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Vı́tor Araújo (vitor.araujo@im.ufrj.br and vdaraujo@fc.up.pt) ∗
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Abstract

We obtain a exponential large deviation upper bound for continuous observables
on suspension semiflows over a non-uniformly expanding base transformation with
non-flat singularities or criticalities, where the roof function defining the suspension
behaves like the logarithm of the distance to the singular/critical set of the base map.
That is, given a continuous function we consider its space average with respect
to a physical measure and compare this with the time averages along orbits of
the semiflow, showing that the Lebesgue measure of the set of points whose time
averages stay away from the space average tends to zero exponentially fast as time
goes to infinity.

The arguments need the base transformation to exhibit exponential slow recur-
rence to the singular set which, in all known examples, implies exponential decay
of correlations.

Suspension semiflows model the dynamics of flows admitting cross-sections,
where the dynamics of the base is given by the Poincaré return map and the roof
function is the return time to the cross-section. The results are applicable in particular

∗The author was partially supported by CNPq-Brazil and FCT-Portugal through CMUP and
POCI/MAT/61237/2004.
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to semiflows modeling the geometric Lorenz attractors and the Lorenz flow, as well
as other semiflows with multidimensional non-uniformly expanding base with non-
flat singularities and/or criticalities under slow recurrence rate conditions to this
singular/critical set. We are also able to obtain exponentially fast escape rates from
subsets without full measure.

1 Introduction

The statistical viewpoint on Dynamical Systems provides some of the main tools avail-
able for the global study of the asymptotic behavior of transformations or flows. One of
the main concepts introduced is the notion of physical (or Sinai-Ruelle-Bowen) measure
for a flow or a transformation. An invariant probability measure µ for a flow Xt on
a compact manifold is a physical probability measure if the points z satisfying for all
continuous functions ψ

lim
t→+∞

1

t

∫ t

0

ψ
(

Xs(z)
)

ds =

∫

ψ dµ,

form a subset with positive volume (or positive Lebesgue measure) on the ambient
space. These time averages are in principle physically observable if the flow models a
real world phenomenon admitting some measurable features.

For systems admitting such invariant probability measures it is natural to consider
the rate of convergence of the time averages to the space average, given by the vol-
ume of the subset of points whose time averages stay away from the space average
by a prescribed amount up to some evolution time. This rate is closely related to the
so-called thermodynamical formalism first developed for (uniformly) hyperbolic diffeo-
morphisms, borrowed from statistical mechanics by Bowen, Ruelle and Sinai (among
others, see e.g. [22, 23, 51, 52, 29, 21]). These authors systematically studied the construc-
tion and properties of physical measures for (uniformly) hyperbolic diffeomorphisms
and flows. Such measures for non-uniformly hyperbolic maps and flows where obtained
more recently [48, 25, 18, 19, 2].

The probabilistic properties of physical measures are an object of intense study, see
e.g. [23, 37, 58, 59, 20, 3, 4, 6, 32, 11, 7]. The main insight behind these efforts is that the
family {ψ◦Xt}t>0 should behave asymptotically in many respects just like a i.i.d. random
variable.

The study of suspension (or special) flows is motivated by modeling a flow admit-
ting a cross-section. Such flow is equivalent to a suspension semiflow over the Poincaré
return map to the cross-section with roof function given by the return time function
for the points in the cross-section. This is one of the main technical tools in the ergodic
theory of Axiom A (or uniformly hyperbolic) flows developed by Bowen and Ruelle [23],
enabling them to pass from this type of flow to a suspension flow over a shift transfor-
mation with finitely many symbols and bounded roof function. Then the properties of
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the base transformation are used to deduce many results for the suspension flow, which
are then passed to the original flow.

Recently, based on the breakthrough of Dolgopyat [27], this kind of modeling pro-
vided results on the rate of decay of correlations for certain flows [13] based on the rate
of decay of correlations for suspension semiflows [15]. General results on the existence
and some statistical properties of physical measures for singular-hyperbolic attractors
for three-dimensional flows [10] as well as their sensitive dependence on initial condi-
tions were also obtained using this standard technique. Moreover the classical Lorenz
flow [43] was shown to be equivalent to a geometric Lorenz flow by Tucker [54] and so
it can be modeled by a suspension semiflow over a non-uniformly hyperbolic transfor-
mation with unbounded roof function. Using these ideas it was recently obtained [44]
that the physical measure for the Lorenz attractor is mixing.

Here we extend part of the results on large deviation rates of Kifer [37] (see also
Waddington [57]) from the uniformly hyperbolic setting to semiflows over non-uniformly
expanding base dynamics and unbounded roof function. These special flows model
non-hyperbolic flows, like the Lorenz flow, exhibiting equilibria accumulated by regu-
lar orbits. We use the properties of non-uniformly expanding transformations, especially
the large deviation bound obtained in [7], to deduce a large deviation bound for the sus-
pension semiflow reducing the estimate of the volume of the deviation set to the volume
of a certain deviation set for the base transformation. More precisely, if we set ε > 0 as
an error margin and consider

Bt =
{

z :
∣

∣

∣

∣

1

t

∫ t

0

ψ
(

Xt(z)
)

−
∫

ψ dµ
∣

∣

∣

∣
> ε

}

then we are able to provide conditions under which the Lebesgue measure of Bt decays
to zero exponentially fast, i.e. weather there are constants C, ξ > 0 such that

Leb
(

Bt

)

≤ Ce−ξt for all t > 0.

The values of C, ξ > 0 above depend on ε, ψ and on global invariants for the base
transformation f , such as the metric entropy and the pressure function of f with respect
to the physical measures of f and a certain observable constructed from ψ and Xt, as
detailed in the next section. Having this it is not difficult to deduce exponential escape
rates from subsets of the semiflow.

In order to be able to apply this bound to Lorenz flows, it is necessary to allow the
roof function of the suspension flows to be unbounded near the singularities of the
base dynamical system. This in turn imposes some restrictions on the admissible base
dynamics, expressed as a slow recurrence rate to the singular set and uniqueness of
equilibrium states with respect to the logarithm of the Jacobian of the map. However no
cohomology condition on the roof function are needed, while this is essential to obtain
fast decay of correlations in [28, 45, 30].

We present several semiflows with non-uniformly expanding base transformations
satisfying all our conditions, including one-dimensional piecewise expanding maps with
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Lorenz-like singularities and quadratic maps but also multidimensional examples. This
demanded the detailed study of recurrence rates to the singular set, the study of large
deviation bounds for unbounded observables over non-uniformly expanding transfor-
mations, and an entropy formula for non-uniformly expanding maps with singularities
(which might be of independent interest). Now we give the precise statement of the
results.

1.1 Statement of the results

Denote by ‖ · ‖ a Riemannian norm on the compact boundaryless manifold M, by dist
the induced distance and by Leb the corresponding Riemannian volume form, which
we call Lebesgue measure or volume. We assume Leb to be normalized: Leb(M) = 1.

Given a C2 local diffeomorphism (Hölder-C1 is enough, see below) f : M \ S → M
outside a volume zero non-flat singular set, let Xt : Mr → Mr be a semiflow with roof
function r : M \ S → R over the base transformation f , as follows. Set Mr = {(x, y) ∈
M × [0,+∞) : 0 ≤ y < r(x)}. For x = x0 ∈ M denote by xn the nth iterate f n(x0) for n ≥ 0.

Denote Snϕ(x0) = S
f
nϕ(x0) =

∑n−1
j=0 ϕ(x j) for n ≥ 1 and for any given real function ϕ in

what follows. Then for each pair (x0, s0) ∈ Xr and t > 0 there exists a unique n ≥ 1 such
that Snr(x0) ≤ s0 + t < Sn+1r(x0) and we define

Xt(x0, s0) =
(

xn, s0 + t − Snr(x0)
)

.

The non-flatness of the singular set S is an extension to arbitrary dimensions of the
notion of non-flat singular set from one-dimensional dynamics [26] and means that f
behaves like a power of the distance to the singular set. More precisely there are constants
B > 1 and 0 < β < 1 for which

(S1)
1

B
dist(x, S)β ≤

‖D f (x)v‖
‖v‖ ≤ B dist(x, S)−β;

(S2)
∣

∣

∣log ‖D f (x)−1‖ − log ‖D f (y)−1‖
∣

∣

∣ ≤ B
dist(x, y)

dist(x, S)β
;

(S3)
∣

∣

∣log |det D f (x)−1| − log |det D f (y)−1|
∣

∣

∣ ≤ B
dist(x, y)

dist(x, S)β
;

for every x, y ∈M \ S with dist(x, y) < dist(x, S)/2 and v ∈ TxM \ {0}. We also assume an
extra condition related to the geometry of S. This ensures that the Lebesgue measure
of neighborhoods S is comparable to a power of the distance to S, that is there exists
Cκ, κ > 0 such that for all small ρ > 0

(S4) Leb{x ∈M : dist(x, S) < ρ} ≤ Cκ · ρκ.

The singular set S contains those points x where f is either not defined, is discontinuous,
not differentiable or else D f (x) is non-invertible (that is S contains the set C of critical
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points of f ). Note that condition (S4) is satisfied in the particular case when S is a
compact submanifold of M, where κ = dim(M) − dim(S). It is also satisfied for M = S1

and S is a denumerable infinite subset with finitely many accumulation points, with
κ = 1. In particular this holds for a piecewise expanding map over the interval or the
circle with finitely many domains of monotonicity.

We say that f is non-uniformly expanding if there exists c > 0 such that

lim sup
n→+∞

1

n
Snψ(x) ≤ −c where ψ(x) = log

∥

∥

∥D f (x)−1
∥

∥

∥, (1.1)

for Lebesgue almost every x ∈M. This condition implies in particular that all the lower
Lyapunov exponents of the map f are strictly positive Lebesgue almost everywhere.

Let ∆δ(x) =
∣

∣

∣ log dδ(x, S)
∣

∣

∣ be the smooth δ-truncated logarithmic distance from x ∈M to S,
i.e. ∆δ(x) is non-negative and continuous away from S, identically zero 2δ-away from S,
and equal to − log dist(x, S) when dist(x, S) ≤ δ.

We say that f has exponentially slow recurrence to the singular set S if for every ε > 0
there exists δ > 0 such that

lim sup
n→+∞

1

n
log Leb

{

x ∈M :
1

n
Sn∆δ(x) > ε

}

< 0. (1.2)

Condition (1.2) implies that Sn∆δ/n→ 0 in measure, i.e. for every ε > 0 there exists δ > 0
such that

lim sup
n→∞

1

n
Sn∆δ(x) ≤ ε (1.3)

for Lebesgue almost every x ∈M. We say that a map f satisfying (1.3) has slow recurrence
to S.

These notions were presented in [5] and in [5, 1] the following result on existence of
finitely many absolutely continuous measures was obtained.

Theorem 1.1. Let f : M → M be a C2 local diffeomorphism outside a singular set S. Assume
that f is non-uniformly expanding with slow recurrence to S. Then there are finitely many
ergodic absolutely continuous (in particular physical or Sinai-Ruelle-Bowen) f -invariant
probability measures µ1, . . . , µk whose basins cover the manifold Lebesgue almost everywhere,
that is B(µ1)∪· · ·∪B(µk) =M, Leb− mod 0. Moreover the support of each measure contains
an open disk in M.

Here the basin of an invariant probability measure µ is the subset of points x ∈ M

such that limn→∞
1
n

∑n−1
j=0 δ f j(x) = µ in the weak∗ topology.

Large deviation bounds are usually related to measure theoretic entropy and to
equilibrium states. We denote by M f the family of all invariant probability measures
with respect to f . Let J = |det D f |. We say that µ ∈M f is an equilibrium state with respect
to the potential log J if hµ( f ) = µ(log J), that is if µ satisfies the Entropy Formula. We denote
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by E the subset of M f consisting of all equilibrium states for f . It is not difficult to see
(Section 5 for more details) that each physical measure provided by Theorem 1.1 belongs
to E.

Another standing assumption on f is that the set E is formed by a unique f -invariant
absolutely continuous probability measure (see Section 2 for sufficient conditions for this to
occur and for examples of application).

We denote by ν = µ ⋉ Leb1 the natural Xt-invariant extension of µ to Mr and by λ

the natural extension of Leb to Mr, i.e. λ = Leb⋉Leb1, where Leb1 is one-dimensional
Lebesgue measure on R: for any subset A ⊂ Mr

ν(A) =
1

µ(r)

∫

dµ(x)

∫ r(x)

0

dsχA(x, s) and λ(A) =
1

Leb(r)

∫

d Leb(x)

∫ r(x)

0

dsχA(x, s).

We say that a function ϕ : M \ S → R has logarithmic growth near S if there exists
K = K(ϕ) > 0 such that

|ϕ|χB(S,δ) ≤ K · ∆δ for all small enough δ > 0. (1.4)

We also say that f is a regular map if for E ⊂M such that Leb(E) = 0, then Leb
(

f−1(E)
)

= 0.

Theorem A. Let Xt be a suspension semiflow over a non-uniformly expanding transformation
f on the base M which exhibits exponentially slow recurrence to the singular set, where the roof
function r : M \ S→ R has logarithmic growth near S. Assume that f is a regular map and that
the set E of equilibrium states is formed by a single measure µ. Let ψ : Mr → R be a continuous
function. Then

lim sup
T→∞

1

T
logλ

{

z ∈Mr :

∣

∣

∣

∣

∣

∣

1

T

∫ T

0

ψ
(

Xt(z)
)

dt − ν(ψ)

∣

∣

∣

∣

∣

∣

> ε

}

< 0. (1.5)

1.2 Escape rates

Let K ⊂ Mr be a compact subset. Given ε > 0 we can find an open set W ⊃ K contained
in Mr and a continuous bump function ϕ : Mr → R such that Leb(W \ K) < ε with
0 ≤ ϕ ≤ 1, ϕ | K ≡ 1 and ϕ | (M \W) ≡ 0. Then we get for n ≥ 1

{

x ∈ K : Xt(x) ∈ K, 0 < t < T
}

⊂
{

x ∈M :
1

T

∫ T

0

ϕ
(

Xt(x)
)

dt ≥ 1

}

(1.6)

and so we deduce the following using the estimate from Theorem A.

Corollary B. Let Xt be a suspension semiflow over a non-uniformly expanding transformation
f on the base M in the same setting as in Theorem A. Let K be a compact subset of Mr such that
ν(K) < 1. Then

lim sup
T→+∞

1

T
logλ

( {

x ∈ K : Xt(x) ∈ K, 0 < t < T
} )

< 0.
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1.3 Lorentz and Geometric Lorenz flows

The Lorenz equations

ẋ = 10(y − x), ẏ = 28x − y − xz, ż = xy − 8z/3 (1.7)

were presented by Lorenz [43] in 1963 as a simplified model of convection of the Earth’s
atmosphere. It turned out that these equations became one of the main models showing
the presence of chaotic dynamics in apparently simple systems. More recently Tucker
[54, 55] with a computer assisted proof showed that equations (1.7) and similar equations
with nearby parameters define a geometric Lorenz flow, i.e. a three-dimensional flow Xt

inR3 with a hyperbolic singularity at the origin admitting a neighborhood U (a trapping

region) such that Xt(U) ⊂ U for all t > 0 satisfying:

1. the attracting set Λ = ∩t>0Xt(U) contains the singularity at 0;

2. Λ contains a dense orbit;

3. there exists a square S = [−1, 1] × [−1, 1] × {1} which is a cross-section for Λ \ {0},
that is for every w ∈ Λ \ {0} there exists t > 0 such that Xt(w) ∈ S;

4. the Poincaré first return map to S given by R : S\ℓ→ S is C2 and contracts distances
exponentially on the y direction, where ℓ = {0} × [−1, 1] × {1} is the singular line,
so each segment S ∩ {x = const} is contained in a stable manifold. Moreover in
general this one-dimensional and co-dimension one foliation of the cross-section
S defines a projection P along leaves which is C1+α for some α > 0;

5. the one-dimensional map f : [−1, 1] \ {0} → [−1, 1] obtained from R quotienting
out the stable manifolds is a piecewise expanding map with singularities known
as Lorenz-like map, which is in the setting of the class of examples detailed in
Subsection 2.2;

6. the roof function τ(w) for w ∈ S is Lebesgue integrable over S and has logarithmic
growth near the singular line ℓ.

It is well known that the attractor of the geometric Lorenz flows (and the attractor for
the Lorenz equations after the results of Tucker already mentioned) supports a unique
ergodic physical measure µ (for more details on this construction see e.g. [56]). Figure 1
gives a visual idea of the geometric Lorenz flow. The reader should consult [33, 34, 50]
for proofs of the properties stated above and more details on the construction of such
flows. Using τ as a roof function over the base dynamics given by R we see that the
dynamics of a geometric Lorenz flow on U is equivalent to a suspension semiflow over R
with roof function τ. In addition the uniform contraction along the leaves of the foliation
{y = const} together with the uniform expansion of the one-dimensional map f enables
us to use Theorem A to deduce
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Figure 1: The geometric Lorenz flow and the associated one-dimensional piecewise
expanding map

Corollary C. Let Xt be a flow on R3 exhibiting a Lorenz or a geometric Lorenz attractor with
trapping region U. Denoting by Leb the normalized restriction of the Lebesgue volume measure
to U, ψ : U → R a bounded continuous function and µ the unique physical measure for the
attractor, then for any given ε > 0

lim sup
T→∞

1

T
log Leb

{

z ∈ U :

∣

∣

∣

∣

∣

∣

1

T

∫ T

0

ψ
(

Xt(z)
)

dt − µ(ψ)

∣

∣

∣

∣

∣

∣

> ε

}

< 0,

and consequently for any compact K ⊂ U such that µ(K) < 1 we also have

lim sup
T→+∞

1

T
log Leb

( {

x ∈ K : Xt(x) ∈ K, 0 < t < T
} )

< 0.

1.4 Comments and organization of the paper

We note that the smoothness assumption needed for our arguments is only C1+α for some
α ∈ (0, 1). Therefore the C2 condition on f in the statements of results can be relaxed to
C1+α throughout.

Kifer [37] together with Newhouse [38] obtain sharp large deviations bounds both
from above and from below for uniformly partially hyperbolic attractors for flows and for
Axiom A flows, through an estimate of the volume growth of images of balls under the
action of the flow near the attractor (“volume lemma”, see also [23] and [22]). Moreover
to obtain the lower bound an assumption of uniqueness of equilibrium states is necessary
and this assumption is also used to prove that the upper bound is strictly negative (see
also [58] for uniformly expanding transformations and for partially hyperbolic attractors
for diffeomorphisms).

Hence the assumption that E is formed by a single measure is natural in this setting.
The author feels this assumption should not be needed to obtain an expression for the
upper bound in terms of entropies, as in [37]. However the relevant “volume lemmas”
are presently not available in the setting of special flows over non-uniformly expanding
base, with singularities or criticalities. Moreover the uniqueness of equilibrium states
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with respect to a large family of potentials (or observables) is still unknown in general
(see [47, 12, 11] for recent progress in this direction). Therefore instead of following
the approach of [37] we have reduced the problem of estimating the deviations for the
suspension flow, with respect to a continuous observable, to the problem of estimating
deviations for the base transformation, with respect to an unbounded observable, and
then rely on previous work [7] for non-uniformly expanding transformations. To deal
with the dynamics near the singularities we impose conditions of very slow recurrence
to the singular set S for the base transformation f together with a growth condition on
the roof function r near the singularities. In the end to conclude that the upper bound
is strictly negative we use uniqueness of the relevant equilibrium state. Unfortunately
this argument does not rule out superexponential decay in (1.5).

Recently Melbourne and Nicol [46] obtained sharp large deviation bounds (i.e. they
showed that the limit (1.5) exists) for systems modeled on Markov towers (also known
as Young towers) without requiring uniqueness of equilibrium states. In the same work
upper large deviation bounds are obtained for semiflows over Markov towers assuming
that the roof function is bounded. However their method presents two disadvantages:
the large deviation estimates in [46] are proved only for Hölder observables, and these
estimates are obtained for the invariant physical measure rather than the volume or
Lebesgue measure, which is more directly accessible.

Section 2 shows how the conditions of f and on r are satisfied by many relevant
examples. In particular in Subsection 2.4 it is explained how to obtain a large deviation
bound for geometric Lorenz flows using the statement of the Main Theorem applied
to suspensions semiflows over piecewise expanding maps with singularities, which are
treated in a preliminary fashion in Subsection 2.2 and at length in Section 6. The main
result needed for the proof of the Main Theorem is a large deviation bound for ob-
servables with logarithmic growth near the singular set for a non-uniformly expanding
map, which is proved in Section 3. Then the statement of the Main Theorem about large
deviations for a suspension semiflow is reduced to a statement of large deviations for
the dynamics of the base transformation in Section 4 concluding the proof of the Main
Theorem. Note that in contrast to the results on decay of correlations for Anosov flows
or Axiom A flows, here we do not need any coboundary conditions on the roof function
for the large deviation bound to hold.

In Section 5 we present a derivation of the Entropy Formula for non-uniformly
expanding maps with slow recurrence to the singular set, which is used to establish that
some examples presented in Section 2 do satisfy our assumptions and which might be
interesting in itself.
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2 Examples of application

Here we present some concrete examples where our results can be applied.

2.1 Suspension semiflows over multidimensional volume expanding

and quasi-expanding maps

Let f : M\S→M be a transitive non-uniformly expanding map with exponentially slow
recurrence to S satisfying J = |det D f | > 1, ψ = log ‖(D f )−1‖ ≤ 0 and ψ = 0 at finitely
many points only (a quasi-expanding map). We claim that in this setting E is a singleton.

Indeed E is non-empty by Theorem 1.1 since every absolutely continuous invariant
probability measure is an equilibrium state (see e.g. Theorem 5.1 in Section 5). Since
f | M \ S is a local diffeomorphism and the support of such absolutely continuous
invariant measures contains open sets, the transitivity together with regularity of the
map ensure that there exists only one absolutely continuous invariant measure. For
otherwise let µi be ergodic absolutely continuous f -invariant probability measures and
let Bi ⊂ supp(µi) be open sets in the support i = 1, 2; by transitivity and continuity
there exists a non-empty open subset B ⊂ B1 and an iterate such that f n(B) ⊂ B2 and
by smoothness Leb-almost every point in f n(B) is both a µ1-generic point and a µ2-
generic point, thus µ1 ≡ µ2. This shows that there exists a unique absolutely continuous
invariant probability measure for f .

Note now that every equilibrium state ν ∈ Emust be such that hν( f ) = ν(log J) > 0 and
since ψ ≤ 0 and has at most finitely many zeroes, then either ν(ψ) < 0 and by Theorem
5.1 the measure ν must be absolutely continuous, or ν(ψ) = 0 and supp ν ⊆ ψ−1({0}) is
finite thus hν( f ) = 0, a contradiction.

Therefore by the uniqueness result above ν must coincide with µ. We have shown
that E = {µ}, as claimed.

Hence we can apply Theorem A for semiflows over non-uniformly expanding maps
with exponentially slow recurrence to the singular set which are also transitive, volume
expanding and expanding except at finitely many points, and whose roof function grows
with the logarithm of the distance to S.

For examples of multidimensional local diffeomorphisms in this setting see [9]. In
this case S = ∅ and we can apply Theorem A for semiflows with this type of base
transformation plus a continuous (and thus bounded) roof function.

Clearly the same large deviation bound holds for a semiflow over a local diffeomor-
phisms which is uniformly expanding together with any continuous roof function.
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2.2 Suspension semiflows over piecewise expanding maps with sin-

gularities

Let M be the circle S1 or the interval [0, 1] with {0, 1} ⊂ S and S ⊂ M an at most
denumerable and non-flat singular set of f such that its closure S has zero Lebesgue

measure: Leb(S) = 0.
If we assume that −∞ < ψ < −c < 0 on M \ S for some c > 0 (so that in particular

there are no critical points: C = ∅) and that f is transitive with slow recurrence to
S, then the set E of equilibrium states with respect to log | f ′| is formed by a single
absolutely continuous invariant probability measure, as shown in Subsection 2.1, since
f is automatically non-uniformly expanding, quasi-expanding and volume expanding
as well.

Observe that for C2 maps in our conditions with finitely many smoothness domains,
or with derivative of bounded variation, it is well known that there exists a unique
ergodic absolutely continuous invariant probability measure µ with bounded density
[35, 53]. Since the function log dist(x, S) is Leb-integrable we also have that this function

is µ-integrable. Thus for all ε > 0 there is δ > 0 such that
∫ ∣

∣

∣ log distδ(x, S)
∣

∣

∣ dµ(x) < ε. By
the ergodicity and absolute continuity of µ this means that f has slow recurrence to S for
a positive Lebesgue measure subset of M. Theorem 1.1 together with [5] ensure that f is
in fact non-uniformly expanding with slow recurrence to S. Moreover by [36] the same
argument applies to C1+α piecewise expanding maps with finitely many smoothness
domains, for some α ∈ (0, 1).

To be able to apply the Main Theorem we need exponentially slow recurrence to S.
We prove this in Section 6 assuming that | f ′| grows as the inverse of some power of the
distance to S′ = S ∩ f (M), i.e. besides conditions (S1) through (S4) we impose

(S5)
∣

∣

∣ f ′(x)
∣

∣

∣ ≥ B−1 dist(x, S′)−β for all x ∈M \ S,

where S′ is the (sub)set of singularities which matters for the asymptotic dynamics of f .
Hence a semiflow over a piecewise expanding map with singularities satisfying some technical

conditions, and with a roof function having logarithmic growth near the singularities admits a
large deviation bound as in Theorem A.

2.3 Suspension semiflows over quadratic maps on Benedicks-Carleson

parameters

Set M = I = [−1, 1] and suppose the transformation f is given by fa(x) = a−x2 for a ∈ [a0, 2]
in the positive Lebesgue measure subset constructed by Benedicks and Carleson in
[16, 17], where a0 ≈ 2. The properties of the family fa have been thoroughly studied
by a considerable number of people. We just mention that Freitas in [31] showed that
for these parameters fa is not only a non-uniformly expanding map with S = C = {0}
but also exhibits exponentially slow approximation to the singular set. Actually in [31]
only subexponentially slow approximation is stated but the same arguments yield an
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exponential bound as well, as obtained in a much more delicate setting with infinitely
many critical points in [8].

Moreover Bruin and Keller [24] show that for this class of maps (specifically for

Collet-Eckman maps, i.e. such that lim infn→∞
∣

∣

∣( f n
a )′(a)

∣

∣

∣

1/n
> 1 without extra conditions

of recurrence to the criticality) the unique absolutely continuous invariant probability
measure is also the unique equilibrium state with respect to log | f ′a |.

Therefore for any given suspension semiflow over such quadratic maps fa with roof
function having logarithmic growth near 0 we can apply Theorem A, and obtain a large
deviation bound for these special flows.

2.4 Lorenz and geometric Lorenz attractors

The C1+α map f : [−1, 1] \ {0} → [−1, 1] obtained as the quotient map of the Poincaré first
return map R presented in Section 1.3 through projection along the leaves of the stable
foliation satisfies the following conditions, which define a Lorenz-like map:

1. there are constants c > 0 and σ > 1 such that for every n ≥ 1 and for all x ∈
[−1, 1] \ ∪0≤ j<n f−n{0}we have

∣

∣

∣( f n)′(x)
∣

∣

∣ ≥ cσn;

2. f has a dense orbit;

3. f (0+) = −1, f (0−) = 1, f (1) ∈ (0, 1) and f (−1) ∈ (−1, 0).

Note in particular that there are no critical points and that for some k ≥ 1 the map g = f k

satisfies the conditions of Section 2.2. (If σ >
√

2 then f is even locally eventually onto,
see e.g. [44], thus transitive.) For exponentially slow recurrence to the singularities see
Section 6. So we can obtain a large deviation bound for g which easily gives a large
deviation bound for f .

Indeed, assume without loss of generality that µ(ϕ) = 0 and that for all small ε > 0
we have Leb{Sg

nϕ > nε} < Ce−ζn for some C(ε), ζ(ε) > 0 and every n > 0. It is enough to
argue for a bounded and continuous ϕ as explained in Section 3. Then for m > 0 we can
write m = nk + p with n > 0 and 0 ≤ p < k − 1 and also

1

m
S

f
mϕ =

1

nk + p

(

S
f
p(ϕ ◦ f nk) + S

f

nk
ϕ
)

=
1

nk + p

(

S
f
p(ϕ ◦ f nk) +

n−1
∑

i=0

S
g
n(ϕ ◦ f i)

)

≤
p sup |ϕ|
nk + p

+
1

k + p/n

n−1
∑

i=0

1

n
S

g
n(ϕ ◦ f i) ≤

p

m
sup |ϕ| + 1

k

n−1
∑

i=0

1

n
S

g
n(ϕ ◦ f i).

Given ε > 0 take m so big that p sup |ϕ|/m < ε/2, note that µ(ϕ ◦ f i) = 0 for all i ≥ 0 and

{ 1

m
S

f
mϕ > ε

}

⊆
n−1
⋃

i=0

{1

n
S

g
n(ϕ ◦ f i) >

ε

2k

}

.
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This shows how to reduce the problem of large deviations for bounded observables to
the same problem for a finite power of the transformation.

To deduce Corollary C, since the reduction to a large deviation bound for the map f
is the content of Section 4, all we need to do here is to explain how we deduce a large
deviation bound for R from a similar bound for the map f . For this we strongly use the
uniform contraction along the leaves of the stable foliation on the global cross-section S
to obtain the following relation. Denote by P : S→ [−1, 1] the projection (x, y, 1) 7→ x.

Lemma 2.1. Let ε > 0 and a bounded continuous function ψ : U → R be given in a
neighborhood U of the geometric Lorenz attractor Λ. Define ϕ : S \ ℓ → R by ϕ(x, y, 1) =
∫ τ(x,y,1)

0
ψ
(

Xt(x, y, 1)
)

dt, where τ(x, y, 1) is the first return time to S of the point (x, y, 1) ∈ S.

Assume without loss of generality that µ(ϕ) = 0 where µ is a R-invariant probability measure
such that τ is µ-integrable.

Then there exist integers N, k > 1, a small δ > 0, a constant γ > 0 dependent on ψ and the
flow only, and a continuous function l : [−1, 1] \ ∪k−1

i=0
f−i{0} → R with logarithmic growth near

the set Sk = ∪k−1
i=0

f−i{0} such that for all n > N

{∣

∣

∣

1

n
SRk

n ϕ
∣

∣

∣ > 3ε
}

⊆ P−1
({1

n
S

f k

n ∆δ >
ε

γ

}

∪
{∣

∣

∣

1

n
S

f k

n l
∣

∣

∣ > ε
})

. (2.1)

This reduces the problem of estimating the Lebesgue measure of the left hand side
set in (2.1) to the estimation of the measure of the right hand side set, transferring the
problem to the dynamics of g = f k, which is the subject of Section 2.2 and Section 6.

Proof. According to the construction of geometric Lorenz flows, there are C > 0 and
0 < λ < 1 such that given x ∈ [−1, 1] \ {0} and two distinct values y1, y2 ∈ [−1, 1]

dist
(

Rk(x, y1, 1),Rk(x, y2, 1)
)

≤ Cλk for all 1 ≤ k ≤ n, (2.2)

where n ≥ 1 is the first time the orbit of the points hit the singular line, corresponding
to the stable foliation of the singularity of the flow. These hitting times depend only
on the orbit of x under the map f and correspond to times n for which f n(x) = 0. But
X0 = ∪n≥0 f−n({0}) is denumerable. Thus the corresponding set of points in S, given by
the lines {x} × [−1, 1] × {1} for x ∈ X0, has zero area on S. Therefore for a full Lebesgue
measure subset of S we have (2.2) for all k ≥ 1.

Moreover since (x, y1, 1), (x, y2, 1) belong to the same stable manifold, then for all
times t > 0 we have

dist
(

Xt(x, y1, 1),Xt(x, y2, 1)
)

≤ κ · |y1 − y2|, (2.3)

for a constant κ > 0 depending only on the angles between the surface S and the stable
leaves of the flow through points of S (which is uniformly bounded by the compactness
of S). Note that ϕ is continuous on S \ ℓ and

|ϕ(x, y, 1)| ≤ τ(x, y, 1) · sup |ψ| ≤ −C0 · log |x| · sup |ψ| (2.4)
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for a constant C0 > 0, since τ grows near ℓ like the logarithm of the distance to ℓ. Then
it is clear that for y,w ∈ [−1, 1] and n > 1

∣

∣

∣

∣

∣

∣

∣

1

n

n−1
∑

j=0

(

ϕ(R j(x, y, 1)) − ϕ(R j(x,w, 1)
)

∣

∣

∣

∣

∣

∣

∣

≤ 1

n

n−1
∑

j=0

ϕ j(x)

where (x j, y j, 1) = R j(x, y, 1) for j ≥ 0, (x, y, 1) ∈ S, and

ϕ j(x) = sup
y,w∈[−1,1]

∣

∣

∣ϕ
(

R j(x, y, 1)
)

− ϕ
(

R j(x,w, 1)
)∣

∣

∣.

Let ε > 0 be given. Choose a small δ > 0 and η > 0 such that −C0κη log δ < ε/3 and
κη ≤ sup |ψ|. Let ξ > 0 satisfy

dist
(

(x, y, z), (x′, y′, z′)
)

< ξ =⇒ |ψ(x, y, z) − ψ(x′, y′, z′)| < η. (2.5)

Then we may find by (2.2) a j0 = j0(η) ≥ 1 such that |y j − w j| ≤ ξ/κ for j > j0 and any
pair y,w in the same vertical line. Thus we also get after (2.3), (2.5) and the choices of
ε, δ and η

ϕ j(x) ≤ −C0 log |x j| · sup
0<t<−C0 log |x j |

∣

∣

∣ψ
(

Xt(x j, y j, 1)
)

− ψ
(

Xt(x j,w j, 1)
)∣

∣

∣

≤ −C0 log |x j| · κη ≤ C0κη · ∆δ(x j) + ε/2. (2.6)

Take a continuous l : [−1, 1] \ {0} → R such that for some 0 < a < ε/3

1. miny∈[−1,1] ϕ
(

R j0(x, y, 1)
)

− a ≤ l(x) ≤ a +maxy∈[−1,1] ϕ
(

R j0(x, y, 1)
)

; and

2. µ(l ◦ P) = µ(ϕ).

Note that ϕ is µ-integrable: this follows from the boundedness assumption on ψ and by
the µ-integrability of τ after (2.4). Observe that l as above has logarithmic growth near
Sk by definition.

To obtain such function l disintegrate µ along the measurable partition of S given by

the vertical lines {x} × [−1, 1] × {1} and define l0(x) =
∫

ϕ dµx. Then approximate l0 by a

continuous function l1 such that
∫

|l0− l1| ◦P dµ < ε/3 (through e.g. a convolution). Now
for some −ε/3 < a < ε/3 the function l = l1 + a satisfies conditions 1-2 above.

Now for n > 0 using (2.6), f ◦ P = P ◦ R and summing over orbits of Rk and f k

|Sn(l ◦ P) − Snϕ|(x, y, 1) ≤ |l ◦ P − ϕ|(x, y, 1) + |Sn−1(l ◦ P − ϕ)|(x, y, 1)

≤ 2 sup |ψ|C0 log |x| + a +

n−1
∑

j=1

(

C0κη∆δ( f jk(x)) +
ε

3
+ a

)

≤ 2 sup |ψ|C0(log δ−1 + ∆δ(x)) +
2nε

3
+ C0κη · Sn−1∆δ( f k(x))

≤ 2 sup |ψ|C0 log δ−1 +
2nε

3
+ C0(κη + 2 sup |ψ|) · Sn∆δ(x). (2.7)
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Observe that

{∣

∣

∣

1

n
SRk

n ϕ
∣

∣

∣ > 3ε
}

⊆
{∣

∣

∣

1

n

(

SRk

n (l ◦ P) − SRk

n ϕ
)∣

∣

∣ > 2ε} ∪
{1

n

∣

∣

∣SRk

n (l ◦ P)
∣

∣

∣ > ε
}

. (2.8)

From (2.7), setting γ1 = 2 sup |ψ|C0 log δ−1 and γ2 = C0(κη+ 2 sup |ψ|) we obtain for n big
enough

1

n

(

SRk

n (l ◦ P) − SRk

n ϕ
)

≤ 2ε

3
+
γ1

n
+
γ2

n
· S f k

n ∆δ ◦ P ≤ ε +
γ2

n
· S f k

n ∆δ ◦ P

where γ2 ≤ 3C0 sup |ψ| by the choice of η. Hence

{∣

∣

∣

1

n

(

SRk

n (l ◦ P) − SRk

n ϕ
)∣

∣

∣ > 2ε} ⊆ P−1
{1

n
S

f k

n ∆δ >
ε

3C0 sup |ψ|
}

and this together with (2.8) completes the proof of the lemma. �

3 Large deviations for observables with logarithmic growth

near singularities

The main bound on large deviations for suspension semiflows over a non-uniformly
expanding base will be obtained from the following large deviation statement for non-
uniformly expanding transformations.

Theorem 3.1. Let f : M → M be a regular C1+α local diffeomorphism on M \ S where S is
a non-flat critical set and α ∈ (0, 1). Assume that f is a non-uniformly expanding map with
exponentially slow recurrence to the singular set S and let ϕ : M \ S→ R be a continuous map
which has logarithmic growth near S. Moreover assume that there exists a unique equilibrium
state µ with respect to log J which is absolutely continuous. Then for any given ω > 0

lim sup
n→+∞

1

n
log Leb

{

x ∈M :

∣

∣

∣

∣

∣

1

n
Snϕ(x) − µ(ϕ)

∣

∣

∣

∣

∣

≥ ω
}

< 0.

Proof. Define

ϕk = ξk ◦ ϕ where ξk(x) =



















k if x ≥ k
x if |x| < k
−k if x ≤ −k

, k ≥ 1.

Then ϕk : M → R is continuous for all k ≥ 1, ϕk(x) −−−→
k→∞

ϕ(x) for all x ∈ M \ S and

|ϕ − ϕk| ≤
∣

∣

∣ϕ
∣

∣

∣χ{|ϕ|>k}. Moreover we clearly have for all n, k ≥ 1

Snϕk − Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣ ≤ Snϕ = Snϕk + Sn(ϕ − ϕk) ≤ Snϕk + Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣. (3.1)
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Observe that, since ϕ has logarithmic growth near S (see (1.4)), for any given c, ε0 > 0 we
may choose ε1, δ1 > 0 such that the exponential slow recurrence condition (1.2) is true
and K · ε1 ≤ ε0. Then choose k ≥ 1 very big so that {|ϕ| > k} ⊆ B(S, δ1). From (3.1) we
obtain the following inclusions

{

1

n
Snϕ > c

}

⊆
{

1

n
Snϕk +

1

n
Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣ > c
}

⊆
{

1

n
Snϕk > c − Kε1

}

∪
{

1

n
Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣ > Kε1

}

⊆
{

1

n
Snϕk > c − ε0

}

∪
{

1

n
Sn∆δ1

≥ ε1

}

, (3.2)

where in (3.2) we use the assumption that ϕ is of logarithmic growth near S and the
choices of ε1, δ1. Analogously we get with opposite inequalities

{

1

n
Snϕ < c

}

⊆
{

1

n
Snϕk −

1

n
Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣ < c
}

⊆
{

1

n
Snϕk < c + Kε1

}

∪
{

1

n
Sn

∣

∣

∣ϕ − ϕk

∣

∣

∣ > Kε1

}

⊆
{

1

n
Snϕk < c + ε0

}

∪
{

1

n
Sn∆δ1

≥ ε1

}

. (3.3)

From (3.2) and (3.3) we see that to get the bound for large deviations in the statement of
Theorem 3.1 it suffices to obtain a large deviation bound for the continuous function ϕk with
respect to the same transformation f and to have exponentially slow recurrence to the singular
set S.

To obtain this large deviation bound, we use the following result already obtained for
continuous observables over non-uniformly expanding transformations in our setting,
see [7].

Theorem 3.2. Let f : M→M be a local diffeomorphism outside a non-flat singular set S which
is non-uniformly expanding and has slow recurrence to S. Forω0 > 0 and a continuous function
ϕ0 : M→ R there exists ε, δ > 0 arbitrarily close to 0 such that, writing

An = {x ∈M :
1

n
Sn∆δ(x) ≤ ε} and Bn =

{

x ∈M : inf
{∣

∣

∣

1

n
Snϕ0(x) − η(ϕ0)

∣

∣

∣ : η ∈ E
}

> ω0

}

we get lim supn→+∞
1
n

log Leb
(

An ∩ Bn

)

< 0.

Recall thatE is the set of all equilibrium states of f with respect to the potential log J.
Note that exponentially slow recurrence implies lim supn→+∞

1
n

Leb(M \ An) < 0.
Under this assumption Theorem 3.2 ensures that for (ε, δ) close enough to (0, 0) we get
lim supn→+∞

1
n

log Leb(Bn) < 0. To use this we also need that E consists only of the unique
absolutely continuous invariant probability measure µ. Under this uniqueness assumption
we have E = {µ} in Theorem 3.2 and take ω, ε0 > 0 small, choose k ≥ 1 as before, set
ϕ0 = ϕk and ω0 = ω+ ε0. In (3.2) set c = µ(ϕ0)−ω and in (3.3) set c = µ(ϕ0)+ω. Then we
have the inclusion

{∣

∣

∣

∣

1

n
Snϕ − µ(ϕ)

∣

∣

∣

∣

> ω
}

⊆
{∣

∣

∣

∣

1

n
Snϕ0 − µ(ϕ0)

∣

∣

∣

∣

> ω0

}

∪
{

1

n
Sn∆δ1

≥ ε1

}

. (3.4)
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By Theorem 3.2 we may find ε, δ > 0 small enough so that the exponentially slow
recurrence holds also for the pair (ε, δ) and hence

lim sup
n→+∞

1

n
log Leb

{∣

∣

∣

∣

1

n
Snϕ0 − µ(ϕ0)

∣

∣

∣

∣

> ω0

}

< 0. (3.5)

Finally the choice of ε1, δ1 according to the condition on exponential slow recurrence to S

ensures that the Lebesgue measure of the right hand subset in (3.4) is also exponentially
small when n→∞. This together with (3.5) concludes the proof of Theorem 3.1. �

4 Large deviations and the dynamics on the base

Here we show how the large deviation bound for a semiflow over a non-uniformly
expanding base can be deduced from a large deviation bound for the base dynamics,
under a logarithmic growth condition on the roof function.

4.1 Reduction to the base dynamics

Let ψ : Mr → R be continuous and bounded. For T > 0 and z = (x, s) with x ∈ M and
0 ≤ s < r(x) < ∞ we can write
∫ T

0

ψ
(

Xt(z)
)

dt =

∫ r(x)

s

ψ
(

Xt(x, 0)
)

dt +

n−1
∑

j=1

∫ r( f j(x))

0

ψ
(

Xt( f j(x), 0)
)

dt +

∫ T+s−Snr(x)

0

ψ
(

Xt( f n(x), 0)
)

dt,

where n = n(x, s,T) ∈N is the “lap number” such that Snr(x) ≤ s + T < Sn+1r(x).

Setting ϕ(x) =
∫ r(x)

0
ψ(x, 0) dt we obtain

1

T

∫ T

0

ψ
(

Xt(z)
)

dt =
1

T
Snϕ(x) − 1

T

∫ s

0

ψ
(

Xt(x, 0)
)

dt +
1

T

∫ T+s−Snr(x)

0

ψ
(

Xt( f n(x), 0)
)

dt.

Clearly we can bound the sum I = I(x, s,T) of the two integral terms on the right hand
side above by

I = I(x, s,T) ≤
(

2
s

T
+

Sn+1r(x) − Snr(x)

T

)

· ‖ψ‖, (4.1)

where ‖ψ‖ = sup |ψ|. Observe that for a given ω > 0 and for 0 ≤ s < r(x) and n = n(x, s,T)
{

(x, s) ∈Mr :

∣

∣

∣

∣

∣

1

T
Snϕ(x) + I(x, s,T) −

µ(ϕ)

µ(r)

∣

∣

∣

∣

∣

> ω

}

(4.2)

is contained in
{

(x, s) ∈Mr :

∣

∣

∣

∣

∣

1

T
Snϕ(x) −

µ(ϕ)

µ(r)

∣

∣

∣

∣

∣

>
ω

2

}

∪
{

(x, s) ∈Mr : I(x, s,T) >
ω

2

}

. (4.3)

Note that if ψ ≡ 0 then we need only consider the left hand subset of (4.3) in what
follows. Now we bound the λ-measure of each subset above assuming that ψ is not
identically zero.
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4.2 Using the roof function as an observable over the base dynamics

We start with the right hand subset in (4.3). Take N ≥ 1 big enough so that N‖ψ‖ > 2
and note that for any given T, ω > 0 using (4.1) and n = n(x, s,T)

λ
{

I >
ω

2

}

=

∫

d Leb(x)

∫ r(x)

0

ds
(

χ(ω/2,+∞) ◦ I
)

(x, s,T)

≤ Leb

{

r >
ωT

2N‖ψ‖

}

+
ωT

2N‖ψ‖

[T/r0]+1
∑

i=0

Leb

{

|Si+1r − Sir|
T

>
N‖ψ‖ − 2

2N‖ψ‖ ω
}

, (4.4)

where in the right hand summand we restrict to points x ∈M such that 2N‖ψ‖r(x) ≤ ωT
and Sir(x) ≤ T < Si+1r(x) for each possible lap number i ∈ N. Note that since r is
bounded from below r ≥ r0 > 0 we have T ≥ r0n which gives an upper bound [T/r0] + 1
for the possible lap numbers appearing in the summation above, where [t] denotes
max{k ∈ Z : k ≤ t}, the integer part of t ≥ 0. In (4.4) we have also used the relations

2s

T
<

2r

T
≤ ω

N‖ψ‖ and
ω

2
− ω

N‖ψ‖ =
N‖ψ‖ − 2

2N‖ψ‖ · ω.

On the one hand, since r grows as the logarithm of the distance to S, we have that the
left hand summand in (4.4) is bounded by

Leb

{

x ∈M : dist
(

x, S
)

≤ exp
(

− C · ωT

2N‖ψ‖
)

}

≤ e−C·κ·ωT‖/(2N‖ψ‖), (4.5)

where C > 0 is a constant depending on r only, and we use condition (S4) on the geometry
of S. On the other hand, from T ≥ Sir(x) ≥ r0i we get the following upper bound for the
summands in the right hand side of (4.4) for each i = 0, . . . , [T/r0] + 1

Leb

{

|Si+1r − Sir|
i

>

(

N‖ψ‖ − 2

2N‖ψ‖ r0

)

· ω
}

(

let r′0 =
N‖ψ‖ − 2

2N‖ψ‖ r0

)

≤ Leb

{

∣

∣

∣

∣

1

i
Sir − µ(r)

∣

∣

∣

∣
>
ωr′0
2

}

+ Leb

{

∣

∣

∣

∣

1

i
Si+1r − µ(r)

∣

∣

∣

∣
>
ωr′0
2

}

≤ 2C0e−βi (4.6)

for some constants C0, β > 0, since we have a large deviation bound for the observable r
with respect to the unique physical measure µ for f . Recall (see Section 3) that we took
r to be µ-integrable, continuous on M \ S and with logarithmic growth near S, and f is a
non-uniformly expanding map with exponentially slow recurrence to S. Consequently
we can bound the summation in (4.4) as

ωT

2N‖ψ‖ · 2C0

[T/r0]+1
∑

i=0

e−βi ≤ CωT

2N‖ψ‖ · e
−βT/r0 (4.7)
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for a constant C > 0 depending on f , r, ω and ψ. Altogether we see that λ{I > ω/2} is
bounded by twice the maximum of the summands in (4.4).

From this we obtain

lim sup
T→∞

1

T
logλ

{

I >
ω

2

}

< 0, (4.8)

as long as we take ω > 0 small enough.

4.3 Using ϕ as an observable over the base dynamics

Now for the left hand subset in (4.3), note first that for µ- and Leb-almost every x ∈ M
and every 0 ≤ s < r(x)

Snr(x)

n
≤ T + s

n
≤ Sn+1r(x)

n
so

n(x, s,T)

T
−−−→
T→∞

1

µ(r)
. (4.9)

We also have (recall that n = n(x, s,T))
∣

∣

∣

∣

∣

1

T
Snϕ −

µ(ϕ)

µ(r)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n

T
·

Snϕ

n
− n

T
µ(ϕ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n

T
µ(ϕ) −

µ(ϕ)

µ(r)

∣

∣

∣

∣

∣

≤ n

T

∣

∣

∣

∣

∣

Snϕ

n
− µ(ϕ)

∣

∣

∣

∣

∣

+ |µ(ϕ)|
∣

∣

∣

∣

∣

n

T
− 1

µ(r)

∣

∣

∣

∣

∣

.

Hence the left hand subset in (4.3) is contained in
{

(x, s) ∈Mr :
n

T

∣

∣

∣

∣

∣

Snϕ

n
− µ(ϕ)

∣

∣

∣

∣

∣

>
ω

4

}

∪
{

(x, s) ∈Mr :

∣

∣

∣

∣

∣

n

T
− 1

µ(r)

∣

∣

∣

∣

∣

>
ω

4|µ(ϕ)|

}

. (4.10)

Notice that the λ-measure of the right hand subset of (4.10) is bounded from above by

λ

{
∣

∣

∣

∣

∣

n

T
− 1

µ(r)

∣

∣

∣

∣

∣

>
ω

4|µ(ϕ)| & r ≤ T

}

+ λ{r > T}

≤ T

[T/r0]+1
∑

i=0

∑

j=0,1

Leb

{

x ∈M :

∣

∣

∣

∣

∣

∣

i

Si+ jr
− 1

µ(r)

∣

∣

∣

∣

∣

∣

>
ω

|µ(ϕ)|

}

+

∫

{r>T}
r d Leb (4.11)

where we have used the relation (4.9), for small enough ω > 0 and big enough T and
n. The first summand in (4.11) can be bounded using the large deviation bound for the
observable r as before: there are constants C0, β > 0 such that

Leb

{

x ∈M :

∣

∣

∣

∣

∣

∣

i

Si+ jr
− 1

µ(r)

∣

∣

∣

∣

∣

∣

>
ω

|µ(ϕ)|

}

≤ C0e−βi for j = 0, 1,

and so for some constant C1 > 0 depending only on f , r and ω we get

T

[T/r0]+1
∑

i=0

∑

j=0,1

Leb

{

x ∈M :

∣

∣

∣

∣

∣

∣

i

Si+ jr
− 1

µ(r)

∣

∣

∣

∣

∣

∣

>
ω

|µ(ϕ)|

}

≤ C1Te−βT/r0.
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The second summand in (4.11) is easily bounded using condition (S4) as follows: for big
enough T > 0 such that i > [T] implies (i + 1)ec0i < 1, where c0 = −κ logρ/(2K) > 0, we
have as in (4.5)

∫

{r>T}
r d Leb ≤

∑

i≥[T]

∫ i+1

i

r d Leb ≤
∑

i≥[T]

(i + 1) Leb{r > i}

≤ Cκ

∑

i≥[T]

(i + 1)e−2c0i ≤ Cκ

∑

i≥[T]

e−c0i ≤ C2 · e−c0T (4.12)

for a positive constant C2 > 0 depending only on f .
Finally the left hand subset of (4.10) is contained in the following union
{

(x, s) ∈Mr :

∣

∣

∣

∣

∣

T

n
− µ(r)

∣

∣

∣

∣

∣

>
µ(r)

2
· ω

}

∪
{

(x, s) ∈Mr :

∣

∣

∣

∣

∣

Snϕ

n
− µ(ϕ)

∣

∣

∣

∣

∣

>
µ(r)

2
· ω

4

}

. (4.13)

Again for small ω > 0 the λ-measure of the left hand subset in (4.13) is exponentially
small with T, using similar arguments to (4.11) and (4.12). For the right hand subset in
(4.13) we use the large deviation bound for the observable ϕ with respect to f , since ϕ

has also logarithmic growth near S. In fact
∣

∣

∣ϕ(x)
∣

∣

∣ ≤
∫ r(x)

0
|ψ(x, s)| dt ≤ r(x) · ‖ψ‖ for x ∈M\S

becauseψ : Mr → R is bounded. We can estimate the λ-measure of the right hand subset
in (4.13) as in (4.11) through (4.12) (or as in (4.6) and (4.7)), obtaining constants C3, γ > 0
depending on f , r and ω such that

λ

{
∣

∣

∣

∣

∣

Snϕ

n
− µ(ϕ)

∣

∣

∣

∣

∣

>
µ(r)

2
· ω

4

}

≤ C3Te−γn.

From this we conclude

lim sup
T→∞

1

T
logλ

{
∣

∣

∣

∣

∣

1

T
Snϕ −

µ(ϕ)

µ(r)

∣

∣

∣

∣

∣

>
ω

2

}

< 0. (4.14)

Putting (4.8) and (4.14) together, as long as we have a result on large deviations for continuous
observables in M \ S with logarithmic growth near S, with respect to the dynamics of f and the
Lebesgue measure, and the volume of neighborhoods of S is comparable to a power of the radius,
we are able to prove the Main Theorem for the suspension flow over f .

We have obtained the large deviation bounds needed for the base dynamics in
Section 3, so the proof of Theorem A is complete.

5 The Entropy Formula for non-uniformly expanding maps

Here we obtain the Entropy Formula when f is a non-uniformly expanding map with
slow recurrence to the singular set. The singular set S is formed by critical points of f
and points where f is either not defined, is not continuous or is not differentiable. Recall
from the Introduction that ψ = log ‖(D f )−1‖ and that J = |det D f |.
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Theorem 5.1. Let f : M→ M be a non-uniformly expanding map with slow recurrence to the
non-flat singular set S. Letµ ∈M f be such thatµ is f -ergodic, hµ( f ) = µ(log J), −∞ < µ(ψ) < 0
and for every given ε > 0 there exists δ > 0 so that µ(∆δ) < ε. Then µ≪ Leb and consequently
µ ∈ co(F).

Reciprocally, let µ ∈ M f be such that µ is absolutely continuous with respect to Leb and
assume that ∆δ is µ-integrable. Then hµ( f ) = µ(log J).

Here co(F) is the weak∗ closure of the convex hull of the finite setF of ergodic physical
probability measures for f . Clearly this is a particular case of the more general Entropy
Formula obtained by Ledrappier and Young [40, 41] applied to maps with singularities
and/or criticalities. For C2 endomorphisms (i.e. smooth maps with criticalities but no
singularities) see Bahnmüller and Liu [42, 14] for a general statement. A similar result
for piecewise smooth one-dimensional maps with finitely many branches was obtained
by Ledrappier [39].

As an easy corollary we deduce that co(F) is isolated among the set E of all equilib-

rium states of f with respect to J = log
∣

∣

∣ det D f
∣

∣

∣, which might be of independent interest
for the ergodic theory of non-uniformly expanding transformations.

Corollary 5.2. Let f : M → M be a non-uniformly expanding map with slow recurrence to
the non-flat singular set S. Then there exists a weak∗ neighborhood U of co(F) in M f such that
U ∩ E = co(F).

Proof. Take any weak∗ neighborhood U of co(F) such that every µ ∈ U satisfies µ(ψ) < 0.
Hence every µ ∈ U ∩E satisfies the conditions of Theorem 5.1, thus µ ∈ co(F). �

Note that whenever the Entropy Formula and its reciprocal hold for measures close
to F then the argument proving Corollary 5.2 is applicable and we deduce that F is
isolated in E. The proof of Theorem 5.1 is longer and occupies the rest of this section.

5.1 Hyperbolic times

Here we present some technical results for the study of non-uniformly expanding maps
whose proof can be found in [49, 5, 1].

We say that n is a (σ, δ, b)-hyperbolic time of f for a point x if there are 0 < σ < 1

and b, δ > 0 such that
∏n−1

j=n−k

∥

∥

∥D f
(

f j(x)
)−1∥

∥

∥ ≤ σk and dδ
(

f k(x), S
)

≥ e−bk hold for all

k = 0, . . . , n − 1.
We now outline the properties of these special times. For detailed proofs see [5,

Proposition 2.8] and [3, Proposition 2.6, Corollary 2.7, Proposition 5.2].

Proposition 5.3. There are constants C1, δ1 > 0 depending on (σ, δ, b) and f only such that,
if n is (σ, δ, b)-hyperbolic time of f for x, then there are hyperbolic pre-balls Vk(x) which are
neighborhoods of f n−k(x), k = 1, . . . , n, satisfying

1. f k | Vk(x) maps Vk(x) diffeomorphically to the ball of radius δ1 around f n(x);
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2. d
(

f n−k(y), f n−k(z)
)

≤ σk/2 · d
(

f n(y), f n(z)
)

for every 1 ≤ k ≤ n and y, z ∈ Vk(x);

3. C−1
1
≤

∣

∣

∣ det D f n−k(y)
∣

∣

∣/
∣

∣

∣ det D f n−k(z)
∣

∣

∣ ≤ C1 for y, z ∈ Vk(x).

The following ensures existence of infinitely many hyperbolic times for µ-almost
every point for non-uniformly expanding maps with respect to an ergodic invariant
probability measure µ. A complete proof can be found in [5, Section 5].

Theorem 5.4. Let f : M→M be a C1+α local diffeomorphism away from a non-flat singular set
S, for some α ∈ (0, 1), non-uniformly expanding and with slow recurrence to S, with respect to
an ergodic invariant probability measure µ. That is there exists c > 0 such that

lim sup
n→+∞

1

n
Snψ ≤ −c µ − almost everywhere

and for every ε > 0 there exists δ > 0 such that

lim sup
n→∞

1

n
Sn∆δ(x) ≤ ε µ − almost everywhere.

Then there are σ ∈ (0, 1), δ, b > 0 and there exists θ = θ(σ, δ, b) > 0 such that µ-a.e. x ∈ M
has infinitely many (σ, δ, b)-hyperbolic times. Moreover if we write 0 < n1 < n2 < n2 < . . . for

the hyperbolic times of x then their asymptotic frequency satisfies lim infN→∞
#{k≥1:nk≤N}

N
≥ θ for

Leb -a.e. x ∈M.

5.2 Existence of generating partition

Let µ be an f -invariant ergodic probability measure in the conditions of the first part of
the statement of Theorem 5.1.

Observe first that since µ(ψ) < 0 and µ is ergodic, then f is non-uniformly expanding.
Moreover by the assumptions on µ(∆δ) we see that f has also slow recurrence to S with
respect to µ. Hence by Theorem 5.4 there are σ, δ, b > 0 such that µ-almost all x ∈ M
admits infinitely many (σ, δ, b)-hyperbolic times with positive frequency at infinity. Thus
there exists a finite partition P0 of M which is generating with respect to µ.

Indeed let E = {B(xi, δ1/8), i = 1, . . . , l} be a finite open cover of M by δ1/8-balls whose
boundary has zero µ measure. From this we define a finite partition P0 of M as follows.
Start by setting P1 = B(x1, δ1/8) as the first element of the partition. Then, assuming that
P1, . . . ,Pk are already defined, set Pk+1 = B(xk+1, δ1/8) \ (P1 ∪ · · · ∪ Pk) for k = 1, . . . , l − 1.
Note that if Pk , ∅ then Pk has non-empty interior, diameter smaller than δ1/4 and the
boundary∂Pk is a (finite) union of pieces of boundaries of balls in a Riemannian manifold.
Thus ∂Pk has zero Lebesgue measure and zeroµ-measure also. Define P0 by the elements
Pk constructed above which are non-empty. Note that µ(∂P0) = Leb(∂P0) = 0 and by
the existence of infinitely many (σ, δ, b)-hyperbolic times for µ-almost every x it is not

difficult to see that diam
(

∨n−1
j=0 f− jP0(x)

)

−−−−→
n→+∞

0.
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Therefore, since µ satisfies the Entropy Formula, we can write

1

n

∫

Sn log J dµ = µ(log J) = hµ( f ) = hµ( f ,P0) ≤ 1

n
Hµ(Pn) =

1

n

∫

− logµ
(

Pn(x)
)

dµ

where Pn =
∨n−1

j=0 f− jP0 for n ≥ 1. Hence by Jensen’s Inequality we get, denoting

Jn(x) =
∏n−1

j=0 J
(

f j(x)
)

0 ≥
∫

log
[

Jn(x) · µ
(

Pn(x)
)]

dµ(x) ≥ log

∫

Jn(x) · µ
(

Pn(x)
)

dµ(x).

If we define Qn
γ = {x ∈M : SnJ(x) · µ

(

Pn(x)
)

> γ}we obtain

µ(Qn
γ) ≤ γ−1 for all n ≥ 1. (5.1)

Now choose γn > 0 such that
∑

n γ
−1
n < ∞. Then for µ-almost every x ∈ M there exists

n0 ∈ N such that for all n ≥ n0 we have x < Qn
γn

, i.e. Jn(x) · µ
(

Pn(x)
)

≤ γn for all

n ≥ n0 = n0(x). Observe that by the definition and properties of hyperbolic times, we
have that there exists C1 > 0 such that

C−1
1 · Leb

(

P0( f n(x))
)

≤ Leb
(

Pn(x)
)

· Jn(x) ≤ C1 · Leb
(

P0( f n(x))
)

whenever n is a hyperbolic time for x. This shows that the µ-measure of the atoms of Pn

can be bounded from above by the volume of the same atoms at big enough hyperbolic
times

µ
(

Pn(x)
)

≤ C0γn Leb(Pn(x)), (5.2)

where C0 = C1 supx∈M Leb
(

P0(x)
)

. The hyperbolic times satisfying this condition will be

called µ-hyperbolic times. To use this we need some way to cover any set using atoms of
the sequence (Pn)n at µ-hyperbolic times.

5.3 Coverings by hyperbolic times

Let µ, f and (Pn)n≥0 be as in the previous subsection. Note that since f is regular and µ
is f -invariant the boundary of g(P) still has zero Lebesgue measure and zero µ-measure
for every atom P ∈ P0 and every inverse branch g of f n, for any n ≥ 1.

We can now state the following flexible covering lemma with µ-hyperbolic preballs.
It will enable us to approximate the µ-measure of a given set through the measure of
families of µ-hyperbolic preballs.

Lemma 5.5 (The Hyperbolic Covering Lemma). Let a measurable set E ⊂ M, m ≥ 1 and
ζ > 0 be given with µ(E) > 0. Let θ > 0 be a lower bound for the density of µ-hyperbolic times
for µ-almost every point. Then there are integers m < n1 < · · · < nk for k = k(ζ) ≥ 1 and families
Ei of subsets of M, i = 1, . . . , k such that
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1. E1 ∪ · · · ∪ Ek is a finite pairwise disjoint family of subsets of M;

2. ni is a (σ/2, δ/2)-µ-hyperbolic time for every point in P, for every element P ∈ Ei, i =
1, . . . , k;

3. every P ∈ Ei is the preimage of some element Q ∈ P under an inverse branch of f ni ,
i = 1, . . . , k;

4. there is an open set U1 ⊃ E containing the elements of E1 ∪ · · · ∪ Ek with µ(U1 \ E) < ζ;

5. µ
(

E△
⋃

i Ei

)

≤
(

1 − θ
4

)k
< ζ.

The proof is completely presented in [7, Lemma 3.5] and follows [47, Lemma 8.2]
closely.

5.4 Absolute continuity

We are now ready to deduce that any measure µ as in the statement of Theorem 5.1 is
absolutely continuous. Indeed observe that, by (5.1) and the choice of (γn)n≥1, for any

given η > 0 we can find N = N(η) ∈N such that Γη = ∩n≥N

(

M\Qn
γn

)

satisfies µ(Γη) ≥ 1−η.

Let E ⊂ M be given with µ(E ∩ Γη) > 0. Let m = N in the statement of the Covering

Lemma 5.5 and set ζ > 0 small. Then we get µ
(

(E∩Γη)△∪k
i=1

Ei

)

< ζwhere all elements of

Ei are µ-preballs and atoms of Pni
satisfying the bound (5.2). In particular by the choice

of m we have ∪iEi ⊂ Γη and so we may write

µ(E) = µ
(

E ∩M \ Γη
)

+ µ
(

E ∩ Γη
)

≤ η + ζ + µ
(

E ∩ ∪iEi

)

≤ η + ζ + C0γnk
Leb

(

E ∩ ∪iEi

)

,

(5.3)

where nk is the largest µ-hyperbolic time used in the cover given by the Hyperbolic
Covering Lemma.

Hence if we start with a subset E with Leb(E) = 0 and assume that µ(E) > 0, then
there exists η0 such that µ(E ∩ Γη) > 0 for all 0 < η ≤ η0. Therefore given ζ > 0 as above
we obtain (5.3). But since Leb(E) = 0 we get µ(Z) ≤ η + ζ, for all 0 < η ≤ η0, that is
µ(Z) ≤ ζ. This is a contradiction since we may take ζ > 0 as small as we like.

We have shown that if Leb(E) = 0 then µ(E) = 0, i.e. µ ≪ Leb. Then since the basins
of the physical measures of f cover M except for a volume zero subset, then it follows

easily by the Ergodic Theorem that µ =
∑k

i=1 µ
(

B(µi)
)

· µi, that is µ ∈ co(F).

Reciprocally, let us now assume that µ is an f -invariant absolutely continuous prob-
ability measure. Then as above we have µ ∈ co(F) and and thus for some constants

αi ≥ 0 such that
∑

i αi = 1 we have hµ( f ) =
∑k

i=1 αihµi
( f ) =

∑k
i=1 αiµi(log J) = µ(log J). This

concludes the proof of Theorem 5.1.
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6 Exponentially slow approximation to singularities

Here we apply the (by now standard) arguments of Benedicks and Carleson, first pre-
sented in [16, 17], to show that Lorenz-like maps have exponentially slow recurrence to
singularities. This completes the presentation of the examples in Section 2.2.

Let f : M → M be a one-dimensional C1+α piecewise expanding map with at most
countably many smoothness domains for some α ∈ (0, 1) as in Subsection 2.2, that
is | f ′| ≥ σ > 1 and the non-degenerate singular set S equals the boundaries of the
smoothness domains and satisfies all the conditions (S1) through (S5). Then S = {bn}n
where we may assume that the sequence is strictly monotonous (in counter-clockwise
order if M = S1).

We consider the middle points cn = (bn + bn+1)/2 for all applicable indexes n to define
a Lebesgue modulo zero partition P0 of M as follows.

6.1 Initial partition

Partition (bn, cn) into subintervals

M(2n, p) =
(

bn + d2ne−p, bn + d2ne−(p−1)
)

, (6.1)

where d2n = cn − bn and partition the interval (cn−1, bn) into the following subintervals

M(2n − 1, p) =
(

bn − d2n−1e−(p−1), bn − d2n−1e−p
)

(6.2)

where d2n−1 = bn − cn−1, for all p ≥ 1. The sets defined above form a partition of M
Lebesgue modulo zero consisting of small intervals whose length is exponentially small
with respect to the distance to S. Let S′ = S ∩ f (M) be the set of singular points of f
which matter for the asymptotic dynamics of f .

To define the initial partition consider a threshold ρ0 ∈N such that

e−βρ0 < 1 and

(

1 +
2

ρ0

)

(

1 +
ρ0

2

)2/ρ0

< eβ (6.3)

and let P0 be formed by the collection of all intervals M(n, p) for all n and every p ≥ ρ0

together with the connected components of M \
(

∪n;p≥ρ0
M(n, p) ∪ {cn}n

)

, which will be

denoted by M(n, ρ0 − 1) whenever they are adjacent to M(n, ρ0).
For each element η of P0 denote by η+ the interval obtained by joining η with its two

neighboring intervals in P0. From (6.1) and (6.2) we have the following relations for all
k and every p ≥ ρ0 − 1

Leb(M(k, p)+) ≤ 9 Leb(M(k, p)) = 9dk · e−p(e − 1). (6.4)
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6.2 Refining the partition

The partition P0 is dynamically refined so that any pair x, y of points in the same atom
of the nth refinement Pn belong to the same element of P0 during the first consecutive n
iterates, i.e. P0( f i(x)) = P0( f i(y)) for i = 0, . . . , n− 1. Moreover f n | ω is a diffeomorphism
for every interval ω ∈ Pn.

The refinement is defined inductively. Assume that Pn is already defined and for
each ω ∈ Pn there are sets Rn(ω) of splitting times and Dn(ω) of corresponding splitting
depths, to be defined below.

If f n+1(ω) intersects three or fewer elements of P0, then we set ω ∈ Pn+1, Rn+1(ω) =

Rn(ω) and Dn+1(ω) = Dn(ω). Otherwise consider the subsets η′ =
(

f n+1 | ω
)−1

(η) of the

interval ω, for all elements η of P0 which intersect f n+1(ω).
The family {η′} obtained above is a partition ofω. Observe that f n+1(η′) is either equal

to some η ∈ P0 or strictly contained in some η ∈ P0. In the latter case we redefine the
partition joining some of the extreme intervals of {η′}with its neighbors so that the new
partition {ζ} ofω satisfies: for each ζ there exists η =M(k, p) ∈ P0 such that η ⊆ f n(ζ) ⊆ η+.

Finally we set ζ ∈ Pn+1, Rn+1(ζ) = Rn(ζ) ∪ {n + 1} and Dn+1(ζ) = Dn(ζ) ∪ {(k, p)}, for
each element of the partition {ζ} of ω constructed above. For these elements of Pn+1 we
say that n + 1 is a splitting time and the pairs (k, p) are the corresponding splitting depths.
Repeat the procedure for each ω ∈ Pn. This completes the construction of Pn+1 from Pn

for all n ≥ 0.

6.3 Bounded distortion

The uniform expansion of length during n iterates ensures that we have bounded dis-
tortion of lengths on atoms of the partition Pn.

Indeed letω ∈ Pn for some n ≥ 1 and let x, y ∈ ω. Note that f i | ω is a diffeomorphism
for i = 1, . . . , n, f expands distances at a minimum rate of σ and f ′ is α-Hölder. Then
there exist constants C,D > 0 such that

log

∣

∣

∣

∣

∣

( f n)′(x)

( f n)′(y)

∣

∣

∣

∣

∣

=

n−1
∑

i=0

∣

∣

∣ log | f ′( f i(x))| − log | f ′( f j(y)|
∣

∣

∣ ≤
n−1
∑

i=0

C ·

∣

∣

∣ f i(x) − f j(y)
∣

∣

∣

α

max{| f ′( f i(x))|, | f ′( f i(y))|}

≤ C

σ

n−1
∑

i=0

σi−n ·
∣

∣

∣ f n(x) − f n(y)
∣

∣

∣

α ≤ D, (6.5)

where D depends only on σ and on the diameter of M.

6.4 Measure of atoms of Pn and return depths

Here we show that we can estimate the measure of an element of Pn using the information
stored in Rn and Dn.

For any given n ≥ 1 and ω ∈ Pn we have
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• a sequence of times Rn(ω) = {r1 < · · · < rs}with r1 ≥ 1 and rs ≤ n, and

• a sequence of intervals ω0 ) ω1 ) · · · ) ωs = ω with corresponding depths
Dn(ω) = {(k1, p1), . . . , (ks, ps)}, where ω0 ∈ P0 and ωi ∈ Pri

∩ · · · ∩ Pri+1−1

such that

M(ki, pi) ⊆ f ri(ωi−1) ⊆M(ki, pi)
+ (6.6)

for all i = 0, 1, . . . , s − 1 with r0 = 0 and s0 = 0. These times are the iterates where the
images of the previous element of the partition was broken into smaller intervals as in
Subsection 6.2. Using the bounded distortion given by (6.5) we get

Leb(ω)

Leb(ω0)
=

Leb(ws)

Leb(ωs−1)
· · · Leb(ω1)

Leb(ω0)
≤

s
∏

i=1

D
Leb

(

f ri(ωi)
)

Leb
(

f ri(ωi−1)
) .

Now using (6.6) and (S5) we bound the last expression from above by

s
∏

i=1

D Leb
(

M(ki, pi)
+
)

B−1eβpi−1d
−β
ki−1

(e − 1)−β Leb
(

M(ki−1, pi−1)
)

and using (6.4) this can be easily simplified yielding

Leb(ω) ≤
s−1
∏

i=0

d
β

ki
e−2βpi ≤ exp















−β
s−1
∑

i=0

(pi + qi)















(6.7)

where qi = [− log dki
] with [z] = max{k ∈ Z : k ≤ z}. We have used p ≥ ρ0 and

log(9BD(e− 1)β)/ρ0 ≤ β to compensate the constants on the exponent 2β. Recall also that
ω0 = M(k0, p0). Note also that if Rn(ω) = ∅, then since there is no splitting but there is
uniform expansion together with distortion control, we get

Leb
(

f n(ω)
)

=

∫

ω

∣

∣

∣( f n)
∣

∣

∣ d Leb ≥ Dσn Leb(ω) so Leb(ω) ≤ D−1σ−n. (6.8)

6.5 Distance to S and splitting depths

Let again n ≥ 1 and ω ∈ Pn be given and consider the sets Rn(ω) and Dn(ω). Consider
the intervals ω0 ) ω1 ) · · · ) ωs = ω as before. Note that for the iterates i between two
consecutive times r < r′ from Rn, i.e. if r < i < r′ then there exists M(li, qi) ∈ P0 such that
f i(ωr) ⊆ M(li, qi)

+ by this choice of i. Moreover by condition (S5) and by (6.1) and (6.2)
we deduce

9dl1(e − 1)e−q1 ≥ Leb
(

f r+1(ωr)
)

≥
(

Bdkre
−pr

)−β
Leb

(

f r(ωr)
)

=

(

B

e − 1
Leb

(

f r(ωr)
)

)−β
Leb

(

f r(ωr)
)

=

(

e − 1

B

)β

Leb
(

f r(ωr)
)1−β

.
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Hence dl1e
−q1−1 ≥

(

9e(e − 1)
)−1

Leb
(

f r+1(ωr)
)

is the estimate for the minimum distance

from S to f r+1(ωr). Let Li = Leb
(

f r+i(ωr)
)

and Di = dist
(

f r+i(ωr), S
)

for i = 0, . . . , r′ − r− 1.

Then the reasoning above shows that L1 ≥
(

e−1
B

)β
L

1−β
0

and Li+1 ≥
(

9e(e−1)

B

)β
L

1−β
i

, and also

Di ≥ Li/
(

9e(e − 1)
)

for i = 1, . . . , r′ − r − 1. It is now easy to see that

− log Li+1 ≤ −(1 − β) log Li + β log
9e(e − 1)

B

= −
(

1 − β − β log
(9e(e − 1)

B

)/

log Li

)

log Li = −γ log Li

where we may assume that γ ∈ (0, 1) since it is no restriction to increase the value of B if
needed. Hence

−
r′−r−1
∑

i=1

log dist
(

f r+i(ωr), S
)

≤ −
r′−r−1
∑

i=1

(

log Li − log
(

9e(e − 1)
))

≤ −Const · log L0 + (r′ − r) log
(

9e(e − 1)
)

≤ −Const · log L0,

since by uniform expansion and by definition of r′ we have σr′−rL0 ≤ 1 and also r′ − r ≤
− log(L0)/ log σ. Since r < r′ were two arbitrary consecutive elements of Rn(ω) for ω ∈ Pn

we have shown that
s−1
∑

j=0

− log dist
(

f j(x), S
)

≤ −Const
∑

(k,p)∈Ds(ω)

log
(

dke
−p

)

(6.9)

for all x ∈ ω, where s < n is the last splitting time before n (s = max Rn(ω)).
However if m > n is the first integer such that ω < Pm but ω ∈ Pl for n < l < m, then

we can write the following disjoint union ω =
⋃

ω′∈Pm
ω′ ∩ ω. Repeating the argument

for x ∈ ω′ ∩ ω for each ω′ ∈ Pm intersecting ω we can obtain a relation like (6.9) with
Ds(ω) replaced by Dn(ω) as the summation range, where n is between s and m. This
shows that the average of the log of the distance to the singular set is bounded by the sum of the
depths at splitting times modulo a constant.

6.6 Expected value of splitting depths

Now we estimate the expected value of the splitting depths for deep splitting times up
to n iterates of the map. Define for a co-countable set of x ∈ M the function Dn(x) =
−

∑

(k,p)∈Dn(Pn(x)) log(dke
−p) where Pn(x) is the unique atom of Pn which contains x ∈ M.

Define also the truncated sum: for any given δ > 0 set for the same points x ∈ M as
above

D
δ
n(x) =

∑

(k,p)∈Dn(Pn(x))
dke−p<δ

− log(dke
−p). (6.10)
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By the arguments in Subsection 6.5 and by the definitions (6.1) and (6.2) we obtain

n−1
∑

j=0

− log distδ
(

f j(x), S
)

≤ D
δ
n(x). (6.11)

Define the number of splittings up to the nth iterate tn(x) = #Rn

(

Pn(ω)
)

and also the number

of deep splittings among these un(x) = #
{

(k, p) ∈ Rn

(

Pn(ω)
)

: dke
−p < δ

}

.

Given x and n ≥ 1 we let 0 = r0 < r1 < · · · < rt with t = tn(x) be the splitting times
along the orbit of x up to the nth iterate and 0 ≤ s1 < · · · < su be indexes corresponding
to deep splittings, where u = un(x) in what follows. Note that each quantity above is
constant on the elements of Pn. Define

Au,t
(κ1,ρ1),...,(κu,ρu)

(n) =
{

x ∈M : tn(x) = t, un(x) = n and (ksi
, psi

) = (κi, ρi), i = 1, . . . , u
}

the set of points which in n iterates have t splitting times and u deep splittings among
these, with the specified depths (κ1, ρ1), . . . , (κu, ρu).

Lemma 6.1. Leb
(

Au,t
(κ1,ρ1),...,(κu,ρu)

(n)
)

≤ ( t
u

)

exp
(−β

∑u
i=1(ηi + ρi)

)

where ηi = [− log dκi
].

Proof. Using the estimate (6.7) we get the following bound for the Lebesgue measure of
Au,t

(κ1,ρ1),...,(κu,ρu)
(n)

(

t

u

)

exp













−β
u

∑

i=1

(ηi + ρi)













· exp
(

− β
∑

(k j ,p j) s.t. dke
−pj≥δ

j=1,...,t−u

(ν j + p j)
)

.

The binomial coefficient takes into account all the possible orderings of sequences of
u deep splitting times among t splitting times and the last exponential bounds the
contribution of all the possible t − u non-deep splitting times, with ν j = [− log dk j

]. But
since p ≥ ρ0 was chosen as in (6.3) and ν j ≥ 0 we conclude that the last exponential is
smaller than 1. So we obtain the bound in the statement. �

Lemma 6.2. For any z > β we have
∫

ezDδ
n(x) dx ≤ eθ(δ)n where θ(δ) is such that θ(δ)ց 0 when

δց 0.

Proof. By definition

∫

ezDδ
n(x) dx =

∑

ω∈Pn

ezDδ
n(ω) · Leb(ω) ≤

∑

ω0∈P0
Dσn Leb(ω0)≤1

Leb(ω0)

+
∑

0<u≤t<n

∑

(κi,ρi)
i=1,...,u

ezDδ
n(ω) Leb

(

Au,t
(κ1,ρ1),...,(κu,ρu)

(n)
)

(6.12)
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where we are considering all possible combinations of splitting depths and of deep
splittings among all the splitting times, for all elements of Pn in the second sum.

Consider the first term corresponding to the atoms of P0 which were not split during
the first n iterates. This sum can be separated as follows

∑

ω0∈P0
Dσn Leb(ω0)≤1

Leb(ω0) =
∑

Dσn Leb(ω0)≤1

dkσ
n/2<1

Leb(ω0) +
∑

Dσn Leb(ω0)≤1

dkσ
n/2≥1

Leb(ω0) ≤ Leb
(

B(S, σ−n/2)
)

+
∑

p>log

(

D(e−1)σn/2

)

e−p ≤ Ce−cn

(6.13)

for some constants C, c > 0, where we have used expression (6.4) for the length of the
atoms of P0 in terms of (k, p) together with condition (S4) and the obvious dk > 0 and
∑

k dk = 1. Note that if S is finite then the condition dkσn/2 < 1 is always false for big
enough n. So in this case we only have the right hand side sum above.

Now we bound the second term (6.12). Considering Lemma 6.1 and taking into
account Dδ

n we obtain (with η j = [− log dκ j
])

∑

0<u≤t<n

∑

(κi,ρi)
i=1,...,u

(

t

u

)

e−(β+z)
∑

i(ηi+ρi) ≤
∑

0<u≤t<n

∑

h>uℓ(δ)

(

t

u

)

uL(h, u)e−(β+z)h

where h =
∑

i(ηi + ρi), ℓ(δ) is an integer such that every pair (k, p) satisfying dke
−p < δ also

satisfies k + p > ℓ(δ), and

L(h, u) = #















(

(ηi, ρi)
)

i=1,...,u
∈N2u

0 :

u
∑

i=1

(ηi + ρi) = h with ρi ≥ ρ0















.

Moreover the factor u bounds the number of distinct dki
with the same value ηi along

the n iterates of the orbit of the points. Observe that

L(h, u) ≤ #















(hi) ∈N2u
0 :

2u
∑

i=0

hi = h















=

(

h + 2u − 1

2u − 1

)

and by a standard application of Stirling’s Formula

L(h, n) ≤
(

c1/h
(

1 +
2u − 1

h

)(

1 +
h

2u − 1

)(2u−1)/h
)h

≤ eβh ≤ ezh

where 0 < c < 1 is a constant independent of the other variables and the last inequalities
follow by h ≥ ρ0u, by the choice of ρ0 in (6.3) and by taking z > β.

Collecting the bounds we have obtained we conclude that the second sum in (6.12)
can be bounded by the following expression

∑

0<u≤t<n

(

t

u

)

u
∑

h>uℓ(δ)

e−βh ≤
n

∑

u=0

n

(

n − 1

u

)

· ue−βuℓ(δ)/2 · e−βuℓ(δ)/2

1 − e−β
≤

n
∑

u=0

(

n

u

)

C

(

e−βℓ(δ)/2
)u

1 − e−β

≤
(

1 +
C

1 − e−β
e−βℓ(δ)/2

)n
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for some constant C > 0 bounding {ue−βuℓ(δ)/2}u≥0 (which can be taken independently of
ℓ(δ)). Finally since ℓ(δ) grows without limit when δ ց 0, the statement of the lemma
follows just by increasing the value of C to take into account the small bound of the first
sum (6.13). �

6.7 Measure of the points with bad recurrence

We are now ready to deduce exponentially slow approximation to the singular set S.
Indeed we just have to use Tchebishev’s inequality, as follows: given ε, δ > 0 we know
there exists a constant C > 0 as in Subsection 6.5 such that

{

x ∈M : −1

n

n−1
∑

i=0

log distδ
(

f i(x), S
)

≥ ε
}

⊆
{

x :
Dδ

n(x)

n
≥ ε

C

}

=
{

x : ezDδ
n(x) ≥ enε/C

}

hence

Leb
{

x ∈M : −1

n

n−1
∑

i=0

log distδ
(

f i(x), S
)

≥ ε
}

≤ e−nε/C

∫

ezDδ
n d Leb = e

−n

(

ε/C−θ(δ)

)

which can be made exponentially small by choosing δ > 0 small enough so that
ε/C > θ(δ). This proves that a piecewise expanding map f in our settings has ex-
ponentially slow recurrence to the singular set, completing the proof of the statements
in Subsection 2.2 and of Corollary C after the reduction procedure of Subsection 2.4.
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Astérisque, 286:25–62, 2003.
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Math., 112:541–576, 1993.

32



[20] M. Benedicks and L.-S. Young. Markov extensions and decay of correlations for
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Mathematics Colloquium].

[57] S. Waddington. Large deviations asymptotics for Anosov flows. Annales de l’Institut
Henri Poincare, Section C, 13(4):445–484, 1996.

[58] L.-S. Young. Some large deviation results for dynamical systems. Trans. Amer. Math.
Soc., 318(2):525–543, 1990.

[59] L.-S. Young. Statistical properties of dynamical systems with some hyperbolicity.
Annals of Math., 147:585–650, 1998.

35


