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ABSTRACT

This paper is devoted to quantitative stability of a given primal-dual solution of the Karush–
Kuhn–Tucker system subject to parametric perturbations. We are mainly concerned with
those cases when the dual solution associated to the base primal solution is nonunique.
Starting with a review of known results regarding the Lipschitz-stable case, supplied by
simple direct justifications based on piecewise analysis, we then proceed with new results for
the cases of Hölder (square-root) stability. Our results include characterizations of asymptotic
behavior and upper estimates of perturbed solutions, as well as some sufficient conditions for
(the specific kinds of) stability of a given solution subject to directional perturbations. We
argue that Lipschitz stability of strictly complementary multipliers is highly unlikely to occur,
and we employ the recently introduced notion of a critical multiplier for dealing with Hölder
stability.
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1 Introduction

We consider the parametric Karush–Kuhn–Tucker (KKT) system

Φ(σ, x) +
(

∂F
∂x (σ, x)

)T
λ +

(
∂G
∂x (σ, x)

)T
µ = 0, F (σ, x) = 0,

µ ≥ 0, G(σ, x) ≤ 0, 〈µ, G(σ, x)〉 = 0,
(1.1)

with respect to (x, λ, µ) ∈ Rn×Rl×Rm, where σ ∈ Rs is a parameter, and ΦRs×Rn → Rn,
F : Rs ×Rn → Rl, G : Rs ×Rn → Rm are sufficiently smooth mappings.

If for some smooth function f : Rs ×Rn → R it holds that

Φ(σ, x) =
∂f

∂x
(σ, x), σ ∈ Rs, x ∈ Rn, (1.2)

then, as is well-known, (1.1) is the KKT optimality system for the parametric mathematical
programming (MP) problem

minimize f(σ, x)
subject to F (σ, x) = 0, G(σ, x) ≤ 0,

(1.3)

characterizing stationary points and associated Lagrange multipliers of the latter problem.
However, KKT systems with non-gradient Φ have some important applications beyond the
field of MP (say, in the theory of variational inequalities).

Let (x̄, λ̄, µ̄) ∈ Rn×Rl×Rm be a solution of (1.1) for some fixed (base) parameter value
σ = σ̄ ∈ Rs. Define the index sets

A = A(σ̄, x̄) = {i = 1, . . . , m | Gi(σ̄, x̄) = 0},
N = N(σ̄, x̄) = {i = 1, . . . , m | Gi(σ̄, x̄) < 0}.

Let us recall some standard constraint qualifications, to be used in the sequel. The Manga-
sarian–Fromovitz constraint qualification (MFCQ) consists of saying that rank ∂F

∂x (σ̄, x̄) = l

and there exists ξ̄ ∈ ker ∂F
∂x (σ̄, x̄) such that ∂GA

∂x (σ̄, x̄)ξ̄ < 0. Here kerΛ stands for the
kernel (null space) of a linear operator Λ, and for a vector z, zI stands for its subvector with
components zi, i ∈ I. The strict Mangasarian–Fromovitz constraint qualification (SMFCQ)
is a combination of MFCQ and the requirement that (λ̄, µ̄) is the unique dual solution
(multiplier) of system (1.1) with σ = σ̄, associated with the primal solution x̄. The stronger
linear independence constraint qualification (LICQ) consists of saying that

rank

(
∂F
∂x (σ̄, x̄)

∂GA
∂x (σ̄, x̄)

)
= l + |A|,

where |I| stands for the cardinality of a finite set I.
We are interested in behavior of the primal-dual solution (x̄, λ̄, µ̄) subject to small para-

metric perturbations of (1.1), and of our main concern are the cases when (λ̄, µ̄) is possibly
a nonunique multiplier associated with the primal solution x̄. This means that we do not
assume LICQ (or even SMFCQ) to hold at x̄ (for (λ̄, µ̄)) for the constraint system

F (σ̄, x) = 0, G(σ̄, x) ≤ 0 (1.4)
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(though some results provided below are meaningful and new in the case of a unique multiplier
as well, and some even subsume uniqueness, or even SMFCQ). To this end, let M = M(σ̄, x̄)
stand for the set of multipliers associated with x̄, i.e., pairs (λ, µ) ∈ Rl × Rm such that
(x̄, λ, µ) satisfies (1.1) for σ = σ̄.

Let us note that in this work, we understand stability in a very weak sense: we say that
the given primal-dual solution (x̄, λ̄, µ̄) (or the multiplier (λ̄, µ̄) associated with the primal
solution x̄) is stable if it is persistent subject to some arbitrarily small perturbations. This
means that there exists a sequence {σk} ⊂ Rs such that {σk} → σ̄, and for any k system
(1.1) for σ = σk has a solution (xk, λk, µk) such that {xk} → x̄, {λk} → λ̄, {µk} → µ̄.
Moreover, we will often be talking about stability with respect to some subclass of possible
perturbations, that is, for σ in some subset of a neighborhood of σ̄.

Furthermore, define the index sets

A+ = A+(σ̄, x̄, µ̄) = {i ∈ A | µ̄i > 0},
A0 = A0(σ̄, x̄, µ̄) = {i ∈ A | µ̄i = 0}.

Condition A0 = ∅ is known as the strict complementarity condition. One of the main mes-
sages of this work is that, surprisingly, stability of strictly complementary multipliers is in a
sense a more subtle issue than that of those multipliers that violate strict complementarity
condition, and in particular, one should not expect Lipschitz stability of strictly complemen-
tary multipliers (we emphasize again that we are concerned with the case when multiplier
is not unique). Thus, the highly developed tools for treating the Lipschitzian behavior are
not applicable in this context. At the same time, as the reader will see below, dealing with
Hölder stable case requires much more burdensome constructions.

The basic tool of our analysis is the local piecewise decomposition of the solution set
of (1.1). Denote by A0 the set of all partitions of A0, that is, pairs (I1, I2) of index sets
satisfying I1∪ I2 = A0, I1∩ I2 = ∅. For each partition (I1, I2) ∈ A0, define the branch system

Φ(σ, x) +
(

∂F
∂x (σ, x)

)T
λ +

(
∂G
∂x (σ, x)

)T
µ = 0, F (σ, x) = 0, GA+(σ, x) = 0,

µI1 ≥ 0, GI1(σ, x) = 0, µI2 = 0, GI2(σ, x) ≤ 0, µN = 0.
(1.5)

It can be easily checked that for σ ∈ Rs close enough to σ̄, the solution set of (1.1) near
(x̄, λ̄, µ̄) is the union of the solution sets of these branch systems, and that (x̄, λ̄, µ̄) is a
solution of each branch system for σ = σ̄. This piecewise decomposition allows for simple
direct proofs of many sensitivity results, avoiding any use of multifunctions theory and/or
generalized differentiation.

2 Lipschitz Stability

Define the mapping Ψ : Rs ×Rn ×Rl ×Rm → Rn,

Ψ(σ, x, λ, µ) = Φ(σ, x) +
(

∂F

∂x
(σ, x)

)T

λ +
(

∂G

∂x
(σ, x)

)T

µ. (2.1)

When (1.2) holds, Ψ is the gradient of the Lagrangian of problem (1.3) with respect to x.
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In this section, which is mostly a survey, we discuss the cases when one can expect Lip-
schitz stability of the given primal-dual solution. To that end, we start with the following
simple (though still very important) result on asymptotic behavior of solutions of the per-
turbed KKT systems.

Theorem 2.1 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Let sequences {σk} ⊂ Rs, {xk} ⊂ Rn, {λk} ⊂ Rl, {µk} ⊂ Rm and {tk} ⊂ R+ \ {0} be such
that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, {µk} → µ̄, {tk} → 0, and such that for each k the
point (xk, λk, µk) is a solution of system (1.1) for σ = σk.

Then any limit point (d, ξ, η, ζ) ∈ Rs ×Rn ×Rl ×Rm of the sequence {(σk − σ̄, xk −
x̄, λk − λ̄, µk − µ̄)/tk} satisfies the system

∂Ψ
∂σ

(σ̄, x̄, λ̄, µ̄)d +
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ +
(

∂F

∂x
(σ̄, x̄)

)T

η +
(

∂G

∂x
(σ̄, x̄)

)T

ζ = 0, (2.2)

∂F

∂σ
(σ̄, x̄)d +

∂F

∂x
(σ̄, x̄)ξ = 0, (2.3)

∂GA+

∂σ
(σ̄, x̄)d +

∂GA+

∂x
(σ̄, x̄)ξ = 0, (2.4)

ζA0 ≥ 0,
∂GA0

∂σ
(σ̄, x̄)d +

∂GA0

∂x
(σ̄, x̄)ξ ≤ 0, (2.5)

ζi

(〈
∂Gi

∂σ
(σ̄, x̄), d

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉)
= 0, i ∈ A0, (2.6)

ζN = 0. (2.7)

This result can be found in the literature in various forms, and with various levels of
generality; see, e.g., [14], [2, Theorem 5.10], [16], and the earlier works [12, 13, 15]. Perhaps
the simplest way to derive this result is to employ the piecewise decomposition of system
(1.1); see [6]. (For each partition (I1, I2) ∈ A0, consider the branch system (1.5) linearized
at (σ̄, x̄, λ̄, µ̄), and take the union of solution cones of such linearized systems. This will
result in (2.2)–(2.7). A more subtle version of this argument will be employed below in
Theorem 3.1.)

Note that Theorem 2.1 does not establish neither the existence of solutions of perturbed
KKT systems nor the existence of limit points for the sequence {(σk− σ̄, xk− x̄, λk− λ̄, µk−
µ̄)/tk}. The latter can be guaranteed for tk = ‖σk − σ̄‖ if the local Lipschitz upper estimate
of the distance from (x̄, λ̄, µ̄) to the solution set of the perturbed KKT system (1.1) holds.
Sufficient conditions for this property (known in the literature under various names; see [14])
are contained in the next theorem which can be found, e.g., in [9], [2, Theorem 5.9], [14], [11,
Theorem 8.11 and Corollary 8.13], [16]. Consider the system

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ +
(

∂F

∂x
(σ̄, x̄)

)T

η +
(

∂G

∂x
(σ̄, x̄)

)T

ζ = 0, (2.8)

∂F

∂x
(σ̄, x̄)ξ = 0, (2.9)
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∂GA+

∂x
(σ̄, x̄)ξ = 0, (2.10)

ζA0 ≥ 0,
∂GA0

∂x
(σ̄, x̄)ξ ≤ 0, (2.11)

ζi

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
= 0, i ∈ A0, (2.12)

ζN = 0, (2.13)

which is just system (2.2)–(2.7) for d = 0.

Theorem 2.2 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Suppose that system (2.8)–(2.13) has only the trivial solution (ξ, η, ζ) = (0, 0, 0).

Then for each σ ∈ Rs close enough to σ̄, any solution (x(σ), λ(σ), µ(σ)) of system (1.1)
with x(σ) close enough to x̄ satisfies the estimate

‖x(σ)− x̄‖+ ‖λ(σ)− λ̄‖+ ‖µ(σ)− µ̄‖ = O(‖σ − σ̄‖). (2.14)

This theorem follows immediately from Theorem 2.1 (applied with tk = ‖x(σk) − x̄‖ +
‖λ(σk) − λ̄‖ + ‖µ(σk) − µ̄‖ for a given sequence {σk} ⊂ Rs convergent to σ̄) and a simple
additional argument showing that if system (2.8)–(2.13) has only the trivial solution then
closedeness of σ to σ̄ and x(σ) to x̄ necessarily implies closeness of (λ(σ), µ(σ)) to (λ̄, µ̄).

We stress again that Theorem 2.2 still does not establish the existence of solutions of
perturbed KKT systems.

Evidently, (2.8)–(2.13) can be regarded as the KKT system for the QP problem

minimize 1
2

∂Ψ
∂x (σ̄, x̄, λ̄, µ̄)[ξ, ξ]

subject to ξ ∈ C,
(2.15)

where

C = C(σ̄, x̄) =
{

ξ ∈ Rn

∣∣∣∣
∂F

∂x
(σ̄, x̄)ξ = 0,

∂GA+

∂x
(σ̄, x̄)ξ = 0,

∂GA0

∂x
(σ̄, x̄)ξ ≤ 0

}

is the critical cone of the KKT system (1.1) for σ = σ̄ at x̄. Hence, system (2.8)–(2.13) has
only the trivial solution if and only if for any stationary point ξ of problem (2.15) and any
associated Lagrange multiplier (η, ζA+ , ζA0), it holds that (ξ, η, ζA+ , ζA0) = (0, 0, 0, 0) (this
fact was pointed out in [11, Corollary 8.18], in a somewhat different form).

Note, however, that estimate (2.14) implies that (x̄, λ̄, µ̄) is an isolated solution of system
(1.1) for σ = σ̄. Moreover, it is evident that if the system (2.8)–(2.13) has only the trivial
solution then SMFCQ holds at x̄ for (λ̄, µ̄), and this is not the main case of interest in this
work. To this end, we state the following theorem.

Theorem 2.3 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Suppose that for any solution (ξ, η, ζ) of system (2.8)–(2.13) it holds that ξ = 0.

Then for each σ ∈ Rs close enough to σ̄, any solution (x(σ), λ(σ), µ(σ)) of system (1.1)
close enough to (x̄, λ̄, µ̄) satisfies the estimate

‖x(σ)− x̄‖+ dist((λ(σ), µ(σ)), M) = O(‖σ − σ̄‖). (2.16)
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This theorem can be derived from the results in [3]. Let us however provide a simple
direct proof, based on piecewise decomposition.

Proof. We first prove the estimate

‖x(σ)− x̄‖ = O(‖σ − σ̄‖). (2.17)

Suppose that this is not the case. Then there exist sequences {σk} ⊂ Rs \ {σ̄}, {xk} ⊂ Rn,
{λk} ⊂ Rl and {µk} ⊂ Rm such that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, {µk} → µ̄, for each k
the point (xk, λk, µk) is a solution of system (1.1) for σ = σk, and

‖xk − x̄‖
‖σk − σ̄‖ → ∞, (2.18)

or the other way round,
‖σk − σ̄‖ = o(‖xk − x̄‖) (2.19)

((2.18) certainly implies that xk 6= x̄ for all k large enough).
We may suppose that there exists (I1, I2) ∈ A0 such that the point (xk, λk, µk) is a

solution of the branch system (1.5) for σ = σk, for each k. Employing notation (2.1), and
taking into account (2.19) and the definition of the index sets involved, we then have

0 = Φ(σk, xk) +
(

∂F

∂x
(σk, xk)

)T

λk +
(

∂G

∂x
(σk, xk)

)T

µk

= Ψ(σk, xk, λ̄, µ̄) +
(

∂F

∂x
(σk, xk)

)T

(λk − λ̄) +
(

∂G

∂x
(σk, xk)

)T

(µk − µ̄)

= Ψ(σ̄, xk, λ̄, µ̄) +
(

∂F

∂x
(σ̄, xk)

)T

(λk − λ̄) +
(

∂G

∂x
(σ̄, xk)

)T

(µk − µ̄) + O(‖σk − σ̄‖)

=
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)(xk − x̄) +
(

∂F

∂x
(σ̄, x̄)

)T

(λk − λ̄)

+
(

∂GA+

∂x
(σ̄, x̄)

)T

(µk − µ̄)A+ +
(

∂GI1

∂x
(σ̄, x̄)

)T

µk
I1 + o(‖xk − x̄‖), (2.20)

and similarly

0 = F (σk, xk)

=
∂F

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖), (2.21)

0 = GA+∪I1(σ
k, xk)

=
∂GA+∪I1

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖), (2.22)

0 ≥ GI2(σ
k, xk)

=
∂GI2

∂x
(σ̄, x̄)(xk − x̄) + o(‖xk − x̄‖), (2.23)
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µk
I1 ≥ 0, µk

I2∪N = 0. (2.24)

Let imΛ stand for the image (range space) of a linear operator Λ. Taking into account
the inequality in (2.24), relation (2.20) implies the inclusion

− im
(

∂F

∂x
(σ̄, x̄)

)T

− im
(

∂GA+

∂x
(σ̄, x̄)

)T

−
(

∂GI1

∂x
(σ̄, x̄)

)T (
R|I1|

+

)
3 ∂Ψ

∂x
(σ̄, x̄, λ̄, µ̄)(xk − x̄)

+o(‖xk − x̄‖), (2.25)

where the set in the left-hand side is a closed cone (as a sum of two linear subspaces and a
polyhedral cone).

Suppose further that the entire sequence {(xk − x̄)/‖xk − x̄‖} converges to some ξ ∈ Rn,
‖ξ‖ = 1. Dividing (2.25) and (2.21)–(2.23) by ‖xk− x̄‖, and passing onto the limit as k →∞,
we then obtain

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ ∈ − im
(

∂F

∂x
(σ̄, x̄)

)T

− im
(

∂GA+

∂x
(σ̄, x̄)

)T

−
(

∂GI1

∂x
(σ̄, x̄)

)T (
R|I1|

+

)
,

(2.26)
∂F

∂x
(σ̄, x̄)ξ = 0,

∂GA+∪I1

∂x
(σ̄, x̄)ξ = 0,

∂GI2

∂x
(σ̄, x̄)ξ ≤ 0. (2.27)

Inclusion (2.26) means that there exist η ∈ Rl and ζ ∈ Rm satisfying (2.8), and such that

ζk
I1 ≥ 0, ζk

I2∪N = 0.

Combining this with (2.27) we obtain that (ξ, η, ζ) satisfies (2.8)–(2.13), which is a contra-
diction, since ξ 6= 0. We thus proved (2.17).

In order to establish the remaining estimate

dist((λ(σ), µ(σ)), M) = O(‖σ − σ̄‖), (2.28)

observe that M is the solution set of the linear system

(
∂F

∂x
(σ̄, x̄)

)T

λ +
(

∂G

∂x
(σ̄, x̄)

)T

µ = −Φ(σ̄, x̄), µA ≥ 0, µN = 0.

Employing Hoffman’s lemma (see, e.g., [2, Theorem 2.200]) and (1.1), for σ ∈ Rn close
enough to σ̄ we now obtain that

dist((λ(σ), µ(σ)), M) = O

(
‖Ψ(σ̄, x̄, λ(σ), µ(σ))‖+

∑

i∈A

min{0, µi(σ)}+ ‖µN (σ)‖
)

= O(‖Ψ(σ, x(σ), λ(σ), µ(σ))−Ψ(σ̄, x̄, λ(σ), µ(σ))‖)
= O(‖σ − σ̄‖) + O(‖x(σ)− x̄‖), (2.29)

and (2.28) now follows by the above-proved estimate (2.17). This completes the proof.
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Note that the condition that ξ = 0 for any solution (ξ, η, ζ) of system (2.8)–(2.13) can
be expressed as follows: ξ = 0 is a unique stationary point of problem (2.15). As a sufficient
condition for these equivalent properties, let us mention the following one (pointed out in [9];
see also [11, Theorem 8.24]):

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)[ξ, ξ] 6= 0 ∀ ξ ∈ C \ {0}.

This follows immediately by multiplying (2.8) by ξ and employing (2.9)–(2.13).
Let us for a moment turn our attention to the parametric KKT system with canonical

perturbations:

Φ(σ, x) +
(

∂F
∂x (σ, x)

)T
λ +

(
∂G
∂x (σ, x)

)T
µ = a, F (σ, x) = b,

µ ≥ 0, G(σ, x) ≤ c, 〈µ, G(σ, x)− c〉 = 0,
(2.30)

where a ∈ Rn, b ∈ Rl and c ∈ Rm are additional (canonical) parameters. It is well known that
in this case, the outer estimate of limiting directions presented in Theorem 2.1 is exact: each
tuple (d, ξ, η, ζ) satisfying (2.2)–(2.7) is in fact a limit point of the sequence {(σk − σ̄, xk −
x̄, λk− λ̄, µk− µ̄)/tk} for some {σk}, {xk}, {λk}, {µk} and {tk} with the properties specified
in Theorem 2.1. Moreover, the sufficient condition for the estimate (2.14), established in
Theorem 2.2, is also necessary in this case (see [10, 9, 16], and [11, Theorem 8.11]). Moreover,
the sufficient condition for the estimate (2.16) established in Theorem 2.3, is also necessary
in this case (it is actually necessary for the estimate (2.17)). These facts can be proved by
explicitly constructing the needed perturbations; see the related discussion in Remark 3.3
below.

The results presented above still do not answer the question about solvability of perturbed
KKT systems. The next result pointed out in [6] establishes sufficient conditions for Lipschitz
stability of (x̄, λ̄, µ̄) with a given (λ̄, µ̄) ∈ M subject to directional perturbations. More
precisely, for a given tuple (d, ξ, η, ζ), and a given mapping ρ : R+ → Rs such that ρ(t) =
o(t), we consider the arc σ(t) = σ̄ + td + ρ(t) in the space of parameter values, and we are
searching for solutions of the form (x̄ + tξ, λ̄ + tη, µ̄ + tζ) + o(t) of system (1.1), t ≥ 0.
Recall that, according to Theorem 2.1, we can expect this to hold only for tuples (d, ξ, η, ζ)
satisfying (2.2)–(2.7). Moreover, Theorem 2.1 implies that for a given d, we can expect
Lipschitz stability of (x̄, λ̄, µ̄) with some specific (λ̄, µ̄) ∈ M subject to perturbations of
the kind specified above only provided the corresponding system (2.2)–(2.7) with respect to
(ξ, η, ζ) is solvable.

Define the index sets

A+
0 = A+

0 (σ̄, x̄, µ̄; d, ξ, ζ) =
{

i ∈ A0

∣∣∣∣
〈

∂Gi

∂σ
(σ̄, x̄), d

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
= 0, ζi > 0

}
,

A0
0 = A0

0(σ̄, x̄, µ̄; d, ξ, ζ) =
{

i ∈ A0

∣∣∣∣
〈

∂Gi

∂σ
(σ̄, x̄), d

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
= 0, ζi = 0

}
,

AN
0 = AN

0 (σ̄, x̄, µ̄; d, ξ, ζ) =
{

i ∈ A0

∣∣∣∣
〈

∂Gi

∂σ
(σ̄, x̄), d

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
< 0, ζi = 0

}
.
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Let A0
0 stand for the set of all partitions of A0

0, that is, pairs (I1
0 , I2

0 ) of index sets satisfying
I1
0 ∪ I2

0 = A0
0, I1

0 ∩ I2
0 = ∅. Note that for an arbitrary partition (I1

0 , I2
0 ) ∈ A0

0, the pair (I1, I2)
of index sets defined by I1 = I1

0 ∪A+
0 and I2 = I2

0 ∪AN
0 belongs to A0.

For each index set I ⊂ A define the matrix

DI = DI(σ̄, x̄, λ̄, µ̄) =




∂Ψ
∂x (σ̄, x̄, λ̄, µ̄)

(
∂F
∂x (σ̄, x̄)

)T (
∂GI
∂x (σ̄, x̄)

)T

∂F
∂x (σ̄, x̄) 0 0

∂GI
∂x (σ̄, x̄) 0 0


 . (2.31)

The next theorem is a direct corollary of [2, Theorem 4.9 (iii)]; it employs Gollan’s condition
for the branch system (1.5) for σ = σ̄ at (σ̄, x̄, λ̄, µ̄) in a direction d, which can be stated as
follows:

det DA+∪I1 6= 0, (2.32)

and there exists a tuple (ξ̄, η̄, ζ̄) ∈ Rn ×Rl ×Rm such that

∂Ψ
∂σ

(σ̄, x̄, λ̄, µ̄)d +
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ̄ +
(

∂F

∂x
(σ̄, x̄)

)T

η̄ +
(

∂G

∂x
(σ̄, x̄)

)T

ζ̄ = 0, (2.33)

∂F

∂σ
(σ̄, x̄)d +

∂F

∂x
(σ̄, x̄)ξ̄ = 0,

∂GA+

∂σ
(σ̄, x̄)d +

∂GA+

∂x
(σ̄, x̄)ξ̄ = 0, (2.34)

∂GI1

∂σ
(σ̄, x̄)d +

∂GI1

∂x
(σ̄, x̄)ξ̄ = 0, ζ̄I1 > 0, (2.35)

∂GI2

∂σ
(σ̄, x̄)d +

∂GI2

∂x
(σ̄, x̄)ξ̄ < 0, ζ̄I2 = 0, (2.36)

ζ̄N = 0. (2.37)

Theorem 2.4 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Suppose that a tuple (d, ξ, η, ζ) ∈ Rs×Rn×Rl×Rm satisfies (2.2)–(2.7), and there exists a
partition (I1

0 , I2
0 ) ∈ A0

0 such that for I1 = I1
0 ∪A+

0 and I2 = I2
0 ∪AN

0 , condition (2.32) holds,
and there exists (ξ̄, η̄, ζ̄) ∈ Rn ×Rl ×Rm satisfying (2.33)–(2.37).

Then for any mapping ρ : R+ → Σ such that ρ(t) = o(t), and any t ≥ 0 small enough,
system (1.1) for σ = σ̄ + td + ρ(t) has a solution of the form (x̄ + tξ, λ̄ + tη, µ̄ + tζ) + o(t).

It is interesting to note that if A0 6= ∅ then Gollan’s condition for the branch system does
not imply not only LICQ but even MFCQ for the constrains (1.4) at x̄.

Example 2.1 Let s = 4, n = 2, l = 0, m = 2, f(σ, x) = x2
2/2 + σ1x1 + σ2x2, G(σ, x) =

(−x1 + x2
2/2 − σ3, x1 − x2

2 − σ4). Then x̄ = 0 is a solution of problem (1.3) for σ = σ̄ = 0,
and moreover, x̄ paired with any element of M = {µ ∈ R2 | µ1 = µ2 ≥ 0} satisfies the
corresponding system (1.1) with Φ defined according to (1.2), even though MFCQ does not
hold at x̄ for the constraints G(σ̄, x) ≤ 0.

Take µ̄ = 0 (the unique multiplier in M violating the strict complementarity condition).
It can be easily checked that for any d ∈ R4 such that d1 > 0, d3 + d4 ≥ 0, Theorem 2.4 is
applicable with the corresponding (ξ, ζ) ∈ R2 ×R2.
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Thus, Theorem 2.4 is an appropriate tool for dealing with multipliers violating strict
complementarity, and in particular, one can expect Lipschitz stability of (some of) such
multipliers.

But what about strictly complementary multipliers: can they be stable, what kind of
quantitative stability can be expected for them, and what sufficient conditions for this can be
suggested? Theorem 2.4 is not appropriate for answering these questions. Indeed, if A0 = ∅
then Gollan’s condition for the branch system implies LICQ, the case we do not deal with in
this work.

Moreover, according to [6, Lemma 4.1], if for a given pair (d, ξ) ∈ Rs ×Rn there exist
η ∈ Rl and ζ ∈ Rm satisfying (2.2)–(2.7) then (λ̄, µ̄) is a solution of the LP problem

maximize
〈
λ, ∂F

∂σ (σ̄, x̄)d
〉

+
〈
µ, ∂G

∂σ (σ̄, x̄)d
〉

subject to
(

∂F
∂x (σ̄, x̄)

)T
λ +

(
∂G
∂x (σ̄, x̄)

)T
µ = −∂f

∂x (σ̄, x̄), µA ≥ 0, µN = 0.
(2.38)

For generic ∂F
∂σ (σ̄, x̄) and ∂G

∂σ (σ̄, x̄), and for a typical d ∈ Rn, one should expect that solutions
of this LP problem will belong to the relative boundary of its feasible set (which is M), and
the relative boundary is comprised by multipliers violating strict complementarity. More
precisely, it follows from (2.3), (2.4) that the strictly complementary multipliers may exist
only provided

∂F̃A

∂σ
(σ̄, x̄)d ∈ im

∂F̃A

∂x
(σ̄, x̄), (2.39)

where for any index set I ⊂ A, the aggregated constraint mapping F̃I : Rs×Rn → Rl×R|I|

is given by
F̃I(σ, x) = (F (σ, x), GI(σ, x)). (2.40)

The set in the right-hand side of (2.39) is a proper subspace in Rl×R|A|, unless LICQ holds,
and this is a very severe restriction on the left-hand side of (2.39).

According to Theorem 2.1, this means that, generically, one should not expect Lipschitz
stability of strictly complementary multipliers. However, as will be demonstrated in the
next section, this does not mean that all strictly complementary multipliers are generically
unstable. We will specify the subclass of such multipliers which can be expected to be stable
(though not Lipschitz-stable).

In Example 2.1, if d3 + d4 > 0 then λ̄ = 0 is the unique solution of problem (2.38); if
d3 + d4 < 0 then (2.38) has no solutions; and only if d3 + d4 = 0 then (2.39) holds, and any
point in M is a solution of (2.38).

3 Hölder Stability

In Theorem 3.4 below we provide a sufficient condition for Hölder (square-root) stability of
a strictly complementary multiplier. Let us, however, first present the result on asymptotic
behavior of Hölder-stable solutions of the perturbed KKT systems, and the results on local
Hölder upper estimate of the distance from (x̄, λ̄, µ̄) and from x̄×M to the solution set of
the perturbed KKT system (1.1). These results do not assume strict complementarity of the
multiplier in question.
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Theorem 3.1 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Let sequences {σk} ⊂ Rs, {xk} ⊂ Rn, {λk} ⊂ Rl, {µk} ⊂ Rm and {tk} ⊂ R+ \ {0} be such
that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, {µk} → µ̄, {tk} → 0, and such that for each k the
point (xk, λk, µk) is a solution of system (1.1) for σ = σk.

Then any limit point (d, ξ, η, ζ) ∈ Rs×Rn×Rl×Rm of the sequence {((σk−σ̄)/t2k, (xk−
x̄)/tk, (λk − λ̄)/tk, (µk − µ̄)/tk)} satisfies the system (2.8)–(2.11), (2.13), and there exist
x ∈ Rn, λ ∈ Rl and µ ∈ Rm such that

∂Ψ
∂σ

(σ̄, x̄, λ̄, µ̄)d +
1
2

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[ξ, ξ]

+

(
∂2F

∂x2
(σ̄, x̄)[ξ]

)T

η +

(
∂2G

∂x2
(σ̄, x̄)[ξ]

)T

ζ = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x

−
(

∂F

∂x
(σ̄, x̄)

)T

λ−
(

∂G

∂x
(σ̄, x̄)

)T

µ,

(3.1)

∂F

∂σ
(σ̄, x̄)d +

1
2

∂2F

∂x2
(σ̄, x̄)[ξ, ξ] = −∂F

∂x
(σ̄, x̄)x, (3.2)

∂GA+

∂σ
(σ̄, x̄)d +

1
2

∂2GA+

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GA+

∂x
(σ̄, x̄)x, (3.3)

µA0 ≥ 0,
∂GA0

∂σ
(σ̄, x̄)d +

1
2

∂2GA0

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GA0

∂x
(σ̄, x̄)x, (3.4)

(ζi + µi)

(〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
+

〈
∂Gi

∂σ
(σ̄, x̄), d

〉

+
1
2

∂2Gi

∂x2
(σ̄, x̄)[ξ, ξ] +

〈
∂Gi

∂x
(σ̄, x̄), x

〉)
= 0, i ∈ A0, (3.5)

µN = 0. (3.6)

Proof. Evidently, we can split the sequence {(σk, xk, λk, µk)} into a finite number of
subsequences corresponding to different partitions (I1, I2) ∈ A0, so that all points of each
subsequence satisfy (1.5) for the same (I1, I2).

Fix some (I1, I2) ∈ A0, and suppose for convenience that the point (xk, λk, µk) is a
solution of the branch system (1.5) for σ = σk, for each k. Suppose further that the entire
sequence {((σk− σ̄)/t2k, (xk− x̄)/tk, (λk− λ̄)/tk, (µk− µ̄)/tk)} converges to (d, ξ, η, ζ). Then
this sequence is bounded, which implies the following relations:

‖σk − σ̄‖ = O(t2k), ‖xk − x̄‖ = O(tk), ‖λk − λ̄‖ = O(tk), ‖µk − µ̄‖ = O(tk). (3.7)
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Employing notation (2.1), by (1.5), (3.7) and the definition of the index sets involved, we
then obtain

0 = Φ(σk, xk) +
(

∂F

∂x
(σk, xk)

)T

λk +
(

∂G

∂x
(σk, xk)

)T

µk

= Ψ(σk, xk, λ̄, µ̄) +
(

∂F

∂x
(σk, xk)

)T

(λk − λ̄) +
(

∂G

∂x
(σk, xk)

)T

(µk − µ̄)

=
∂Ψ
∂σ

(σ̄, x̄, λ̄, µ̄)(σk − σ̄) +
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)(xk − x̄)

+
(

∂F

∂x
(σ̄, x̄)

)T

(λk − λ̄) +
(

∂GA+

∂x
(σ̄, x̄)

)T

(µk − µ̄)A+ +
(

∂GI1

∂x
(σ̄, x̄)

)T

µk
I1

+
1
2

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[xk − x̄, xk − x̄] +

(
∂2F

∂x2
(σ̄, x̄)[xk − x̄]

)T

(λk − λ̄)

+

(
∂2GA+

∂x2
(σ̄, x̄)[xk − x̄]

)T

(µk − µ̄)A+ +

(
∂2GI1

∂x2
(σ̄, x̄)[xk − x̄]

)T

µk
I1

+o(t2k), (3.8)

and similarly

0 = F (σk, xk)

=
∂F

∂σ
(σ̄, x̄)(σk − σ̄) +

∂F

∂x
(σ̄, x̄)(xk − x̄)

+
1
2

∂2F

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(t2k), (3.9)

0 = GA+∪I1(σ
k, xk)

=
∂GA+∪I1

∂σ
(σ̄, x̄)(σk − σ̄) +

∂GA+∪I1

∂x
(σ̄, x̄)(xk − x̄)

+
1
2

∂2GA+∪I1

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(t2k),

(3.10)

0 ≥ GI2(σ
k, xk)

=
∂GI2

∂σ
(σ̄, x̄)(σk − σ̄) +

∂GI2

∂x
(σ̄, x̄)(xk − x̄)

+
1
2

∂2GI2

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(t2k), (3.11)

µk
I1 ≥ 0, µk

I2∪N = 0. (3.12)

Dividing (3.8)–(3.12) by tk, and passing onto the limit as k →∞, we obtain (2.8)–(2.10),
(2.13) and the relations

ζI1 ≥ 0,
∂GI1

∂x
(σ̄, x̄)ξ = 0, ζI2 = 0,

∂GI2

∂x
(σ̄, x̄)ξ ≤ 0. (3.13)
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Define the matrix

D = D(σ̄, x̄, λ̄, µ̄) =




∂Ψ
∂x (σ̄, x̄, λ̄, µ̄)

(
∂F
∂x (σ̄, x̄)

)T
(

∂GA+

∂x (σ̄, x̄)
)T (

∂GI1
∂x (σ̄, x̄)

)T

∂F
∂x (σ̄, x̄) 0 0 0

∂GA+

∂x (σ̄, x̄) 0 0 0
∂GI1
∂x (σ̄, x̄) 0 0 0

∂GI2
∂x (σ̄, x̄) 0 0 0




(3.14)
and the vector

ω =




∂Ψ
∂σ (σ̄, x̄, λ̄, µ̄)d + 1

2
∂2Ψ
∂x2 (σ̄, x̄, λ̄, µ̄)[ξ, ξ] +

(
∂2F
∂x2 (σ̄, x̄)[ξ]

)T
η

+
(

∂2GA+

∂x2 (σ̄, x̄)[ξ]
)T

ζA+ +
(

∂2GI1
∂x2 (σ̄, x̄)[ξ]

)T

ζI1

∂F
∂σ (σ̄, x̄)d + 1

2
∂2F
∂x2 (σ̄, x̄)[ξ, ξ]

∂GA+

∂σ (σ̄, x̄)d + 1
2

∂2GA+

∂x2 (σ̄, x̄)[ξ, ξ]
∂GI1
∂σ (σ̄, x̄)d + 1

2

∂2GI1
∂x2 (σ̄, x̄)[ξ, ξ]

∂GI2
∂σ (σ̄, x̄)d + 1

2

∂2GI2
∂x2 (σ̄, x̄)[ξ, ξ]




.

Furthermore, for each k define the vector

wk =




∂Ψ
∂σ (σ̄, x̄, λ̄, µ̄)(σk − σ̄) + 1

2
∂2Ψ
∂x2 (σ̄, x̄, λ̄, µ̄)[xk − x̄, xk − x̄]

+
(

∂2F
∂x2 (σ̄, x̄)[xk − x̄]

)T
(λk − λ̄)

+
(

∂2GA+

∂x2 (σ̄, x̄)[xk − x̄]
)T

(µk − µ̄)A+ +
(

∂2GI1
∂x2 (σ̄, x̄)[xk − x̄]

)T

µk
I1

∂F
∂σ (σ̄, x̄)(σk − σ̄) + 1

2
∂2F
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]

∂GA+

∂σ (σ̄, x̄)(σk − σ̄) + 1
2

∂2GA+

∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]
∂GI1
∂σ (σ̄, x̄)(σk − σ̄) + 1

2

∂2GI1
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]

∂GI2
∂σ (σ̄, x̄)(σk − σ̄) + 1

2

∂2GI2
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]




Taking into account the inequality in (3.12), relations (3.8)–(3.11) imply the inclusion

−D
(
Rn ×Rl ×R|A+| ×R|I1|

+

)

−{0} × {0} × {0} × {0} ×R|I2|
+ 3 wk + o(t2k), (3.15)

where the set in the left-hand side is a closed cone (as a sum of polyhedral cones).
Note that {wk/t2k} → ω. Dividing (3.15) by t2k, and passing onto the limit as k →∞, we

thus obtain

ω ∈ −D
(
Rn ×Rl ×R|A+| ×R|I1|

+

)
− {0} × {0} × {0} × {0} ×R|I2|

+ . (3.16)

Inclusion (3.16) means that there exist x ∈ Rn, λ ∈ Rl and µ ∈ Rm satisfying (3.1)–(3.3),
(3.6), and the relations

µI1 ≥ 0,
∂GI1

∂σ
(σ̄, x̄)d +

1
2

∂2GI1

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GI1

∂x
(σ̄, x̄)x,
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µI2 = 0,
∂GI2

∂σ
(σ̄, x̄)d +

1
2

∂2GI2

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GI2

∂x
(σ̄, x̄)x.

These relations combined with (3.13) imply (2.11), (3.4) and (3.5). This completes the proof.

For d = 0, relations (3.1)–(3.6) take the form

1
2

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[ξ, ξ]

+

(
∂2F

∂x2
(σ̄, x̄)[ξ]

)T

η +

(
∂2G

∂x2
(σ̄, x̄)[ξ]

)T

ζ = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x

−
(

∂F

∂x
(σ̄, x̄)

)T

λ−
(

∂G

∂x
(σ̄, x̄)

)T

µ,

(3.17)

1
2

∂2F

∂x2
(σ̄, x̄)[ξ, ξ] = −∂F

∂x
(σ̄, x̄)x, (3.18)

1
2

∂2GA+

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GA+

∂x
(σ̄, x̄)x, (3.19)

µA0 ≥ 0,
1
2

∂2GA0

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GA0

∂x
(σ̄, x̄)x, (3.20)

(ζi + µi)

(〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
+

1
2

∂2Gi

∂x2
(σ̄, x̄)[ξ, ξ] +

〈
∂Gi

∂x
(σ̄, x̄), x

〉)
= 0, i ∈ A0, (3.21)

µN = 0. (3.22)

Theorem 3.2 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Suppose that for any solution (ξ, η, ζ) of system (2.8)–(2.11), (2.13) such that there exist
x ∈ Rn, λ ∈ Rl and µ ∈ Rm satisfying (3.17)–(3.22), it holds that (ξ, η, ζ) = (0, 0, 0).

Then for each σ ∈ Rs close enough to σ̄, any solution (x(σ), λ(σ), µ(σ)) of system (1.1)
close enough to (x̄, λ̄, µ̄) satisfies the estimate

‖x(σ)− x̄‖+ ‖λ(σ)− λ̄‖+ ‖µ(σ)− µ̄‖ = O(‖σ − σ̄‖1/2). (3.23)

This theorem is an immediate consequence of Theorem 3.1 applied with tk = ‖x(σk) −
x̄‖+ ‖λ(σk)− λ̄‖+ ‖µ(σk)− µ̄‖ for a given sequence {σk} ⊂ Rs convergent to σ̄.

System (2.8)–(2.11), (2.13), (3.17)–(3.22) is similar to the KKT system for the MP prob-
lem

minimize ∂Ψ
∂x (σ̄, x̄, λ̄, µ̄)[ξ, x] + 1

3!
∂2Ψ
∂x2 (σ̄, x̄, λ̄, µ̄)[ξ, ξ, ξ]

subject to ∂F
∂x (σ̄, x̄)x + 1

2
∂2F
∂x2 (σ̄, x̄)[ξ, ξ] = 0,

∂GA+

∂x (σ̄, x̄)x + 1
2

∂2GA+

∂x2 (σ̄, x̄)[ξ, ξ] = 0,
∂GA0

∂x (σ̄, x̄)x + 1
2

∂2GA0
∂x2 (σ̄, x̄)[ξ, ξ] ≤ 0,

∂F
∂x (σ̄, x̄)ξ = 0,

∂GA+

∂x (σ̄, x̄)ξ = 0,
∂GA0

∂x (σ̄, x̄)ξ ≤ 0
(3.24)
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in variables ξ, x ∈ Rn, though (3.21) is stronger than the usual complementary slackness
condition for this problem. In particular, if for any stationary point (ξ, x) of problem (3.24)
and any associated Lagrange multiplier (η, ζA+ , ζA0 , λ, µA+ , µA0) it holds that (ξ, η, ζ) =
(0, 0, 0) then Theorem 3.2 is applicable.

The use of Theorem 3.2 is demonstrated by the following

Example 3.1 Let s = 3, n = 2, l = 1, m = 0, Φ(σ, x) = (1 + x2 + σ1, x2
2 + σ2), F (σ, x) =

x1 − σ3. Then (x̄, λ̄) = (0, −1) is the unique solution of system (1.1) for σ̄ = 0.
For any σ ∈ R3 with σ2 < 0, system (1.1) has two solution of the form

(x(σ), λ(σ)) = ((σ3, ±
√−σ2), −1∓√−σ2 − σ1),

and thus (x̄, λ̄) is only Hölder stable.
It can be easily checked that Theorem 3.2 is applicable in this example.

Remark 3.1 Along with Theorem 3.1, the same way one can derive some other asymptotic
results, e.g., for sequences of the form {((σk − σ̄)/t2k, (xk − x̄)/tk, (λk − λ̄)/t2k, (µk − µ̄)/t2k)}.
Accordingly, along with Theorem 3.2, one can derive sufficient conditions for the (2.17) and
the stronger estimate for multipliers:

‖λ(σ)− λ̄‖+ ‖µ(σ)− µ̄‖ = O(‖σ − σ̄‖).

We skip this statement, in order to save space, and because the reader can easily restore it.
Example 3.1 demonstrates the difference between the unmodified and thus modified ver-

sions of Theorem 3.2: the modified Theorem 3.2 will work if we remove the term x2 in the
first component of Φ.

Note, however, that estimate (3.23), though weaker than (2.14), still implies that (x̄, λ̄, µ̄)
is an isolated solution of system (1.1) for σ = σ̄, and hence, (λ̄, µ̄) is a unique multiplier
associated with x̄. Moreover, it is evident that if the system comprised by (2.8)–(2.11),
(2.13) and (3.17)–(3.22) with x = 0, λ = 0 and µ = 0 has only the trivial solution then
SMFCQ still holds at x̄ for (λ̄, µ̄).

Theorem 3.3 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs.
Suppose that:

(i) For any solution (ξ, η, ζ) of system (2.8)–(2.11), (2.13) such that there exist x ∈ Rn,
λ ∈ Rl and µ ∈ Rm satisfying (3.17)–(3.22) it holds that ξ = 0.

(ii) For any (ξ, η, ζ) such that there exist x, x̃ ∈ Rn, λ, λ̃ ∈ Rl and µ, µ̃ ∈ Rm satisfying
(

∂2F

∂x2
(σ̄, x̄)[ξ]

)T

η +

(
∂2G

∂x2
(σ̄, x̄)[ξ]

)T

ζ = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x̃

−
(

∂F

∂x
(σ̄, x̄)

)T

λ̃−
(

∂G

∂x
(σ̄, x̄)

)T

µ̃,

(3.25)
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(
∂F

∂x
(σ̄, x̄)

)T

η +
(

∂G

∂x
(σ̄, x̄)

)T

ζ = 0, (3.26)

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ = −
(

∂F

∂x
(σ̄, x̄)

)T

λ−
(

∂G

∂x
(σ̄, x̄)

)T

µ, (3.27)

1
2

∂2F

∂x2
(σ̄, x̄)[ξ, ξ] = −∂F

∂x
(σ̄, x̄)x, (3.28)

1
2

∂2GA+

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GA+

∂x
(σ̄, x̄)x, (3.29)

ζA0 ≥ 0,
1
2

∂2GA0

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GA0

∂x
(σ̄, x̄)x, (3.30)

ζN = 0, (3.31)

∂F

∂x
(σ̄, x̄)x̃ = 0, (3.32)

∂GA+

∂x
(σ̄, x̄)x̃ = 0, (3.33)

µA0 ≥ 0,
∂GA0

∂x
(σ̄, x̄)x̃ ≤ 0, (3.34)

µN = 0, (3.35)

∂F

∂x
(σ̄, x̄)ξ = 0, (3.36)

∂GA+

∂x
(σ̄, x̄)ξ = 0, (3.37)

µ̃A0 ≥ 0,
∂GA0

∂x
(σ̄, x̄)ξ ≤ 0, (3.38)

µ̃N = 0, (3.39)

(ζi + µi + µ̃i)

(
1
2

∂2Gi

∂x2
(σ̄, x̄)[ξ, ξ]

+
〈

∂Gi

∂x
(σ̄, x̄), x

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
+

〈
∂Gi

∂x
(σ̄, x̄), x̃

〉)
= 0, i ∈ A0, (3.40)

it holds that ξ = 0 or (η, ζ) = (0, 0).

Then for each σ ∈ Rs close enough to σ̄, any solution (x(σ), λ(σ), µ(σ)) of system (1.1)
close enough to (x̄, λ̄, µ̄) satisfies the estimate

‖x(σ)− x̄‖+ dist((λ(σ), µ(σ)), M) = O(‖σ − σ̄‖1/2). (3.41)

15



Proof. We need to prove the estimate

‖x(σ)− x̄‖ = O(‖σ − σ̄‖1/2). (3.42)

The remaining estimate

dist((λ(σ), µ(σ)), M) = O(‖σ − σ̄‖1/2),

will then follow from (2.29) (obtained the same way as in Theorem 2.3) and (3.42).
Suppose that (3.42) does not hold. Then there exist sequences {σk} ⊂ Rs \ {σ̄}, {xk} ⊂

Rn, {λk} ⊂ Rl and {µk} ⊂ Rm such that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, {µk} → µ̄, for
each k the point (xk, λk, µk) is a solution of system (1.1) for σ = σk, and

‖xk − x̄‖
‖σk − σ̄‖1/2

→∞, (3.43)

or the other way round,
‖σk − σ̄‖ = o(‖xk − x̄‖2) (3.44)

((3.43) implies that xk 6= x̄ for all k large enough).
Suppose further that the entire sequence {(xk − x̄)/‖xk − x̄‖} converges to some ξ ∈ Rn,

‖ξ‖ = 1. Consider first the case when

‖(λk − λ̄, µk − µ̄)‖ = O(‖xk − x̄‖). (3.45)

Then we may suppose that the entire sequence {(λk− λ̄, µk− µ̄)/‖xk− x̄‖} converges to some
(η, ζ) ∈ Rl×Rm. Applying Theorem 3.1 with tk = ‖xk− x̄‖, and taking into account (3.44),
we conclude that (ξ, η, ζ) satisfies (2.8)–(2.11), (2.13) and (3.17)–(3.22) with some x ∈ Rn,
λ ∈ Rl and µ ∈ Rm, which is a contradiction, since ξ 6= 0.

Let now (3.45) be violated. Then we may assume that

‖xk − x̄‖ = o(‖(λk − λ̄, µk − µ̄)‖). (3.46)

Perhaps, some appropriate generalizations of Theorem 3.1 may help in this case as well, but
we prefer to give a direct proof.

By the same argument as in Theorem 3.1, we may suppose that there exists (I1, I2) ∈ A0

such that for all k

0 = Φ(σk, xk) +
(

∂F

∂x
(σk, xk)

)T

λk +
(

∂G

∂x
(σk, xk)

)T

µk

= Ψ(σk, xk, λ̄, µ̄) +
(

∂F

∂x
(σk, xk)

)T

(λk − λ̄) +
(

∂G

∂x
(σk, xk)

)T

(µk − µ̄)

= Ψ(σ̄, xk, λ̄, µ̄) +
(

∂F

∂x
(σ̄, xk)

)T

(λk − λ̄) +
(

∂G

∂x
(σ̄, xk)

)T

(µk − µ̄) + O(‖σk − σ̄‖)

=
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)(xk − x̄)
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+
(

∂F

∂x
(σ̄, x̄)

)T

(λk − λ̄) +
(

∂GA+

∂x
(σ̄, x̄)

)T

(µk − µ̄)A+ +
(

∂GI1

∂x
(σ̄, x̄)

)T

µk
I1

+
1
2

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[xk − x̄, xk − x̄] +

(
∂2F

∂x2
(σ̄, x̄)[xk − x̄]

)T

(λk − λ̄)

+

(
∂2GA+

∂x2
(σ̄, x̄)[xk − x̄]

)T

(µk − µ̄)A+ +

(
∂2GI1

∂x2
(σ̄, x̄)[xk − x̄]

)T

µk
I1

+o(‖xk − x̄‖2), (3.47)

where (3.46) was taken into account, and similarly

0 = F (σk, xk)

=
∂F

∂x
(σ̄, x̄)(xk − x̄) +

1
2

∂2F

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(‖xk − x̄‖2), (3.48)

0 = GA+∪I1(σ
k, xk)

=
∂GA+∪I1

∂x
(σ̄, x̄)(xk − x̄) +

1
2

∂2GA+∪I1

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(‖xk − x̄‖2),

(3.49)

0 ≥ GI2(σ
k, xk)

=
∂GI2

∂x
(σ̄, x̄)(xk − x̄) +

1
2

∂2GI2

∂x2
(σ̄, x̄)[xk − x̄, xk − x̄] + o(‖xk − x̄‖2), (3.50)

µk
I1 ≥ 0, µk

I2∪N = 0. (3.51)

From (3.47) and the inequality in (3.51), we obtain the inclusion

− im
(

∂F

∂x
(σ̄, x̄)

)T

− im
(

∂GA+

∂x
(σ̄, x̄)

)T

−
(

∂GI1

∂x
(σ̄, x̄)

)T (
R|I1|

+

)
3 ∂Ψ

∂x
(σ̄, x̄, λ̄, µ̄)(xk − x̄) + o(‖xk − x̄‖),

with the closed cone in the left-hand side. Dividing this inclusion and (3.48)–(3.50) by
‖xk − x̄‖, and passing onto the limit as k →∞, we obtain the inclusion

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ ∈ − im
(

∂F

∂x
(σ̄, x̄)

)T

− im
(

∂GA+

∂x
(σ̄, x̄)

)T

−
(

∂GI1

∂x
(σ̄, x̄)

)T (
R|I1|

+

)
(3.52)

and the relations (3.36), (3.37), and

∂GI1

∂x
(σ̄, x̄)ξ = 0,

∂GI2

∂x
(σ̄, x̄)ξ ≤ 0. (3.53)
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Inclusion (3.52) means that there exist λ ∈ Rl and µ ∈ Rm satisfying (3.27), (3.35) and such
that

µI1 ≥ 0, µI2 = 0. (3.54)

Furthermore, relations (3.48)–(3.50) can be re-written in the form

− im




∂F
∂x (σ̄, x̄)

∂GA+

∂x (σ̄, x̄)
∂GI1
∂x (σ̄, x̄)

∂GI2
∂x (σ̄, x̄)




−{0} × {0} × {0} ×R|I2|
+ 3 1

2




∂2F
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]

∂2GA+

∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]
∂2GI1
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]

∂2GI2
∂x2 (σ̄, x̄)[xk − x̄, xk − x̄]




+ o(‖xk − x̄‖2),

with the closed cone in the left-hand side. Dividing this inclusion by ‖xk − x̄‖2, and passing
onto the limit as k →∞, we obtain the inclusion

1
2




∂2F
∂x2 (σ̄, x̄)[ξ, ξ]

∂2GA+

∂x2 (σ̄, x̄)[ξ, ξ]
∂2GI1
∂x2 (σ̄, x̄)[ξ, ξ]

∂2GI2
∂x2 (σ̄, x̄)[ξ, ξ]



∈ − im




∂F
∂x (σ̄, x̄)

∂GA+

∂x (σ̄, x̄)
∂GI1
∂x (σ̄, x̄)

∂GI2
∂x (σ̄, x̄)



− {0} × {0} × {0} ×R|I2|

+ ,

which means the existence of x ∈ Rn satisfying (3.28), (3.29) and the relations

1
2

∂2GI1

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GI1

∂x
(σ̄, x̄)x,

1
2

∂2GI2

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GI2

∂x
(σ̄, x̄)x. (3.55)

Suppose now that the entire sequence {(λk − λ̄, µk − µ̄)/‖(λk − λ̄, µk − µ̄)‖} converges to
some (η, ζ) ∈ Rl ×Rm, ‖(η, ζ)‖ = 1.

Dividing (3.47), (3.51) by ‖(λk− λ̄, µk− µ̄)‖, employing (3.46), and passing onto the limit
as k →∞, we obtain (3.26), (3.31) and the relations

ζI1 ≥ 0, ζI2 = 0. (3.56)

Define the vector ω ∈ Rn ×Rl ×R|A+| ×R|I1| ×R|I2|,

ω =




(
∂2F
∂x2 (σ̄, x̄)[ξ]

)T
η +

(
∂2GA+

∂x2 (σ̄, x̄)[ξ]
)T

ζA+ +
(

∂2GI1
∂x2 (σ̄, x̄)[ξ]

)T

ζI1

0
0
0
0




.
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Furthermore, for each k define the vector wk ∈ Rn ×Rl ×R|A+| ×R|I1| ×R|I2|,

wk =




(
∂2F
∂x2 (σ̄, x̄)[xk − x̄]

)T
(λk − λ̄)

+
(

∂2GA+

∂x2 (σ̄, x̄)[xk − x̄]
)T

(µk − µ̄)A+ +
(

∂2GI1
∂x2 (σ̄, x̄)[xk − x̄]

)T

µk
I1

0
0
0
0




Taking into account the inequality in (3.51), and (3.46), relations (3.47)–(3.50) imply the
inclusion

−D
(
Rn ×Rl ×R|A+| ×R|I1|

+

)

−{0} × {0} × {0} × {0} ×R|I2|
− 3 wk + o(‖xk − x̄‖‖(λk − λ̄, µk − µ̄)‖),

(3.57)

where D is defined in (3.14), and the set in the left-hand side is a closed cone.
Note that {wk/(‖xk − x̄‖‖(λk − λ̄, µk − µ̄)‖)} → ω. Dividing (3.57) by ‖xk − x̄‖‖(λk −

λ̄, µk − µ̄)‖, and passing onto the limit as k →∞, we thus obtain

ω ∈ −D
(
Rn ×Rl ×R|A+| ×R|I1|

+

)
− {0} × {0} × {0} × {0} ×R|I2|

− . (3.58)

Inclusion (3.58) means that there exist x̃ ∈ Rn, λ̃ ∈ Rl and µ̃ ∈ Rm satisfying (3.25),
(3.32), (3.33), (3.39) and the relations

∂GI1

∂x
(σ̄, x̄)x̃ = 0,

∂GI2

∂x
(σ̄, x̄)x̃ ≤ 0,

µ̃I1 ≥ 0, µ̃I2 = 0.

These relations combined with (3.53)–(3.56) imply (3.30), (3.38), (3.34) and (3.40). Thus
(ξ, η, ζ) satisfies (3.25)–(3.40) with some x, x̃ ∈ Rn, λ, λ̃ ∈ Rl and µ, µ̃ ∈ Rm, which is a
contradiction, since ξ 6= 0 and (η, ζ) 6= 0. This completes the proof.

System (3.25)–(3.40) is similar to the KKT system for the MP problem

minimize ∂Ψ
∂x (σ̄, x̄, λ̄, µ̄)[ξ, x̃]

subject to ∂F
∂x (σ̄, x̄)x + 1

2
∂2F
∂x2 (σ̄, x̄)[ξ, ξ] = 0,

∂GA+

∂x (σ̄, x̄)x + 1
2

∂2GA+

∂x2 (σ̄, x̄)[ξ, ξ] = 0,
∂GA0

∂x (σ̄, x̄)x + 1
2

∂2GA0
∂x2 (σ̄, x̄)[ξ, ξ] ≤ 0,

∂F
∂x (σ̄, x̄)x̃ = 0,

∂GA+

∂x (σ̄, x̄)x̃ = 0,
∂GA0

∂x (σ̄, x̄)x̃ ≤ 0
∂F
∂x (σ̄, x̄)ξ = 0,

∂GA+

∂x (σ̄, x̄)ξ = 0,
∂GA0

∂x (σ̄, x̄)ξ ≤ 0

(3.59)

in variables ξ, x, x̃ ∈ Rn, though (3.40) is again stronger than the usual complementary
slackness condition. In particular, if for any stationary point (ξ, x) of problem (3.24) it
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holds that ξ = 0, and if for any stationary point (ξ, x, x̃) of problem (3.59) and any as-
sociated Lagrange multiplier (η, ζA+ , ζA0 , λ, µA+ , µA0 , λ̃, µ̃A+ , µ̃A0) it holds that ξ = 0 or
(η, ζA+ , ζA0) = (0, 0, 0), then Theorem 3.3 is applicable.

Example 2.1 above demonstrates that estimate (3.41) in Theorem 3.3 cannot be improved.

Remark 3.2 If in Theorem 3.3 we replace system (3.25)–(3.40) by

(
∂F

∂x
(σ̄, x̄)

)T

η +
(

∂G

∂x
(σ̄, x̄)

)T

ζ = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x̃ (3.60)

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ = −
(

∂F

∂x
(σ̄, x̄)

)T

λ−
(

∂G

∂x
(σ̄, x̄)

)T

µ, (3.61)

1
2

∂2F

∂x2
(σ̄, x̄)[ξ, ξ] = −∂F

∂x
(σ̄, x̄)x, (3.62)

1
2

∂2GA+

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GA+

∂x
(σ̄, x̄)x, (3.63)

1
2

∂2GA0

∂x2
(σ̄, x̄)[ξ, ξ] ≤ −∂GA0

∂x
(σ̄, x̄)x, (3.64)

ζN = 0, (3.65)

∂F

∂x
(σ̄, x̄)x̃ = 0, (3.66)

∂GA+

∂x
(σ̄, x̄)x̃ = 0, (3.67)

∂GA0

∂x
(σ̄, x̄)x̃ ≤ 0, (3.68)

µN = 0, (3.69)

∂F

∂x
(σ̄, x̄)ξ = 0, (3.70)

∂GA+

∂x
(σ̄, x̄)ξ = 0, (3.71)

∂GA0

∂x
(σ̄, x̄)ξ ≤ 0, (3.72)

(|ζi|+ |µi|)
(

1
2

∂2Gi

∂x2
(σ̄, x̄)[ξ, ξ]

+
〈

∂Gi

∂x
(σ̄, x̄), x

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
+

〈
∂Gi

∂x
(σ̄, x̄), x̃

〉)
= 0, i ∈ A0, (3.73)

then, along with the estimate (3.42), we obtain the stronger estimate for multipliers:

dist((λ(σ), µ(σ)), M) = O(‖σ − σ̄‖). (3.74)
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In order to prove this, one should not apply Hoffman’s lemma but rather argue directly, by
a contradiction, similarly to the proof of Theorem 3.3, but using the projections of (λk, µk)
on M instead of (λ̄, µ̄).

Observe that if for any (ξ, η, ζ) such that there exist x, x̃ ∈ Rn, λ ∈ Rl and µ ∈ Rm

satisfying (3.60)–(3.73) it holds that ξ = 0 or (η, ζ) = (0, 0), then the same holds for any
for any (ξ, η, ζ) such that there exist x, x̃ ∈ Rn, λ, λ̃ ∈ Rl and µ, µ̃ ∈ Rm satisfying (3.25)–
(3.40). Indeed, if (ξ, η, ζ) satisfies the latter, it evidently satisfies the former with the same
x, λ and µ, and with x̃ = 0. Note that Example 2.1 violates the former condition.

Remark 3.3 In the case of parametric KKT system with canonical perturbations (2.30),
the outer estimate of limiting directions presented in Theorem 3.1 is exact. More precisely,
for each tuple (d, ξ, η, ζ) satisfying (2.8)–(2.11), (2.13) and (3.1)–(3.6) with some x ∈ Rn,
λ ∈ Rl and µ ∈ Rm, and for each t ≥ 0, system (2.30) with σ = σ̄ + t2d and some
(a(t), b(t), c(t)) = o(t2) has a solution of the form (x̄ + tξ + t2x, λ̄ + tη + t2λ, µ̄ + tζ + t2µ)
This can be demonstrated by explicitly choosing the needed a(t), b(t) and c(t). Moreover,
by the same argument applied with d = 0, one can prove that the sufficient condition for
estimate (3.23), established in Theorem 3.2, is also necessary in this case. Similarly, the
first condition in Theorem 3.3 (concerned with system (2.8)–(2.11), (2.13), (3.17)–(3.22)) is
necessary for the estimate (3.42) (and even so more for the estimate (3.41)). However, the
second condition (concerned with system (3.25)–(3.40)) is most likely not necessary. It would
have been necessary with the additional relations

1
2

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[ξ, ξ]

+

(
∂2F

∂x2
(σ̄, x̄)[ξ]

)T

λ +

(
∂2G

∂x2
(σ̄, x̄)[ξ]

)T

µ = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x

−
(

∂F

∂x
(σ̄, x̄)

)T

λ̂−
(

∂G

∂x
(σ̄, x̄)

)T

µ̂,

µ̂A0 ≥ 0, µ̂N = 0,

including additional auxiliary variables λ̂ ∈ Rl and µ̂ ∈ Rm, and with (3.40) replaced by

(ζi + µi + µ̃i + µ̂)

(
1
2

∂2Gi

∂x2
(σ̄, x̄)[ξ, ξ]

+
〈

∂Gi

∂x
(σ̄, x̄), x

〉
+

〈
∂Gi

∂x
(σ̄, x̄), ξ

〉
+

〈
∂Gi

∂x
(σ̄, x̄), x̃

〉)
= 0, i ∈ A0.

In order to prove the necessity, one can fix an arbitrary θ ∈ (0, 1), and for each t ≥ 0, explicitly
find (a(t), b(t), c(t)) = o(t2(1+θ)) such that system (2.30) with σ = σ̄ has the solution of the
form (x̄+ t1+θξ + t2+θx̃+ t2(1+θ)x, λ̄+ tη + t1+θλ+ t2+θλ̃+ t2(1+θ)λ̂, µ̄+ tζ + t1+θµ+ t2+θµ̃+
t2(1+θ)µ̂).

We will now employ the notion of a critical multiplier which was originally introduced in
[4] for equality-constrained optimization problems. This notion was extended to the mixed-
constrained case in [7], and it was extensively used in [8, 7] in order to study the dual behavior
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of Newton-type methods for constrained optimization problems with nonunique multiplier
associated to a solution. Furthermore, this notion was employed in [4] and in [5, Section 4]
in the context of sensitivity analysis for Lagrange optimality systems, and in the rest of this
paper, we extend this analysis to the mixed-constrained case.

For a given index set I ⊂ A, define the linear subspace

QI = QI(σ̄, x̄, λ̄, µ̄) =



x ∈ ker

∂F̃I

∂x
(σ̄, x̄)

∣∣∣∣∣∣
∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x ∈ im

(
∂F̃I

∂x
(σ̄, x̄)

)T




in Rn, where we have used notation (2.40). Note that

x ∈ QI ⇐⇒ ∃ (y, z) ∈ Rl ×Rm such that (x, y, zA) ∈ kerDI ,

and if ∂Ψ
∂x (σ̄, x̄, λ̄, µ̄) is a symmetric matrix (which automatically holds in the case of (1.2))

then
x ∈ Q⊥

I ⇐⇒ (x, 0, 0) ∈ im DI , (3.75)

where we have used notation (2.31).
According to [7, Definition 2.2], the multiplier (λ̄, µ̄) is refereed to as critical with respect

to the index set I if µ̄A\I = 0 and
QI 6= {0}. (3.76)

Criticality of (λ̄, µ̄) with respect to I certainly subsumes that A \ I ⊂ A0, i.e., I ⊃ A+.
Evidently, if the set of multipliers which are not critical with respect to any index set I (such
that A+ ⊂ I ⊂ A) is nonempty then this set of multipliers is open and dense within M.
However, the next result imposes a restriction on the kind of perturbations subject to which
such multipliers can be stable.

Consider arbitrary sequences {σk} ⊂ Rs \ {σ̄}, {xk} ⊂ Rn, {λk} ⊂ Rl and {µk} ⊂ Rm

such that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, and {µk} → µ̄, and such that for each k the point
(xk, λk, µk) is a solution of system (1.1) for σ = σk. The latter means that (xk, λk, µk) is
a solution of branch system (1.5) for some partition (I1, I2) ∈ A0, and since there is a finite
number of such partitions, after passing to subsequences (if necessary) we can assume that
(I1, I2) does not depend on k.

Proposition 3.1 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈
Rs. Suppose that for some partition (I1, I2) ∈ A0 there exist sequences {σk} ⊂ Rs \ {σ̄},
{xk} ⊂ Rn, {λk} ⊂ Rl and {µk} ⊂ Rm such that {σk} → σ̄, {xk} → x̄, {λk} → λ̄, and
{µk} → µ̄, and such that for each k the point (xk, λk, µk) is a solution of system (1.5) for
σ = σk. Suppose further that the multiplier (λ̄, µ̄) is not critical with respect to the index set
A+ ∪ I1.

Then
‖xk − x̄‖ = O(‖σk − σ̄‖), (3.77)

and every limit point (d, ξ) ∈ Rs ×Rn of the sequence {(σk − σ̄, xk − x̄)/‖σk − σ̄‖} satisfies
the equalities

∂F

∂σ
(σ̄, x̄)d +

∂F

∂x
(σ̄, x̄)ξ = 0,

∂GA+∪I1

∂σ
(σ̄, x̄)d +

∂GA+∪I1

∂x
(σ̄, x̄)ξ = 0. (3.78)
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Proof. Set I = A+ ∪ I1, and consider the parametric system comprised by the equalities
contained in (1.5):

Φ(σ, x) +

(
∂F̃I

∂x
(σ, x)

)T

λ̃ = 0, F̃I(σ, x) = 0, (3.79)

with respect to (x, λ̃) ∈ Rn× (Rl×R|I|. Evidently, (xk, (λk, µk
I )) is a solution of this system

for σ = σk, and for each k. Evidently, (x̄, (λ̄, µ̄I)) is a solution of (3.79) for σ = σ̄.
Furthermore, consider the system

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ +

(
∂F̃I

∂x
(σ̄, x̄)

)T

η̃ = 0,
∂F̃I

∂x
(σ̄, x̄)ξ = 0, (3.80)

with η̃ ∈ Rl ×R|I|, playing the same role for system (3.79) as system (2.8)–(2.13) plays for
system (1.1).

Suppose that there exist ξ ∈ Rn \ {0} and η̃ ∈ Rl × R|I| such that the pair (ξ, η̃) is a
solution of system (3.80). We then obtain that

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)ξ ∈ im

(
∂F̃I

∂x
(σ̄, x̄)

)T

,
∂F̃I

∂x
(σ̄, x̄)ξ = 0,

which contradicts (3.76). We thus proved that ξ = 0 holds for any solution (ξ, η̃) of system
(3.80), and hence, Theorem 2.3 yields the estimate (3.77).

Employing (3.77) and the second equality in (3.79), we obtain

0 = F̃I(σk, xk)

=
∂F̃I

∂σ
(σ̄, x̄)(σk − σ̄) +

∂F̃I

∂x
(σ̄, x̄)(xk − x̄) + o(‖σk − σ̄‖).

Dividing by ‖σk − σ̄‖ and passing onto the limit along the appropriate subsequence gives
(3.78) (recall (2.40) and the definition of I).

Note that according to (3.77), a limit point (d, ξ) of the sequence {(σk− σ̄, xk− x̄)/‖σk−
σ̄‖} exists, and (3.78) implies the inclusion

∂F̃A+∪I1

∂σ
(σ̄, x̄)d ∈ im

∂F̃A+∪I1

∂x
(σ̄, x̄), (3.81)

which is very restrictive unless

rank
∂F̃A+∪I1

∂x
(σ̄, x̄) = l + |A+|+ |I1|. (3.82)

Thus, if (3.82) is violated for any partition (I1, I2) ∈ A0, the multiplier (λ̄, µ̄) which is
noncritical with respect to A+ ∪ I1 for any such partition can be stable only subject to very
special perturbations.
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This is precisely what happens when A0 = ∅. Then (3.82) is just LICQ, the case we do not
deal with in this work, and (3.81) turns into (2.39), a very restrictive condition, as discussed
above. It is thus natural to proceed with analysis of quantitative stability of critical (with
respect to A = A+) strictly complementary multipliers.

According to (1.5), in the case of strict complementarity, for σ ∈ Rs close enough to
σ̄, the solution set of (1.1) near (x̄, λ̄, µ̄) coincided with the solution set of a single branch
system of the form

Φ(σ, x) +
(

∂F
∂x (σ, x)

)T
λ +

(
∂G
∂x (σ, x)

)T
µ = 0,

F (σ, x) = 0, GA(σ, x) = 0, µN = 0.
(3.83)

This is a pure system of equations, and it can be regarded as the parametric Lagrange sys-
tem. When (1.2) holds, (3.83) is essentially the Lagrange optimality system for the equality-
constrained problem

minimize f(σ, x)
subject to F (σ, x) = 0, GA(σ, x) = 0.

Furthermore, in the strictly complementary case, relations (2.10)–(2.12) in Theorem 3.1
should be replaced by the single relation

∂GA

∂x
(σ̄, x̄)ξ = 0, (3.84)

while relations (3.3)–(3.5) should be replaced by the single relation

∂GA

∂σ
(σ̄, x̄)d +

1
2

∂2GA

∂x2
(σ̄, x̄)[ξ, ξ] = −∂GA

∂x
(σ̄, x̄)x, (3.85)

The following result is obtained by deciphering the statement of [1, Theorem 4] for the
specific parametric system of equations (3.83).

Theorem 3.4 Let (x̄, λ̄, µ̄) ∈ Rn ×Rl ×Rm be a solution of system (1.1) for σ = σ̄ ∈ Rs,
and let A0 = ∅. Suppose that a tuple (d, ξ, η, ζ) ∈ Rs ×Rn ×Rl ×Rm satisfies (2.8), (2.9),
(2.13), (3.84) and (3.1), (3.2), (3.6), (3.85) with some x ∈ Rn, λ ∈ Rl and µ ∈ Rm, and the
linear system

∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x1 +
(

∂F

∂x
(σ̄, x̄)

)T

y1 +
(

∂G

∂x
(σ̄, x̄)

)T

z1

+
∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[ξ, x2]

+

(
∂2F

∂x2
(σ̄, x̄)[ξ]

)T

y2 +

(
∂2F

∂x2
(σ̄, x̄)[x2]

)T

η

+

(
∂2G

∂x2
(σ̄, x̄)[ξ]

)T

z2 +

(
∂2G

∂x2
(σ̄, x̄)[x2]

)T

ζ = 0, (3.86)
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∂F

∂x
(σ̄, x̄)x1 +

∂2F

∂x2
(σ̄, x̄)[ξ, x2] = 0, (3.87)

∂GA

∂x
(σ̄, x̄)x1 +

∂2GA

∂x2
(σ̄, x̄)[ξ, x2] = 0, (3.88)

z1
N = 0, z2

N = 0, (3.89)

with the additional restrictions (x1, y1, z1
A) ∈ (kerDA)⊥ and (x2, y2, z2

A) ∈ kerDA has only
the trivial solution.

Then for any mapping ρ : R+ → Σ such that ρ(t) = o(t), and any t ≥ 0 small enough,
system (1.1) for σ = σ̄ + td+ρ(t) has a solution of the form (x̄+ t1/2ξ, λ̄+ t1/2η, µ̄+ t1/2ζ)+
o(t1/2).

Employing (2.31), we can rewrite the essential part of system (3.86)–(3.89) with x2 = 0
in the form

DA




x1

y1

z1
A


 +




(
∂2F
∂x2 (σ̄, x̄)[ξ]

)T
y2 +

(
∂2GA
∂x2 (σ̄, x̄)[ξ]

)T
z2
A

0
0


 = 0.

Hence, if ∂Ψ
∂x (σ̄, x̄, λ̄, µ̄) is a symmetric matrix then employing (2.40) and (3.75) we ob-

tain that system (3.86)–(3.89) with the additional restrictions (x1, y1, z1
A) ∈ (kerDA)⊥ and

(x2, y2, z2
A) ∈ kerDA having only the trivial solution implies that the system

(
∂2F̃A

∂x2
(σ̄, x̄)[ξ]

)T

ỹ2 ∈ Q⊥
A,

(
∂F̃A

∂x
(σ̄, x̄)

)T

ỹ2 = 0

with respect to ỹ2 = (y2, z2
A) has only the trivial solution. The latter condition is equivalent

to the following:

im
∂F̃A

∂x
(σ̄, x̄) +

∂2F̃A

∂x2
(σ̄, x̄)[ξ, QA] = Rl ×R|A|. (3.90)

This condition is somewhat more restrictive than the well-known 2-regularity of the mapping
F̃A(σ̄, ·) in the direction ξ, which is obtained from (3.90) by replacing QA with the generally
bigger subspace ker ∂F̃A

∂x (σ̄, x̄). In particular, (3.90) subsumes the inequality

corank
∂F̃A

∂x
(σ̄, x̄) ≤ dimQA,

and (3.90) cannot hold for a noncritical multiplier (λ̄, µ̄) unless LICQ is satisfied.
Suppose finally that ∂Ψ

∂x (σ̄, x̄, λ̄, µ̄) is a symmetric matrix, (3.90) holds, and

∂2Ψ
∂x2

(σ̄, x̄, λ̄, µ̄)[ξ, x2, x2]

+

〈
η,

∂2F

∂x2
(σ̄, x̄)[x2, x2]

〉
+

〈
ζA,

∂2GA

∂x2
(σ̄, x̄)[x2, x2]

〉

+2

〈
y,

∂2F

∂x2
(σ̄, x̄)[ξ, x2]

〉
+ 2

〈
zA,

∂2GA

∂x2
(σ̄, x̄)[ξ, x2]

〉
6= 0 (3.91)
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holds for all x2 ∈ Q \ {0} satisfying (3.87), (3.88) with some x1 ∈ Rl, and for the unique
solution (y, zA) of the system

(
∂F

∂x
(σ̄, x̄)

)T

y +
(

∂GA

∂x
(σ̄, x̄)

)T

zA = −∂Ψ
∂x

(σ̄, x̄, λ̄, µ̄)x2

in im ∂F̃A
∂x (σ̄, x̄) = (ker ∂F̃A

∂x (σ̄, x̄))⊥. It can be easily seen by a standard argument that
under these assumptions, system (3.86)–(3.89) with the additional restrictions (x1, y1, z1

A) ∈
(kerDA)⊥ and (x2, y2, z2

A) ∈ kerDA has only the trivial solution, and hence, Theorem 3.4 is
applicable.

We complete this discussion with three examples taken from [7], illustrating the results
obtained above. The first example is very simple; it is the canonically parameterized version
of [7, Example 3.2].

Example 3.2 Let s = 2, n = 1, l = 0, m = 1, f(σ, x) = −x2 + σ1x, G(σ, x) = x2 − σ2.
Then x̄ = 0 is a solution and a stationary point of problem (1.3) for σ = σ̄ = 0, and M = R+

for the corresponding system (1.1) with Φ defined according to (1.2).
One can directly check that for any σ ∈ R2 such that σ2 > 0 system (1.1) has a solu-

tions of the form (x(σ), µ(σ)) = (σ1/2
2 , 1 − σ1/(2σ1/2

2 )) if σ1 ≤ 2
√

σ2, and (x(σ), µ(σ)) =
(−σ

1/2
2 , 1 + σ1/(2σ

1/2
2 )) if σ1 ≤ −2

√
σ2. Moreover, if if 4σ2 ≥ σ2

1 then there is one more
solution (x(σ), µ(σ)) = (σ1/2, 0). The latter solution corresponds to the multiplier µ̄ = 0
violating strict complementarity, which is thus Lipschitz-stable (actually just insensitive) sub-
ject to perturbations of the specified kind. If σ1 = o(σ1/2

2 ), the former pair of solutions gives
in the limit (as σ → 0) the strictly complementary critical multiplier µ̄ = 1, which is thus
stable but not Lipschitz-stable. If we take σ2 = O(σ2

1), then we can obtain in the limit any
multiplier in M, and thus, any multiplier can be stable subject to some special kind of per-
turbations. Note that if σ2 = o(σ1) then the limiting direction d of the normalized differences
σ − σ̄ satisfies d2 = 0, and hence, (2.39) holds.

Consider now directional perturbations: let σ = td with some d ∈ R2 such that d2 > 0,
and with t ≥ 0 small enough. Then there is the pair of solutions (x(t), µ(t)) = (0, 1) +
t1/2(±d

1/2
2 , ∓d1/(2d

1/2
2 )) and the solution (x(t), µ(t)) = t(d1/2, 0). For the former, putting

µ̄ = 1, we obtain that (ξ, ζ) = (±d
1/2
2 , ∓d1/(2d1/2

2 )) satisfies (2.8), (2.9), (2.13), (3.84)
(trivially) and (3.1), (3.2), (3.6), (3.85) (with any x ∈ R and µ ∈ R), and moreover, the
specified (ξ, ζ) are the only pairs satisfying these relations. Finally, for these (ξ, ζ), one can
easily verify that (3.90) is satisfied, and (3.91) holds for all x2 6= 0 (with zA = 0), and hence,
Theorem 3.4 is applicable.

The next example is the canonically parameterized version of [7, Example 3.3]. Note that
the constraints in this example satisfy MFCQ.

Example 3.3 Let s = 4, n = 2, l = 0, m = 2, f(σ, x) = −x1 + σ1x1 + σ2x2, G(σ, x) =
(x1−x2

2−σ3, x1 +x2
2−σ4). Then x̄ = 0 is a solution and a stationary point of problem (1.3)

for σ = σ̄ = 0, and M = {µ ∈ R2
+ | µ1 + µ2 = 1} for the corresponding system (1.1) with Φ

defined according to (1.2).
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For any σ ∈ R4 such that σ4 > σ3 and

1− σ1

2
± σ2

2
√

2
√

σ4 − σ3

≥ 0,

system (1.1) has two solutions of the form

(x(σ), µ(σ)) =

((
σ3 + σ4

2
, ±

√
σ4 − σ3

2

)
,

(
1− σ1

2
,

1− σ1

2

))

±
(

0,

(
σ2

2
√

2
√

σ4 − σ3

, − σ2

2
√

2
√

σ4 − σ3

))
.

Moreover, if σ4 ≥ σ3 + σ2
2/(2(1− σ1)2) and σ1 < 1 then there is one more solution

(x(σ), µ(σ)) =

((
σ2

2

4(1− σ1)2
+ σ3,

σ2

2(1− σ1)

)
, (1− σ1, 0)

)
,

while if σ4 ≤ σ3 + σ2
2/(2(1− σ1)2) and σ1 < 1 then there is a solution

(x(σ), µ(σ)) =

((
− σ2

2

4(1− σ1)2
+ σ4, − σ2

2(1− σ1)

)
, (0, 1− σ1)

)
.

As σ → 0, the last two solutions tend to the multipliers µ̄ = (1, 0) and µ̄ = (0, 1), respectively,
both violating strict complementarity, and both these multipliers are thus Lipschitz-stable
subject to perturbations of the specified kind. The limiting behavior the former pair of
solutions depends on the relation between σ2 and σ4 − σ3, but if σ2 = o((σ4 − σ3)1/2) then
in the limit we obtain the strictly complementary critical multiplier µ̄ = (1/2, 1/2), which is
thus stable but not Lipschitz-stable.

Let now σ = td with some d ∈ R4 such that d4 > d3, and with t ≥ 0 small enough. Then
there is the pair of solutions

(x(t), µ(t)) =
(

0,

(
1
2
,

1
2

))

±t1/2





0,

√
d4 − d3

2


 ,

(
d2

2
√

2
√

d4 − d3

, − d2

2
√

2
√

d4 − d3

)


+t

((
d3 + d4

2
, 0

)
,

(
−d1

2
, −d1

2

))
,

and the solution

(x(t), µ(t)) = (0, (1, 0)) + t

((
d3,

d2

2(1− td1)

)
, (−d1, 0)

)
+ t2

((
d2

4(1− td1)2
, 0

)
, 0

)
.

For the former, putting µ̄ = (1/2, 1/2), we obtain that (ξ, ζ) with

ξ =


0, ±

√
d4 − d3

2


 , ζ =

(
± d2

2
√

2
√

d4 − d3

, ∓ d2

2
√

2
√

d4 − d3

)
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satisfies (2.8), (2.9), (2.13), (3.84) and (3.1), (3.2), (3.6), (3.85) (with any x ∈ R2 such that
x1 = (d3 + d4)/2, and any µ ∈ R2 such that µ1 + µ2 = −d1), and moreover, the specified
(ξ, ζ) are the only pairs satisfying these relations. Finally, for these (ξ, ζ), (3.90) holds, and
the set of x2 ∈ Q satisfying (3.87), (3.88) with some x1 ∈ R2 is trivial. Hence, Theorem 3.4
is applicable.

Our last example demonstrates the case of Hölder stability of a multiplier violating strict
complementarity. This is the canonically parameterized version of [7, Example 3.4] (the
original source is [17, (63)]).

Example 3.4 Let s = 4, n = 2, l = 0, m = 2, f(σ, x) = x1 + σ1x1 + σ2x2, G(σ, x) =
(−x1 − σ3, (x1 − 2)2 + x2

2 − 4 − σ4). Then x̄ = 0 is a solution and a stationary point of
problem (1.3) for σ = σ̄ = 0, and M = {µ ∈ R2 | µ1 = 1 − 4µ2, 0 ≤ µ2 ≤ 1/4} for the
corresponding system (1.1) with Φ defined according to (1.2).

We are concerned with the multiplier µ̄ = (1, 0), which is not strictly complementary, but
is critical with respect to the index set I = A = {1, 2}.

For any σ ∈ R4 such that σ2 6= 0, 4 + σ4 > (σ3 + 2)2, system (1.1) has near (x̄, µ̄) the
unique solution of the form

(x(σ), µ(σ)) =
((
−σ3,

√
4 + σ4 − (σ3 + 2)2

)
, (1 + σ1, 0)

)

+

(
0,

(
σ2(σ3 + 2)√

4 + σ4 − (σ3 + 2)2
, − σ2

2
√

4 + σ4 − (σ3 + 2)2

))

if σ2 < 0, and

(x(σ), µ(σ)) =
((
−σ3, −

√
4 + σ4 − (σ3 + 2)2

)
, (1 + σ1, 0)

)

−
(

0,

(
σ2(σ3 + 2)√

4 + σ4 − (σ3 + 2)2
, − σ2

2
√

4 + σ4 − (σ3 + 2)2

))

if σ2 > 0. In the sequel, we deal with the former case (the latter can be considered similarly).
Let σ = td with some d ∈ R4 such that d2 < 0, d4 > 4d3, and with t ≥ 0 small enough.

Then the solution has the form

(x(t), µ(t)) = (0, (1, 0)) + t1/2
(

(0,
√

d4 − 4d3),
(

2d2√
d4 − 4d3

, − d2

2
√

d4 − 4d3

))
+ o(t1/2).

Thus, the multiplier µ̄ = (1, 0) is Hölder stable subject to perturbations of the specified class.
It is not difficult to check that the corresponding pair

(ξ, ζ) =
(

(0,
√

d4 − 4d3),
(

2d2√
d4 − 4d3

, − d2

2
√

d4 − 4d3

))

satisfies (2.8)–(2.11), (2.13) and (3.1)–(3.6) (with appropriate x ∈ R2 and µ ∈ R2), and
moreover, the specified (ξ, ζ) is the only pair satisfying these relations.

Let us mention that Examples 3.2–3.4 all demonstrate the use of Theorem 3.3. Moreover,
they all satisfy the stronger assumption stated in Remark 3.2, and that is why estimate (3.74)
is valid in these examples.
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