̂) = −y(y − x)∆. Then we have

Su(∆) = Γ̂∆(x, x)− Γ̂∆(x, 0).

Proof. We have

Γ̂∆− Γ̂∆ ◦ϕu = y(y−x)∆+log ϕu

(∑

k≥2

(log ϕ)k−2(y(y − x)∆(x, y))

k!

)
.

Consider a solution ε̂∆ ∈ C[[x, y]] of ε̂− ε̂ ◦ ϕu = y(y − x)∆(x, y). We
have

(Γ̂∆ − ε̂∆)(x, x)− (Γ̂∆ − ε̂∆)(x, 0) = 0

by lemma 5.4. ¤
Corollary 5.1. Suppose log ϕu ∈ XN(C2, 0). Then Su(C{x, y}) is
contained in C{x}.
Remark 5.1. Even if log ϕu ∈ XN(C2, 0) implies Su(∆) ∈ C{x} (for
∆ ∈ C{x, y}) in general there is no convergent solution ε̂∆ of the equa-
tion ε̂− ε̂ ◦ ϕ0,u = y(y − x)∆(x, y). The divergence of Su(∆) is subtler
than the divergence of every ε̂∆.

6. The induced differential equation

Let v ∈ C[[x, y]]. We can define the operator Dv : C{x, y} → C{x}
such that Dv(H) = ε̂H(x, x)− ε̂H(x, 0) where ε̂H ∈ C[[x, y]] is a solution
of ∂ε̂/∂y = vH. The definition of Dv(H) does not depend on the choice
of ε̂H . This section is devoted to prove

Proposition 6.1. Let v ∈ C[[x, y]]. If Dv(C{x, y}) ⊂ C{x} then v
belongs to C{x, y}.
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Fix ε, δ > 0. We define the Banach space Bε,δ whose elements are
the series H =

∑
0≤j,k Hj,lx

jyk such that

||H||ε,δ =
∑

0≤j,k

|Hj,l|εjδk < +∞.

We have Bε,δ ⊂ C{x, y}. Moreover, a function H ∈ Bε,δ is holomorphic
in B(0, ε) × B(0, δ) and continuous in B(0, ε) × B(0, δ). Given v in
C[[x, y]] we can define for j ≥ 1 the linear functionals Dj

v : Bε,δ → C
such that

Dv(H) =
∑
j≥1

Dj
v(H)xj

for all H ∈ Bε,δ.

Lemma 6.1. Let v ∈ C[[x, y]]. Then Dj
v is a linear continuous func-

tional for all j ∈ N.

Proof. We denote H =
∑

0≤k,l Hk,l(H)xkyl. We have that

Dj
v =

∑

k+l<j

cj
k,lHk,l

where cj
k,l ∈ C for all j ≥ 1 and k + l < j. As a consequence it is

enough to prove that Hk,l : Bε,δ → C is a continuous functional for all
0 ≤ k, l. We apply Cauchy’s integration formula to obtain

Hk,l(H) =
1

(2πi)2

∫

∂B(0,ε)×∂B(0,δ)

H(x, y)

xk+1yl+1
dxdy.

That implies

|Hk,l(H)| ≤ sup∂B(0,ε)×∂B(0,δ) |H|
εkδl

≤ ||H||ε,δ
εkδl

.

As a consequence ||Hk,l|| ≤ ε−kδ−l. ¤

Lemma 6.2. Let v ∈ C[[x, y]]. Either lim supj→∞
j

√
||Dj

v|| < +∞ or

Dv(H) 6∈ C{x} for all H in a dense subset of Bε,δ.

Proof. Suppose lim supj→∞
j

√
||Dj

v|| = +∞. We choose a sequence (aj)

of positive numbers such that aj →∞ and

lim sup
j→∞

j

√
||Dj

v||
aj

= +∞.

Hence lim supj→∞ ||Dj
v/a

j
j|| = +∞. We deduce that

lim sup
j→∞

|Dj
v(H)|/aj

j = +∞
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for all H in a dense subset E of Bε,δ by the uniform boundedness
principle. Moreover, since

lim sup
j→∞

j

√
|Dj

v(H)| ≥ lim inf
j→∞

aj = +∞

then Dv(H) 6∈ C{x} for all H ∈ E. ¤

Proposition 6.2. Let v ∈ C[[x, y]]. Suppose Dv(Bε,δ) ⊂ C{x}. Then
there exists ηε,δ > 0 such that Dv(H) ∈ O(B(0, ηε,δ)) for all H ∈ Bε,δ.

Proof. There exists ηε,δ > 0 such that lim supj→∞
j

√
||Dj

v|| ≤ 1/ηε,δ by

lemma 6.2. As a consequence

lim sup
j→∞

j

√
|Dj

v(H)| ≤ lim sup
j→∞

(
j

√
||Dj

v|| j

√
||H||ε,δ

)
≤ 1/ηε,δ.

That implies that Dv(H) ∈ O(B(0, ηε,δ)) for all H ∈ Bε,δ. ¤

Proof of proposition 6.1. Since Dv(H) ∈ C{x} for all H ∈ B1,1 there
exists C ≥ 1 such that ||Dj

v|| ≤ Cj for all j ≥ 1 by lemma 6.2. We
denote v =

∑
0≤k,l vk,lx

kyl. We have

D1
v(1) = v0,0 ⇒ |v0,0| ≤ ||D1

v||||1||1,1 ≤ C.

We want to estimate vk,0, . . ., v0,k for all k ≥ 0. We obtain

Hilk




vk,0

vk−1,1
...

v0,k


 =




Dk+1
v (1)

Dk+2
v (y)

...
D2k+1

v (yk)




where Hilk is the (k+1)×(k+1) Hilbert matrix; this is a real symmetric
matrix such that Hilka,b = 1/(a + b − 1) for all 1 ≤ a, b ≤ k + 1. The
Hilbert matrix is the matrix associated to the bilinear form

< P, Q >=

∫ 1

0

P (r)Q(r)dr

in the basis 1, . . ., xk of the space of real polynomials in one variable of
degree at most k. Therefore Hilk is not singular and all its eigenvalues
are positive numbers. In order to estimate ||vk,0, . . . , v0,k||2 we want

to estimate the spectral norm of the inverse of Hilk, i.e. ||(Hilk)
−1||2.

Since (Hilk)
−1

is hermitian then

||(Hilk)
−1||2 = max eigenvalues((Hilk)

−1
) =

1

min eigenvalues(Hilk)
.
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Let ρ = 1 +
√

2 and K = (8π23/4)/(1 +
√

2)
4
; we obtain

||(Hilk)
−1||2 =

ρ4k

K
√

k
(1 + o(1))

as k → ∞ [3]. We have |Dk+l+1
v (yl)| ≤ ||Dk+l+1

v ||||yl||1,1 ≤ Ck+l+1. As
a consequence we obtain

||vk,0, . . . , v0,k||2 ≤ ρ4k

K
√

k

√
k + 1C2k+1(1 + o(1)).

Then

|vl,m| ≤ ρ4(l+m)

K
√

l + m

√
l + m + 1C2(l+m)+1(1 + o(1))

for 0 ≤ l, m where liml+m→∞ o(1) = 0. We deduce that v belongs to
O(B(0, 1/(ρ4C2))×B(0, 1/(ρ4C2))). ¤

7. End of the proof of the Main Theorem

The following proposition basically implies the Main Theorem.

Proposition 7.1. Let u ∈ C{x, y}\ (x, y). Suppose that log ϕ0,u is not
convergent. Then there exists K ∈ C{x, y}∩ (x, y) such that ϕK,u does
not have a convergent normal form.

Proof. Suppose the result is false. Hence Su(C{x, y} ∩ (x, y)) ⊂ C{x}
by proposition 4.3. Let û ∈ C[[x, y]] be the formal unit such that
log ϕ0,u = y(y − x)û(x, y)∂/∂y (see lemma 5.1). By hypothesis û is a

divergent power series. By proposition 5.1 the series Γ̂∆(x, x)−Γ̂∆(x, 0)

belongs to C{x} for all solution Γ̂∆ ∈ C[[x, y]] of

∂Γ̂

∂y
= −∆(x, y)

û(x, y)

and all ∆ ∈ C{x, y} ∩ (x, y). Since D−x/û(C{x, y}) ⊂ C{x} then
−x/û ∈ C{x, y} by proposition 6.1. We deduce that û ∈ C{x, y}; that
is a contradiction. ¤

To end the proof of the Main Theorem it is enough to exhibit an
example of a diffeomorphism ϕ0,u such that log ϕ0,u is divergent by
proposition 7.1.

If u(0, y) ∈ O(C) then (y ◦ ϕ0,u)(0, y) is an integer function different
than y. Then log(ϕ0,u)|x=0 is divergent [1]. That implies û(0, y) 6∈ C{y}
and then û(x, y) 6∈ C{x, y}. In particular we can choose u = 1.
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8. Remarks and generalizations

In our approach a unipotent τ ∈ Diff (Cn, 0) has convergent normal
form if log τ does. We can say then that the normal form is strong.
There is an alternative definition: We say that τ ∈ Diff (Cn, 0) has a
weak convergent normal form if there exists a germ of vector field Y
vanishing at 0 whose exponential is formally conjugated to τ . This
definition is suppler but not so geometrically significant. For instance
Id = exp(0) ∈ Diff (C, 0) is the exponential of every germ of vector
field whose first jet is 2πiz∂/∂z. It is natural to restrict our study to
the strong case. Anyway, in the family (ϕK,u) the strong and weak
concepts of convergent normal form coincide. Hence a general ϕK,u

does not have a weak convergent normal form.
There exists ϕK0,u0 without convergent normal form. That is the

generic situation. Consider the set

E = {ϕK,u : K ∈ (x, y) and u(0, 0) = 1} ⊂ Diff u(C2, 0).

For every ϕK,u there exists µ ∈ C∗ such that (x/µ, y/µ)◦ϕK,u◦(µx, µy)
is in E. Then to study the existence of convergent normal forms in the
family (ϕK,u) we can restrict ourselves to E. In particular we can
suppose ϕK0,u0 ∈ E. The set E is an affine space whose underlying
vector space is (x, y)× (x, y). Then E is the union of the complex lines

LA,B : λ 7→ ϕK0+λA,u0+λB.

where A,B ∈ C{x, y}∩(x, y). By arguing like in section 4 and applying
proposition 4.2 we can prove that for all line LA,B through ϕK0,u0 the
transport mapping is divergent outside of a polar set. The absence of
convergent normal form is clearly the generic situation in E.

Consider K,u such that ϕK,u does not have a convergent normal
form. We define

ϕn
K,u = (z1 + z2(z2 − z1)K(z1, z2), z2 + z2(z2 − z1)u(z1, z2), z3, . . . , zn).

Then ϕK,u ∈ D̂iff u(Cn, 0)∩Diff (Cn, 0) does not have convergent normal
form for all n ≥ 2. Hence there are unipotent germs of diffeomorphism
without convergent normal form for any dimension greater than 2.

Let f ∈ C{x, y} ∩ (x, y). Consider the family

ϕf
K,u = (x + f(x, y)K(x, y), y + f(x, y)u(x, y))

where K(0, 0) = 0 6= u(0, 0). The choice f = y(y − x) is by no means
special. We can choose f such that its decomposition xmfn1

1 . . . f
np
p

in irreducible factors satisfies ν((f1 . . . fp)(0, y)) > 1. This condition
means that in a suitable domain ]((f = 0) ∩ (x = c)) > 1 for all
c 6= 0 in a neighborhood of 0. It is the condition we need to define an
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analogue of the transport mapping. Fix u such that ln ϕf
0,u is divergent;

we can adapt the results in this paper to prove that there exists ϕf
K,u

with no convergent normal form for some K ∈ C{x, y} ∩ (x, y). The
two main difficulties in the proof are:

• The formal invariants are slightly more complicated [7]. This
phenomenon is isolated in the example f = ya0(y − x)a1 for
aj ∈ N. If aj > 1 the function |JacϕK,u||y=jx is identically
equal to 1, it is a trivial formal invariant. Anyway, there are
always non-constant functions on y = 0 and y = x which are
formal invariants. This is crucial to prove proposition 3.4 since
otherwise we can not claim that the action of a formal conjuga-
tion on a fixed points curve is convergent. The rest of the proof
is basically the same.

• The technical details in the proofs are in general trickier. That
is the situation if the curve f = 0 is complicated, for instance if
its components are singular. Anyway, the proof basically follows
the same lines. The additions are intended to make the strategy
in this paper work. We chose the case f = y(y−x) because the
presentation is clearer but it contains all the main ideas.
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Norm. Sup., (13):469–523, 1980.
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