SECTIONAL-HYPERBOLIC SYSTEMS
R. METZGER AND C. MORALES

ABSTRACT. We introduce a class of vector fields on n-manifolds containing
the singular-hyperbolic systems on 3-manifolds [MPP1], the multidimensional
Lorenz attractors [BPV] and the C'-robustly transitive singular sets in [LGW].
We prove that a system in this class cannot be approximated by ones exhibit-
ing non-hyperbolic closed orbits (this property is false for higher-dimensional
singular-hyperbolic systems [TS]). Existence of SRB measures and stochastic
stability for attractors in the introduced class is discussed.

1. INTRODUCTION

Let M be a compact boundaryless manifold and let x"(M) be the space of C”
vector fields on M with the C" topology, r > 1. Denote by X; the flow generated
by X € x!(M) and by Q(X) the nonwandering set of X. If U C M and r > 1
denote by G"(U) the set of X € x"(M) such that every closed orbit in U of every
vector field C™-close to X is hyperbolic. A compact invariant set A of X is isolated
if it is maximal invariant in some compact neighborhood of it called ¢solating block.
An isolated set is attracting if it has a positively invariant isolating block and an
attractoris an attracting set which is transitive, i.e., the accumulation point set of
the positive orbit of one of its points. We prevent the reader that many authors
use the name attractor for what we have named attracting set [M].

A dominated splitting over A is a non-trivial invariant direct sum Th M = E3 @&
EX such that the angle between DX, (z)-v and E¢ approaches exponentially to 0
ast — oo for allv ¢ E? (this is reason why some authors use the name projectively
hyperbolic for such sets). A partially hyperbolic set is a compact invariant set with
a dominated splitting for which the subbundle E} is contracting. A partially
hyperbolic set with hyperbolic singularities is singular-hyperbolic or hyperbolic
depending on whether the central direction Ef is volume expanding or splits
into an invariant direct sum E§ = EY ® EX where EY is expanding and Ey is
the flow direction. A hyperbolic set A is also a singular-hyperbolic set if it is
saddle-type, i.e., ES # 0 and EY # 0 for all z € A. On the other hand, there are
examples of singular-hyperbolic sets which are not hyperbolic as the geometric
and multidimensional Lorenz attractors [ABS], [GW], [BPV].
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A vector field X is called Aziom A if Q(X) is hyperbolic and the closure of
the closed orbits. The class of Axiom A vector fields is important from both
deterministic and probabilistic viewpoint. In particular, the Spectral Decompo-
sition Theorem says that the nonwandering set of every Axiom A vector field
splits into finitely many disjoint transitive isolated sets. This property motivates
[MPP3] to define singular-Axiom A vector field in the following way: A vector
field X € x'(M) is singular-Aziom A if Q(X) is the closure of the closed orbits
and splits into finitely many disjoint transitive isolated sets each one being either
an attracting closed orbit or a singular-hyperbolic set (for X or —X). It turns
out that every Axiom A vector field is singular-Axiom A but not all singular-
Axiom A vector fields are Axiom A as, for example, a suitable extension of the
geometric Lorenz attractor. Nevertheless, when dim(M) = 3 we observe that
every singular-Axiom A vector field without cycles belongs to G'(M) and, in ad-
dition, each element of its nonwandering decomposition is hyperbolic or looks like
a geometric Lorenz attractor ((MPP3]). In the converse direction we know that a
generic vector field in G'(M) is singular-Axiom A without cycles [MPa]. Further
properties of singular-hyperbolic sets for vector fields on compact boundaryless
3-manifolds can be found in [BDV].

It is natural to ask whether the above results can be extended to compact
boundaryless n-manifolds, n > 4. However, [MPP3] is false in higher dimension
as there is a compact boundaryless n-manifold M, n > 4, exhibiting a singular-
Axiom A vector field which is not in G!(M). One more example but now in
dimension 4 is the wild strange attractor [TS] which is an example of a C! vector
field X on a compact boundaryless 4-manifold exhibiting an attracting singular-
hyperbolic set A satisfying X ¢ G'(U) for every neighborhood U of A.

In this paper we try to extend the aforementioned results to compact bound-
aryless n-manifolds, n > 4, by introducing the concept of sectional-hyperbolic
set. Roughly speaking a compact invariant set is sectional-hyperbolic if its sin-
gularities are hyperbolic and is partially hyperbolic with sectionally expanding
central direction. This last property means that the derivative of the flow along
the central subbundle E° exponentially expands the area of parallelograms. It is
clear from the definition that sectional and singular-hyperbolicity coincide pre-
cisely when dim(M) = 3. As before we define sectional-Axiom A vector field in
the following way: A vector field X € x!(M) is sectional-Aziom A if Q(X) is the
closure of the closed orbits and splits into finitely many disjoint transitive isolated
sets each one being either an attracting closed orbit or a sectional-hyperbolic set
(for X or —X). We shall prove that a sectional-Axiom A vector field without
cycles belongs to G!(M) independently of the dimension of M. This provides a
somewhat extension of [MPP3] to higher dimensional manifolds. We prove more
properties of the sectional-hyperbolicity as it holds not only for all hyperbolic
saddle-type sets but also for the C! robustly transitive singular sets considered
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in [LGW], including the multidimensional Lorenz attractor. We also prove that
the wild strange attractor is not sectional-hyperbolic.

In the last section we announce the existence of SRB measures and the sto-
chastic stability under diffusion type small random perturbations for C? sectional-
hyperbolic attractors. As a corollary in dimension 3 we obtain that a C? singular-
hyperbolic attractor on a closed 3-manifold has a unique SRB measure and s
stochastically stable. The existence part of this corollary has been announced by
Colmenarez [C] assuming that the periodic orbits are dense), and by Pacifico [Pa]
in the general case. The stochastic stability part extends the corresponding result
for the geometric Lorenz attractor [K| and solves in positive to a question posed
in [BDV]. One more corollary of the main result in the last section is that the
multidimensional Lorenz attractor is stochastically stable. So, we obtain positive
answer to a question posed by Viana to the first author.

This paper is divided in three parts. In Section 2 we present the main defini-
tions including the sectional-hyperbolic sets. In Section 3 we discuss dynamical
properties of sectional-hyperbolic systems. In Section 4 we state a result concern-
ing the existence of SRB measures and stochastic stability for sectional-hyperbolic
attractors leading the detailed proof to a forthcoming work.

2. MAIN DEFINITIONS

First we state some basic concepts in topological dynamics. Throughout M
denotes a compact manifold and X denotes a C" vector field in M, » > 0. The
flow of X will be denoted by X;, € R. The non-wandering set Q(X) of X is
the set formed by those points p with the property that for every neighborhood
U of p and every T > 0 there is ¢ > T such that X;(U)NU # (. A compact
invariant set A of X is singular if it contains a singularity of X. We say that A
is #solated if there is a compact neighborhood U of it called #solating block such
that A = Ax(U), where
Ax(U) = ﬂ X:(U)
telR

is the maximal invariant set of X in U. We say that A is transitive if it coincides
with the accumulation point set of a positive orbit contained on it. The index
Ind(o) of a hyperbolic closed orbit O of X is the dimension of its stable subbundle
E},. The first part of the following definition comes from [LGW].

Definition 1. A compact invariant set A of a C™ vector field X on a compact
manifold M is:

e Strongly homogeneous of index Ind(A) if there is a neighborhood U C M
of A such that Ind(O) = Ind(A), for every hyperbolic periodic orbit O C U
of every vector field that is C" close to X.

e (" robustly transitive if A s isolated and there is an isolating block U

of A such that Ay (U) is a non-trivial transitive set of Y, for every vector
field Y that is C" close to X.
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Next we introduce some concepts in differentiable dynamics. Let X be a C*
vector field in M. If A C M a subbundle Fy over A is a continuous map z € A —
F, where F, is a linear subspace of T, M. If A is an invariant set of X we say
that F) is invariant if DX, (x)(F;) = Fx,(s) for every x € A and every t € IR. In
such a case we say that F is contracting if there are positive constants K, A such
that

| DXy/k, ||I< Ke™, Vxz €A, Vt>O0.

We say that Fj is expanding if it is contracting for the reversed vector field — X.
A compact invariant set A of X is hyperbolic if there is a continuous invariant
tangent bundle decomposition TAM = E3 @& EX @ E¥ such that:

1. E3 is a contracting subbundle.
2. EY is an expanding subbundle.
3. EX =< X(z) > for every x € A.

A closed orbit of X is hyperbolic if its full orbit is a hyperbolic set of X.
Afterward we introduce the notion of sectionally expanding subbundle. The
Jacobian of a linear map T will be denoted by Det(T).

Definition 2. Let F) be an invariant subbundle over a compact invariant subset
A of X. We say that F is sectionally expanding if each restriction DX;/p,
to a two-dimensional subspace L C F) s area expanding in the following sense:
There are positive constants K, X such that for every x € A and every two-
dimenstonal subspace L, C F, one has

| Det(DXy(x)/1,) |> Ke, Vvt > 0.

One can generalize this definition to k-sectionally expanding subbundle, 1 <
k < dim(F}), just requering k-dimensional subspaces instead of two-dimensional
ones. Sectionally expanding expresses nothing but that the derivative along F)
expands the area of parallelograms instead of the length of vectors. Actually the
difference between sectionally expanding and expanding subbundles is that the
first one allows at most one negative Lyapunov exponent whereas the second one
does not. In particular, an expanding subbundle is sectionally expanding but not
conversely.

Recall the definition of dominated splitting and partially hyperbolicity. Let A
be a compact invariant set of X. A continuous invariant splitting Tha M = E{ @ E§
is dominated if for every x € A one has E? # 0, ES # 0 and there are positive
constants K, A such that

|| DXy/gs || - || DX—t/Eg(t(m) |< Ke ™, VxeA, Vt>0.

If in addition the subbundle Ef is contracting then we say that A is partially
hyperbolic. The subbundle EY is called central subbundle of A.
Now we state the main definition of this work.
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Definition 3. A compact invariant set is sectional-hyperbolic if its singular-

ities are hyperbolic and is partially hyperbolic with sectionally expanding central
subbundle.

The above definition will be used to define a class of vector fields on n-
manifolds. The motivation is the definition of singular-Axiom A vector field
in [MPP1] p. 3396. A sink of a vector field is a hyperbolic closed orbit with zero
unstable subbundle E* and a source is a sink for the time reversed vector field.

Definition 4. A C" vector field on a closed manifold is sectional-Axiom A if
Q(X) is the closure of the closed orbits of X and writes as a disjoint union of
isolated transitive sets

Q(X):AlLJUAk,
where each A; is either a sink or a sectional-hyperbolic set for X or —X. We say
that X has no cycles if there are no regqular orbits linking the A;’s in a cyclic
way.

It turns out that the class of sectional-Axiom A vector fields includes the Axiom
A ones and, as we shall see later, the multidimensional Lorenz attractor as well.

3. DYNAMICAL PROPERTIES OF SECTIONAL-HYPERBOLIC SYSTEMS

In this section we discuss the dynamical properties of the sectional-hyperbolic
sets. To start with we relate sectional-hyperbolicity with robustly transitivity.
Indeed, the following can be seen as complement of the main result in [LGW].

Theorem A. Let A be a strongly homogeneous C* robustly transitive singular
set of a C! wvector field X on a compact manifold M. If every singularity o € A
of X is hyperbolic with Ind(c) > Ind(A) then A is a sectional-hyperbolic set of
X.

Proof. We already know from [LGW] that A has a partially hyperbolic splitting
T\M = ES & ES,

defined in the following way: A point € A is called periodic if it belongs to
a periodic orbit. By an argument involving the Pugh Closing Lemma we can
assume that every periodic orbit of X in A is hyperbolic and that the periodic
points are dense in A. Then,
. . =~ _ . NX ~.
E; = lim Ej E; = lim (B, © E ),

n—oo z n—oo

where pj, is a sequence of periodic points converging to « and the splitting 7),, M =
E;n o> E’;i 2> E;jn is the hyperbolic splitting of the orbit of p,.

By using the strongly homogeneous hypothesis, the Connecting Lemma [H]
and standard facts in the theory of homoclinic loops (e.g. Chapter 6 in [AH] or
[F'S]) one can prove that every singularity o € A is generalized Lorenz-like, i.e., o
has at least one real eigenvalue Ay < 0 such that if we define
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e )\ (0) =max{Re()\) : A # )¢ is an eigenvalue of o with negative real part};
e )\, (o) = min{Re()) : A is an eigenvalue of o with positive real part},

then #\_(0) > 1 and
A(0) <A <0< =X < Ap(0).

(In the present case one has #A_(0) = Ind(A) and so Ind(o) = Ind(A) + 1 for
every singularity o € A. Note also that a generalized Lorenz-like singularity is in
fact a generalization of the concept of Lorenz-like singularity in [MPP1].)

Next we obtain the following property:

(P) There is a neighborhood U of X in the space of all C' vector fields such
that if Y € U, then there are 0 < A < 1 and a neighborhood V C U of Y
such that if Z € V and p is a periodic point of Z with period ¢, and orbit
contained in U, then

1 DZ 1, (0)/ s 1< A"

To prove (P) we proceed as in the proof of Theorem 3.6(a) in [MPP1] p. 412
except that, in the present case, we use the strongly homogeneous hypothesis
instead of the absence of sinks or sources used there.

Afterward we apply the argument in [MPP1] p. 404. Indeed, since the Grass-
mann manifold of two-dimensional planes is compact (e.g. [MS] p. 55), to prove
that Ef is sectionally expanding we only need to prove that

litm inf | detDX (z)/r, |=0
—00

for every x € Ax(U) and every two-dimensional subspace L, C E¢. By contra-
diction assume that this is not so. By applying the Ergodic Closing Lemma for
flows as in [MPP1] p. 405, using the fact that every singularity of A is general-
ized Lorenz-like, it is possible to find, for every v < 0 close to 0, a vector field
Y™ € U as in (P), a periodic point p, with period ¢,, of Y™ and a two-dimensional
subspace Lp, C Ej such that

| detDY (pn)/Lyp, |> (7).
But

| DY (pa) 1> /| detDY: (pa)/1,, |

SO
|| DY

tpn

(Pa) |2 (772)"m.
Using (P) we obtain
)\tpn 2 (67/2)t1’n

which is absurd since A is fixed and y is close to 0. This proves the result. U

Corollary 5. The multidimensional Lorenz attractor is sectional-hyperbolic.
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Proof. For completeness we give a brief description of the multidimensional Lorenz
attractor [BPV]. Consider an expanding map f : T% — T* of the k-dimensional

torus TF = S x -*- x S, k > 2. Denote by D? the closed unit ball in
IR? and denote by N = T* x D?. Note that N carries a foliation by 2-disks
F$ = {x x D? : x € TF} with leaf space N/F* = T*. Denote by Int(N) the
interior of N. Let F': V — Int(N) be a C* diffemorsphism which preserves and
contracts F* such that the map induced by F in the leaf space N/F* = T* is
f. It follows that the maximal invariant set Agp = Ny>oF™(N) is a hyperbolic
attractor with stable foliation F* of F'. Consider the suspension X of F' which
is a C™ vector field defined in the suspended manifold M* with a global cross
section ¥ = N x 0. To prove transitivity of the attractor [BPV] impose that the
modulus of the derivative of f is uniformly bigger than max{2, 2%} where R and
A are respectively the injectivity radius of the exponential map and the diameter
of Tk,

Pick a point £ € Ar C ¥ and consider the piece of orbit £F(€) of X* from &
to its first return point F'(£) to 3. Consider a small neighborhood of the form
Ux0of&in C. The set V = Xg1(U x 0) is a neighborhood of zF(z) in MF.
By making a surgery on V' we can replace the flow of the vector field restriction
X*/y by a Cherry-like one. More precisely we create a singularity O inside V
with stable manifold W*(O) of dimension k£ + 1. Observe that O has a strong
stable manifold W**(O) of dimension k. In this way we obtain a new vector field
Y having ¥ = T* x D? as a cross-section. Moreover, there is a return map ®
induced by Y in X such that:

(P1) ® admits F* as a contracting C*° foliation.

(P2) The quotient space of F° is difftomorphic to 7% and the map ¢ : T* \
{€} — T* induced by @ in the leaf space of F° has derivative bigger that
max{2,2%}.

These properties are preserved by small C' perturbations Z of Y. The multi-
dimensional Lorenz attractor is the attracting set of Y defined by

AY) = U closure (U Zt(2)> :

>0 t>T

To prove that A(Y') is singular-hyperbolic we need to prove that its singularity is
hyperbolic and that it is partially hyperbolic with sectionally expanding central
direction (see Definition 3). We can prove this directly by verifying the required
properties in the above construction. Here we proceed in an indirect way using
Theorem 5. More precisely, we shall prove that A(Y") is a strongly homogeneous
C! robustly transitive set with a unique singularity O which is hyperbolic and
satisfies Ind(O) > Ind(A(Y)). That A(Y) has a unique singularity O which is
hyperbolic is obvious from the construction. To prove that A(Y) is C* robustly
transitive we can appeal to part (1) of the Main Theorem in [BPV] p.885. Next
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we observe that A(Y") is strongly homogeneous as the dimension Ind of the stable
direction of every periodic orbit P close to A(Y) of a vector field Z that is C*
close to Y is precisely 2. Hence Ind(A(Y)) = 2. Observe also that the stable
dimension Ind(O) of the singularity O is precisely 3. It then follows that

Ind(0) =3 > 2 = Ind(A(Y)).
So we are done by Theorem A. O
The result below extends Theorem B in [MPP1] p. 3396 to higher dimensions.

Theorem B. A C" sectional-Axiom A vector field without cycles of a closed n-
manifold M is in G"(M) for any r > 1.

Proof. The proof follows the argument in the proof of Theorem B in [MPP1] p.
3399 and the lemma below. Recall that a subset U and > 1 we denote by G"(U)
the set of C" vector fields X such that every closed orbit in U of every vector
field that is C™ close to X is hyperbolic. Observe that G'(U) is the local version
of the space G'(M) considered in [H].

Lemma 6. If A is a sectional-hyperbolic set of a C" vector field X on a compact
manifold M, then there is an open subset U C M containing A such that every
compact invariant non-singular subset in U of every vector field that is C" close
to X is hyperbolic. In particular X € G"(U) and if A is transitive, then A is
strongly homogeneous as well.

Indeed, by the compactness of the Grassmann space of two-dimensional sub-
spaces we have that the sectionally expansiveness of a subbundle is preserved by
C" perturbations. In particular, there is a neighborhood U of A such that every
compact invariant non-singular set H C U of every Y that is C" close to X has
a partially hyperbolic splitting with sectionally expanding central direction. One
can prove as in [MPP3] that H is hyperbolic. From this it follows that X € G'(U).
On the other hand, if A is transitive, then it is connected and so the dimension
of its stable subbundle Ef is constant. In such a case A is strongly homogeneous
with index such a constant. This proves Lemma 6. O

As a complement to Theorem B let us mention that there are vector fields
in G"(M) which are not sectional-Axiom A for all > 1. Besides, Theorem B
motivates the question how large the class of sectional-Axiom A vector fields is.
In particular, are the sectional-Axiom A vector fields dense in G"(M)?

We finish this section with the following corollary.

Corollary 7. The wild strange attractor in [TS] is singular-hyperbolic but not
sectional-hyperbolic.

Proof. The attractor is singular-hyperbolic by construction ([TS] p. 138) but not
sectional-hyperbolic by Lemma 6 and Theorem 4 in [TS]. O
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4. ERGODIC PROPERTIES OF SECTIONAL-HYPERBOLIC SYSTEMS

In this section we discuss some ergodic properties of sectional-hyperbolic sets
leading the details for a forthcoming work.

Consider the family of transition probability measures P°(t, z,-) on a manifold
M given for every x € M and t € IR (or t € Z,) and € > 0 small enough and
define Markov chains z7, ¢ € IR in the following way: if 2; = x then z7 __ has
probability P¢(r,z, A) of being in A. The Markov chain z§ for ¢ € IR is called a
small random perturbation of a flow X, if for every continuous function A on M,
we have

lim
e—0

[ Ptenanypio) - h(Xt(x»\ 0.

Similarly, the Markov chain zf for n € Z, is called a small random perturbation
of a map f if for every continuous function A on M, we have

lim =
e—0

/M P (n,z,dy)h(y) — h(f"(z))

We say that »* on M is a stationary measure for the Markov chain z§ if for all
Borel set A and any 7 > 0, we have

/M ve(dzx) P*(T,xz, A) = v°(A).

Under general hypothesis [K]| weak limits of stationary measures v* when ¢ — 0
are invariant under the flow (or the map, depending on the case).

Definition 8. Let X be a C? vector field and p be an invariant probability mea-
sure of X. We say that p is a SRB measure if u has at least one positive Lyapunov
exponent a.e. and p has absolutely continuous invariant measure on unstable
manifolds.

Denote by B(M) the set of borelians of a manifold M.

Definition 9. Let X a vector field on a manifold M and A be an attractor of
X having a unique SRB measure u. Let P*: IRt x M x B(M) — [0,1] be the
transition probability measures associated to a fived small random perturbation
x5 of X and {p}eso be a family of stationary measures of P*. We say that A
is stochastically stable if for every real number sequence €; — 0% such that
uft — v in the weak sense one has v = L.

By stochastic stability for diffusion type perturbations it is meant that we are
going to use transition probabilities of the form

Pe(t,z,A) =/p6(7,:c,y)dy,
A
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where dy means integration with respect to the natural Lebesgue measure of the
manifold and p°(7, z,y) is a solution of the diffusion equation
£
%%(t, z,y) = (eL + X)p°(t, z,y)
with L being an elliptic operator and X a vector field. Note that the ellip-
tic operator introduces the possibility of collision with particle in a media (or
heat equation), that gives the random part of the Markov chains. Typical solu-
tion of this equation comes with a factor that has Gaussian behavior. That is,
£ —|X¢(z)—yl
pe(t, @, y) ~ exp(—=2).
The proof of the theorem below follows from the arguments used to prove the
stochastic stability of the geometric Lorenz attractor [K].

Theorem C. A C? sectional-hyperbolic attractor on a compact boundaryless man-
ifold has a unique SRB measure and is stochastically stable for diffusion type small
random perturbations.

This theorem has the following interesting corollaries:

Corollary 10. A singular-hyperbolic attractor of a C? wvector field on a closed
3-manifold has a unique SRB measure and is stochastically stable for diffusion
type small perturbations.

Corollary 11. A C? multidimensional Lorenz attractor [BPV] is stochastically
stable under diffusion type small random perturbations.

As already mentioned in the Introduction, the existence part of Corollary 10 has
been recently announced by Colmenarez [C] (assuming the denseness of periodic
orbits) and by M. Pacifico [Pa] (in general case). Corollary 11 answers positively
to a question posed by M. Viana to the first author.

Let us present an outline of the proof of Theorem C leading the details to a
forthcoming work. Instead of P*(t,z, A) for all t € IR we will consider only dis-
crete Markov chains P*(7,z, A) for 7 fixed and greater than zero. In other words
we will calculate the stationary measure for the diffusion type small random per-
turbation for the flow by calculating the stationary measure for the diffeomorfism
X, defining P*(1,z,A) = P*(r,z,A). This step is fully justified since station-
ary measure for diffusion type perturbations are unique for each £. And, since
[ Pe(n,z, A)dpf(xz) = p(A) we can use arbitrary big iterates of the dynamics
to approximate the stationary measure. Let u be a subsequence of stationary
measures converging weakly to some measure p*, i.e.,

lim p® = p*.
1— 00

We approximate P¢(n,z, A) using the following steps:

Step 1.- We can reduce the problem of calculating the probability of arriving
to a measurable set A beginning at x in n steps through any Markov chain by
calculating the probability using only d-pseudo-orbits (cf. Lemma 1.1 of [K]).



SECTIONAL-HYPERBOLIC SYSTEMS 11

Step 2.- If we are far from the singularities we can apply Lemma 6 to shadow
0-pseudo-orbits by true orbits.

Step 3.- The orbits in step 2 are the significant ones since the probability of
arriving to a e!~7 neighborhood of the stable manifolds of the singularities is of
the order of 7.

Step 4.- For the orbits in step 2 we have expansion and bounded distortion
properties, and following similar methods developed in [K] we have

P(n,z, A) < D Leb*(A)|2s] + O(e)
for all measurable set A, where O(g) goes to zero with &.
From here,
pf(A) < D Leb"(A)|2s| + O(e).
Replacing € = ¢; and passing to the limit we obtain
w*(A) < D Leb*(A)|2s|.

Therefore p* is absolutely continuous with respect to Leb" and satisfies the en-
tropy formula. This is known to imply that p* is an SRB measure. As there
is only one measure satisfying that entropy formula for transitive attractors we
obtain the desired stochastic stability. O
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