Complete hypersurfaces with constant scalar curvature in spheres

Aldir Brasil Jr. A. Gervasio Colares Oscar Palmas *

Abstract

To a given immersion $i: M^{n} \rightarrow \mathbb{S}^{n+1}$ with constant scalar curvature R, we associate the supremum of the squared norm of the second fundamental form $\sup |A|^{2}$. We prove the existence of a constant $C_{n}(R)$ depending on R and n so that $R \geq 1$ and $\sup |A|^{2}=C_{n}(R)$ imply that the hypersurface is a $H(r)$-torus $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$. For $R>(n-2) / n$ we use rotation hypersurfaces to show that for each value $C>C_{n}(R)$ there is a complete hypersurface in \mathbb{S}^{n+1} with constant scalar curvature R and $\sup |A|^{2}=C$, answering questions raised by Q. M. Cheng.

Keywords: Scalar curvature, rotation hypersurfaces, product of spheres. MSC Classification: 53C42, 53A10.

Introduction

Let M^{n} be a complete hypersurface immersed by $i: M^{n} \rightarrow \mathbb{S}^{n+1}$ into the unit sphere \mathbb{S}^{n+1} and R be the normalized scalar curvature of M (we recall the definitions in a moment). Many rigidity theorems have been obtained by imposing natural conditions to R. One of the first results in this respect was obtained by Cheng and Yau in [4]. By using an adequate operator denoted here by L_{1} they proved that a complete hypersurface in \mathbb{S}^{n+1} with constant R and non-negative sectional curvature must be umbilical or isometric to a riemannian product $\mathbb{S}^{k}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-k}(r), 1 \leq k \leq n-1$, where for example $\mathbb{S}^{n-k}(r)$ denotes a sphere of dimension $n-k$ and radius r.

Some years later, H . Li used L_{1} in [8] to analyze a compact hypersurface of \mathbb{S}^{n+1} with R constant, $R \geq(n-2) / n$ and second fundamental form A satisfying $|A|^{2} \leq C_{n}(R)$, where

$$
\begin{equation*}
C_{n}(R)=(n-1) \frac{n \bar{R}+2}{n-2}+\frac{n-2}{n \bar{R}+2}, \quad \bar{R}=R-1 \tag{1}
\end{equation*}
$$

[^0]Under these conditions, he showed that M either satisfies $|A|^{2} \equiv n \bar{R}$ and M is totally umbilical or $|A|^{2} \equiv C_{n}(R)$ and M is isometric to a $H(r)$-torus given as $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$, where

$$
r^{2}=\frac{n-2}{n R} \leq \frac{n-2}{n}
$$

In [9], H. Li also remarked that for $R \geq 1$ a similar rigidity theorem may be obtained replacing "compact and $|A|^{2} \leq C_{n}(R)$ " by "complete and $|A|^{2} \leq$ $C_{n}(R)-\epsilon$ ". In this paper we improve this result (see theorem 1) by droping the number ϵ.

On the other hand, Q. M. Cheng analyzed in [2] the case where $|A|^{2} \geq C_{n}(R)$ and proved that a complete locally conformally flat hypersurface with such a condition must satisfy $R>(n-2) / n$.

When R is constant, $R \neq(n-2) /(n-1)$ and $|A|^{2} \geq C_{n}(R)$, Cheng also proved that a complete hypersurface M with such restrictions must be again a $H(r)$-torus. In the same case $R \neq(n-2) /(n-1)$ he showed that there are no complete hypersurfaces in \mathbb{S}^{n+1} with two principal curvatures of multiplicities $(n-1,1)$ and $|A|^{2} \geq C_{n}((n-2) /(n-1))=n$.

In the same paper [2], Cheng posed two problems:
Problem 1. Let M^{n} be an n-dimensional complete hypersurface with constant scalar curvature R in \mathbb{S}^{n+1}. If $R>(n-2) / n$ and $|A|^{2} \leq C_{n}(R)$, where $C_{n}(R)$ is given by (1). Is M isometric to either a totally umbilical hypersurface or to the riemannian product of the form $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$?

In [2] Cheng solved problem 1 affirmatively for $R=(n-2) /(n-1)$. Also, in [3], Cheng, Shu and Suh answered it affirmatively for compact hypersurfaces with $R>(n-2) / n, R \neq(n-2) /(n-1)$ and two principal curvatures. Here we further analyze this problem, proving that the answer to problem 1 is affirmative also in the complete non-compact case with $R \geq 1$.

Theorem 1. Let M^{n} be a n-dimensional complete hypersurface of \mathbb{S}^{n+1} with constant scalar curvature $R \geq 1$. If $|A|^{2} \leq C_{n}(R)$ everywhere, then either

1. $|A|^{2} \equiv n(R-1)$ and M is totally umbilical, or
2. $\sup |A|^{2}=C_{n}(R)$. If $\sup |A|^{2}$ is attained at some point in M, then M is the $H(r)$-torus $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$.

Hence, problem 1 remains open for $(n-2) / n<R<1$.
Problem 2. Let M^{n} be an n-dimensional complete hypersurface with constant scalar curvature $R=(n-2) /(n-1)$ in \mathbb{S}^{n+1}. If M has only two distinct principal curvatures, one of which is simple, is M isometric to the Clifford torus $\mathbb{S}^{1}(\sqrt{1 / n}) \times \mathbb{S}^{n-1}(\sqrt{(n-1) / n})$?

In order to make some educated guesses to answer this question, we have at hand some examples where geometric quantities as R and $|A|^{2}$ can be calculated or easily estimated.

These examples are the rotation hypersurfaces defined and studied in space forms in [5]. See also [7], where M. L. Leite made a detailed analysis of rotation hypersurfaces with constant scalar curvature in space forms.

In this paper, we will analyze these hypersurfaces and describe the variation of $|A|^{2}$ in terms of R, to obtain the following result.

Theorem 2. Let R, C be constants such that $R>(n-2) / n$ and $C \geq C_{n}(R)$. Then there exists a complete n-dimensional hypersurface of \mathbb{S}^{n+1} with constant scalar curvature R such that $\sup |A|^{2}=C$.

Taking $R=(n-2) /(n-1)$, this result shows that the answer to problem 2 is negative.

We may represent graphically our results by using a plane $\left(R, \sup |A|^{2}\right)$ as in figure 1 below.

Figure 1: The coordinate plane $\left(R, \sup |A|^{2}\right)$, where the line $|A|^{2}-n(R-1)=0$, crossing the R-axis at $R=1$, represents the totally umbilical hypersurfaces in \mathbb{S}^{n+1}. The curve $|A|^{2}=C_{n}(R)$ represents the $H(r)$-torus $\mathbb{S}^{n-1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{1}(r)$ with constant scalar curvature $R>(n-2) / n$. Our theorem 1 shows that there are no complete hypersurfaces in \mathbb{S}^{n+1} with scalar curvature R and sup $|A|^{2}$ at the regions marked with \varnothing. On the other hand, theorem 2 shows that for each point (R, C) over the curve sup $|A|^{2}=C_{n}(R)$ there is a rotation hypersurface with such scalar curvature R and $\sup |A|^{2}=C$.

Our paper is organized as follows. Section 1 contains all prerequisite material. In section 2 we will prove theorem 1 . In section 3 and for completeness, we will describe the rotation hypersurfaces with constant scalar curvature (with a detailed study in [7]), analyzing the corresponding values of $|A|^{2}$, thus proving theorem 2.

A final comment is in order. Our theorems show that for $R \geq 1$ fixed, $\sup |A|^{2}$ varies in the set $\left.\{n \bar{R}\} \cup\left[C_{(} R\right), \infty\right)$. The analysis of the behavior of $|A|^{2}$ for the case of rotation hypersurfaces show that for $(n-2) / n<R<1$, sup $|A|^{2}$ varies at least in $\left[C_{n}(R), \infty\right)$. Thus our examples suggest an affirmative answer to Cheng's problem 1 also when $(n-2) / n<R<1$.

1 Preliminaries

Let M^{n} be a n-dimensional complete orientable manifold. Denote by $f: M^{n} \rightarrow$ \mathbb{S}^{n+1} a immersion of M^{n} into the $(n+1)$-dimensional unit sphere \mathbb{S}^{n+1}. Choose a local orthonormal frame field E_{1}, \ldots, E_{n+1} such that at each point $p \in M$, $E_{1}(p), \ldots, E_{n}(p)$ is an orthonormal basis of $T_{p} M$.

In the sequel, the following conventions on indices are used:

$$
A, B, C, \ldots=1, \ldots, n+1 ; \quad i, j, k, \ldots=1, \ldots, n
$$

Let $\omega_{1}, \ldots, \omega_{n+1}$ be the dual forms associated to E_{1}, \ldots, E_{n+1} and $\omega_{A B}$ the corresponding connection forms, so that the following structure equations for \mathbb{S}^{n+1} hold:

$$
\begin{array}{r}
d \omega_{A}=\sum_{B} \omega_{A B} \wedge \omega_{B}, \quad \omega_{A B}+\omega_{B A}=0, \\
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B}-\frac{1}{2} \sum_{C, D} \bar{R}_{A B C D} \omega_{C} \wedge \omega_{D} .
\end{array}
$$

where as usual $\bar{R}_{A B C D}=\bar{R}_{A B D C}$. The coefficients

$$
\bar{R}_{A B C D}=\delta_{A C} \delta_{B D}-\delta_{A D} \delta_{B C}
$$

are the components of the curvature tensor of \mathbb{S}^{n+1}. Similarly, the structure equations for M may be written as

$$
\begin{aligned}
d \omega_{i} & =\sum_{j} \omega_{i j} \wedge \omega_{j}, \quad \omega_{i j}+\omega_{j i}=0 \\
d \omega_{i j} & =\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l}
\end{aligned}
$$

where $R_{i j k l}$ are the components of the curvature tensor of M with respect to the induced metric. As $\omega_{n+1}=0$ restricted to M, we have

$$
\omega_{i, n+1}=\sum_{j} h_{i j} \omega_{j}, \quad h_{i j}=h_{j i}
$$

Here $h_{i j}$ are the coefficients of the second fundamental form of M,

$$
A=\sum h_{i j} \omega_{i} \wedge \omega_{j}
$$

The squared norm of the second fundamental form $|A|^{2}$ and the mean curvature H are defined respectively by

$$
|A|^{2}=\sum_{i, j} h_{i j}^{2}, \quad H=\frac{1}{n} \sum_{i} h_{i i}
$$

while the Ricci curvature is

$$
\begin{equation*}
(n-1) \operatorname{Ric}(v)=\sum_{i<n} R_{i n i n}=\sum_{i<n}\left(1+h_{i i} h_{n n}-h_{i n}^{2}\right), \quad v=e_{n} \tag{2}
\end{equation*}
$$

Also, the normalized scalar curvature R is given by

$$
n(n-1) R=\sum_{i, j} R_{i j i j}
$$

With these notations, Gauss equation takes the form

$$
R_{i j k l}=\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)+\left(h_{i k} h_{j l}-h_{i l} h_{j k}\right)
$$

We will denote $\bar{R}=R-1$, so that Gauss equation may be written as

$$
\begin{equation*}
n(n-1) \bar{R}=(n H)^{2}-|A|^{2} \tag{3}
\end{equation*}
$$

If f is a C^{2}-function on M, we define the gradient $d f$, the hessian $\left(f_{i j}\right)$ and the Laplacian Δf of f as

$$
d f=\sum_{i} f_{i} \omega_{i}, \quad \sum_{j} f_{i j} \omega_{j}=d f_{i}+\sum_{j} f_{j} \omega_{j i}, \quad \Delta f=\sum_{i} f_{i i}
$$

We introduce the operator L_{1} acting on differentiable functions f defined on M by

$$
L_{1}(f)=\sum_{i j}\left(n H \delta_{i j}-h_{i j}\right) f_{i j}
$$

Locally, we may choose E_{1}, \ldots, E_{n} so that $h_{i j}=\kappa_{i} \delta_{i j}$. By a standard calculation,

$$
\begin{aligned}
L_{1}(n H) & =\sum_{i j}\left(n H-\kappa_{i}\right) \delta_{i j}(n H)_{i j} \\
& =n H \Delta(n H)-\sum_{i} \kappa_{i}(n H)_{i i} \\
& =\frac{1}{2} \Delta(n H)^{2}-|\nabla(n H)|^{2}-\sum_{i} \kappa_{i}(n H)_{i i} .
\end{aligned}
$$

Using Gauss equation (3) and the well-known Simons formula (see, for example, [10])

$$
\begin{equation*}
\frac{1}{2} \Delta(n H)^{2}=\frac{1}{2} \Delta|A|^{2}=|\nabla A|^{2}+\sum_{i} \kappa_{i}(n H)_{i i}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\kappa_{i}-\kappa_{j}\right)^{2}, \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
L_{1}(n H)=|\nabla A|^{2}-|\nabla(n H)|^{2}+\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\kappa_{i}-\kappa_{j}\right)^{2} \tag{5}
\end{equation*}
$$

The following inequality was proved by Alencar and do Carmo (see also Li [8]), but we include it for completeness.
Lemma 3 ([1], p. 1226). Let M^{n} be a immersed hypersurface in \mathbb{S}^{n+1}. Then

$$
\begin{equation*}
\frac{1}{2} \sum_{i, j} R_{i j i j}\left(\kappa_{i}-\kappa_{j}\right)^{2} \geq|\phi|^{2}\left(-|\phi|^{2}-\frac{n(n-2)}{\sqrt{n(n-1)}}|H||\phi|+n\left(H^{2}+1\right)\right) \tag{6}
\end{equation*}
$$

where

$$
|\phi|^{2}=\frac{n-1}{n}\left(|A|^{2}-n \bar{R}\right) .
$$

Equality holds whenever $(n-1)$ of the principal curvatures are equal to $\pm \sqrt{(n-1) / n}|\phi|$.
Substituting (6) in (5), using Gauss equation (3) and the above expression for $|\phi|^{2}$, we obtain

$$
\begin{equation*}
L_{1}(n H)+|\nabla(n H)|^{2} \geq \frac{n-1}{n}\left(|A|^{2}-n \bar{R}\right) P_{R}\left(|A|^{2}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{R}(x)=n+2(n-1) \bar{R}-\frac{n-2}{n}(x+\sqrt{(x+n(n-1) \bar{R})(x-n \bar{R})}) \tag{8}
\end{equation*}
$$

Lemma 4. Let R, x be real numbers, $R \geq(n-2) /(n-1)$ and x such that $P_{R}(x)$ is defined. Then $P_{R}(x)$ is a decreasing function of x for R fixed. Moreover, $P_{R}(x) \geq 0$ if and only if $x \leq C_{n}(R)$, where $C_{n}(R)$ is the (positive) constant given explicitly by (1). Also, $P_{R}(x)=0$ if and only if $x=C_{n}(R)$.

Proof. The proof that $P_{R}(x)$ is a decreasing function of x uses standard techniques, so we omit it. $P_{R}(x) \geq 0$ if and only if

$$
n+2(n-1) \bar{R}-\frac{n-2}{n} x \geq \frac{n-2}{n} \sqrt{(x+n(n-1) \bar{R})(x-n \bar{R})}
$$

We will consider the region of the (R, x)-plane where the left hand side of this inequality is non-negative. (See figure 1, where we depicted the line $n+2(n-$ 1) $\bar{R}-\frac{n-2}{n} x=0$.) This region contains the set where $R \geq(n-2) /(n-1)$ and $x \leq C_{n}(R)$. Moreover, in this region the above inequality is equivalent to that between the squares of the corresponding terms, which in turn is equivalent to $x \leq C_{n}(R)$.

We will also use Omori's classical version of the maximum principle at infinity for complete manifolds.

Theorem 5 ([11]). Let M^{n} be an n-dimensional complete Riemannian manifold whose sectional curvatures are bounded from below. Let f be a C^{2}-function bounded from above on M^{n}. Then there exists a sequence of points $p_{k} \in M$ such that
$\lim _{k \rightarrow \infty} f\left(p_{k}\right)=\sup f, \quad \lim _{k \rightarrow \infty}\left|\nabla f\left(p_{k}\right)\right|=0 \quad$ and $\quad \limsup _{k \rightarrow \infty} \max _{|X|=1} \Delta f\left(p_{k}\right)(X, X) \leq 0$.

2 The gap in the case $R \geq 1$

We will need the following result to assure that Omori's principle may be applied.
Lemma 6. Let M be an n-dimensional complete hypersurface in \mathbb{S}^{n+1}. If $|A|^{2}$ is bounded from above, then the sectional curvatures of M are bounded.

Proof. By hypothesis, $|A|^{2}$ is bounded from above by a constant, say C. Following the notation in the Preliminaries,

$$
\kappa_{i}^{2} \leq|A|^{2} \leq C
$$

so that $\left|\kappa_{i}\right| \leq \sqrt{C}$ for all i, j. From Gauss equation we have that $R_{i j i j}=1+\kappa_{i} \kappa_{j}$, so

$$
1-C \leq R_{i j i j} \leq 1+C
$$

and the lemma follows.
We are ready to prove Theorem 1.
Proof of Theorem 1. As $R \geq 1$, Gauss equation (3) implies that $n H$ does not change sign on M, so we may suppose $H>0$. Moreover, the same equation (3) and the condition $|A|^{2} \leq C_{n}(R)$ imply that $(n H)^{2}$ is bounded, so $n H$ is bounded from above. By Lemma 6, the sectional curvatures of M are bounded from below, so we may apply Omori's principle to the function $f=n H$, thus obtaining a sequence of points p_{k} in M such that
$(n H)\left(p_{k}\right) \rightarrow \sup (n H), \quad\left|\nabla(n H)\left(p_{k}\right)\right| \rightarrow 0 \quad$ and $\quad \limsup _{k \rightarrow \infty} \max _{|X|<1} \Delta(n H)\left(p_{k}\right)(X, X) \leq 0$.
We have $(n H)^{2}\left(p_{k}\right) \rightarrow \sup (n H)^{2}$ so that Gauss equation implies

$$
\begin{equation*}
|A|^{2}\left(p_{k}\right) \rightarrow \sup |A|^{2} \tag{9}
\end{equation*}
$$

Evaluating $L_{1}(n H)$ at the points p_{k}, we have

$$
L_{1}(n H)\left(p_{k}\right) \leq \limsup _{k \rightarrow \infty}\left(\sum_{i}\left(n H-\kappa_{i}\right)(n H)_{i i}\right)\left(p_{k}\right)
$$

Note that $\kappa_{i}^{2} \leq|A|^{2} \leq(n H)^{2}$, so that $n H-\kappa_{i} \geq 0$. As noted before, $n H-\kappa_{i}$ is also bounded from above by, say C. Then

$$
L_{1}(n H)\left(p_{k}\right) \leq \limsup _{k \rightarrow \infty} C \Delta(n H)\left(p_{k}\right)
$$

Substituting in (7) and taking the limsup we have
$0 \leq \frac{n-1}{n}\left(\sup |A|^{2}-n \bar{R}\right) P_{R}\left(\sup |A|^{2}\right) \leq \limsup _{k \rightarrow \infty}\left(L_{1}(n H)+|\nabla(n H)|^{2}\right)\left(p_{k}\right) \leq 0$.
If $\sup |A|^{2}-n \bar{R}=0$, then $|A|^{2} \equiv n \bar{R}$, so that M is totally umbilical. On the other hand, if $P_{R}\left(\sup |A|^{2}\right)=0$ we have $\sup |A|^{2}=C_{n}(R)$, as claimed.

Suppose that $\sup |A|^{2}$ is attained and let L be the operator acting on C^{2} functions by

$$
L(f)=L_{1} f+\langle\nabla f, \nabla f\rangle
$$

Note that L satisfies a sufficient condition (eq. (10.36) of [6], p. 277) to apply an extended version of the maximum principle for quasilinear operators. As $L(n H) \geq 0$ and $\sup (n H)$ is attained, we have that $n H$ is constant. Hence, by Gauss equation, we have also that $|A|^{2}$ is constant. Thus equality holds in (6) and the corresponding hypersurface has $n-1$ equal constant principal curvatures. By a known result (in [12], for example), M is isometric to a $H(r)-$ torus $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$.

3 Hypersurfaces with sup $|A|^{2}>C_{n}(R)$

In this section we prove theorem 2 by analyzing the variation of $|A|^{2}$ for the class of rotation hypersurfaces with constant scalar curvature, introduced by M. L. Leite in [7]. We recall that a rotation hypersurface $M^{n} \subset \mathbb{S}^{n+1}$ is an $O(n)-$ invariant hypersurface, where $O(n)$ is considered as a subgroup of isometries of \mathbb{S}^{n+1} 。
$O(n)$ fixes a given geodesic γ (the rotation axis) and rotates a profile curve α parameterized by arc length s. We denote by $d(s)$ the minimum distance from $\alpha(s)$ to γ, realized by a point $P(s)$ in γ and $h(s)$ the height of $P(s)$ measured from a fixed point in γ. With these notations, the principal curvatures of the rotation hypersurface M are given by

$$
\lambda=\kappa_{i}=\frac{\sqrt{1-r^{\prime 2}-r^{2}}}{r}, i=1, \ldots, n-1, \quad \text { and } \quad \mu=\kappa_{n}=-\frac{r^{\prime \prime}+r}{\sqrt{1-r^{\prime 2}-r^{2}}}
$$

where $r(s)=\sin (d(s))$. Thus, the scalar curvature R of M is given by

$$
\begin{equation*}
(n-2) \lambda^{2}+2 \lambda \mu=n(R-1) \tag{10}
\end{equation*}
$$

or

$$
R=-\frac{2 r^{\prime \prime}}{n r}+\frac{(n-2)\left(1-r^{2}\right)}{n r^{2}}
$$

Under the hypothesis of R being constant, this equation is equivalent to its first order integral

$$
G_{R}\left(r, r^{\prime}\right)=r^{n-2}\left(1-r^{2}-R r^{2}\right)=K
$$

where K is a constant. As in [7], we will study the rotation hypersurfaces through this function G_{R}; for example, it is shown in [7] that every level curve of G_{R} contained in the region $r^{2}+r^{\prime 2} \leq 1$ of the $\left(r, r^{\prime}\right)$-plane gives rise to a complete rotation hypersurface with constant scalar curvature R.

Let us also consider the null set $G_{R}\left(r, r^{\prime}\right)=0$, which is given by the union of the r^{\prime}-axis and the conic $1-r^{\prime 2}-R r^{2}=0$. As we will be interested in the case $R>(n-2) / n$, this conic is always an ellipse, which lies outside (coincides with, is entirely contained in) the unit circle whenever $(n-2) / n<R<1$ ($R=1, R>1$ respectively). In cases $R \geq 1$, this curve is associated to a totally umbilical hypersurfaces, since in this case the principal curvatures satisfy

$$
\lambda=\frac{\sqrt{1-r^{\prime 2}-r^{2}}}{r}=\sqrt{R-1}
$$

Thus, from (10), we obtain that $\mu=\sqrt{R-1}$ and M is umbilical.
As another example, from corollary 2.3 in [7], we see that for every $R>\frac{n-2}{n}$, G_{R} has one critical point of the form $(r, 0), r^{2}=\frac{n-2}{n R}$, corresponding to the torus $\mathbb{S}^{1}\left(\sqrt{1-r^{2}}\right) \times \mathbb{S}^{n-1}(r)$. The critical point is a maximum of G_{R}, which implies the existence of a whole family of closed level curves of G_{R}, obtained by taking into account non negative values of K. These level curves surround the critical point, growing until they reach the null set $G_{R}\left(r, r^{\prime}\right)=0$. Every level curve outside the null set escapes from the region $r^{2}+r^{2} \leq 1$ and thus the corresponding hypersurface is not complete.

In the rest of this section we analyze the behavior of $|A|^{2}$ for each level curve of G_{R}, first for $R \geq 1$ and then for $\frac{n-2}{n}<R<1$.

Proof of Theorem 2. First case. Suppose $R \geq 1$. Since $|A|^{2}=(n-1) \lambda^{2}+\mu^{2}$ and $(n-2) \lambda^{2}+2 \lambda \mu=n(R-1)$, we may write $|A|^{2}$ as a function of λ alone. Also, fixing a level curve of G_{R}, so that $r^{n-2}\left(1-r^{\prime 2}-R r^{2}\right)=K$, we write λ in terms of r, obtaining

$$
\begin{equation*}
|A|^{2}(r)=(n-1) \lambda^{2}+\left(\frac{n(R-1)-(n-2) \lambda^{2}}{2 \lambda}\right)^{2} \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{\sqrt{1-r^{\prime 2}-r^{2}}}{r}=\frac{\sqrt{\frac{K}{r^{n-2}}+R r^{2}-r^{2}}}{r}=\sqrt{\frac{K}{r^{n}}+(R-1)} . \tag{12}
\end{equation*}
$$

Observe that $K \geq 0$, so $\lambda \geq \sqrt{R-1}$. Differentiating $|A|^{2}$ with respect to v, we have

$$
\begin{equation*}
\frac{d|A|^{2}}{d r}=\frac{d|A|^{2}}{d \lambda} \frac{d \lambda}{d r}=\frac{n^{2}}{2}\left(\lambda-\frac{(R-1)^{2}}{\lambda^{3}}\right) \frac{-K n}{2 r^{n+1} \lambda} \tag{13}
\end{equation*}
$$

The derivative of $|A|^{2}$ is non-positive. In fact, as $\lambda \geq \sqrt{R-1}$, the derivative can vanish if and only if $\lambda=\sqrt{R-1}$, which is equivalent in this case to $K=0$. Thus, for a fixed level curve of $G_{R},|A|^{2}$ attains its extreme values at the intersections of the level curve with the r-axis. As the interior of the level curve contains the critical point of G_{R}, the interval of variation of $|A|^{2}$ contains the value of $|A|^{2}$ for the critical point; namely, the constant $C_{n}(R)$ defined in (1).

Consider the variation of $|A|^{2}(r), 0<r<1 / \sqrt{R}$ (this value corresponding to $G_{R}(r, 0)=0$). From (11) and (12) we obtain

$$
\lim _{r \rightarrow 0} \lambda(r, 0)=+\infty, \quad \text { so that } \quad \lim _{r \rightarrow 0}|A|^{2}(r, 0)=+\infty
$$

and

$$
\lim _{r \rightarrow 1 / \sqrt{R}} \lambda(r, 0)=\sqrt{R-1}, \quad \text { so that } \quad \lim _{r \rightarrow 1 / \sqrt{R}}|A|^{2}(r, 0)=n(R-1)
$$

By continuity, $|A|^{2}(r, 0)$ assumes all values in $[n(R-1),+\infty)$. We may classify the associated hypersurfaces as follows:

1. Totally umbilical hypersurfaces (corresponding to the null set of G_{R}): $|A|^{2}$ is constant and equal to $n(R-1)$.
2. Product of spheres (corresponding to the critical points of G_{R}): $|A|^{2}$ is constant and equal to $C_{n}(R)$.
3. Rotation hypersurfaces associated with closed level curves near the critical point of G_{R} have $|A|^{2}$ varying in a closed interval containing $C_{n}(R)$ in its interior. When the closed level curves approach the null set of G_{R}, $\inf |A|^{2} \rightarrow n(R-1)$, while sup $|A|^{2} \rightarrow \infty$.
Therefore, we have that for each $C \geq C_{n}(R)$ there is a rotation hypersurface satisfying $\sup |A|^{2}=C$, which proves theorem 2 in the case $R \geq 1$.

Second case. Suppose $(n-2) / n<R<1$. The analysis in this case is quite similar, so we just point out the differences. In this case, the null set of G_{R} lies outside of the region $r^{2}+r^{\prime 2} \leq 1$, so we don't have umbilical hypersurfaces for these values of R and G_{R} is everywhere positive.

To study the variation of $|A|^{2}$, we may use the expressions (11), (12) and (13). Nevertheless, we must analyze carefully the condition $\lambda^{4}=(R-1)^{2}$ for the derivative to vanish, since now $\lambda^{2}=1-R$. Evaluating (12) at the points $(r, 0)$, we have

$$
\lambda=\frac{\sqrt{1-r^{2}}}{r}, \quad \text { so that } \quad 1-R=\lambda^{2}=\frac{1-r^{2}}{r^{2}}, \quad \text { or } \quad r^{2}=\frac{1}{2-R}
$$

which means that the critical point of G_{R} lies inside the region $r^{2}+r^{\prime 2} \leq 1$. Once again, it is easy to show that G_{R} attains a maximum at this point. By the way, this point lies to the left of (coincides with, lies to the right of) the critical point of G_{R} if R is less than (equal to, greater than, respectively) $(n-2) /(n-1)$. By making an analysis of the variation of $|A|^{2}$ similar to that in the first case $R \geq 1$, we may summarize our results as follows.

1. The minimum value of $|A|^{2}$ is $n(n-1)(1-R)$, which coincides with $C_{n}(R)$ only for $R=(n-2) /(n-1)$.
2. As every closed level curve of G_{R} contains the critical point of G_{R} in its interior, $|A|^{2}$ varies in a closed interval containing $C_{n}(R)$ in its interior if $R \neq(n-2) /(n-1)$. If $R=(n-2) /(n-1),|A|^{2}$ varies in a closed interval with $C_{n}(R)$ as its left extreme value.
3. The level curve contains the critical point of $|A|^{2}$ (in the closure of its interior) if and only if $|A|^{2}$ varies in a closed interval with left extreme value equal to $n(n-1)(1-R)$.
4. When the level curves approach $(0,0)$, sup $|A|^{2} \rightarrow \infty$.

In short, $\sup |A|^{2}$ varies from $C_{n}(R)$ to $+\infty$, which implies again the existence of a hypersurface with constant scalar curvature R and $\sup |A|^{2}=C$ for each $C \geq C_{n}(R)$, which finishes the proof of theorem 2 for this second and last case $(n-2) / n<R<1$.

Acknowledgements. The third author wants to thank the hospitality of Departamento de Matemática da Universidade Federal do Ceará while preparing this work.

References

[1] H. Alencar and M. P. do Carmo, 'Hypersurfaces with constant mean curvature in spheres', Proc. of the AMS 120(4) (1994) 1223-1229.
[2] Q. M. Cheng, 'Hypersurfaces in a unit sphere \mathbb{S}^{n+1} with constant scalar curvature', J. London Math. Soc. 64(2) (2001) 755-768.
[3] Q. M. Cheng, S. Shu and Y. J. Suh, 'Compact hypersurfaces in a unit sphere', Proc. Royal Soc. Edinburgh 135A (2005) 1129-1137.
[4] S. Y. Cheng and S. T. Yau, 'Hypersurfaces with constant scalar curvature', Math. Ann. 225 (1977) 195-204.
[5] M. P. do Carmo and M. Dajczer, 'Rotational hypersurfaces in spaces of constant curvature', Trans. Amer. Math. Soc. 277(2) (1983) 685-709.
[6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order (Springer, New York, 1977, 1983).
[7] M. L. Leite, 'Rotational hypersurfaces of space forms with constant scalar curvature', Manuscripta Mathematica 67 (1990) 285-304.
[8] H. Li, 'Hypersurfaces with constant scalar curvature in space forms', Math. Ann. 305 (1996) 665-672.
[9] H. Li, 'Global rigidity theorems of hypersurfaces', Ark. Mat. 35 (1997) 327-351.
[10] M. Okumura, 'Hypersurfaces and a pinching problem on the second fundamental tensor', Amer. J. Math. 96 (1974) 207-213.
[11] H. Omori, 'Isometric Immersions of Riemannian manifolds', J. Math. Soc. Japan 19 (1967) 205-214.
[12] T. Otsuki, 'Minimal hypersurfaces in a Riemannian manifold of constant curvature', Amer. J. Math. 92 (1970) 145-173.

Aldir Brasil Jr. and A. Gervasio Colares
Departamento de Matemática
Universidade Federal do Ceará
CEP 60.455-760
Fortaleza CE, Brazil
aldir@mat.ufc.br, gcolares@mat.ufc.br
Oscar Palmas
Departamento de Matemáticas
Facultad de Ciencias, UNAM
México 04510 DF, México
opv@hp.fciencias.unam.mx

[^0]: ${ }^{*}$ The first author was partially supported by CNPq, Brazil. The second author was partially supported by FUNCAP, Brazil. The third author was partially supported by CNPq, Brazil and DGAPA-UNAM, México.

