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Abstract

To a given immersion i : Mn → S
n+1 with constant scalar curvature R,

we associate the supremum of the squared norm of the second fundamental
form sup |A|2. We prove the existence of a constant Cn(R) depending on
R and n so that R ≥ 1 and sup |A|2 = Cn(R) imply that the hypersurface
is a H(r)–torus S

1(
√

1 − r2)×S
n−1(r). For R > (n−2)/n we use rotation

hypersurfaces to show that for each value C > Cn(R) there is a complete
hypersurface in S

n+1 with constant scalar curvature R and sup |A|2 = C,
answering questions raised by Q. M. Cheng.
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Introduction

Let Mn be a complete hypersurface immersed by i : Mn → S
n+1 into the

unit sphere S
n+1 and R be the normalized scalar curvature of M (we recall

the definitions in a moment). Many rigidity theorems have been obtained by
imposing natural conditions to R. One of the first results in this respect was
obtained by Cheng and Yau in [4]. By using an adequate operator denoted
here by L1 they proved that a complete hypersurface in S

n+1 with constant
R and non-negative sectional curvature must be umbilical or isometric to a
riemannian product S

k(
√

1 − r2) × S
n−k(r), 1 ≤ k ≤ n − 1, where for example

S
n−k(r) denotes a sphere of dimension n − k and radius r.

Some years later, H. Li used L1 in [8] to analyze a compact hypersurface of
S

n+1 with R constant, R ≥ (n−2)/n and second fundamental form A satisfying
|A|2 ≤ Cn(R), where

Cn(R) = (n − 1)
nR̄ + 2

n − 2
+

n − 2

nR̄ + 2
, R̄ = R − 1. (1)
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Under these conditions, he showed that M either satisfies |A|2 ≡ nR̄ and M is
totally umbilical or |A|2 ≡ Cn(R) and M is isometric to a H(r)-torus given as
S

1(
√

1 − r2) × S
n−1(r), where

r2 =
n − 2

nR
≤ n − 2

n
.

In [9], H. Li also remarked that for R ≥ 1 a similar rigidity theorem may
be obtained replacing “compact and |A|2 ≤ Cn(R)” by “complete and |A|2 ≤
Cn(R) − ǫ”. In this paper we improve this result (see theorem 1) by droping
the number ǫ.

On the other hand, Q. M. Cheng analyzed in [2] the case where |A|2 ≥ Cn(R)
and proved that a complete locally conformally flat hypersurface with such a
condition must satisfy R > (n − 2)/n.

When R is constant, R 6= (n − 2)/(n − 1) and |A|2 ≥ Cn(R), Cheng also
proved that a complete hypersurface M with such restrictions must be again a
H(r)-torus. In the same case R 6= (n − 2)/(n − 1) he showed that there are no
complete hypersurfaces in S

n+1 with two principal curvatures of multiplicities
(n − 1, 1) and |A|2 ≥ Cn((n − 2)/(n − 1)) = n.

In the same paper [2], Cheng posed two problems:

Problem 1. Let Mn be an n-dimensional complete hypersurface with constant
scalar curvature R in S

n+1. If R > (n − 2)/n and |A|2 ≤ Cn(R), where Cn(R)
is given by (1). Is M isometric to either a totally umbilical hypersurface or to
the riemannian product of the form S

1(
√

1 − r2) × S
n−1(r)?

In [2] Cheng solved problem 1 affirmatively for R = (n − 2)/(n − 1). Also,
in [3], Cheng, Shu and Suh answered it affirmatively for compact hypersurfaces
with R > (n− 2)/n, R 6= (n− 2)/(n− 1) and two principal curvatures. Here we
further analyze this problem, proving that the answer to problem 1 is affirmative
also in the complete non-compact case with R ≥ 1.

Theorem 1. Let Mn be a n-dimensional complete hypersurface of S
n+1 with

constant scalar curvature R ≥ 1. If |A|2 ≤ Cn(R) everywhere, then either

1. |A|2 ≡ n(R − 1) and M is totally umbilical, or

2. sup |A|2 = Cn(R). If sup |A|2 is attained at some point in M , then M is
the H(r)–torus S

1(
√

1 − r2) × S
n−1(r).

Hence, problem 1 remains open for (n − 2)/n < R < 1.

Problem 2. Let Mn be an n-dimensional complete hypersurface with constant
scalar curvature R = (n − 2)/(n − 1) in S

n+1. If M has only two distinct
principal curvatures, one of which is simple, is M isometric to the Clifford
torus S

1(
√

1/n) × S
n−1(

√

(n − 1)/n)?

In order to make some educated guesses to answer this question, we have at
hand some examples where geometric quantities as R and |A|2 can be calculated
or easily estimated.
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These examples are the rotation hypersurfaces defined and studied in space
forms in [5]. See also [7], where M. L. Leite made a detailed analysis of rotation
hypersurfaces with constant scalar curvature in space forms.

In this paper, we will analyze these hypersurfaces and describe the variation
of |A|2 in terms of R, to obtain the following result.

Theorem 2. Let R,C be constants such that R > (n − 2)/n and C ≥ Cn(R).
Then there exists a complete n-dimensional hypersurface of S

n+1 with constant
scalar curvature R such that sup |A|2 = C.

Taking R = (n− 2)/(n− 1), this result shows that the answer to problem 2
is negative.

We may represent graphically our results by using a plane (R, sup |A|2) as
in figure 1 below.

|A|2

n−2
n

n−2
n−1

n + 2(n − 1)R − n−2
n |A|2 = 0

|A|2 + n(n − 1)R = 0

|A|2 = Cn(R)

|A|2 − nR = 0

R1

n

∅

∅

Rotation hypersurfaces

Figure 1: The coordinate plane (R, sup |A|2), where the line |A|2−n(R−1) = 0,
crossing the R-axis at R = 1, represents the totally umbilical hypersurfaces in
S

n+1. The curve |A|2 = Cn(R) represents the H(r)-torus S
n−1(

√
1 − r2)×S

1(r)
with constant scalar curvature R > (n− 2)/n. Our theorem 1 shows that there
are no complete hypersurfaces in S

n+1 with scalar curvature R and sup |A|2 at
the regions marked with ∅. On the other hand, theorem 2 shows that for each
point (R,C) over the curve sup |A|2 = Cn(R) there is a rotation hypersurface
with such scalar curvature R and sup |A|2 = C.
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Our paper is organized as follows. Section 1 contains all prerequisite mater-
ial. In section 2 we will prove theorem 1. In section 3 and for completeness, we
will describe the rotation hypersurfaces with constant scalar curvature (with a
detailed study in [7]), analyzing the corresponding values of |A|2, thus proving
theorem 2.

A final comment is in order. Our theorems show that for R ≥ 1 fixed,
sup |A|2 varies in the set {nR̄}∪ [C(R),∞). The analysis of the behavior of |A|2
for the case of rotation hypersurfaces show that for (n− 2)/n < R < 1, sup |A|2
varies at least in [Cn(R),∞). Thus our examples suggest an affirmative answer
to Cheng’s problem 1 also when (n − 2)/n < R < 1.

1 Preliminaries

Let Mn be a n-dimensional complete orientable manifold. Denote by f : Mn →
S

n+1 a immersion of Mn into the (n+1)-dimensional unit sphere S
n+1. Choose

a local orthonormal frame field E1, . . . , En+1 such that at each point p ∈ M ,
E1(p), . . . , En(p) is an orthonormal basis of TpM .

In the sequel, the following conventions on indices are used:

A,B,C, . . . = 1, . . . , n + 1; i, j, k, . . . = 1, . . . , n.

Let ω1, . . . , ωn+1 be the dual forms associated to E1, . . . , En+1 and ωAB the
corresponding connection forms, so that the following structure equations for
S

n+1 hold:

dωA =
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,

dωAB =
∑

C

ωAC ∧ ωCB − 1

2

∑

C,D

R̄ABCD ωC ∧ ωD.

where as usual R̄ABCD = R̄ABDC . The coefficients

R̄ABCD = δACδBD − δADδBC

are the components of the curvature tensor of S
n+1. Similarly, the structure

equations for M may be written as

dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,

dωij =
∑

k

ωik ∧ ωkj −
1

2

∑

k,l

Rijkl ωk ∧ ωl,

where Rijkl are the components of the curvature tensor of M with respect to
the induced metric. As ωn+1 = 0 restricted to M , we have

ωi,n+1 =
∑

j

hijωj , hij = hji.
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Here hij are the coefficients of the second fundamental form of M ,

A =
∑

hijωi ∧ ωj .

The squared norm of the second fundamental form |A|2 and the mean cur-
vature H are defined respectively by

|A|2 =
∑

i,j

h2
ij , H =

1

n

∑

i

hii,

while the Ricci curvature is

(n − 1)Ric(v) =
∑

i<n

Rinin =
∑

i<n

(1 + hiihnn − h2
in), v = en. (2)

Also, the normalized scalar curvature R is given by

n(n − 1)R =
∑

i,j

Rijij .

With these notations, Gauss equation takes the form

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk).

We will denote R̄ = R − 1, so that Gauss equation may be written as

n(n − 1)R̄ = (nH)2 − |A|2. (3)

If f is a C2-function on M , we define the gradient df , the hessian (fij) and
the Laplacian ∆f of f as

df =
∑

i

fiωi,
∑

j

fijωj = dfi +
∑

j

fjωji, ∆f =
∑

i

fii.

We introduce the operator L1 acting on differentiable functions f defined on
M by

L1(f) =
∑

ij

(nHδij − hij)fij

Locally, we may choose E1, . . . , En so that hij = κiδij . By a standard
calculation,

L1(nH) =
∑

ij

(nH − κi)δij(nH)ij

= nH∆(nH) −
∑

i

κi(nH)ii

=
1

2
∆(nH)2 − |∇(nH)|2 −

∑

i

κi(nH)ii.
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Using Gauss equation (3) and the well-known Simons formula (see, for ex-
ample, [10])

1

2
∆(nH)2 =

1

2
∆|A|2 = |∇A|2 +

∑

i

κi(nH)ii +
1

2

∑

i,j

Rijij(κi − κj)
2, (4)

we have

L1(nH) = |∇A|2 − |∇(nH)|2 +
1

2

∑

i,j

Rijij(κi − κj)
2. (5)

The following inequality was proved by Alencar and do Carmo (see also Li
[8]), but we include it for completeness.

Lemma 3 ([1], p. 1226). Let Mn be a immersed hypersurface in S
n+1. Then

1

2

∑

i,j

Rijij(κi − κj)
2 ≥ |φ|2

(

−|φ|2 − n(n − 2)
√

n(n − 1)
|H| |φ| + n(H2 + 1)

)

(6)

where

|φ|2 =
n − 1

n

(

|A|2 − nR̄
)

.

Equality holds whenever (n−1) of the principal curvatures are equal to ±
√

(n − 1)/n|φ|.
Substituting (6) in (5), using Gauss equation (3) and the above expression

for |φ|2, we obtain

L1(nH) + |∇(nH)|2 ≥ n − 1

n

(

|A|2 − nR̄
)

PR(|A|2), (7)

where

PR(x) = n + 2(n − 1)R̄ − n − 2

n

(

x +
√

(x + n(n − 1)R̄)(x − nR̄)

)

. (8)

Lemma 4. Let R, x be real numbers, R ≥ (n−2)/(n−1) and x such that PR(x)
is defined. Then PR(x) is a decreasing function of x for R fixed. Moreover,
PR(x) ≥ 0 if and only if x ≤ Cn(R), where Cn(R) is the (positive) constant
given explicitly by (1). Also, PR(x) = 0 if and only if x = Cn(R).

Proof. The proof that PR(x) is a decreasing function of x uses standard tech-
niques, so we omit it. PR(x) ≥ 0 if and only if

n + 2(n − 1)R̄ − n − 2

n
x ≥ n − 2

n

√

(x + n(n − 1)R̄)(x − nR̄).

We will consider the region of the (R, x)-plane where the left hand side of this
inequality is non-negative. (See figure 1, where we depicted the line n + 2(n −
1)R̄ − n−2

n x = 0.) This region contains the set where R ≥ (n − 2)/(n − 1) and
x ≤ Cn(R). Moreover, in this region the above inequality is equivalent to that
between the squares of the corresponding terms, which in turn is equivalent to
x ≤ Cn(R).
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We will also use Omori’s classical version of the maximum principle at in-
finity for complete manifolds.

Theorem 5 ([11]). Let Mn be an n-dimensional complete Riemannian manifold
whose sectional curvatures are bounded from below. Let f be a C2-function
bounded from above on Mn. Then there exists a sequence of points pk ∈ M
such that

lim
k→∞

f(pk) = sup f, lim
k→∞

|∇f(pk)| = 0 and lim sup
k→∞

max
|X|=1

∆f(pk)(X,X) ≤ 0.

2 The gap in the case R ≥ 1

We will need the following result to assure that Omori’s principle may be ap-
plied.

Lemma 6. Let M be an n–dimensional complete hypersurface in S
n+1. If |A|2

is bounded from above, then the sectional curvatures of M are bounded.

Proof. By hypothesis, |A|2 is bounded from above by a constant, say C. Fol-
lowing the notation in the Preliminaries,

κ2
i ≤ |A|2 ≤ C,

so that |κi| ≤
√

C for all i, j. From Gauss equation we have that Rijij = 1+κiκj ,
so

1 − C ≤ Rijij ≤ 1 + C,

and the lemma follows.

We are ready to prove Theorem 1.

Proof of Theorem 1. As R ≥ 1, Gauss equation (3) implies that nH does not
change sign on M , so we may suppose H > 0. Moreover, the same equation
(3) and the condition |A|2 ≤ Cn(R) imply that (nH)2 is bounded, so nH is
bounded from above. By Lemma 6, the sectional curvatures of M are bounded
from below, so we may apply Omori’s principle to the function f = nH, thus
obtaining a sequence of points pk in M such that

(nH)(pk) → sup(nH), |∇(nH)(pk)| → 0 and lim sup
k→∞

max
|X|<1

∆(nH)(pk)(X,X) ≤ 0.

We have (nH)2(pk) → sup(nH)2 so that Gauss equation implies

|A|2(pk) → sup |A|2. (9)

Evaluating L1(nH) at the points pk, we have

L1(nH)(pk) ≤ lim sup
k→∞

(

∑

i

(nH − κi)(nH)ii

)

(pk).
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Note that κ2
i ≤ |A|2 ≤ (nH)2, so that nH−κi ≥ 0. As noted before, nH−κi

is also bounded from above by, say C. Then

L1(nH)(pk) ≤ lim sup
k→∞

C∆(nH)(pk).

Substituting in (7) and taking the limsup we have

0 ≤ n − 1

n

(

sup |A|2 − nR̄
)

PR(sup |A|2) ≤ lim sup
k→∞

(

L1(nH) + |∇(nH)|2
)

(pk) ≤ 0.

If sup |A|2 − nR̄ = 0, then |A|2 ≡ nR̄, so that M is totally umbilical. On
the other hand, if PR(sup |A|2) = 0 we have sup |A|2 = Cn(R), as claimed.

Suppose that sup |A|2 is attained and let L be the operator acting on C2-
functions by

L(f) = L1f + 〈∇f,∇f〉.
Note that L satisfies a sufficient condition (eq. (10.36) of [6], p. 277) to apply
an extended version of the maximum principle for quasilinear operators. As
L(nH) ≥ 0 and sup(nH) is attained, we have that nH is constant. Hence,
by Gauss equation, we have also that |A|2 is constant. Thus equality holds
in (6) and the corresponding hypersurface has n − 1 equal constant principal
curvatures. By a known result (in [12], for example), M is isometric to a H(r)–
torus S

1(
√

1 − r2) × S
n−1(r).

3 Hypersurfaces with sup |A|2 > Cn(R)

In this section we prove theorem 2 by analyzing the variation of |A|2 for the class
of rotation hypersurfaces with constant scalar curvature, introduced by M. L.
Leite in [7]. We recall that a rotation hypersurface Mn ⊂ S

n+1 is an O(n)–
invariant hypersurface, where O(n) is considered as a subgroup of isometries of
S

n+1.
O(n) fixes a given geodesic γ (the rotation axis) and rotates a profile curve α

parameterized by arc length s. We denote by d(s) the minimum distance from
α(s) to γ, realized by a point P (s) in γ and h(s) the height of P (s) measured
from a fixed point in γ. With these notations, the principal curvatures of the
rotation hypersurface M are given by

λ = κi =

√
1 − r′2 − r2

r
, i = 1, . . . , n − 1, and µ = κn = − r′′ + r√

1 − r′2 − r2
,

where r(s) = sin(d(s)). Thus, the scalar curvature R of M is given by

(n − 2)λ2 + 2λµ = n(R − 1), (10)

or

R = −2r′′

nr
+

(n − 2)(1 − r′2)

nr2
.
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Under the hypothesis of R being constant, this equation is equivalent to its
first order integral

GR(r, r′) = rn−2(1 − r′2 − Rr2) = K,

where K is a constant. As in [7], we will study the rotation hypersurfaces
through this function GR; for example, it is shown in [7] that every level curve
of GR contained in the region r2 + r′2 ≤ 1 of the (r, r′)-plane gives rise to a
complete rotation hypersurface with constant scalar curvature R.

Let us also consider the null set GR(r, r′) = 0, which is given by the union
of the r′-axis and the conic 1 − r′2 − Rr2 = 0. As we will be interested in the
case R > (n− 2)/n, this conic is always an ellipse, which lies outside (coincides
with, is entirely contained in) the unit circle whenever (n − 2)/n < R < 1
(R = 1, R > 1 respectively). In cases R ≥ 1, this curve is associated to a totally
umbilical hypersurfaces, since in this case the principal curvatures satisfy

λ =

√
1 − r′2 − r2

r
=

√
R − 1.

Thus, from (10), we obtain that µ =
√

R − 1 and M is umbilical.
As another example, from corollary 2.3 in [7], we see that for every R > n−2

n ,
GR has one critical point of the form (r, 0), r2 = n−2

nR , corresponding to the

torus S
1(
√

1 − r2) × S
n−1(r). The critical point is a maximum of GR, which

implies the existence of a whole family of closed level curves of GR, obtained
by taking into account non negative values of K. These level curves surround
the critical point, growing until they reach the null set GR(r, r′) = 0. Every
level curve outside the null set escapes from the region r2 + r′2 ≤ 1 and thus
the corresponding hypersurface is not complete.

In the rest of this section we analyze the behavior of |A|2 for each level curve
of GR, first for R ≥ 1 and then for n−2

n < R < 1.

Proof of Theorem 2. First case. Suppose R ≥ 1. Since |A|2 = (n − 1)λ2 + µ2

and (n − 2)λ2 + 2λµ = n(R − 1), we may write |A|2 as a function of λ alone.
Also, fixing a level curve of GR, so that rn−2(1− r′2 −Rr2) = K, we write λ in
terms of r, obtaining

|A|2(r) = (n − 1)λ2 +

(

n(R − 1) − (n − 2)λ2

2λ

)2

, (11)

where

λ =

√
1 − r′2 − r2

r
=

√

K
rn−2 + Rr2 − r2

r
=

√

K

rn
+ (R − 1). (12)

Observe that K ≥ 0, so λ ≥
√

R − 1. Differentiating |A|2 with respect to v, we
have

d|A|2
dr

=
d|A|2
dλ

dλ

dr
=

n2

2

(

λ − (R − 1)2

λ3

) −Kn

2rn+1λ
. (13)
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The derivative of |A|2 is non-positive. In fact, as λ ≥
√

R − 1, the derivative can
vanish if and only if λ =

√
R − 1, which is equivalent in this case to K = 0. Thus,

for a fixed level curve of GR, |A|2 attains its extreme values at the intersections
of the level curve with the r-axis. As the interior of the level curve contains the
critical point of GR, the interval of variation of |A|2 contains the value of |A|2
for the critical point; namely, the constant Cn(R) defined in (1).

Consider the variation of |A|2(r), 0 < r < 1/
√

R (this value corresponding
to GR(r, 0) = 0). From (11) and (12) we obtain

lim
r→0

λ(r, 0) = +∞, so that lim
r→0

|A|2(r, 0) = +∞,

and

lim
r→1/

√
R

λ(r, 0) =
√

R − 1, so that lim
r→1/

√
R
|A|2(r, 0) = n(R − 1).

By continuity, |A|2(r, 0) assumes all values in [n(R − 1),+∞). We may
classify the associated hypersurfaces as follows:

1. Totally umbilical hypersurfaces (corresponding to the null set of GR): |A|2
is constant and equal to n(R − 1).

2. Product of spheres (corresponding to the critical points of GR): |A|2 is
constant and equal to Cn(R).

3. Rotation hypersurfaces associated with closed level curves near the critical
point of GR have |A|2 varying in a closed interval containing Cn(R) in
its interior. When the closed level curves approach the null set of GR,
inf |A|2 → n(R − 1), while sup |A|2 → ∞.

Therefore, we have that for each C ≥ Cn(R) there is a rotation hypersurface
satisfying sup |A|2 = C, which proves theorem 2 in the case R ≥ 1.

Second case. Suppose (n − 2)/n < R < 1. The analysis in this case is quite
similar, so we just point out the differences. In this case, the null set of GR lies
outside of the region r2 + r′2 ≤ 1, so we don’t have umbilical hypersurfaces for
these values of R and GR is everywhere positive.

To study the variation of |A|2, we may use the expressions (11), (12) and
(13). Nevertheless, we must analyze carefully the condition λ4 = (R − 1)2 for
the derivative to vanish, since now λ2 = 1 − R. Evaluating (12) at the points
(r, 0), we have

λ =

√
1 − r2

r
, so that 1 − R = λ2 =

1 − r2

r2
, or r2 =

1

2 − R
,

which means that the critical point of GR lies inside the region r2 + r′2 ≤ 1.
Once again, it is easy to show that GR attains a maximum at this point. By the
way, this point lies to the left of (coincides with, lies to the right of) the critical
point of GR if R is less than (equal to, greater than, respectively) (n−2)/(n−1).
By making an analysis of the variation of |A|2 similar to that in the first case
R ≥ 1, we may summarize our results as follows.
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1. The minimum value of |A|2 is n(n−1)(1−R), which coincides with Cn(R)
only for R = (n − 2)/(n − 1).

2. As every closed level curve of GR contains the critical point of GR in its
interior, |A|2 varies in a closed interval containing Cn(R) in its interior if
R 6= (n−2)/(n−1). If R = (n−2)/(n−1), |A|2 varies in a closed interval
with Cn(R) as its left extreme value.

3. The level curve contains the critical point of |A|2 (in the closure of its
interior) if and only if |A|2 varies in a closed interval with left extreme
value equal to n(n − 1)(1 − R).

4. When the level curves approach (0, 0), sup |A|2 → ∞.

In short, sup |A|2 varies from Cn(R) to +∞, which implies again the exis-
tence of a hypersurface with constant scalar curvature R and sup |A|2 = C for
each C ≥ Cn(R), which finishes the proof of theorem 2 for this second and last
case (n − 2)/n < R < 1.

Acknowledgements. The third author wants to thank the hospitality of
Departamento de Matemática da Universidade Federal do Ceará while preparing
this work.
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