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Abstract

An important field of application of non-smooth optimization refers
to decomposition of large-scale or complex problems by Lagrangian du-
ality. In this setting, the dual problem consists in maximizing a concave
non-smooth function that is defined as the sum of sub-functions. The
evaluation of each sub-function requires solving a specific optimization
sub-problem, with specific computational complexity. Typically, some
sub-functions are hard to evaluate, while others are practically straight-
forward. When applying a bundle method to maximize this type of dual
functions, the computational burden of solving sub-problems is prepon-
derant in the whole iterative process. We propose to take full advantage
of such separable structure by making a dual bundle iteration after having
evaluated only a subset of the dual sub-functions, instead of all of them.
This type of incremental approach has already been applied for subgradi-
ent algorithms. In this work we use instead a specialized variant of bundle
methods and show that such an approach is related to bundle methods
with inexact linearizations. We analyze the convergence properties of two
incremental-like bundle methods. We apply the incremental approach to a
generation planning problem over an horizon of one to three years. This is
a large scale stochastic program, unsolvable by a direct frontal approach.
For a real-life application on the French power mix, we obtain encouraging
numerical results, achieving a significant improvement in speed without
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France. The work of the second author was partially supported by a research contract with
EDF, CNPq Grant No. 303540-03/6, PRONEX-Optimization, and FAPERJ.

†Grégory Emiel: Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Cas-
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losing accuracy.
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1 Introduction

We are interested in solving convex problems with separable objective functions
in an efficient and accurate manner, by bundle methods. To ease the presenta-
tion, and without loss of generality, we consider the simpler case of minimizing
the sum of only two functions:

min
x∈IRN

(f1 + f2)(x) , (1)

where f1 and f2 are lower semicontinuous convex functions. Suppose f1 is
easy to evaluate, while f2 is very hard and time consuming. In this setting, it
is desirable to design an algorithmic procedure that can “skip” the evaluation
of sub-function f2 at some iterations. To replace the lacking information, we
consider using instead an approximate value, obtained from a cutting-planes
model of f2.

This type of incremental approach has already been applied for subgradient
algorithms, [1]; see also [2]. For a function f =

∑
f i, these methods per-

form subgradient iterations sequentially, along the subgradients gi of each sub-
function f i. Promising numerical results are reported in [2] and these methods
are further studied from a theoretical point of view in [3]. For bundle methods,
[4] studies the case of a non-smooth objective function defined as the pointwise
maximum of a large number of non-smooth sub-functions, but to our knowl-
edge there is so far no study of incremental bundle methods for the sum of sub-
functions. A possible explanation could be that the bundle methodology does
not seem to be straightforwardly customizable to the “sum” setting. However,
recent results on inexact bundle methods from [5] (extending previous works [6],
[7], [8], [9] and completed recently for constrained optimization by [10]) shed a
new light on how to proceed to devise incremental-like bundle methods in our
setting of interest.

More precisely, with respect to problem (1), inexactness appears when skip-
ping the evaluation of the “difficult” sub-function, f2. Indeed, replacing this
sub-function by the corresponding current cutting-planes model can be inter-
preted as an inexact evaluation. Recent developments of bundle methods have
shown that such algorithms may handle inexact information to achieve approxi-
mate optimality for non-smooth optimization programs. Inaccuracies may affect
the evaluation of the objective function, or of the subgradient returned by the
available oracle.

In [6, 7], the author proposes an adapted bundle method to deal with an
oracle providing inexact linearizations with a controllable inaccuracy that can
be driven to 0. Unlike [6, 7], the work [8] proposes a methodology to deal
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with inexact subgradient evaluations without knowledge of the approximation
quality. The method, however, requires the exact evaluation of the objective
function. This case is generalized in [5] to unknown inaccuracies affecting both
the function value and the subgradient. This framework is further extended for
constrained optimization in [10]. A different point of view is adopted in [9], that
studies the precision required by the oracle to achieve optimality within a given
tolerance using an almost standard bundle method. Our incremental approach
can be interpreted as an inexact bundle method along the lines of [5], which
introduces a specific mechanism for detecting and attenuating noise when the
inaccuracy becomes unduly large. However, unlike [5], inaccuracy is no longer
considered constant, but varies with the evaluation point.

As a by-product of the incremental bundle method, we study the behaviour
of an alternative method, working with function evaluations of unknown and
vanishing inaccuracy, but without noise attenuation step. We refer to this
method as inexact classical bundle method. In [7] the author considers varying
accuracies that can be arbitrarily modified along the process to be driven to 0.
Under this assumption, the method finds asymptotically an optimal solution to
(1). In [8], the case of unknown and vanishing inaccuracy is handled, but it
requires the exact evaluation of the function value while subgradients may be
computed with errors. In [9], the author gives a bound on the inaccuracy ac-
ceptable to achieve a given tolerance. The algorithm involved is almost identical
to a classical proximal bundle method and as a consequence shares similarities
with our approach. However, it assumes that inaccuracy of the oracle is known
and possibly controllable and this information is used to build up the descent
test.

Our paper is organized as follows. We give in Section 2 a real-life stochastic
program that motivated our research, on mid-term generation planning. Sec-
tion 3 reviews disaggregate bundle methods, tailored for structured objective
functions like (1). Section 4 considers how to replace the difficult-to-compute
information, corresponding to evaluating f2. The incremental bundle method
with varying inaccuracy and the inexact classical bundle method with vanishing
accuracy are given in Sections 5 and 6, respectively. Finally, encouraging nu-
merical results on a real-life application on the French power mix are reported
in Section 7.

2 Motivation: price decomposition on a scenario
tree

Electricité de France’s (EDF) electric generation system is nuclear–dominated:
about 75% of the total company power is produced by nuclear plants. We focus
here on mid-term generation planning, that considers a time horizon of 1 to 3
years. In this framework, operational constraints are usually modeled with far
less details than for short term scheduling. For example, hydro-plants are often
aggregated into energy equivalent reservoirs, also, thermal plants starting costs
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and ramp constraints are disregarded.
However, because nuclear plants can be seen as “equivalent energy reser-

voirs”, it is important to keep some level of detail, specifically to reflect the
dynamics resulting from using nuclear fuel.

Indeed, unlike classical thermal plants, a nuclear plant alternates predeter-
mined outage periods of 1 to 3 months, with generation campaigns of
about 18 months. During each outage, one third of the reactor fuel is renewed.
The length of the next generation campaign is given by the months it should
take to consume one third of the reservoir capacity. In addition, in order to
allow for some flexibility, the total campaign generation is constrained by given
lower and upper bounds.

The nuclear dynamics should also reflect how the ability of the plant to
generate any desired power level depends on the amount of fuel in the reactor,
as follows.

• The power generation is always above an ideal lower bound.

• However, some “modulation” is allowed: the lower bound may be violated,
as long as the modulation along the whole optimization horizon does not
exceed a certain upper bound, limiting the total amount of violation.

• Once all the refueled combustible of the last outage is consumed, the
plant can only generate power according to a predetermined decreasing
production profile.

Finally, when the end of a generation campaign coincides with a period of high
demand, it is desirable to benefit from full flexibility of the nuclear plant for a
period as long as possible.

Due to the predominance of nuclear generation over the global French pro-
duction mix, taking into account all these constraints is of crucial interest to
design sound strategies. The modeling of such constraints not only requires
many additional variables, but also introduces a level of temporal coupling con-
siderably larger than when dealing with hydro or classical thermal plants.

As a result, considering the 58 nuclear reservoirs and the 2 or 3 aggregate
hydraulic reservoirs usually modeled at EDF, at least 60 reservoir dynamics
need to be jointly optimized, over a time horizon with more than 1000 time
steps. The corresponding multistage stochastic linear programming problem
is large scale. It has mixed-integer variables when interruptible contracts are
taken into account. These contracts give the possibility to cut-off the supply to
some clients, if warned in advance. Thus, interruptible contracts are alternative
energy reservoirs, that further increase the state dimension of the problem. In
our runs, we do not consider these contracts.

For mid-term horizon, generation units are modeled by linear cost functions
Ci and technical constraints, defining polyhedral sets Pi, where i = 1, . . . , Nu
denotes the index of the unit. Generation units correspond not only to power
plants, but also to some financial market, or even to load shedding. For example,
the spot market is represented by means of two additional classical thermal
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plants, with bounded generation (positive or negative), and linear costs for each
time period. The whole generation mix is coupled by the satisfaction of demand
constraint.

In addition, in the mid-term horizon many elements of the problem are no
longer deterministic. In our case, the level of demand is the main source of
uncertainty, particularly during winter periods. Other parameters that intro-
duce randomness are water inflows, the thermal plants availability, and future
prices on the spot market. Uncertainty is modeled with a scenario tree obtained
from a sample of historical scenarios aggregated according to scenario reduction
techniques ([11]).

For practical applications, a time horizon of 2 years is usually chosen, with
a daily time discretization. Each day is further divided into three periods,
representing peak hours of high demand, base demand, and off–peak hours. To
provide a reasonable vision of future uncertainties, the scenario tree typically
has more than 50.000 nodes, yielding an optimization problem with more that
107 variables and 108 constraints. As a result, even with a rather simplistic
description of the power mix, we still have to deal with a large-scale linear
optimization problem, that needs to be solved by some decomposition technique.
The approach currently used at EDF involves applying price–decomposition on
the scenario tree [12], and solving the dual problem by the variable metric
proximal bundle method [13].

We now explain how, after decomposition, computing the, difficult, nuclear
sub-function boils down to solving at each iteration a huge linear program.

We denote with a subscript n ≤ N each node of the scenario tree, dn the
demand at that node and πn the probability of reaching this node from the
initial step. Generation units are referred to with a subscript i ≤ Nu, hence
pi := (pi

1, . . . , p
i
N ) stands for the generation vector of unit i over all the nodes

in the tree and Ci(pi
n) denotes the generation cost of unit i at node n.

With this notation, our optimization problem can be schematically written
as:

min{pi}i≤Nu

∑Nu
i=1

∑N
n=1 πnCi(pi

n)
s.t. g(p) :=

∑Nu
i=1 pi − d = 0 , (coupling constraints of demand)

pi ∈ Pi (technical constraints for plant i) .
(2)

As mentioned, for our application functions Ci are linear and sets Pi are polyhe-
drals. We assume furthermore that problem (2) satisfies a Slater type condition,
so there is no duality gap (see e.g. [14, Ch. 8]), and primal and dual optimal
values are the same. More precisely, applying price-decomposition on problem
(2) means relaxing the demand constraint by introducing multipliers x ∈ RN .
The corresponding (separable) Lagrangian

L(p, x) :=
Nu∑
i=1

( N∑
n=1

πnCi(pi
n)− 〈x, pi − d

Nu
〉
)

=:
Nu∑
i=1

Li(pi, x) ,
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gives the dual problem

max
x

(Nu∑
i=1

min
pi∈Pi

Li(pi, x)
)

,

that is solved instead of (2). For convenience, we consider the negative of the
corresponding dual function, decomposable by generation units:

f(x) := −min
p

L(p, x) = −
Nu∑
i=1

min
pi

Li(pi, x) (3)

=:
Nu∑
i=1

f i(x) .

Each term f i is convex, possibly non-smooth, and is referred to as a dual sub-
function. Solving the dual problem is equivalent to minimizing f over IRN

with adapted algorithms, for example the bundle method [13] we employ in our
application.

When evaluating each sub-function f i at some point x, the corresponding
primal point p̄i

x, minimizing Li(·, x) from (3), may not be unique, but it always
gives a subgradient for f i. Hence,

g(p̄i
x) =

Nu∑
i=1

p̄i
x − d ∈ ∂f(x) .

For notational convenience, we sometimes write

g(p̄i
x) =

Nu∑
i=1

gi(p̄i
x) , with gi(p̄i

x) = p̄i
x −

d

Nu
∈ ∂f i(x)

for i = 1, . . . , Nu.
The advantage of price decomposition is that the separable dual function is

easy to compute, because the dual evaluation can be performed separately for
each generation unit, as illustrated by Figure 1.

In our setting, computing the pairs (f i(x), gi(p̄i
x)) is very costly for some

units i. In particular, for a scenario tree with 50.000 nodes, evaluating the
corresponding sub-function for nuclear plants amounts to solving a large lin-
ear program with 100.000 variables (generation and reservoir levels) and about
300.000 constraints. By contrast, solving a classical thermal sub-functions re-
quires 50.000 variables and constraints and it may be performed for each node
successively since there is no temporal coupling. As mentioned, an incremental
strategy may exploit the separable structure by performing dual steps without
having exact values for all the sub-functions.

Before introducing the incremental bundle method, we recall briefly the main
features of a bundle methodology when applied to a separable function, also
called a disaggregate bundle method.
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Figure 1: Price decomposition

3 Disaggregate bundle methods

Bundle methods appear as one of the most effective approaches to solve non-
smooth optimization problems. For minimizing a function f =

∑
i f i as in (3),

we employ a disaggregate proximal bundle method. In this section, we recall
briefly some basic elements from bundle methods, for a detailed description we
refer to [15], [14], or [16].

Disaggregate bundle methods keep memory of past iterations to build up
individual cutting-planes models approximating each sub-function f i. With
our notation, at iteration `, for i = 1, . . . , Nu, the bundle Bi

` for sub-function i
is defined as

Bi
` :=

{(
xj , f i(xj) , gi,j ∈ ∂f i(xj)

)
, j = 1, . . . , `

}
. (4)

where each couple (f i, gi,j) defines a hyperplane supporting f i at xi. For com-
parison, the more standard aggregate bundle for f is defined by

B` :=

{(
xj , f(xj) =

Nu∑
i=1

f i(xj) , gj =
Nu∑
i=1

gi,j ∈ ∂f(xj)

)
, j = 1, . . . , `

}
.

Along iterations a sequence of points is generated. Iterates can be of two types:
either candidate points, used essentially to increase the model’s accuracy; or
serious points, that significantly decrease the objective function (and also im-
prove the model’s accuracy). The corresponding iterations of the algorithmic
scheme are respectively called null and serious steps. Serious points, sometimes
referred to as prox-center or stability center in the literature, are denoted by
x̂k(`) and they form a sub-sequence of the candidates sequence {x`}. Each can-
didate is found by employing a stabilized version of cutting-planes methods, via
a quadratic term centered around the last serious point, as in (5) below.

In order to allow for a partial evaluation of sub-functions, we need to work
with a disaggregate variant of bundle methods as proposed in [17]; see also
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[12]. Indeed, when evaluating the dual function f at some point x, we have
at hand sub-function values f i(x) and corresponding subgradients gi ∈ ∂f i(x),
for all i = 1, . . . , Nu. Hence, we build up individual cutting-planes models
f̌ i

`(·) for each sub-function. A cutting-planes model is defined as the pointwise
maximum of affine functions. Since the sum of maxima is bigger than the
maximum of the sum (

∑Nu
i=1 f̌ i ≥ f̌), when summing up individual models we

should obtain a better model for f . Moreover, the disaggregate variant provides
individual models for each sub-function, a useful feature for our incremental
proposal. However, it is important to keep in mind that disaggregation increases
significantly the amount of bundle information (instead of one aggregate bundle,
there are Nu individual ones). For this reason, partial aggregation, using some
partition of the set of sub-functions, can sometimes offer a good compromise,
we refer to [12] for more details.

For a disaggregate bundle method, the new iterate is given by

x`+1 := arg min
x∈IRN

(
Nu∑
i=1

f̌ i
`(x) +

1
2
µk|x− x̂k(`)|2

)
. (5)

To measure the quality of the candidate, the nominal decrease δ`+1 is used,
representing the decrease predicted by the cutting-planes model

δ`+1 := f(x̂k(`))−
∑

i

f̌ i(x`+1) .

More precisely, after computing f(x`+1) and g`+1 ∈ ∂f(x`+1), a descent test
compares the effective descent to the predicted value δ`+1. If the test is satisfied,
then x`+1 can be considered as a new serious point: we set k(` + 1) := k(`) + 1,
x̂k(`+1) := x`+1 and both the model and the bundle are updated. If we declare a
null step, the model is updated without changing the serious point, so k(`+1) :=
k(`).

Bundle data in (4) can be represented alternatively, by referring the infor-
mation to the current serious point, using the linearization errors

ei
j = f i(x̂k(`))− f i(xj)− 〈gi,j , x̂k(`) − xj〉 .

Then, instead of keeping (xj , f i(xj), gi,j), the bundle is composed by triplets
of the form (ei

j , f
i(xj), gi,j). This is useful when there is bundle compression,

that is, when only a subset j ∈ J` ⊂ {1, . . . , `} is kept in the bundle, the pairs
(f i

j , g
i,j) may no longer correspond to some xj . In fact, it is possible to keep

in the bundle just one element without impairing convergence, as long as the
element kept is the so-called aggregate couple:

(ε̂`+1, ĝ
`+1) =

Nu∑
i=1

(ε̂i
`+1, ĝ

i,`+1) , with (ε̂i
`+1, ĝ

i,`+1) :=
∑
j∈J`

α`
j(e

i
j , g

i,j).

In this expression, the simplicial multipliers α` are a by-product of solving
the quadratic program of (5). As a result, after compression, bundle elements
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correspond either to past dual evaluations or to past compressions; see [14, Ch.
10]. The aggregate element ĝ`+1 =

∑Nu
i=1 ĝi,`+1 is a subgradient at x`+1 for

the current cutting-planes model, and an approximate subgradient for the real
function f .

Bundle methods stop when both aggregate values, ε̂`+1 and ĝ`+1, are small
enough or, keeping in mind the relation (e.g. [14, Lemma 10.8]):

δ`+1 =
|ĝ`+1|2

µ`
+ ε̂`+1 , (6)

when the predicted descent is small enough.

4 Replacing the missing information

When skipping the evaluation of some sub-functions in a disaggregate bundle
method, the lacking information needs to be replaced by some approximation.
In this case, a natural substitute for f i would be to use the individual cutting-
planes model, f̌ i

` . Such replacement is closely related to the inexact bundle
methods studied by various authors and especially to the framework developed
in [5], as explained below.

To ease the presentation, we refer to the general problem (1) corresponding
to Nu = 2 in the previous setting, with f1 easy to evaluate while f2 is time
consuming. Sub-functions f i are general dual functions of the form:

f i(·) := max
p∈Pi

{Ci(p) + 〈gi(p), ·〉} .

Hence, for notational convenience, Ci corresponds here to −
∑

n πnCi(pi
n) in the

generation planning problem (2), f1 to the, easy-to-evaluate, classical thermal
sub-function and f2 to the, difficult, nuclear sub-function.

The inexact setting of [5] supposes that for any x ∈ IRN the oracle returns(
f2

x , g2
x

)
satisfying:

f2
x ≥ f2(x)− Ef and (7)

f2(·) ≥ f2
x + 〈g2

x, · − x〉 − Eg , (8)

where Ef and Eg are fixed but unknown function and subgradient inaccuracies.
Now, suppose that instead of computing f2(x) by finding p̄2

x such that

p̄2
x ∈ Argmax

p∈P2
{C2(p) + 〈g2(p), ·〉} ,

we use any p2 ∈ P2 to extrapolate inexact values: f2
x := C2(p2) + 〈g2(p2), x〉,

and g2
x := g2(p2), for some p2 ∈ P2. Then

f2(y) = max
p∈P2

{C2(p) + 〈g2(p), y〉}

≥ C2(p2) + 〈g2(p2), y〉
= f2

x + 〈g2(p2), y − x〉 .
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Consequently, such oracle is compatible with the inexact setting of [5], with
function inaccuracy

Ef
x := C2(p̄2

x)− C2(p2) + 〈g2(p̄2
x)− g2(p2), x〉

and a null subgradient error Eg = 0. We notice that the function inaccuracy is
not fixed but varying; it is nevertheless bounded, because the set P2 is compact.

Clearly, the choice of p2 will determine the quality of the approximation. A
first, straightforward, possibility is to perform the maximization process yield-
ing f2(x) only approximately, stopping the optimization after a fixed amount
of CPU time. But this is not the only possibility. Another natural choice for p2

would be to use some past responses from the oracle. All available past infor-
mation is contained in the bundle B2

` and this bundle gives the cutting-planes
model f̌2

` . Hence, the best choice for f2
x`+1 when using only the information

of the bundle, would be to evaluate the current cutting-planes model. Indeed,
since ĝ2,` ∈ ∂f̌2

` (x`+1) and f̌2
` ≤ f , when we use for the new iterate the inexact

values
(
f2

x`+1 , g
2
x`+1

)
:=
(
f̌2

` (x`+1), ĝ2,`
)
, we have

f2(y) ≥ f̌2
` (y)

≥ f̌2
` (x`+1) + 〈ĝ2,`, y − x`+1〉

= f2
x`+1 + 〈g2

x`+1 , y − x`+1〉 , (9)

as desired. Therefore, we are still in the setting of [5] with Eg = 0, and a
function inaccuracy Ef

x that varies along iterations and satisfies

Ef
x`+1 ≤ min

j∈B`

{
C(p̄2

x`+1)− C(p̄2
xj ) + 〈g2(p̄2

x`+1)− g2(p̄2
xj ), x`+1〉

}
.

5 Incremental bundle method with varying in-
accuracy

We now address the problem of solving (1) by an incremental approach. We first
consider the convergence properties of a proximal bundle method with inexact
linearizations when inaccuracies vary along iterations. In the next section we will
give an alternative method, with vanishing inaccuracy, more close to classical
bundle methods.

5.1 Bundle methods with inexact linearizations

Inexact bundle methods are devised to handle inaccuracies both in the evalua-
tion of the objective function, or in the subgradient returned by the available
oracle. We follow here a setting similar to [5], for inaccuracies that are no
longer constant (as in [5]), but vary with the evaluation point. In our analysis
we suppose that f in (1) is coercive and, hence, has a finite optimal value fopt

(this holds for example when (1) comes from Lagrangian relaxation of a pri-
mal problem satisfying a Slater–type condition). The analysis could be easily
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generalized to Nu ≥ 2 sub-functions, but for simplicity we consider (1), with
f1 easy to evaluate and f2 hard to compute and time consuming. Hence, an
exact oracle is available for f1, providing for any y ∈ IRN the values f1(y) and
g1(y) ∈ ∂f1(y). However, for f2, an inexact oracle only provides (f2

y , g2
y) with

unknown but bounded inaccuracy:

f2
y ≥ f2(y)− Ef

y and (10)

f2(·) ≥ f2
y + 〈g2

y, · − y〉 − Eg
y , (11)

such that:
Ef

x ≤ Ef
max and Eg

x ≤ Eg
max . (12)

As we saw in Section 4, the incremental setting can be interpreted as an instance
of this framework. Inaccuracy is unknown, varying, but bounded by (12).

We notice that

g2
y ∈ ∂Ef

y +Eg
y
f2(y) and

f2
y ∈ [f2(y)− Ef

y ; f2(y) + Eg
y ] .

Our framework is slightly different from [5], where it is assumed that, for
any y ∈ IRN :

f2
y ≥ f2(y)− Ef and

f2(·) ≥ f2
y + 〈g2

y, · − y〉 − Eg .

For this reason, in Section 5.2 below convergence proofs from [5] are reviewed
in the new framework.

As in the exact setting of Section 3, inexact bundle methods generate a
sequence of trial points x` at which functions values and subgradients are eval-
uated. The sub-sequence of serious points {x̂k(`)} is chosen so that the cor-
responding objective functions are significantly decreasing. Trial points are
provided by the solution of the quadratic program (13):

x`+1 := arg min
y∈IRN

{Φ`(y) +
1
2
µ`|y − x̂k(`)|2} , (13)

where µ` > 0 is the prox-parameter, x̂k(`) is the current serious point, and
Φ` is the (inexact) disaggregate cutting-planes model approximating f . More
precisely, keeping in mind the disaggregate model defined in Section 3,

Φ`(·) := (f̌1
` + ϕ2

`)(·) , with

f̌1
` (·) := f1(x̂k(`)) + max

j∈B1
`

{
−e1

j,` + 〈g1(xj), · − x̂k(`)〉
}

and (14)

ϕ2
`(·) := f2

x̂k(`) + max
j∈B2

`

{
−e2

j,` + 〈g2
xj , · − x̂k(`)〉

}
, (15)

where B1
` and B2

` denote the current bundles of cutting planes. In the expression
above, e1

j,` and e2
j,` are linearization errors, often denoted in the compact form
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e1,2
j,` . Linearization errors e1,2

j,` measure the difference between cutting planes
contained in B1,2

` and the function value returned by the oracle for the current
serious point:

e1
j,` = f1(x̂k(`))− f1(xj)− 〈g1(xj), x̂k(`) − xj〉 ,

e2
j,` = f2

x̂k(`) − f2
xj − 〈g2

xj , x̂k(`) − xj〉 . (16)

When using an exact oracle, i.e. for f1, the cutting-planes model f̌1
` always

underestimates the real function and is exact for previous candidates if the cor-
responding elements have not been deleted from the bundle. As a consequence,
linearization errors e1

j,` are always nonnegative. By contrast, in the inexact con-
text the relation ϕ2

` ≤ f2 does not necessarily hold, and e2
j,` may be negative.

Indeed, by (10), (11) and (16), e2
j,` is only known to satisfy

e2
j,` ≥ −(Ef

x̂k(`) + Eg
xj ) . (17)

Furthermore, model ϕ2
` may overestimate the real function f2 at some points,

since by (11) only inequality (18) holds:

ϕ2
`(·) ≤ f2(·) + max

j∈B2
`

Eg
xj . (18)

Writing the optimality conditions for (13), there are simplicial multipliers
{α1

j}j∈B1
`

and {α2
j}j∈B2

`
such that

x`+1 = x̂k(`) − 1
µ`

ĝ`+1 , where

ĝ`+1 =
∑
j∈B1

`

α1
jg

1(xj) +
∑
j∈B2

`

α2
jg

2
xj is the aggregate subgradient.

The aggregate vector ĝ`+1 is a convex combination of inexact subgradients
of f . From the optimality conditions of (13), we know that ĝ`+1 ∈ ∂Φ`(x`+1).
We define the corresponding aggregate linearization for the model as

Φlin
` (·) = Φ`(x`+1) + 〈ĝ`+1, · − x`+1〉 .

The aggregate linearization error ε̂`+1 :=
∑

j∈B1
`
α1

je
1
j,` +

∑
j∈B2

`
α2

je
2
j,` corre-

sponds to the difference between the value of the oracle at the last serious point
and the value of the aggregate linearization at that point:

ε̂`+1 = (f1(x̂k(`)) + f2
x̂k(`))− Φlin

` (x̂k(`)) .

In addition, being a convex combination of linearization errors e1,2
j,` , the aggre-

gate linearization error satisfies:

ε̂`+1 ≥ −(Ef
x̂k(`) +

∑
j∈B2

`

α2
jE

g
xj ) ≥ −(Ef

max + Eg
max) . (19)

12



As for the predicted descent, it takes as reference the value returned by the
oracle for the current serious point and is defined as δ`+1 = δ1

`+1 + δ2
`+1, where

δ1
`+1 = f1(x̂k(`))− f̌1

` (x`+1) , and

δ2
`+1 = f2

x̂k(`) − ϕ2
`(x

`+1) .

A serious step is declared when the following inequality is satisfied:(
f1(x̂k(`)) + f2

x̂k(`)

)
−
(
f1(x`+1) + f2

x`+1

)
≥ mδ`+1 (20)

where m ∈ (0, 1) is an Armijo-type parameter.
For later use, we recall that the relation (6) still holds for the inexact setting.
Using the fact that x`+1 solves the quadratic program (13), we also have

that

δ`+1 ≥ 1
2
µ`|x`+1 − x̂k(`)|2 −

(
f̌1

` (x̂k(`)) + ϕ2
`(x̂

k(`))− f1(x̂k(`))− f2
x̂k(`)

)
≥ 1

2
µ`|x`+1 − x̂k(`)|2 −

(
ϕ2

`(x̂
k(`))− f2

x̂k(`)

)
,

where we used (14) and the nonnegativity of e1
j,` for all j and `.

Since by (15), ϕ2
`(x̂

k(`)) − f2
x̂k(`) = maxj{−e2

j,`}, as soon as a negative lin-
earization error occurs, the predicted descent may be negative too. In this case,
inequality (21) below can be used as an accuracy test and should be satisfied if
only “small errors” have been introduced in the model ϕ2

δ`+1 >
1
2
µ`|x`+1 − x̂k(`)|2 . (21)

By (6), we have the following equivalent inequalities for (21):

(21) if and only if
|ĝ`+1|2

2µ`
> −ε̂`+1 (22a)

if and only if δ`+1 >
|ĝ`+1|2

2µ`
. (22b)

Finally, as in [5, Eq.2.16], we define the optimality measure

V` := max{|ĝ`+1|, ε̂`+1} . (23)

Indeed, by linearity of Φlin
` we know that:

Φlin
` (·) = Φlin

` (x̂k(`)) + 〈ĝ`+1, · − x̂k(`)〉
= (f1(x̂k(`)) + f2

x̂k(`)) + 〈ĝ`+1, · − x̂k(`)〉 − ε̂`+1 .

By the subgradient inequality, Φlin
` (·) ≤ Φ`(·), so for any y ∈ IRN ,

(f1(x̂k(`)) + f2
x̂k(`)) ≤ Φ`(y)− 〈ĝ`+1, y − x̂k(`)〉+ ε̂`+1 .

13



By (18), this implies that for any y ∈ IRN ,

(f1(x̂k(`)) + f2
x̂k(`)) ≤ f(y) + max

j∈B2
`

Eg
xj + 〈ĝ`+1, y − x̂k(`)〉+ ε̂`+1 . (24)

Using again (6), we deduce the following inequalities regarding the optimality
measure:

V` ≤ max{
√

2µ`δ`+1, δ`+1} , if (21) holds, and (25)

V` ≤
√
−2µ`ε̂`+1 ≤

√
2µ`(E

f
max + Eg

max) , otherwise. (26)

The following result justifies the choice of V` as optimality measure.

Lemma 1 ([5], Lemma 2.3). Suppose that for an infinite subset of iterations L ⊂
{1, 2, . . .} the sub-sequence {V`}`∈L → 0 as L 3 ` → ∞. Suppose furthermore
that the corresponding sub-sequence of serious points {x̂k(`)}`∈L is bounded, and
let x̂acc denote an accumulation point. Then x̂acc is an approximate solution of
(1), with

f(x̂acc) ≤ fopt + lim sup
`∈L

Ef
x̂k(`) + lim sup

`∈L

(
max
j∈B2

`

Eg
xj

)
. (27)

Proof. Passing to the limit in inequality (24) above we have that

lim
L3`→∞

(f1(x̂k(`)) + f2
x̂k(`)) ≤ fopt + lim sup

`∈L

(
max
j∈B2

`

Eg
xj

)
.

Moreover, for any cluster point x̂acc of {x̂k(`)}`∈L, passing to the limit in (10),

f(x̂acc)− lim sup
`∈L

Ef
x̂k(`) ≤ lim

L3`→∞
(f1(x̂k(`)) + f2

x̂k(`)) .

As a direct corollary of Lemma 1, if for some iteration ` we have that V` = 0,
the serious point x̂k(`) is an approximate solution of (1) with

f(x̂k(`)) ≤ fopt + Ef
x̂k(`) + max

j∈B2
`

Eg
xj . (28)

Similarly, if the serious point sequence stabilizes, i.e. if there is some L such
that x̂k(`) = x̂k(L) for all ` ≥ L, x̂k(L) is an approximate solution of (1) with

f(x̂k(L)) ≤ fopt + Ef
x̂k(L) + lim sup

`∈L

(
max
j∈B2

`

Eg
xj

)
. (29)

To handle inexact linearizations, the adapted bundle method for inexact
linearizations proposed in [5] introduces a prox-parameter management step
based on inequality (21) and on a noise attenuation parameter NAP ≥ 0.
Schematically, when (21) does not hold, µ` is reduced in order to get δ`+2 > δ`+1

and help ensuring (21). This additional step is called here of Noise Management.
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Algorithm 1. (inexact bundle method with varying inaccuracy)

1. Initialization: Choose x1 ∈ IRN , κ, m ∈ (0, 1) and µmax > 0.
Set NAP = 0, compute (f1(x1), g1(x1)), (f2

x1 , g2
x1), and define f̌1

1

and ϕ2
1. Set ` = k = 1, k(1) = 1, and x̂1 = x1.

2. New candidate: Solve (13) to get x`+1, δ`+1, ĝ`+1, and ε̂`+1.

3. Stopping test: If V` = 0, stop.

4. Noise management: If (21) does not hold, set NAP = 1,
µ`+1 = κµ`, ` = ` + 1, go to 2.

5. Oracle: compute f1(x`+1), g1(x`+1) and f2
x`+1 , g

2
x`+1

6. Descent test: If f1(x`+1) + f2
x`+1 ≤ f1(x̂k(`)) + f2

x̂k(`) − mδ`+1,
declare a Serious Step, otherwise declare a Null Step.

If x`+1 gave a serious step, set x̂k+1 = x`+1, NAP = 0 ,
f2

x̂k+1 = f2
x`+1 , k(` + 1) = k + 1, k = k + 1, choose µ`+1 ≤ µmax.

If x`+1 gave a null step, k(` + 1) = k, and: if NAP = 0
choose µ`+1 ∈ [µ`, µmax], else if NAP = 1 take µ`+1 = µ`.

7. Update: Define f̌1
`+1 and ϕ2

`+1 according to the compres-
sion/selection rules of [14, Lemma 10.10], ` = ` + 1, loop to 2.

If the algorithmic scheme above does not stop, three situations may occur:

• an infinite loop of Noise Management between steps 2 and 4, driving µ`

to 0;

• a finite number of serious steps, followed by an infinite number of null
steps;

• an infinite number of serious steps.

In the following, we study separately these three cases to show that they all
yield an approximate minimizer in (1).

5.2 Convergence analysis

The inexact setting presented in §5.1 is quite similar to the one proposed by [5],
but we allow the inaccuracy (Ef

x ,Eg
x) to vary along iterations. We will see here

that the convergence results for the inexact bundle method of [5] remain almost
unchanged.

5.2.1 Infinite loop of noise management

Proposition 1. If an infinite loop between steps 2 and 4 occurs in Algorithm
1, then V` → 0.
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Proof. Suppose that at some iteration L, an infinite loop between steps 2 and 4
begins, so that for ` ≥ L neither the stability center x̂k(`) = x̂k(L) nor the model
Φ` = ΦL change. Hence, when solving sequentially the quadratic program (13),
only µ` is updated. Since µ` → 0, using (26), we have that

0 ≤ V` <

√
2µ`(E

f
max + Eg

max) → 0 as ` →∞ .

Consequently, applying (29) we have that if an infinite loop of Noise Man-
agement begins at iteration L in Algorithm 1, x̂k(L) is an approximate solution
to (1) satisfying

f(x̂k(L)) ≤ fopt + lim sup
`∈L

(
max
j∈B2

`

Eg
xj

)
+ Ef

x̂k(L) .

For comparison, when inaccuracies are fixed and an infinite loop of Noise Man-
agement occurs, we recall the analogous result of [5]:

f(x̂) ≤ fopt + Eg + Ef .

5.2.2 Finite number of serious steps

We suppose now that the algorithm never enters an infinite loop of noise man-
agement.

Proposition 2. Suppose that, after some iteration `ast, no serious step is
declared in Algorithm 1. Then there is a sub-sequence L ⊂ {1, 2, . . .} such that
V` → 0 as L 3 ` →∞.

Proof. Here, after some iteration `ast, no serious step is declared. Hence, either
noise management steps or null steps are done for ` ≥ `ast. The serious point
does not move: for ` ≥ last, x̂k(`) = xk(last) =: x̂.

If the number of noise management steps is infinite, i.e., if (21) does not hold
for an infinite sub-sequence of iterates {x`+1}`∈L, we have again that µ` → 0 as
L 3 ` →∞. The previous developments hold for that sub-sequence and V` → 0
as L 3 ` →∞.

Suppose now that only a finite number of noise management steps are done.
There is some iteration L ≥ `ast such that (21) holds. Consequently, µ` is a
non-decreasing sequence since µ`+1 ∈ [µ`, µmax] for ` > L, and µ` → µ̄ ≤ µmax

as ` →∞. In the following, we derive standard arguments for bundle methods
to show that δ` → 0. We define the partial linearization of the objective of (13)
by:

L`(x) := Φlin
` (x) +

1
2
µ`|x− x̂|2 .

First, using Lemma 10.10 in [14], we know that the rules to apply compres-
sion/selection on the bundle guarantee that

Φlin
` (·) ≤ Φ`+1(·).
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By (18),

L`(x̂) = Φlin
` (x̂)

≤ Φ`+1(x̂)
≤ f(x̂k(`)) + Eg

max (30)

Similarly, evaluating L` at x`+1 and using the fact that µ`+1 ≥ µ` gives

L`(x`+2) ≤ Φ`+1(x`+2) +
1
2
µ`+1|x`+2 − x̂|2

= Φlin
`+1(x

`+2) +
1
2
µ`+1|x`+2 − x̂|2

= L`+1(x`+2) .

Furthermore, x`+1 being the solution to (13), ∇L`(x`+1) = 0 and by Taylor’s
expansion,

L`(·) = L`(x`+1) +
1
2
µ`| · −x`+1|2 .

Hence,

L`(x`+2) = L`(x`+1) +
1
2
µ`|x`+2 − x`+1|2 , and

L`(x̂) = L`(x`+1) +
1
2
µ`|x̂− x`+1|2 .

Using the developments above, the fact that µ` ≥ µL, and (30), we obtain
the following inequalities:

L`(x`+1) +
1
2
µL|x`+2 − x`+1|2 ≤ L`+1(x`+2) , and (31)

L`(x`+1) +
1
2
µL|x`+1 − x̂|2 = L`(x̂) ≤ f(x̂) + Eg

max . (32)

From (32) and (31), we deduce that the sequence
{
L`(x`+1)

}
`≥L

is non-
decreasing and bounded. Hence,

∃L∞ < ∞ : L`(x`+1) → L∞ and |x`+1 − x`| → 0 as ` →∞. (33)

The sequence of null steps {x`} is bounded, by (32). Since the approximate
subdifferential ∂Emax

f +Emax
g

f(·) is locally bounded (e.g. [15] Prop 6.2.2), {g`} is
also bounded.

Since only null steps occur for ` > L, the descent test is not satisfied and
we have that

(
f1(x`+1) + f2

x`+1

)
−Φ`(x`+1) > (1−m)δ`+1. However, since the

model Φ`+1 includes the information returned by the oracle for the last iterate
x`+1, (

f1(x`+1) + f2
x`+1

)
≤ Φ`+1(x`+2) + 〈ĝ`+1, x`+1 − x`+2〉 ,

17



so, together with the definition of partial linearization, we obtain that(
f1(x`+1) + f2

x`+1

)
− Φ`(x`+1) ≤ Φ`+1(x`+2)− Φ`(x`+1) + |ĝ`+1||x`+1 − x`+2|

= Φlin
`+1(x

`+2)− Φlin
` (x`+1) + |ĝ`+1||x`+1 − x`+2|

= L`+1(x`+2)− L`(x`+1) + |ĝ`+1||x`+1 − x`+2|

−1
2
µ`+1|x`+2 − x̂|2 +

1
2
µ`|x`+1 − x̂|2

Using (33) and µ` → µ̄ ≤ µmax we obtain that all terms on the right hand side
vanish as ` → ∞. As a consequence,

(
f1(x`+1) + f2

x`+1

)
− Φ`(x`+1) → 0 as

` →∞. Hence,

0 ≤ (1−m)δ`+1 <
(
f1(x`+1) + f2

x`+1

)
− Φ`(x`+1) → 0 .

By (25), for ` > L we have that V` ≤ max{
√

2µ`δ`+1, δ`+1} since (21) holds.
Hence, V` → 0 as ` →∞.

As a consequence, by (29), Proposition 2 implies that if a finite number
of serious steps occurs, x̂ is an approximate solution to (1) with

f(x̂) ≤ fopt + lim sup
`→∞

(
max
j∈B2

`

Eg
xj

)
+ Ef

x̂ .

For comparison, when inaccuracies are fixed and a finite number of serious
steps occurs, we recall the analogous result of [5]:

f(x̂) ≤ fopt + Eg + Ef .

5.2.3 Infinite number of serious steps

When the sequence of serious steps is infinite, we denote by Ls the subset of
iterations yielding serious steps: Ls = {` ≥ 1 : x̂k(`+1) = x`+1}.

Proposition 3. Suppose that Algorithm 1 generates an infinite sequence of
serious steps. Then, if f is coercive, the sequence {x̂k(`)} is bounded and V` → 0
as Ls 3 ` →∞.

Proof. Recall that the coercivity assumption implies that f in (1) has bounded
level sets and a finite optimal value, fopt. By (11) and (12), for all ` ∈ Ls

f(x̂k(`))− Ef
max ≤ f1(x̂k(`)) + f2

x̂k(`) ≤ f1(x̂k(1)) + f2
x̂k(1) ≤ f(x̂k(1)) + Eg

max

and, hence, the serious point sequence is bounded, because {x̂k(`)} ⊂ {x : f(x) ≤
f(x̂k(1)) + Ef

max + Eg
max}. Furthermore, the sequence

{
f1(x̂k(`)) + f2

x̂k(`)

}
`∈Ls

of approximate functional values has a finite limit f∞ ≥ fopt − Ef
max. As a
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result, summing for all ` ∈ Ls the descent inequality for two successive serious
points:

f1(x̂k(`+1)) + f2
x̂k(`+1) −

(
f1(x̂k(`)) + f2

x̂k(`)

)
≥ mδ`+1 ,

we see that the series
∑

`∈Ls
δ`+1 is finite with the corresponding terms δ`+1 →

0. Since (21) holds, we have that the (nonnegative) optimality measure satisfies
V` ≤ max{

√
2µmaxδ`+1, δ`+1} and V` → 0 for Ls 3 ` →∞, as desired.

Hence, by (27), when Algorithm 1 declares Serious Steps an infinite
number of iterations in a set Ls, if f is coercive, then any accumulation
point xacc of the bounded sequence {x̂k(`)}`∈Ls satisfies the relation

f(x̂acc) ≤ fopt + lim sup
`∈Ls

(
max
j∈B2

`

Eg
xj

)
+ lim sup

`∈Ls

Ef
x̂k(`) .

For comparison, when inaccuracies are fixed and an infinite number of serious
steps occurs, we recall the analogous result of [5]:

f(x̂acc) ≤ fopt + Eg + Ef .

6 Incremental classical bundle method

In the setting of an incremental bundle method, the error term Eg
x` is null

and, consequently, all cutting planes stay below the real objective function (cf.
(11)). Other examples of inexact oracles also correspond to this framework, for
example in the context of Lagrangian relaxation where the subproblem involved
in the evaluation of f is only solved approximately.

When the error vanishes along the iterative process, i.e., when Ef
x` → 0 as

` →∞, we could expect to be able to find (asymptotically) an optimal solution,
without any error.

If we apply the results presented in Section 5 to the particular setting Ef
x` →

0 but Eg
x` = 0 for all `, the following can be said for Algorithm 1:

– if a finite number of serious steps occurs, the last serious step x̂k(last)

provides an approximate solution with error on the objective lower than
Ef

x̂k(last) ;

– if an infinite number of serious steps occurs, any cluster point of the se-
quence of serious steps is solution to (1).

However, in this framework, as soon as the inexact oracle returns a value
f1(x`+1) + f2

x`+1 below the infimum value of the cutting-planes model Φ`, the
descent test is necessarily satisfied and x`+1 qualifies as new serious point. In
Algorithm 1, when the noise management mechanism is activated, the bundle
does not change, so neither does the infimum value of the cutting-planes model.
But then (recalling from (6) that the predicted descent is the difference between
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the value returned by the oracle at the current serious point and the value of
the model at the new point), we see that the predicted decrease will be negative
for all subsequent iterations. As a consequence, the algorithm enters into an
infinite noise management loop. In these circumstances, the last serious step
x̂k(last) = x`+1 would be an approximate solution to (1), with objective error
smaller than Ef

x̂k(last) , by (29).
In summary, the inexact setting considered in Algorithm 1 is such that when

the oracle returns underestimating hyperplanes, if the new candidate has a lower
functional value than the one predicted by the model, then the descent test will
never be satisfied, and there will be no more improvement. The variant described
below addresses this issue.

6.1 Inexact classical bundle method

As a by-product of the analysis in Section 5.2, we studied the behaviour of an
inexact classical bundle method, working with function evaluations of unknown
and vanishing inaccuracy, but without noise attenuation step.

Our analysis starts from the following observation: when adding a new cut-
ting plane to the bundle after a null step, the value f2

x̂k(`) may not be the best
estimate available for f2(x̂k(`)). Indeed, we have that

f(x̂k(`)) ≥ Φ`(x̂k(`)) ≥ f1(x̂k(`)) + f2
x̂k(`) .

The rightmost inequality is satisfied if the bundle B1,2
` is forced to include

the cut returned for the current serious point x̂k(`). Denoting by `(k) the
index of the iterate that yielded the k-th serious step, this corresponds to
the additional condition `(k) ∈ B1,2

` imposed when updating the bundle in
Algorithm 2 below. Hence, one could consider replacing the inexact value(
f1(x̂k(`)) + f2

x̂k(`)

)
by the, possibly better, value Φ`(x̂k(`)), since Φ`(x̂k(`)) =(

f1(x̂k(`)) + f2
x̂k(`)

)
+ maxj∈B2

`
{−e2

j,`}. This results in an alternative definition
for the predicted descent. More precisely,

either δ`+1 :=
(
f1(x̂k(`)) + f2

x̂k(`)

)
− Φ`(x`+1) as in last section,

or δ̂`+1 := Φ`(x̂k(`))− Φ`(x`+1) in this section. (34)

As a consequence, in Step 6 of Algorithm 1 page 15, two different descent tests
may be performed: x`+1 qualifies as new serious point either if (20) holds, i.e.,
if (

f1(x̂k) + f2
x̂k

)
−
(
f1(x`+1) + f2

x`+1

)
≥ m

(
f1(x̂k(`)) + f2

x̂k(`) − Φ`(x`+1)
)

or if
Φ`(x̂k(`))−

(
f1(x`+1) + f2

x`+1

)
≥ m

(
Φ`(x̂k(`))− Φ`(x`+1)

)
. (35)

Actually, the two alternative definitions for predicted descent are related through
the linearization errors e1,2

j,` used in the definition of the cutting-planes models

20



(14) and (15). Indeed, we have

δ̂`+1 = δ`+1 + max
j∈B2

`

{−e2
j,`} .

Similarly to (6), the predicted descent δ̂`+1 can be expressed in terms of the
aggregate subgradient, the prox-parameter and the linearization errors:

δ̂`+1 =
1
µ`
|ĝ`+1|2 + ε̂`+1 + max

j∈B2
`

{−e2
j,`} .

Furthermore, ε̂`+1 may be negative but, since ε̂`+1 is a convex combination of
linearization errors by definition,

ε̂`+1 + max
j∈B2

`

{−e2
j,`} ≥ 0.

As a consequence, if δ̂`+1 → 0 and using the fact that µ` ≤ µmax, we have that:

ε̂`+1 + max
j∈B2

`

{−e2
j,`} → 0 and

|ĝ`+1| → 0 ,

so the optimality measure becomes V̂` := max{|ĝ`+1|, ε̂`+1 + maxj∈B2
`
{−e2

j,`}}.
For future use, write the subgradient inequality for ĝ`+1 ∈ ∂Φ`(x`+1) (result-
ing from (13)), use that Φ` ≤ f (resulting from (18) with Eg

x = 0), and add
±f(x̂k(`))± 〈ĝ`+1, x̂k(`)〉 to obtain for all y ∈ IRN

f(y) ≥ f(x̂k(`)) + 〈ĝ`+1, y − x̂k(`)〉 −
(
f(x̂k(`))− Φ`(x`+1)− 1

µ`
|ĝ`+1|2

)
. (36)

It is important to notice that, unlike δ`+1, the new predicted descent δ̂`+1 is al-
ways nonnegative. Hence, the additional information used in the new definition
avoids having to perform noise attenuation steps. Indeed, recall that for Algo-
rithm 1, when δ`+1 is not considered large enough to cope with the inaccuracy,
the prox-parameter µ` is decreased and a new trial point is generated, before
creating any new cutting plane. Here, we consider instead a more (inexact)
classical bundle method, where the usual expected decrease δ`+1 is replaced by
δ̂`+1.
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Algorithm 2. (“inexact classical” bundle method)

1. Initialization: Choose x1 ∈ IRN , m ∈ (0, 1) and µmax > 0.
Compute (f1(x1), g1(x1)), (f2

x1 , g2
x1), and define f̌1

1 and ϕ2
1.

Set ` = k = 1, k(`) = `(k) = 1, and x̂1 = x1.

2. New candidate: solve (13) to get x`+1, δ̂`+1, ĝ`+1, and ε̂`+1.

3. Stopping test: If V̂` = 0, stop.

4. Oracle: compute f1(x`+1), g1(x`+1) and f2
x`+1 , g

2
x`+1

5. Descent test: If f1(x`+1)+ f2
x`+1 ≤ Φ`(x̂k(`))−mδ̂`+1, declare a

Serious Step, otherwise declare a Null Step.

If x`+1 gave a serious step, set x̂k+1 = x`+1, f2
x̂k+1 = f2

x`+1 ,
`(k + 1) = ` + 1, k(` + 1) = k + 1, k = k + 1, choose µ`+1 ≤ µmax.

If x`+1 gave a null step, k(`+1) = k, choose µ`+1 ∈ [µ`, µmax].

6. Update: Define f̌1
`+1 and ϕ2

`+1 according to the compres-
sion/selection rules of [14, Lemma 10.10] with `(k) ∈ B1,2

`+1, set
` = ` + 1, loop to 2.

6.2 Convergence analysis

In the following, we suppose Algorithm 2 does not stop and study separately the
two possible asymptotic behaviours: infinite or finite number of serious steps.

6.2.1 Infinite number of serious steps

First, recall that in the case of an infinite sub-sequence of iterations for which
δ̂`+1 → 0, since

0 ≤ max
j∈B2

`

{−e2
j,`} ≤ Ef

x̂k(`) → 0 ,

we have that ε̂`+1 → 0 and |ĝ`+1| → 0 as ` → ∞. We now show that for the
infinite sub-sequence of iterations yielding serious steps, denoted as before by
Ls, the corresponding predicted decrease δ̂`+1 converges to 0.

In the new setting, when performing a serious step, we cannot guarantee that
we obtain a better point: the relation f(x̂k(`)) > f(x̂k(`+1)) does not necessarily
hold. Moreover, and contrary to the case developed in §5, neither can we say
that the inexact values returned by the oracle are improving: we may have(
f1(x̂k(`)) + f2

x̂k(`)

)
≤
(
f1(x̂k(`+1)) + f2

x̂k(`+1)

)
. This explains the weaker result

obtained for the new algorithm, when compared to Proposition 3, see §§ 6.2.3
below.

Proposition 4. Assume that Eg
x = 0, Ef

x` → 0 as ` → ∞, and suppose that
Algorithm 2 declares serious steps at infinitely many iterations in the set Ls.
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If f has a finite optimal value fopt and the corresponding sequence {x̂k(`)}Ls is
bounded, then at least one cluster point of the sequence solves (1).

Proof. Consider ` ∈ Ls. By (34) and (35), only the following inequality holds:

Φ`(x̂k(`))−
(
f1(x̂k(`+1)) + f2

x̂k(`+1)

)
≥ mδ̂`+1 .

By (15) and the fact that e1
j,` = 0 for j = `(k), Φ`(x̂k(`)) = f1(x̂k(`)) +

f2
x̂k(`) + maxj∈B2

`
{−(e2

j,`)}. Since, in addition, by (17) written with Eg
x ≡ 0,

maxj∈B2
`
{−(e2

j,`)} ≤ Ef
x̂k(`) , it follows that(

f1(x̂k(`)) + f2
x̂k(`)

)
−
(
f1(x̂k(`+1)) + f2

x̂k(`+1)

)
≥ mδ̂`+1 − Ef

x̂k(`) . (37)

We show that lim inf`∈Ls
δ̂`+1 = 0. Suppose, for contradiction purposes, that

lim inf`∈Ls
δ̂`+1 > 0. Then, since Ef

x̂k(`) → 0, there exists η0 > 0 and an iteration

`0 ∈ Ls such that
(
mδ̂`+1 − Ef

x̂k(`)

)
≥ η0 for all Ls 3 ` ≥ `0. However, summing

up inequality (37) for ` ≥ `0 would result in having

lim inf
`∈Ls

(
f1(x̂k(`)) + f2

x̂k(`)

)
= −∞,

a contradiction, because f is bounded from below by assumption. Hence,
lim inf δ̂`+1 = 0. Let us denote by J a subset of iterates in Ls such that
δ̂`+1 → 0 as J 3 ` → ∞. Let xacc be a cluster point of {x̂k(`)}J and H ⊂ J
the subset of iterates such that x̂k(`) → xacc as H 3 ` →∞. Since δ̂`+1 → 0 as
J ⊃ H 3 ` → ∞, both |ĝ`+1| and ε̂`+1 → 0 as H 3 ` → ∞. Now rewrite the
rightmost term in (36) using (6):

f(x̂k(`))− Φ`(x`+1)− 1
µ`
|ĝ`+1|2 = f(x̂k(`))− (f1(x̂k(`)) + f2

x̂k(`)) + ε̂`+1,

and pass to the limit in the reformulated inequality (36). The result follows,
because Ef

x` → 0.

Summing up, if an infinite number of serious steps occurs in Algorithm 2 and
inaccuracy is vanishing, then if the sequence of serious points is bounded,
it has at least one cluster point xacc that solves (1).

6.2.2 Finite number of serious steps

Proposition 5. Assume that Eg
x = 0, Ef

x` → 0 as ` → ∞ and suppose that,
after some iteration `ast, no serious step is declared in Algorithm 2. Then, the
last serious point x̂ = x̂k(`ast) is a solution to (1) with x`+1 → x̂ as ` →∞.
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Proof. Suppose there exists an iteration `ast such that for all ` > `ast, only null
steps occur with µmax ≥ µ`+1 ≥ µ` and the serious point does not change, i.e.
x̂k(`) =: x̂. Let us show that δ̂` → 0 as ` →∞ and that the last serious point is
a solution to (1). As in the previous section, we use the partial linearization of
the objective of the quadratic program (13): L`(x) := Φlin

` (x)+ 1
2µ`|x− x̂k(`)|2.

Again, by (31) and (32), we have that

L`(x`+1) ↑ L∞ < ∞ and |x`+1 − x`| → 0 ,

with {x`} and {g`} bounded, and lim sup f1(x`+1) + f2
x`+1 − Φ`(x`+1) ≤ 0.

Furthermore, since the descent test does not hold for ` ≥ `ast,

0 ≤ (1−m)δ̂`+1 < f1(x`+1) + f2
x`+1 − Φ`(x`+1) .

As a consequence,

δ̂`+1 = ε̂`+1 +
1
µ`
|ĝ`+1|2 + max

j∈B2
`

{−e2
j,`} → 0 .

Since ε̂`+1 + maxj∈B2
`
{−e2

j,`} ≥ 0 and µ` ≤ µmax, we have that |ĝ`+1|2 → 0.
Furthermore, x`+1 = x̂ − 1

µ`
ĝ`+1, so x`+1 → x̂. Since the model is below the

function and it always includes oracle information for the last iterate,

f(x̂) ≥ Φ`+1(x̂) ≥ f1(x`+1) + f2
x`+1 + 〈g`+1, x̂− x`+1〉

≥ f(x`+1)− Ef
x`+1 + 〈g`+1, x̂− x`+1〉 ,

with {g`+1} bounded. When passing to the limit as ` →∞, the last inequality
converges to f(x̂), so Φ`+1(x̂) → f(x̂) too. But Φ`(x̂) → f(x̂) implies that
f(x̂)−Φ`(x`+1) → 0 (using that δ̂`+1 → 0 in (34)). Therefore, by (36), the last
serious step x̂ is a solution to (1).

Summing up, if an finite number of serious steps occurs in Algorithm 2 and
inaccuracy is vanishing, then the last stability center x̂ is a solution of (1).

Since inaccuracy vanishes only asymptotically, if at some iteration ` the algo-
rithm stops, the last serious iterate is an approximate solution, in the sense of
(28), written with Eg

xj = 0 for all j.
We have shown that an almost classical bundle method may achieve optimal-

ity when linearizations are computed with inexact but vanishing inaccuracies.
Our setting does not involve any noise management step, but rather incorporates
different incoming information for the predicted descent. However, our analy-
sis needs the serious iterates sequence to remain bounded. We comment now
on such assumption and discuss how to address this issue, that is not uncom-
mon for nonmonotone methods and introduces an additional “unboundedness
management” step in the algorithm.
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6.2.3 Ensuring boundedness of serious iterates

In exact bundle methods, boundedness of the sequence of serious iterates follows
from coercivity, because the objective function has bounded level sets and the
sequence {f(x̂k)} is monotonically decreasing. The issue is more involved and
subtle when dealing with inexact oracles, even for vanishing inaccuracies, as
assumed in this section. We are grateful to Krzysztof C. Kiwiel for pointing
out this fact, because his remark allowed us to correct a wrong statement in
Proposition 4, as well as various imprecise or confusing statements Sections 5
and 6.

To force serious points to form a bounded sequence, a “boundedness control”
step should be incorporated into Algorithm 2 before calling the oracle. Such
step manages unboundedness in a manner similar to how Step 4 in Algorithm 1
manages noise:

Unboundedness detection: If for some positive parameter η, set at the
Initialization step,

Φ`(x`+1) > f1(x1) + f2
x1 + Ef

max + η , (38)

the candidate point is deemed to have an unduly large inexact functional
value. Then, we set UD = 1, µ`+1 = κµ`, ` = ` + 1, and go back to Step
2, to find a new candidate point.
Like the noise atenuation parameter in Algorithm 1, if UD = 1 then the
prox-parameter cannot increase at null steps, and UD is reset to 0 at
serious steps.

Note that since candidates x`+1 solve (13), it holds that

Φ`(x`+1) +
µ`

2
|x`+1 − x̂k(`)|2 ≤ Φ`(x1) +

µ`

2
|x1 − x̂k(`)|2

≤ f1(x1) + f2
x1 + Ef

max +
µ`

2
|x1 − x̂k(`)|2 ,

because Φ`(x1) ≤ f1(x1) + f2
x1 + Ef

max by (10) and (18). This implies that (38)
cannot hold if µ`|x1−x̂k(`)|2 ≤ 2η. As a consequence, if after some iteration `ast
there is a final serious step x̂, there cannot be an infinite number of iterations
` > `ast such that (38) holds, otherwise µ` would be driven to 0, which whould
yield a contradiction.

Hence, we see that when the modified Algorithm 2 generates a last serious
iterate, since only a finite number of steps controlling unboundedness may fol-
low, eventually prox-parameters at null steps remain bounded away from 0 and
form a nondecreasing sequence, so Proposition 5 applies.

As for serious steps, the following lemma shows that nonsatisfaction of (38),
together with the descent test, ensures that the sequence {f1(x̂k(`))+f2

x̂k(`)}, of
serious iterates inexact functional values, is bounded above, as shown in Lemma
2 below. As a result, if f is coercive, the sequence {x̂k(`)} is bounded and the
assumption in Proposition 4 holds.
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Remark: The test (38) uses the value Ef
max, possibly unknown in our setting.

If this value is unknown, one may force an exact evaluation for the first call to
the oracle. In that case, Ef

max could be suppressed in (38).

Lemma 2. Suppose that Algorithm 2 with additional step of Unboundedness
detection generates an infinite sequence of serious steps. If the function f is
coercive, then the corresponding sequence {x̂k(`)} is bounded.

Proof. For convenience, let F denote the right hand side value in (38) and let
x̂k = x̂k(`) denote each serious point. We will prove by induction that for k ≥ 2,

fx̂k ≤ F + Ef
max

k−1∑
j=1

(1−m)j .

Recall that, by assumption, Ef
x` is bounded by Ef

max. By construction, the
starting point is the first serious point and satisfies Φ1(x̂1) = fx̂1 ≤ F . Now,
denote by `2 the first iterate such that the descent test (35) is satisfied: x̂2 =
x`2+1. Both inequalities below hold:

fx̂2 ≤ Φ`2(x̂
1)−mδ̂`2+1 and Φ`2(x̂

2) ≤ F .

Since δ̂`2+1 = Φ`2(x̂
1)−Φ`2(x̂

2), we have that fx̂2 ≤ (1−m)Φ`2(x̂
1)+mF ; and,

since the model is below the function,

fx̂2 ≤ (1−m)f(x̂1) + mF ≤ F .

The inductive process starts with fx̂2 ≤ F + (1−m)Ex̂1 .
Suppose now that the inequality holds for some arbitrary k ≥ 2. Let ` denote

the iterate such that candidate x`+1 is chosen as new serious step: x̂k+1 := x`+1.
Again, by (35) and recalling that the model is below the function,

fx̂k+1 ≤ Φ`(x̂k)−mδ̂`+1 and Φ`(x̂k+1) ≤ F .

Since δ̂`+1 = Φ`(x̂k) − Φ`(x̂k+1), we have that fx̂k+1 ≤ (1 − m)Φ`(x̂k) + mF ,
with Φ`(x̂k) ≤ f(x̂k) ≤ fx̂k + Ef

max. By the induction hypothesis,

fx̂k+1 ≤ (1−m)(F + Ef
max

k−1∑
j=1

(1−m)j + Ef
max) + mF

and, hence, fx̂k+1 ≤ F + Ef
max

∑k
j=1(1−m)j . As a consequence, for any k ≥ 1,

f(x̂k+1) ≤ F + (1 + 1
m )Ef

max. The level set of f being bounded by coercivity,
the corresponding sequence {x̂k} is bounded.

7 Application to mid-term energy planning

We assess the incremental approach by implementing it in a mid-term generation
planning tool used by EDF for optimizing nuclear generation and described
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in [18]. The methodology of this computational tool involves applying price
decomposition on a scenario tree, as presented in section 2. Our test problem
is a real dataset with 58 nuclear plants, 85 classical thermal plants, and an
aggregate representation for the spot market. The optimization horizon covers
one year with three time steps per day, resulting in a scenario tree with about
20.000 nodes, computed out of 484 historical scenarios of demand and spot
prices. The tests were made on a SUN Sparc, Sun-Fire-V490.

As mentioned, classical thermal sub-functions correspond to subproblems
that are easy to solve: at each node, the optimal generation is either the maxi-
mal power of the plant or it is null. Similarly for the spot market, modeled as
a set of thermal plants with stochastic costs. For nuclear plants however, com-
putations are much more involved. Recall that maximal and minimal power at
a given node depend on the current level of combustible in the reactor. The
amount of modulation (power not at its maximum) between two outage periods
is bounded above, as in a ramp constraint. The corresponding optimization
problem is a large scale linear program solved by a commercial solver. The
CPU-time needed for solving such linear program, and hence, computing the
nuclear sub-function, is comparable to one iteration of the bundle method. A
more sophisticated model considers, instead of ramp constraints, the use of
integer variables and constraints to limit the number of modulation periods
over a generation campaign. In order to allow for such future evolution of the
computational tool, we solved the nuclear subproblems by using dynamic pro-
gramming techniques on a discretized grid. For large-scale instances of nuclear
subproblems, Dynamic Programming has shown to be competitive with linear
programming solvers in term of computing times.

When applying a classical bundle method over the mid-term generation prob-
lem, hence evaluating all sub-functions after each dual iteration, 95% of the total
CPU-time is spent in solving the nuclear subproblems. Therefore, there is a po-
tential gain in applying the incremental approach.

The incremental bundle method from Algorithm 1 was coded by adding an
additional noise management step over a classical bundle method, in a disaggre-
gate variant. More precisely, the classical bundle method used for comparisons
is a disaggregate implementation of the proximal bundle method with poor man
quasi-Newton update from [13] that can exploit sparsity and was made by the
authors for EdF.

Parameters for the algorithm are: m = 0.1 , κ = 10 , µmax = 109.The start-
ing point x0 is chosen as the vector of marginal costs of the production mix on
the scenario tree with a simplified optimal strategy where stock constraints are
disregarded. The initial prox-parameter µ0 is an approximation of the curvature
of the dual function at x0, computed as in [19, Section 6]. For the incremental
setting, we split the 58 nuclear plants into 3 subsets with 20/20/18 plants, and
skip the computation of sub-functions for one of such subsets at each iteration.
We noticed that performing dual steps with partial information at the very be-
ginning of the procedure yielded rather poor results. Hence, we decided to start
the incremental approach only after 20 dual iterations (with exact evaluation)
have been done.
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Figure 2: Incremental bundle method

Figure 2 reports the results on various indicators. In the graphs, plain red
lines refer to the classical bundle method, and dashed green lines to the incre-
mental approach. For all indicators, CPU-times given on the horizontal axis
are clock ticks of the processor. In the upper graph, we plotted |ĝ|2 and ε̂. In
view of (6) and (23), these two parameters are usually used in the stopping
test for both exact and inexact bundle methods. For an exact bundle method,
approximate convergence is achieved when both values reach the corresponding
tolerance chosen by the user. We see on these plots that, as usual for bundle
methods, the parameter that decreases less easily is the L2-norm of the ag-
gregate subgradient. For our application, a tolerance of 108 for |ĝ|2 is usually
chosen. This corresponds to a tolerance on the dualized constraints of merely
20MW on each node of the scenario tree, which is negligible regarding the av-
erage level of power load (' 50.000MW ). The same precision is obtained with
the incremental approach, but using 25% less CPU-time.

In the bottom section of Figure 2, we plotted two indicators of the overall
quality of the approximate primal solution p̂. Namely, the average violation of
demand constraint and the 95%-th quantile of the distribution of violations over
the scenario tree. These values are related to ĝ so, not surprisingly, we see that
the incremental approach performs better than the classical bundle method.
However, we notice that the distribution of demand violations is more volatile.

These preliminary results seem to indicate advantages of the incremental
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method. The new algorithmic scheme achieves a given tolerance in less com-
puting time for a realistic mid-term power problem. However, more tests are
currently being done on other data sets, with e.g. bigger scenario trees. Further-
more, we believe that significant improvements may be obtained with a tighter
disaggregation of the bundle, and perhaps with a more clever strategy to select
which subset of subproblems to evaluate and which to skip in the incremental
approach.

Concluding Remarks

In this work, we introduced a general incremental bundle method for struc-
tured non-smooth optimization problems, with objective function written as
the sum of sub-functions. With the incremental approach, iterations can be
done without evaluating all of the sub-functions. This is a particularly inter-
esting feature when the time required for a bundle iteration is negligible when
compared to the CPU-time needed for the sub-functions evaluation. Such is the
case in many complex problems solved by decomposition methods, yielding a
dual master program that requires minimizing a structured non-smooth convex
function. Our first numerical experiments on a real-life problem of mid-term
power planning show that, when compared to a standard bundle method, the
incremental variant can achieve faster convergence without losing precision.

Convergence properties of the incremental variant were derived by inter-
preting the method as a special instance of inexact bundle methods. We also
analyzed an alternative algorithm, which does not need to manage noise, the
inexact classical bundle method. Convergence properties of this algorithm are
based on the capacity of the inexact oracle to drive inaccuracy to 0. For an
inexact oracle that substitutes lacking information by the evaluation of the
cutting-planes model, it would be interesting to find conditions under which
the algorithm itself can force such inaccuracies to vanish asymptotically. At
this stage, we can only conjecture that such could be the case for a polyhedral
function f , like a dual function, as in our application.
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in stochastic optimal power management: a disaggregate approach using
preconditioners. Comp. Opt. and App. 20(3), 227 – 244 (2001)
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