
ON THE MODULI SPACE OF QUASIHOMOGENEOUS
FOLIATIONS ON (C2, 0)

LEONARDO M. CÂMARA

Abstract. We study the relationship between singular holomorphic foliations
on (C2, 0) and their separatrices. Under mild conditions we shall describe a
complete set of analytic invariants characterizing foliations with quasihomoge-
neous separatrices.

Résumé. Nous étudions la relation entre les germes de feuilletages holomorphes
singuliers dans (C2, 0) e son séparatrices. Sur certains conditions génériques,
nous décrivons une liste complet de invariantes analytiques caractérisant des
germes de feuilletages avec des séparatrices quasi-homogènes.

1. Introduction

The problem of the local classification of differential equation of the form Adx+
Bdy = 0 in two variables has been studied by various mathematicians — since the
end of the nineteen century — as C. A. Briot, J. C. Bouquet, H. Dulac, H. Poincaré,
I. Bendixson, G. D. Birkhoff, C. L. Siegel, A. D. Brjuno et Al. In the 1970s R. Thom
restored the interest in this question proposing the following problem. Recall from
[3] that every germ of singular holomorphic foliation on (C2, 0) has an invariant
curve through the origin called the separatrix set and denoted by Sep(F).

Conjecture 1. If Sep(F) has a finite number of components, then the analytic
type and the monodromy of Sep(F) may determine F up to conjugacy class.

In [13],[14], and [15] it is proved that the conjecture has an affirmative answer in
case the linear part of the vector field defining the foliation is non-nilpotent. But
in [17] it is proved that the conjecture is not true in general, by introducing an an-
alytic invariant called vanishing holonomy. Since this time such question is known
as Thom’s problem. In [6] the results of [17] are generalized, classifying a Zariski
open subset of the nilpotent singularities in terms of the vanishing holonomy (now
called projective holonomy). Other contributions are given by many authors such
as [7], [16], [2], [21], etc. From a quite different point of view in [12] J.-F. Mattei
studied this problem, and as a consequence of his rigidity theorem (cf. Theorem 1)
he describes, under generic conditions, the local moduli space of such singularities,
i.e. invariants that characterize deformations of a given singular foliation. Roughly
speaking, they are: the resolution tree up to first order, the projective holonomy,
and the analytic type of Sep(F). The link between these two approaches is that
the separatrices of generic nilpotent singularities are particular instances of quasi-
homogeneous curves (cf. definition below). The difference in this case is that we
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a have a global classification based on the same invariants. Here we tight these
two approaches together, showing (under mild conditions over F) that the global
invariants of a germ of foliation with a quasihomogeneous separatrix are quite the
same.

2. Statements: recent and new

2.1. Basic definitions and notations. A germ of singular foliation (F : ω = 0)
on (C2, 0) of codimension 1 is, roughly speaking, the set of integral curves of a
given germ of 1-form ω ∈ Ω1(C2, 0), which may be assumed to have just an iso-
lated singularity at the origin. Let Diff(Ck, 0) be the group of germs of ana-
lytic diffeomorphisms of (Ck, 0) fixing the origin. We say that two germs of fo-
liations (Fj : ωj = 0) on (C2, 0), j = 1, 2, are analytically conjugate if there is
Φ ∈ Diff(C2, 0) such that Φ sends leaves of F1 into leaves of F2. We say that
h1, h2 ∈ Diff(C, 0) are analytically conjugate if there is φ ∈ Diff(C, 0) such that
Ad(φ)(h1) := φ ◦ h1 ◦ φ−1 = h2. Let us denote the Hopf bundle of Chern class −k
by p(k) : H(−k) → D, with D � CP(1), or just by its total space H(−k),recall from
the theory of algebraic curves that if π : (X̃, D) −→ (C2, 0) is a map resulting from
the iteration of finite number of blowing-ups with exceptional curve D = π−1(0)
and whose irreducible components are Dj, j = 1, . . . , n, with self-intersection num-
ber equal to −kj, then a suitable neighborhood of D in X̃ results from pasting
together suitable neighborhoods of the zero sections of H(−kj). Denote by F̃ the
unique extension of π∗(F) whose singular set has codimension greater or equal to
2 (cf. [13]). For each Hopf bundle component pj : Hj → Dj of a given resolution,
we shall denote by F̃j the germ of foliation on (Hj , Dj) induced by the restriction
of F̃ , and call it the jth Hopf component of the resolution. We shall denote
by F̃ij the restriction of F̃ to a neighborhood of the corner tij := Di ∩ Dj . The
“strict transform” of Sep(F) at Dj ⊂ Hj , i.e. the set of local separatrices of F̃j,
namely Sep(F̃j) = (π∗Sep(F)) |Hj\Dj, will be called the jth Hopf component of
π∗(Sep(F)).

Let H :
(
p : H → D � CP

1
)

be a Hopf bundle, and F a germ of foliation defined
on (H, D). Then we say that F is non-dicritical if D is an invariant set of F ,
and dicritical otherwise. In the former case, the holonomy of F with respect
to D evaluated at the transversal section Σ is called the projective holonomy
of F and denoted by HolΣ(F , D). Furthermore, we say that F is resolved if it
has just reduced singularities (cf. [13]). Let F̃1, F̃2 be two germs of singular
non-dicritical foliation at D ⊂ H without saddle-nodes, and ϕ ∈ PGL(2, C) be
an isomorphism between their sets of singular points {tij}n

j=1, i.e. ϕ(t1j ) = t2j .
Further, let t10 ∈ D be a regular point of F̃1, t20 = ϕ(t10), and denote by hi

γ the
holonomy of a path γ ∈ π1(D\{tij}n

j=1, t
i
0) with respect to sections Σi, i = 1, 2,

transversal to D. Then we say that the projective holonomies of these foliations
have an analytic conjugacy subordinated to ϕ if there is φ ∈ Diff(C, 0) such
that φ∗(h1

γ) = h2
ϕ∗γ , for every γ ∈ π1(D\{t1j}n

j=1, t
1
0).

Recall that a generalized curve is a germ of singular foliation on (C2, 0) which
has no saddle-node or dicritical components along its minimal resolution ([4]). A
germ of holomorphic function f ∈ C{x, y} is said to be quasihomogeneous if
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there is a local system of coordinates such that f can be represented by a quasi-
homogeneous polynomial, i.e. f(x, y) =

∑
ai+bj=d aijx

iyj where a, b, d ∈ N. The
separatrix set of a germ of foliation F on (C2, 0) is said to be quasihomogeneous
if Sep(F) = f−1(0) where f is a quasihomogeneous function. The set of germs
of foliation F on (C2, 0) with quasihomogeneous separatrix is denoted by QHS.
We shall say that F is a generic QHS foliation if the corners of F̃ are in the
Poincaré-Dulac or Siegel domain (cf. [1]).

A tree of projective lines is an embedding of a connected and simply con-
nected chain of projective lines intersecting transversely in a complex surface (two
dimensional complex analytic manifold), with two projective lines in each inter-
section, which consists of the pasting of Hopf bundles whose zero sections are the
projective lines themselves. A tree of points is any tree of projective lines in
which are discriminated a finite number of points. Finally a tree of singularities
is a tree of points such that in each point is specified a germ of singular foliation.

Note that the above nomenclature has a natural motivation. In fact, as is well
know, we can assign to each projective line a point and to each intersection an edge
in other to form a tree (as in graph theory).

Figure 2
Hence we shall use the following notations for a tree of projective lines, a tree

of points, and a tree of singularities respectively: ΓPL = {G, {ki}k
i=1}, Γp =

{G, {ki}k
i=1, {tij}li

j=1}, Γs = {G, {ki}k
i=1, {tij}li

j=1, {ωij}li
j=1}, where G is a tree,

ki ∈ N, tij ∈ Di, Di is the zero section of the Hopf bundle Hi with Chern class −ki,
and ωij = 0 is a germ of singular holomorphic foliation at tij .

Two trees of projective lines ΓPL =
{
G, {ki}k

i=1

}
, Γ′

PL = {G′, {k′
i}k′

i=1}, are iso-
morphic if G, G′ are isomorphic (as graphs) and ki = ki

′. Moreover, two trees
of points Γp = {G, {ki}k

i=1, {tij}li
j=1}, Γ′

p = {G′, {k′
i}k′

i=1, {t′ij}l′i
j=1} are analytically

componentwise isomorphic if their trees of projective lines are isomorphic, li = l′i
and there are ϕi ∈ Diff(Di) such that ϕi(tij) = t′ij . Finally, two trees of singu-

larities Γs = {G, {ki}k
i=1, {tij}li

j=1, {ωij}li
j=1}, Γ′

s = {G′, {k′
i}k′

i=1, {t′ij}l′i
j=1, {ω′

ij}l′i
j=1}

are analytically componentwise isomorphic up to first order if their trees of points
are analytically componentwise isomorphic and J1(ωij) = J1(ω′

ij), i.e. ωij , ω
′
ij have

the same linear part. We shall denote the minimal resolution tree of F by Γ(F̃).
Recall from [20] that any germ of holomorphic foliation F on (C2, 0) has a minimal
resolution denoted by F̃ . Therefore, if Sep(F̃) = ∪jSep(F̃j) intersects just one
projective line of Γ(F̃), then the later is called the principal projective line of
F̃ .

2.2. Statements. Recall that a germ of holomorphic function f ∈ C{x, y} is quasi-
homogeneous if there is a local system of coordinates such that f can be represented
by the a quasihomogeneous polynomial, i.e. f(x, y) =

∑
ai+bj=d aijx

iyj where
a, b, d ∈ N. Equivalently, we may say that its Newton polygon is contained in a
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line. From [19] we know that such a germ of function can be characterized by the
following algebraic property: f ∈ (∂f

∂x , ∂f
∂y ), i.e. f belongs to its Jacobian ideal.

Another characterization of a quasihomogeneous polynomial may be given in terms
of deformations. One can prove that a germ of function f ∈ O(C2,0) is quasihomoge-
neous if and only if any topologically trivial deformation F ∈ O(Cp+2,0) of f satisfies
the following property: F is analytically trivial if and only if the family of curves
(F−1

t (0))t∈(Cp,0) are analytically trivial. In [12] Mattei extended this concept for
foliations by the following definition. A germ of foliation (F : ω = 0) on (C2, 0) is
topologically quasihomogeneous if each topologically trivial deformation of F ,
say (G : η = 0) where η(x, y, t) = A(x, y, t)dx + B(x, y, t)dy, satisfies the following
property: G is analytically trivial if and only if Sep(ηt) is analytically trivial. Now
recall that a germ of singular foliation (F : ω = 0) is said to be quasihyperbolic
generic if it is non-dicritical, all the singularities of its minimal resolution F̃ have
linear part given by ydx + λxdy with λ ∈ C − R≤0, and at least one of its Hopf
components have non-solvable projective holonomy. Under this hypothesis we have
the following characterization of quasihomogeneous foliations.

Theorem 1 (Mattei). Let (F : ω = 0) be quasihyperbolic generic with ω(x, y) =
a(x, y)dx + b(x, y)dy, and let f ∈ O(C2,0) be a reduced equation for Sep(F). Then
the following statements are equivalent:

(1) F is topologically quasihomogeneous;
(2) f ∈ (a, b) ⊂ O(C2,0);
(3) df is topologically quasihomogeneous;
(4) f ∈ (fx, fy) ⊂ O(C2,0);
(5) There is a coordinate system (u, v) for C2, g, h ∈ O(C2,0) with u(0) = v(0) =

0, g(0) 	= 0, and α, β, d ∈ N, such that f(u, v) =
∑

αi+βj=d aiju
ivj ∈

C[[u, v]] and gω = df + h(βvdu − αudv).

In view of Thom’s conjecture, its natural to ask under what conditions can we
assure that the projective holonomies, the minimal resolution tree up to first order,
and Sep(F) determine the analytic type of F . Theorem 1 tells us (at least under
generic conditions) that we have to ask Sep(F) to be a quasihomogenous curve.
Here we shall answer this question under generic conditions over F .

Theorem 2. Let F ,G be two generic QHS foliations, and let F̃ , G̃ their minimal
resolution. Then F ,G are analytically equivalent if and only if:

(1) F̃ , G̃ have isomorphic trees of resolution up to first order, say ϕ : Γ(F̃) −→
Γ(G̃);

(2) There is a conjugacy between HolΣ(F , D), HolΣ′(F ′, D′) subordinated to ϕ;
(3) Sep(F̃), Sep(G̃) are analytically equivalent;

3. Quasihomogeneous polynomials

3.1. Normal forms. Recall that f ∈ C[x, y] is a commode quasihomogeneous
polynomial if its Newton polygon intersects both coordinate axis. Now notice that
a polynomial in two variables P ∈ C[x, y] can be considered as a polynomial in the
variable y with coefficients in C[x], i.e. P ∈ (C[x])[y]. Then ordyP is the order
of P as a polynomial in (C[x])[y]. Similarly we define ordxP as the order of P as
an element of (C[y])[x]. Therefore, a quasihomogeneous polynomial P ∈ C[x, y] is
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commode if and only if ordxP = ordyP = 0. Now we deescribe the general behavior
of a quasihomogeneous polynomial.

Lemma 1. Let P ∈ C[x, y] is a quasihomogeneous polynomial, then it has a unique
decomposition in the form

P (x, y) = xmynP0(x, y)

where m, n ∈ N, λ ∈ C, P0 is a commode quasihomogeneous polynomial.

Proof. Let m := ordxP, n := ordyP , then clearly xm, yn divide P , thus it can be
written in the form P (x, y) =

∑
ai+bj=d aijx

iyj where i ≥ m, j ≥ n. Therefore
P (x, y) = xmynP0(x, y) where P0(x, y) =

∑
ai′+bj′=d′ ai′+m,j′+nxi′yj′ , d′ := d −

am − bn. Finally, since m := ordxP and n := ordyP , then ordxP0 = 0 = ordyP0.
The result then follows directly from the above remark. �

Lemma 2. Let P (x, y) =
∏k

l=1(y
p − λjx

q) with λj ∈ C
∗, j = 1, . . . , k. Then P is

a commode quasihomogeneous polynomial given by

P (x, y) =
k∑

pi+qj=pqk

σ i
q
(λ1, · · · , λk)xiyj

where σ0 := 1 and σl is the lth elementary symmetric polynomial in k variables, for
l = 1, . . . , k.

Proof. A straightforward calculation shows that

(3.1) P (x, y) =
k∏

l=1

(yp − λjx
q) =

k∑
l=0

σl(λ1, · · · , λk)xqlypk−pl

Now, if we let i := ql and j := pk−pl, then pi+qi = pqk; and the result follows. �

Definition 1. We shall say that a commode polynomial P ∈ C[x, y] is monic in
y if its a monic polynomial in (C[x])[y].

Theorem 3. Let P ∈ C[x, y] be a commode quasihomogeneous polynomial which
is monic in y. Then P can be written uniquely as

P (x, y) =
k∏

l=1

(yp − λjx
q)

where g.c.d.(p, q) = 1.

Proof. First remark that any quasihomogeneous polynomial can be written in the
form P (x, y) =

∑
ai+bj=d aijx

iyj where a, b, d ∈ N and g.c.d.(a, b) = 1. Since P is
commode, then there are i0, j0 ∈ N such that bj0 = d and ai0 = d; in particular
k := d/ab ∈ N. Hence, if we let p := a and q := b, then ai + bj = d can be
rewritten as pi + qj = pqk. Since g.c.d.(p, q) = 1, then q divides i and p divides
j. Now if we let i = qi′ and j = pj′, then pqi′ + qpj′ = pqk and thus i′ + j′ = k.
Now let l := i′, then P (x, y) =

∑k
l=0 aql,p(k−l)x

qlyp(k−l). If {λj}k
j=1 are the roots

of p(t) =
∑k

l=0 aql,p(k−l)t
k−l, then we shall have from elementary algebra that

P (x, y) =
∑k

l=0 σl(λ1, · · · , λk)xqlypk−pl. Thus the result follows by (3.1). �
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Corollary 1. Let P ∈ C[x, y] be a quasihomogeneous polynomial. Then P can be
written uniquely in the form

P (x, y) = μxmyn
k∏

l=1

(yp − λjx
q)

Proof. In view of Lemma 1 and Theorem 3, we only have to remark that any
commode quasihomogeneous polynomial P ∈ C[x, y] can be written uniquely as
P = μP0, where P0 is monic in y. �
3.2. Resolution. We investigate the geometry of the exceptional divisor of the
minimal resolution of a germ of foliation F with quasihomogeneous separatrix.

Lemma 3. Let F be a generalized curve with a commode quasihomogeneous sepa-
ratrix. Then F has one of the following diagrams of resolution:

Proof. Recall that a generalized curve is resolved together with its separatrices
([4]). Further recall, from Theorem 3, that there is a local system of coordinates
(x, y) such that f(x, y) =

∏k
l=1(y

p−λjx
q), with p < q. Since each irreducible curve

yp − λjx
q = 0 is a generic fiber of the fibration yp

xq ≡ const, then it is resolved
together with the fibration. After one blow-up we obtain:

tp/xq−p ≡ const,
uqyq−p ≡ const.

Since p < q, we have a singularity with holomorphic first integral at infinity and
a meromorphic first integral at the origin (as before). Going through with this
process, Euclid’s algorithm assures that the resolution ends when we blow-up a
radial foliation. In particular, if p = 1, then it is easy to see that the principal
projective line is transversal to just one projective line of the divisor. Otherwise
(i.e. in case p 	= 1) the singularity with meromorphic first integral “moves” to the
“infinity”, i.e. it will appear in a corner singularity. Then the principal projective
line intersects exactly two projective lines of the divisor. �
Lemma 4. Let F be a generalized curve with a non-commode quasihomogeneous
separatrix. Then F has one of the following diagrams of resolution:
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Proof. Recall from Corollary 1 that there is a local system of coordinates (x, y)
such that f(x, y) = μxmyn

∏k
l=1(y

p − λjx
q), with p < q. As μxmyn is resolved

after one blow-up, then f(x, y) is resolved together with the fibration yp

xq ≡ const,
as before. Since a generalized curve is resolved together with its separatrices ([4]),
then the result follows from Lemma 3. �

4. Hopf bundles and projective holonomy

We describe the invariants that determine the analytic type of resolved and
“rectified” singular foliations without saddle-nodes, defined on a neighborhood of
the zero section of a Hopf bundle.

Given two analytically conjugate singularities, then they have isomorphic trees of
singular points along their minimal resolution. Thus, if we consider isomorphic Hopf
components, it is clear that isomorphic points have their local holonomy generators
conjugate by a global conjugacy. To clarify the ideas we need the following:

Definition 2. Let H : (p : H → D) be the Hopf bundle, F a germ of resolved and
non-dicritical singular foliation on (H, D) without saddle nodes. Then we say that
a germ of holomorphic map f : (H, D) → (D, Id|D) is a transversal fibration to
F , if it satisfies:

(1) f is a retraction, i.e. f is a submersion and f |D = Id|D;
(2) the fiber f−1(tj) is a separatrix of F for each tj ∈ Sing(F);
(3) f−1(t) is transversal to F for every point t ∈ F − Sing(F).

Consider a Hopf bundle H : (p : H → D), a germ of resolved singular folia-
tion F on (H, D) without saddle nodes, a transversal fibration to F , namely
f : (H, D) → D, and t0 ∈ D − Sing(F) a regular point of F . Hence, by the
path lifting construction, the projective holonomy Hol(F , f−1(t)) is completely de-
termined by Hol(F , f−1(t0)) with t, t0 ∈ D − Sing(F). Such a holonomy will be
called the projective holonomy of F with respect to f . If there is no doubt
about the fibration, we only talk about the projective holonomy of the foliation
and denote it by Hol(F , D).

Definition 3. Let H : (p : H → D) be a Hopf bundle, F ,Fo germs of singular
resolved non-dicritical foliations on (H, D) without saddle-nodes, and ϕ an isomor-
phism between their trees of singularities. Then we set

DiffF ,Fo(H, D) := {Φ ∈ Diff(H, D) : Φ∗(F) = Fo, Φ|Sing(F) = ϕ|Sing(F)}
and call

Iso(Fo) := {Φ ∈ DiffFo,Fo(H, D) : Φ|Sing(F) = Id}
the isotropy group of the foliation Fo.

Definition 4. Let H : (p : H → D) be a Hopf bundle, F1,F2 two germs of resolved
and non-dicritical singular foliations without saddle nodes on (H, D), whose trees of
singular points are given by {tij}n

j=1, i = 1, 2, and ϕ ∈ PSL(2, C) an isomorphism
between those trees, i.e. ϕ(t1j ) = t2j . Let f1, f2 be two analytic fibrations such that
fi is transversal to Fi. Further, let t10 ∈ D be a regular point of F1, t20 = ϕ(t10)
and denote by hi

γ the holonomy of a path γi ∈ π1(D\{tij}n
j=1, t

i
0) with respect to fi

(i = 1, 2). Then we say that the projective holonomies of these foliations have a
conjugacy subordinated to ϕ if there is φ ∈ Diff(C, 0) such that φ∗(h1

γ) = h2
ϕ∗γ

for every γ ∈ π1(D\{t1j}n
j=1, t

1
0).
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Proposition 1. Let H : (p : H → D) be a Hopf bundle, F1,F2 be two germs of
foliations defined on (H, D) as in the above definition. Then F1,F2 are analytically
conjugate if and only if their projective holonomies have a conjugacy subordinated
to ϕ ∈ Diff(D).

Proof. As we already remarked, the necessary part is straightforward. Let us treat
the sufficient part; consider the trees of singular points {tij}n

j=1 and the regular
points ti0 ∈ D, as in the above definition, and let us suppose that there is φ ∈
Diff(C, 0) such that φ ◦ (h1

j) ◦ φ−1 = h2
j for all j = 1, . . . , n. Then we define the

map Φ : F\⋃n
j=1 f−1

1 (t1j ) −→ F ′\⋃n
j=1 f−1

2 (t2j ) by

Φ(t, x) := Φt(x) := h2
t ◦ φ ◦ (h1

t )
−1(x),

where x ∈ f−1
1 (t) and hi

t : f−1
i (t0) −→ f−1

i (t) are the holonomy maps obtained
by path lifting a curve connecting t0 to t in the leaves of F i. Note that this map
does not depend on the chosen base curves, since φ conjugates the elements of the
respective projective holonomies of F1,F2. Moreover, by (complex) ODE theory
and by Hartogs’s theorem, Φ is holomorphic since it is holomorphic in each variable
separately. Further, by [15], [13], we can extend the diffeomorphisms to the local
separatrices on a neighborhood of D, as desired. �

5. Analytic invariants

We consider QHS foliations and use the trees of singularities of their minimal
resolutions up to first order, and the projective holonomies of the Hopf components
of these resolutions, in order to identify some analytical cocycles that appear as
obstructions to extend componentwise conjugacies. Finally, we relate these ob-
structions with their analytic classification.

5.1. Componentwise isomorphisms and realization. We find conditions to
determine whether two componentwise isomorphic up to first order QHS foliations
are componentwise isomorphic (for the minimal resolution of (F : ω = 0)). Finally
we verify the uniqueness (up to biholomorphisms) of the ambient surface for the
minimal resolution of any element of QHSc,1

ω (see definition below).

Definition 5. we shall denoted by QHSc,1
ω (respect. QHSc,1

ω ) the set of QHS
foliations whose minimal resolutions are componentwise analytically equivalent (re-
spect. up to first order) to the minimal resolution of (F : ω = 0). Further, we
denote by QHSc,1

ω,f the subset of QHSc,1
ω whose separatrix set has the same analytic

type of the curve f−1(0).

We determine now the moduli space QHSc,1
ω,f

/
QHSc

ω,f . The following result is
a straightforward consequence of Proposition 1.

Proposition 2. Let F ,F ′ belong to the same class in QHSc,1
ω,f . Then they belong

to the same class in QHSc
ω,f if and only if the projective holonomies of the Hopf

components of their minimal resolutions are analytically conjugate.

Given two germs of foliations in QHSc
ω, we want to verify under what conditions

they are in fact globally holomorphically conjugate. For this purpose, we need first
to verify that the minimal resolutions of elements of QHSc

ω which have equivalent
trees are in fact defined on the same ambient surface (up to biholomorphism).
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Definition 6. We say that a complex surface is resolution-like if it is obtained by
a holomorphic pasting of Hopf bundles with negative Chern classes, in such a way
that the union of their zero sections become a tree of projective lines isomorphic to
the exceptional divisor of the composition of a finite numbers of blowing-up process
applied to (C2, 0).

Clearly this definition is given in such a way that every resolution surface of
some singularity is automatically resolution-like. In fact, any resolution-like surface
is biholomorphic to the resolution surface of some singularity.

Proposition 3. Let M1, M2 be two resolution-like surfaces with isomorphic trees of
projective lines D1, D2 respectively. Then (M1, D1) is biholomorphic to (M2, D2).

In order to prove the proposition, we need the following results about complex
line bundles.

Theorem 4 (Grauert [9]). Let S be a complex surface, and C ⊂ S be a rational
curve with negative self-intersection number. Then there are neighborhoods U, V of
C respectively in S and N(C; S) (the normal bundle of C in S) and a biholomor-
phism Ψ : U → V sending C in the zero section of N(C; S).

Theorem 5 (Grothendieck [10]). Two complex line bundles over the Riemann
sphere have the same Chern class if and only if they are biholomorphic.

Proof of Proposition 3. The proof is done by induction on the number of projective
lines in the chains. If the chains are composed by just one projective line, then the
result follows by the theorems of Grauert and Grothendieck. Now suppose that the
result is true for all chains composed by n ≥ 1 projective lines and let Dj have
n + 1 projective lines. Then, by hypothesis, Dj has two intersecting projective
lines, namely C1

j and C2
j , with self-intersection numbers given respectively by −1

and −2. Hence, applying Grauert’s and Grothendieck’s theorems, one obtains
that a neighborhood of each curve is biholomorphic to a neighborhood of the zero
section of the Hopf bundle with the Chern classes given by their self-intersection
numbers. Therefore we can blow-down a neighborhood of the curve C1

j obtaining
yet an analytic surface defined on a neighborhood of a Riemann sphere, say π(C2

j )
— where π stands for the blow-down (see Figure 6). In fact, π(C2

j ) has Chern
class −1. For, recall that a neighborhood of C2 in the surface is biholomorphic
to the Hopf bundle of class −2. Hence one can construct a global meromorphic
section for this line bundle without zeros an with just one pole of order two at
the corner (for instance, in affine coordinates one may have x = 1 and u = 1

u2

where u = 0 is the corner). Now if we consider the affine charts A = {(t, x),
(u, y) : u = 1/t, y = tx} of a neighborhood of C1 in the surface (with the corner at
t = 0), then the meromorphic section for C2 is locally given by:

t =
a−2

x2
+

a−1

x
+ a0 + a1x + · · ·

where a−2 	= 0. Hence, after blowing-down C1 (see Figure 6), we obtain a global
meromorphic section for π(C2) without zeros and with just one simple pole given
by

y =
a−2

x
+ a−1 + a0x + · · ·

Thus π(C2) has Chern class −1, as claimed.
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Figure 6

By induction we have a biholomorphism Φ : (π(M1), π(D1)) −→ (π(M2), π(D2))
taking π(C1

1 ) in π(C1
2 ). Finally, by Riemann’s extension theorem, the map Φ can

be lifted to a biholomorphism Φ̃ : (M1, D1) −→ (M2, D2). �

5.2. Analytic cocycles. We determine a characteristic class for generalized curves
with quasihomogeneous separatrices, which appears as obstruction for the global
pasting of componentwise isomorphisms. In order to do this, we shall strongly use
the concept of non-abelian cohomology. For the reader which is not familiar with
this subject, we refer to [8], [14].

Definition 7. We denote by Iso(F) the isotropy group of the germ of foliation
(F : ω = 0) on (C2, 0) given by

Iso(F) = {φ ∈ Diff(C2, 0) : φ∗ω ∧ ω = 0}
Let (F : ω = 0) be a generalized curves with quasihomogeneous separatrix and

pick Fo, componentwise isomorphic to F , such that, in the coordinates given by
its minimal resolution, Sep(F̃o

j ) is contained in the fibers of Hj (this resolution
does exist by [5]). Fo shall be called a fixed model for F . Now consider the
elements Φj ∈ Diff(F̃j, F̃o

j ) which shall be called a projective chart for the jth

component of the fixed model. Then it is straightforward that:

Lemma 5. For each F̃j = F̃
∣∣∣
Hj ,Dj

and each fixed model F̃o
j there exists only one

projective chart up to left composition by an element of Iso(F̃o
j ).

Now consider the sheaf of non-abelian groups Λo := Iso(F̃o), then we say that
U := ∪Uj is a good covering for Λo if Uj are simply-connected neighborhoods
of Dj ⊂ Hj whose intersections are simply-connected. Then consider the first
cohomology set H1(U , Λo) associated with the good covering U , and set H1(D, Λo)
as the direct limit of H1(U , Λo) for the good coverings of F̃ associated with D =
∪Dj (the exceptional divisor of the given minimal resolution of F). Hence, by
Proposition 3, the map

QHSc
ω

Θ−→ Z1(D, Λo)
F → (Φi,j) := Φi ◦ Φ−1

j

is well defined and onto H1(D, Λo). Note that Θ does not depend on the fixed
models, up to componentwise conjugacy class. By the definition of the fixed model
we have ω̃o

j (uj , yj) = ω̃o
j+1(tj+1, xj+1) where (F̃o

j : ω̃o
j = 0) for j = 1, . . . , k.

Proposition 4. Two generalized curves with quasihomogeneous separatrices F ,G ∈
QHSc

ω are analytically equivalent if and only if [Θ(F)] = [Θ(G)] ∈ H1(D, Λo).

Proof. Let Θ(F) = (Φ1 ◦Φ−1
2 , · · · , Φk−1 ◦Φ−1

k ), and Θ(G) = (Ψ1 ◦Ψ−1
2 , · · · , Ψk−1 ◦

Ψ−1
k ). First let us verify the necessary part. Suppose that H is a global conjugation
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between F and G, i.e. H∗(G) = F . Then, by Lemma 5, we have Ψj = αj ◦ Φj ◦ H

for some αj ∈ Iso(F̃o
j ). Therefore,

Ψj−1 ◦ Ψ−1
j = αj−1 ◦ Φj−1 ◦ H ◦ H−1 ◦ Φ−1

j ◦ α−1
j

= αj−1 ◦ Φj−1 ◦ Φ−1
j ◦ α−1

j .

Now let us verify the sufficient part. By hypothesis, F and G have the same
fixed model. Hence, if [(Φ1 ◦ Φ−1

2 , · · · , Φk−1 ◦ Φ−1
k )] = [Θ(F)] = [Θ(G)] = [(Ψ1 ◦

Ψ−1
2 , · · · , Ψk−1 ◦ Ψ−1

k )], then there is a collection (αj) ⊂ Iso(F̃o
j ) such that Ψj−1 ◦

Ψ−1
j = αj−1 ◦Φj−1 ◦Φ−1

j ◦α−1
j . Henceforth, (αj−1 ◦ Φj−1)

−1◦Ψj−1 = (αj ◦ Φj)
−1 ◦

Ψj. Thus we can define a global conjugacy between them, just by leting H :=
(αj ◦ Φj)

−1 ◦ Ψj for all j = 1, . . . , k. �

6. Quasihomogeneous polynomials and vanishing cocycles

In order to prove Theorem 2, we have to state some notation and preliminary
results. Recall that F ∈ QHSc,1

ω,f with f(x, y) = μymxn
∏d

j=1(y
p − λjx

q), 1 ≤ p <

q, m, n ∈ N∗, g.c.d.(p, q) = 1, and λj , μ ∈ C∗. Then we order the first projective
line to arise in the course of the resolution process with 1, and increasingly with 2
the next one to intersect it — in the minimal resolution — and so on (see Lemma
3 and Figure 8). In particular we denote the principal projective line by Dl. From
Lemmas 3 and 4 we have that F̃j has at most two singularities for all j 	= l. Since
F is generic, then the index theorem guarantees that the singularities of F̃j are
(simultaneously) linearizable for all for j 	= l (cf. [22]).

Now fix the projective models (F̃o
j : ω̃o

j = 0) given by the (global) multivalued
first integral:

(6.1)
{

ω̃o
j (τ, ξ) ∧ d(τpj ξqj ) = 0,

ω̃o
j (υ, ζ) ∧ d(υkjqj−pj ζqj ) = 0.

where Aj = {(τ, ξ), (υ, ζ) : υ = 1/τ, ζ = τξ} are affine charts for the Hopf bundle
Hj(−kj) and νj , μj ∈ C are non-resonant for all j 	= l. Then, by the index theorem,
we have that F̃j , F̃o

j are isomorphic up to first order. In fact, as the projective
holonomy of F̃2 is linearizable, then Proposition 1 guarantees that they are indeed
isomorphic for all j 	= l. Since the coordinate system (τ, ξ), (υ, ζ) — as in (6.1) —
satisfies

τ = t · U1(t, x) ξ = x · U2(t, x)
υ = u · V1(u, y) ζ = y · V2(u, y)

where Uj, Vj ∈ O∗(C, Dε) (Dε is the disk of radius ε centered at the origin) and
Uj(t, 0) = Vj(u, 0) = 1. Then we have V1(u, y) = 1/U1(1/u, ukjy) and V2(u, y) =
U1(1/u, ukjy) · U2(1/u, ukjy). Thus the zero and polar sets of U1 do not intersect
Dj ⊂ Hj . Hence U1(t, x) =

∑
m< n

kj

am,ntmxn and U2(t, x) =
∑

m< n
kj

bm,ntmxn.

Therefore τνj ξμj = tνj xμj U(t, x) and υkjμj−νj ζμj = ukjμj−νj yμj V (u, y), where
U(t, x) =

∑
m< n

kj

cm,ntmxn ∈ O∗(C, Dε) and V (u, y) := U(1/u, ukjy) ∈ O∗(C, Dε).

Thus the Hopf component F̃j has a (global) multivalued first integral given in
affine charts (t, x) and (u, y) respectively by tνj xμj U(t, x), ukjμj−νj yμj V (u, y) for
all j 	= l.
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Figure 8: The principal projective line for p 	= 1.

By the argument used in the proof of Lemma 3, F is resolved together with any
“generic” fiber of the “companion” fibration yp

xq ≡ const, i.e. (G : η = 0) where
η(x, y) = pxdy − qydx. In other words, F and G are resolved by the same sequence
of blowing-ups. In particular, the minimal resolution of G has the same tree of
projective lines of the minimal resolution of any element of QHSc,1

ω,f , and contains
its separatrices as fibers. Furthermore, for each j 	= l the foliation G̃j has a (global)
holomorphic first integral of the form{

η̃(t, x) = d(trj xsj ),
η̃(u, y) = d(ukjsj−rj ysj ).

where Bj = {(t, x), (u, y) : u = 1/t, y = tx} are affine charts for the Hopf bundle
Hj(−kj), and rj , sj ∈ N are relatively prime. On the other hand, since G̃l is a radial
fibration, then G̃l−1 has just one singularity (cf. Figure 7). Therefore, comparing
F̃j and G̃j (starting from l − 1 to 1) in view of index theorem, it follows that
νjsj − μjrj 	= 0 for all j 	= l.

Figure 7: The resolution tree of G : (xp

yq = const.)

Remark 1. In case Sep(F) is commode then Lemma 3 and the index theorem
assures that the generic conditions are automatically satisfied, since in this case the
multivalued first integrals turns out to be holomorphic.

Now let (F : ω = 0) be a germ of singular holomorphic foliation on (C2, 0),
F̃ its minimal resolution, and Fix(F̃) the subset of Iso(F̃) given by the germs
automorphisms of F̃ fixing the leaves of F̃ , and consider the subsheaf of Λo given
by Γo := Fix(F̃o). Then, from the geometry of the divisor of any element of
QHSc,1

ω , the holonomy of the non-principal Hopf components coincides with the
holonomy of their corners. Therefore, we may suppose, without loss of generality,
that (φij) ∈ Z1(U , Γo).

Lemma 6. For all j = 1, . . . , k there is Φj ∈ DiffF̃j,F̃o
j
(Hj , Dj) such that Φj ∈

Fix(G̃j). In particular, there are affine coordinates (t1, x1), (u1, y1) for Hj such
that the first integrals of F̃j , G̃j are given respectively by t

νj

1 x
μj

1 , u
kjμj−νj

1 y
μj

1 and
t
rj

1 x
sj

1 , u
kjsj−rj

1 y
sj

1 .

Proof. In case j = l the statement results from Proposition 1. Now let us consider
the case j 	= l. First notice that F̃j has first integrals of the form tνj xμj U(t, x)
where U ∈ O∗

2 . Hence, if Φ−1
j (t, x) = (aj(t, x), bj(t, x)), then we have to find a
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solution for the system of equations{
aj(t, x)νj bj(t, x)j

μj = tνj xμj U(t, x)
aj(t, x)rj bj(t, x)sj = trj xsj

which can be given in the affine chart (t, x) by⎧⎨
⎩ aj(t, x) = tU(t, x)

sj
νjsj−μj rj ,

bj(t, x) = xU(t, x)
rj

μjrj−νjsj .

A straightforward calculation shows that the expression of Φ−1
j in the affine chart

(u, y) is given by

Φ−1
j (u, y) = (uV (u, y)

sj
μjrj−νjsj , yV (u, y)

rj−kj sj
μjrj−νjsj )

where V (u, y) := U(1/u, ukjy) ∈ O∗(C, Dε). Finally, by construction and the im-
plicit function theorem, Φ−1

j ∈ Diff(Hj, Dj) carry leaves of F̃j into leaves of F̃o
j

. �

Recall F̃j,j+1, G̃j,j+1 denote the germs of foliations defined on a neighborhood of
the corner tj,j+1 = Di ∩ Dj by the restrictions of F̃ , G̃ respectively.

Lemma 7. Let Φj−1,j ∈ Fix(F̃o
j−1,j) ∩ Fix(G̃j−1,j) for j = 2, . . . , k. Then Φj−1,j

has a unique extension to Φj ∈ Fix(F̃o
j )

Proof. Notice that the uniqueness is a consequence of the identity theorem. Then,
assuming that the corner is in the origin of the affine (u, y) of Hj , we shall have
Φj−1,j(t, x) = (a(t, x), b(t, x)) ∈ O(D∗×D) where D is the unity disk. Since Φj−1,j ∈
Fix(F̃o

j−1,j) ∩ Fix(G̃j−1,j), then it satisfies the following system of equations{
a(t, x)νj b(t, x)μj = tνj xμj

a(t, x)rj b(t, x)sj = trj xsj

whose solutions are aj(t, x) = αt and bj(t, x) = βx where α, 1
β are (νjsj − μjrj)-

roots of unity. �

Proof of Theorem 2. For simplicity, we prove the statement just in case the princi-
pal projective line is in the “edge” of the resolution, i.e. it intersects just one pro-
jective line. Let F ,F ′ ∈ QHSc,1

ω,f with projective charts Φj ∈ DiffF̃j,F̃o
j
(Hj , Dj)

and Φ′
j ∈ DiffF̃ ′

j,F̃o
j
(Hj , Dj) respectively for all j = 1, . . . , l − 1. Then, by

Lemma 6, we may suppose that Φj , Φ′
j ∈ Fix(G̃j). Hence we construct (by a

decreasing induction) a collection (αj) with αj ∈ Fix(F̃o
j ) ∩ Fix(G̃j,j+1) such

that Φ′
j−1 ◦ Φ′−1

j = αj−1 ◦ Φj−1 ◦ Φ−1
j ◦ αj

−1. First let αl = Id|Iso(F̃o
l ) (here l

stands for the principal projective line) and suppose that αj (j < l) is already
defined. Then let αj−1,j := Φ′

j−1 ◦ Φ′−1
j ◦ αj ◦ (Φj−1 ◦ Φ−1

j )−1. By construction
αj−1,j ∈ Fix(F̃o

j−1,j)∩Fix(G̃j−1,j ). Thus, by Lemma 7, it has an unique extension,
namely αj−1 ∈ Fix(F̃o

j−1). Then we have that Φ′
j−1◦Φ′−1

j = αj−1◦Φj−1◦Φ−1
j ◦α−1

j

for all j = 1, . . . , l−1. The other case can be treated similarly, just differing by the
induction arguments. �
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