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Abstract. In this paper we study the generalized BO-ZK equation in two

dimensions. We classify the existence and non-existence of solitary waves
depending on the sign of the dispersions and on the nonlinearity. By using the

approach introduced by Cazenave and Lions we study the nonlinear stability
of solitary waves. We also prove some decay and regularity properties of such

waves.

1. Introduction

This paper is concerned with (non)existence, stability and some decay proper-
ties of solitary wave solutions for the two-dimensional generalized Benjamin-Ono-
Zakharov-Kuznetsov equation (BO-ZK henceforth),

ut + upux + αH uxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+. (1.1)

Here p > 0 is a real constant, the constant ε measures the transverse dispersion
effects and is normalized to ±1, the constant α is a real parameter and H is the
Hilbert transform defined by

H u(x, y, t) = p.v.
1
π

∫
R

u(z, y, t)
x− z

dz,

where p.v. denotes the Cauchy principal value. When p = 1, the equation (1.1)
appears in electromigration and the interaction of the nanoconductor with the
surrounding medium [21, 26], by considering Benjamin-Ono dispersive term with
the anisotropic effects included via weak dispersion of ZK-type. In fact, the equation
(1.1) is a generalization of the one-dimensional Benjamin-Ono equation (see also
[15]).

Now a days, several physical situations in two dimensions are described by gen-
eralizations of well-known one-dimensional equations. The most known and studied
are the KP and ZK equations, which are generalizations of the KdV equation. As
far as we know, equation (1.1) was recently derived in [26], where from the physical
viewpoint existence of solitary waves was studied.

The generalized Benjamin-Ono equation,

ut + upux + αH uxx = 0, x ∈ R, t ∈ R+
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has been studied by several authors considering both the initial value problem
and the nonlinear stability. The initial value problem has been studied, recently,
for instance in [8, 23, 24, 31, 35, 37], whereas the issue of existence and stability
of solitary waves has been studied in [1]–[5]. On the other hand, the Zakharov-
Kuznetsov equation

ut + upux + αuxxx + εuxyy = 0, (x, y) ∈ R2, t ∈ R+,

has been less studied. Indeed, as far as we know the only results concerning the ex-
istence and nonlinear stability of solitary waves was given in [12] and well-posedness
(for p = 1) was studied in [19].

It can be seen that the flow associated to (1.1) satisfies the conservation quantities
F and E, where

F (u) =
1
2

∫
R2
u2 dxdy

and

E(u) =
1
2

∫
R2

(
εu2
y − αuH ux −

2
(p+ 1)(p+ 2)

up+2

)
dxdy.

In the present paper we will investigate the existence of solitary wave solutions of
(1.1) and some of their properties. As it was pointed out in [26] there are no exact
solitary waves to (1.1).

In order to describe our results, the space Z shall denote the closure of C∞0 (R2)
for the norm

‖ϕ‖2
Z = ‖ϕ‖2

L2(R2) + ‖ϕy‖2
L2(R2) +

∥∥∥D1/2
x ϕ

∥∥∥2

L2(R2)
, (1.2)

whereD1/2
x ϕ denotes the fractional derivative of order 1/2 with respect to x, defined

via Fourier transform by D̂1/2
x ϕ(ξ1, ξ2) = |ξ1|1/2ϕ̂.

The solitary waves we are interested in are of the form u = ϕ(x − ct, y), where
u ∈ Z and c 6= 0 is the wave speed; so, substituting this form of u in (1.1) and
integrating once, we see that ϕ must satisfy

− cϕ+
1

p+ 1
ϕp+1 + αH ϕx + εϕyy = 0. (1.3)

REMARK 1.1. Note that we can assume that |c| = 1, since the scale change

ψ(x, y) = |c|−1/pϕ

(
x

|c|
,
y√
|c|

)
,

transforms (1.3) in ϕ, into the same in ψ, but with |c| = 1.

We begin our results classifying where solitary waves do not exist. We use
Pohojaev type identities to prove that depending on p and on the signs of ε and α,
solitary waves do not exist (see Theorem 2.1). Furthermore, we prove the existence
of solitary wave solutions in some of the remaining cases. Our strategy is to consider
a suitable minimization problem and use the concentration-compactness principle
of Lions [27, 28] (see Theorem 2.2). To fix ideas, we prove for instance that for
c > 0, α < 0, ε > 0 and 0 < p < 4, solitary waves do exist. Moreover, we prove
that such solitary waves also are ground states (see Theorem 2.7). These results
are similar to the ones given for KP equation in [13] and [14].
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With the solitary waves at hand, the natural question arising is when such waves
are or not orbitally stable. In this regard, by using the variational approach intro-
duced by Cazenave and Lions [10] we show that for αε < 0, cα < 0 and 0 < p < 4/3
the solitary waves are stable. We note that in this case the value p = 4/3 is critical
(as for the KP equation) in the sense that solitary waves are stable for 0 < p < 4/3
and unstable for 4/3 < p < 4. This last question has been addressed in [16].

At last, we prove some decay and regularity properties of the solitary waves.
We show that such waves are positive, analytic and symmetric with respect to
the transverse and propagation directions. Moreover, we prove that solitary waves
decay exponentially in the transverse direction and algebraically in the propagation
direction. We point out that Theorem 2.7 and Corollary 4.22 are very useful to
prove our instability results in [16].

Concerning well-posedness results, we note that by the parabolic regularization
theory, one can show that the initial value problem associated to (1.1) is locally
well-posed in the Sobolev space Hs(R2), s > 2. Improvement of this result will
appear somewhere else (see [18]).

REMARK 1.2. The scale-invariant spaces for the BO-ZK equations (1.1) are
Ḣs1,s2(R2), 2s1 +s2 = 3

2 −
2
p (see definitions below). Hence a reasonable framework

for studying the local well-posedness of the BO-ZK equation (1.1) is the family of
spaces Ḣs1,s2(R2), 2s1 + s2 ≥ 3

2 −
2
p (see [18]).

REMARK 1.3. The n-dimensional version of (1.1) is the equation

ut + upux1 + αH ux1x1 +
n∑
i=2

εiux1xixi = 0, (1.4)

where t ∈ R+, (x1, x2, . . . , xn) ∈ Rn and α, εi ∈ R, i = 2, . . . , n. Existence and
stability of solitary waves for (1.4) in the same spirit of this paper are addressed in
[17].

Notation and Preliminaries. Throughout this paper we shall refer to equation
(1.1) as BO-ZK equation. The exponent p in (1.1) will be a rational number of
the form p = k/m, where m is odd and m and k are relatively prime. Function f̂
denotes the Fourier transform of f = f(x, y), defined as

f̂(ξ1, ξ2) =
∫

R2
e−i(xξ1+yξ2)f(x, y) dxdy.

For any s ∈ R, space Hs := Hs(R2) denotes the usual isotropic Sobolev space.
Let s1, s2 ∈ R. We define the anisotropic Sobolev spaces Hs1,s2 := Hs1,s2

(
R2
)

to
be the set of all distributions f such that

‖f‖2
Hs1,s2 =

∫
R2

(
1 + ξ21

)s1 (1 + ξ22
)s2 |f̂(ξ1, ξ2)|2 dξ1dξ2 <∞.

We also define the fractional Sobolev-Liouville spaces H(s1,s2)
p := H

(s1,s2)
p

(
R2
)
,

1 ≤ p <∞, to be the set of all functions f ∈ Lp(R2) such that

‖f‖
H

(s1,s2)
p

= ‖f‖Lp(R2) +
2∑
i=1

∥∥Dsi
xi
f
∥∥
Lp(R2)

<∞,



4 AMIN ESFAHANI AND ADEMIR PASTOR

where Dsi
xi
f denotes the Bessel derivative of order si with respect to xi (see e.g.

[25], [29]). For short, we denote H(k)
p (R2) as the space H(k,k)

p (R2) and H(s1,s2)
(
R2
)

as p = 2. Note that H(s) = Hs.

REMARK 1.4. Observe that Z = H1/2,0
(
R2
)
∩H0,1

(
R2
)

= H(1/2,1)
(
R2
)
.

It is easy to see that for a ≥ 0,(
1 + x2

)a
.
(
1 + (x− y)2

)a (
1 + y2

)a
,

and (
1 + x2

)a
.
(
1 + (x− y)2

)a
+
(
1 + y2

)a
.

So,

REMARK 1.5. Let 2 ≤ p < ∞. If 1 − 2
p ≤ s ≤ min{s1, s2}, then the following

embedding are continuous

Hs1+s2
(
R2
)
↪→ Hs1,s2

(
R2
)
↪→ Hs

(
R2
)
↪→ Lp

(
R2
)
.

Theorem 1 in [25] (see also [32, 33]) and Remark 1.5 imply the following embed-
ding of Z in Lp

(
R2
)

spaces:

Z ↪→ Lp
(
R2
)
, for all p ∈ [2, 6]. (1.5)

See also [34].

2. (Non)existence

This section is devoted to establish our existence and non-existence results of
solitary waves. We begin with the non-existence one.

THEOREM 2.1. The equation (1.3) do not admit any nontrivial solitary wave
solution ϕ ∈ Z if none of the following cases occurs:

(i) ε = 1, c > 0, α < 0, p < 4;
(ii) ε = −1, c < 0, α > 0, p < 4;
(iii) ε = 1, c < 0, α < 0, p > 4;
(iv) ε = −1, c > 0, α > 0, p > 4.

Proof. To prove the theorem, we apply a truncation argument to gain the regular-
ity we need, then by using the Lebesgue dominated convergence theorem, we obtain
some useful identities (see e.g. [13]). In fact, by multiplying the equation (1.3) by
ϕ, xϕx and yϕy, respectively; and integrating over R2, then by the properties of
the Hilbert Transform (see [15]), we obtain the following relations:∫

R2

(
−cϕ2 + αϕH ϕx − εϕ2

y +
1

p+ 1
ϕp+2

)
dxdy = 0, (2.1)∫

R2

(
cϕ2 + εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0, (2.2)∫

R2

(
cϕ2 − αϕH ϕx − εϕ2

y −
2

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (2.3)

By adding (2.1) and (2.2), we get∫
R2

(
αϕH ϕx +

p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (2.4)
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Also by adding (2.2) and (2.3) yields∫
R2

(
cϕ2 − α

2
ϕH ϕx −

2
p+ 1

ϕp+2

)
dxdy = 0. (2.5)

Eliminating ϕp+2 from (2.4) and (2.5) leads to∫
R2

(
2pcϕ2 + α(4− p)ϕH ϕx

)
dxdy = 0. (2.6)

On the other hand, adding (2.1) and (2.3) yields∫
R2

(
2εϕ2

y −
p

(p+ 1)(p+ 2)
ϕp+2

)
dxdy = 0. (2.7)

Plugging (2.2) in (2.7) we obtain∫
R2

(
pcϕ2 + ε(p− 4)ϕ2

y

)
dxdy = 0. (2.8)

The proof follows from (2.6) and (2.8). �

Now we prove the existence of solitary wave solutions of (1.1).

THEOREM 2.2. Let αε, cα < 0 and p = k
m < 4, where m ∈ N is odd and m

and k are relatively prime. Then the equation (1.3) admits a nontrivial solution
ϕ ∈ Z .

Proof. The proof is based on the concentration-compactness principle [27, 28]. We
suppose that α < 0. The proof for α > 0 is similar. Without loss of generality we
assume that α = −1 and c = 1. We consider the minimization problem

Iλ = inf
{
I(ϕ) ; ϕ ∈ Z , J(ϕ) =

∫
R2
ϕp+2 dxdy = λ

}
, (2.9)

where λ > 0 and

I(ϕ) =
1
2

∫
R2

(
ϕ2 + ϕH ϕx + ϕ2

y

)
dxdy.

Let {ϕn} ⊂ Z be a minimizing sequence of Iλ. By using the embedding (1.5), we
obtain that

λ =
∣∣∣∣∫

R2
ϕp+2 dxdy

∣∣∣∣ ≤ C‖ϕ‖p+2
Z ≤ CI

p+2
2

λ ,

for any ϕ ∈ Z and p < 4. Hence Iλ <∞ and Iλ > 0 for any positive λ. Also, the
fact that I(ϕ) = 1

2‖ϕ‖
2
Z implies ‖ϕn‖Z <∞.

Now, for r > 0, we define the concentration functions

Qn(r) = sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy,

where ρn = |ϕn|2 +
∣∣∣D1/2

x ϕn

∣∣∣2 + |∂yϕn|2 and Br(x, y) denotes the ball of radius

r > 0 centered at (x, y) ∈ R2. If the evanescence occurs, i.e., that for any R > 0,

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy = 0,
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then by using the embedding (1.5), we obtain that limn→∞ ‖ϕn‖Lp+2 = 0, which
would contradict the constraint of the minimization problem. Now suppose that
γ ∈ (0, Iλ), where

γ = lim
r→+∞

lim
n→+∞

sup
(x̃,ỹ)∈R2

∫
Br(x̃,ỹ)

ρn dxdy.

By the definition of γ, for ε > 0, there exist r1 ∈ R and N ∈ N such that

γ − ε < Qn(r) ≤ Qn(2r) ≤ γ < γ + ε,

for any r ≥ r1 and n ≥ N . Hence, there exists a sequence {(x̃n, ỹn)} ⊂ R2 such
that ∫

Br(x̃n,ỹn)

ρn dxdy > γ − ε,

∫
B2r(x̃n,ỹn)

ρn dxdy < γ + ε.

Let (φ, ψ) be in (C∞0 (R2))2 satisfying
• supp φ ⊂ B2(0, 0), φ ≡ 1 on B1(0, 0) and 0 ≤ φ ≤ 1,
• supp ψ ⊂ R2 \B2(0, 0), ψ ≡ 1 on R2 \B1(0, 0) and 0 ≤ ψ ≤ 1.

Now we define

gn(x, y) = φr((x, y)− (x̃n, ỹn))ϕn and hn(x, y) = ψr((x, y)− (x̃n, ỹn))ϕn,

where

φr(x, y) = φ

(
(x, y)
r

)
and ψr(x, y) = ψ

(
(x, y)
r

)
.

One can see that gn, hn ∈ Z . The following commutator estimate lemma is
fruitful to obtain the splitting lemma below.

LEMMA 2.3 ([9, 11]). Let g ∈ C∞(R) with g′ ∈ L∞(R). Then [H , g]∂x is a
bounded linear operator from L2(R) into L2(R) with

‖[H , g]∂xf‖L2(R) ≤ C‖g′‖L∞(R)‖f‖L2(R).

The following splitting lemma enables us to rule out the dichotomy case in the
concentration-compactness principle (see also [15]).

LEMMA 2.4. Let {gn}n∈N and {hn}n∈N be as above. Then for every ε > 0, there
exist δ(ε) > 0 with limε→0 δ(ε) = 0, % ∈ (0, Iλ), n0 ∈ N and ρ ∈ (0, λ) satisfying the
following for n ≥ n0 :

|I(ϕn)− I(gn)− I(hn)| ≤ δ(ε), (2.10)

|I(gn)− %| ≤ δ(ε), |I(hn)− Iλ + %| ≤ δ(ε), (2.11)

|J(ϕn)− J(gn)− J(hn)| ≤ δ(ε), (2.12)

|J(gn)− ρ| ≤ δ(ε), |J(hn)− λ+ ρ| ≤ δ(ε). (2.13)

Proof. Obviously supp gn ∩ supp hn = ∅. For simplicity, we write gn = φrϕn and
hn = ψrϕn. Thus, we have

2I(gn) =
∫

R2
φ2
r

[
ϕ2
n + ϕn∂xH ϕn +

(
∂2
yϕn

)2]
dxdy + 2

∫
R2
φrϕn(∂yφr)(∂yϕn) dxdy

+
∫

R2

[
(∂yφr)2ϕ2

n + ϕnφrH (ϕn∂xφr)
]
dxdy +

∫
R2
ϕnφr[H , φr]∂xϕn dxdy
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and

2I(hn) =
∫

R2
ψ2
r

[
ϕ2
n + ϕn∂xH ϕn +

(
∂2
yϕn

)2]
dxdy + 2

∫
R2
ψrϕn(∂yψr)(∂yϕn) dxdy

+
∫

R2

[
(∂yψr)2ϕ2

n + ϕnψrH (ϕn∂xψr)
]
dxdy +

∫
R2
ϕnψr[H , ψr]∂xϕn dxdy.

Since ‖φr‖L∞ = ‖ψr‖L∞ = 1, ‖∇φr‖L∞ ≤ 1
r‖∇φ‖L∞ and ‖∇ψr‖L∞ ≤ 1

r‖∇ψ‖L∞ ,
it follows from Lemma 2.3 that∣∣∣∣I(gn)− 1

2

∫
R2
φ2
r

[
ϕ2
n + ϕn∂xH ϕn +

(
∂2
yϕn

)2]
dxdy

∣∣∣∣ ≤ 1
2
δ(ε);

and ∣∣∣∣I(hn)− 1
2

∫
R2
ψ2
r

[
ϕ2
n + ϕn∂xH ϕn +

(
∂2
yϕn

)2]
dxdy

∣∣∣∣ ≤ 1
2
δ(ε).

The above inequalities imply (2.10). From this, one infers that there exists %(ε) ∈
[0, Iλ] (and taking subsequences if necessary) such that limn→∞ I(gn) = %(ε), and
thus

|I(gn)− Iλ + %| ≤ δ(ε).

Analogously, from (2.10), the fact that supp gn ∩ supp hn = ∅ and the embedding
(1.5), one can obtain

|J(ϕn)− J(gn)− J(hn)| ≤ δ(ε).

Therefore we assume that

lim
n→+∞

J(gn) = ρ(ε), lim
n→+∞

J(hn) = ρ̃(ε)

with |λ− ρ(ε)− ρ̃(ε)| ≤ δ(ε). If limε→0 ρ(ε) = 0, then choosing ε sufficiently small,
we have J(hn) > 0, for n large enough. Hence by considering (ρ̃(ε)J(hn))

1
p+2 hn,

we obtain that (note that J
(
(ρ̃(ε)J(hn))

1
p+2 hn

)
= ρ̃(ε))

Iρ̃(ε) ≤ lim inf
n→+∞

I(hn) ≤ Iλ − γ + δ(ε),

which leads to a contradiction since limε→0 ρ̃(ε) = λ. Thus ρ = limε→0 ρ(ε) > 0.
Necessarily ρ < λ, because the case ρ = λ is ruled out in the same manner with
hn instead of gn. Since ρ ∈ (0, λ), one infers that necessarily % = limε→+∞ %(ε) ∈
(0, Iλ). This completes the proof of the lemma. �

Now, we come back to the proof of Theorem 2.2. The previous lemma implies
that

Iλ ≥ Iρ + Iλ−ρ. (2.14)

This inequality contradicts the subadditivity condition of Iλ coming from Iλ =
λ2/(p+2)I1. Hence we rule out the dichotomy.

Therefore the remaining case in the concentration-compactness principle is lo-
cally compactness. Then there exists a sequence {(xn, yn)}n∈N ⊂ R2, such that for
all ε > 0, there exist finite R > 0 and n0 > 0, with∫

BR(xn,yn)

ρn dxdy ≥ ιλ − ε,
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for n ≥ n0, where

ιλ = lim
n→+∞

∫
R2
ρn dxdy.

This implies that for n large enough∫
BR(xn,yn)

|ϕn|2 dxdy ≥
∫

R2
|ϕn|2 dxdy − 2ε.

Since ϕn is bounded in the Hilbert space Z , there exists ϕ ∈ Z such that a
subsequence of {ϕn(· − (xn, yn))}n∈N (denoted by the same) converges weakly in
Z . We then have∫

R2
|ϕ|2 dxdy ≤ lim inf

n→+∞

∫
R2
|ϕn|2 dxdy ≤ lim inf

n→+∞

∫
BR(xn,yn)

|ϕn|2 dxdy + 2ε.

But we know the compactness embedding Z into L2 on bounded sets. Consequently
{un(· − (xn, yn))}n∈N converges strongly in L2

loc(R2). But the last inequality above
implies that this strong convergence also takes place in L2(R2). Thus by the em-
bedding (1.5), {ϕn(· − (xn, yn))}n∈N also converges to ϕ strongly in Lp+2(R2) so
that J(ϕ) = λ and

Iλ = lim
n→+∞

I(ϕn) = I(ϕ),

that is, ϕ is a solution of Iλ.

Now by using the Lagrange multiplier theorem, there exists θ ∈ R such that

ϕ− αH ϕx − ϕyy = θ(p+ 2)ϕp+1, (2.15)

in Z ′ (the dual space of Z in L2−duality). By a scale change, ϕ satisfies (1.3). �

REMARK 2.5. Theorem 2.2 shows the existence of solitary wave solutions of
(1.1) when (i) and (ii) occur in Theorem 2.1. Unfortunately, we do not know exis-
tence or nonexistence of solitary wave in the cases (iii) and (iv) .

Now we are going to prove that the minima of Theorem 2.2 are exactly the
ground state solutions of the equation (1.3). The proof is close to Lemma 2.1 in
[14].

DEFINITION 2.6. A solution ϕ of the equation (1.3) is called a ground state, if
ϕ minimizes the action

S(u) = E(u) + cF (u)

among all solutions of the equation (1.3).

THEOREM 2.7. There is a real number λ∗ such that for u∗ ∈ Z the following
affirmations are equivalent modulo a scale change:

(i) J(u∗) = λ∗ and u∗ is a minimum of Iλ∗ ,
(ii) K(u∗) = 0 and

inf
{∫

R2
uH ux dxdy, u ∈ Z , u 6= 0, K(u) = 0

}
=
∫

R2
u∗H u∗x dxdy,

(iii) u∗ is a ground state,
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(iv) K(u∗) = 0 and

inf
{
K(u), u ∈ Z , u 6= 0,

∫
R2
uH ux dxdy =

∫
R2
u∗H u∗x dxdy

}
= 0,

where

K(u) =
1
2

∫
R2
cu2 + u2

y dxdy −
1

(p+ 1)(p+ 2)
J(u).

Proof. We set λ∗ = (2(p+ 1)I1)
p+2

p .
(i) V (ii) : Assume that u∗ satisfies (i). Let u ∈ Z with u 6= 0 and K(u) = 0,

which implies that J(u) > 0. Thus we set

uµ(x, y) = u

(
x

µ
, y

)
, with µ =

J(u∗)
J(u)

,

so that J(uµ) = J(u∗) and K(uµ) = 0. Since u∗ is a minimum of Iλ∗ , one can see
that K(u∗) = 0 and

K(u∗)+CpJ(u∗)+
1
2

∫
R2
u∗H u∗x dxdy ≤ K(uµ)+CpJ(uµ)+

1
2

∫
R2
uµH (uµ)x dxdy,

where Cp = 1
(p+1)(p+2) ; this implies that∫

R2
u∗H u∗x dxdy ≤

∫
R2
uH ux dxdy,

and (ii) holds.
(ii) V (iii) : If u∗ satisfies (ii), then there is a Lagrange multiplier θ such that

cu∗ − u∗yy + θH u∗x −
1

p+ 1
(u∗)p+1 = 0.

By multiplying the above equation by u∗, integrating by parts and using K(u∗) = 0,
we can see that θ is positive. Hence the scale change u∗(x, y) = u∗(θx, y) satisfies
the equation (1.3).

On the other hand, the identity S(u) = K(u) + 1
2

∫
R2 uH ux dxdy shows that if

u is a solution of (1.3), then

S(u) =
1
2

∫
R2
uH ux dxdy ≥

1
2

∫
R2
u∗H u∗x dxdy =

1
2

∫
R2
u∗H (u∗)x dxdy = S(u∗);

hence u∗ is a ground state.
(iii) V (i) : By using the proof of Theorem 2.1, one can see that if u is a

solution of (1.3), then K(u) = 0 and

I(u) =
1
2

(
1 +

3
p

)∫
R2
uH ux dxdy. (2.16)

Hence if u∗ is a ground state, then u∗ minimizes both I(u) and
∫

R2 uH ux dxdy
among all the solutions of (1.3). Let λ = J(u) and ũ be a minimum of Iλ. Then

Iλ = I(ũ) ≤ I(u∗)

and there is a positive number θ such that

cũ− ũyy + H ũx =
θ

p+ 1
ũp+1.
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Using the equations satisfied by ũ and u∗, the preceding inequality is written as

Iλ =
λθ

p+ 1
≤ λ

p+ 1
;

hence θ ≤ 1. On the other hand, u? = θpũ satisfies the equation (1.3), and since
u∗ is a ground state, we have

I(u∗) ≤ I(u?) ≤ θ2pI(ũ),

so that θ ≥ 1. Thusly u∗ = ũ is a minimum of Iλ with λ = λ∗.
(ii) V (iv) : Let u ∈ Z with

∫
R2 uH ux dxdy =

∫
R2 u

∗H u∗x dxdy. Suppose that
K(u) < 0. Since K(τu) > 0 for τ > 0 sufficiently small, then there is a τ0 ∈ (0, 1)
such that K(τ0u) = 0. Thus by setting ũ = τ0u, one has ũ ∈ Z , K(ũ) = 0 and∫

R2
ũH ũx dxdy <

∫
R2
uH ux dxdy =

∫
R2
u∗H u∗x dxdy,

which contradicts (ii) and shows that u∗ satisfies (iv) because K(u∗) = 0.
(iv) V (ii) : Let u ∈ Z with K(u) = 0 and u 6= 0. Suppose that∫

R2
uH ux dxdy <

∫
R2
u∗H u∗x dxdy.

But since K(τu) < 0 for τ > 1, then one can find τ0 > 1 with∫
R2

(τ0u)H (τ0u)x dxdy =
∫

R2
u∗H u∗x dxdy

and K(τ0u) < 0. This contradicts (iv). Hence
∫

R2 uH ux dxdy ≥
∫

R2 u
∗H u∗x dxdy

and (ii) holds. �

REMARK 2.8. Note that the proof of the above theorem shows that, indeed, (i)
and (iii) are equivalent and imply (ii) and (iv); which are also equivalent; but the
converse holds modulo a scale change.

REMARK 2.9. It has been shown that these ground state solutions are exactly
the minimizers of E(u) under a suitable constraint F (u) = µ∗ (see [16, 17]).

3. Stability

We start by defining our notion of orbital stability:

DEFINITION 3.1. Let ϕc be a solitary wave solution of (1.1). We say that ϕc
is orbitally stable if for all η > 0, there is a δ > 0 such that for any u0 ∈ Hs

(
R2
)
,

s > 2, with ‖u0−ϕc‖Z ≤ δ, the corresponding solution u(t) of (1.1) with u(0) = u0

satisfies
sup
t≥0

inf
r∈R2

‖u(t)− ϕc(· − r)‖Z ≤ η.

The following theorem is a consequence of Theorem 2.2 and it will be main
key to obtain our stability results of the solitary waves for the BO-ZK equations.
Hereafter, without loss of generality we assume that α = −1 and c > 0.

THEOREM 3.2. Let λ > 0. Then,
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(i) every minimizing sequence to Iλ converges, up to a translation, in Z to an
element of the minimizers set

Mλ = {ϕ ∈ Z ; I(ϕ) = Iλ, J(ϕ) = λ}.

(ii) Let {ϕn} be a minimizing sequence for Iλ. Then we have

lim
n→+∞

inf
ψ∈Mλ, z∈R2

‖ϕn(·+ z)− ψ‖Z = 0, (3.1)

lim
n→+∞

inf
ψ∈Mλ

‖ϕn − ψ‖Z = 0. (3.2)

Proof. (i) Let {ϕn} be a minimizing sequence for Iλ. By defining

ψn =
λ

1
p+2

‖ϕn‖Lp+2
ϕn,

we obtain that J(ψn) = λ and

Iλ ≤ I(ψn) ≤ I(ϕn).

This implies that {ψn} is a minimizing sequence for Iλ. Then there is a subsequence
of {ψn}, denoted by the same, and a sequence {rn} ⊂ R2 such that

ψn(·+ rn) −→ ψ,

as n→∞ in Z −norm and ψ ∈Mλ. On the other hand, we have that the sequence{
λ2/(p+2)

‖ϕn‖Lp+2

}
converges, up to a subsequence, to a real number ` ∈ [0, 1]. Using the equality

Mλ = lim
n→∞

I(ψn) = `Iλ,

we obtain that ` = 1. Now we will show that {ϕn(·+ rn)} converges strongly in Z
to an element of Mλ. Indeed, we have

lim
n→∞

ϕn(·+ rn) = lim
n→∞

ψn(·+ rn) = ψ,

in Z . By the embedding (1.5), it follows that ϕn(·+ rn) → ψ in Lp+2 as n→∞.
Hence

J(ψ) = lim
n→∞

J(ϕn(·+ rn)) = lim
n→∞

J(ϕn) = λ.

Finally, since I(ψ) = Iλ, we have that ψ ∈ Mλ. This shows the first part of the
theorem.

(ii) If (ii) does not hold, then there exists a subsequence of {ϕn}, denoted by
the same, and ε > 0 such that

$ = inf
ψ∈Mλ,r∈R2

‖ϕn(·+ r)− ψ‖Z ≥ ε,

for all n. Since {ϕn} is a minimizing sequence for Iλ, by using (i), we have that
there exists a sequence {rn} ⊂ R2 such that, up to a subsequence, ϕn(·+ rn) → ϕ
in Z as n→∞. So for n large enough, we have

ε

2
≥ ‖ϕn(·+ r)− ψ‖Z ≥ $ ≥ ε.
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This contradiction shows (3.1).
The proof of (3.2) follows from the fact that if ψ ∈ Mλ, then ψ(· + r) ∈ Iλ for

all r ∈ R2, and the following equality:

inf
ψ∈Mλ

‖ϕn − ψ‖Z = inf
ψ∈Mλ,r∈R2

inf
ψ∈Mλ

‖ϕn − ψ(· − r)‖Z = inf
ψ∈Mλ

‖ϕn(·+ r)− ψ‖Z .

This completes the proof of the theorem. �

The following lemma easily shows that there exists a λ > 0 such that every el-
ement in the set of minimizers satisfies (1.3).

LEMMA 3.3. For λ = (2(p+ 1)I1)
p+2

p in our minimization problem, we have that
if ϕ ∈Mλ, then ϕ is a solitary wave solution for the BO-ZK equation (1.3).

Now for λ in the above lemma, we define the set

Nc = {ϕ ∈ Z ; J(ϕ) = 2(p+ 1)I(ϕ) = λ} .
One can see that Mλ = Nc. Next for any c > 0 and any ϕ ∈ Nc, we define the
function

d(c) = E(ϕ) + cF (ϕ).

LEMMA 3.4. d(c) is constant on Nc, differentiable and strictly increasing for
c > 0 and p < 4

3 . Moreover, d′′(c) > 0 if and only if p < 4
3 .

Proof. It is easy to see that

d(c) = I(ϕ)− 1
(p+ 1)(p+ 2)

J(ϕ) =
p

2(p+ 1)(p+ 2)
J(ϕ) =

p(2(p+ 1))
2
p

p+ 2
I

p+2
p

1 .

Therefore,
d(c) =

p

2(p+ 1)(p+ 2)
c

2
p−

1
2 J(ψ),

where ψ(x, y) = c−
1
pϕ

(
x

c
,
y√
c

)
. Note that ψ satisfies (1.3), with c = 1. But we

know that
1

(p+ 1)(p+ 2)
J(ϕ) =

4c
4− p

F (ϕ).

Thusly, we obtain that

d′′(c) =
(

2
p
− 3

2

)
c

2
p−

5
2 F (ψ).

This proves the lemma. �

Now we are going to study the behavior of d in a neighborhood of the set Nc.

LEMMA 3.5. Let c > 0. Then there exists a small positive number ε and a
C1-map v : Bε(Nc) → (0,+∞) defined by

v(u) = d−1

(
p

2(p+ 1)(p+ 2)
J(ϕ)

)
,

such that v(ϕ) = c for every ϕ ∈ Nc, where

Bε (Nc) =
{
ϕ ∈ Z ; inf

ψ∈Nc

‖ϕ− ψ‖Z < ε

}
.
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Proof. Without loss of generality we assume that c = 1. It is easy to see that Nc

is a bounded set in Z . Moreover

Nc ⊂ B(0, r) ⊂ Z ,

where r = (2(p + 1))
2
p I

p+2
p

1 and B(0, r) is the ball of radius r > 0 centered at the
origin in Z . Let ρ > 0 be sufficiently large such that Nc ⊂ B(0, ρ) ⊂ Z . Since the
function u→ J(u) is uniformly continuous on bounded sets, there exists ε > 0 such
that if u, v ∈ B(0, ρ) and ‖u − v‖Z < 2ε then |J(u) − J(v)| < ρ. Considering the
neighborhoods I = (d(c) − ρ, d(c) + ρ) and Bε(Nc) of d(c) and Nc, respectively,
we have that if u ∈ Bε(Nc) then J(u) ∈ I . Therefore v is well defined on Bε(Nc)
and satisfies v(ϕ) = c, for all ϕ ∈ Nc. �

Next, we establish the main inequality in our study of stability.

LEMMA 3.6. Let c > 0 and suppose that d′′(c) > 0. Then for all u ∈ Bε(Nc) and
any ϕ ∈ Nc,

E(u)− E(ϕ) + v(u) (F (u)−F (ϕ)) ≥ 1
4
d′′(c)|v(u)− c|2.

Proof. Let

Iω(ϕ) =
1
2

∫
R2

(
ωϕ2 + ϕH ϕx + ϕ2

y

)
dxdy

and ϕω any element of Nω. Then, we have

E(u) + v(u)F (u) = Iv(u)(u)−
1

(p+ 1)(p+ 2)
J(u).

On the other hand, we have J(u) = J
(
ϕv(u)

)
, since d(v(u)) = p

2(p+1)(p+2)J(u) for
u ∈ Bε(Nc) and d(v(u)) = p

2(p+1)(p+2)J
(
ϕv(u)

)
. Thusly,

Iv(u)(u) ≥ Iv(u)

(
ϕv(u)

)
.

Therefore by using the Taylor expansion of d at c, we obtain that

E(u) + v(u)F (u) ≥ Iv(u)

(
ϕv(u)

)
− 1

(p+ 1)(p+ 2)
J
(
ϕv(u)

)
= d(v(u)) ≥ d(c) + F (ϕ)(v(u)− c) +

1
4
d′′(c)|v(u)− c|2

= E(ϕ) + v(u)F (ϕ) +
1
4
d′′(c)|v(u)− c|2.

This completes the lemma. �

Before proving our stability result, we state a well-posedness result for (1.1); which
can be proved by using the parabolic regularization theory (see [20]).

THEOREM 3.7. Let s > 2. Then for any u0 ∈ Hs(R2), there exist T =
T (‖u0‖Hs) > 0 and a unique solution u ∈ C([0, T ];Hs(R2)) of the equation (1.1)
with u(0) = u0 and u(t) depends on u0 continuously in the Hs−norm. In addition,
u(t) satisfies E(u(t)) = E(u0), F (u(t)) = F (u0), for all t ∈ [0, T ).

Now we will prove our nonlinear stability result of the set Nc in Z .



14 AMIN ESFAHANI AND ADEMIR PASTOR

THEOREM 3.8. Let c > 0 and λ = (2(p+ 1)I1)
p+2

p . Then the set Nc = Mλ is
Z -stable with regard to the flow of the BO-ZK equation if p < 4/3, that is, for all
positive ε, there is a positive δ such that if u0 ∈ Hs, s > 2, and ‖u0 − ϕ‖Z ≤ δ,
then the solution u(t) of (1.1) with u(0) = u0 satisfies

sup
t≥0

inf
ψ∈Nc

‖u(t)− ψ‖Z ≤ ε.

Proof. Assume that Nc is Z -unstable with regard to the flow of the BO-ZK
equation. Then there is a sequence of initial data uk(0) ∈ B 1

k
(Nc) ∩ Hs

(
R2
)
,

s > 2, such that
sup

t∈[0,T )

inf
ϕ∈Nc

‖uk(t)− ϕ‖Z ≥ ε, (3.3)

where uk(t) is the solution of (1.1) with initial data uk(0). So we can find, for k
large enough, a time tk such that

inf
ϕ∈Nc

‖uk (tk)− ϕ‖Z =
ε

2
, (3.4)

by continuity in t. Now since E and F are conserved, we can find ϕk ∈ Nc such
that

|E(uk(tk))− E(ϕk)| = |E(uk(0))− E(ϕk)| → 0, (3.5)

|F (uk(tk))−F (ϕk)| = |F (uk(0))−F (ϕk)| → 0, (3.6)

as k → +∞. By using Lemma 3.6, we have

E(uk(tk))− E(ϕk) + v(uk(tk)) (F (uk(tk))−F (ϕk)) ≥
1
4
d′′(c)|v(uk(tk))− c|2,

by choosing k large enough. This implies that v(uk(tk)) → c as k → +∞, since
uk(tk) is uniformly bounded in k. Hence, by the definition of v and continuity of
d, we have

lim
k→+∞

J(uk(tk)) =
2(p+ 1)(p+ 2)

p
d(c). (3.7)

On the other hand, by Lemma 3.4, we have

I(uk(tk)) = E(uk(tk)) + cF (uk(tk)) +
1

(p+ 1)(p+ 2)
J(uk(tk))

= d(c) + E(uk(tk))− E(ϕk) + c (F (uk(tk))−F (ϕk)) +
1

(p+ 1)(p+ 2)
J(uk(tk)).

Then by (3.7), we obtain that

lim
k→+∞

I(uk(tk)) =
p+ 2
p

d(c) = (2(p+ 1))
2
p I

p+2
p

1 . (3.8)

By defining
ϑk(tk) = (J(uk(tk)))−

1
p+2uk(tk),

in Z , we obtain that J (ϑk(tk)) = 1. Therefore by using (3.7), (3.8) and Lemma
3.4, we obtain that

lim
k→+∞

I(ϑk(tk)) = I1. (3.9)

Hence {ϑk(tk)} is a minimizing sequence of I1, so, from Theorem 3.2, there exists
a sequence ψk ⊂M1 such that

lim
k→+∞

‖ϑk(tk)− ψk‖Z = 0. (3.10)
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On the other hand, from the Lagrange multiplier theorem, there exist θk ∈ R such
that

H (ψk)x + cψk − (ψk)yy = θk(p+ 2)ψp+1
k , (3.11)

so 2I1 = θk(p+ 2), which implies θk = θ for all k. By scaling ϕk = µψk with

µp = θ(p+ 1)(p+ 2) = 2(p+ 1)I1,

we obtain that ϕk satisfy (1.3) and 2(p + 1)I(ϕk) = J(ϕk) = µp+2, which implies
that ϕk ∈ Nc for all k. Also, by (3.7)-(3.10) and Lemma 3.4, we have

‖uk(tk)− ϕk‖Z = (J(uk(tk)))
1

p+2

∥∥∥(J(uk(tk)))−
1

p+2 (uk(tk)− ϕk)
∥∥∥

Z

≤ (J(uk(tk)))
1

p+2

(∥∥ϑk(tk)− µ−1ϕk
∥∥

Z
+ µ−1‖ϕk‖Z − (J(uk(tk)))−

1
p+2

)
.

This implies that
lim

k→+∞
‖uk(tk)− ϕk‖Z = 0;

which contradicts (3.4); and the proof is complete. �

4. Decay and Regularity

In order to investigate the regularity and the decaying properties of the solitary
wave solutions of (1.1), we need to study the kernel of (1.3). So we remind the
reader some properties of the anisotropic Sobolev spaces.

LEMMA 4.1. If si > 1
2 , for i = 1, 2, then Hs1,s2 is an algebra.

One can prove the following interpolation in the anisotropic spaces.

LEMMA 4.2. If s1,i ≤ %i ≤ s2,i, i = 1, 2, with

(%1, %2) = θ(s1,1, s1,2) + (1− θ)(s2,1, s2,2)

and θ ∈ [0, 1], then

‖f‖H%1,%2 ≤ ‖f‖θHs1,1,s1,2 ‖f‖1−θ
Hs2,1,s2,2 . (4.1)

REMARK 4.3. Note that by using the Residue theorem, the kernel of the solution
of (1.3) can be written in the following form

K(x, y) = C

∫ +∞

0

|α|
√
t

α2t2 + x2
e
−

(
ct+ y2

4t

)
dt, (4.2)

where C > 0 is independent of α, x and y, and K̂(ξ, η) =
1

c− α|ξ|+ η2
. Also by

Fubini’s theorem, we obtain that

‖K‖L1 = C

∫ +∞

0

∫
R2

|α|
√
t

α2t2 + x2
e
−

(
ct+ y2

4t

)
dxdydt = C(α)

∫ +∞

0

e−ct dt.

Therefore,

LEMMA 4.4. K is an even (in x and y) positive function, decreases in the
x−direction and y−direction, tends to zero at infinity and belongs to C∞

(
R2 \ {(0, 0)}

)
.

Furthermore, K̂ ∈ Lp(R2), for any p ∈ (3/2,+∞] and K ∈ Lp(R2), for any
p ∈ [1,+∞).
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THEOREM 4.5. Any solitary wave solution ϕ of (1.3), with p ∈ N, belongs to
H

(k)
r , for all k ∈ N and all r ∈ [1,+∞]. Furthermore, if 0 < p < 4, any solitary

wave solution ϕ is continuous, belongs to L∞(R2) and tends to zero at infinity.

Proof. Setting g ≡ −ϕ
p+1

p+ 1
, (1.3) yields

ϕ̂ =
ĝ

c− α|ξ|+ εη2
. (4.3)

This implies that ϕ ∈ H
1
2 ,1(R2) ∩H0,2(R2) ∩H1,0(R2). By using Lemma 4.2 and

the embedding (1.5), we obtain that ϕ ∈ Hs,2(1−s)(R2), for any s ∈ [0, 1]. By a
bootstrapping argument and using the Lemmata 4.2 and 4.1, the proof of first part
will be complete. The second part follows from the embedding (1.5), the Young
inequality and the properties of K in Lemma 4.4. �

Now, we are going to study the symmetry properties of the solitay wave solutions
of (1.1). Here, for u : R2 → R, u] will represent the Steiner symmetrization of u
with respect to {x = 0} and u? the Steiner symmetrization of u with respect to
{y = 0} (see for example [7, 22, 36]).

LEMMA 4.6. If f ∈ Z , then f?, f ], |f | ∈ Z .

Proof. Remember the kernel of K in (4.2). By setting g = |f |, then we have

〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉 ,
for every c > 0. Therefore∫

R2
K̂(ξ, η)

∣∣∣f̂(ξ, η)
∣∣∣2 dξdη = 〈f,K ∗ f〉 ≤ 〈g,K ∗ g〉 =

∫
R2
K̂(ξ, η) |ĝ(ξ, η)|2 dξdη.

So, we have∫
R2
c
(
1− cK̂

)
|ĝ(ξ, η)|2 dξdη ≤

∫
R2
c
(
1− cK̂

) ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη, (4.4)

since
∥∥∥f̂∥∥∥

L2
= ‖ĝ‖L2 . By taking the limit as c → +∞ on both sides of (4.4) and

using the Monotone Convergence Theorem, we obtain that∫
R2

(
|ξ|+ η2

)
|ĝ(ξ, η)|2 dξdη ≤

∫
R2

(
|ξ|+ η2

) ∣∣∣f̂(ξ, η)
∣∣∣2 dξdη,

which shows that |f | ∈ Z .
Let us prove that f ] ∈ Z . One can see that K] = K = K?. Then the Reisz-

Sobolev rearrangement inequality (see [7, 22, 36]) implies that∫
R4
f(x, y)f(s, t)K(x−s, y−t) dsdt dxdy ≤

∫
R4
f ](x, y)f ](s, t)K(x−s, y−t) dsdt dxdy.

Then it follows that∫
R2
K̂(ξ, η)

∣∣∣f̂(ξ, η)
∣∣∣2 ≤ ∫

R2
K̂(ξ, η)

∣∣∣f̂ ](ξ, η)∣∣∣2 .
On the other hand, by using the fact that∥∥∥f̂∥∥∥

L2(R2)
= ‖f‖L2(R2) =

∥∥f ]∥∥
L2(R2)

=
∥∥∥f̂ ]∥∥∥

L2(R2)
,
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a similar analysis as in the preceding proof shows that f ] ∈ Z . Analogously, one
can prove that f? ∈ Z . �

REMARK 4.7. Note that the function K(x, y) is not radial.

LEMMA 4.8. If ϕ ∈Mλ, then ϕ], ϕ? ∈Mλ.

Proof. Since Steiner symmetrization preserves the Lp+2−norm, it follows that
J(ϕ) = J(ϕ]). So, by using Lemma 4.6, we get

Iλ ≤ I
(
ϕ]
)
≤ I(ϕ) = Iλ.

Therefore, we have that ϕ] ∈Mλ. Similarly, ϕ? ∈Mλ. �

Now, we prove our theorem concerning the symmetry properties of the solitary
wave solutions of the equation (1.1).

THEOREM 4.9. The solitary wave solutions of the equation (1.1) are radially
symmetric with respect to the transverse direction and the propagation direction.

Proof. By Theorems 2.2 and 4.5, there is the function ψ satisfying (1.3). By
choosing ϕ = ψ]?, we have that ϕ is a solitary wave solution of the equation (1.1)
which is symmetric with respect to {x = 0} and {y = 0}. �

REMARK 4.10. Note that by the definition of the Steiner rearrangement, we
have that ϕ?] ≡ ϕ]? .

REMARK 4.11. One may also obtain the symmetry properties of the solitary
wave solutions of (1.1) by using the reflection method and a unique continuation
result (see [30] and [18]).

Now, we are going to establish the positivity of the solitary wave solutions of
(1.1).

THEOREM 4.12. The solitary wave solution ϕ obtained in Theorem 2.2 is
positive.

Proof. The proof follows from the proof of the Theorem 2.2, Lemmata 4.4 and
4.6, Theorem 4.5 and the following identity

ϕ(x, y) =
1

p+ 1
K ∗ ϕp+1(x, y). (4.5)

�

Regarding on the decay properties of the solitary wave solutions of (1.1), one
can prove easily the following properties of the kernel K.

LEMMA 4.13. K ∈ Hs1,0
(
R2
)
∩H0,s2

(
R2
)
, for any s1 < 1

4 and s2 < 1
2 . More-

over, K ∈ Hr,s
(
R2
)
∩H(s1,s2)

(
R2
)
, where rs2 + ss1 = s1s2 and r ∈ [0, 1].

LEMMA 4.14. (i) K̂ ∈ Hs1,0
(
R2
)
∩H0,s2

(
R2
)
, for any s1 < 3

2 and s2 ∈ R.
Moreover, K̂ ∈ Hr,s

(
R2
)
∩ H(s1,s2)

(
R2
)
, where rs2 + ss1 = s1s2 and

r ∈ [0, 1].
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(ii) K̂ ∈ H(s1,s2)
p

(
R2
)
, for any s1 < 1 +

1
p
, p ≥ 2 and s2 ∈ R.

(iii) |x|s1 |y|s2K ∈ Lp
(
R2
)
, for any s1 < 2− 1

p
, 2s1+s2 ≥ 3

(
1− 1

p

)
and p ≥ 1.

LEMMA 4.15. Let ` and m be two constants satisfying 0 < ` < m − 2. Then
there exists C > 0, depending only on ` and m, such that for all ε > 0, we have∫

R2

|y|`

(1 + ε|y|)m(1 + |x− y|)m
dy ≤ C |x|`

(1 + ε|x|)m
, ∀|x| ≥ 1, (4.6)∫

R2

1
(1 + ε|y|)m(1 + |x− y|)m

dy ≤ C
(1 + ε|x|)m

, ∀x ∈ R2. (4.7)

The proof of Lemma 4.15 is elementary and is essentially the same as the proof
of Lemma 3.1.1 in [6].

THEOREM 4.16. For any solitary wave solution of (1.3), we have

(i) |x|`|y|%ϕ(x, y) ∈ Lp
(
R2
)

for all p ∈ (1,+∞), any ` ∈ [0, 1) and any % ≥ 0,
(ii) |(x, y)|θϕ(x, y) ∈ Lp

(
R2
)

for all p ∈ (1,+∞) and any θ ∈ [0, 1),
(iii) ϕ ∈ L1

(
R2
)
.

Proof. (i) Choose ` ∈
[
0, s1 − 1 +

1
p

)
and p > 1, where s1 < 2 − 1

p
. For

0 < ε < 1, we denote

hε(x, y) = Aε(x, y) ϕ(x, y),

where

A(x, y) =
|x|`|y|%

(1 + ε|x|)s1(1 + ε|y|)s2

and s2 ≥ 3
(

1− 1
p

)
. Then hε ∈ Lp

′ (R2
)
, where p′ = p

p−1 . Using Hölder’s inequal-

ity, we obtain that

|ϕ(x, y)| ≤ C(s1, s2, p)
(∫

R2
|G(z, w)|p

′
dzdw

) 1
p′

,

where

G(z, w) =
g(ϕ)(z, w)

(1 + |x− z|)s1(1 + |y − w|)s2
,

g(t) =
tp+1

p+ 1
and

C(s1, s2, p) = ‖(1 + |x|)s1(1 + |y|)s2K‖Lp(R2) .

Note that the fact that ϕ→ 0 as |(x, y)| → +∞ implies that for every δ > 0, there
exists Rδ > 1 such that if |(x, y)| ≥ Rδ, we have∣∣g(ϕ)(x, y)

∣∣ ≤ δ|ϕ(x, y)|.



BO-ZK EQUATION 19

By using Hölder’s inequality, we obtain that∫
R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy =

∫
R2\B(0,Rδ)

|hε(x, y)|p
′−rAr(x, y)|ϕ(x, y)|r dxdy

≤ C(s1, s2, p)r
∫

R2\B(0,Rδ)

|hε(x, y)|p
′−rAr(x, y) ‖G‖rLp′ (R2) (x, y) dxdy

≤ C(s1, s2, p)r‖hε‖p
′−r
Lp′ (R2\B(0,Rδ))

∥∥∥ A ‖G‖Lp′ (R2)

∥∥∥r
Lp′ (R2\B(0,Rδ))

Thusly,∫
R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C(s1, s2, p)p

′
∫

R2\B(0,Rδ)

Ap
′
(x, y)‖G‖p

′

Lp′ (R2)
dxdy.

Using Fubini’s theorem and Lemma 4.15, we obtain∫
R2\B(0,Rδ)

Ap
′
(x, y)‖G‖p

′

Lp′ (R2)
(x, y) dxdy

=
∫

R2

∣∣g(ϕ)(z, w)
∣∣p′ (∫

R2\B(0,Rδ)

Ap
′
(x, y)

(1 + |x− z|)p′s1(1 + |y − w|)p′s2
dxdy

)
dzdw

≤ C
∫

R2\B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣p′ Ap

′
(z, w) dzdw

+
∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣p′ (∫

R2\B(0,Rδ)

Ap
′
(x, y)

(1 + |x− z|)p′s1(1 + |y − w|)p′s2
dxdy

)
dzdw.

The last integral is bounded by a constant C ′ depending on ϕ and Rδ and indepen-
dent of ε. Therefore, by using the fact that

∣∣g(ϕ)(x, y)
∣∣ ≤ δ|ϕ(x, y)| on R2\B(0, Rδ),

we get∫
R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C(s1, s2, p)p

′

(
Cδp

′
∫

R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy + C ′

)
.

Choosing δ such that C(s1, s2, p)δC
1
p′ < 1, from the last inequality, we deduce that∫

R2\B(0,Rδ)

|hε(x, y)|p
′
dxdy ≤ C , (4.8)

where C is a constant independent of ε. Now, we let ε → 0 in (4.8) and apply
Fatou’s lemma to obtain that∫

R2\B(0,Rδ)

|x|`p
′
|y|%p

′
|ϕ(x, y)|p

′
dxdy ≤ C .

Hence |x|`|y|%ϕ(x, y) ∈ Lp′
(
R2
)
, for p′ =

p

p− 1
.

Now by taking the limits p → 1 and p → +∞, we obtain that ` → 1 and
p′ ∈ (1,+∞). This proves part (i) of the theorem.

(ii) The proof follows from (i).
(iii) Let s > 1 and g , δ and Rδ be the same above in (i). Define

Aε(x, y) =
1

(1 + ε|(x, y)|)s
.
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Therefore, we have∫
R2\B(0,Rδ)

|ϕ(x, y)|Aε(x, y) dxdy

≤
∫

R2

∣∣g(ϕ)(z, w)
∣∣(∫

R2\B(0,Rδ)

Aε(x, y)K(x− z, y − w) dxdy

)
dzdw

≤
∫

R2

∣∣g(ϕ)(z, w)
∣∣(∫

R2\B(0,Rδ)

A−2
1 (x− z, y − w)K2(x− z, y − w) dxdy

) 1
2

·

(∫
R2\B(0,Rδ)

A2
1 (x− z, y − w)A2

ε (x, y) dxdy

) 1
2

dzdw

≤ C(s)C
1
2

∫
R2

∣∣g(ϕ)(z, w)
∣∣Aε(z, w) dzdw

≤ C(s)C
1
2 δ

∫
R2\B(0,Rδ)

|ϕ(z, w)|Aε(z, w) dzdw

+ C(s)C
1
2

∫
B(0,Rδ)

∣∣g(ϕ)(z, w)
∣∣ dzdw,

by using Fubini’s theorem, Lemma 4.15 and the fact that ϕ, Aε ∈ L2
(
R2
)

and
ϕAε ∈ L1

(
R2
)
. Hence by the restriction on δ, and using Fatou’s lemma as ε → 0,

we conclude that ϕ ∈ L1
(
R2
)
. �

The following corollary is an immediate consequence of (4.5), Theorem 4.16
and the inequality

|t|θ ≤ C
(
|t− s|θ + |s|θ

)
, for θ ≥ 0. (4.9)

Corollary 4.17. Suppose that ϕ ∈ L∞
(
R2
)

satisfies (1.3) and ϕ → 0 at infinity.
Then

(i) |x|`|y|%ϕ(x, y) ∈ L∞
(
R2
)
, for all ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ L∞
(
R2
)
, for all θ ∈ [0, 1).

LEMMA 4.18. |x|`|y|%K ∈ L∞
(
R2
)
, for any ` ≤ 2 and any % ≥ 0.

Proof. Suppose that |x| ≥ 1, so we have

K(x, y) < C(α)
∫ +∞

0

e−ct
√
t

x2
e−

y2

4t dt ≤ C(α)
∫ +∞

0

e−ct
√
t

x2

(
4t
y2

)ν
dt =

C(α)
x2|y|2ν

,

for any ν ≥ 0. On the other hand, for 0 < |x| ≤ 1, by a change of variables, we
have that

K(x, y) ≤ C(α)√
|x|

∫ +∞

0

e−t|x|
√
t

1 + α2t2
e−

y2

4|x|t dt

≤ C(α)√
|x|

∫ +∞

0

e−t|x|
√
t

1 + α2t2

(
4|x|t
y2

)ν
dt ≤ C(α)

|y|2ν
,

for any ν ≥ 0. This completes the proof. �
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Corollary 4.19. |x|`|y|%ϕ(x, y) ∈ L∞
(
R2
)
, for any ` ≤ 2 and any % ≥ 0.

Proof. Without loss of generality, we assume that % = 0. Let ` < 1 and γ =
min{2, (p+ 1)`}. Because

|x|γ
∣∣ϕp+1(x, y)

∣∣ ≤ (|ϕ(x, y)||x|
γ

p+1

)(
|ϕ(x, y)||x|

γ
p+1

)p
,

then by using (4.9), Corollary 4.17, Lemma 4.18 and Theorem 4.16, we obtain that
|x|γϕ(x, y) ∈ L∞

(
R2
)
. If γ = (p + 1)`, one may use the above argument to show

that |x|γϕ(x, y) ∈ L∞
(
R2
)

for γ = min
{
2, (p+ 1)2`

}
. Then repeating this argu-

ment at most finitely many times leads to the conclusion. �

The following corollary follows from (4.9), Corollary 4.17 and Theorem 4.16.

Corollary 4.20. (i) |x|`|y|%ϕ(x, y) ∈ L1
(
R2
)
, for all ` ∈ [0, 1) and any % ≥ 0,

(ii) |(x, y)|θϕ(x, y) ∈ L1
(
R2
)
, for all θ ∈ [0, 1).

LEMMA 4.21. There exists σ0 > 0 such that for any σ < σ0 and any s < 3
2 , we

have
(i) |x|seσ|y|K ∈ L2

(
R2
)
,

(ii) K ∈ LpyL1
x

(
R2
)
; for any 1 ≤ p ≤ ∞,

(iii) |x|seσ|y|K ∈ L2
yL

1
x

(
R2
)
; where ‖ · ‖Lq

yL
p
x(R2) =

∥∥∥‖·‖Lp
x(R)

∥∥∥
Lq

y(R)
.

Proof. By a change of variables, K can be written in the following form

K(x, y) = |α|
∫ +∞

0

e−c|x|t

1 + α2t2

(
t

|x|

) 1
2

e−
y2

4|x|t dt.

Hence,∥∥∥|x|seσ|y|K∥∥∥
L2(R2)

≤ α

∫ +∞

0

√
t

1 + α2t2

(∫
R
|x|2s−1 e−2c|x|t

∫
R
e2σ|y|e−

y2

2|x|t dydx

) 1
2

dt

= α

∫ +∞

0

t
3
4

1 + α2t2

(∫
R
|x|2s− 1

2 e−2|x|t(c−σ2)
∫ +∞

−σ
√
|x|t

e−2y2
dydx

) 1
2

dt

≤ C(α)
∫ +∞

0

t
3
4

1 + α2t2

(∫
R
|x|2s− 1

2 e−2|x|t(c−σ2)dx
) 1

2

dt

= C(α)

√
Γ
(
2s+ 1

2

)
(2(c− σ2))s+

1
4

∫ +∞

0

t
1
2−s

1 + α2t2
dt,

which is finite for any σ <
√
c and any s < 3

2 .
The proof of (ii) follows from the following identity:

‖K‖L1
x

= C(α)
∫ ∞

0

e−ct−
y2

4t

√
t

dt =
C(α)√

c
e−

√
c|y|.

The proof of (iii) is similar. �
The following corollary is a consequence of the Young inequality:

‖f ∗ g‖Lq
yL

p
x(R2) ≤ ‖f‖Lq1

y L
p1
x (R2)‖g‖Lq2

y L
p2
x (R2),

where 1 ≤ p, q, p1, q1, p2, q2 ≤ ∞, 1 + 1
p = 1

p1
+ 1

p2
and 1 + 1

q = 1
q1

+ 1
q2

.
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Corollary 4.22. ϕ ∈ LpyL1
x

(
R2
)
, for any 1 ≤ p ≤ ∞.

Now we state our main result of decaying of the solitary wave solutions.

THEOREM 4.23. Let σ0 > 0 be in Lemma 4.21. Then for any σ ∈ [0, σ0) and
any s < 3

2 , we have that |x|seσ|y|ϕ(x, y) ∈ L1
(
R2
)
∩ L∞

(
R2
)
.

Proof. Without loss of generality we assume that s = 0. By using Lemma 4.21 and
the proof of Corollary 3.14 in [6], with natural modifications, there exists σ̃ ≥ σ0

such that eσ|y|ϕ(x, y) ∈ L1
(
R2
)
, for any σ < σ̃. Now by using the following

inequality:

|ϕ(x, y)|eσ|y| ≤
∫

R2
|K(x− z, y − w)|eσ|y−w||ϕ(z, w)|eσ|w||ϕ(z, w)|p dzdw, (4.10)

and the facts ϕ(x, y)eσ|y| ∈ L1
(
R2
)
, ϕ ∈ L∞

(
R2
)

and K(x, y)eσ|y| ∈ L2
(
R2
)
, for

any σ < σ0, we obtain that ϕ(x, y)eσ|y| ∈ L∞
(
R2
)
, for any σ < σ0. �

Finally, the following theorem shows that analyticity of our solitary wave solutions.

THEOREM 4.24. Let 1 ≤ p < 4 be integer. Then there exist σ > 0 and an
holomorphic function f of two variables z1 and z2, defined in the domain

Hσ =
{
(z1, z2) ∈ C2 ; |Im(z1)| < σ, |Im(z2)| < σ

}
such that f (x, y) = ϕ(x, y) for all (x, y) ∈ R2.

Proof. By the Cauchy-Schwarz inequality, we have that ϕ̂ ∈ L1
(
R2
)
. The equation

(1.3) implies that

|ξ| |ϕ̂| (ξ, η) ≤

p+1︷ ︸︸ ︷
|ϕ̂| ∗ · · · ∗ |ϕ̂|(ξ, η), (4.11)

|η| |ϕ̂| (ξ, η) ≤ |ϕ̂| ∗ · · · ∗ |ϕ̂|︸ ︷︷ ︸
p+1

(ξ, η). (4.12)

We denote T1(|ϕ̂|) = |ϕ̂| and for m ≥ 1, Tm+1(|ϕ̂|) = Tm(|ϕ̂|)∗|ϕ̂|. It can be easily
seen by induction that

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (p+ 1)m−1Tmp+1(|ϕ̂|)(ξ, η), (4.13)

where r = |(ξ, η)|. Then we have

rm|ϕ̂|(ξ, η) ≤ (m− 1)! (m+ 1)m−1 ‖Tmp+1(|ϕ̂|)‖L∞(R2)

≤ (m− 1)! (m+ 1)m−1 ‖Tmp(|ϕ̂|)‖L2(R2) ‖ϕ̂‖L2(R2)

≤ (m− 1)! (m+ 1)m−1‖ϕ̂‖mpL1(R2)‖ϕ̂‖
2
L2(R2).

Let

am =
(m− 1)! (m+ 1)m−1‖ϕ̂‖mpL1(R2)‖ϕ̂‖

2
L2(R2)

m!
,

then it is clear that
am+1

am
−→ (p+ 1)‖ϕ̂‖pL1(R2),
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as m → +∞. Therefore the series
∑∞
m=0 t

mrm|ϕ̂|(ξ, η)/m! converges uniformly in
L∞(R2), if 0 < t < σ = 1

p+1‖ϕ̂‖
−p
L1(R2). Hence etrϕ̂(ξ, η) ∈ L∞(R2), for t < σ.

We define the function

f (z1, z2) =
∫

R2
ei(ξz1+ηz2)ϕ̂(ξ, η) dξdη.

By the Paley-Wiener Theorem, f is well defined and analytic in Hσ; and by
Plancherel’s Theorem, we have f (x, y) = ϕ(x, y) for all (x, y) ∈ R2. This proves
the theorem. �
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[33] S.M. Nikol’skĭi, Inequalities for entire functions of finite degree and their application in the

theory of differentiable functions of several variables, (Russian) Trudy Mat. Inst. Steklov. 38,

244–278, Trudy Mat. Inst. Steklov. 38, Izdat. Akad. Nauk SSSR, Moscow, 1951. MR0048565
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