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Figure 1. Hatched pen-and-ink illustrations using our fluid-based framework.

Abstract

This paper presents a novel meshless framework for
line art rendering of surfaces with complex geometry and
arbitrary topology. Unlike the usual frameworks, the line
placement is achieved using an inviscid fluid flow simula-
tion to compute the direction fields over the surface model.
To perform the computational fluid dynamics, we utilize
the Smoothed Particles Hydrodynamics (SPH) method. We
demonstrate the simplicity and effectiveness of our method
illustrating a variety of complex surfaces.
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1. Introduction

Pen-and-ink line drawing techniques can simultaneously
convey lighting, reveal shapes, suggest material properties,
and direct attention using a limited palette of tones. Hatch-

ing uses groups of strokes and spatial coherence to create
different intensities and tones (see Figure 2).

The study of vector fields is very popular in Computer
Graphics and it has many applications, such as texture
synthesis [20, 22], fluid simulation [13, 18, 1] and non-
photorealistic rendering (NPR) [3, 5, 6]. The traditional
hatching methods based on vector fields in NPR literature
[3, 5, 6, 22] are limited to deal only with cases where the
input model can be considered as a smooth surface (at least
class C2), because in these methods the vector fields are
generated using differential quantities like principal curva-
tures, normal field and geodesic paths from classical differ-
ential geometry. However, the smooth surfaces are repre-
sented by a smooth polygonal mesh, i.e., these meshes have
a well-defined topological map (connectivity) between its
polygons (triangles).

We propose a novel physically-based framework for line
art rendering of surfaces with complex geometry and ar-
bitrary topology inspired by a particle-based fluid simula-
tion (Figure 1). Unlike the traditional methods, we replace
the usual differential geometry approach by a physical ap-
proach, in other words, the smooth vector fields are com-
puted using differential quantities (e.g. velocity) of a fluid



Figure 2. Exemple of real pen-and-ink artistic
(courtesy of Fernando Miller).

flow simulation instead of curvature field and normal field
approximations. These approximations are strongly depen-
dent of the geometry and the connectivity of the input mesh
model. Thus, the proposed framework allows us to take the
input model as non-meshed model (triangle-soup).

In our method, the line placement is achieved using an
inviscid fluid model to compute the direction fields over
the surfaces. One of the seminal works on fluid flow sim-
ulation on surfaces was presented by Stam in [18], which
uses a mesh-based method to simulate fluid flow defined on
Catmull-Clark subdivision surfaces. Instead of this work,
the computational fluid dynamics is performed using the
Smoothed Particle Hydrodynamics (SPH) method.

Related works. Winkenbach et al. [16] and Salis-
bury et al. [21] described the principles of traditional
pen-and-ink illustration and showed an interactive sys-
tem that address hatching in still images from 3D scenes.
The method presented in this paper works on the ob-
ject space. Hertzmann and Zorin [6] presented an algorithm
for line-art rendering of smooth surfaces. They use lo-
cal curvature of the object to derive a cross field and place
hatches and cross hatches on it. Zhang et al. [22] showed
a vector field design system that allows the user to cre-
ate a wide variety of vector fields with control of their fea-
tures based on concepts of geodesic polar maps and parallel
transport. Praun et al. [15] described a real-time hatch-
ing system which allows for smooth transitions between
art maps using different texture tone maps. Elber [3] de-
scribes a method for rendering implicit surfaces based
on particle systems for both parametric and implicit sur-
faces. Foster et al. [4] draws complex implicit objects using
techniques that resemble traditional pen-and-ink illustra-
tions, including hatching. Their method employs a particle
system to find the interesting areas on the surface. The pre-

vious particle-based methods [4, 3] do not have any kind of
physical concepts.

Contributions. This work introduces a novel physically-
based rendering framework for hatched pen-and-ink illus-
trations of surfaces with complex geometry and arbitrary
topology. Unlike the previous works, we use an inviscid
fluid model to create the hatching line directions over the
surface model. Due to the SPH particle approximation of
the fluid flow, our hatching framework becomes a meshless
method, i.e., there is not a topological map between par-
ticles and neither between the triangles of the input non-
meshed model. For this reason, we believe that our hatch-
ing framework is the first hatching method based on vec-
tor fields purely free of geometry and topology of the in-
put model. Moreover, our framework is well suited to il-
lustrate arbitrary models independent of its representation:
manifold or non-manifold, meshed or non-meshed, simple
topology or arbitrary topology, smooth surfaces or surfaces
with complex geometry (sharp-features).

Paper outline. We introduce the physical model of the pro-
posed method in the next section. In Section 3, we give
a brief overview of the SPH method. Section 4 presents
the novel physically-based method of illustration. Next, we
show the illustrations made by our method. Finally, we fin-
ish the paper with a discussion of results and glimpse on fu-
ture works.

2. Physics formulation

Traditionally, hatching lines are generated through of
vector fields computed from the discrete principal curva-
tures on the model’s surface [3, 5, 6, 22] or using image
gradient [17]. We propose a physically-based framework to
create direction fields for hatching lines using the velocity
vector field of an inviscid fluid flow.

The physical laws of an inviscid fluid flow are given
by the Euler equations, these equations are correspondent
to the Navier-Stokes equations without the viscous term.
In this work, we chose the Lagrangian formulation of the
Euler equations. Lagrange’s approach describes the govern-
ing equations from the viewpoint of a moving particle, i.e.,
coordinate system moves with the flow, and they can be for-
mulated by the following two equations:

dρ

dt
= −ρ∇ · v (1)

dv
dt

= −1
ρ
∇p + g (2)

where t denotes the time, v the velocity vector field, ρ the
fluid density, p the fluid pressure and g the gravity acceler-
ation vector.



(a) Velocity field. (b) Cross field. (c) Final illustration.

Figure 3. The main hatch direction fields on the Venus. (a) Velocity field generated by the SPH fluid
equations. (b) Cross field produced by the binormal vector of each particle. (c) Final result.

3. SPH approximation scheme

The SPH method is a numerical tool used in the meshless
discretization of the governing equations of a physical sys-
tem. There are many Computer Graphics applications us-
ing SPH, such as deformable bodies [2, 8], lava flow [19]
and fluid flow simulation [13, 14, 1].

The key idea of SPH method in fluid flow simulations is
to discretize the fluid by a set of particles where each parti-
cle represents a fluid element and carries physical attributes
like velocity, pressure, mass, density. These attributes and
their derivatives at point location x are updated through of
discrete convolutions with a compact support kernel func-
tion 1 W as follows:

f(x) =
∑

j∈N(x)

f(xj)W (x− xj , h)
mj

ρj

∇f(x) =
∑

j∈N(x)

f(xj)∇xW (x− xj , h)
mj

ρj

∇ · f(x) =
∑

j∈N(x)

f(xj) · ∇xW (x− xj , h)
mj

ρj

where the set N(x) contains all the particles at distance be-
low h from x, j is the particle index, xj the particle posi-
tion, mj the particle mass and ρj the particle density.

1 We choose a piecewise quartic smoothing kernel [9].

3.1. SPH Euler equations

SPH density approximation. The particle approximation
of the derivative density is made by following SPH version
of continuity equation (1):

dρi

dt
= ρi

∑

j∈N(xi)

(vi − vj) · ∇iW (xij , h)
mj

ρj
, (3)

where vi and vj are velocities at particles i and j respec-
tively, and xij = xi − xj .

We update the density ρi at particle i using the Euler in-
tegration scheme in each time step δt as follows:

ρi(t + δt) = ρi(t) + δt
dρi

dt
.

SPH velocity approximation. Since SPH suits better for
compressible fluid, we approximate the incompressible
fluid by a weakly compressible fluid through of an equa-
tion of state [11] for the pressure. In this work, we use an
equation of state proposed by Morris et al. [12]:

pi = c2 (ρi − ρ0) (4)

where pi is the pressure at particle i, c the speed of sound,
which represents the fastest velocity of a wave propagation
in that medium, and ρ0 is a reference density.

After computing the pressure at all particles using equa-
tion (4), we can update the pressure term in momentum



(a) Particle approximation. (b) Particle-triangle approximation.

Figure 4. Comparing the cross field on the sphere. (a) Cross field produced by the particle approxi-
mation. (b) Smooth cross field produced by the particle-triangle approximation.

equation (2) at each particle:

1
ρi
∇pi =

∑

j∈N(xi)

mj

(
pi

ρ2
i

+
pj

ρ2
j

)
∇iW (xij , h). (5)

Finally, we utilize again the Euler scheme to integrate
the acceleration of each particle and to obtain the new par-
ticle velocity

vi(t + δt) = vi(t) + δt
dvi

dt
. (6)

4. Fluid-based surface hatching

This section details the four main stages of our physi-
cal framework to build the two main hatch direction fields
for pen-and-ink illustration (Figure 3): the particle initial-
ization, computing the velocity vector field, building the
cross field and the artistic rules for illustration.
Initialization. This first stage consists in to create a sam-
pling SPH particle set over the input model. To perform this
task we consider the input model as base mesh and we use
Loop subdivision scheme to refine this base mesh. Then, we
take vertices of refined mesh as our initial SPH particle set.
Velocity field on surfaces. After we initializate our system,
we need a method to create the hatching line directions for
the visible portion of the surface model. Traditionally, this
is made using a direction field [6]. In opposite of the tra-
ditional vector fields, the direction field does not have any
sense of orientation and magnitude.

In our method, we compute the direction field for each
particle i using the SPH fluid equations (Section 3.1) and
taking the direction information using the projection of the
velocity vi over the surface model.

This projection is obtained through of a collision test be-
tween the particles and the triangles of the surface model.

The projected velocity vtan
i is taken as the tangen-

tial component of vi provided by the collision response.
The intersection between particles and triangles is per-
formed by a simplified version of the algorithm proposed
by Karabassi et al. [7].

Since the hatching lines on the model should not follow
arbitrary directions, we use a particle velocity correction to
maintain a more ordered move of particles in absence of vis-
cosity, this correction is called XSPH velocity correction (X
of unknown) [10]. The XSPH correction consists in com-
puting an average velocity from the velocities of the neigh-
boring particles in the following way:

vi ← vi +
∑

j∈N(xi)

mj

ρi + ρj
(vj − vi)W (xij , h) .

Constructing cross field. In this stage, we generate the
cross-hatching trough of another main direction field called
cross field. The cross field consists in assigning a perpen-
dicular direction to each particle. For this reason, we com-
pute the binormal vector for each particle i

bi = vtan
i × ni,

where ni is the particle surface normal.
The delicate point for constructing cross fields in our

method remains in estimating the particle surface normal.
It is natural that we utilize a SPH approximation for parti-
cle surface normal proposed by Müller et al. [13]:

ni =
∑

j∈N(xi)

∇iW (xij , h)
mj

ρj
. (7)

However, due to the particles deficiency in the surface
model the approximation above leads us to spurious results
(Figure 4). To avoid this problem, we replace the particle



(a) θ1 = 0.3, θ2 = 0.3 (b) θ1 = 0.5, θ2 = 0.5 (c) θ1 = 0.7, θ2 = 0.3 (d) θ1 = 1, θ2 = 0 (e) θ1 = 1, θ2 = 1

Figure 5. Our method provides different drawings of amphora model changing just two parameters.

surface normal by the normal of the surface’s triangle wich
the particle collides. We compute the normal of each trian-
gle using the simple right-hand rule. Finally, the particle-
triangle approximation for the binormal vector at the parti-
cle i is given by

bi = vtan
i × nT

i ,

where nT
i is the normal of triangle T which the particle i

touches.

Surface art style rules. The art style rules of our render-
ing method are similar of the method proposed by Hertz-
mann and Zorin [6]. The hatching lines placement is sep-
arated into four levels: highlights (no hatching), midtones
(single hatching), shadowed parts (cross-hatching) and sil-
houettes (thick cross-hatching). These rules are illustrated
in Figure 6.

Once we have the velocity field and cross field, we can
perform the hatching rules through of a view-dependent
vector selection along these fields. This is made comput-
ing the dot product between the view vector dview and the
particle surface normal nT

i for each particle i:

di = −
〈
dview,nT

i

〉

‖dview‖
∥∥nT

i

∥∥ .

Note that, the values of di are in the range [−1, 1].
The light position is very important in art drawings, be-

cause the light reveals important features of the model.
For simplicity and to keep the natural light position for art
illustrators, we consider the light vector with the same di-
rection and orientation of dview.

Furthermore, our method uses two user-tunable thresh-
olds θ1 and θ2 that separates the different hatching levels in
the following way:

• Highlights: if di > θ1, we remove the vectors vtan
i and

bi (Figure 6(a)).

• Midtones: if θ2 ≤ di < θ1, we draw the vector vtan
i

(Figure 6(b)).

• Shadows: if 0 < di < θ2, we draw the vectors vtan
i

and bi (Figure 6(c)).

• Silhouettes: if di = 0, we draw the vectors vtan
i and

bi and increasing their thickness (Figure 6(d)).

To improve the performance of our algorithm we also
compute the particle visibility based on the view frustum
culling. In this case, we remove occluded particles from the
framebuffer when di < 0.

(a) (b) (c) (d)

Figure 6. Hatching rules. (a) Highlights. (b)
Midtones. (c) Shadowed parts. (d) Silhou-
ettes.



(a) 10 iterations. (b) 100 iterations. (c) 150 iterations. (d) 300 iterations.

Figure 7. Evolution of the bitorus surface illustration according our fluid solver.

5. Results

The illustrations in this paper were generated using our
fluid-based framework. The versatility of the our method
allows us to create illustrations from arbitrary models (Fig-
ures 8(b) and 8(c)) to mathematical implicit surfaces (Fig-
ures 7 and 8(a)).

The proposed method is able to illustrate complex mod-
els with sharp features (Figure 8(d)) and deals graceful with
the complex topology of Chair surface (Figure 8(a)). Note
that, the cross-hatching at Kitten model (Figure 8(c)) causes
a fur effect at the ears.

The information about the models and their particle dis-
cretization is provided by Table 1. In particular, we take the
gravity vector g with the same direction and orientation of
dview in our examples.

Illustration Number of Number of
particles triangles

David 15000 5000
Fertility 15000 7000

Amphora 10000 5000
Chair 15000 7000

Bitorus 12000 800
Cow 12000 4000
Kitty 16000 8000
Venus 20000 700
Twirl 2600 1300

Table 1. Number of particles and triangles
used in the examples.

6. Conclusion & Future Works

In this paper, we have presented a new non-photorealistic
rendering method for drawing pen-and-ink illustrations us-
ing a fluid-based method to compute direction fields on sur-
faces. Our method relies on the SPH meshless framework,
used in the discretization of Euler equation terms. The ef-
fectiveness of the method is showed on a wide variety of
complex examples.

The illustrations generated by our method are computed
interactively in a few time steps of the fluid solver, this pro-
vides a quickly preview of the drawings (Figure 7). The per-
formance and the time-consuming of our algorithm depend
exclusively of the number of fluid particles and the num-
ber of the triangles at the surface model.

This work can be extend and improved in three main di-
rections:

Artistic side. We can include in our framework an inter-
activity with design artist in toward of the fluid simulation
becomes controllable. Moreover, we can adding new line
styles to create different drawing styles.

Physical side. We can use another fluid model and adding
new physical attributes in each particle, such as: ink’s vis-
cosity, pen’s pressure produced by the artist and ink’s sur-
face tension.

Animation side. Finally, we can utilize the time depen-
dency of our fluid framework to produce a coherence be-
tween the strokes along the time.

Acknowledgments
The David’s head model was courtesy of Stanford Digi-

tal Michelangelo Project, the others models used in this pa-
per were provided by the shape repository AIM@SHAPE
project (http://shapes.aim-at-shape.net).

A. Paiva is member of LCAD lab. at USP – São Carlos,
which is sponsored by (Fundação de Amparo a Pesquisa
do Estado de São Paulo) under grant n. 2008/00093-0.
E.V. Brazil, of Visgraf lab. at IMPA, is sponsored by CNPq
(Conselho de Desenvolvimento Cientı́fico e Tecnológico).
F. Petronetto, of the Matmı́dia lab. at PUC–Rio, is spon-
sored by PETROBRAS. M.C. Sousa is member of Depart-
ment of Computer Science at University of Calgary.

References

[1] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based vis-
coelastic fluid simulation. In Symposium on Computer Ani-
mation, pages 219–228, 2005.

[2] M. Desbrun and M. P. Cani. Smoothed particles: A new
paradigm for animating highly deformable bodies. In 7th
International Workshop on Computer Animation and Simu-
lation, pages 61–76, 1996.

http://shapes.aim-at-shape.net


(a)

(c)

(b)

(d)

Figure 8. Illustration created by our method. (a) Chair surface. (b) Cow model. (c) Kitten. (d) Twirl.

[3] G. Elber. Line art illustrations of parametric and implicit
forms. IEEE Trans. Vis. Comp. Graph., 4(1):71–81, 1998.

[4] K. Foster, P. Jepp, B. Wyvill, M. C. Sousa, C. Galbraith, and
J. A. Jorge. Pen-and-ink for BlobTree implicit models. Com-
puter Graphics Forum, 24(3):267–276, 2005.

[5] A. Girshick, V. Interrante, S. Haker, and T. Lemoine. Line
direction matters: An argument for the use of principal di-
rections in 3d line drawings. In Proceedings of NPAR 2000,
pages 43–52, 2000.

[6] A. Hertzmann and D. Zorin. Illustrating smooth surfaces.
In Proceedings of ACM SIGGRAPH 2000, pages 517–526,
2000.

[7] E.-A. Karabassi, G. Papaioannou, T. Theoharis, and
A. Boehm. Intersection test for collision detection in par-
ticle systems. Journal of Graphics Tools, 4(1):25–37, 1999.

[8] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and
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