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Abstract

In this paper we present a new non-stationary, interpolatory, curve subdi-
vision scheme. We show that the scheme converges and the subdivision curve
is continuous. Moreover, starting with the chord length parametrization of
the initial polygon, we obtain a subdivision curve arc-length parametrized.
A bound for the Hausdorff distance between the limit curve and the initial
polygon is also obtained.

1 Introduction

The classical 4-point scheme [3],[6] is one of the earliest and most popular interpo-
latory curve subdivision schemes. It is a member of the Dubuc-Deslauriers family
of subdivision schemes [2], where the new points lie on a polynomial interpolating
consecutive vertices of the control polygon. More precisely, starting from an initial
polygon P 0 = P 0

i , i ∈ Z the 4-point scheme is defined by the equations

P j+1
2i = P j

i , P j+1
2i+1 = f j

i (tj+1
2i+1) (1)

where f j
i (t) is the cubic polynomial interpolating the points P j

k at uniform para-
meter values tk = k/2j for k = i− 1, i, i + 1, i + 2, and tj+1

2i+1 = (2i + 1)/2j+1.
Several authors [7],[5] have noticed that the limit curves of the 4-point scheme fit
tightly to the long edges of the initial control polygon and loosely to the short
edges, see Figure 1, left. This is a result of the uniform parametrization t0i = i for
all i: the same time is used to travel between two consecutive points P 0

i , P 0
i+1 of the

initial polygon, regardless of their distance. In other words, the limit curve of the
uniform 4-point subdivision scheme is far away from being arc-length parametrized.
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One way to address this problem is to use a non-uniform parameterization for the
initial polygon

t0i+1 = t0i + ‖P 0
i+1 − P 0

i ‖β (2)

Then, the parameter values at the step j + 1, are computed from the parameters
of the previous step as

tj+1
2i = tji , tj+1

2i+1 =
tji + tji+1

2
(3)

In Figure 1 we also show the limit curves of the 4-point subdivision scheme corre-
sponding to different values of β. Notice that the change in the parameterization
of the initial polygon affects the shape of the limit curve.

Figure 1: The limit curve of the 4-point subdivision scheme (1) with the initial
parametrization (2) with β = 0 (left), β = 0.5 (middle) and β = 1 (right)

Taking this idea one step further, in [5], a reparametrization is introduced in each
step, defined by the equation

tj0 = 0, tji+1 = tji + ‖P j
i+1 − P j

i ‖β (4)

and then, P j+1
2i , P j+1

2i+1 are computed as in (1) and tj+1
2i+1 as in (3). The limit curve of

this nonlinear scheme is smooth and when the centripetal parametrization is used,
it is relatively close to the initial polygon and its shape is pleasing.

In the interpolatory scheme proposed in this paper, the new points do not nec-
essarily lie on the cubic polynomial f in (1). Instead, we control the length of
the subdivision polygon, obtaining an arc-length parametrization with respect to
the chordal parametrization of the original polygon. More precisely, for all i, the
length of the subdivision curve at the step j between the points P 0

i and P 0
i+1 is

proportional, with the same proportionality factor for all i, to the length of the
parameter interval t0i+1 − t0i = ‖P 0

i+1 − P 0
i ‖.

Following [9, 1], we guide the subdivision process using normal information. The
process is also controlled by geometric constraints on the position of the new points,
as in [8]. Similarly to [5], the proposed scheme is nonlinear and we can not study
its properties through the Laurent polynomials formalism [4]. Instead, we rely on
analytical and geometric arguments that are particular to this type of schemes.
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2 The subdivision scheme

2.1 General definitions

Let P 0 = {P 0
i , i ∈ Z} be an initial polygon, where three consecutive vertices are

always noncollinear. The equations giving the polygon at step j +1 can be written

P j+1
2i = P j

i P j+1
2i+1 =

P j
i + P j

i+1

2
+ ρj

id
j
i (5)

where dj
i is a normalized direction vector and ρj

i > 0 is the displacement in the
direction dj

i . We want to select dj
i , ρ

j
i in such away that

‖ej+1
2i ‖+ ‖ej+1

2i+1‖ = αj‖ej
i‖ (6)

where ej
i := P j

i+1−P j
i and αj > 1 for all j. Condition (6) means that the new point

P j+1
2i+1 is on the ellipse with foci P j

i , P j
i+1, semimajor axis αj‖ej

i‖, and eccentricity
1/αj, see Figure 2 (left).
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Figure 2: Left: The new point lies on an ellipse. Right: Two consecutive edges
at step j + 1.

2.2 Convergence conditions

To study the convergence of the subdivision scheme, we first define the parametric
values corresponding to each point on the subdivision polygon. We keep the pa-
rameters of the even indices at level j + 1 the same as at level j, and set the new
parameter tj+1

2i+1 in the interval [tji , t
j
i+1] in such a way that

‖ej+1
2i ‖

tj+1
2i+1 − tji

=
‖ej+1

2i+1‖
tji+1 − tj+1

2i+1
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That is,

tj+1
2i = tji tj+1

2i+1 = δj
i t

j
i + (1− δj

i )t
j
i+1 with δj

i =
‖ej+1

2i+1‖
‖ej+1

2i ‖+ ‖ej+1
2i+1‖

(7)

Theorem 1 Consider the subdivision scheme (5) using the parametrization (7).
If the new points P j+1

2i+1 are selected in such a way that, for all j, i

‖ej+1
k ‖ ≤ Γ‖ej

i‖ for k = 2i, 2i + 1 with Γ < 1 (8)

then the subdivision scheme converges and the limit curve c(t) is continuous.

Proof: Let f j(t) be the piecewise linear function interpolating (tji , P
j
i ). We will

show that ‖f j − f j+1‖∞ tends uniformly to 0 when j →∞. We have

‖f j−f j+1‖∞ = max
i

max
tji≤t≤tji+1

‖f j(t)−f j+1(t)‖ = max
i
‖f j(tj+1

2i+1)−f j+1(tj+1
2i+1)‖ (9)

As f j(t) is linear in [tji , t
j
i+1] and tj+1

2i+1 is given by (7) we obtain,

f j(tj+1
2i+1) = δj

i f
j(tji ) + (1− δj

i )f
j(tji+1) = δj

i P
j
i + (1− δj

i )P
j
i+1 (10)

Substituting (10) in (9), using the value of δj
i in (7), and f j+1(tj+1

2i+1) = P j+1
2i+1, we

obtain

‖f j − f j+1‖∞ = max
i
‖P j+1

2i+1 − (δj
i P

j
i + (1− δj

i )P
j
i+1)‖

≤ max
i
{δj

i ‖ej+1
2i ‖+ (1− δj

i )‖ej+1
2i+1‖} ≤ 2 max

i

‖ej+1
2i+1‖‖ej+1

2i ‖
αj‖ej

i‖
(11)

Using (6) and the arithmetic-geometric mean inequality, we get

2
‖ej+1

2i+1‖‖ej+1
2i ‖

αj‖ej
i‖

= 2
‖ej+1

2i+1‖‖ej+1
2i ‖

‖ej+1
2i+1‖+ ‖ej+1

2i ‖
≤ ‖ej+1

2i+1‖+ ‖ej+1
2i ‖

2
=

αj‖ej
i‖

2

Therefore, from (11) we obtain, ‖f j − f j+1‖∞ ≤ αj

2
maxi ‖ej

i‖. Using (8), we get

‖f j − f j+1‖∞ ≤ Γ(
αj

2
max

i
‖ej−1

i ‖) ≤ Γ2(
αj

2
max

i
‖ej−2

i ‖) ≤ · · · ≤ Γj(
αj

2
max

i
‖e0

i ‖)
But Γ < 1, therefore (8) implies αj ≤ 2 and passing to the limit we obtain,
limj→∞ ‖f j − f j+1‖∞ = 0. The last expression means that the sequence f j is a
Cauchy sequence in the sup norm and in consequence it converges. Since we have
proved that f j(t) converges uniformly, the limit function c(t) has to be continuous.

¥
Remark: Notice that (8) is sufficient but not necessary condition. In particular,
if the hypothesis holds only after a certain step j0, the scheme still converges to a
continuous curve as we can see by applying the same proof on the polygon P j0 .
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2.3 Edge classification and preprocessing

Let nj
i with ‖nj

i‖ = 1 denote the normal vector assigned to the vertex P j
i of the

polygon P j. Let T j
i with ‖T j

i ‖ = 1 denote the tangent vector at P j
i computed such

that (T j
i , nj

i ) is an anticlockwise oriented orthonormal frame. The edges of P j are
classified as convex or inflection edges according to the following definition.

Definition 1 The edge P j
i P j

i+1 is called convex edge if the vectors T j
i , T j

i+1 point

to different halfplanes with respect to the line passing through P j
i , P j

i+1. If T j
i and

T j
i+1 point to the same halfplane, P j

i P j
i+1 is called an inflection edge. A polygon is

called convex if all its edges are convex.
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Figure 3: Edge classification. Left: Convex edge. Middle: Inflection edge.
Right: Transforming an inflection edge in two convex edges.

The normal vector n0
i at a vertex P 0

i of the initial polygon P 0 is computed as the
bisector of ∠P 0

i−1P
0
i P 0

i+1 and points to the outer of the polygon, assuming that the
numbering of the vertices P 0

i introduces a clockwise orientation. Assuming that
three or more consecutive points of P 0 are always noncollinear, there is no normal
n0

i perpendicular to e0
i , and thus, no tangent T 0

i parallel to e0
i . Hence, all edges of

P 0 are either convex or inflection edges.
At a preprocessing step, we split every inflection edge of P 0 into two consecutive
convex edges obtaining a convex polygon. If P 0

i P 0
i+1 is an inflection edge, we

subdivide it by inserting its middle-point Pm as a vertex of P 0. The normal vector
nm at Pm is computed as nm = na

‖na‖ , where

na = λ
(e0

i )
⊥

‖(e0
i )
⊥‖ + (1− λ)

T 0
i + T 0

i+1

‖T 0
i + T 0

i+1‖
(12)

(e0
i )
⊥ is the vector orthogonal to e0

i pointing to the same half-plane as T 0
i and T 0

i+1.
The parameter λ ∈ [0, 1) controls the sharpness of the inflection at the point Pm.

Lemma 1 P 0
i Pm and PmP 0

i+1 are convex edges.
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Proof: As ∠P 0
i−1P

0
i P 0

i+1 takes values in (0, 2π), the angle (e0
i , n

0
i ) takes values in

the interval (0, π) and the angle (e0
i , T

0
i ) takes values in (−π/2, π/2). By (12), the

angle (e0
i , na) is also in (−π/2, π/2). Thus, the angle (e0

i , Tm) is in the interval
(−π, 0), and thus P 0

i Pm and PmP 0
i+1 are both convex.

¥
At each subdivision step, the normal vector nj+1

2i+1 of the new point P j+1
2i+1 is the bi-

sector of ∠P j
i P j+1

2i+1P
j
i+1, while we keep the normal vectors that have been computed

at previous steps, i.e. nj+1
2i = nj

i . Using these normals, we preserve the convexity
of the polygon by selecting the new points in a convexity preserving region.

Lemma 2 Let P j be a convex polygon with vertices P j
i and tangents T j

i . Let Qj
i

be the intersection of the line rl passing through P j
i with direction T j

i and the line
rr passing through P j

i+1 with direction T j
i+1. If the new point P j+1

2i+1 is inside the

triangle P j
i Qj

iP
j
i+1, then P j+1 is also a convex polygon.

Proof: See Figure 4 (left). The tangent lines rl and rr intersect. Indeed, if they
were parallel and T j

i , T j
i+1 were pointing to the same direction, then P j

i P j
i+1 would

be an inflection edge. If they were parallel and T j
i , T j

i+1 were pointing to opposite
directions, their angle would be π, contradicting the fact that their angles with the
x-axis are both in the range (−π/2, π/2).
We have T j+1

2i = T j
i and thus, it points to the outer part of P j+1

2i P j+1
2i+1. Consider

the point Aj
i := P j+1

2i+1 + ej+1
2i . By construction, the vector nj+1

2i+1 is the bisector of

∠P j
i P j+1

2i+1P
j
i+1, hence T j+1

2i+1 := (nj+1
2i+1)

⊥ is the bisector of ∠Aj
iP

j+1
2i+1P

j
i+1. Therefore,

T j+1
2i+1 points to the inner part of P j+1

2i P j+1
2i+1. In an analogous way, we can see that

T j+1
2i+1 and T j

i+1 point to different half planes with respect to the edge P j+1
2i+1, P

j+1
2i+2.

¥
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Figure 4: Left: Convexity preserving region. Middle and Right: Two convex
cases. Observe the different direction of the y-positive axis.

We notice that when P j
i P j

i+1 is a convex edge, there are two possible configurations

for nj
i and nj

i+1. In the convex case I, the angle ωj
l,i := (ej

i , n
j
i ) is in (π/2, π), while
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the angle ωj
r,i+1 := (ej

i , n
j
i+1) is in (0, π/2), see Figure 4 (middle). In the convex

case II, the angle ωj
l,i is in (0, π/2), while the angle ωj

r,i+1 is in (π/2, π), see Figure
4 (right).
In each case, we introduce a local coordinate system S, where the positive x-axis
is on the direction of ej

i and the y-positive axis is perpendicular to x-axis and
pointing to Qj

i . In both cases the y-axis points to the direction of the subdivision
curve. That is, outside the control polygon in case I, and inside the polygon in the
case II, which corresponds to the concavities of the polygon.

2.4 Selection of the new points

In the next two Lemmas we study the ellipse with given eccentricity and foci
P j

i , P j
i+1. For simplicity, we remove the indices and use the following notation on

the system S associated with P j
i P j

i+1. The origin (P j
i + P j

i+1)/2 is denoted by PO.

The vector ej
i is denoted by e. Consequently, the coordinates of P j

i and P j
i+1 are

Fl = (−‖e‖/2, 0) and Fr = (‖e‖/2, 0) respectively.

Lemma 3 Let h(α) be the ellipse with foci Fl = (−‖e‖/2, 0), Fr = (‖e‖/2, 0) and
eccentricity (α)−1. Let P be a point on h(α) and let n be the normal vector of h(α)
at P with ‖n‖ = 1. Let ωn be the angle between e and n. If θP denotes the angle
between e and P − PO, then the following relation holds, see Figure 5 (left)

tan(θP ) =
(α2 − 1

α2

)
tan(ωn) (13)
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Figure 5: Left: The relation between the angles ωn and θP . Middle: Selection of
the new point. Right: Tangent at the new point.

Proof: In the system S, the equation of h(α) in the standard form is

( 2x

‖e‖α
)2

+
( 2y

‖e‖√α2 − 1

)2

= 1 (14)

If P = (Px, Py) is a point on h(α), then the direction of the tangent vector to h(α) at

P is tP = (− Py

α2−1
, Px

α2 ). The normal vector of h(α) at P is n = (cos(ωn), sin(ωn)) if
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and only if 〈n, tP 〉 = 0 holds, where 〈·, ·〉 denotes the scalar product. The equation
〈n, tP 〉 = 0 is equivalent to, Py

α2−1
cos(ωn) = Px

α2 sin(ωn). Taking into account that

tan(θP ) = Py

Px
, we obtain (13).

¥
In the next Lemma we compute some auxiliary points that will be used to compute
the new point to be inserted between the focci of the ellipse.

Lemma 4 Let nl and nr be the normal vectors associated with Fl and Fr respec-
tively. Let ωl, ωr be the angles (counterclockwise) between e and nl and e and nr

respectively. Let rl and rr be the tangent lines at Fl and Fr, and let Q be their
intersection, as in Lemma 2. We have

1. There is αQ > 1 such that h(α) with 1 < α < αQ intersects the triangle
FlQFr.

2. The intersection points, with positive ordinates, between h(α) and rl and h(α)
and rr are respectively Pl = (xl, yl) and Pr = (xr, yr) with

xr =
‖e‖
2
− yrtr, yr =

‖e‖(α2 − 1)(α
√

1 + t2r) + tr
2(α2 + (α2 − 1)t2r)

(15)

xl = −‖e‖
2
− yltl, yl =

−‖e‖(α2 − 1)(−α
√

1 + t2l ) + tl
2(α2 + (α2 − 1)t2l )

(16)

with tl = tan(ωl) and tr = tan(ωr).

3. The intersection point, with positive ordinates, between h(α) and the circle

with center Fl and radius ‖e‖Γ is P̃l = (x̃l, ỹl) with

x̃l =
‖e‖
2

(α2 − 2αΓ) (17)

The intersection point with positive ordinates, between h(α) and the circle

with center Fr and radius Γ‖e‖ is P̃r = (x̃r, ỹr) with x̃r = −x̃l, ỹr = ỹl.

4. If P = (xn, yn) is the point on h(α) with normal n, then

xn = s
‖e‖α2

2
√

α2 + (α2 − 1) tan ω2
n

(18)

where ωn is the angle (counterclockwise) between e and n and s = sign(tan(ωn)).
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Proof: See Figure 5 (middle). We give the proof only for the convex case I,
ωl ∈ (π/2, π) and ωr ∈ (0, π/2). The proof for the convex case II is similar.
Let (αQ)−1 be the eccentricity of the ellipse with foci Fl and Fr passing through
the point Q. To check 1) it is enough to observe that, for any 1 < α < αQ, the
ellipse h(α) does not contain the triangle FlQFr. Thus, there is an arc of h(α)
contained in this triangle.
To prove 2) we write the implicit equation of the lines rl and rr

rl : 2y tan(ωl) + 2x + ‖e‖ = 0, rr : 2y tan(ωr) + 2x− ‖e‖ = 0 (19)

Solving rr for x and substituting in (14) we obtain a quadratic equation in y.
Taking into account that tan(ωr) > 0 we compute the positive solution of this
equation, which is (15). The coordinates (16) of the point Pl are computed in a
similar way using rl and (14).
To show 3) we write the equation of the circle Cl with center Fl and radius ‖e‖Γ

Cl : (x + ‖e‖/2)2 + y2 − Γ2‖e‖2 = 0 (20)

Computing the resultant between (20) and (14) we obtain a biquadratic equation

in y. The positive solution of this equation is ỹl = ‖e‖
2

√
(α2 − 1)(1− (α− 2Γ))2.

Substituting ỹl in (20) and solving for x we obtain x̃l as in (17). The coordinates

of the point P̃r are obtained by symmetry.

To prove 4) observe that (13) implies y
x

=
(

α2−1
α2

)
tan(ωn). Solving this equation

for y and substituting in (14) we obtain a quadratic equation for x whose solution
is given by (18).

¥
We can now describe the procedure for computing the local coordinates (Xm, Ym) of
the new point P j+1

2i+1. First, we choose an αj such that αj < αQj
i
for all i, where αQj

i

is the eccentricity of the ellipse passing through Qj
i , see Section 2.5. From Lemma

4 we know that if xl < Xm < xr and x̃l < Xm < x̃r, then P j+1
2i+1 is inside the

triangle with vertices P j
i , Qj

i , P
j
i+1 and also in the convergence region I(Γ) defined

as the intersection of circles with centers P j
i and P j

i+1 and radius Γ‖ej
i‖.

Using (18), we compute the abscissae σl, σm, σr of the points on h(αj), such that
the normals of h(αj) at these points are nj

i , nj
i + nj

i+1 and nj
i+1 respectively. Then

we assign, Xl := max{xl, x̃l, σl}, Xr := min{xr, x̃r, σr}
Xm := (

σr − σm

σr − σl

)Xl + (
σm − σl

σr − σl

)Xr (21)

Finally, from (14) we compute the local coordinate Ym of the point on the upper
half of h(αj) with abcisa Xm,

Ym :=

√
(α2 − 1)(‖e‖2α2 − 4X2

m)

2α
(22)
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Notice that the abscissa Xm of the new point is a convex linear combination of
Xl and Xr. Hence, (Xm, Ym) is also inside the triangle FlQFr and inside I(Γ).
Moreover, the normal of h(αj) at (Xm, Ym) is a vector between nj

i and nj
i+1. The

choice of (Xm, Ym) respects the geometry of the configuration of the normals nj
i ,

nj
i + nj

i+1 and nj
i+1 in the sense that Xl, Xm, Xr and σl, σm, σr have the same cross

ratio.

Lemma 5 Let Pm be a point in the interior of the triangle FlQFr, and let h(α)
be the ellipse passing through Pm. Then, the tangent of h(α) at Pm intersects the
sides FlQ and FrQ of the triangle.

Proof: See Figure 5 (right). Since Pm is on the ellipse and in the interior of the
triangle FlQFr, the ellipse and Q are in different halfplanes with respect to the
tangent line rt to h(α) at Pm. Hence, the line segment FlQ joints points located
in different half planes with respect to rt. Thus, rt intersects the line segment FlQ
in a point between Fl and Q. The proof for Fr is similar. ¥
Notice that Lemma 5 guarantees that the tangent of the ellipse at the new point
(Xm, Ym) intersects the sides P j

i Qj
i and Qj

iP
j
i+1 of the triangle. Therefore, in the

step j + 2 the new points P j+2
4i+1, P

j+2
4i+3 are also inside the triangle P j

i Qj
iP

j
i+1.

2.5 Selection of the sequence αj

Lemma 6 With the same notation that in Lemma 4 the eccentricity of the ellipse
with foci Fl = (−‖e‖/2, 0), Fr = (‖e‖/2, 0) passing through Q is α−1

Q with

αQ =
cos(ωr)− cos(ωl)

sin(ωl − ωr)
(23)

Proof: From the law of sines on the triangle FlQFr

‖Fl −Q‖
sin(π

2
− ωr)

=
‖Fr −Q‖

sin(ωl − π
2
)

=
‖e‖

sin(π − ωl + ωr)
(24)

we get

αQ =
‖Fl −Q‖+ ‖Fr −Q‖

‖Fl − Fr‖ =
sin(ωl − π

2
) + sin(π

2
− ωr)

sin(π + ωr − ωl)
=

cos(ωr)− cos(ωl)

sin(ωl − ωr)

¥
In the Append we include the procedure Alphastep for computing αj. In each step
j the value αj is the minimum between a convex combination of αj

Q := miniαQj
i

and the element uj of a sequence converging to 1. Therefore, the sequence αj

obtained using this procedure tends to 1 and in all steps αj < αQj
i

for all i.

10



Theorem 2 Given a polygon P 0 with no three consecutive collinear vertices, the
subdivision scheme converges and the limit curve is continuous. Moreover, for
every convex sub-polygon of P 0, the corresponding curve segment is strictly convex
and all the inflection points are the midedges of the inflection edges of P 0.

Proof: Assume that a value 1/2 < Γ < 1 has been selected. By construction,
the new point P j+1

2i+1, to be inserted between P j
i and P j

i+1, is inside the triangle

with vertices P j
i , P j+1

2i+1, P
j
i+1 and also in I(Γ). Hence, the sufficient condition of

convergence (8) holds and we may conclude that the subdivision method converges
and the limit curve is continuous. Moreover, after Lemma 2 we get that the sub-
polygons of P j arising from a convex sub-polygon of P 0 are also convex, hence the
corresponding arc of limit curve is convex. Finally, in the preprocessing step, we
split any inflection edge in two consecutive convex edges inserting its midpoint.
Since the convexity is preserved in the next subdivision steps, the inflection points
on the limit curve are contained in segments of the curve corresponding to inflection
edges of P 0.

¥

3 Properties of the limit curve

3.1 Parametrization

In this section we prove properties of the subdivision scheme when t0 is the chord
length parametrization.

Theorem 3 Consider the subdivision scheme (5) using the parametrization (7)
with (2) and β = 1. Denote by lj(P j

0 , P j(t)) the length of the subdivision curve in
the step j between points P j

0 and P j(t). Then,

lj(P j
0 , P j(t)) = (α0α1 · · ·αj−1)t (25)

Proof: Let’s assume that tj−1
i ≤ t ≤ tj−1

i+1 . First we are going to show that,

lj(P j
2i, P

j(t)) = αj−1lj−1(P j−1
i , P j−1(t)) (26)

In fact, by linear interpolation, P j−1(t) =
(

tj−1
i+1−t

tj−1
i+1−tj−1

i

)
P j−1

i +
(

t−tj−1
i

tj−1
i+1−tj−1

i

)
P j−1

i+1

Thus, lj−1(P j−1
i , P j−1(t)) =

∥∥∥
( tj−1

i − t

tj−1
i+1 − tj−1

i

)
P j−1

i +
( t− tj−1

i

tj−1
i+1 − tj−1

i

)
P j−1

i+1

∥∥∥

=
( t− tj−1

i

tj−1
i+1 − tj−1

i

)
‖ej−1

i ‖ (27)

11



In order to compute lj(P j
2i, P

j(t)) we have to take into account two cases:
Case a) tj2i ≤ t ≤ tj2i+1.

By linear interpolation, P j(t) =
(

tj2i+1−t

tj2i+1−tj2i

)
P j

2i +
(

t−tj2i

tj2i+1−tj2i

)
P j

2i+1. Hence,

lj(P j
2i, P

j(t)) = ‖P j
2i − P j(t)‖ =

( t− tj2i

tj2i+1 − tj2i

)
‖ej

2i‖ (28)

Now from (7) we know that, tj2i+1 − tj2i = (1 − δj−1
i )(tj−1

i+1 − tj−1
i ). Substituting in

(28), taking into account that 1 − δj−1
i =

‖ej
2i‖

αj−1‖ej−1
i ‖ and comparing with (27) we

finally get,

lj(P j
2i, P

j(t)) =
( t− tj−1

i

tj−1
i+1 − tj−1

i

)
αj−1‖ej−1

i ‖ = αj−1lj−1(P j−1
i , P j−1(t))

which shows (26) for case a). Case b) tj2i+1 ≤ t ≤ tj2i+2 is proved in a similar way.
Now, observe that

lj(P j
0 , P j(t)) = lj(P j

0 , P j
2i) + lj(P j

2i, P
j(t))

= αj−1(lj−1(P j−1
0 , P j−1

i ) + lj−1(P j−1
i , P j−1(t)))

= αj−1lj−1(P j−1
0 , P j−1(t)) (29)

Hence, applying recursively (29) we get

lj(P j
0 , P j(t)) = (αj−1αj−2 . . . α0)l0(P 0

0 , P 0(t)) = (αj−1αj−2 . . . α0)t

¥
Remark: Equation (25) means that the piecewise linear function f j(t) interpo-
lating (tji , P

j
i ) is parametrized by the arc-length. Let c(t) be the limit curve and

assume that α =
∏∞

j=0 αj is finite. Defining L(0, t) := limj→∞ lj(P 0
0 , f j(t)) as the

arc-length of the section of c(t) between points c(0) = P 0
0 and c(t) we get from

(25) L(0, t) = αt. Hence, c(t) is parametrized by the arc-length.

3.2 Distance from the curve to the polygon

Lemma 7 Any vertex P j
k of the j-th subdivision of the edge P 0

i P 0
i+1 is inside the

ellipse with foci P 0
i , P 0

i+1 and eccentricity (α0α1 · · ·αj−1)−1.

Proof: We have P 0
i = P j

2ji
and P 0

i+1 = P j
2j(i+1)

. The vertices in j-th step corre-

sponding to the edge P 0
i P 0

i+1 are P j
k , for k = 2ji, ..., 2j(i + 1) and

‖P 0
i − P j

k‖ + ‖P j
k − P 0

i+1‖ = ‖P j
2ji
− P j

k‖+ ‖P j
k − P j

2j(i+1)
‖

12



≤
k−1∑

l=2ji

‖P j
l+1 − P j

l ‖+

2j(i+1)−1∑

l=k

‖P j
l+1 − P j

l ‖ =

2j(i+1)−1∑

l=2ji

‖P j
l+1 − P j

l ‖

= αj−1

2j−1(i+1)−1∑

l=2j−1i

‖P j−1
l+1 − P j−1

l ‖ = · · · = αj−1αj−2 · · ·α0‖P 0
i+1 − P 0

i ‖

Hence, the sum of the distances from P j
k to P 0

l , l = i, i + 1 is smaller or equal to
αj−1αj−2 · · ·α0 times the distance from P 0

i to P 0
i+1.

¥
Using Lemma 7, we obtain an upper bound of the Hausdorff distance dH between
the segment of the limit curve {c(t), t ∈ [tji , t

j
i+1]} and the edge P 0

i P 0
i+1.

Theorem 4 Let c(t) be the limit curve of the subdivision scheme (5). Assume
that α =

∏∞
j=0 αj is finite. Then

dH({c(t), t ∈ [t0i , t
0
i+1]}, P 0

i P 0
i+1) ≤

‖e0
i ‖
2

√
α2 − 1 (30)

Proof: From Lemma 7 we know that all points P j
k obtained at the j-th subdivision

of the edge P 0
i P 0

i+1 are contained in the ellipse with foci P 0
i , P 0

i+1 and eccentricity
(α0α1 · · ·αj−1)−1. In consequence, points on c(t) for t ∈ [t0i , t

0
i+1] are in the interior

of the ellipse with foci P 0
i , P 0

i+1 and eccentricity 1/α. Observe than the length of

the semiminor axis of this ellipse is
‖e0

i ‖
√

α2−1

2
, while the distance from each focus to

the closer intersection point between the semimajor axis and the ellipse is
‖e0

i ‖(α−1)

2
.

Since α ≥ 1, the first one is bigger than the second one. Therefore, the Hausdorff
distance from the section of the limit curve corresponding to the parameter interval

[t0i , t
0
i+1] to the edge P 0

i P 0
i+1 is bounded above by

‖e0
i ‖
√

α2−1

2
.

¥

4 Numerical Experiments

In this section we show curves produced from the proposed algorithm for different
initial polygons. In the preprocessing step we split the inflection edges, introducing
a new vertex in the middle of the edge. In all the examples we do four steps of
subdivision. The sequence αj is different in each example and was computed using
the procedure described in section Append, with the value Kj = 2j−1

2j − 0.4.

In Table 1 we show the maximum value of the cosine of the angle between the
normal nj

i and the adjacent edges P j
i−1P

j
i and P j

i P j
i+1 for j = 1, 2, 3, 4. Notice that

as j grows the angle goes to π/2, showing that the limit curve is smooth.

13



Figure 6: On the left the starting polygon and the tangent lines at points of the
step 4. On the right the starting polygon and the polygonal curve after 4 steps.

Example Γ j=1 j=2 j=3 j=4 α
1 0.95 0.4718 0.2417 0.1331 0.0684 [1.0414 1.0270 1.0078 1.0017]
2 0.98 0.5612 0.2352 0.1198 0.0641 [1.0232 1.0165 1.0050 1.0010]
3 0.97 0.5375 0.2237 0.1310 0.0714 [1.0232 1.0143 1.0029 1.0003]
4 0.98 0.6291 0.3276 0.1633 0.0856 [1.0214 1.0163 1.0051 1.0012]
5 0.98 0.6397 0.2604 0.1853 0.0998 [1.0219 1.0135 1.0015 1.0001]
6 0.96 0.5375 0.2362 0.1145 0.0643 [1.0232 1.0158 1.0046 1.0009]
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5 Append

In this section we summarize the Algorithm Arc-length subdivision, which uses 2
main procedures: Alphastep, which computes the value of the parameter α in each
step j and Displacement, which computes the point P j+1

2i+1 to be inserted in the

step j between P j
i and P j

i+1. The auxiliary procedure Compangles computes the
cosines and sines of the angles between the assigned normal at a vertex and the
edges containing that vertex. Notation: P j = (P j

i )i, n
j = (nj

i )i, e
j = (ej

i )i.

Algorithm Arc-length subdivision

Given an initial polygon P 0 = {P 0
i }

Preprocessing

• Compute the normal vector n0
i at each vertex P 0

i .

• Classify the edges of P 0 in convex or inflection edges.

• Split each inflection edge P 0
i P 0

i+1 in two consecutive convex edges.

Main loop: Given a convex polygon P 0, normal vectors n0, the maximum number
jmax of subdivision steps and a sequence u = (uj), uj ∈ R with limj→∞ uj = 1,

for j = 0 : jmax− 1

{cωj
l , cω

j
n, cω

j
r , sω

j
l , sω

j
r , e

j} = Compangles(P j, nj)

{αj, tωj
l , tω

j
n, tω

j
r} = Alphastep(P j, ej, cωj

l , cω
j
n, cωj

r , sω
j
l , sω

j
r , u

j)

if αj = 1 stop

else

for i = 1 : length(P j)

P j+1
2i = P j

i , nj+1
2i = nj

i

{dj
i , ρ

j
i} = Displacement(ej

i , tω
j
l,i, tω

j
n,i, tω

j
r,i, α

j, Γ)

P j+1
2i+1 =

P j
i + P j

i+1

2
+ ρj

id
j
i

nj+1
2i+1 =

(P j+1
2i+1 − P j

i ) + (P j+1
2i+1 − P j

i+1)

‖(P j+1
2i+1 − P j

i ) + (P j+1
2i+1 − P j

i+1)‖
end

end

end

16



Procedure Alphastep uses three prescribed constant: Kj ∈ (0, 1), a real positive
number ε close to 0 and M , a big positive number assigned to the tangent of an
angle close to π/2. The input of Alphastep is P j, ej and the output of the pro-
cedure Compangles: cωj

l := (cos(ωj
l,i))i, cωj

r := (cos(ωj
r,i))i, cωj

n := (cos(ωj
n,i))i,

and sωj
l := (sin(ωj

l,i))i, sωj
r := (sin(ωj

r,i))i, where ωj
n,i is the angle between nj

i +nj
i+1

and ej
i .

{cωj
l , cω

j
n, cωj

r , sω
j
l , sω

j
r , e

j} = Compangles(P j, nj)

for i = 1 : length(P j)− 1

ej
i = P j

i+1 − P j
i , mj

i =
nj

i + nj
i+1

‖nj
i + nj

i+1‖
cωj

l,i = 〈nj
i , e

j
i 〉/‖ej

i‖, cωj
r,i = 〈nj

i+1, e
j
i 〉/‖ej

i‖, cωj
n,i = 〈mj

i , e
j
i 〉/‖ej

i‖
sωj

l,i =
√

1− (cωj
l,i)

2, sωj
r,i =

√
1− (cωj

r,i)
2

end

{αj, tωj
l , tω

j
n, tωj

r} = Alphastep(P j, ej, cωj
l , cω

j
n, cωj

r , sω
j
l , sω

j
r , u

j)

for i = 1 : length(P j)− 1

If |cωj
r,i| > ε, |cωj

l,i| > ε

tωj
l,i =

(sωj
l,i

cωj
l,i

)2

, tωj
r,i =

(sωj
r,i

cωj
r,i

)2

αQj
i
= (cωj

r,i − cωj
l,i)/(sω

j
l,icω

j
r,i − cωj

l,isω
j
r,i)

else

tωj
l,i = M, tωj

r,i = M, αQj
i
= 1

end

If |cωj
n,i| > ε tωj

n,i =
1− (cωj

n,i)
2

(cωj
n,i)

2
else tωj

n,i = M end

αj
Q = min

i
(αQj

i
), αj = min{uj, KjαQ + (1−Kj)}

end

Given Γ < 1 (Γ close to 1) and αj > 1, the procedure Displacement computes
the direction of displacement dj

i and the value ρj
i necessary to obtain P j+1

2i+1. In the

input we use tωj
l,i := tan(ωj

l,i)
2, tωj

r,i := tan(ωj
r,i)

2 and tωj
n,i := tan(ωj

n,i)
2.
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{dj
i , ρ

j
i} = Displacement(ej

i , tω
j
l,i, tω

j
n,i, tω

j
r,i, α

j, Γ)

If tωj
n,i = M

dj
i =

(ej
i )
⊥

‖ej
i‖

, ρj
i =

‖ej
i‖αj

√
(αj)2 − 1

2

else

Compute xl, xr using (15)− (16), with α = αj, e = ej
i , t2l = tωj

l,i, t2r = tωj
r,i

Compute x̃l using (17) with α = αj, e = ej
i and set x̃r = −x̃l

Compute σl, σm, σr using (18) with α = αj, e = ej
i and

tan(ωn)2 = {tωj
l,i, tω

j
n,i, tω

j
r,i} respectively

Xl = max{xl, x̃l, σl}, Xr = min{xr, x̃r, σr}
Compute Xm, Ym using (21)− (22) with α = αj, e = ej

i

tan(θj
i ) = Ym/Xm, s = sign(tan(θj

i ))

cos(θj
i ) =

s√
1 + tan2(θj

i )
, sin(θj

i ) =

√
1− cos2(θj

i )

dj
i = cos(θj

i )
ej

i

‖ej
i‖

+ sin(θj
i )

(ej
i )
⊥

‖ej
i‖

ρj
i =

‖ej
i‖
2

(αj)2

√
(αj)2 − 1

(αj)2 − cos2 θj
i

end
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