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Abstract. In this work we discuss detection of changes in a random medium when
the measurements are not perfect, i.e. a noise from the electronic devices is included.
We study a regime in which the typical length scales involved are well-separated.
Moreover, since detection procedures based on the analysis of the reflected signals can
fail because of the lack of coherency, we introduce a technique based on time reversal
which can take advantage of both the coherent time-reversed signal and the additional
incoherency induced by the measurement device.

We use asymptotic analysis of time-reversed signals in a changing medium to guide
us in the selection of a statistical decision technique.

The proposed technique is illustrated by a series of numerical simulations. The
results show a remarkable agreement with the asymptotic analysis and also highlight
the robustness of this technique.

PACS numbers: 42.25.Dd, 43.60.Pt, 43.60.Bf

1. Introduction

Detection and imaging problems arise in various fields of science and technology (e.g.

geophysics and medicine). In many situations the detection/imaging procedure relies

on the propagation of a probing wave in the medium. In this context, special attention

may have to be devoted to the situation when the propagation medium is heterogeneous

on a fine scale.

Many of the conventional imaging methods use information provided by the direct

reflection from the object of interest. In those cases a coherent reflected signal is

produced by a large contrast in the impedance of the background medium, allowing one

to establish the presence of an object and to estimate the distance from the object to

the receiver. Other techniques admit a time reversal or cross correlation interpretation

and consequently possess a statistical stabilization property which is important in a

heterogeneous environment, see for instance [3, 1, 2]. Here, our focus will be on situations
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when there is both strong medium heterogeneity as well as strong measurement noise

so that the measured signal may not have a any discernible coherent component.

In [4], a detection/imaging procedure that uses physical time reversal was developed

for the case where the macroscopic (effective) equation for the wave energy is a diffusion

equation (this occurs for instance in the high-frequency regime when the random

fluctuations of the medium are weak and isotropic). Their detection procedure allows for

the presence of measurement errors in the time-reversed signal. A high contrast between

the diffusion coefficients for the background and the inclusion allows the detection and

characterization of the buried object.

More recently, in [5, 6] a detection/imaging procedure for a reflector embedded in a

randomly layered medium based on physical time reversal was developed. The statistical

stability of the time-reversed refocused signal allows the use of this procedure even when

the reflected signal is not coherent (i.e. there is no contrast between the impedance of

the background and the reflector). The presence of the reflector is detected from the

information contained in the time reversal refocusing kernel. In fact, that information

is extracted from a continuous family of time reversal refocusing kernels.

In this paper, we are interested in detecting an object buried in a randomly layered

medium. We analyse a regime in which the probing pulse has a support larger than

the random fluctuations of the medium and propagates deep into the medium. We

use the measurements obtained after propagating the probing pulse in this medium,

during two different periods of time in order to determine whether the properties of the

medium has changed or not. When there is no coherent reflection and a relatively strong

measurement noise is present the information contained in the measured reflected signals

is not good enough to detect the inclusion. By time-reversing the difference of these

reflected signals and back-propagating them into the medium we obtain a secondary

reflection containing some coherent information. Unfortunately, if the noise level is

relatively high, the signal to noise ratio is too low and it is difficult to detect the

coherent signal. However, as we will show, the information contained in the random

fluctuations induced by the measurements noise can still be very useful.

This paper is organized as follows, in Section 2 we briefly recall some key results

about time reversal in a one-dimensional acoustic random medium. Section 3 is devoted

to the presentation of time reversal in two media, and the generalization of related results

obtained in previous works. In particular, we introduce here the time reversal of signal

difference procedure that constitutes the basis of our detection technique. In Section 4,

we introduce the detection technique by deriving the appropriate hypothesis test, after

analysing the effect of measurements errors on the time-reversed signal difference and

characterizing its asymptotic behaviour. The results obtained in numerical simulations

are presented in Section 5 to show the reliability of the proposed detection technique.
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2. Time reversal in a random medium

In this section we briefly present the asymptotic description of time reversal. We start by

introducing the model equations for propagation of acoustic waves in a one-dimensional

random medium. In this simplified framework, we are able to model and analyze the

most important features of the wave propagation for the problem at hand. Subsequently,

we shall use this analysis in a more complex setting.

2.1. One-dimensional acoustic model

We consider acoustic wave propagation in a one-dimensional heterogeneous medium

modeled by the following equations for the pressure p and the velocity u

%(z)
∂

∂t
u(z, t) +

∂

∂z
p(z, t) = 0 (1a)

1

K(z)

∂

∂t
p(z, t) +

∂

∂z
u(z, t) = 0 (1b)

where % and K represent density and bulk modulus respectively.

We are interested in the situation where the medium consists of a homogeneous

and a heterogeneous half-spaces separated by an interface. Furthermore, we assume

that the medium properties in the heterogeneous half-space are rapidly varying and

random. More specifically, the properties are characterized by a deterministic smoothly

varying profile about which there are modulating random fluctuations.

We shall study the situation when an incident pulse can be used to probe the

effective (background) medium. More specifically, we consider the asymptotic regime in

which

ε ≈ fluctuations correl. length

width of the pulse
≈ width of the pulse

propagation distance
¿ 1.

By considering an appropriate re-scaling of the space-time variables, and other

involved magnitudes [7], we can rewrite the equations above in a dimensionless form.

Accordingly, we assume that the medium properties are given by

%(z) =

{
%0(z)(1 + ηε(z)), for z ≤ 0

%0(0), for z > 0
(2a)

K−1(z) =

{
K−1

0 (z)(1 + µε(z)), for z ≤ 0

K−1
0 (0), for z > 0

(2b)

where %0(z) and K0(z) are the nonrandom (dimensionless) background density and

bulk modulus, respectively, and ηε(z), µε(z) are mean-zero, random functions. These

are bounded (almost surely) by a deterministic constant C > −1 from below, and have

correlation lengths of O(ε2), where ε ¿ 1, emphasizing that the disordered fluctuations

are rapidly varying. This representation of the medium properties is consistent with the

homogenization theory, the ‘locally’ homogenized medium properties are given by %0(z)
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and K0(z). The corresponding homogenized (dimensionless) sound speed and acoustic

impedance are given by

c0(z) =

√
K0(z)

%0(z)
and ζ0(z) =

√
%0(z)K0(z), (3)

respectively. For the fluctuations we use the following model

ηε(z) = η(z,
z

ε2
) and µε(z) = µ(z,

z

ε2
), (4)

where for each fixed z, η(z, s) and µ(z, s) are mean-zero, stationary stochastic processes

with correlation lengths in s of O(1) (for example: the components of a stationary

ergodic Markov process or a process with strong mixing properties). Since the

fluctuations are not assumed to be small, this scaling is called strong fluctuations regime.

2.2. Time reversal in reflection

Next, we briefly obtain a representation of the refocused pulse for time reversal in

reflection. We consider a regime/scaling in which the typical wavelength of the incident

pulse is longer than the correlation length of the fluctuations, and where the wave

propagates over a long distance. In this situation, the long term effect of the medium

fluctuations plays an important role in the formation of a coherent refocused signal.

As the incident wave, we assume a downward traveling pulse that impinges upon

the interface z = 0, it is described as a time signal given by

uinc(0, t) = −ζ
−1/2
0 (0)f( t

ε
)

2
, pinc(0, t) =

ζ
1/2
0 (0)f( t

ε
)

2
(5)

where f is a smooth function with compact support contained in [0, +∞). Here the

time scaling emphasizes that the typical wavelength of the incident wave is of O(ε).

The corresponding signal scattered at the interface is given in terms of the reflection

coefficient Rε(ω) for the frequency ω as follows

uref(0, t) =
ζ
−1/2
0 (0)B(t)

2
, pref(0, t) =

ζ
1/2
0 (0)B(t)

2
, (6)

with

B(t) =
1

2π

∫
e−iω t

ε Rε(ω)f̂(ω)dω,

where f̂(·) is the Fourier transform of the function f(·).
During the time reversal procedure, we record (part of) this reflected signal, at

the Time Reversal Mirror (TRM), and re-emit it back into the random half-space after

time-reversing its direction (i.e. the last recorded part is re-emitted first).

We characterize the TRM by the cutoff function Gt0(·) supported on the recording

time interval [0, t0] (or rapidly decaying outside it). Finally, we observe the time-reversed

reflected signal in a scaled time window centred at t1:

uTR
ref (0, t1 + εs) =

ζ
−1/2
0 Bε,TR

t0,t1 (s)

2
, pTR

ref (0, t1 + εs) =
ζ

1/2
0 Bε,TR

t0,t1 (s)

2
,
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where

Bε,TR
t0,t1 (s) =

1

(2π)2

∫ ∫
eiω(

t1−t0
ε

)e−ih
2
(t1−t0+εs)eiωsf̂(ω +

ε

2
h)Ĝt0(h)

×Rε(ω +
ε

2
h)Rε(ω − ε

2
h)dωdh.

Note that the recording and observation times t0 and t1, respectively, are O(1).

Hence, the pulse travels a distance of O(1), which is much longer than its typical

wavelength. Moreover, we observe the time-reversed reflected pulse in a time window

scaled in accordance with the incident wave.

2.3. Time reversal asymptotics

Important information on the time-reversed acoustic field is obtained by an asymptotic

analysis of Bε,TR
t0,t1 as ε approaches zero. This analysis relies on the characterization of the

limiting statistical moments of the time-reversed reflection Bε,TR
t0,t1 (s) using a diffusion-

approximation theorem.

In order to characterize the limiting statistical moments, we have to study the

asymptotics of the correlations of the reflection coefficient at nearby frequencies. For

instance, the asymptotics of E{Rε(ω + ε
2
h)Rε(ω− ε

2
h)} is used to determine the limiting

averaged time-reversed reflection.

The analysis yields

lim
ε↓0
E{Rε(ω +

ε

2
h)Rε(ω − ε

2
h)} = w̃(ω, h)

where w̃(ω, h) = limz→−∞ w(z, ψ; ω, h), and w(z, ψ; ω, h) satisfies the Kolmogorov

backward equation

(
∂

∂z
+ L0

z)w = 0, for z < 0 (7)

with final condition w|z=0 = eiψ. The differential operator L0
z is the generator of a

diffusion on the circle, and is given by

L0
z =

2h

c0(z)
∂ψ + 4ω2αn(z)

c2
0(z)

(1− cos ψ)∂2
ψ

where

αn(z) =

∫ ∞

0

E{n(z, s)n(z, 0)}ds, n(z, s) =
µ(z, s)− η(z, s)

2
.

A further analysis leads to the following asymptotic description of the time-reversed

reflection in probability:

lim
ε↓0

Bε,TR
t0,t1 (s) =

{
BTR

t0
(s), when t0 = t1

0, otherwise,
(8)

where

BTR
t0

(s) =
1

2π

∫
eiωsK̂TR

t0 (ω)f̂(ω) dω = (KTR
t0

(·) ? f(−·))(s),
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with ?, ·̂ denoting convolution with respect to t. The time reversal refocusing kernel

KTR
t0

(·) is given through the following equations

K̂TR
t0 (ω) = (Λ(ω, ·) ? Gt0(−·))(0), (9a)

Λ̂(ω, ·)(h) = w̃(ω, h). (9b)

In the case where Gt0(·) = 1[0,t0](·) (the indicator function of the interval [0, t0]) (9a)

simplifies to

K̂TR
t0 (ω) =

∫ t0

0

Λ(ω, s) ds. (10)

In equation (8), we state that the refocusing takes place only when the recording

and observation times coincide. Furthermore, the refocusing pulse is statistically stable,

that is, it is deterministic.

The function Λ(ω, t) also appears in the characterization of the covariance function

of the reflected signal [8], and it is called the (normalized) power spectral density of the

reflected pulse.

2.4. Transport equations and the refocusing kernel

For a more detailed characterization of the refocusing kernel (9a), we proceed by solving

equation (7) using a Fourier series in ψ

V (z, ψ; ω, h) =
∞∑

N=−∞
V NeiNψ.

We then obtain a system of backward stochastic differential equations for the coefficients

V N when N ≥ 0

∂V N

∂z
+

2ihN

c0(z)
V N + 2ω2αn(z)

c2
0(z)

(T V )N = 0, for z < 0

with the final conditions

V N |z=0 = δN,1,

where the operator (T V )N = (N+1)2V N+1−2N2V N+(N−1)2V N−1 and δM,S represents

the Kronecker delta. Furthermore, for N < 0 one gets that V N = 0, and we finally have

that

w̃(ω, h) = lim
z→−∞

V 0(z; ω, h).

Introducing the inverse Fourier transform

UN =
1

2π

∫
eihtV Ndh, for N ≥ 0, (11)

and the travel time τ = τ(z) =
∫ 0

z
c−1
0 (s)ds as a new coordinate, we obtain the transport

equations

∂UN

∂τ
+ 2N

∂UN

∂t
− 2ω2βn(τ)(T U)N = 0, for τ > 0, (12)
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with the initial conditions

UN |τ=0 = δN,1δ(t), (13)

where βn(τ) = αn(ξ(τ))/c0(ξ(τ)), and ξ(τ) represents the inverse function of the travel

time τ = τ(z).

We obtained a system of hyperbolic partial differential equations, reflecting the fact

that the waves propagate in the random medium with a finite speed. As a consequence,

we have that

Λ(t, ω) = U0(τ ′, t, ω)

for any τ ′ ≥ t
2
. Moreover, since we are interested in values of t ≤ t0, we have that

Λ(t, ω) = U0(
t0
2

, t, ω). (14)

Therefore, if the cutoff function Gt0(·) = 1[0,t0](·) then the refocusing kernel can be

written as

K̂TR
t0 (ω) =

∫ t0

0

U0(
t0
2

, s, ω) ds. (15)

3. Time reversal in two media

This section contains a generalization of some results that were presented in [9, 10],

concerning time reversal in reflection in a changing medium. More specifically, in this

paper we consider the case where the background as well as the random fluctuations

of the media involved in the time reversal procedure are different. We allow the semi-

infinite random medium to change, but assume that the homogeneous half-spaces remain

unchanged. In the cited references, the background properties also remain unchanged.

The time reversal in reflection procedure in two media is now described as follows,

a pulse traveling from the right impinges upon the interface z = 0, the reflected signal

is recorded by a TRM during the time interval [0, t0], time reversed and sent back, now

into a different medium. As a result after t0 units of time, a coherent pulse traveling

to the right emerges at the interface. This phenomenon is known as time reversal

refocusing, and this emerging pulse is the so-called refocused pulse. In general, its shape

is determined by the initial pulse waveform and the particular medium realization.

Nevertheless, there are some interesting situations in which the form of the refocused

pulse asymptotically does not depend on the media realizations but only on the medium

statistics, i.e. it is statistically stable (or self-averaging).

Let the involved media be characterized by the densities %j(z), and bulk moduli

Kj(z), where the index j = 1, 2 refers to the first or second medium, respectively.

Furthermore, we have that

%j(z) =

{
%j0(z)(1 + ηε

j (z)), for z ≤ 0

%j0(0), for z > 0
(16a)

K−1
j (z) =

{
K−1

j0 (z)(1 + µε
j(z)), for z ≤ 0

K−1
j0 (0), for z > 0

(16b)
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where %j0(z) and Kj0(z), represent the corresponding background properties, and

ηε
j (z) = ηj(z,

z
ε2 ), µε

j(z) = µj(z,
z
ε2 ) their associated random fluctuations, j = 1, 2.

The effective (or background) sound speed and acoustic impedance are given by

cj0(z) =

√
Kj0(z)

%j0(z)
and ζj0(z) =

√
%j0(z)Kj0(z),

respectively, with j = 1, 2.

The impinging acoustic pulse is the time signal given by (5). The scattering effect of

the two random half-spaces is characterized by the reflection coefficients Rε
j(ω), j = 1, 2.

The cutoff function Gt0(·) characterizes the TRM.

By observing the reflected signal at the interface, in a scaled time window centered

at t1, we have that

uTR
ref (0, t1 + εs) =

ζ
−1/2
0 Bε,TR

t0,t1 (s)

2
, pTR

ref (0, t1 + εs) =
ζ

1/2
0 Bε,TR

t0,t1 (s)

2
,

with

Bε,TR
t0,t1 (s) =

1

(2π)2

∫ ∫
eiω(

t1−t0
ε

)e−ih
2
(t1−t0+εs)eiωsf̂(ω +

ε

2
h)Ĝt0(h)

×Rε
1(ω +

ε

2
h)Rε

2(ω −
ε

2
h)dωdh.

Very useful information on the time-reversed acoustic field is obtained by analysing

the asymptotic behaviour of the signal Bε,TR
t0,t1 (·) as ε approaches zero. We briefly present

this analysis in the next section.

3.1. Characterization of the limiting refocused pulse

The general characterization as ε ↓ 0 of the refocused pulse is obtained by an asymptotic

analysis of the time-reversed reflected signal Bε,TR
t0,t1 (s) using a diffusion-approximation

theorem and the Itô formula. The calculations generalizes those presented in [9].

In the case where the recording and observation times are different, i.e. t1 6= t0, it

is very simple. Indeed, in this situation the fast phase ei(
t1−t0

ε
) “kills” the integral and

we have that Bε,TR
t0,t1 (s) converges in probability to the null process. This means that if

we do not synchronize the recording and observation times, for ε ¿ 1 we observe just a

weak noisy signal.

For the case where t0 = t1, the description of the asymptotics of the process

Bε,TR
t0 (·) = Bε,TR

t0,t0 (·) as ε ↓ 0 is more complicated.

We introduce the differential operator

Lz = h(
1

c10(z)
+

1

c20(z)
)∂ψ + 4ω2

{
(αm(z) +

1

2
αn(z))(

1

c2
10(z)

+
1

c2
20(z)

)

− 2

c10(z)c20(z)
(α̃m(z) +

1

2
α̃n(z)1{τ1=τ2}(z) cos ψ)

}
∂2

ψ (17)

where

αm(z) =

∫ ∞

0

E{m1(z, s)m1(z, 0)}ds =

∫ ∞

0

E{m2(z, s)m2(z, 0)}ds
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α̃m(z) =

∫ ∞

0

E{m1(z, s)m2(z, 0)}ds =

∫ ∞

0

E{m2(z, s)m1(z, 0)}ds

αn(z) =

∫ ∞

0

E{n1(z, s)n1(z, 0)}ds =

∫ ∞

0

E{n2(z, s)n2(z, 0)}ds

α̃n(z) =

∫ ∞

0

E{n1(z, s)n2(z, 0)}ds =

∫ ∞

0

E{n2(z, s)n1(z, 0)}ds

with

mj(z, s) =
1

2
(µj(z, s) + ηj(z, s))

nj(z, s) =
1

2
(µj(z, s)− ηj(z, s)), j = 1, 2.

Furthermore, 1{τ1=τ2}(·) denotes the indicator function of the set {z ≤ 0 : τ1(z) = τ2(z)}
where τj(z) =

∫ 0

z
c−1
j0 (s)ds, j = 1, 2 are the travel time from location z to the interface

in the corresponding background medium.

Let Ws, be a standard one-dimensional Brownian motion with s ∈ [0, +∞) defined

on a complete probability space. Define a new stochastic process W̃z, z ∈ (−∞, 0]

by setting W̃z = W−z almost surely, this is a backward (standard) one-dimensional

Brownian motion, which is a backward martingale [11]. The (backward) stochastic

integral with respect to W̃z can be defined as∫ z2

z1

ξ(s)
←−
d W̃s = −

∫ −z1

−z2

ξ(−s) dWs

where
←−
d W̃z represents the backward Itô’s differential of W̃z.

Consider the second order backward Itô stochastic partial differential equation

dw + (Lzw) dz + 2ω
√

γm(z) ∂ψw
←−
d W̃z = 0, for z < 0 (18)

with final condition

w|z=0 = eiψ, (19)

where

γm(z) = 2
{

αm(z)(
1

c2
10(z)

+
1

c2
20(z)

)− 2
α̃m(z)

c10(z)c20(z)

}
.

From [11, 12], we know that the stochastic equation (18) has a unique solution

w(z, ψ; ω, h), which is a backward semimartingale.

Let us define

w̃(ω, h) = lim
z→−∞

w(z, ψ; ω, h) (20)

and set

Λ̂(ω, ·)(h) = w̃(ω, h), (21a)

K̂TR
t0 (ω) = (Λ(ω, ·) ? Gt0(−·))(0). (21b)

Notice that in general these are random functions. In the important case where

Gt0(·) = 1[0,t0](·) (the indicator function of the interval [0, t0]) (21b) simplifies to

K̂TR
t0 (ω) =

∫ t0

0

Λ(ω, s) ds. (22)
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Finally, we have that the time-reversed reflected signal Bε,TR
t0 (s) converges in

distribution as ε ↓ 0 to the random signal

BTR
t0

(s) = (KTR
t0

(·) ? f(−·))(s) =
1

2π

∫
eiωsK̂TR

t0 (ω)f̂(ω) dω (23)

where the (random) time reversal refocusing kernel KTR
t0

is given by (21b). In deriving

this result, we first establish the tightness of this family of time-reversed signals to

ensure that the limit exist. Then, using a diffusion-approximation theorem, we are

able to characterize the limit of the corresponding finite-dimensional distributions by

determining all their associated statistical moments. Finally, using the Itô formula one

arrives to the representation above.

We next make some remarks about the stochastic equation (18). Note that it is

not stochastic when γm = 0, a condition which is fulfilled if and only if c10 = c20 and

ρm = α̃m/αm = 1.

Let

Z0 = sup{z ≤ 0 : c10(z) 6= c20(z) or ρm(z) 6= 1},
with the understanding that if the set over which we take the supremum happens to be

empty we put Z0 = −∞. In this particular case (i.e. when Z0 = −∞) we have that

the refocused pulse is statistically stable, this is related to the fact that the propagation

velocity remains unperturbed as was remarked in [10]. We refer to the interval [Z0, 0]

as the unperturbed propagation velocity region (or slab).

Observe that the factor 1{τ1=τ2}(z) in (17) switches on and off the dependence of

Lz on ψ, in particular if

Z1 = inf{z ≤ 0 : τ1(z) = τ2(z)} > −∞
one can explicitly find w(z, ψ) for z < Z1 as a function of w1(ψ) = w(Z+

1 , ψ).

Furthermore, we obtain that

w̃(ω, h) =
1

2π

∫ 2π

0

w1(ψ; ω, h) dψ. (24)

In particular, if Z1 = 0, we have that w̃(ω, h) = 0 so the refocused pulse is the null

signal. This is an extreme situation in which the travel time difference in the forward

and backward propagation generates fast phases that ultimately annihilates the time-

reversed reflected pulse. We called the interval (−∞, Z1] the asynchronous travel time

region (or interval).

3.1.1. Statistically stable refocusing It should be noted that statistical stability means

that the limiting time reversed reflected signal (23) is deterministic and therefore the

convergence occurs in probability. We now discuss an interesting situation in which we

have a statistically stable refocusing.

Note that −∞ ≤ Z1 ≤ Z0 ≤ 0. Suppose that Z0 = Z1, i.e. the unperturbed velocity

and asynchronous travel time regions complement each other, then from the observations

above we have that under this condition the refocusing is statistically stable. Indeed,
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from the definition of Z0 we get that w(Z0, ψ) = w(Z+
1 , ψ) is a deterministic function,

thus from (24) and the representation given by (21a)-(21b) the result follows.

This is a very interesting situation in which the statistical stability comes from

the fact that the propagation velocity remains unperturbed down to some depth below

which the fast phase associated with the travel time difference kills out the effect of

velocity perturbations.

This occurs for instance if δc = c20 − c10 ≥ 0 (or ≤ 0), supp δc = [Z ′
1, Z

′
0] (or

supp δc = (−∞, Z ′
0]) and ρm(z) = 1 for Z ′

0 ≤ z ≤ 0. In this case we say that the

medium is changed by increasing (decreasing) the propagation velocity. We are specially

interested in the case where δc is compactly supported as a model for the analysis of

inclusion effects.

We remark that in the statistically stable case, for instance under the conditions

stated before, we have convergence in probability whereas in the general situation the

convergence occurs in distribution. This means that in the former case the refocused

signal (for a small ε) remains close to the limiting deterministic signal (described by

equations (18)–(21b) and (23)) with high probability.

Next, we continue to study the solution of (18) and its relationship with the

refocusing kernel (21b).

3.2. Stochastic transport equations and the (random) refocusing kernel

We proceed by solving equation (18) using a Fourier series in ψ

V (z, ψ; ω, h) =
∞∑

N=−∞
V NeiNψ. (25)

We obtain a system of backward stochastic differential equations for the coefficients V N

when N ≥ 0

dV N +
{2ihN

c̄0(z)
V N + 2ω2[βn(z)((N + 1)2V N+1 + (N − 1)2V N−1)− βmn(z)N2V N ]

}
dz

+2iω
√

γm(z)NV N←−d W̃z = 0,

for z < 0 with the final conditions

V N |z=0 = δN,1,

where δM,S represents the Kronecker delta and

1

c̄0(z)
=

1

2
(

1

c10(z)
+

1

c20(z)
),

βn(z) =
α̃n(z)

c10(z)c20(z)
1{τ1=τ2}(z),

βmn(z) = γm(z) + αn(z)(
1

c2
10(z)

+
1

c2
20(z)

).

Furthermore, for N < 0 one gets that V N = 0, and we finally have that

w̃(ω, h) = lim
z→−∞

V 0(z; ω, h).
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Introducing the inverse Fourier transform

UN(z, t, ω) =
1

2π

∫
eihtV N(z; ω, h)dh, for N ≥ 0, (26)

and the averaged travel time τ̄ = (τ1(z) + τ2(z))/2 as a new coordinate, we obtain the

stochastic transport equations

dUN + 2N
∂UN

∂t
dτ̄ = 2ω2

{
ϑn(τ̄)[(N + 1)2UN+1 + (N − 1)2UN−1]

−ϑmn(τ̄)N2UN
}

dτ̄ + 2iω
√

γ̄m(τ̄)NUN dMτ̄ (27)

for τ̄ > 0, N ≥ 0, with U−1 = 0 and the initial conditions

UN |τ̄=0 = δN,1δ(t). (28)

The coefficients are given by

γ̄m(τ̄) = γm(ξ(τ̄))

ϑn(τ̄) = c̄0(ξ(τ̄))βn(ξ(τ̄))

ϑmn(τ̄) = c̄0(ξ(τ̄))βmn(ξ(τ̄))

where ξ(τ̄) represents the inverse function of the averaged travel time, dMτ̄ the Itô

differential of the (forward) martingale Mτ̄ = W−ξ(τ̄) and δ(t) the Dirac δ-function.

This is a system of stochastic hyperbolic equations, reflecting the fact that the pulse

propagates with a finite speed. As a consequence, we have that

Λ(t, ω) = U0(τ̄ ′, t, ω)

for any τ̄ ′ ≥ t
2
. On the other hand, from (24) and (25) we have that w̃(ω, h) =

V 0(Z+
1 ; ω, h), and consequently

Λ(t, ω) = U0(T1, t, ω) (29)

where T1 = τ1(Z1) = τ2(Z1) is the time required to reach depth Z1 and also the

time required to get from there back to the interface. Therefore, if the cutoff function

Gt0(·) = 1[0,t0](·) then the refocusing kernel can be written as

K̂TR
t0 (ω) =

∫ t0

0

U0(T1 ∧ t0
2

, s, ω) ds (30)

This means that the refocused pulse does not depend on the media properties below

depth Z1, regardless of how large the recording time t0 is. In particular, when the

unperturbed velocity and asynchronous travel time regions complement each other (i.e.

Z0 = Z1) the refocused pulse does not carry information about the inclusion.

3.3. Time reversal of the signal difference

We introduce the time reversal of the signal difference corresponding to the two media.

The reflections of similar pulses that impinges upon the interfaces of the initial and

modified media are recorded. The difference of these reflected signals is time reversed

and sent back into the modified medium by using a TRM. The corresponding secondary
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reflections that emerge at the interface are called time-reversed difference reflection. The

resulting signal correspond to the difference of two time-reversed signals, the first one

obtained by time reversal in the modified medium (that remains unchanged during the

procedure) and the second one corresponding to time reversal in a changing medium

(i.e. involving these two media).

The time-reversed difference reflection Bε,TRD
t0,t1 (·) can be characterized in a similar

way as before. In fact, one gets the following asymptotics

lim
ε↓0

Bε,TRD
t0,t1 (s) =

{
0, (in probability) if t1 6= t0

BTRD
t0

(s), (in distribution) if t1 = t0
(31)

The refocused limiting time-reversed difference reflection BTRD
t0

is given as

BTRD
t0

(s) = (KTRD
t0

(·) ? f(−·))(s), (32)

where

K̂TRD
t0 (ω) = (ΛD

12(ω, ·) ? Gt0(−·))(0), (33a)

̂ΛD
12(ω, ·)(h) = w̃22(ω, h)− w̃12(ω, h). (33b)

Furthermore, w̃22(ω, h) = limz→−∞ w(z, ψ; ω, h) where w(z, ψ) solves the Kolmogorov

backward equation

(∂z + L0
z)w = 0, for z < 0 (34)

with the final condition w|z=0 = eiψ, where the generator is given by

L0
z =

2h

c20(z)
∂ψ + 4ω2 αn(z)

c2
20(z)

(1− cos ψ) ∂2
ψ.

On the other hand w̃12(ω, h) = limz→−∞w(z, ψ; ω, h) where w(z, ψ) solves the stochastic

partial differential equation (18).

Notice that w̃22 corresponds to time reversal in the modified medium while it

remains unchanged during the time reversal procedure, whereas w̃12 comes from time

reversal in a changing medium (propagating forward in the initial medium and backward

in the modified one). Consequently, if the refocused pulse for time reversal in a changing

medium is statistically stable then the time-reversed difference reflection also has this

property.

We have the following representation for the time reversal difference refocusing

kernel

K̂TRD
t0 (ω) =

∫
Gt0(s)(U

0
22(

t0
2

, s, ω)− U0
12(T1 ∧ t0

2
, s, ω)) ds

where UN
22, N ≥ 0 satisfy the transport equations

∂UN

∂τ
+ 2N

∂UN

∂t
= 2ω2 αn(ξ2(τ))

c20(ξ2(τ))
(T U)N (35)

with initial conditions (28). The operator

(T U)N = (N + 1)2UN+1 − 2N2UN + (N − 1)2UN−1
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and ξ2(τ) represents the inverse of the function τ(z) =
∫ 0

z
c−1
20 (s)ds. Furthermore, UN

12,

N ≥ 0 solve the stochastic transport equations (27) with similar initial conditions.

Moreover, if the cutoff function Gt0(·) = 1[0,t0](·), then

K̂TRD
t0 (ω) =

∫ t0

0

(U0
22(

t0
2

, s, ω)− U0
12(T1 ∧ t0

2
, s, ω)) ds

which in the case where the unperturbed velocity and asynchronous travel time regions

complement each other (i.e. Z0 = Z1), can be re-written as

K̂TRD
t0 (ω) =

∫ t0

0

(U0
22(

t0
2

, s, ω)− U0
22(T0 ∧ t0

2
, s, ω)) ds. (36)

Notice, that when the incident pulse does not penetrate into the medium modifications

(i.e. t0/2 < T0) the time-reversed difference reflection is the null signal.

4. Time reversal detection

4.1. Detection problem

We now return to the problem of detecting changes in a highly heterogeneous medium.

We probe the medium during different periods of time and want to know if any change

has occurred in the medium properties. More specifically, if we think of the medium

during these two periods of time, as been modeled by equations (16a) (for media ‘1’ and

‘2’), we are interesting in determining if c20(z) 6= c10(z). To probe the media we use an

incident pulse that scales as (5), and search for information in the reflected signal but

when there is no coherent reflection, all the information is hidden in the noisy signals

and a straightforward application of detection techniques are difficult to use, because of

the low signal to noise ratio. Nevertheless, the statistics of the reflected signals are well

understood and it is possible to extract information about the medium properties (see

[13, 14, 8]).

We introduce here a method based on the time reversal difference procedure

presented in section 3.3 and a hypothesis testing technique, that is advantageous relative

to just using the reflected signals. Since the time reversal difference procedure yields

a coherent signal, one usually has a high signal to noise ratio and therefore standard

detection techniques perform well. Moreover, when the refocused signal is statistically

stable the randomness associated with the medium fluctuations is reduced to a minimum

level and consequently good performance of the detection technique. We shall show that

our approach works well in very noisy environments. First, we present important aspects

concerning the modeling and begin by introducing the measurement errors.

4.2. Measured time-reversed difference reflection

As a result of the data acquisition process, some errors are introduced in the measured

quantities. The quantities we are interesting in are signals smoothly varying on the

scale ε. Consequently, the error introduced during a direct measurement is modeled as
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an additive ‘noise’ with the corresponding scaling, that is the measured signal gε
meas(t)

associated with the actual signal gε(t) is given as

gε
meas(t) = gε(t) + ν(

t

ε
)

where ν(·) is a mean zero, stationary Gaussian random process defined on a certain

probability space (N,N , P ). Note that the noise is fluctuating on the same scale as the

incoherent wave reflections. We have the following representations for noise process and

its covariance

ν(s) =

∫
eiωsΦν(dω), E{ν(s)ν(0)} =

∫
eiωsFν(dω)

where Φν(·) and Fν(·) are the so called random spectral and power spectral measures,

respectively [15] and E{·} represents expectation with respect to the probability measure

P . Furthermore, the measurement error intensity is characterized by

σ2
ν = E{ν2(0)} =

∫
Fν(dω).

During the time reversal procedure we introduce direct measurement errors three

times, during the acquisition of the two primary reflected signals and also the refocused

signal. We assume that these direct noise sources are statistically independent.

Consequently, the measurement error in the whole time reversal procedure is given by the

random vector-process ν = (ν1, ν2, ν3) defined on the product space N = N×N×N with

the corresponding product measure, and ν(·,n) = (ν1(·, n1), ν2(·, n2), ν3(·, n3)) where

n = (n1, n2, n3) ∈ N.

After some straightforward calculations we get that

Bε,TRD
t0,meas(s) = Bε,TRD

t0 (s) + Bε
t0,ν(s) (37a)

Bε
t0,ν(s) = Bε

t0,δν(s) + ν3(s). (37b)

The first term in the decomposition of (37a) represents the actual time reversal

signal difference (when no errors are introduced during the process) and the second

is associated with measurements errors. Moreover, it arises from the propagation of

the difference of the direct measurements noise associated with the primary reflections

δν(·) = ν2(·) − ν1(·) and the error in the direct measurement of the time-reversed

difference reflection (cf. (37b)). The primary reflections propagated noise can be written

as

Bε
t0,δν(s) =

1

2π

∫ ∫
ei(ω−εh)sRε

2(ω − εh)Ĝt0(h)Φδν(dω)dh

where Φδν(·) is the random spectral measure on N given by

Φδν(·,n) = Φν(·, n2)− Φν(·, n1)

for n = (n1, n2, n3) ∈ N.
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4.3. Asymptotics of the measured time-reversed difference reflection

We now focus our analysis on the case where the velocity changes in an

increasing/decreasing fashion. This implies that Bε,TRD
t0 (s) converges in probability to

the deterministic signal BTRD
t0

(s) given by (32).

By using that the random process δν(·) is stationary, Gaussian and centred and

the asymptotics for the moments of the reflection coefficient Rε
2 one can establish the

convergence in distribution as ε ↓ 0 of Bε
t0,δν(s) to a stationary, centred Gaussian process

Bt0,δν(s) with covariance function given by

Ct0,δν(s) = 2

∫
eiωsK̂R

t0,2(ω)Fν(dω) (38)

where

K̂R
t0,2(ω) = (Λ22(ω, ·) ? G2

t0
(−·))(0) =

∫
Λ22(ω, s)G2

t0
(s)ds, (39a)

̂Λ22(ω, ·)(h) = w̃22(ω, h) = lim
z→−∞

w(z, ψ; ω, h), (39b)

and w(z, ψ) satisfies the partial differential equation (34).

Furthermore, since δν(·) and ν3(·) are statistically independent we finally get that

Bε
t0,ν(s) converges in distribution as ε ↓ 0 to a mean zero, stationary, Gaussian random

process with a covariance function given by

Ct0,ν(s) =

∫
eiωs(1 + 2K̂R

t0,2(ω))Fν(dω). (40)

Finally, from the Slutsky’s theorem [16], it follows that Bε,TRD
t0,meas(s) converges in

distribution as ε ↓ 0 to a Gaussian random process with mean BTRD
t0

(s) given by (32)

and covariance function given by (40).

We remark that for time reversal in a random medium which remains fixed, a

similar analysis of the measured refocused pulse yields the convergence in distribution

to a Gaussian random process whose mean is the limiting deterministic refocused signal

and the covariance function is similar to (40) except for the prefactor 2. Moreover,

for time reversal in a changing medium a similar result holds as long as the limiting

refocused signal (when no error measurements are present) is deterministic.

4.4. Statistical test

The detection problem can be stated as a hypothesis testing problem for the following

general hypotheses:

H0: there are no changes in the medium (null hypothesis)

Ha: the medium has changed (alternate hypothesis)

According to the general theory of hypothesis testing [17], the statistical test

consists of a procedure to decide whether the null hypothesis can be accepted or rejected.

In general, a region in the space where the sample lives is selected and when the sample

belongs to it the hypothesis is rejected. This region is the so-called rejection region. In a
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test two types of independent errors can be made. Type I errors correspond to rejecting

H0 when it is correct (false alarm) and type II errors to accepting H0 when it is false

(missed detection). Their probabilities play an important role in the design of a test.

The probability of type I errors is given by

α = Pr{rejecting H0 |H0 is true},
while the probability of type II errors is expressed as

β = Pr{accepting H0 |Ha is true}.
Since generally, both errors can not be kept small at the same time a guideline for

designing the test is to select the rejection region in such a way that the probability

of type II errors (β) is minimized when the probability of type I errors (α) is fixed.

The probability α is called the level of significance of the test. The success of the test

(probability of detection) is called the power of the test and equals 1− β. In detection

applications it is usually presented graphically as the Receiver Operating Curve (ROC)

that represents the power of the test as a function of the level of significance.

The asymptotic description of the measured time reversal difference signal as a

Gaussian random process presented above allows us to select an appropriate statistical

test for this detection problem. In what follows, we consider the detection problem for

the asymptotic characterization of the measured time reversal difference signal.

We consider the (finite) discrete time sampling of the time reversed signal x =

(BTRD
t0,meas(s1), · · · , BTRD

t0,meas(sM))t with uniform sampling rate h = sj+1 − sj and centred

at 0 (= (s1 + sM)/2). The hypotheses can be reformulated as follows

H0: x is a sample of the random variable X0 ∼ N (0,C0)

Ha: x is a sample of a random variable Xa ∼ N (µa,Ca),

where the mean vector µa = (BTRD
t0

(s1), · · · , BTRD
t0

(sM))t with the BTRD
t0

(·) given by (32)

and the elements of the covariance matrices (C0)ij, (Ca)ij are of the form Ct0,ν((j− i)h)

given by (38) with KR
t0,2(·) corresponding to the initial and second (changed) media,

respectively.

The covariance matrices are symmetric Toeplitz matrices. Furthermore, if the power

spectral measure of the measurement noise is absolutely continuous with a Radon-

Nikodym derivative fν(ω) = Fν(dω)/dω in L1(R) then we have that

(C0)ij =
1

2π

∫ π

−π

ei(j−i)λf̃0(λ)dλ

(Ca)ij =
1

2π

∫ π

−π

ei(j−i)λf̃a(λ)dλ

where

f̃·(λ) =
2π

h

∞∑

k=−∞
fν(

λ + 2kπ

h
)(1 + 2K̂R

t0,2(
λ + 2kπ

h
)) (41)

with KR
t0,2(·) corresponding to the initial and second (changed) media in the expressions

for f̃0 and f̃a, respectively. In order to explicitly write the dependence of the covariance

matrix on the function f̃·(·), we set C0 = TM(f̃0) and Ca = TM(f̃a).
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Let us introduce the function

f̃(λ) =
2π

h

∞∑

k=−∞
fν(

λ + 2kπ

h
),

and its extreme values mf̃ = ess inf f̃ , Mf̃ = ess sup f̃ . Since fν(λ) ≥ 0 and

0 ≤ K̂R
t0,2(λ) ≤ 1, we get that

ess inf f̃a = mf̃a
≥ mf̃ , ess sup f̃a = Mf̃a

≤ 3Mf̃ . (42)

Consequently, the corresponding Toeplitz determinant |TM(f̃a)| satisfies the estimates

(mf̃ )
M ≤ |TM(f̃a)| ≤ (3Mf̃ )

M .

In what follows, we assume that mf̃ > 0.

In general, the covariance matrix C0 is unknown, however it can be estimated by

performing a time reversal experiment in the unchanged medium. (In the case of a

homogeneous medium it can be explicitly computed from equation (38).) Thus, we now

assume that C0 is given, or equivalently that we know f̃0. Concerning the covariance

matrix Ca, since it is completely characterized by f̃a, we assume that a set of admissible

functions F̃ is given.

We can reformulate the problem as follows: given a sample x of a random variable

distributed as N (µ,C) test the hypotheses H0 vs. Ha, where

• H0: µ = 0 and C = C0

• Ha: µ 6= 0 and C = TM(f̃) with f̃ ∈ F̃ .

The set F̃ consists of the functions that can be represented as in (41), where the

kernel KR
t0,2 corresponds to an admissible random medium through the relations (39a)-

(39b). Here we consider the set of functions f̃a satisfying (42).

4.4.1. The Maximum Likelihood Ratio Test The Neyman-Pearson lemma indicates an

effective way for selecting the rejection region [17], that leads to the Maximum Likelihood

Ratio (MLR) Test. Although in the situation at hand this criterion does not give an

optimal result, we consider it as a starting point. Later on, after some asymptotic

analysis we shall slightly modify this test in order to achieve a better performance.

The rejection region at significance level α is given by Rα = {x : Γ(x) ≥ cα} where

Γ(x) =
supµ6=0,f∈F̃ |TM(f)|−1/2 exp{−1

2
(x− µ)tT−1

M (f)(x− µ)}
|C0|−1/2 exp{−1

2
xtC−1

0 x} ,

and cα is determined from the equation Pr{x ∈ Rα|H0} = α.

After some simple algebra, we arrive at the test statistic QM(x) = xtC−1
0 x and

get that Rα = {x : QM(x) ≥ χ2
M(1 − α)}, where χ2

M(·) represents the inverse of the

cumulative χ2-distribution function with M degrees of freedom. This is a consequence

of the boundedness of |TM(f)| and the fact that under H0, QM(x) has a χ2-distribution

with M degrees of freedom.
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In order to measure the performance of the test, we now have to determine its power

as a function of the significance level, i.e. the probability of rejection under the alternate

hypothesis for each value of α. Since the alternate hypothesis is composite the power of

the test is parameterized by the mean vector µ and the covariance matrix C. We find

P (α; µ,C) = Pr{xtC−1
0 x ≥ χ2

M(1 − α)|x ∼ N (µ,C)}. This is the complement of the

cumulative distribution function for a quadratic form of a normally distributed random

variable, and we have [18] that P (α; µ,C) = G(χ2
M(1 − α); λ, ξ). The function G(·)

corresponds to the complement of the cumulative distribution function of the random

variable
∑M

j=1 λj(Wj − ξj)
2 where the Wj’s are mutually independent N (0, 1) random

variables, the λj’s are the eigenvalues of the matrix CC−1
0 , the vector ξ = OtL−1µ, L is

the lower triangular matrix in the Cholesky decomposition of C and O is an orthogonal

matrix formed by the eigenvectors of LtC−1
0 L. Furthermore, we have the following

integral representation

G(q; λ, ξ) =

∫ +i∞

−i∞

exp(−qu + φ(u))

u
du, (43)

where the path of integration is indented toward the right at u = 0, and we have set

φ(u) =
1

2

M∑
j=1

{ξ2
j (

1

1− 2uλj

− 1)− log(1− 2uλj)}.

This integral can be efficiently evaluated with a high accuracy by using a Gauss-

Chebyshev quadrature formula [19].

4.4.2. Asymptotics of the MLR test statistic In this section we study the asymptotic

behaviour for large M of the scaled test statistic Q̃M(x) = QM(x)/M when x ∼
N (µ,C).

The mean and variance of Q̃M are given by

µ̃Q,M =
1

M
{Tr(CC−1

0 ) + µtC−1
0 µ} =

1

M

M∑
j=1

λj(1 + ξ2
j ),

σ̃2
Q,M =

2

M2
{Tr(CC−1

0 )2 + 2µtC−1
0 CC−1

0 µ} =
2

M2

M∑
j=1

λ2
j(1 + 2ξ2

j ).

Consider the normalized statistics zM = (Q̃M − µ̃Q,M)/σ̃Q,M . We claim that the random

variable zM is asymptotically normally distributed as N (0, 1) for large M .

The characteristic function ψM(u) = E{eiuzM} is given by

log ψM(u) =
1

2

M∑
j=1

{ξ2
j (

1

1− 2iũλ̃j

− 1)− log(1− 2iũλ̃j)} − iũµ̃Q,M

where ũ = u
σ̃Q,M

and λ̃j = M−1λj. Furthermore, we have the following estimate

log ψM(u) =
u2

2
+ rM ,
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|rM | ≤ A| u

σ̃Q,M

|3
M∑

j=1

(1 + ξ2
j )λ̃

3
j .

where the constant A does not depend on M . Consequently, it is enough to prove that

rM → 0 as M → +∞.

Since, the covariance matrices are Toeplitz matrices, we get the following (uniformly

in M) bounds for the eigenvalues of CC−1
0 [20]

0 <
mf̃

3Mf̃

≤ ess inf(f̃a/f̃0) ≤ λj ≤ ess sup(f̃a/f̃0) ≤
3Mf̃

mf̃

< +∞. (44)

As a consequence, one has the estimates

σ̃2
Q,M ≥ 2

M2

M∑
j=1

λ2
j ≥

A1

M
.

Moreover, one can obtain uniform bounds similar to (44), for the eigenvalues of the

covariance matrices C0 and C. Consequently, we get the estimates

M∑
j=1

(1 + ξ2
j )λ̃

3
j ≤

A2

M2
+
|µtC−1

0 (CC−1
0 )2µ|

M3
≤ A2

M2
+
‖C−1

0 µ‖‖(CC−1
0 )2µ‖

M3

≤ A2

M2
+

A3‖µ‖2

M3
≤ A2 + A3‖µ‖2

∞
M2

≤ A′
2

M2
.

Thus, we have that |rM | ≤ A′|u|3M−1/2 and the claim follows.

Next, we focus on the asymptotic behaviour of the power of the test. Let us

assume that
∑M

j=1 µ2
j < ∞ uniformly in M and the set of admissible functions Fa

is contained within the Wiener class (in other words the series
∑∞

j=0 Ct0,ν(jh) are

absolutely convergent). Applying Szegö’s theorem on the distribution of eigenvalues

of Toeplitz matrices [20], one gets that

µ̃Q,M =
1

2π

∫ π

−π

f̃a(s)

f̃0(s)
ds + o(1) = 〈f̃a/f̃0〉+ o(1),

σ̃2
Q,M =

1

Mπ

∫ π

−π

[ f̃a(s)

f̃0(s)

]2

ds + o(
1

M
) = 2M−1〈(f̃a/f̃0)

2〉+ o(M−1).

Recall, that χ2
M(1−α) = 1

2
(Φ−1(1−α) +

√
2M − 1)2 + o(1), where Φ(·) represents

the cumulative distribution function of a standard normal random variable. Hence, we

have that

P (α; µ,C) = Pr{zM ≥ M−1χ2
M(1− α)− µ̃Q,M

σ̃Q,M

}

≈ 1− Φ[
√

M(
1− 〈f̃a/f̃0〉
2〈(f̃a/f̃0)2〉 1

2

) + o(
√

M)].

Therefore, for a fixed significance level α, when 〈f̃a/f̃0〉 > 1 we have that P (α; µ,C) → 1

as M → +∞. Moreover, asymptotically the rate of convergence does not depend on the

measurement noise intensity nor the time-reversed signal energy.
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Unfortunately, in the case where 〈f̃a/f̃0〉 < 1 the test does not behave well, for M

large its power approaches zero. In particular, this shows that for a large M the MLR

test is biased.

4.4.3. The modified MLR test In order to remedy this problem we slightly modify this

test by introducing two-tailed rejection regions

R̃α = {x : QM(x) ≤ χ2
M(α/2) or QM(x) ≥ χ2

M(1− α/2)}.
Now, we have that the power of the modified test

P̃ (α; µ,C) ≈ 1 + Φ(yl,M

√
M)− Φ(yr,M

√
M),

where yl,M < yr,M and

y·,M → 1− 〈f̃a/f̃0〉
2〈(f̃a/f̃0)2〉 1

2

as M → +∞. Consequently, when 〈f̃a/f̃0〉 6= 1 we get that P̃ (α; µ,C) → 1. Again,

asymptotically the convergence rate does not depend on the noise intensity nor the

time-reversed signal energy.

Asymptotically, we are testing whether 〈f̃a/f̃0〉 is equal one or not. This quantity

can be interpreted as an average (in frequency space) of the amplification/reduction

ratio of the measurement-induced noise in the changed medium to the corresponding

noise in the initial medium.

5. Numerical results

In order to establish how well the introduced detection technique works we carry out

several Monte-Carlo simulations by numerically solving the model equations (1a)-(1b).

In doing that we address several key aspects of our approach to the detection problem.

First, we illustrate the reliability of this detection technique by showing that the

probability of detection observed in the simulations, is in complete agreement with the

results predicted by the asymptotic theory, despite the fact that in simulations the small

parameter ε is finite. Finally, we show the robustness of this technique to assumptions

made in the asymptotic analysis.

5.1. Detecting an inclusion

In this series of simulations we address the realibility of the proposed detection technique.

We illustrate how using time reversal enhances the signal to noise ratio when compared

with relaying only on the reflected signals. Furthermore, we establish that the level of

success of this detection test predicted from the asymptotic theory is actually achieved

in the numerical simulations.

We consider the detection of an inclusion, that extends from x = 25 to x = 50,

on an initial medium with a homogeneous background with %10 = K10 = 1. The
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relative changes induced by the inclusion in the background and local sound speed are

approximately of 12.3% and 12.9%, respectively. We only consider random fluctuations

of the media density which have a 30% maximum intensity and a 17% standard

deviation. One realization of the profiles of the sound speed before and after inclusion

is presented in figure 2. In the time reversal numerical procedure the incident pulse

is a Gaussian of amplitude and width equal to one unit, and the recording time is

t0 = 90 time units. In the scaling we have chosen the small parameter ε ≈ 0.1.

The numerical solution of the corresponding acoustic equations is carried out using a

Lagrangian numerical scheme with discretization stepsizes ∆t = ∆x = 0.01 (see details

in [21]).

First, we carry out several time reversal experiments corresponding to an inclusion

as depicted in figure 2 (upper left corner plot) for different levels of the measurement

noise (σν = 0.05 − 0.5). In figure 1 we plot the signal to noise ratio associated to the

reflected signals and the time-reversed difference reflection, respectively, with respect

to the measurement noise intensity. It is apparent from the figure that time reversal

enhances the signal to noise ratio, emphasizing the advantage of this approach.
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Figure 1. Signal to noise ratio corresponding to the reflected signals and the time-
reversed difference reflection.

We made three sets of Monte-Carlo simulations corresponding to three different

levels of the measurement noise (σν = 0.05, 0.15 and 0.50) with 500 realizations of the

time reversal experiment per set.

In figure 2 we compare the ROCs corresponding to the asymptotic theory and the

simulations. The theoretical ROCs are obtained from the appropriate expression of the

power of the test P̃ (·) by numerically evaluating the integral (43) after estimating the

required parameters ξ and λ from the corresponding Monte-Carlo simulations. The

ROC corresponding to simulations is obtained by computing the rate of success in each
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Figure 2. One realization of the profile of the propagation velocity corresponding
to an inclusion. Theoretical Receiver Operating Curves (ROCs) and probability of
detection obtained from a series of Monte-Carlo simulation with 500 realizations of the
time reversal experiment using different values of the measurement noise (σν = 0.05,
0.15 and 0.50).

set of Monte-Carlo simulations for different levels of significance α. The test statistics

is computed from samples with size M = 200 and time sampling rate h = 0.01. From

this figure we conclude that there is a remarkable agreement between the ROCs from

the asymptotic theory and the simulations. It is also apparent that the probability of

detection is not very sensitive to the intensity of the measurement noise as predicted by

our theory.

Finally, we briefly illustrate the influence of the time sampling rate h and the sample

size M . In figure 3, the three ROCs corresponding to (M, h) = (100, 0.02), (100, 0.01)

and (200, 0.01), respectively, are shown. We can see that doubling the sample size

produced a remarkable increase of the power of the test, whereas halving the sampling

rate slightly reduced the power of the test.

5.2. Detecting a fluctuating slab

The next example concerns the robustness of the proposed detection technique. Recall

that the corresponding statistical test was obtained under the assumption that the

time-reversed difference reflection is statistically stable. However, this happens under

very specific conditions, for instance when one has an increasing/decreasing velocity

inclusion. Furthermore, in typical situations we do not know that these conditions
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Figure 3. Comparison of the Theoretical Receiver Operating Curves (ROCs) for
different sampling rates (h = 0.01 and 0.02) and different sample size (M = 100 and
200).

are fulfilled. Nonetheless, we show that the proposed detection technique is reliable

under less restrictive conditions, namely in the case where the change occurs only in the

fluctuations.

We let the fluctuations change only in the finite slab from x = 24 to x = 44 of the

medium, while the background propagation velocity remains unchanged and equal to 1.

The first plot in figure 4 represents one realization of the profile of the sound speed.

The time reversal setup is similar as in the previous section, we use the same incident

Gaussian pulse, recording time t0 = 90 and a small parameter ε ≈ 0.1.

We run three sets of Monte-Carlo simulations corresponding to the measurement

noise levels σν = 0.05, 0.15 and 0.50, with 500 realizations each, to estimate all the

necessary parameters in order to apply the statistical test and obtain its probability of

detection for different values of the level of significance α. The estimated parameters

are also used to get the curves generated by P̃ (·) using the equations corresponding to

the statistically stable case.

The results are presented in figure 4. There is a remarkable agreement between the

(statistically stable) power of the test curve and the probability of detection obtained in

the Monte-Carlo simulations. The results are slightly better than those presented in the

previous section, demonstrating that this approach may be very efficient for estimation

in certain scaling regimes. Moreover, as in the previous section the results are not very

sensitive to the intensity of the measurement noise.
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Figure 4. One realization of the profile of the propagation velocities corresponding
to two media that only differ in terms of the fluctuations. Theoretical ROCs and
probability of detection obtained from a series of Monte-Carlo simulation with 500
realizations of the time reversal experiment using different values of the measurement
noise (σν = 0.05, 0.15 and 0.50).

6. Concluding remarks

In this paper, we introduce a statistical technique for the detection of inclusions in

a random medium, that considers the effect of measurement errors. This detection

technique relies on a time-reversal procedure and a statistical hypothesis testing

approach. For the derivation of the statistical test, we take advantage of the asymptotic

behaviour of the time-reversed difference signal as a small parameter ε, approaches zero.

The statistical test was specifically designed for the case where the time-reversed

difference reflection satisfies the celebrated statistical stabilization property. We

established this property for a situation that models a general class of inclusions.

Through a series of Monte-Carlo simulations we established the reliability of this

detection technique when ε is small but finite, and we also established its robustness

concerning the statistical stability property. More specifically, we showed that the

probability of success of this detection test observed during simulations are in a

remarkable agreement with those predicted by the asymptotic theory. Moreover, similar

results are obtained in simulations where the statistical stability property is no longer

valid. We also showed that by increasing the size of the sample we improve the

performance of the detection technique.
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