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Abstract

We reformulate the generalized Nash equilibrium problem as an equilibrium problem so that
solving the former problem is reduced to solving the latter problem. We use Ky Fan’s Lemma
to obtain a new existence result for equilibrium problems, consequently for the generalized
Nash equilibrium problems, which does not invoke monotonicity and convexity of the objective
function.
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1 Introduction

The standard definition of a noncooperative game in normal form, usually requires that each player
has a feasible set that is independent of the rival’s strategies. In this game, there are N players and
for player i it is considered the set Ki ⊂ Rni called the strategy set of player i-th and the function

θi :
NY
i

Ki → R called loss function with respect to i-th player. However, it was well understood from

the early developments in the field, see e.g. [1], [19] and [20], that in many cases the interaction
between the players can also take place at the feasible set level. If one assumes that each player’s
feasible set can depend on the rival players’ strategies we speak of generalized Nash equilibrium
problems (GNEP in the sequel). Now we comment on GNEP.

The set of player’s is denoted by I = {1, 2, ..., N} and for each i ∈ I, xi ∈ Rni denotes a strategy
of the player i-th. It is assumed that n =

X
i∈I

ni and K is the feasible strategy set of the game.

Let Λ =
Y

j∈I,j 6=i

Rnj and x ∈ K, we define xi = PRni (x) and x−i = PΛ(x) where PC(x) denotes the

orthogonal projection of x on the set C. The set K(x−i) denotes the strategy set of the player i-th
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when the other players choose their strategy x−i, therefore, the feasible set for this game is defined
as

K = {x ∈ Rn : xi ∈ K(x−i)}. (1)

Now choose i ∈ I and ρ ∈ Rni , we define x(ρ, i) ∈ Rn as (x(ρ, i))i = ρ and (x(ρ, i))−i = x−i. Using
the above notation, we state the formal definition of GNEP as follows:

GNEP is a Nash game in which each player’s strategy depends on the other players’ strategies,
and it consists of finding an x̄ ∈ K such that, for each i ∈ I, x̄i solves the minimization problem
defined as

min θi(x̄(ρ, i)) subject to ρ ∈ K(x̄−i) ⊂ Ωi, (2)

where Ωi is an open convex set, and that θi :
Y
j∈I

Ωj → R. Throughout this paper we assume that

the function θi(x(·, i)) : Ωi → R is lower semicontinuous and pseudoconvex (see, Definition 2.2 in
the following section, or Definition 1 of [14]) satisfying

inf
ρ∈Ωi

θi(x(ρ, i)) < inf
σ∈K(x−i)

θi(x(σ, i)). (3)

For a survey paper on GNEP, we refer the interested readers to [10].
The outline of this paper is the following. In Section 2 we reformulate GNEP as an equilibrium

problem. In Section 3 we prove the existence of solutions for GNEP, using Ky Fan’s Lemma, by
equilibrium problem approaches. In Section 4 we show that solving GNEP can be reduced to
solving equilibrium problem to find solutions of GNEP. We finish this paper with some remarks in
Section 5.

2 Reformulation of GNEP

The Equilibrium Problem considered in the current paper is defined as the following.

Definition 2.1. By an equilibrium problem (in short EP(f̄ , K̄), for the sequel ) we understand the
problem of finding

x∗ ∈ K̄ such that f̄(x∗, y) ≥ 0 ∀y ∈ K̄,

where K̄ is a nonempty closed subset of Rm and f̄ : K̄ × K̄ → R is a given function. The set of
solutions of EP(f̄ , K̄) will be denoted by S(f̄ , K̄).

Definition 2.2. Given D ⊂ Rm, a function h : D → R is said to be pseudoconvex if for all x, y ∈ D
and all t ∈ (0, 1) it holds that
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h(zt) ≥ h(x) ⇒ h(y) ≥ h(zt),

where zt = tx + (1− t)y.

Proposition 2.3. Consider D and h as in Definition 2.2. Assume that h is lower semicontinuous.
Take λ ∈ R with λ > infz∈D h(z), in this situation, it holds that Lh(λ) = L<

h (λ) where Lh(λ) =
{y ∈ D : h(y) ≤ λ} and L<

h (λ) = {y ∈ D : h(y) < λ}.

Proof. By definition we have that L<
h (λ) ⊂ Lh(λ), consequently L<

h (λ) ⊂ Lh(λ) = Lh(λ) since h is
lower semicontinuous. We start proving the converse inclusion. Take y ∈ Lh(λ) so that h(y) ≤ λ.
Without loss of generality we can assume that h(y) = λ (otherwise y ∈ L<

h (λ) and therefore,
y ∈ L<

h (λ)), we can choose x ∈ D with λ = h(y) > h(x), we then put zt = tx + (1 − t)y for
each t ∈ (0, 1). Assume that h(zt̄) ≥ h(y) for some t̄ ∈ (0, 1), then pseudoconvexity of h implies
that h(x) ≥ h(zt̄), as a result of this fact, h(y) > h(x) ≥ h(zt̄) ≥ h(y) which is a contradiction
with our assumption, so we must have h(zt) < h(y) for all t ∈ (0, 1). The last inequality shows
that zt ∈ L<

h (λ) ⊂ L<
h (λ) for each t ∈ (0, 1), which in turn implies, y ∈ L<

h (λ) when t → 0+.
Consequently, the demonstration is completed.

For each i ∈ I and for each x ∈ K, take ρ ∈ K(x−i), from (3) introduced in the previous
section we have that θi(x(ρ, i)) > infσ∈Ωi θi(x(σ, i)). Now, we denote the sublevel set of the func-
tion θi(x(·, i)) at the level θi(x(ρ, i)) by Lθi(x)(ρ) = {σ ∈ K(x−i) : θi(x(σ, i)) ≤ θi(x(ρ, i))}, it
follows from Proposition 2.3 that Lθi(x)(ρ) = L<

θi(x)(ρ) where L<
θi

(ρ) = {σ ∈ K(x−i) : θi(x(σ, i)) <

θi(x(ρ, i))}. It is worthwhile mentioning that for each ρ ∈ K(x−i), the sublevel set Lθi(x)(ρ) is
a closed convex set and that ρ belongs to its boundary, therefore, the normal cone associated to
Lθi(x)(ρ) at ρ, denoted by NLθi(x)

(ρ), defined as NLθi(x)
: K(x−i) → P(Rni) and

NLθi(x)
(ρ) = {v ∈ Rni : 〈v, σ − ρ〉 ≤ 0,∀σ ∈ Lθi(x)},

is a closed, convex, and pointed cone (i.e., NLθi(x)
(ρ) ∩ −NLθi(x)

(ρ) = {0}) in P(Rni). It is known
that NLθi(x)

is a closed operator on K(x−i) since NLθi(x)
(ρ) = NL<

θi(x)
(ρ) for each ρ ∈ K(x−i) (see,

Proposition 2.1 in [8]). Now we associate the compact and convex subset Di(ρ) = co(NLθi
(ρ) ∩

S(0, 1)) of Rni to ρ ∈ K(x−i) where S(0, 1) = {u ∈ Rni : ‖u‖ = 1}, it is easy to see that Di(ρ)
is a base for NLθi(x)

(ρ) in the sense that NLθi(x)
(ρ) = ∪t≥0tDi(ρ) (see, [3]). According to above

discussion and notation, we have the following lemma which is an easy consequence of Proposition
2.1 of [8].

Lemma 2.4. The mapping T : K → P(Rn) defined by T (x) =
NY

i=1

Di(xi) is a closed operator.

Now we sate our reformulation. For this purpose we associate the equilibrium problem EP(f,K)
to GNEP where the set K given by (1) and the objective function is defined as
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f(x, y) = sup
u∈T (x)

〈u, y − x〉. (4)

It is clear enough that f is well defined because T (x) is compact for each x ∈ K.

3 Existence of equilibria

In this section we consider our existence result for EP(f,K). We will see that our existence result
for GNEP is weaker than the one presented in [2] demanding compactness of the set K as well as
the continuity of the function θi(x(·, i)) for each i ∈ I.

The following Lemma as well as the following three conditions are fundamental in order to
guarantee the existence of solutions for EP(f,K).

Lemma 3.1. (Ky Fan’s Lemma) Let Y be a nonempty subset of a real Hausdorff topological vector
space X. For each y ∈ Y , consider a closed subset C(y) of X. If the following two conditions hold:

C1. the convex hull of any finite subset {x1, ..., xq} of Y , denoted as co{x1, ..., xq}, is contained in
q[

i=1

C(xi),

C2. C(x) is compact for at least some x ∈ Y ,

then
\

y∈Y

C(y) 6= ∅.

A: For any sequence {xj} ⊆ K̄ satisfying limj→∞
∥∥xj

∥∥ = +∞, there exists j0 ∈ N such that for
allj ≥ j0 it holds that

f̄(xj , y) ≥ 0 ∀y ∈ K̄ \B(0, j).

B: C(y) = {x ∈ K̄ : f̄(x, y) ≥ 0} is closed for all y ∈ K̄.

C: For any finite subset {x1, ..., xq} of K̄, it holds that

max
i=1,...,q

f̄(x, xi) ≥ 0 ∀x ∈ co{x1, ..., xq}.

Theorem 3.2. Consider EP(f,K) satisfying the condition A. In this situation, we have that
S(f,K) 6= ∅.
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Proof. We first prove that the condition B is met for EP(f,K) with K given by (1) and f given
by (4), i.e., we show that C(y) is closed for an arbitrary y ∈ K. Assume that {zj}∞j=1 ⊂ C(y) so
that zj → z, there exists vj ∈ T (zj) satisfying f(zj , y) = supv∈T (zj)〈v, y − zj〉 = 〈vj , y − zj〉 ≥ 0
since T (zj) is compact for each j. On the other hand ‖ vj ‖≤ 1 for each j, therefore, without loss
of generality we can assume that vj → v̄, hence

f(z, y) = sup
v∈T (z)

〈v, y − z〉 ≥ 〈v̄, y − z〉 = lim
j→+∞

〈vj , y − zj〉 ≥ 0,

where the leftmost inequality follows from the fact that v̄ ∈ T (z), using Lemma 2.4, consequently
the condition B is satisfied.

Choose an arbitrary {x1, ..., xq} ⊂ Y = K, we show that the condition C1 in Lemma 3.1 is
satisfied for the family of the closed sets {C(y)}y∈K where C(y) = {x ∈ K : f(x, y) ≥ 0}. In

other words, we demonstrate that x ∈
q[

i=1

C(xi) for each x ∈ co{x1, ..., xq}. Write x =
qX

i=1

λix
i where

λi ≥ 0 and λ =
qX

i=1

λi, without loss of generality we assume that λi > 0 for i = 1, ..., q. We have

that x /∈
q[

i=1

C(xi) if and only if f(x, xi) < 0 for i = 1, ..., q, consequently

qX
i=1

λif(x, xi) =
qX

i=1

λi sup
ui∈T (x)

〈ui, xi − x〉 =
qX

i=1

sup
ui∈T (x)

〈ui, λix
i − λix〉 < 0,

which is a contradiction with the fact that

0 = sup
u∈T (x)

〈u,
qX

i=1

λix
i − x〉 = sup

u∈T (x)

qX
i=1

〈u, λix
i − λix〉 ≤

qX
i=1

sup
ui∈T (x)

〈ui, λix
i − λix〉,

hence, the condition C1 in Lemma 3.1 holds for the family of the closed sets {C(y)}y∈K .
Now for each j ∈ N we define the following two compact sets as

Kj = {x ∈ K :‖ x ‖≤ j},

and

Cj(y) = Kj ∩ C(y).

Without loss of generality we can assume that Kj 6= ∅ for all j ∈ N. Using Lemma 3.1 we have
that

S(f,Kj) =
⋂

y∈Kj

Cj(y) 6= ∅ ∀j ∈ N.
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Take xj ∈ S(f,Kj) for each j ∈ N. If {xj}∞j=1 has a bounded subsequence, then {xj}∞j=1 has cluster
points which solve EP(f,K). Otherwise, we have that limj→∞

∥∥xj
∥∥ = +∞, in which case, we can

choose a sequence {yj}∞j=1 ⊂ K such that

f(xj , yj) < 0 with yj ∈ K \B(0, j) ∀j ∈ N,

this contradicts with condition A, and therefore, we conclude that S(f,K) 6= ∅.

We proved Theorem 3.2 for a particular class of equilibrium problems EP(f̄ , K̄), i.e, with K̄ = K
as defined in (1) and f̄ = f as defined in (4). We observed that two conditions B and C hold for
EP(f,K) by the nature of this problem. Furthermore, the condition A is satisfied for any EP(f,K)
provided that K is bounded, for instance. In general, one can argue the same as the one presented
in Theorem 3.2 to verify that EP(f̄ , K̄) attains solutions whenever EP(f̄ , K̄) satisfies the conditions
A, B and C.

4 Link between GNEP and EP(f, K)

The main idea of this section is to show that instead of solving GNEP one can solve EP(f,K) with
K defined as (1) and f defined as (4).

Theorem 4.1. Assume that K is convex, then each solution for EP(f,K) solves GNEP.

Proof. Take x̄ ∈ S(f,K), by definition we have that f(x̄, y) = supu∈T (x̄)〈u, y − x̄〉 ≥ 0 for each
y ∈ K. From Lemma 1 of [7], we know that there exists ū ∈ T (x̄) such that f(x̄, y) = 〈ū, y− x̄〉 ≥ 0
∀y ∈ K. Fix i ∈ I and then choose an arbitrary ρ ∈ K(x̄−i). We define y = x̄(ρ, i) ∈ K and
consequently we get 〈ū, y − x̄〉 = 〈ūi, ρ − x̄i〉 ≥ 0. Since ρ was arbitrary in K(x−i), ūi 6= 0 and ūi

belongs to the normal cone of the level set Lθi
(x̄i), we conclude from [3] (or Proposition 3.2 in [4])

that x̄i minimizes θi(x̄(·, i)) over K(x̄−i). Since i was arbitrary in I, x̄ is a solution of GNEP.

It is notable that in Theorem 4.1 the link between S(f,K) and the solution set of GNEP is
valid even if the constraint set K is not compact. In addition, Theorem 4.1 remains true whenever
θi is lower semicontinuous while Theorem 2.1 in [11] requests compactness of K and continuously
differentiability of θi. Another theorem similar to Theorem 4.1 has been recently contributed to
literature (see Theorem 3.1 in [2]) demanding continuity of θi where GNEP is reformulated as a
variational inequality problem.

5 Final remarks

In view of equilibrium problems, Theorem 3.2 is a new existence result for equilibrium problems
which does not invoke monotonicity condition and convexity condition on objective function (see,
[14] and [18]) while it requests convexity of the feasible set.
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Instead of variational inequality techniques investigated in [2] and [11] for GNEP, in this work
we used equilibrium problem techniques for the same problem which contains variational inequality
problems as its particular case [17]. Theorem 3.2 is a new theorem that guarantees the existence
of solutions for GNEP. Nevertheless, on can utilize existence results which have already been con-
tributed to literature (see, e.g., [5], [6], [9], [12], [13], [14] and [18]) to guarantee the existence of
solutions for GNEP, this issue has been studied for NEP (Nash equilibrium problem in noncooper-
ative games) where it is shown that S(f,K) coincides with the solution set of NEP (see, e.g, [17]),
in other words, the necessary condition in Theorem 4.1 is a sufficient condition in this case.

In view of computational methods for finding the solutions of GNEP in practice, taking into
account Theorem 4.1, one can utilize the algorithms proposed in [15], [16] and [17] to find solutions
of GNEP.
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