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Preface

This book arose out from lecture notes of two graduate courses given by the sec-
ond author in 2009 at the Federal University of Rio de Janeiro in Brazil. The first
one entitled “Anosov flows” dealth with the theory of Anosov flows. The sec-
ond “sectional-Anosov flows” followed the first author thesis “Sobre conjuntos
hiperbólicos-singulares”, awarded Honorable Mention in the competition for best
thesis of the CAPES/Brazil in 2006.

The Anosov flows are by definition vector fields exhibiting in the whole ambient
manifold a tangent bundle decomposition formed by a contracting subbundle, an
expanding subbundle and the flow-direction. The study of these flows belongs to
one of the most influencial mathematical areas encompasing Algebra, Analysis and
PDE, ODE, Geometry and Riemannian geometry, number theory etc.. This name
comes from Professor D. V. Anosov who studied them with the name U-systems.
The huge importance of Anosov flows was surely the motivation behind their current
extensions. Among these we can mention the Anosov group actions and foliations,
the pseudo-Anosov and projectively Anosov systems and so on.

This work focuses on sectional-Anosov flows, a further extension corresponding
to vector fields exhibiting, in the maximal invariant set, a dominated splitting formed
by a contracting subbundle and a subbundle where the flow’s derivative expands the
area of parallelograms. Indeed, we expose several aspects of the theory of sectional-
Anosov flows developed by the authors during the first decate of the twenty one
century. The exposition is done in a way to put together both Anosov and sectional-
Anosov flows in the same context. Aspects of the theory of Anosov flows are then
included for the sake of completeness.

We organized this book in the following way.
In Chapter 1 we give some preliminaries for the study of Anosov and sectional-

Anosov flows. In Chapter 2 we introduce the definition of hyperbolic and sectional-
hyperbolic sets. Properties including shadowing lemma, Axiom A and spectral de-
composition, the hyperbolic lemma, classification of singularities and existence
of singular partition under sectional-hyperbolicity will be discussed. In Chapter 3
we define the Anosov and sectional-Anosov flows. Examples including suspended
Anosov flows, geodesic flows on negatively curved manifolds, BL-flows, Anoma-
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lous flows, those obtained by Dehn surgery, the geometric Lorenz attractor, the an-
nular attractors, the venice masks and pathological sectional-Anosov flows will be
presented.

In Chapter 4 we present some basic properties of the Anosov and sectional-
Anosov flows.

In Chapter 5 we study codimension one Anosov flows and prove the Plante-
Thurston-Margulis Theorem and the Verjovsky Theorem. We also analyze Anosov
flows on closed 3-manifolds. In particular, we introduce the product Anosov flows,
prove the Armendariz Theorem on solvable 3-manifolds and classify Anosov flows
on closed 3-manifolds whose fundamental group exhibits a non-cyclic abelian nor-
mal subgroup.

In Chapter 6 we study sectional-Anosov flows on compact 3-manifolds. First we
present dynamical properties including existence of periodic orbits, the sectional-
Anosov closing and connecting lemmas, and the dynamics of venice masks. Af-
teward we study the perturbation theory of sectional-Anosov flows on compact 3-
manifolds. Indeed, we obtain a bound for the number of attractors that may appear
after a perturbation and also the perturbation of venice maks. An study of the omega-
limit sets for small perturbation of transitive sectional-Anosov flows on compact 3-
manifolds is given. Finally, we present some topological properties as the topology
of ambient manifolds, transverse geometry and existence of Lorenz-like singulari-
ties when the ambient manifold is the 3-ball.

We finish with a list of problems in Chapter 7.
Knowledge of basic dynamical systems, geometric theory of foliations and topol-

ogy are prerequisites for the full comprension of the topics of this book.

Rio de Janeiro 11, 2010. S. B. & C. M.
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Chapter 1
Preliminaires

In this chapter we introduce some preliminaries to study Anosov flows. The idea is
to explore the relationship between dynamics, topology and algebra on manifolds
supporting Anosov flows. Some background on differentiable manifolds, basic al-
gebraic topology and group theory is needed.

1.1 Algebraic preliminaires

We start with some definitions. A good reference is the Rotman’s book [133]. The
cardinality of a set B will be denoted by #B (the alternative notation |B| is also used).

A group is a pair (G,∗) where G is a nonempty set and ∗ : G×G→ G is a
binary operation in G satisfying the following properties:

1. There is an element e ∈ G (called unity or identity element) such that:
a. g∗ e = e∗g = g for every g ∈ G.
b. For every g ∈ G there is g−1 ∈ G such that g∗g−1 = g−1 ∗g = e.

2. The operation ∗ is associative, i.e. for every g, f ,h ∈ G one has

(g∗ f )∗h = g∗ ( f ∗h).

It is convenient to write G instead of (G,∗) when refering to a group. It is also
convenient to write g f instead of g∗ f when refering to the binary operation ∗ asso-
ciated to the group G. A group G is abelian (or commutative) if g f = f g for every
g, f ∈G. If G is an abelian group it is customary to denote the operation of G by +,
the identity element of G by 0 and the power gn of g ∈ G by ng.

Given a group G we say that H ⊂ G is a subgroup of G if g f ∈ H for every
g, f ∈ H. We write H ≤ G to indicate that H is a subgroup of G. A necessary and
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2 1 Preliminaires

sufficient condition for H ≤ G is that e ∈ H and g f−1 ∈ H for every g, f ∈ H. If G
is a group and A,B⊂ G we use the notation

AB = {ab : (a,b) ∈ A×B}.

If A = {a} consists of a single element a we denote aB = AB. Analogous notation
holds when B = {b} consists of a single element b. If H ≤G we say that H is normal
if gHg−1 = H for all g ∈G. We use the notation H /G to indicate that H is a normal
subgroup of G. If H ≤ G we define the quotient

G/H = {gH : g ∈ G}.

In the case when H / G we endow G/H with the operation (gH)( f H) = (g f )H.
We can easily check that if H / G then G/H is a group if equipped with such an
operation. If H ≤ G we define the index [G;H] as the cardinality #(G/H) of G/H.

An homomorphism between groups G,G′ is a map ϕ : G→ G′ respecting the
operations in G and G′, namely ϕ( f g) = ϕ( f )ϕ(g) for all f ,g ∈ G. The kernel
Ker(ϕ) of ϕ is the preimage of the identity element of G′. The image Im(ϕ) of ϕ
is the image set of ϕ . It is immediate to see that Ker(ϕ) / G and Im(ϕ) ≤ G′. A
homomorphism ϕ is an epimorphisms or a monomorphism depending on whether
it is onto or injective (as a map). It is immediate to see that ϕ is an epimorphism
(resp. monomorphism) if and only if Im(ϕ) = G′ (resp. Ker(ϕ) = {e}).

An isomorphism between two groups G,G′ is a homomorphism ϕ : G → G′
which is both an epimorphism and a monomorphism (if such a ϕ does exist then we
say that G and G′ are isomorphic groups). We often say that two groups are equal
if they are isomorphic groups. Given a group G we denote by Aut(G) the set of all
isomorphism ϕ : G→ G. The set Aut(G) equipped with the composition operation
is a group with the identity map as identity element. A fixed point of ϕ ∈ Aut(G) is
an element g ∈ G such that ϕ(g) = g.

The following results are part of the so-called isomorphism theorems.

Theorem 1.1 (First Isomorphism Theorem). If ϕ : G→ G′ is a homomor-
phism between groups G,G′ then

G/Ker(ϕ) = Im(ϕ).

Proof. If h ∈ Ker(ϕ) and g1 = g2h we have ϕ(g1) = ϕ(g2h) = ϕ(g2). So we have
that if g1Ker(ϕ) = g2Ker(ϕ) then ϕ(g1) = ϕ(g2). This says that the following ap-
plication ψ : G/Ker(ϕ)→ Im(ϕ) given by ψ(gKer(ϕ)) = ϕ(g) is a well-defined
surjective homomorphism. Now observe that ker(ψ) is the set of g(Ker(ϕ)) such
that ϕ(g) = eG′ . This means that Ker(ψ) = {gKer(ϕ);g ∈ Ker(ϕ)}= {eG/Ker(ϕ)},
then ψ is injective, and we have that it is an isomorphism. ut
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Theorem 1.2 (Third Isomorphism Theorem). Let G a group and K,H be
normal subgroups of G with K ≤ H. Then, H/K /G/K and

G/H = (G/K)/(H/K).

Proof. If g1 = g2k with k ∈ K ≤ H then we have that g1H = g2kH = g2H, so
the following application ϕ : G/k → G/H defined by ϕ(gK) = gH is a well-
defined surjective homomorphism. Now, if lK ∈ H/K then ϕ(lK) = lH = eG/H . So
Ker(ϕ) = H/K. Then, by the previous theorem we have (G/K)/(H/K) = G/H. ut

By a category of groups we mean a set whose elemens are groups. Let B a set and
V be category of groups. A free group with free basis B in the category V is a group
F ∈ V satisfying the following ”universal” property: There is a map ϕ : B→ F such
that if F ′ ∈ V is another group and ϕ ′ : B→ F ′ is another map then there is a unique
homomorphism Φ : F → F ′ such that Φ ◦ϕ = ϕ ′. When V consists of all groups
we say that F is free and when V consists of all abelian groups we say that F is
free abelian. Given a nonempty set B it exists a unique group F which is free (free
abelian) with basis B. The rank Rank(F) of a free abelian group F is the cardinality
#B of a free basis B of F . It turns out that the rank of a free abelian group F does
not depend on the free basis B.

If G is a group and g∈G we say that g has finite index in G if there is n∈ IN \{0}
such that gn = e. The set T (G) of all elements with finite index of G is easily seem
to be a subgroup of G called torsion group of G. A group G is either torsion free of
a torsion group depending on whether T (G) = {e} or T (G) = G.

Proposition 1.3. If A is an abelian torsion free group of rank 1, then Aut(A) is
abelian.

Proof. Let A be as in the statement. First we claim that if φ ∈ Aut(A) has a fixed
point γ0 6= 1 then φ = Id. Indeed, if γ ∈ A then there are m,n ∈ Z∗ such that γn = γm

0
since Rank(A) = 1 and A is torsion free. But φ(γn) = φ(γm

0 ) = (φ(γ0))m = γm
0 = γn.

Hence (φ(γ)γ−1)n = 1 and so φ(γ) = γ since n 6= 0 and A is torsion free. As γ is arbi-
trary the claim follows. Now fix φ ,ξ ∈ Aut(A) and γ ∈ A−1. Hence φ(γ),ξ (γ) 6= 1.
As A is abelian and Rank(A) = 1 we have as above that there are m,n,r,s ∈ Z∗
such that ξ (γn) = γm and φ(γr) = γs. If γ0 = γmsnr we have that γ0 6= 1 since A is
torsion free. Moreover, φξ (γ0) = φ(γm2sr) = γm2s2

and ξ φ(γ0) = ξ (γms2n) = γm2s2
.

We conclude that φξ φ−1ξ−1 has a fixed point γ0 6= 1 and so φξ = ξ φ proving the
result. ut

Given a subset A of a group G we define < A > as the smallest subgroup of G
containing A. One can describe < A > using words. More precisely, a word on A is
an element x ∈ G of the form

x = ae1
1 ae2

2 · · ·aen
n ,
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where each ai ∈ A, each ei = ±1 and n ≥ 1. It follows that < A >= {e} (if A = /0)
or the set of all the words on A (otherwise). We say that A is a generating set of G
if G =< A >. A generating set A is symmetric if a−1 ∈ A for all a ∈ A. G is said to
be finitely generated if it has a finite generating set A. A group is cyclic if it has a
generating set consisting of a single element. It is an exercise to prove that if G is
cyclic then G is either Z or Zp = Z/pZ for some p ∈ IN.

If G is a finitely generated group then it has a finite symmetric generating set
A. In such a case we have that every element g ∈ G equals to some some word
ap1

1 ap2
2 · · ·apk

k where p1, · · · , pk ∈ Z. The number |p1|+ |p2|+ · · ·+ |pk| is called the
length of the word. We define the number ||g|| as the minimal length of those words
which are equal to g. A finitely generated group G with finite symmetric generating
set A has polynomial or exponential growth depending on whether there are two
positive numbers d and C such that the ball B(r) = {g ∈ G : ||g|| ≤ r} satisfies

#B(r)≤Crd , ∀r ≥ 1

or
#B(r)≥C · exp(dr), ∀r ≥ 1.

It is easy to see that the definition of polynomial and exponential growths are inde-
pendent of the generating set A.

Example 1.1. For free (non-Abelian) groups with a prefered set of n generators, we
have that #B(r) = n(2n−1)k−1

n−1 if r ∈ [k,k +1). Indeed, if we have a word with length
s− 1 we can obtain a word with length s attaching a letter on the left of the word
only if the letter is not the inverse of the first letter of the original word. So we have
that

#B(r) = 1+
k

∑
s=1

2n(2n−1)s−1 =
n(2n−1)k−1

n−1

In particular for the free group with 2 generators we have #B(r) = 2.3k − 1 for
r ∈ [k,k +1). Compare with Lemma 3 in [89] and [57] p. 54.

Example 1.2. The free Abelian groups with n generators has polynomial growth,
since every word can be reorganized as ap1

1 . . .apn
n where pi ∈ Z and {ai} is the set

of generators. So the number of words with length k is the number of combinations
of (p1, . . . , pn) ∈ Zn such that p1 + · · ·+ pn ≤ k and this number is bounded by Ckn.
In fact if the group has two generators one has #B(r) = 2k2 +2k+1 for r ∈ [k,k+1).

A group G is solvable if there is a normal series

G0 = 1/G1 / · · ·/Gn−1 /Gn = G

such that Gi+1/Gi is abelian for all 0≤ i≤ n−1. The group G is virtually solvable
(or solvable-by-finite) if it contains a finite index solvable subgroup.

If G is a group we define the center of G as the set

Z(G) = {x ∈ G : xg = gx∀g ∈ G}.
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Clearly the center Z(G) of a group G is a normal subgroup of G. A group G is
nilpotent if there is a central series

1 = G0 /G1 /G2 / · · ·/Gn = G

such that Gi+1/Gi ⊂ Z(G/Gi). We say that G is almost nilpotent if it exhibits a
nilpotent normal subgroup of finite index. The following result gives a link between
nilpotency and polynomial growth [57].

Theorem 1.4. A finitely generated almost nilpotent group has polynomial
growth.

We also use the following lemma.

Lemma 1.1. A group exhibiting an infinite cyclic normal subgroup with abelian
quotient is almost nilpotent.

Proof. Let G be a group exhibiting an infinite cyclic normal subgroup H with
abelian quotient K = G/H. Let x be the generator of H. Then, for all g∈G there is a
unique k(g) ∈ Z such that gxg−1 = xk(g). Clearly k(gg′) = k(g) · k(g′) and k(1) = 1.
Hence k(g−1) = k(g)−1 and then k(g) = ±1 for all g ∈ G. Thus gxg−1 = x±1 for
all g ∈ G. Define G+ = {g ∈ G : gxg−1 = x}. Clearly G+ is a subgroup with index
two of G. Hence G+ is normal and has finite index in G. Let us prove that G+ is
nilpotent. Indeed, note that H ⊂G+ by the definition of G+. Next, consider the serie
G0 = 1/G1 = H /G2 = G+. Note that H ⊂ Z(G+) since if y ∈ H and g ∈ G+ then
y = xh for some h ∈ Z and so gyg−1 = gxhg−1 = (gxg−1)h = xh = y ∴ y commutes
with all the elements of G+ ⇒ y ∈ Z(G+). It follows that G1/G0 ⊂ Z(G+/G0). On
the other hand, G2/G1 = G+/H ⊂ G/H = K and since K is abelian we have that
G2/G1 ⊂ Z(G+/G1). These remarks prove that G+ is nilpotent as claimed. Since
G+ has finite index in G we conclude that G is almost nilpotent as desired. ut

One can easily see that a torsion free group with non-trivial center has an infinite
cyclic normal subgroup (e.g. the cyclic group generated by a central element). A
sort of converse holds for by the following lemma.

Lemma 1.2. A group exhibiting an infinite cyclic normal subgroup also exhibits an
index ≤ 2 normal subgroup with non-trivial center.

Proof. Let A be an infinite cyclic normal subgroup of a group G. Then the set Aut(A)
of automorphisms of A is isomorphic to Z2. In particular Aut(A) has order 2. Let
φ : G→ Aut(A) be the action of G in A by conjugation, namely φ(g)(a) = gag−1,
∀a ∈ A. φ is well defined since A is normal. Let H be the kernel of φ . Hence H
is normal with index | M/H |=| Im(φ) |≤| Aut(A) |≤ 2. Clearly A ⊂ H since A
is abelian. Moreover, ga = ag for all g ∈ H and a ∈ A since H = Ker(φ). Hence
A ≤ Z(H). As A is not trivial we have that Z(H) is non-trivial as well. The proof
follows. ut
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Let V and G be a manifold and a group respectively. An action (on the left) of G
on V is a differentiable map

ϕ : G×V →V

with the following properties:

1. ϕ(e,v) = v for every v ∈V .
2. ϕ(g,ϕ( f ,v)) = ϕ(g f ,v) for every g, f ∈ G and v ∈V .

Analogously one defines actions on the right V ×G→ V . It is usual to denote
ϕ(g,v) by gv and G×V → V for the corresponding action. Under this notation
we can see that every element g ∈ G represents a unique diffeomorphism given by
v ∈V → gv. This diffeomorphism is still denoted by g. An element v ∈V is a fixed
point of g ∈ G if g(v) = v. The set of fixed points of g ∈ G is denoted by Fix(g).
The isotropy group (stabilizer) of v ∈ V is the subset Stab(v) ⊂ G formed by those
g ∈ G such that g(v) = v. It is easy to see that Stab(v) is a subgroup of G.

Lemma 1.3. Let A×V → V be an action of a non-trivial abelian group A on a
connected simply connected 1-manifold V . Suppose that every fixed point of every
element of A is hyperbolic (either attracting or repelling). Suppose in addition that
Stab( f ) is either trivial or cyclic for all f ∈V . Then, ∪β∈A\{0}Fix(β ) is discrete.

Proof. By contradiction suppose that ∪β∈A\{0}Fix(β ) is not discrete. Then there is
β1 ∈ A\{0} and f1 ∈ Fix(β1) such that ∪β∈A\{0}Fix(β )\{ f1} is not closed. We can
assume that β1 is orientation-preserving and that f1 is attracting for β1. Let I1 ⊂ V
be the corresponding local basin of attraction. It turns out that I1 is an open interval
containing f1 and ∀ f ∈ I1 one has β n

1 ( f ) ∈ I1 (∀n ∈ N) and limn→∞ β n
1 ( f ) = f1.

Since ∪β∈A−1Fix(β )\{ f1} is not closed we can find β2 ∈ A−1 and f2 ∈ Fix(β2)∩
I1 \ { f1}. Clearly we can assume that β2 is orientation-preserving. Since I1 is an
interval we have that f2 and β1( f2) bounds an interval [ f2,β2( f2)] in I1. Define

J = ∪n∈Zβ n
1 ([ f2,β1( f2)]).

Hence J is an open interval. Moreover, f1 is a boundary point of J because of
limn→∞ β n

1 ( f2) = f1. Since A is abelian, and β1,β2 ∈ A, we have that β1 and β2
commute. Hence

β2(J) = ∪n∈Zβ1([β2( f2),β1(β2( f2))] = J

because β2( f2) = f2. This implies that J is β2-invariant. Since β2 is orientation-
preserving and f1 is a boundary point of J we have that β2( f1) = f1. In other words
β2 ∈ Stab( f1). This proves that β1,β2 ∈ Stab( f1). Since the last set is infinite cyclic
we have that β n1

1 = β n2
2 for some n1,n2 ∈ Z∗. Hence β n1

1 ( f2) = β n2
2 ( f2) = f2, i.e.

f2 is fixed by a non-trivial power of β1 contradicting f2 ∈ I1 \ { f1}. The lemma is
proved. ut

Now we prove the classical Holder’s Theorem [65].
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Theorem 1.5. If G is a group for which there is a fixed point free action
G×R→ R, then G is abelian.

Proof. There is an order < in G by setting α < γ ⇔ α( f ) < γ( f ) for some f ∈
R. This order is well defined since G×R→ R is fixed point free. The following
arquinedean property holds: ∀α ∈G with α > Id and γ ∈G there is n ∈N such that
αn > γ . Hereafter we fix an element γ0 > Id of G. We define for all γ ∈G and n∈ bn
the integer

X(γ,n) = inf{k ∈ N : γn < γ0}.
Clearly X(γ,n) is well defined by the arquimedean property. One can easily prove
that X(γ, ·) is subadditive, namely X(γ,m+n)≤ X(γ,n)+X(γ,n) for all m,n ∈ N.
From this it follows that the limit

X(γ) = lim
n→∞

X(γ,n)
n

exists for all γ ∈ G and satisfies X(Id) = 0 (this is a well known trick in Ergodic
Theory, [31]). This defines a map

X : G→ R

which satisfies: X(γn) = nX(γ), X(Id) = 0 and if α < γ then X(α) < X(γ). Let us
prove the following requality:

lim
n→∞

X(αnγn)
n

= X(α)+X(γ), (1.1)

∀α ,γ ∈ G. In fact by the definition of X(γ,n) one has

γX(γ,n)−1
0 < γn < γX(γ,n)

0 ,

and
γX(α ,n)−1

0 < αn < γX(α ,n)
0 .

Hence
γX(α ,n)+X(γ,n)−2

0 < αnγn < γX(α ,n)+X(γ,n)
0 .

Appliying X to the above inequality and using the properties one has

X(α ,n)+X(γ,n)−2 < X(αnγn) < X(α,n)+X(γ,n).

Dividing the above inequality by n and taking the limit we obtain the result.
Next we prove the following inequality

αnγn < (αγ)n < γnαn
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for all α,γ ∈G and n ∈N. In fact, it is clear that the above inequality holds if α and
γ commutes. So we assume that αγ 6= γα . Since the action is fixed point free we
can assume that αγ < γα or αγ > γα . We shall assume αγ < γα since the proof
for the another case is similar. Clearly αγ < γα implies αnγn < (αγ)n for all n. To
prove the another inequality we only observe that αγ < γα also implies α iγα−i < γ
for all i ∈ N. And since

(αγ)n = (αγα−1)(α2γα−2) · · ·(αnγα−n)αn

we have that (αγ)n < γnαn and the proof follows.
Next we claim that X is an homomorphism. In fact, by appliying X to αnγn <

(αγ)n < γnαn one has

(1/n)X(αnγn) < X(αγ) < (1/n)X(γnαn).

By taking the limit and applying Eq.(1.1) one has

X(α)+X(γ)≤ X(αγ)≤ X(γ)+X(α).

This proves that X : G→ (R,+) is an homomorphism. To finish let us consider an
element γ ∈ Ker(X)− 1 (i.e. X(γ) = 0). We can assume that γ > Id for otherwise
we consider γ−1. As above one observes

γX(γ,n)−1
0 < γn < γX(γ,n)

0 , ∀n.

By applying X to the above inequality one has

X(γ,n)−1 < nX(γ) < X(γ,n).

Because X(γ) = 0 we conclude from the above inequality that X(γ,n) = 1 for all n.
This implies γn < Id for all n which is absurd. We conclude that Ker(X) = 0 and
so G is isomorphic to the image Im(X). Since (R,+) is abelian and Im(X)⊂ R we
obtain that G is abelian. The proof follows. ut

1.2 Group cohomology

In this section we give a very brief description of group cohomology to be used in
the next section. The exposition we give here is the one of the Suzuki’s book [141].

A ring is a triple a triple R = R,+, ·) consisting of an abelian group (R,+) and
a bynary operation · on R with the following properties:

1. (r1 · r2) · r3 = r1 · (r2 · r3) for all r1,r2,r3 ∈ R.
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2. r1 · (r2 + r3) = (r1 · r2)+(r1 · r3) for every r1,r2,r3 ∈ R.

If additionally there is an element 1R ∈ R such that r ·1R = 1R · r = r for all r ∈ R
one says that R is a ring with unity 1R. One says that R is a commutative ring if
r1 · r2 = r2 · r1 for every r1,r2 ∈ R. As usual the product g · f of a pair of elements
g, f in a ring R is denoted by g f .

Given a group G and a non-trivial commutative ring with unity R we can define
the group ring RG of G over R as the set RG all finite sums Σg∈Grgg, that is rg ∈ R
is zero except by finitely many g’s in G, equipped with the operations

(Σg∈Grgg)+(Σg∈Gsgg) = Σg∈G(rg + sg)g

and
(Σg∈Grgg) · (Σg∈Gsgg) = Σg∈G

(
Σh∈Grhsh−1g

)
g.

It turns out that RG is a ring.
Recall that a module over R (or R-module for short) is an abelian group A

equipped with an action A× R → A, (a,r) → ar, such that a(r + s) = ar + as,
a(rs) = (ar)s and (a+b)r = ar +br for all (a,b,r,s) ∈ A×A×R×R.

A homomorphism of R-modules is a map f : A→ B between R-modules A and B
such that f (a+b) = f (a)+ f (b) and f (ar) = f (a)r for all (a,b,r) ∈ A×A×R.

An R-module A is freely generated by a subset X ⊂ A whenever for all R-module
B and for all map g : X→B there is a unique homomorphism of R-modules f : A→B
such that g = f ◦ i. We say that A is a free R-module if it is freely generated by some
X ⊂ A. In such a case the cardinality #X of X will be refered to as the rank of A.

Observe that R itself is a RG-module if equipped with the operation

(Σg∈Grgg)r = Σg∈Grgr.

A free G-resolution of R is a sequence of free RG-modules X = {Xi : i = 0,1, · · ·}
and a sequence of homomorphisms of RG-modules d = {di : Xi→ Xi−1} such that
the sequence below

· · · dn+1−→ Xn
dn−→ Xn−1

dn−1−→ Xn−2
dn−2−→ ·· ·X1

d1−→ X0
d0−→ R−→ 0

is exact.
(As customary we shall say free resolution instead of free G-resolution.)
If A is any RG-module, and X is a free resolution of R, then we have a homo-

morphism of RG-modules sequence d∗i : HomRG(Xi−1,A)→ HomRG(Xi,A) in the
standard way,

d∗i ( fi−1) = fi−1 ◦di.

The quotient group
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Hn(G,A) =
Ker(d∗n+1)

Im(d∗n)

is the n-th cohomology group of A with respect to RG (or G).
By a standard diagram chasing argument involving two free resolutions of R we

can see that Hn(G,A) does not depend on free resolutions.
The cohomology dimension of G over R is the maximun integer n = cdRG such

that Hn(G,A) is non-trivial for some RG-module A. We denote cdZG = cdG when
R = Z the set of integers.

Next we state without proof a result due to R. Bieri [26].

Theorem 1.6. The center of a non-abelian group with cohomological dimen-
sion ≤ 2 is either trivial or infinite cyclic.

We shall prove the following result which is a weaker version of a result by
Hillman [67]. We define G as the set of groups G with finite cdG such that cdN <
cdG−1 for all subgroup N of infinite index in G.

Theorem 1.7. (Hillman) Let G be a finitely generated group in G . Suppose
that G containing an abelian normal subgroup A which either is Z2 or has
rank 1. If G/ZG(A) is infinite, then G is virtually solvable.

Proof. First we assume that A = Z2. We claim that G/A has an element of infinite
order. Indeed, suppose by contradiction that every element of G/A has finite order.
Then G/A is a torsion group which is finitely generated since G is. Let Φ : G/A→
Aut(A) be the homomorphism by conjugation, namely Φ(γA) = φγA with φγA(α) =
γαγ−1 for all α ∈ A. Φ is well defined because A is abelian. Moreover, ker(Φ) =
ZG(A)/A and

Im(Φ) = (G/A)/(ZG(A)/A).

Im(Φ) is a finitely generated torsion group since G/A is. Hence Im(Φ) is a finitely
generated torsion group of Aut(A) = GL(2,Z). According to a classical result [74]
we know that Im(Φ) is locally finite. Since Im(Φ) is finitely generated we conclude
that Im(Φ) is finite. Thus G/ZG(A) = (G/A)/(ZG(A)/A) is finite, a contradiction.
This proves that G/A has an element of infinite order αA. Note that < α,A > /A =<
αA > because A is abelian. Hence < α,A > /A = Z because αA has infinite order.
Thus < α,A > is a Poly-Z group with Hirsch number 3. As G ∈ G we conclude
that N =< α,A > has finite order in G proving the result. Now we assume that
Rank(A) = 1. It follows from Proposition 1.3 that Aut(A) is abelian since A is torsion
free. Let Φ be the representation G→ Aut(A) given by conjugation, namely Φ(γ) =
φγ with φγ(α) = γαγ−1. Note that the kernel of Φ is precisely the centralizer ZG(A)
of A in G. As Aut(A) is abelian we conclude that G/ZG(A) is abelian. But G/ZG(A)
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is infinite by assumption. Then, cdZG(A) ≤ 2 since G ∈ G . On the other hand, it
is clear from the definition of center that A⊂ Z(ZG(A)). Thus ZG(A) has nontrivial
center. As A is not cyclic we have that ZG(A) is abelian by the Bieri’s Theorem.
Hence both G/ZG(A) and ZG(A) are abelian proving that N = G is solvable. The
proof follows. ut

1.3 Topological preliminars

We give some background in 3-manifold topology. Basic reference here is the
Hatcher’s book [63] (see also the classical book by Hempel [66]).

In the sequel we state one of the most important results in 3-manifold topology.

Theorem 1.8 (Loop Theorem). Let M be a 3-manifold with boundary ∂M. If
thre is a map f : (D2,∂D2)→ (M,∂M) with f (∂D2) not null-homotopic in
∂M, then there is an embedding with the same property.

We shall not prove this theorem here (see [63]). Instead we state some corollaries.
A submanifold S of a manifold M is two-sided if there is an embedding S× I→U
where U is a neighborhood of S in M.

Corollary 1.9. Let T be a two-sided torus on a closed 3-manifold M. If the homo-
morphism π1(T )→ π1(M) induced by the inclusion T →M has nontrivial kernel,
then there is a disk D in M such that D∩T = ∂D and ∂D is not null homotopic in
T .

Proof. If Ker(π1(T )→ π1(M)) 6= 0 then exists map f : D2→M s.t. f (∂D2) is not
null-homotopic in T . By transversality theory we can assume that T and f (D2) are
in general position. Hence f−1(T ) is a finite collection of circles one of which is
∂D2. If the f -image of one of such circles is null-homotopic in T we can redefine f
so as to eliminate it as below:

Hence we can assume that the f -image of these circles are not null-homotopic in
T . Afterward we choose one of such circles so that it is minimal by inclusion (this
choice is similar to one in the Haefliger Theorem’s proof). In his way we can further
assume the following

f (D2)∩T = f (∂D2) (*)

is not null-homotopic in T . Since T is two-sided we can cut M open along T to
obtain a 3-manifold with boundary N (possibly disconnected). As M is closed the
connected components of ∂N are copies of T . By (*) f (D2) intersect T only in
f (∂D2). Hence f induces a map g : (D2,∂D2)→ (N,∂N) so that g(∂D2) = f (∂D2)
is not null-homotopic in ∂N. By the Loop Theorem we can assume that g is an
embedding. Thus D = g(D2) is a disk in N satisfying
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D∩∂N = ∂D is not null-homotopic in T.

Reversing the proceeding yielding N we can observe that D is a disk in M satisfying

D∩T = ∂D not null-homotopic in T.

The proof follows. ut

Definition 1.10. An n-manifold M is called irreducible if every two-sided em-
bedded (n−1)-sphere in M bounds a n-ball in M (c.f. [84]).

Remark 1.11. The Sphere Theorem implies that if M orientable irreducible
3-manifold, then⇒ π2(M) = 0.

It is in general difficult to prove (or disprove) that a manifold is irreducible.

Definition 1.12. An embedded surface S on a 3-manifold M is called incom-
pressible if the homomorphism π1(S)→ π1(M) induced by the inclusion is
injective.

Corollary 1.13. A 2-sided torus T on a closed irreducible 3-manifold M either is
incompressible or bounds a solid torus or belongs to a 3-ball.

Proof. Assume that T is not incompressible, i.e. Ker(π1(T )→ π1(M)) 6= 0. Then,
by Corollary 1, there is a disk D in M such that D∩T = ∂D and c = ∂D is not null-
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homotopic in T . Let C be a tubular neighborhood of D, which is a cylinder-like
3-ball, such that ∂C ∩T = A is an annulus neighborhod of C in T .
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T T
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Fig. 1.2

Note that ∂C is formed by two 2-disks D+ , D− and the annulus A

DD D
+ -

C

Fig. 1.3

Consider the manifold

S = (T −A)∪D+∪D−

Clearly S is a (tamely embedded) 2-sphere in M. Since M is irreducible we have that
S bounds a 3-ball B. We have two possibilities:

{
• B∩D = /0
• B∩D 6= /0
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First case Second case
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In the first case we see that ST def= B∪C is a solid torus bounded by T . In the
second case we have that T ⊆ B. ut

Remark 1.14. In the third conclusion of this corollary we can assume that T
belongs to the interior of the 3-ball.

The following two results are well known facts in 3-manifold topology. The first
one is the famous Stalling’s Fibration Theorem [139]. The second one is due to
Evans and Moser [43].

Theorem 1.15. Let M be a closed irreducible 3-manifold and N be a finitely
generated normal subgroup of π1(M) with infinite cyclic quotient group
π1(M)/N. If N 6= Z2 then N is the fundamental group of a closed surface
F and M fibers over S1 with fibre F.

Theorem 1.16. If M is a closed 3-manifold with solvable fundamental group,
then every subgroup of π1(M) is finitely generated.



1.4 Group homology and manifolds 15

1.4 Group homology and manifolds

Definition 1.17. A space X is aspherical (or Eilenberg-Maclane) if πn(X) = 0
∀n ≥ 2. Given a group G we say that X is K(G,1) if X is an aspherical and
π1(X) = G.

Remark 1.18. It follows that X is aspherical if and only if every continous
map f : Sn → X admits an extension f̄ : En+1 → X (viewing ∂En+1 = Sn ∴
f̄ /∂En+1 = f ).

Proposition 1.19. Rk is aspherical ∀k ∈ N.

Proof. The image of a map f : Sn → Rk is contained in a ball B ⊆ Rk and B
is contractible (i.e. exists homotopy H : B× I → Rk H(x,1) = x, ∀x ∈ B,
H(x,0) = Q0 , ∀x ∈ B). We define f̄ (z ∈ En+1) = H( f (θ(z)),r(z)) where z =
(θ(z),r(z)) ∈ Sn× (0,1] is the polar coordinate system of En+1). This map proves
the assertion. ut

Theorem 1.20 (Whitehead). If X, Y are K(G,1), then X and Y are homotopi-
cally equivalent, i.e. there are maps

f : X → Y and f ′ : Y → X

such that {
• f ◦ f ′ ' Idx

• f ′ ◦ f ' Idx

A consequence of the above theorem is that if X , Y are both K(G,1) then

Hi(X) = Hi(Y ) ∀ i ∈ N.

(Hi( ·) denote the i-homology group with coefficients in Z). By this observation we
can define the i-homology group of a group G as:

Hi(G) def= Hi(X)

for some K(G,1) space X .
An example is as follows. Let Zn = Z/n ·Z be the finite cyclic group of order n.

Then,
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Hi(Zn) =

{
Zn if i odd
0 if i even.

In particular, Hi(Zn) 6= 0 for intimitely many i’s.

Remark 1.21. If M is a n-dimensional manifold then, Hi(M) = 0 for all i > n.
Here is a Proof: By the de Rham’s theorem we have that H i(M,R) = 0, ∀ i >
n. Hence Hi(M,R) = 0 by the universal coefficient theorem. Since Hi(M) =
Hi(M,Z)⊆ Hi(M,R) = 0 the result follows.

Lemma 1.4. If M is an aspherical manifold of dimension n, then Hi(G) = 0 for all
subgroup G of π1(M) and i > n.

Proof. Fix G≤ π1(M). Let M̂→M be the Galois covering associated to G, i.e.

π1(M̂) = G.

Since M is aspherical we have that M̂ also does. If P : M̂→ M is a covering map,
then P∗ : πk(M̂)→ πk(M) is a isomorphism ∀k > 1 (this follows from the fact that
Sk is simply connected ∀k > 1). The observation above implies Hi(M̂) = 0, ∀ i > n.
It follows from the definition of Hi(G) that Hi(G) = Hi(M̂) = 0 for all i > n. ut
Proposition 1.22. If M is an aspherical manifold of finite dimension, then π1(M) is
torsion-free.

Proof. Suppose by contradiction that π1(M) has an element of finite order. Hence
there is n∈Z such that G :=Zn≤ π1(M). Now, since M is aspherical and dim(M) <
∞, one has that Hi(G) = 0 ∀ i > dim(M). However, by the example, we have that
Hi(G) 6= 0 for infinitely many i’s. This is a contradiction which proves the result. ut

1.5 Foliation preliminaires

In this section we give some foliation background (see [65] for details). Roughly
speaking a foliation of codimension q of a n-manifold N is a partition F of N formed
by immersed submanifolds of constant dimension n− q (the leaves of F ) which
locally have the form Rn−q×Rq. The sets of the form Rn−q×{∗} are called the
plaques of F . A leaf of F is union of plaques of F . The intrinsic topology of
a leaf F of F is precisely the atlas of F formed by the plaques of F contained
in F . If x ∈ N we denote by Fx the leaf of F containing x. We say that B ⊂ N
is F -invariant if every leaf of F intersecting B is contained in B. A foliation is
transversely orientable if it has a complementary orientable plane field. The most
classical example of foliation is the standard Reeb foliation of the solid torus D2×
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S1. A Reeb component of a foliation F on a 3-manifold is a F -invariant compact
submanifold R diffeomorphic to the solid torus D2×S1 such that F/R is equivalent
to the standard Reeb foliation. A foliation on a 3-manifold is Reebless if it has no
Reeb components. We shall use the following version of the classical Novikov’s.

Theorem 1.23 (Novikov). If F is a C0 transversely orientable codimension
one Reebless foliation of a closed orientable 3-manifold S, then the leaves of
F are incompressible in S.

Now we describe a result obtained by J. Plante [126]. Let M be a Riemannian
manifold endowed with a volume form Ω . We say that π1(M) (the fundamental
group of M) has exponential growth it there are constans B, c > 0 such that

#
{

γ ∈ π1(M) : ∃c ∈ γ of length(c)≤ R
}
≥ BecR, ∀R > 0.

For instance, if π1(M) is either finite or abelian then π1(M) has no exponen-
tial growth. Hence π1(S3), π1(S2× S1) and π1(T 3) have no exponential growth.
Examples with exponential growth will be given later one.

Let F be a Cr codimension one foliation on M, r≥ 1. Let dx , Ωx be respectively
the restriction of the metric and the volume element Ω of M in the leaf L(x) of F
containing x. Define

DR(x) = {y ∈ L(x) : dx(x,y)≤ R}

(This is the R-ball in L(x) centered at x) and

G(x,R) =
∫

DR(x)
Ω(x).

(This is the measure of DR(x)).
The leaf L(x) has exponential growth if there are constants B′, c′ > 0 so that

G(x,R)≥ B′ ec′·R, ∀R > 0.

The following theorem relates these notions of exponential growth:

Theorem 1.24 (Plante). Let F be a C1 codimension one foliation on a com-
pact manifold M. Suppose that ∃x ∈M such that

1. L(x) does not intersect a null-homotopic closed transversal of F .
2. L(x) has exponential growth.

Then, π1(M) has exponential growth.



18 1 Preliminaires

Before the proof we establish the following lemma.

Lemma 1.5. Let P : M̃→M be the universal covering space of M endowed with the
induced metric. Let x ∈M be a base point for π1(M) and fix x̃ ∈ P−1(x) (the fibre of
x). Let V (R) denote the volume of the ball BR(x̃) of radius R centered at x̃ w.r.t. the
induced metric. Then, π1(M) has exponential growth if and only if V (R) does, i.e.
∃B′′,C′′ > 0 s.t.

V (R)≥ B′′ ec′′·R, ∀R > 0

Proof. Fix a fundamental domain K of the covering P : M̃→M. Since M is compact
we have that diam(K) = δ is finite. Recall that π1(M) can be identified with the deck
transformations of M, i.e. there is an action by isometries

π1(M)× M̃→ M̃

such that π1(M)\M̃ = M. Fix γ̄ ∈ π1(M) such that γ(K)∩BR(x̃) 6= φ . Then ∃ ỹ ∈
γ̄(K)∩BR(x̃) and so ∃ curve c̃ of length(c̃)≤ R+δ joining x̃ and γ(x̃).

K

x~

γ(   )x~-

γ-

B (  )x~
R

c~

Fig. 1.5

Therefore, c def= P ◦ c̃ is a closed curve in γ̄ of length (c) ≤ R + δ . This proves
γ̄ ∈ {γ ∈ π1(M) : ∃c ∈ γ of length(c)≤ R+δ} and so the inclusion below holds:

(1) {γ ∈ π1(M) : γ(K)∩BR(x̃) 6= φ} ⊆ {γ ∈ π1(M) : ∃c ∈ γ of length(c)≤ R+δ}
Next we fix γ ∈ π1(M) so that ∃c ∈ γ of length(c) ≤ R. Let c̃ be the lift of c to M̃
with c̃(0) = x̃. Clearly length(c̃)≤ R ∴ c̃(1) ∈ BR(x̃). By the definition of the action
π1(M)×M̃→ M̃ one has c̃(1) = γ̄(x̃) and so c̃(1) ∈ γ̄(K)∩BR(x̃). We conclude that
γ̄(K)∩BR(x̃) 6= φ and then we have the following inclusion:

(2) {γ ∈ π1(M) : ∃c ∈ γ of length(c)≤ R} ⊂ {γ ∈ π1(M) : γ(K)∩BR(x̃) 6= φ}.
Denote by N(R) = #{γ ∈ π1(M) : γ(K)∩BR(x̃) 6= φ}. By definition we have
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V (R) = Volume of BR(x̃).

As
⋃

γ(K)∩BR(x̃)6=φ
γ(K) contains BR(x̃) one has

V (R) = Volume of BR(x̃)≤ N(R) ·δ (3)

On the other hand, it is clear that

BR+2δ (x̃)⊆
⋃

γ(K)∩BR(x̃)6=φ
γ(K)

(recall γ is isometry). Hence

V (R+2δ )≥ N(R) ·δ (4)

If V (R) has exponential growth i.e. V (R) ≥ B′′ ec11·R, then (3) implies N(R) ≥
B′′′ · ec′′·R with B′′′ = B′′/δ . Hence

#{γ ∈ π1(M) : ∃c ∈ γ of length (c)≤ R+δ} ≥ B′′′ · ec′′·R

by (1) ∴

#{γ ∈ π1(M) : ∃c ∈ γ of length (c)≤ R+δ} ≥ B′′′′ · ec′′·R

where B′′′′ = B′′′ · e−c′′·δ
∴ π1(M) has exponential growth conversely, if π1(B) has exponential growth

then
#{γ ∈ π1(M) : ∃c ∈ γ of length (c)≤ R} ≥ B · ec·R.

By (2) and the definition of N(R) we get

N(R)≥ B · ec·R

By (4) we have
V (R+1δ )≥ B′′ · ec·R

(where B′′ = B ·δ ) and so

V (R)≥ B′ ec′·R where

{
B′ = B′′ · e−2cδ

c′ = c

∴ V (R) has exponential growth. ut

Proof of Theorem 1.24: P : M̃→M be the universal cover of M. Let F̃ be the lift
of F to M̃. As note before M̃ is equipped with the induced metric and there is an
isometry action π1(M)× M̃→ M̃. Fix a base point x ∈ M for π1(M), x̃ ∈ P−1(x)
and denote by DR(x̃) the R-disk in L(x̃) (the leaf of F̃ containing x̃) centered at x̃.
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We assume that x satisfies the hypotheses (1), (2) of the theorem. We can assume
that F is |∩ oriented by double covering. Hence ∃c1 flow ϕt |∩F . Denote by ϕ̃r the
lift of ϕt to M̃.
Claim 1: There is λ > 0 fixed so that the set

⋃

|t|≤λ
ϕ̃t(DR(x̃))

consists only of points which are at distance ≤ R+1 from x̃ (in the M̃’s metric).

Proof of Claim 1: Clearly DR(x̃) ⊆ BR(x̃) since DR(x̃) is the ball in L(x̃) when the
induced metric.
Pick λ > 0 s.t.

length({ϕ̃t(ỹ) : |t| ≤ λ})≤ 1 ∀ ỹ ∈ M̃

this λ exists since ||ϕ̇t(y)|| is bounded in M (which is compact).
By the triangle inequality we get the result. ut

Remark: P : L(x̃)→ L(x) is a convering map.

Claim 2: Volume of
⋃
|t|≤λ

ϕ̃t(DR(x̃)) growths at leat as fast as G(x̃,R).

Proof of Claim 2: Recall that x satisfies the hypothesis (1) of the theorem. Consider
the orbit segments

I(z) = {ϕt(z) : z ∈ DR(x̃); |t| ≤ λ}.
We have that such segments are disjoint for otherwise we get a picture as below

I(z)

z’z
c~

L(x )~

I(z)’

Fig. 1.6

This picture produces a closed transverse c̃ of F̃ intersecting L(x̃) (this is an stan-
dard trick in foliation’s theory).
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Since M̃ is simply connected we have that c = P ◦ c̃ is a null-homotopic closed
transversal intersecting L(x) contradicting (1). Hence the I(z)’s are disjoint.

Since the I(z)’s the disjoin we get

Vol


 ⋃

|t|≤λ
ϕ̃t(DR(x̃))


≥ K ·G(x̃,R)

by Fubini’s theorem. The claim follow. ut
Now we continue with the proof of Theorem 1.24. By Claim 1 we have

V (R) = Vol(BR(x̃))≥ Vol


 ⋃

|t|≤λ
ϕ̃t(DR(x̃))




and so
V (R)≥ K ·G(x̃,R)

by Claim 2. On the other hand,

L(x̃) is a covering of L(x)

and so
G(x̃,R)≥ G(x,R) ∀R > 0

(the volume of R-ball in L(x̃) is greather or equal than that of the R-ball in L(x))
∴

V (R)≥ K ·G(x,R).

By the hypothesis (2) of the theorem we have that ∃B′,C′ > 0 s.t.

G(x,R)≥ B′ec′·R, ∀R > 0.

From this we get
V (R)≥ B′′ · ec′′·R, ∀R > 0

where {
B′′ = KB′

C′′ = C′,

∴ V (R) has exponential growth, and so, π1(M) has exponential growth by Lemma
1.5. ut

To finish we study foliations which have a foliation-preserving transverse flow
as in [127] Section 2 p. 736. Hereafter F is a C1 codimension one foliation on a
manifold M. We denote by TF the tangent plane field of F in M. We say that F is
tangent to a one form ω in M if ω is non-singular and TF = Ker(ω). For a proof
of the lemma below see .....
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Lemma 1.6. Let F be a C1 codimension one foliation on a manifold M. Suppose
that there is a C1 flow X on M such that if L is a leaf of F , then Xt(L) is a leaf of F
for all t ∈ R. Then, F is tangent a closed one form.

1.6 Suspended flow

Let M be a Riemannian compact manifold with possibly non-empty boundary ∂M.
We denote by X r(M) be the space of Cr vector fields in M, inwardly transverse to
∂M (if ∂M 6= /0), endowed with the Cr topology, r ≥ 1. All manifolds M considered
in this book will be connected. Given X ∈X 1 we denote by Sing(X) the set of
singularities of X .

This section is based on the following

Definition 1.25. We say that X ∈X 1(M) is suspended if there is a connected
codimension one submanifold S in M transverse to X such that M(X)∩∂S = /0
and Sing(X) = {x∈M(X) : Xt(x) 6∈ S,∀t ∈R}. In such a case the submanifold
S will be referred to as a global cross section of X.

If X and M above satisfy that Sing(X) = ∂M = /0 then S is a global cross section
of X if and only if every orbit of X intersects S. From this we reobtain the classical
definition of global cross section for vector fields [48]. The more general concept of
singular partition will be given later one.

In general it is important to determinate whether a given flow is suspended or
not. Obviously if M supports a suspented flow, then M fibers over S1 ∴ we have the
following exact sequence

1→ π1(S)→ π1(M)→ π1(S1)→ 1

where S is the fiber (global cross section) and S1 is the base circle. It follows that all
manifolds supporting suspended flows have infinite π1.

We can construct many examples of suspended flows using suspension. To define
it we let f : M→M be a diffeomorphism. The suspension of f is the flow X f defined
in the following way: In [0,1]×M we identify (1,x) with (0, f (x)).
This yields the manifold M f defined by

M f = [0,1]×M
/

(1,x)' (0, f (x))

Observe that M f fibers over S1 with fibre M, and the trivial vector field (t,x) 7→ ∂/∂ t
(≡ (1,0)) in I×M gives rise to a vector field X f in M f . Another way to describe
X f is merely to say that it is the horizontal foliation defined by the suspension of
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o M 1 M

(x,0) (x,1)

(f(x),0)

Fig. 1.7

the representation
ϕ : Z= π1(S1)→ Diff(M)

given by ϕ(n) = f n.

Fig. 1.8

We describe below a criterion due to Fried [48] for the existence of a cross sec-
tion. Let M be a closed manifold. A Z-covering of M is a regular covering M̂→M
whose group of fiber-preserving diffeomorphisms is Z.

Theorem 1.26. A flow X on M has a global cross section if and only if there
is a Z-cover M̂→M such that if X̂ is the lifted flow then

lim
t→±∞

X̂t(x̂) =±∞, ∀ x̂ ∈ M̂.
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Next we use the theory of closed forms to find global cross sections. This idea
comes from J. Plante [127] and D. Tischler.

Definition 1.1. Let ω be a continuous one form on a manifold M. A two form
dω on M is the exterior derivative of ω if

∫

∂D
ω =

∫

D
dω,

for every C1 embedded 2-disk D in M whose boundary ∂D is piecewise C1.
A continuous one form ω is closed if it has zero exterior derivative (or
equivalently

∫
γ ω = 0 for every piecewise smooth closed curve γ bounding a 2-

disk in M). A continuous one-form ω on a manifold M is locally closed
if for every x ∈M there is a neighborhood U of x such that the restricted one
form ω/U on U is closed.

Lemma 1.7. A continuous one form is closed if and only if it is locally closed.

Proof. Obviously closed implies locally closed. Conversely suppose that ω is a lo-
cally closed one-form on M. Then for all x∈M there is a neighborhood Ux of x such
that the one form ω/Ux on Ux is closed. Let D be an embedded two disk in M with
piecewise C1 boundary ∂D. Since D is compact there are finitely many two disks
D1, · · · ,Dk ⊂ D with piecewies C1 boundaries ∂D1, · · · ,∂Dk such that D = ∪k

i=1Di
and also, for all 1≤ i≤ k there is xi ∈M such that Di ⊂Uxi . Then,

∫

∂D
ω =

k

∑
i=1

∫

∂Di

ω/Uxi
= 0

proving the result. ut

Definition 1.27. A Cr one form ω is integrable if its kernel ker(ω) is tangent
to a Cr foliation Fω .

Remark 1.28. A Cr continuous closed one form is integrable. A non-singular
continuous one form ω is integrable if dω exists and satisfies ω/\dω = 0.
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Definition 1.29. Let ω be a closed one-form in a manifold M. The group
of periods of ω is by definition the Image set of the homomorphism
π1(M)→ (R,+) defined by

[γ]→
∫

γ
ω

(such a homomorphism is well defined since ω is closed). We say that a closed
one form ω has rational or integer or trivial periods depending
on whether its group of periods is contained in (IQ,+) or is (Z,+) or is 0.

Theorem 1.30. Let ω be a non-singular continuous closed one form on a
compact manifold M. If ω has rational periods, then M is a bundle over S1

whose fibers are the leaves of Fω . In particular, the leaves of Fω are com-
pact.

Proof. Pick a base point x0 ∈ M. We can assume that ω has integer periods for,
otherwise, we multiply ω by a suitable integer. This is possible since π1(M) is
finitely generated (because M is compact) and ω has rational periods. Define the
map π : M→ S1 = R/Z by

π(x) =
∫ x

x0

ω (mod 1).

The map π is well defined (i.e. it does not depent on the path from x0 to x) since
ω has integer periods. In addition π is a C1 map. If x,y belong to the same leaf of
Fω , then π(x) = π(y) because ω vanishes in TFω . Hence π−1(θ) is a finite union
of leaves of F for all θ ∈ S1. Hence all leaves of Fω are compact (and without
holonomy since Fω is defined by a closed one form). It follows from the Reeb
Stability Theorem [65] that the leaves of Fω are the fibers of a fibration M→ S1.
This proves the result. ut
Lemma 1.8. A Cr closed one form (0≤ r≤∞) on a compact manifold M can be C0

approximated by a Cr closed one form with rational periods.

Proof. Let H1(M,G) and H1(M,G) denote the first homology and cohomology
groups of M with coefficients in the abelian group G respectively. Denote by V ∗
the dual of V .

The Universal Coefficient Theorem ([63] p. 198) gives H1(M,G) = H1(M,G)∗
for G = R or Z. In the particular case G = Z we also know that H1(M,Z) =
π1(M)/[π1(M),π1(M)]. We have that π1(M) is finitely generated (because M is
compact) and then so is H1(M,Z). Since H1(M,Z) is also abelian the Fundamental
Theorem of finitely generated abelian groups [63] implies that H1(M,Z) = Zk⊕T
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for some k ∈ IN and some finite abelian group T . Zk is the free part of H1(M,Z).
Clearly H1(M,Z)∗ = (Zk)∗ because Z is torsion free. Pick a basis {[γ1], · · · , [γk]}
of the free part Zk ⊂ H1(M,Z) (formed by homology classes of smooth curves
γ1, · · · ,γk) and the corresponding dual basis {ω1, · · · ,ωk} in (Zk)∗ = Zk. Since
(Zk)∗ = H1(M,Z)∗ = H1(M,Z) we have that {ω1, · · · ,ωk} is a basis of the co-
homology group H1(M,Z).

Let H1
de R(M) be the de Rham cohomology group of M which is the quotient

between the closed and the exact one forms in M. The classical de Rham Theorem
says that H1(M,R)∗ = H1

de R(M) via the bilinear map Hde R(M)×H1(M,R)→ R
given by

(η , [γ]) 7→
∫

γ
η .

As H1(M,Z)⊂ H1(M,R) = H1(M,R)∗ = H1
de R(M) we have that {ω1, · · · ,ωk} are

closed one forms and, since they form the dual basis, we get
∫

γi

ω j = δi, j,

where δi, j is the Kronecker’s delta. In addition, each ωi has integer periods.
Now, consider a closed one form ω in M and define the numbers

αi =
∫

γi

ω, 1≤ i≤ k.

We claim that the closed one form

ω−
k

∑
j=1

α jω j

satisfies ∫

γ

(
ω−

k

∑
j=1

α jω j

)
= 0,

for all closed curve γ in M. Indeed, if γ is a closed curve then it represents the
element [γ] ∈ H1(M,Z). Hence [γ] = ∑k

i=1(ni · [γi]) + t for some {n1, · · · ,nk} ⊂ Z
and t ∈ T . As Z is torsion free (and the one form ω−∑k

j=1 α jω j is closed) we get

∫

t

(
ω−

k

∑
j=1

α jω j

)
= 0.

Consequently

∫

γ

(
ω−

k

∑
j=1

α jω j

)
=

∫

∑k
i=1(ni·[γi])

(
ω−

k

∑
j=1

α jω j

)
=
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=
∫

∑k
i=1(ni·[γi])

ω−
k

∑
j=1

(
α j ·

∫

∑k
i=1(ni·[γi])

ω j

)
=

=
k

∑
i=1

(
ni ·

∫

γi

ω
)
−

k

∑
j=1

k

∑
i=1

(
α j ·ni ·

∫

γi

ω j

)
=

=
k

∑
i=1

ni ·αi−
k

∑
j=1

k

∑
i=1

(α j ·ni ·δi, j) =
k

∑
i=1

ni ·αi−
k

∑
i=1

αi ·ni = 0.

This proves the claim.
Now pick a base point x0 ∈M. It follows from the claim that the map f : M→R

defined by

f (x) =
∫ x

x0

(
ω−

k

∑
i=1

αiωi

)

(where the integral is taken over a path joinning x0 to x) is well defined i.e. does not
depend on the path. This map satisfies

ω =

(
k

∑
i=1

αiωi

)
+d f .

Given β1, · · · ,βk ∈ IQ we define a new closed one-form η in M given by

η =

(
k

∑
i=1

βiωi

)
+d f .

Clearly η is a closed one-form in M which is as smooth as ω . We have that η has
rational periods since each ωi has integer periods and βi ∈ IQ (note that d f has trivial
periods since it is exact). Moreover, if the βi’s are chosen close to the corresponding
αi’s, then the one-form η is C0 closed to ω . This proves the result. ut

Definition 1.31. Let X be a Cr flow on a manifold M and still denote by
X the associated vector field. A one form ω on M is transverse to X if
ω(x)(X(x)) 6= 0 for all x ∈M.

Theorem 1.32. A C1 flow on a compact manifold M is suspended if and only
if it is transverse to a continuous closed one form on M.

Proof. Let X be a C1 flow on a compact manifold M. Clearly if X is suspended,
then X is transverse to a continuous closed one form on M. Conversely, assume
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that X is transverse to a continuous closed one form ω on M. Obviously ω is non-
singular. Applying Lemma 1.8 we can assume that ω has rational periods. It follows
from Lemma 1.30 that leaves of Fω are the fibers of a fibration of M over S1. The
hypothesis implies that X is transverse to the fibers, and so, since M is compact,
each leaf of Fω is a global cross section of X . This finishes the proof. ut

The following is a corollary of the above result.

Proposition 1.33. Let X be a flow on a compact manifold M. Let p : M̂→M be a
finite covering. Let X̂ be the lift of X to M̂. Then, X is suspended if and only if X̂ is.

Proof. First assume that X is suspended. Then X is transverse to a closed one form
ω . Let P : M̂→M be the finite covering map. Then, the one form p∗(ω) is closed
and transverse to the lifted flow X̂ . It follows that X̂ is suspended by Lemma 1.32.

Now we assume that X̂ is suspended. Then, by Lemma 1.32, X̂ is transverse to
a closed one form ω̂ on M̂. Let G be the group of covering transformations of the
covering P : M̂→M.

We have that G is a finite group. Indeed, consider the subgroup H = P∗(π1(M̂))
of π1(M). As the covering P is finite we have that the index [π1(M),H] is also finite.
But G is isomorphic to the quotient N(H)/H where N(H) = {γ ∈ π1(M) : γHγ−1 =
H} is the normalizer of H. Hence |G| = |N(H)/H| ≤ [π1(M),H] < ∞ proving that
G is a finite set.

Since G is finite the one form ω̂ ′ on M̂ given by

ω̂ ′ = ∑
g∈G

g∗(ω̂)

is well defined. Clearly ω̂ ′ is closed and G-invariant, i.e. g∗(ω̂) = ω̂ ′ for all g ∈ G.
As X̂ is transverse to ω̂ we have that X̂ is also transverse to ω̂ ′. Hence, without loss
of generality, we can assume that ω̂ itself is G-invariant.

Let k = |G| be the cardinality of G. Then, for all x ∈M the set P−1(x) is consists
of k-points {x̂1, · · · x̂k}. Moreover, for all x ∈M there is a neighborhood Ux ⊂M of
x such that

P−1(Ux) = Vx̂1 ∪·· ·∪Vx̂k

where Vx̂i is a neighborhood of x̂i in M̂ such that P/Vx̂i
: Vx̂i→Ux is a diffeomorphism

with inverse φi : Ux→Vx̂i (∀i). The Vx̂i’s are pairwise disjoint and also for every pair
i, j ∈ {1, · · · ,k} there is gi, j ∈ G such that

gi, j ◦φi = φ j.

In particular,
gi, j(Vx̂i) = Vx̂ j

for all i, j.
For all x ∈M and i = 1, · · · ,k we define the one form ωx

i on Ux by

ωx
i = φ ∗i (ω̂/Vx̂i

).
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If i, j ∈ {1, · · · ,k} then

ωx
i = (φi)∗(ω̂/Vx̂i

) = (φi)∗(ω̂/g−1
i, j )∗(Vx̂ j )

) = (φi)∗(g∗i, j(ω̂/Vx̂ j
)) =

= (gi, j ◦φi)∗(ω̂/Vx̂ j
) = φ ∗j (ω̂/Vx̂ j

) = ωx
j .

Consequently the value of ωx
i does not depend on i.

Let x1, · · · ,xr be finitely many points of M such that the collection

{Ux1 , · · · ,Uxr}

is a covering of M. Take a partition of the unity δ1, · · · ,δr subordinated to such a
covering and define the one form

ω =
r

∑
i=1

δi ·ωxi .

Hence ω is a one form on M which is transverse to X . Moreover, ω is locally closed
and hence closed by Lemma 1.7. The existence of ω implies that X is suspended by
Lemma 1.32. The proof follows. ut

1.7 Algebraic diffeomorphisms and flows

Let us recall some basic concepts in Lie groups theory.

Definition 1.34. A Lie group is a group G with a differentiable structure mark-
ing the maps

G×G → G
(x,y) → x,y

G → G
x → x−1

differentiable.

Examples of Lie groups are:

(1)(Rk,+) which is not finitely generated;
(2)(Zk,+) as a discrete subgroup of (Rk,+);
(3)(C,+) and (C∗, ·);
(4)(S1, ·) viewed is a compact subgroup of (C∗, ·) (the product · is the complex

product);
(5)(S1×·· ·×S1, ·) = (T k, ·) viewed as the product of k-copies of (S1, ·);
(6)GL(n,F) where F = R or Z defined as the set of n× n matrices with non-zero

determinant det 6= 0 (the product is the matrix’s product);
(7)SL(n,F) = {n×n matrices with entries in F= R,Z and det = 1};
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(8)PSL(n,F) = SL(n,F)/Z2 (note that Z2 = {I,−I}< SL(n,F)).

The Lie algebra of G is Y = TeG where e is the identity of G.
Every g ∈ G defines a pair of diffeomorphisms Lg , Rg (left and right translations)
which are defined by

Lg(h) = g ·h; Rg(h) = h ·g.

A vector field X̃ of G is left (right) invariant if DLg(h) (DRg(h)) = X̃(Lgh)
(X̃(Rg(h)) ∀g,h ∈ G.
In particular, a left (right) invariant vector field X̃ is well defined by its value at e,
X̃(e). Hence we have a bijection

{Left invariant vector fields X̃} 7→ Y

X̃ 7→ X = X̃(e).

Analogously for right invariant vector fields.
If X ∈ Y we denote by X̃ the left invariant vector fields satisfying

X̃(e) = X .

If X ,Y ∈ Y then there is a well defined Lie bracket [X ,Y ]. One can to prove that
[X̃ ,Ỹ ] is left invariant if X̃ , Ỹ are. This allows us to define the map

[ · , · ] : Y ×Y → Y

(X ,Y ) 7→ [X ,Y ] = [X̃ ,Ỹ ]

The following properties hold:
• [X ,X ] = 0 ∀X ∈ Y .
• [ · , · ] is bilinear.
• [X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0 (Jacobi identity).

The map

ad X : Y → Y

Y 7→ [X ,Y ]

is called the adjoint of X ∈Y . We say that Y (or G) is nilpotent if ad X is a nilpotent
linear operator ∀X ∈ Y . Given X ∈ Y we define

exp(X) = θ(1)

where θX : R→G is the unique C1 homomorphism satisfying θ ′X (0) = X . This map
is called the exponential of X .

Remark: (1) exp(A) is the exponential of the matrix A, when A ∈ (d(n,F)).
(2) exp is a diffeomorphism from some neighborhood N0 of 0∈Y into some neigh-
borhood Ne of e ∈ G.
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e
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Every homomorphism θ : R→ G satisfies

θ(t) = exp(tX)

for some X ∈Y . Such homomorphismw are called one-parameter subgroups of G.
A Lie subgroup of G is a submanifold which is also a subgroup of G.

Remark: A subgroup H of G is a Lie subgroup if and only if it is closed in G.
If H < G is closed⇒ G/H has a manifold structure marking the canonical projec-
tion

π : g ∈ G 7→ gH ∈ G/H

an onto open map.
Actually π defined a fibration π : G→ G/H of G with fibre H and base G/H.

e

H

g.HG

G/H

Fig. 1.10



32 1 Preliminaires

Observe that G/H is not necessarily a Lie group (this happens if H C G). When
Γ < G is another subgroup (for examploe Γ = G) then there is an action on the left

Γ ×G/H→ G/H

given by γ · (gH) = γ ·gH the orbit space of this action is denoted by Γ \G/H, i.e.

Γ \G/H = {Γ ·g ·H : g ∈ G}.

The adjoint representation is the representation

G→ L(Y ) the set of linear automorphis in Y

given by g 7→ DIg(e), where Ig : G→ G is Ig(h) = ghg−1.

Definition 1.35. A diffeomorphism is called algebraic if it is conjugated to a
diffeomorphism A : M→M with the following properties:

(1)There are Lie groups G, Γ with G connected simply connected and Γ ac-
tions freely and property discontinuous in G such that M = Γ \G.

(2)There is an automorphism Â ∈Aut(G) with Â(Γ ) = Γ so that the diagram
below commutes

G Â−−−−→ Gy
y

M = Γ \G A−−−−→ Γ \G = M

Remark: Â/Γ ∈ Aut(Γ ) because â(Γ ) = Γ .

Remark: Under the condition above one has:
(•) the universal cover M̃ of M is G
(•) π1(M) = Γ

Definition 1.36. A flow is called algebraic if it is topological equivalent to a
flow φt : M→M with the following properties:

1. There are Lie groups G, Γ , K with G connected simply connected K < G is
compact and Γ acting freely property discontinuous in G/K so that M =
Γ \G/K.

2. There is a element α ∈ Y (the Lie algebra of G) such that φ if φ̂t is the
flow
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φ̂t(g) = g · exp(tα)

(thus (φ̂t : G→ G)), then the diagram below commutes

G
φ̂t−−−−→ G

y
y

M = Γ \G/K
φt−−−−→ Γ \G/K = M.

(The vertical arrow corresponding to the proposition g 7→ Γ ·g ·K).

Proposition 1.37. The suspension of an algebraic diffeomorphism is an algebraic
flow.

Proof. It suffices to prove the result for a diffeomrphism A : Γ \G→ Γ \G where:
• G is a connected simply connected Lie group;
• Γ is a Lie group acting locally properly discontinously in G such that there is

Â ∈ Aut(G) fro which the diagram below commutes

G Â−−−−→ G
y

y
M = Γ \G A−−−−→ Γ \G.

Let M = Γ \G and φ A
t be the suspension of A defined on the suspended manifold

MA. Recall that MA = orbit space of the action n ·(t,x) = (t +n,An(x)) induce by the
representation Z= π1(S1)→Diff(M) defined by n 7→ An = A◦ n. . .◦A. Applying the
Seifert-Van Kampen Theorem we can compute π1(MA) by the semidirect product

π1(MA) = Zo
Â∗

Γ ,

where Â∗ : Z→ Aut(Γ ) is the representation defined by

Â∗(n) = Ân/Γ

(recall Γ = π1(M) and Â(Γ ) = Γ ) Recall that if G and H are groups and ϕ : H →
Aut(G) is a representation we define the semidirect product H o

ϕ
G = H ×G en-

dowed with the product

(h,g) · (h′,g′) = (h ·h′,g ·ϕ(h)g′).
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Example: A ∈ GL(2,Z2) and ϕ : Z 7→ Aut(Z2) is given by A(n) = An then the
product in Zo

A
(Z×Z) is

(n,(u,v)) · (m,(a,b)) = (n+m,(u,v)+An(a,b))

It follows that Γ̂ = π1(MA) is a lie group. Now, Ĝ = R×G is connected simply
connected Lie group and there is a covery

Ĝ = R×G = R× M̃→ R×M→MA

(the last covering exists by the definition of suspension). We conclude that the uni-
versal covering M̃A of MA is R×G. As it is well know Γ̂ = π1(MA) acts freely and
properly discontinuous in Ĝ = M̃A so that

Γ̂ \Ĝ = MA.

On the other hand, the definition of the suspension φ A
t of A says that the diagram

below commutes
R×M

φ̃t−−−−→ R×M
y

y

MA φt−−−−→ MA

where φ̃t(s,x) = (t + s,x). This implies the existence of a commutative diagram

Ĝ = R×G
φ̃t−−−−→ Ĝ = R×G

y
y

R×M
φ̃t−−−−→ R×My

y

Γ̂ \Ĝ = MA φt−−−−→ MA = Γ̂ \Ĝ

where φ̂t(s,g) = (t + s,g). For ĝ = (s,g) one has

φ̂t(ĝ) = ĝ ·
(t,0)︷ ︸︸ ︷

exp(t,α) = (s+ t,g)

where α = (1,0) ∈ T(0,e)Ĝ = T(0,e)(R×G). Setting K = {1} in the definition of
algebraic flow we get the result. ut
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1.8 Triangular maps

In this section we examinate certain maps defined in a finite disjoint union Σ of
copies of [−1,1]× [−1,1]. For simplicity we shall call them triangular maps. This
name is deserved in the literature to properly continuous maps in [−1,1]× [−1,1]
which are skew product, i.e., they preserve the constant vertical foliation (see for in-
stance [13], [73]). In our context we shall consider discontinuous maps still preserv-
ing a continuous (but not necessarily constant) vertical foliation. We also assume
two hypotheses (H1)-(H2) imposing certain amount of differentiability close to the
points whose iterates fall eventually in the interior of Σ . They will be verified for
the return maps associated to the cross-sections in Proposition 6.2.

The main result is Theorem 1.45 asserting the existence of periodic points for
hyperbolic triangular maps that satisfy (H1)-(H2) and have large domain. Although
this result is related to previous ones in the literature ([2], [75], [124], [3]) we cannot
apply them to prove the ours because the maps we are going to deal with are not
necessarily C2, can have finite or infinitely many discontinuities or else no invariant
measures (see for instance (H2) p. 125 in [124] or the proof of Theorem 11 in [124]
p. 142). As we already saw along the book, hyperbolic triangular maps naturally
appear as return maps nearby the singularities of sectional-Anosov flows (see Part
II).

1.8.1 Definition

Let I = [−1,1] denote the unit closed interval. Hereafter Ii will denote a copy of I
and Σi will denote a copy of the square I2 = I× I for i = 1,2, ...,k. Denote by Σ the
disjoint union of the squares Σi. Denote

L−i = {−1}× Ii ; L0i = {0}× Ii ; L+i = {1}× Ii ,

for i = 1, ...,k and

L− =
k⋃

i=1

L−i ; L0 =
k⋃

i=1

L0i ; L+ =
k⋃

i=1

L+i.

Given a map F we denote by Dom(F) the domain of F .
The following is the standard definition of periodic point except by the fact that

our maps F are not everywhere defined.

Definition 1.38. Let F : Dom(F)⊂ Σ → Σ be a map. A point x ∈ Dom(F) is
periodic for F if there is n≥ 1 such that F j(x)∈Dom(F) for all 0≤ j≤ n−1
and Fn(x) = x.
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A curve c in Σ is the image of a C1 injective map c : Dom(c) ⊂ R→ Σ with
Dom(c) being a compact interval. We often identify c with its image set. A curve c
is vertical if it is the graph of a C1 map g : Ii→ Ii, i.e., c = {(g(y),y) : y ∈ Ii} ⊂ Σi
for some i = 1, ...,k.

Definition 1.39. A continuous foliation Fi on a component Σi of Σ is called
vertical if its leaves are vertical curves and the curves L−i, L0i, L+i are leaves
of Fi. A vertical foliation F of Σ is a foliation which restricted to each com-
ponent Σi of Σ is a vertical foliation.

It follows from the definition above that the leaves L of a vertical foliation F are
vertical curves hence differentiable ones. In particular, the tangent space TxL is well
defined for all x ∈ L.

Definition 1.40. Let F : Dom(F) ⊂ Σ → Σ a map and F be a vertical foli-
ation on Σ . We say that F preserves F if for every leaf L of F contained in
Dom(F) there is a leaf f (L) of F such that

F(L)⊂ f (L)

and the restricted map F/L : L→ f (L) is continuous.

If F is a vertical foliation on Σ a subset B ⊂ Σ is a saturated set for F if it is
union of leaves of F . We shall write F -saturated for short.

Definition 1.41 (Triangular map). A map F : Dom(F) ⊂ Σ → Σ is called
triangular if it preserves a vertical foliation F on Σ such that Dom(F) is
F -saturated.

1.8.2 Hyperbolic triangular maps

It is easy to find examples of triangular maps without periodic points. On the other
hand, the return map associated to the geometric Lorenz attractor [60] is a triangular
map plenty of periodic points. This last example suggests the existence of periodic
orbits for triangular maps with some hyperbolicity. The hyperbolicity will be defined
through cone fields in Σ : Denote by T Σ the tangent bundle of Σ . Given x∈ Σ , α > 0
and a linear subspace Vx ⊂ TxΣ we denote by Cα(x,Vx)≡Cα(x) the cone around Vx
in TxΣ with inclination α , namely
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Cα(x) = {vx ∈ TxΣ : ∠(vx,Vx)≤ α}.

Here ∠(vx,Vx) denotes the angle between a vector vx and the subspace Vx. A cone
field in Σ is a continuous map Cα : x ∈ Σ → Cα(x) ⊂ TxΣ , where Cα(x) is a cone
with constant inclination α on TxΣ . A cone field Cα is called transversal to a vertical
foliation F on Σ if TxL is not contained in Cα(x) for all x ∈ L and all L ∈F .

Now we can define hyperbolic triangular map.

Definition 1.42 (Hyperbolic triangular map). Let F : Dom(F)⊂ Σ → Σ be
a triangular map with associated vertical foliation F . Given λ > 0 we say
that F is λ -hyperbolic if there is a cone field Cα in Σ such that:

1. Cα is transversal to F .
2. If x ∈ Dom(F) and F is differentiable at x, then

DF(x)(Cα(x))⊂ Int(Cα/2(F(x)))

and
|| DF(x) · vx ||≥ λ · || vx ||,

for all vx ∈Cα(x).

1.8.3 Existence of periodic points

In this section we give sufficient conditions for a hyperbolic triangular map to have
a periodic point.

1.8.3.1 Hypotheses (H1)-(H2)

They impose some regularity around those leaves whose iterates eventually fall into
Σ \ (L−∪L+). To state them we will need the following definition. If F is foliation
we use the notation L ∈F to mean that L is a leaf of F .

Definition 1.43. Let F : Dom(F)⊂Σ→Σ be a triangular map such that L−∪
L+ ⊂ Dom(F). For all L ∈F contained in Dom(F) we define the (possibly
∞) number n(L) as follows:

1. If F(L)⊂ Σ \ (L−∪L+) we define n(L) = 0.
2. If F(L)⊂ L−∪L+ we define
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n(L) = sup{n≥ 1 : F i(L)⊂ Dom(F) and

F i+1(L)⊂ L−∪L+,∀0≤ i≤ n−1}.

Essentially n(L)+1 gives the first non-negative iterate of L falling into Σ \ (L−∪
L+). This number plays fundamental role in the following definition.

Definition 1.44 (Hypotheses (H1)-(H2)). Let F : Dom(F) ⊂ Σ → Σ be a
triangular map such that L−∪L+ ⊂ Dom(F). We say that F satisfies:

(H1) If L ∈ F satisfies L ⊂ Dom(F) and n(L) = 0, then there is a F -
saturated neighborhood S of L in Σ such that the restricted map F/S is
C1.

(H2) If L∗ ∈F satisfies L∗ ⊂ Dom(F), 1≤ n(L∗) < ∞ and

Fn(L∗)(L∗)⊂ Dom(F),

then there is a connected neighborhood S ⊂ Dom(F) of L∗ such that the
connected components S1,S2 of S \ L∗ (possibly equal if L∗ ⊂ L− ∪ L+)
satisfy the properties below:

1. Both F(S1) and F(S2) are contained in Σ \ (L−∪L+).
2. ∀ j ∈ {1,2} ∃1 ≤ n j(L∗) ≤ n(L∗)+ 1 such that if yl ∈ S j is a sequence

converging to y ∈ L∗, then F(yl) is a sequence converging to Fn j(L∗)(y).
If n j(L∗) = 1, then F is C1 in S j ∪L∗.

3. If L∗ ⊂ Σ \ (L− ∪ L+) (and so S1 6= S2), then either n1(L∗) = 1 and
n2(L∗) > 1 or n1(L∗) > 1 and n2(L∗) = 1.

These hypotheses present two alternatives for the image of a connected neigh-
borhood S of L: It is either connected, and the restricted map is C1 (Figure 1.11), or
breaks in two pieces where the map is C1 (Figure 1.12). The integers n1(L∗), n2(L∗)
in (H2) appear because of the breaking at F(L∗).

1.8.4 Statement of Theorem 1.45

The theorem will deal with the existence of periodic points for hyperbolic triangu-
lar maps satisfying (H1)-(H2). The motivation is the Lorenz attractor’s return map
which: has a periodic point; and is a λ -hyperbolic triangular map satisfying (H1)-
(H2) with λ large and Dom(F) = Σ \L0. Our theorem essentially says that the last
property implies the first. More precisely, we have the following.
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Fig. 1.12 Hypothesis (H2) with n(L∗) = 1, n1(L∗) = 1 and n2(L∗) = 2

Theorem 1.45. Every λ -hyperbolic triangular map satisfying (H1)-(H2) with
λ > 2 and domain Σ \L0, has a periodic point.
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We have two difficulties for the proof this result: The first one relies on the pos-
sible existence of finite or infinitely many discontinuities in a triangular map (this
problem does not appear in the one-dimensional Lorenz map where the set of dis-
continuities D(F) is empty, see (1.2) for the definition of D(F)). The second one
is the lack of differentiability of the foliation F which makes the one-dimensional
map f induced by F only C0.

The first problem will be handled satisfactory with the hypotheses (H1)-(H2).
The second problem will be handled by just adapting the argument used by Guck-
enheimer and Williams to prove that one-dimensional Lorenz maps with derivative
>
√

2 are leo (i.e. locally eventually onto, see [60]). The idea is to consider the
”derivative” of f as being the derivative of F along the invariant cone field in Defi-
nition 1.42 (see Claim 1.8.5). This is the reason why we assume λ > 2 in Theorem
1.45. It seems that Theorem 1.45 holds not only with λ >

√
2 but also for all λ > 1.

1.8.5 Proof of Theorem 1.45

The proof will be divided in three parts. First we present some preliminary results.
Hereafter we fix Σ as in Subsection 1.8.1. Then k is the number of components

of Σ . We shall denote by SL the leaf space of a vertical foliation F on Σ . It turns
out that SL is a disjoint union of k-copies I1, · · · , Ik of I. We denote by FB the union
of all leaves of F intersecting B. If B = {x}, then Fx is the leaf of F containing x.
If S,B⊂ Σ we say that S cover B whenever B⊂FS.

The lemma below quotes some elementary properties of n(L) in Definition 1.43.

Lemma 1.9. Let F : Dom(F)⊂ Σ→ Σ be a triangular map with associated vertical
foliation F . If L ∈F and L⊂ Dom(F), then:

1. If F has no periodic points and L−∪L+ ⊂ Dom(F), then

n(L)≤ 2k.

2. n(L) = 0 if and only if F(L)⊂ Σ \ (L−∪L+).
3. F i(L)⊂ L−∪L+ for all 1≤ i≤ n(L).
4. If Fn(L)(L)⊂ Dom(F), then Fn(L)+1(L)⊂ Σ \ (L−∪L+).

If F : Dom(F)⊂ Σ → Σ is a triangular map with associated foliation F , then we
also have an associated one-dimensional map

f : Dom( f )⊂ SL→ SL.

This map allows us to consider the lateral limits

f (L∗∗+) = lim
L→L+∗∗

f (L) and f (L∗∗−) = lim
L→L−∗∗

f (L)
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for all L∗∗ ⊂ CL(Dom(F)) where they exist (as usual the notation L→ L+∗∗ means
L→ L∗∗ with L > L∗∗. Analogously for L→ L−∗∗.)

We use this map in the definition below.

Definition 1.46. Let F : Dom(F)⊂ Σ → Σ a triangular map with associated
foliation F and f : Dom( f )⊂ SL→ SL its associated one-dimensional map.
Then we define:

1. V = { f (B) : B ∈F ,B⊂ Dom(F) and B⊂ L−∪L+}.
2. L− =

⋃{ f (L0i−) : i ∈ {1, ...,k} and f (L0i−) exists}.
3. L+ =

⋃{ f (L0i+) : i ∈ {1, ...,k} and f (L0i+) exists}.

The lemma below is a direct consequence of (H2).

Lemma 1.10. Let F : Dom(F) ⊂ Σ → Σ a triangular map satisfying (H2) and F
be its associated foliation. If L∗ ∈F , L∗ ⊂ Dom(F), 1≤ n(L∗) < ∞ and

Fn(L∗)(L∗)⊂ Dom(F),

Then:

(1) If L∗ ⊂ L−, then f (L∗+) exists.
(2) If L∗ ⊂ L+, then f (L∗−) exists.
(3) If L∗ ⊂ Σ \ (L−∪L+), then both f (L∗+) and f (L∗−) exist.

In each case the corresponding limits belong to

L−∪L+∪V .

In case (3) we have f (L∗+) 6= f (L∗−) and just one them is f (L∗).

Proof. The hypotheses imply that there is a neighborhood S of L∗ as in (H2). To
prove (1) we observe that if L∗ ⊂ L−, then S \L∗ has only one component S1 (say)
located at the right of L∗ (in the natural order). So, f (L∗+) = f n1(L∗)(L∗) where
n1(L∗) is given in (H2)-(2). The conclusion follows because 1≤ n1(L∗)≤ n(L∗)+1.
Note in addition that 1≤ n1(L∗)≤ n(L∗)+1 and so

f (L∗+)⊂ L−∪L+∪V .

Analogously we can prove (2) and also

f (L∗−)⊂ L−∪L+∪V .

(3) and the last part of the lemma follow from similar arguments considering the
two components of S\L∗. ut
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Given a map F : Dom(F)⊂ Σ → Σ we define its discontinuity set D(F) by

D(F) = {x ∈ Dom(F) : F is discontinuous in x}. (1.2)

In the sequel we derive useful properties of Dom(F) and D(F).

Lemma 1.11. Let F : Dom(F) ⊂ Σ → Σ a triangular map satisfying (H1) and F
be its associated foliation. If L ∈F and L⊂ D(F), then F(L)⊂ L−∪L+.

Proof. Suppose by contradiction that L ⊂ D(F) and F(L) ⊂ Σ \ (L− ∪L+). These
properties are equivalent to n(L) = 0 by Lemma 1.9-(2). Then, by (H1), there is
a neighborhood of L in Σ restricted to which F is C1. In particular, F would be
continuous in L which is absurd. ut
Lemma 1.12. Let F : Dom(F)⊂ Σ → Σ a triangular map satisfying (H1)-(H2) and
F be its associated foliation. If F has no periodic points and L−∪L+ ⊂ Dom(F),
then Dom(F)\D(F) is F -saturated, open in Dom(F) and F/(Dom(F)\D(F)) is C1.

Proof. It suffices to show that ∀x∈Dom(F)\D(F) there is a neighborhood S of Fx
in Σ such that F/S is C1. To find S we proceed as follows. Fix x ∈ Dom(F)\D(F).
As Dom(F) is F -saturated, one has Fx ⊂ Dom(F) and so n(Fx) is well defined.
Lemma 1.9-(1) implies

n(Fx) < ∞.

If n(Fx) = 0, then the neighborhood S of L = Fx in (H1) works.

If n(Fx) ≥ 1 we define L∗ = Fx. Clearly 1 ≤ n(L∗) < ∞ and Definition 1.43 of
n(L∗) implies f n(L∗)(L∗)⊂ L−∪L+. By hypothesis L−∪L+ ⊂ Dom(F) and then

f n(L∗)(L∗)⊂ Dom(F).

So, we can choose S as the neighborhood of L∗ in (H2). Let us prove that this
neighborhood works.

First we claim that L∗ ⊂ L− ∪ L+. Indeed, if L∗ ⊂ Σ \ (L− ∪ L+), then S \ L∗
has two connected components S1,S2. By (H2)-(3) we can assume n1(L∗) > 1
where n1(L) comes from (H2)-(2). Choose sequence x1

i ∈ S1 → x then F(x1
i )→

Fn1(L∗)(x) by (H2)-(2). As F is continuous in x we also have F(x1
i )→ F(x) and

then Fn1(L∗)(x) = F(x) because limits are unique. Thus, Fn1(L∗)−1(x) = x because F
is injective and so x is a periodic point of F since n1(L∗)− 1 ≥ 1. This contradicts
the non-existence of periodic points for F . The claim is proved.

The claim implies that S \L∗ has a unique component S1 (say). For this compo-
nent one has n1(L∗) = 1 since F is continuous in x ∈ L∗. Then, F/S is C1 by the last
part of (H2)-(2). This finishes the proof. ut
Lemma 1.13. Let F : Dom(F)⊂ Σ → Σ be a triangular map satisfying (H1)-(H2).
If F has no periodic points and Dom(F) = Σ \L0, then Dom(F) \D(F) is open in
Σ .
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Proof. Dom(F) is open in Σ because Dom(F) = Σ \ L0 and L0 is closed in Σ .
Dom(F) \D(F) is open in Dom(F) by Lemma 1.12 because F has no periodic
points and L−∪L+ ⊂ Σ \L0 = Dom(F). Thus Dom(F)\D(F) is open in Σ . ut

Now we start the second part of the proof.
Hereafter F : Dom(F) ⊂ Σ → Σ will denote a λ -hyperbolic triangular map sat-

isfying (H1)-(H2) with λ > 2. We also assume that F has large domain, namely,

Dom(F) = Σ \L0.

The foliation and the cone field associated to F will be denoted by F and Cα re-
spectively.

We shall denote by < the natural order in the leaf space Ii of Fi, where Fi is
a vertical foliation in Σi (i = 1, ...,k). A vertical band in Σ is nothing but a region
in between two disjoint vertical curves L,L′ in the same component Σi of Σ . The
notation [L,L′] and (L,L′) indicates closed and open vertical band respectively.

If c is a curve in Σ we denote by c0,c1 its end points. We denote CL(c) = c∪
{c0,c1} and Int(c) = c \ {c0,c1}. An open curve will be a curve without their end
points. We say that c is tangent to Cα if c′(t) ∈Cα(c(t)) for all t ∈ Dom(c). A Cα -
spine of a vertical band [L,L′], (L,L′), [L,L′) or (L,L′] is a curve c⊂ [L,L′] tangent
to Cα such that {c0,c1} ⊂ L∪L′ and Int(c)⊂ (L,L′).

Definition 1.47. A subset B of Σ is F -discrete if it corresponds to a set of
leaves whose only points of accumulations are the leaves in L0.

Lemma 1.14. If F has no periodic points, then:

(1) D(F) is F -discrete.
(2) If i ∈ {1, · · · ,k} and D(F) ∩ [L0i,L+i] consists of finitely many leaves, then

f (L0i+) exists.
(3) If i ∈ {1, · · · ,k} and D(F) ∩ [L−i,L0i] consists of finitely many leaves, then

f (L0i−) exists.

Proof. First we prove (1). By contradiction, suppose that D(F) is not F -discrete.
Then, there is an open neighborhood U of L0 in Σ such that D(F) \U contains
infinitely many leaves Ln.

Lemma 1.12 implies that D(F) is closed in Dom(F) = Σ \ L0 so D(F) \U is
closed in Dom(F)\U . Since U is an open neighborhood of L0 and Dom(F) = Σ \L0
we obtain that Dom(F) \U is compact in Σ . Henceforth D(F) \U is compact too.
So, without loss of generality, we can assume that Ln converges to a leaf L∗ of F in
D(F)\U in a way that Ln∩L∗ = /0 for all n.

Clearly L∗ ⊂ Dom(F). Since Ln ⊂ D(F) we have F(L∗) ⊂ L− ∪L+ by Lemma
1.11. It follows that n(L∗) ≥ 1. We also have n(L∗) ≤ 2k < ∞ by Lemma 1.9-(2)
since F has no periodic points and L−∪L+ ⊂ Σ \L0 = Dom(F). By Definition 1.43
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we have f n(L∗)(L∗) ⊂ L− ∪L+ ⊂ Dom(F). Thus, we can choose the neighborhood
S⊂Dom(F) of L∗ as in (H2). As Ln→ L∗ and Ln∩L∗= /0 we can assume Ln⊂ S\L∗
for all n. As Ln∩L∗ = /0 for all n we can further assume that Ln ∈ S1 where S1 is one
of the (possibly equal) connected components of S \L∗. As F(S1) ⊂ Σ \ (L−∪L+)
by (H2)-(1) we conclude that F(Ln) ⊂ Σ \ (L− ∪L+) for all n. However, F(Ln) ⊂
L−∪L+ by Lemma 1.11 since Ln ⊂ D(F) a contradiction. This proves (1).

Now we prove (2). Fix i ∈ {1, · · · ,k} such that D(F) ∩ [L0i,L+i] consists of
finitely many leaves. As Dom(F/Σi) = Σi \L0i there is a leaf B > L0i in Ii such that
(L0i,B] ⊂ Dom(F) \D(F). This implies that f is continuous in (L0i,B]. If f/(L0i,B]
were not monotone, it would exist two different leaves L,L′ ⊂ (L0i,B] bounding
a band [L,L′] such that f (L) = f (L′) = L′′. Choose a Cα -spine c of [L,L′]. Then
c⊂ Dom(F)\D(F) and by Lemma 1.12 we obtain that F is C1 in c. Thereby, F(c)
is a curve transversal to F intersecting a leaf L′′ at least twice. This is a contradic-
tion. We conclude that f/(L0i,B] is monotone so f (L0i+) exists. This proves (2).

The proof of (3) is similar. ut
Lemma 1.15. Let c⊂Dom(F)\D(F) be an open curve transversal to F . If there is
n≥ 1 and a open C1 curve c∗ with closure CL(c∗)⊂ c such that F i(c∗)⊂Dom(F)\
D(F) for all 0≤ i≤ n−1 and Fn(c∗) covers c, then F has a periodic point.

Proof. By Lemma 1.12 we have that Dom(F)\D(F) is F -saturated and F/Dom(F)\D(F)

is C1. Then, c and c∗ projects (via F ) into two intervals in SL still denoted by c and
c∗ respectively. The assumptions imply that f i(c∗) is defined for all 0≤ i≤ n−1 and
f n(c∗)⊃ c⊃Cl(c∗). Then, f n has a fixed point L∗∗. As Fn(L∗∗)⊂ f (L∗∗) = L∗∗ and
Fn/L∗∗ is continuous the Brower Fixed Point Theorem implies that Fn has a fixed
point. This fixed point represents a periodic point of F . The result follows. ut
Lemma 1.16. F carries a curve c⊂Dom(F)\D(F) tangent to Cα (with length | c |)
into a curve tangent to Cα (with length ≥ λ · | c |).
Proof. Let c : Dom(c)→ Dom(F) \D(F) be a curve tangent to Cα . If t ∈ Dom(c)
and c′(t) ∈Cα(c(t)), then DF(c(t))c′(t) ∈Cα(F(c(t)), because

DF(c(t))(Cα(c(t)))⊂ Int(Cα/2(F(c(t)))).

Also,

| F ◦ c |=
∫

Dom(c)
|| DF(c(t))c′(t) || dt ≥

∫

Dom(c)
λ · || c′(t) || dt = λ · | c | .

The proof follows. ut
Lemma 1.17. Suppose that F has no periodic points. Let L,L′ be different leaves in
D(F) such that the open vertical band (L,L′)⊂ Dom(F)\D(F). If c is a Cα -spine
of (L,L′), then F(Int(c)) covers a vertical band (W,W ′) with

W,W ′ ⊂ L−∪L+∪V .
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Proof. Without loss of generality we can assume L < L′ (in the natural order).
Lemma 1.12 implies that F/(L,L′) is C1 because (L,L′) ⊂ Dom(F) \D(F). And
Lemma 1.11 implies

F(L),F(L′)⊂ L−∪L+ (1.3)

because L,L′ ⊂ D(F). Clearly L,L′ ⊂ Dom(F) and then n(L),n(L′) are defined.
By (1.3) we have n(L),n(L′) ≥ 1. Then, 1 ≤ n(L),n(L′) < ∞ by Lemma 1.9-(1)

since F has no periodic points and L−∪L+ ⊂ Σ \L0 = Dom(F). By the same reason

Fn(L)(L),Fn(L′)(L′)⊂ Dom(F).

Since L < L′ we have either L ⊂ L− and L′ ⊂ Σ \ (L− ∪L+); or L′ ⊂ L+ and L ⊂
Σ \ (L− ∪ L+) or L,L′ ⊂ Σ \ (L− ∪ L+). Then, Lemma 1.10 applied to L∗ = L,L′
implies that f (L+), f (L′−) exist and

f (L+), f (L′−)⊂ L−∪L+∪V (1.4)

Now, let c be a Cα -spine of (L,L′). To fix ideas we assume c(0) ∈ L and
c(1) ∈ L′. As Int(c)⊂ (L,L′)⊂ Dom(F)\D(F) we have that F(Int(c)) is defined.
As F/(L,L′) is C1 we have that F(Int(c)) is a curve whose boundary points are con-
tained in f (L+), f (L′−). Clearly f (L+) 6= f (L′−) because F preserves F . Then,
FF(Int(c)) = (W,W ′) is an open vertical band with W = f (L+) and W ′ = f (L′−).
Then, (1.4) applies. ut
Lemma 1.18. Suppose that F has no periodic points. For every open curve c ⊂
Dom(F) \D(F) tangent to Cα there are an open curve c∗ ⊂ c and n′(c) > 0 such
that F j(c∗)⊂Dom(F)\D(F) for all 0≤ j≤ n′(c)−1 and Fn′(c)(c∗) covers a band
(W,W ′) with

W,W ′ ⊂ L−∪L+∪V ∪L−∪L+.

Proof. Let c⊂ Dom(F)\D(F) be a curve tangent to Cα .
The proof is based on the following claim. This claim will be proved adapting

the arguments used by Guchkenheimer and Williams to prove that Lorenz’s maps
with derivative >

√
2 are leo (see [60]).

Claim. There are an open curve c∗∗ ⊂ c and n′′(c) > 0 such that F j(c∗∗) ⊂
Dom(F) \D(F) for all 0 ≤ j ≤ n′′(c)− 1 and Fn′′(c)(c∗∗) covers an open vertical
band

(L,L′)⊂ Dom(F)\D(F),

where L,L′ are different leaves in D(F)∪L0.

Proof. For every open curve c′ ⊂ Dom(F)\D(F) tangent to Cα we define

N(c′) = sup
{

n≥ 1 : F j(c′)⊂ Dom(F)\D(F),∀0≤ j ≤ n−1
}

.

Note that 1 ≤ N(c′) < ∞ because λ > 1 and Σ has finite diameter. In addition,
FN(c′)(c′) is a curve tangent to Cα with
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FN(c′)(c′)∩ (D(F)∪L0) 6= /0

because Dom(F) = Σ \L0.
Define the number β by

β = (1/2) ·λ .

Then, β > 1 since λ > 2. Define c1 = c and N1 = N(c1).
If FN1(c1) intersects D(F)∪L0 in a unique leaf L1, then FN1(c1)∩L1 has a unique

point p1. In this case we define

• c∗2 = the biggest component of FN1(c1)\{p1} and
• c2 = F−N1(c∗2).

The following properties hold,

1) c2 ⊂ c1 and then c2 is an open curve tangent to Cα .
2) F j(c2)⊂ Dom(F)\D(F), for all 0≤ j ≤ N1.
3) | FN1(c2) |≥ β · | c1 |.

In fact, the first property follows because FN1/Fc2
is injective and C1. The second

one follows from the definition of N1 = N(c1) and from the fact that c∗2 = FN1(c2)
does not intersect any leaf in D(F)∪L0. The third one follows from Lemma 1.16
because

| FN1(c2) |=| c∗2 |≥ (1/2)· | FN1(c1) |≥
≥ (1/2) ·λ N1 | c1 |≥ (1/2) ·λ | c1 |= β · | c1 |

since λ > 2 and N1 ≥ 1.
Next we define N2 = N(c2). The second property implies N2 > N1. As before,

if FN2(c2) intersects D(F)∪L0 in a unique leaf L2, then FN2(c2)∩L2 has a unique
point p2. In such a case we define c∗3 = biggest component of FN2(c2) \ {p2} and
also c3 = F−N2(c∗3). As before

| FN3(c3) |=| c∗3 |≥ (1/2)· | FN2(c2) |≥ (1/2) ·λ N2−N1 | FN1(c2) |≥ β 2 | c1 |

because of the third property. So,

1) c3 ⊂ c2 and c3 is a curve tangent to Cα .
2) F j(c3)⊂ Dom(F)\D(F) for all 0≤ j ≤ N2.
3) | FN2(c3) |≥ β 2· | c1 |.

In this way we get a sequence N1 < N2 < N3 < · · · < Nl < · · · of positive inte-
gers and a sequence c1,c2,c3, · · ·cl , · · · of open curves (in c) such that the following
properties hold ∀l ≥ 1

1) cl+1 ⊂ cl and cl+1 is an open curve tangent to Cα .
2) F j(cl+1)⊂ Dom(F)\D(F) for all 0≤ j ≤ Nl .
3) | FNl (cl+1) |≥ β l · | c1 |.
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The sequence cl must stop by Property (3) since Σ has finite diameter. So, there
is a first integer l0 such that FN(cl0 )(cl0) intersects D(F)∪L0 in two different leaves
L,L′. Note that these leaves must be contained in the same component of Σ since
FN(cl0 )(cl0) is connected. Hence the vertical band (L,L′) bounded by L,L′ is well
defined. We can assume that (L,L′)⊂ Dom(F)\D(F) because D(F) is F -discrete
by Lemma 1.14-(1). Choosing c∗∗ = cl0 and n′′(c) = Nl0 we get the result. ut

Now we finish the proof of Lemma 1.18. Let c∗∗,n′′(c) and L,L′ ⊂D(F)∪L0 be
as in Claim 1.8.5. We have three possibilities: L,L′ ⊂D(F); L⊂ L0 and L′ ⊂D(F);
L⊂D(F) and L′ ⊂ L0. We only consider the two first cases since the later is similar
to the second one.

First we assume that L,L′ ⊂ D(F). As Fn′′(c)(c∗∗) is tangent to Cα , and covers
(L,L′), we can assume that Fn′′(c)(c∗∗) itself is a Cα -spine of (L,L′). Then, applying
Lemma 1.17 to this spine, one gets that Fn′′(c)+1(c∗∗) covers a vertical band (W,W ′)
with

W,W ′ ⊂ L−∪L+∪V

In this case the choices c∗ = c∗∗ and n′(c) = n′′(c) + 1 satisfy the conclusion of
Lemma 1.18.

Finally we assume that L ⊂ L0 and L′ ⊂ D(F). As L ⊂ L0 we have L = L0i for
some i = 1, · · · ,k. Without loss of generality we can also assume L0i < L′.

On the one hand, (L0i,L′) = (L,L′)⊂Dom(F)\D(F) and then D(F)∩ [L0i,L′] =
/0. So, Lemma 1.14-(1) implies that D(F)∩ [L0i,L + i] consists of finitely many
leaves. Then, f (L0i+) exists by Lemma 1.14-(2). Consequently

f (L0i+) ∈L+.

(Recall the definition of L± in Definition 1.46).
On the other hand, F(L′)⊂ L−∪L+ by Lemma 1.11 since L′ ⊂ D(F). It follows

that 1≤ n(L′) and also n(L′)≤ 2k by Lemma 1.9-(1) since F has no periodic points
and L− ∪L+ ⊂ Σ \L0 = Dom(F). Since Fn(L′)(L′) ⊂ L− ∪L+ by the definition of
n(L′) we obtain

Fn(L′)(L′)⊂ Dom(F).

Clearly L′ 6⊂ L− because L0i < L′. Then, Lemma 1.10 applied to L∗ = L′ implies that
f (L′−) exists and satisfies

f (L′−)⊂ (L−∪L+)∪L .

But F((L0i,L′)) (and so F(Fn′′(c)(c∗∗))) covers ( f (L0i+), f (L′−)) since (L0i,L′)⊂
Dom(F)\D(F). Setting W = f (L0i+) and W ′ = f (L′−) we get

W,W ′ ⊂ (L−∪L+)∪V ∪L+.

(Recall the definition of V in Definition 1.46) Then, F(Fn′′(c)(c∗∗)) covers (W,W ′)
as in the statement. Choosing c∗= c∗∗ and n′(c) = n′′(c)+1 we obtain the result. ut



48 1 Preliminaires

Finally we prove Theorem 1.45. Let F be a λ -hyperbolic triangular map satisfy-
ing (H1)-(H2) with λ > 2 and Dom(F) = Σ \L0. We assume by contradiction that
the following property holds:

(P) F has no periodic points.

Since L−∪L+ ⊂ Σ \L0 and Σ \L0 = Dom(F) we also have

L−∪L+ ⊂ Dom(F).

Then, the results in the previous subsections apply. In particular, we have that
Dom(F) \D(F) is open in Σ (by Lemma 1.13) and that D(F) is F -discrete (by
Lemma 1.14-(1)). All together imply that Dom(F)\D(F) is open-dense in Σ .

Now, let B be a family of open vertical bands of the form (W,W ′) with

W,W ′ ⊂ L−∪L+∪V ∪L−∪L+.

It is clear that B = {B1, · · · ,Bm} is a finite set. In B we define the relation B ≤ B′
if and only if there are an open curve c ⊂ B tangent to Cα with closure CL(c) ⊂
Dom(F)\D(F), an open curve c∗ ⊂ c and n > 0 such that

F j(c∗)⊂ Dom(F)\D(F), ∀0≤ j ≤ n−1,

and Fn(c∗) covers B′.
As Dom(F)\D(F) is open-dense in Σ , and the bands in B are open, we can use

Lemma 1.18 to prove that for every B ∈B there is B′ ∈B such that B≤ B′. Then,
we can construct a chain

B j1 ≤ B j1 ≤ B j2 ≤ ·· · ,
with ji ∈ {1, · · · ,m} (∀i) and j1 = 1. As B is finite it would exist a closed sub-chain

B ji ≤ B ji+1 ≤ ·· · ≤ B ji+s ≤ B ji .

Hence there a positive integer n such that Fn(B ji) covers B ji . Applying Lemma 1.15
to suitable curves c∗ ⊂Cl(c∗)⊂ c⊂ B ji we obtain that F has a periodic point. This
contradicts (P) and the proof follows.

1.8.6 Homoclinic classes for triangular maps

In this subsection we describe a class of hyperbolic triangular maps with large do-
main where the conclusion of Theorem 1.45 can be improved. Indeed, to any tri-
angular map F in Σ we can associate a sequence of compact sets Λn(F) defined
inductively by Λ0(F) = Σ and Λn(F) = Cl(F(Λn−1(F)∩Dom(F))) for n ≥ 1. We
can prove by induction that Λn+1(F)⊂Λn(F) for all n thus Λ(F) is a compact non-
empty set unless Λn(F)∩Dom(F) = /0 for some n (of course this last situation can
occur if we do not impose any restriction to F). This sequence allows us to define
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the attracting set of F ,
Λ(F) =

⋂

n≥0

Λn(F).

It follows from the definition that the elements of Λ(F) admit the following charac-
terization:

(C) y ∈Λ(F)⇐⇒ ∀ε > 0 and ∀n ∈N\{0} ∃yn ∈ Σ such that F i(yn) ∈Dom(F)
for all 0≤ i≤ n−1 and d(y,Fn(yn))≤ ε .

Now we present a theorem saying that, under certain circunstances, the attracting
set above is a homoclinic class, and so, the corresponding triangular map has not
only one (as Theroem 1.45 says) but also infinitely many periodic points. Its proof
relies also on generalization of the Guckenheimer and Williams’s arguments in [60].
Hereafter Σ will be a single copy of the square I2 = I× I with I = [−1,1].

LL

Σ

L +0

F(L )−

F(L )+

Lim F(x,y)
x +

Lim F(x,y)
x −

−

0

0

x<0 x>0

Fig. 1.13 Shape of F in Theorem 1.48.

Theorem 1.48. Let F be a C1 injective λ -hyperbolic triangular map with
λ >

√
2 and large domain in Σ . If the lateral limits limx→0+ F(x,y) and

limx→0− F(x,y) exist, do not depend on y and belong to L− and L+ respec-
tively, then Λ(F) is a homoclinic class of F.

Proof. See Figure 1.13 where the shape of F as in the statement of the theorem is
described. Let F and Cα be the vertical foliation and the cone field associated to F
respectively. We say that a curve c tangent to Cα is a full curve if its extreme points
belong to L− ∪L+ and L0 respectively. Since F is λ -hyperbolic with λ >

√
2 > 1

we have F(L+) ⊂ Int(Σ ∩{x > 0}) and F(L−) ⊂ Int(Σ ∩{x < 0}). From this it is
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not difficult to see that if c is a full curve, then c ⊂ Dom(F) and every leaf of F
intersects c∪F(c).

We claim that for every curve c tangent to Cα there are a curve c ⊂ c and n ∈ N
such that F i(c) ⊂ Dom(F) for 0 ≤ i ≤ n and Fn(c) is a full curve. The proof is
summarized in the flow diagram below invented by zeze Pacifico:

replace c by F(c) // Input c

''PPPPPPPPPPPP

wwoooooooooooo
replace c by F2(c)oo

c∩L0 = /0

OO

c∩L0 6= /0

))RRRRRRRRRRRRRR

vvnnnnnnnnnnnn
F(c+)∩L0 = /0

hhRRRRRRRRRRRRR

c+ is full

²²

c+ is not full

²²

OO

c = c+

²²

F(c+)∩L0 6= /0oo

Stop

Indeed, put the curve c into the diagram and ask if c∩ L0 = /0 or not. If yes
then c ⊂ Dom(F) so F(c) exists and go to Input again but relacing c by F(c) first.
Since F is λ -hyperbolic we have that the new c has length at least λ ·Length(c). If
c∩L0 6= /0 then L0 cuts c in two connected components both contained in Dom(F).
Next we ask if the component c+ with the biggest length is full or not. If it does
then we define c = c+, n = 0 and go to Stop. Otherwise we ask if F(c+)∩L0 = /0 or
not. If F(c+)∩L0 = /0 we have F(c+)⊂ Dom(F) so F2(c+) exists and go to Input
again but now replacing c by F2(c+). Since F is λ -hyperbolic, and the length of c+

is at least 1
2 ·Length(c), we get in this alternative that the length of the new c is at

least λ 2

2 ·Length(c). If F(c+)∩L0 6= /0 then F(c+) is clearly a full curve and then we
define c = c+, n = 1 and go to Stop. The diagram must eventually go to Stop since
the gain of length at each replacement is at least min{λ , λ 2

2 } which is bigger than 1
since λ >

√
2. This proves the claim

It follows from this claim that for every leaf L of F there is a periodic point of F
close to L. Indeed, take a curve c close to L with c∩L 6= /0 and consider the vertical
band V = {L′ : L′ is a leaf of F with L′ ∩ c 6= /0}. Since F contracts F the claim
implies that there are a subband V ⊂ V and n ∈ N such that Fn(V ) crosses V as
indicated in Figure 1.14.
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V

L

c

F(V)
n

Fig. 1.14

It follows that F has a periodic point in V so the result follows. In particular, F
has a periodic point x.

We finish the proof by proving that Λ(F) is the homoclinic class of x. Take any
y ∈Λ(F) and ε > 0. Choose n ∈N such that d(Fn(z),Fn(z)) < ε

2 whenever z,z ∈ Σ
satisfy F i(z) ∈ Dom(F), ∀0 ≤ i ≤ n, and z ∈ Fz. Recalling the characterization
(C) of Λ(F) above we can select yn ∈ Σ with F i(yn) ∈ Dom(F) for 0 ≤ i ≤ n and
d(y,Fn(yn)) < ε

2 . Applying our first claim to a curve c ⊂W u(x) we can choose
z∈Fyn ∩W u(x). By the choice of n with z = yn we get d(Fn(yn),Fn(z)) < ε

2 and so
d(y,Fn(z)) < ε by the triangular inequality. This allows us to fix a second curve cz⊂
W u(x) through Fn(z) such that d(y,k) < ε for all k ∈ cz. Applying again the claim
to cz there is k ∈ cz ∩W s(x). Thus, k ∈W u(x)∩W s(x) and d(y,k) < ε because k ∈
cz ⊂W u(x). Since the last intersection is transversal and ε is arbitrary we conclude
that y belongs to the homoclinic class of x. Since y ∈ Λ(F) is arbitrary we get that
Λ(F) is the homoclinic class of x. The result is proved. ut

1.9 Singular partition

In this section we introduce the concept of singular partitions which will be used
later on. Afterwards we give properties and conditions for existence.

Let M be a compact manifold and X ∈X 1(M). A cross section of X is a codi-
mension one submanifold Σ transverse to X . The interior and the boundary of Σ
as a submanifold are denoted by Int(Σ) and ∂Σ respectively. If R = {S1, · · · ,Sk}
is a collection of cross sections we still denote by R the union of its elements. We
denote

∂R =
k⋃

i=1

∂Si and Int(R) =
k⋃

i=1

Int(Si).
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The size of R will be the sum of the diameters of its elements.

Definition 1.49. A singular-partition of an invariant set H of a vector field X
is a finite disjoint collection R of cross sections of X such that H ∩ ∂R = /0
and H ∩Sing(X) = {y ∈ H : Xt(y) /∈R,∀t ∈ R}.

This concept generalizes the notion of global cross section [48] to include invari-
ant sets with singularities.

In the sequel we present existence results for singular partitions. We start with
the following general proposition.

Proposition 1.50. Let Λ be a compact invariant set all of whose singularities are
hyperbolic of a C1 vector field X. If for all δ > 0 and all z ∈ Λ \ Sin(X) there is a
cross section Σz of diameter at most δ such that z ∈ Int(Σz) and Λ ∩∂Σz = /0, then
Λ has singular partitions of arbitrarily small size.

Proof. Since every singularity in Λ is hyperbolic we can choose β > 0 such that

Λ ∩Sing(X) =
⋂

t∈R
Xt


 ⋃

σ∈Λ∩Sing(X)

Bβ (σ)


 . (1.5)

For such a β we define

H = Λ \
( ⋃

σ∈Λ∩Sing(X)

Bβ (σ)
)

.

We can assume that H 6= /0 for, otherwise, (1.5) would imply Λ = Λ ∩ Sing(X)
in whose case we are done. Clearly H ⊂ Λ and H ∩ Sing(X) = /0 so Σz as in the
statement exists for all z ∈ H. For all such z we define

Vz =
⋃

t∈(−1,1)

Xt(Int(Σz)).

Obviously z ∈ Vz and then {Vz : z ∈ H} is an open covering of H which is clearly
compact. So, there is a finite subset {z1, · · · ,zr} ∈ H such that

H ⊂
⋃

i=1

Vzi .

By moving the cross sections Σz1 , · · · ,Σzr along the flow as in [33] p.189 (say) we
can assume that the collection

R = {Σz1 , · · · ,Σzr}

is pairwise disjoint. Moreover, since Λ ∩∂Σz = /0 we have
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Λ ∩∂R = /0.

If z ∈Λ \Sing(X), then (1.5) implies that there is t ∈ R such that

Xt(z) 6∈
⋃

σ∈Λ∩Sing(X)

Bβ (σ).

But Xt(z) ∈ Λ since z does therefore Xt(x) ∈ H by definition. Hence Xt(z) ∈Vzi for
some i and then the orbit of z intersects Σzi by the definition of Vzi . This proves that

Λ ∩Sing(X) = {z ∈Λ : Xt(z) /∈R}

hence the result follows. ut

1.9.1 Properties

We present some topological properties of the singular partitions. The first one is a
direct consequence of the definition (c.f. [109]).

The return map ΠΣ : Dom(ΠΣ ) ⊂ Σ → Σ associated to a cross section Σ is de-
fined by

Dom(ΠΣ ) = {x ∈ Σ : Xt(x) ∈ Σ for some t > 0}
and

ΠΣ (x) = XtΣ (x)(x)

where tΣ (x) is the return time

tΣ (x) = inf{t > 0 : Xt(x) ∈ Σ}.

For all compact invariant set Λ we define

W s(Λ) = {x ∈M : ω(x)⊂Λ} and W u(Λ) = {x ∈M : α(x)⊂Λ} (1.6)

For all H ⊂M we denote

W s(Sing(X)∩H) =
⋃

σ∈Sing(X)∩H

W s(σ).

Lemma 1.19. If R is a singular-partition of a compact invariant set H of X, then
the following properties hold:

1. (H ∩R)∩Dom(ΠR)⊂ Int(Dom(ΠR)) and ΠR is C1 in a neighborhood of H ∩
R in R.

2. (H ∩R)\Dom(ΠR)⊂W s(Sing(X)∩H).
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Hereafter Bδ (p) denotes the open δ -ball in R centered at p ∈ R. Recall that
O+(q) = {Xt(q) : t ≥ 0} denotes the positive orbit of q ∈M.

Lemma 1.20. Let M be a compact 3-manifold, X ∈X 1(M) and q ∈M be such that
every singularity in ω(q) is hyperbolic with one-dimensional unstable manifold. If
ω(q) is not a singularity and R is a singular-partition of ω(q), then the following
properties hold for Π = ΠR:

1. O+(q)∩R = {q1,q2, · · ·} is an infinite sequence ordered in a way that Π(qn) =
qn+1.

2. There is δ > 0 such that if n ∈ {1,2, · · ·} then either Bδ (qn) ⊂ Dom(Π) and
Π/Bδ (qn) is C1 or there is a curve cn ⊂W s(Sing(X)∩ω(q))∩Bδ (qn) such that

B+
δ (qn)⊂ Dom(Π) and Π/B+

δ (qn) is C1,

where B+
δ (qn) denotes the connected component of Bδ (qn)\ cn containing qn.

Proof. To prove Item (1) notice that ω(q) contains regular orbits as it is not a sin-
gularity. Hence ω(q)∩R 6= /0 because R is a singular-partition of ω(q). Since each
component of R is a cross section of X we have that O+(q)∩R = {q1,q2, · · ·} is
a sequence whose accumulation points belong to ω(q)∩R. The sequence must be
infinite for otherwise ω(q)∩R = /0 a contradiction. Thus qn ∈ Dom(Π) (∀n) and
clearly we can order the sequence in a way that Π(qn) = qn+1 (∀n). This proves
Item (1) of the lemma.

Now we prove Item (2). To simplify the notation we write

H = ω(q) and H0 = H ∩R.

Then, H0 6= /0. By Lemma 1.19 one has

(i) H0∩Dom(Π)⊂ Int(Dom(Π)) and Π is C1 in a neighborhood of H0 in R.
(ii) H0 \Dom(Π)⊂W s(Sing(X)∩H).

On the other hand, every singularity in ω(q) is hyperbolic with one-dimensional
unstable manifold by hypothesis. It follows that the stable manifold of every σ ∈
Sing(X)∩H is two dimensional.

Now, we fix x ∈ H0 \Dom(Π) then x ∈R ∩W s(Sing(X)∩H) by (ii). As R and
the stable manifolds of the singularities in Sing(X)∩H are two dimensional we have
that x lies in a curve

cx ⊂R ∩W s(σx)

for some σx ∈ Sing(X)∩H. By hypothesis we have that W u(σx) is one-dimensional,
so W u(σx) \ {σx} consists of two connected components to be denote by W+ and
W−. We have three possibilities for these components:

• W+ ⊂ H and W− ⊂ H,
• W+ ⊂ H and W− 6⊂ H,
• W− ⊂ H and W+ 6⊂ H.
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First suppose that W+ ⊂ H and W− ⊂ H. It follows that W+ ∩ Int(R) 6= /0 and
W−∩ Int(R) 6= /0 since W−,W+ are regular orbits of H and R is a singular partition
of ω(q) = H. By using such non-empty intersections we can find δx > 0 such that

(iii) Bδx(x)\ cx ⊂ Dom(Π) and Π/(Bδx(x)\ cx) is C1.

Second suppose that W+ ⊂ H and W− 6⊂ H. As W+ ⊂ H and R is a singular
partition of H we have

(A) W+∩ Int(R) 6= /0.

As W− 6⊂ H we have

(B) O+(q) does not accumulate on W−.

By using (A) and (B) we can find δx > 0 such that the connected components

B+
δx

(x) and B−δx
(x)

of Bδx(x)\ cx are labeled in a way that

(iv) B+
δx

(x)⊂ Dom(Π), Π/B+
δx

(x) is C1 and B−δx
(x)∩O+(q) = /0.

Third suppose that W− ⊂ H and W+ 6⊂ H. In this case we can proceed as in the
second case to find δx > 0 satisfying (iv).

Summarizing, for all x ∈ H0 \Dom(Π) we have found δx > 0 satisfying either
(iii) or (iv).

On the other hand, (i) implies that H0 \Dom(Π) is compact. Hence there are
x1, · · · ,xl ∈ H0 \Dom(Π) such that

H0 \Dom(Π)⊂
l⋃

i=1

Bδxi /2(xi). (1.7)

Because the union in the right-hand side of (1.7) is open one has that

H1 = H0 \
l⋃

i=1

Bδxi
(xi)

is compact. By (1.7) one has

H1 ⊂ H0∩Dom(Π).

By (i) we have that ∀y ∈ H1 ∃βy > 0 such that

Bβy(y)⊂ Dom(Π) and Π/Bβy (y) is C1. (1.8)

It follows from the compactness of H1 that ∃y1, · · · ,yr (for some r > 0) such that

H1 ⊂
r⋃

j=1

Bβy j /2(y j). (1.9)
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Define
δ = min{δxi/8,βy j/8 : 1≤ i≤ l,1≤ j ≤ r}.

Let us prove that this δ works.
By (1.7) and (1.9) we have that

{Bδxi
(xi),Bβy j

(y j) : 1≤ i≤ l,1≤ j ≤ r}

is an open covering of H0 = ω(q)∩R. Then

qn ∈
(

l⋃

i=1

Bδxi /2(xi)

)
∪

(
r⋃

j=1

Bβyi /2(yi)

)

for n large enough. Hence for all n large we have either

qn ∈ Bδxi /2(xi) for some 1≤ i≤ l,

or
qn ∈ Bβ j/2(y j) for some 1≤ j ≤ r.

Then, by the triangle inequality and the choice of δ we obtain

Bδ (qn)⊂ Bδxi
(xi) or Bδ (qn)⊂ Bβ j(y j).

If Bδ (qn)⊂ Bβy j
(y j), then Bδ (qn)⊂Dom(Π) and Π/Bδ (qn) is C1 by (1.8). In this

case we are done.
If Bδ (qn)⊂ Bδxi

(xi) we define

cn = cxi ∩Bδ (qn).

In this case we have two subcases, namely either (iii) or (iv) hold.
First assume that (iii) holds. Recalling that B+

δ (qn) is the connected component
of Bδ (qn) \ cn containing qn we have B+

δ (qn) ⊂ Bδxi
(xi) \ cxi therefore B+

δ (qn) ⊂
Dom(Π) and Π/B+

δ (qn) is C1 by (iii).

Finally, if (iv) holds then B+
δ (qn) ⊂ B+

δxi
(xi) since qn ∈ O+(q) and B−δxi

(xi)∩
O+(q) = /0. Then the result follows from (iv). The lemma is proved. ut



Chapter 2
Hyperbolic and sectional-hyperbolic sets:
definition and properties

In this chapter we define the hyperbolic and sectional-hyperbolic sets. In the sequel
we study their basic properties.

2.1 Definition

Consider a Riemannian manifold M and X ∈ X 1(M) We say that Λ ⊂ M is an
invariant set if Λ ⊂ M(X) and Xt(Λ) = Λ for all t ∈ R. We say that p ∈ M is a
nonwandering point of X if for all neighborhood U of p and all T > 0 there is t ≥ T
such that Xt(U)∩U 6= /0. Denote by Ω(X) the set of nonwandering points of X
which is clearly a closed invariant set.

Given p ∈ M we define its orbit O(p) = {Xt(p) : Xt(p) is defined}. An orbit of
X is a set equals to O(p) for some p. The positive orbit of p is defined by O+(p) =
{Xt(p) : t > 0} and if p∈M(X) we define its negative orbit O−(p) = {Xt(p) : t < 0}.

A periodic orbit of X is the orbit of some p for which there is a minimal t > 0
(called the period) such that Xt(p) = p. In such a case we say that p is a periodic
point. A singularity of X is a zero of X . We denote by Per(X) the set of periodic
points and by Sing(X) the set of singularities of X . Clearly Per(X)∪ Sing(X) ⊂
Ω(X).

A subset Λ ⊂M is singular if it has a singularity; non-trivial if Λ is not a single
orbit; isolated if there is a compact neighborhood U of Λ such that

Λ =
⋂

t∈IR

Xt(U)

(U is called isolating block); and attracting if it is isolated and has a positively
invariant isolating block U , i.e., Xt(U)⊂U , ∀t ≥ 0.

Given x ∈M we define the ω-limit set

ω(x) = {y ∈M : y = lim
n→∞

Xtn(x) for some sequence tn→ ∞}

57
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and if x ∈M(X) the α-limit set

α(x) = {y ∈M : y = lim
n→∞

Xtn(x) for some sequence tn→−∞}.

We say that x is recurrent if x∈ω(x). Singularities and periodic points are examples
of recurrent points but not conversely.

A compact invariant set Λ is transitive or has dense periodic orbits if Λ = ω(x)
for some x ∈ Λ or Cl(Per(X)∩Λ) = Λ . An attractor is a transitive attracting set.
This is not the standard usage as for instance [71] calls attractor what we call at-
tracting set. Several definitions of attractor are considered in [88].

A vector field X is transitive or has dense periodic orbits depending on whether
its maximal invariant set is. Notice that, in the boundaryless case, X is transitive if
and only if X has a dense orbit (thus recovering the standard definition of transitive
vector field). Given X ∈X r(M) we say that X is Cr robustly transitive or Cr robustly
periodic depending on whether every vector field that is Cr close to X is transitive
or has dense periodic orbits.

Definition 2.1. A compact invariant set H is hyperbolic if there are posi-
tive constants K,λ and a continuous invariant tangent bundle decomposition
THM = Es

H ⊕EX
H ⊕Eu

H such that

• Es
H is contracting, i.e.

|| DXt(x)/Es
x ||≤ Ke−λ t , ∀t > 0,∀x ∈ H.

• Eu
H is expanding, i.e.

|| DX−t(x)/Eu
x ||≤ Ke−λ t , ∀t > 0,∀x ∈ H.

• EX
H is the subbundle tangent to X.

A hyperbolic set H is saddle-type if its contracting and expanding subbundles
Es

H , Eu
H never vanish, i.e., Es

x 6= 0 and Eu
x 6= 0 for every x ∈ H.

A singularity or periodic orbit of X is hyperbolic if it does as a compact invariant
set. We say that p ∈ Per(X) is hyperbolic if its orbit is.

The Invariant Manifold Theory [68] asserts that if H is a hyperbolic set of X
then there are submanifolds W ss(p), W uu(p), W s(p), W u(p) of M tangent at p to
the subspaces Es

p, Eu
p, Es

p⊕EX
p , EX

p ⊕Eu
p for all p ∈H. We call W s(p) (resp. W u(p))

the weak stable (resp. unstable) manifold of X at p. Analogously W ss(p) (resp.
W uu(p))) is called the strong stable (resp. unstable) manifold of X at p. These foli-
ations have the following dynamical characterization:

W ss(p) = {y ∈M : lim
t→∞

d(Xt(p),Xt(y)) = 0},
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W uu(p) = {y ∈M : lim
t→−∞

d(Xt(p),Xt(y)) = 0},

W s(p) =
⋃

t∈R
W ss(Xt(p)) and W u(p) =

⋃

t∈R
W uu(Xt(p)).

A closed orbit O of X is hyperbolic if it is hyperbolic as a compact invariant set.
If O = O(p) is a hyperbolic periodic orbit of X we say that q ∈M is a homoclinic
point associated to O if q ∈W s(O)∩W u(O).

If in addition q is a transverse intersection point between these manifolds then
we say that q is a transverse homoclinic point associated to O. We shall denote by
W s(p) |∩W u(p) the set of transverse homoclinic points associated to p.

The homoclinic class H(O) associated to O (or p) is the closure H(p) =
Cl(W s(p) |∩W u(p)). A compact invariant set is a homoclinic class if it is equals to
H(p) (or H(O)) for some hyperbolic periodic point P (or some hyperbolic periodic
orbit O). It follows from the Birkhoff-Smale Theorem [62] that every homoclinic
class is a transitive set with dense periodic orbits.

Denote by m(A) = infv6=0
‖Av‖
‖v‖ the minimum norm of a linear operator A.

Definition 2.2. A continuous invariant splitting TΛ M = EΛ ⊕FΛ over a com-
pact invariant set Λ is dominated if EΛ and FΛ never vanish and there are
positive constants K,λ such that

‖DXt(x)/Ex‖
m(DXt(x)/Fx)

≤ Ke−λ t , ∀t > 0,∀x ∈Λ .

A compact invariant set Λ is partially hyperbolic if it exhibits a dominated
splitting TΛ M = Es

Λ ⊕Ec
Λ such that Es

Λ is contracting, i.e. there are K,λ > 0
such that

‖DXt(x)/Es
x‖ ≤ Ke−λ t , ∀t > 0,∀x ∈Λ .

Denote by Det(T ) the Jacobian of a linear operator T . Now we state the definition
of sectional-hyperbolic set [85].

Definition 2.3. A compact invariant set Λ is a sectional-hyperbolic set if its
singularities are hyperbolic and it is a partially hyperbolic set with sectionally
expanding central subbundle Ec

Λ . More precisely, dim(Ec
x ) ≥ 2 and there are

K,λ > 0 such that
|Det(DXt(x)/Lc

x)| ≥ K−1eλ t ,

for all t > 0,x ∈Λ and all two-dimensional subspace Lc
x of Ec

x .

There is also a stable manifold theorem for sectional-hyperbolic set Λ . Indeed,
denote by TΛ M = Es

Λ ⊕Ec
Λ the sectional-hyperbolic splitting over Λ . It follows from
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[68] that through each p ∈Λ passes an inmersed submanifold W ss(p), as smooth as
X that is tangent to Es

p at p, consisting of points x which are asymptotic to p in the
sense that limt→∞ d(Xt(x),Xt(p))→ 0 as t→ ∞.

2.2 Properties of hyperbolic sets

In this section we present some properties of the hyperbolic sets.

2.2.1 Shadowing lemma for flows

We start with the following basic property of hyperbolic sets known as shadowing
lemma for flows [62]. Consider a real number ρ > 0. We say that a differentiable
curve c : R→ M is either a ρ-orbit or ρ-shadowed by the orbit of x depending
on whether ‖ċ(t)−X(c(t)‖ < ρ for all t ∈ R or there is a differentiable function
s : R→ R such that |ṡ(t)− 1| < ρ and d(c(s(t)),Xt(x)) < ρ for all t ∈ R. By a
closed ρ-orbit we mean a ρ-orbit which is also a closed curve.

Theorem 2.4 (Shadowing lemma for flows). For every saddle-type hyper-
bolic set without singularities of a C1 vector field on a compact Riemannian
manifold there is a neighborhood U so that for every ε > 0 there is δ > 0 such
that every (resp. closed) δ -orbit in U can be ε-shadowed by an unique (resp.
periodic) orbit.

Proof. We only give an outline of the proof (see [62] for details).
Fix a saddle-type hyperbolic set without singularities Λ of a C1 vector field X

on a compact manifold M. Let U0 be an open neighborhood of Λ where the hyper-
bolic splitting TΛ M = Es

Λ⊕EX
Λ ⊕Eu

Λ extends to a continuous semi-invariant splitting
TU0M = Es

U0 ⊕EX
U0 ⊕Eu

U0 in a way that Es
U0 and Eu

U0 are still contracting and ex-
panding respectively. Denote s = dim(Es

U0), u = dim(Eu
U0) and Dk the unit disk in

Rk.
A rectangle will be a cross section S ⊂ U0 diffeomorphic to Ds×Du with Ds

and Du being parallel to Es
U0 and Eu

U0 respectively. We say that a rectangle is
around p if its interior (as a submanifold) contains p. By a horizontal (resp. ver-
tical) submanifold of S we mean the graph of a C1 map ϕs : Ds×0→ 0×Du (resp.
ϕu : 0×Du→ Ds×0).

Since Es
U0 and Eu

U0 are contracted and expanded by X respectively we can fix
a neighborhood U ⊂ Cl(U) ⊂ U0 of Λ such that if ε > 0 is small, then through
each p ∈U passes a rectangle Sp ⊂U0 of diameter ε with the following property:
There are tε > 0 (usually large) and a > 0 (usually small) such that if p,q ∈U and
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d(Xt(p),q) < a with t ≥ tε , then there are a return map Πp : Sp→ Sq and a horizontal
rectangle Hp around p in Sp whose image Πp(R) = Vp is a vertical rectangle around
Πp(p) in Sq (see Figure 2.1).
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Fig. 2.1

Now fix ε > 0 (which can be assumed small), tε > 0 and a > 0 as above. Without
loss of generality we can assume that tε = 1. Take δ = a and consider a δ -orbit c(t)
in U . By integrating ‖ċ(t)−X(c(t))‖ we have that d(X1(c(n)),c(n + 1)) < δ = a
for all n. So, the vertical rectangles Vn = VX1(c(n−1)) ⊂ Sc(n) are well defined for all
n≥ 0. Denote Πn = Πc(n), Sn = Sc(n) and Hn = Hc(n) (see Figure 2.2).
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We define

R2 = Π−1
0 (Π−1

1 (H2∩V1)∩V0), R3 = Π−1
0 (Π−1

1 (Π−1
2 (H3∩V2)∩V1)∩V0),

R4 = Π−1
0 (Π−1

1 (Π−1
2 (Π−1

3 (H4∩V3)∩V2)∩V1)∩V0),
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and in general

Rk = Π−1
0

(
Π−1

1

(
· · ·

(
Π−1

k−1(Hk ∩Vk−1)∩Vk−2

)
∩Vk−3∩·· ·∩V1

)
∩V0

)
.

(See Figure 2.2.) Making use of graph transformed techniques (e.g. [68]) we can
see that the limit R∞ = limk→∞ Rk is a horizontal submanifold of S0. Analogously
but with negative values of k we construct a sequence Fk as in Figure 2.2 whose
limit F∞ = limk→−∞ Fk is a vertical submanifold of Sc(0). The intersection R∞ ∩F∞
between these submanifolds is a unique point x whose orbit is the unique one which
ε-shadows c(t) (the reparametrization s(t) appears since the flight time from x to Sn
is not necessarily n). It follows from this unicity that if c(t) is closed, then so does
the orbit of x. ut

2.2.2 Axiom A and spectral decomposition

A vector field X is Axiom A if its nonwandering set Ω(X) is a hyperbolic set
with dense closed orbits.

The following is the so-called Spectral Decomposition Theorem due to S. Smale.

Theorem 2.5. If X is an Axiom A vector field on a compact manifold, then
there is a disjoint collection H1, · · · ,Hk of transitive isolated hyperbolic sets
of X such that

Ω(X) = H1∪·· ·∪Hk.

Moreover, each Hi is either a singularity or a homoclinic class of X.

Proof. We shall give an outline of the proof leading the details to [123]. First one
observes that the homoclinic classes of X are all transitive sets. Consequently all
these classes are contained in Ω(X).

We claim that the collection of all homoclinic classes of X are pairwise disjoint.
Indeed, suppose that H1 = H(O1) and H2 = H(O2) are homoclinic classes associ-
ated to some hyperbolic periodic orbits O1,O2 of X . If H1∩H2 6= /0, then we obtain
transverse intersection points between W s(O1) and W u(O2) because these mani-
folds belong to the same hyperbolic set. Analoguously for W u(O1) and W u(O2). It
follows from the Inclination Lemma [123] that the homoclinic classes H1 and H2
coincide. This proves the claim.
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Next we observe that the collection of homoclinic classes of X is a finite set. The
proof (by contradiction) is similar to the previous one by just taking an accumulation
point of an possible infinite sequence of homoclinic classes.

The previous claims implies that the collection of all homoclinic classes of X is
formed by a disjoint finite collection H1, · · · ,Hl . Let σ1, · · · ,σr be the singularities
of X . Define k = l + r, Hl+1{σ1}, · · ·Hk = {σk−r}. Since the closed orbits are dense
in Ω(X) we obtain the disjoint union Ω(X) = H1∪·· ·∪Hk.

Finally one shows that each Hi is an isolated set of X . Fix Hi. since the collection
is disjoint we can choose a compact neighborhood Ui of Hi such that Ω(X)∩Ui = Hi.
Clearly

Hi ⊂
⋂

t∈R
Xt(Ui)

because Hi is an invariant set contained in Ui. On the other hand, if x ∈ M is a
point whose orbit is enterely contained in Ui. It follows that α(x) and ω(x) are both
contained in Ui. Since both α(x) and ω(x) are also contained in Ω(X) we obtain

α(x)∪ω(x)⊂Ω(X)∩Ui = Hi.

This implies that x ∈Ω(X) and, since x ∈Ui, we conclude that x ∈ Hi. This proves
the reversed inclusion ⋂

t∈R
Xt(Ui)⊂ Hi

from which the result follows. ut
Let us state some consequences of the Spectral Theorem.

Corollary 2.6. Let X be an Axiom A vector field on a compact manifold M.

1. X has a dense orbit if and only if Ω(X) = M.
2. X has an attractor and a repeller.

Proof. Clearly Ω(X) = M if X has a dense orbit (this implication does’t require X
to be Axiom A). Conversely if Ω(X) = M then M must be one of the sets Hi’s in
the Spectral Theorem since these sets are disjoint. It follows that X has a dense orbit
and the proof follows.

Now we prove that X has an an attractor. For all compact invariant set Λ of X we
define the stable set

W s(Λ) = {x ∈M : ω(x)⊂Λ}.
With this definition in mind one sees that

M =
k⋃

i=1

W s(Hi).

Since the Hi’s are disjoint one has that the above union is disjoint. Henceforth there
is some Λ = Hi0 whose stable set W s(Hi) has non-empty interior. Let us prove that
Λ is an attractor of X .
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Indeed, we can assume that Λ is a homoclinic class for otherwise it is a singu-
larity of X which must be attracting and we are done. In such a case Λ = H(O)
for all periodic orbit O⊂Λ . Pick an open set U ⊂W s(Λ). By the denseness of the
periodic orbits in Λ and the continuity of the stable manifolds of Λ we can assume
that W s(O0)∩U 6= /0 for some periodic orbit O0 ⊂ Λ . Pick q ∈W u(O0) and let V
be a fixed (but arbitrary) neighborhood of q in M. By the Inclination Lemma we can
assume that U ∩V 6= /0 and so W s(Λ)∩V 6= /0. This implies W s(O0)∩V 6= /0 since
Λ = H(O0). On the other hand, W u(O0)∩V 6= /0 since q∈W u(O0) and V is an open
neighborhood of q in M. Summarizing W s(O0)∩V 6= /0 and W u(O0)∩V 6= /0 for
all neighborhood V of q in M. Hence q ∈ Ω(X) by the Inclination Lemma. Con-
sequently W u(Oo) ⊂ Ω(X) and so W u(O0) ⊂ Λ . The last inclusion implies that Λ
is an attracting set. Since Λ is transitive we obtain that Λ is an attractor. The same
argument applied to −X implies that X has a repeller. ut

2.3 Properties of sectional-hyperbolic sets

Now we present some properties of the sectional-hyperbolic sets.

2.3.1 The splitting and the hyperbolic lemma

First we examine the sectional-hyperbolic splitting TΛ M = Es
Λ ⊕Ec

Λ of a sectional-
hyperbolic set Λ of X ∈X 1(M). Hereafter M will denote a compact manifold.

Lemma 2.1. If x ∈Λ \Sing(X), then X(x) 6∈ Es
x .

Proof. Suppose by contradiction that there is x0 ∈ Λ \ Sing(X) such that X(x0) ∈
Es

x0
. Then, X(x) ∈ Es

x for every x in the orbit of x0 since Es
Λ is invariant. So X(x) ∈

Es
x for every x ∈ α(x0) by continuity. It follows that ω(x) is a singularity for all

x ∈ α(x0). In particular, α(x0) contains a singularity σ which is necessary saddle-
type. Now we have two cases: α(x0) = {σ} or not. If α(x0) = {σ} then x0 ∈W u(σ).
For all t ∈ R define the unitary vector

vt =
DXt(x0)(X(x0))
|| DXt(x0)(X(x0)) || .

It follows that
vt ∈ TXt (x0)W

u(σ)∩Es
Xt (x0), ∀t ∈ R.

Take a sequence tn→ ∞ such that the sequence v−tn converges to v∞ (say). Clearly
v∞ is an unitary vector and, since X−tn(x0)→ σ and Es is continuous we obtain

v∞ ∈ TσW u(σ)∩Es
σ .
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Therefore v∞ is an unitary vector which is simultaneously expanded and contracted
by DXt(σ) a contradiction. This contradiction shows the result when α(x0) = {σ}.
If α(x0) 6= {σ} then (W u(σ)\{σ})∩α(x0) 6= /0. Pick x1 ∈ (W u(σ)\{σ})∩α(x0).
Clearly X(x1) ∈ Es

x1
and then we get a contradiction as in the first case replacing x0

by x1. This contradiction proves the lemma in the second case. ut
From this we have the following fundamental result.

Corollary 2.7. If σ ∈Λ ∩Sing(X), then Λ ∩W ss(σ) = {σ}.
Proof. Notice that Es

x = TxW ss(σ) for all x ∈W ss(σ). Moreover, W ss(σ) is an in-
variant manifold so X(x)∈ TxW ss(σ) for all x∈W ss(σ). We conclude that X(x)∈Es

x
for all x ∈W ss(σ) and now Lemma 2.1 applies. ut
Lemma 2.2. If x ∈Λ , then X(x) ∈ Ec

x .

Proof. The result is trivial if x ∈ Sing(X) so we can assume that x ∈Λ \Sing(X).
First suppose that x does not belong to W s(σ) for all σ ∈ Sing(X). Then, α(x)

has a regular point y. Take a sequence tn → ∞ such that X−tn(x)→ y. By Lemma
2.1 we have X(y) /∈ Es

y so the angle between X(y) and Es
y is positive. On the other

hand, X(X−tn(x))→ X(y) and Es
X−tn (x) → Es

y by continuity so the angle between
X(X−tn(x)) and Es

X−tn (x) is bounded away from 0 for n large. From this and the fact
that Es

Λ dominates Ec
Λ we conclude that the angle between DXtn(X−tn(x))(X(X−tn(x)))

and DXtn(E
c
X−tn (x)) converges to 0 as n→∞. But DXtn(X−tn(x))(X(X−tn(x))) = X(x)

and DXtn(E
c
X−tn (x)) = Ec

x therefore X(x) ∈ Ec
x as desired.

Now assume that x ∈W u(σ) for some σ ∈ Sing(X). Clearly TσW u(σ)∩Es
σ =

{0} hence TσW u(σ) ⊂ Ec
σ by dominance. So TxW u(σ) ⊂ Ec

x and then X(x) ∈ Ec
x

since X(x) ∈ TxW u(σ). This proves the lemma. ut
Now we prepare three lemmas for the proof of the hyperbolic lemma.
Let M be a compact manifold and X ∈X 1(M). Given q ∈M \ Sing(X) we de-

fine Nq as the orthogonal complement of EX
q and denote by Oq : TqM → Nq the

orthogonal projection. The following linear algebra lemma will be useful.

Lemma 2.3. If q ∈ M \ Sing(X) and Lq is a subspace of TqM such that EX
q ⊂ Lq,

then Oq(Lq) = Nq∩Lq.

Proof. Fix vq ∈ Lq. Since TM\Sing(X)M is a direct sum of NM\Sing(X) and EX
M\Sing(X)

we have vq = vN
q + vX

q for some vN
q ∈ Nq and vX

q ∈ EX
q . On the other hand, since

EX
q ⊂ Lq and vN

q = vq− vX
q we have vN

q ∈ Lq so vN
q ∈ Lq ∩Nq. Therefore, Oq(vq) =

vN
q ∈Nq∩Lq proving Oq(Lq)⊂Nq∩Lq. Conversely, if vq ∈Nq∩Lq then Oq(vq) = vq

so vq = Oq(vq + X(q)). Since vq ∈ Lq and X(q) ∈ EX
q ⊂ Lq we obtain vq ∈ Oq(Lq)

therefore Nq∩Lq ⊂ Oq(Lq). This concludes the proof. ut
If v ∈ Nq we denote by Pt(q)v the orthogonal projection of DXt(q)v over NXt (q).

In other words, Pt(q)v = OXt (q)(DXt(q)v). This defines a flow Pt in the fiber bundle
N→M \Sing(X) which is called the linear Poincaré flow.
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Given a non-singular invariant set Λ we define the fiber bundle NΛ =
⋃

q∈Λ Nq.
A subbundle GΛ of NΛ is called invariant if Pt(q)Gq = GXt (q) for all t ∈ R and
q ∈Λ . Using Lemma 2.3 we obtain a simple criterium for the invariance of certain
subbundles of NΛ under the Poincaré flow Pt .

Lemma 2.4. If LΛ is an Xt -invariant subbundle of TΛ M containing EX
Λ , then the

induced subbundle LΛ = NΛ ∩LΛ is Pt -invariant.

Proof. Fix q ∈ Λ and t ∈ R. Since LΛ is Xt -invariant we have from the hypothesis
that EX

Xt (q) ⊂ LXt (q) so OXt (q)(Ec
Xt (q)) = NXt (q)∩LXt (q) by Lemma 2.3. Therefore,

Pt(Lq) = OXt (q)(DXt(q)(Nq∩Lq))
= OXt (q)(DXt(q)(Nq)∩LXt (q))
= Pt(q)(Nq)∩OXt (q)(LXt (q))
= NXt (q)∩ (NXt (q)∩LXt (q))
= NXt (q)∩LXt (q) = LXt (q).

ut
We say that the Poincaré flow Pt is hyperbolic over Λ if there are a continuous

splitting NΛ = GΛ ⊕FΛ and positive constants k,λ such that

• NΛ = GΛ ⊕FΛ is Pt -invariant, i.e., both GΛ and FΛ are Pt -invariant.
• Pt contracts GΛ , i.e., ‖Pt(q)/Gq‖ ≤ ke−λ t for all t ≥ 0 and q ∈Λ .
• Pt expands FΛ , i.e., m(Pt(q)/Fq)≥ keλ t for all t ≥ 0 and q ∈Λ .

The following well-known lemma asserts the equivalence between the hyperbol-
icity of Λ as a non-singular compact invariant set of X and the hyperbolicity of the
Poincaré flow Pt over Λ .

Lemma 2.5. A necessary and sufficient condition for a non-singular compact in-
variant set to be hyperbolic is that the Poincaré flow be hyperbolic over it.

Proof. To prove the necessity assume that Λ is a non-singular hyperbolic set of X
with hyperbolic splitting TΛ M = Es

Λ ⊕EX
Λ ⊕Eu

Λ . Defining GΛ = (Es⊕EX )Λ and
FΛ = (EX ⊕Eu)Λ we obtain a continuous splitting NΛ = GΛ ⊕ FΛ which is Pt -
invariant by Lemma 2.4. Since Λ has no singularities we can easily see that GΛ
(resp. FΛ ) is contracted (resp. expanded) by Pt thus Pt is hyperbolic over Λ .

For the sufficiency, assume that Pt is hyperbolic over Λ and denote by NΛ =
GΛ ⊕ FΛ the corresponding splitting. Define the subbundles AΛ = GΛ ⊕ EX

Λ and
BΛ = EX

Λ ⊕FΛ over Λ . Let us see that both AΛ and BΛ are Xt -invariant. Indeed, if
x ∈ Λ and vx ∈ Ax then there is a unique vG

x ∈ Gx such that vx− vG
x ∈ EX

x . If t ∈ R
then DXt(x)vx−DXt(x)vG

x ∈ EX
Xt (x)

since EX
Λ is Xt -invariant so OXt (x)(DXt(x)vx) =

Pt(x)vG
x from which we get OXt (x)(DXt(x)vx) ∈ GXt (x) since GΛ is Pt -invariant.

As DXt(x)vx − OXt (x)(DXt(x)vx) ∈ EXt (x) by the definition of OXt (x) we obtain
DXt(x)vx ∈ GXt (x) ⊕ EXt (x) = AXt (x) therefore AΛ is Xt-invariant. Analogously for
BΛ . Finally, since Λ is compact and non-singular we can use conefields around GΛ
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to obtain a contracting subbundle Es
Λ in AΛ complementary to EX

Λ . Analogously we
obtain an unstable subbundle Eu

Λ in BΛ complementary to EX
Λ . Since NΛ = GΛ ⊕FΛ

we obtain TΛ M = Es
Λ ⊕EX

Λ ⊕Eu
Λ thus we obtain a hyperbolic splitting over Λ . ut

Now, let Λ be a sectional-hyperbolic set of X and define Λ ∗ = Λ \Sing(X). Then,
there is a natural subbundle FΛ∗ = (Ec)Λ∗ , i.e., FΛ∗ = NΛ∗ ∩Ec

Λ∗ where Ec
Λ is the

central subbundle of Λ . We observe that if q ∈Λ ∗ then EX
Xt (q) ⊂ Ec

Xt (q) for all t ∈ R
by Lemma 2.2 thus FΛ∗ is Pt-invariant by Lemma 2.4. Another property of FΛ∗ is
the following one.

Lemma 2.6. There are constants K,λ > 0 such that

m(Pt(x)/Fx) ·m(DXt(x)/EX
x )≥ Keλ t (2.1)

for all x ∈Λ ∗ and t > 0.

Proof. By sectional-hyperbolicity there are K,λ > 0 such that

|Det(DXt(x)/Lc
x)| ≥ Keλ t , (2.2)

for all t ≥ 0, x∈Λ and all two-dimensional subspace Lc
x of Ec

x . Fix x∈Λ ∗ and given
v,u ∈ TxM we let A(u,v) be the area of the parallelogram formed by u,v in TxM. If
u ∈ Fx and v ∈ EX

x we have
A(u,v) = ||v|| · ||v|| (2.3)

by orthogonality. From this we get

A(DXt(x)u,DXt(x)v) = ||Pt(x)u|| · ||DXt(x)v||, (2.4)

by the definition of Pt . But A(DXt(x)u,DXt(x)v) = |Det(DXt(x)/Lc
x)| ·A(u,v) where

Lc
x is the subspace generated by {u,v}. Since u ∈ Ec

x by definition and v ∈ Ec
x by

Lemma 2.2 we have Lc
x ⊂ Ec

x . So, applying (2.2), (2.3) and (2.4) we get

||Pt(x)u|| · ||DXt(x)v|| ≥ Keλ t ||u|| · ||v||.

Since u,v are arbitrary we get the result. ut
Now we have the following key result.

Lemma 2.7 (Hyperbolic lemma). Every compact invariant set without sin-
gularities of a sectional-hyperbolic set is hyperbolic.

Proof. Let Λ be a sectional-hyperbolic set of a vector field X on a compact manifold
M. Then, there is a constant A > 0 such that ||X(x)|| ≤ A for all x ∈M Let H ⊂ Λ
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be a compact invariant set without singularities of X . Then, there is B > 0 such that
||X(x)|| ≥ B for all x ∈ H. Therefore,

m(DXt(x)/EX
x ) =

∣∣∣∣
∣∣∣∣DXt(x)

X(x)
||X(x)||

∣∣∣∣
∣∣∣∣ =
||X(Xt(x))||
||X(x)|| ≤

A
B

, ∀x ∈ H,∀t > 0.

Now applying (2.1) we get

m(Pt(x)/Fx) · AB ≥ m(Pt(x)/Fx) ·m(DXt(x)/EX
x )≥ Keλ t

and so
m(Pt(x)/Fx)≥C · eλ t , ∀x ∈ H,∀t > 0,

where C = K
(B

A

)
> 0. Therefore Pt expands FH .

Define the splitting NH = GH ⊕FH where FH is as above and GH = NH ∩ (Es
H ⊕

EX
H). As already seem FH is Pt -invariant while it is clear from the definition that

GH = (Es⊕EX )H it is Pt-invariant by Lemma 2.4 since EX
H ⊂ Es

H ⊕EX
H . Clearly Pt

contracts GH so Lemma 2.5 applies. ut

2.3.2 The singularities and strong stable manifolds

Next we describe the singularities of a sectional-hyperbolic set. For this we intro-
duce the following definition. Denote by Re(·) the real part operation.

Definition 2.8. We say that singularity is Lorenz-like if it has three eigenval-
ues λ ss,λ s,λ u with λ s,λ u real and Re(λ ss) < λ s < 0 < −λ s < λ u such that
the real part of the remainder eigenvalues is outside [λ s,λ u].

In the present case of 3-manifolds M this definition reduces to say that the singu-
larity has real eigenvalues which, up to some order λ1,λ2,λ3, satisfy the eigenvalue
relation λ2 < λ3 < 0 <−λ3 < λ1.

Hereafter Λ will denote a sectional-hyperbolic set of X ∈X 1(M). For simplicity
we restrict ourself to the case dim(M) = 3. We also assume that Λ is connected and
non-trivial.

The following lemma presents an elementary dichotomy for the singularities of
a sectional-Anosov flow.

Lemma 2.8. Every singularity of X in Λ is Lorenz-like or has two positive eigen-
values.

Proof. Denote by TΛ M = Es
Λ⊕Ec

Λ the sectional-hyperbolic splitting. By Lemma 2.2
we have X(x) ∈ Ec

x and so dim(Es
x) = 1 for every x ∈Λ . In particular dim(Es

σ ) = 1
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hence σ has a (strong) contracting eigenvalue λ2 < 0. If σ has only one contracting
eigenvalue, then σ has two positive eigenvalues and we are done in this case. So, we
can assume that σ has another negative eigenvalue λ3. Clearly one has λ2 < λ3 < 0
by dominance. Since dim(M) = 3 and no singularity in a singular-hyperbolic set
can be attracting (by the sectional expanding condition) we have that there is a third
eigenvalue λ2 < λ3 < 0 < λ1 of σ . It follows from the volume expanding condition
that −λ3 < λ1. In this case we have that σ is Lorenz-like and we are done. ut

Afterward we study the local strong stable manifolds through a point x of a
sectional-hyperbolic set. By a local strong stable manifold we mean an ε-ball W ss

ε (x)
in W ss(x) centered at x for some ε > 0. These manifolds exists through any point
of a sectional-hyperbolic set. The original proof of the results in this section can be
found in [96]. We start with an useful lemma.

Lemma 2.9. Let M be a compact manifold and X ∈X 1(M). If q∈M and H ⊂ω(q)
is a hyperbolic set containing a local strong stable manifold, then q ∈ H and H is a
hyperbolic repeller. In particular, q is recurrent.

Proof. Let THM = Es
H ⊕EX

H ⊕Eu
H be a hyperbolic set with hyperbolic splitting of

H. Assume that H contains a local strong stable manifold W ss
ε∗(x

∗) through some
x∗ ∈ H. The continuity of x 7→W ss

ε∗(x) implies

W ss
ε∗(y)⊂ H, ∀y ∈ α(x∗). (2.5)

Fix y ∈ α(x∗) thus W ss
ε∗(y) ⊂ H. According to Lemma 4.1 p. 127 in [69] there is

∆ > 0 satisfying

H
⋂

Int


 ⋃

t∈[−∆ ,∆ ]

⋃

z∈Xt (W ss
ε∗ (y))

W uu(z)


 6= /0,

where Int(·) is the interior in M. But H ⊂ω(q) so there are arbitrarily large numbers
t > 0 satisfying

Xt(q) ∈ Int


 ⋃

t∈[−∆ ,∆ ]

⋃

z∈Xt (W ss
ε∗ (y))

W uu(z)


 .

It then follows that the negative orbit of Xt(q) is asymptotic to the negative orbit of
some point in H. Consequently q ∈ H so ω(q) = H.

Since H is hyperbolic, ω(q) = H and y ∈ H we can apply the shadowing lemma
for flows (Theorem 2.4) to a pseudo-orbit derived from the positive orbit of q to find
a periodic orbit O with large unstable manifold W u(O) nearby W ss

ε∗(y). In particular,
W u(O) intersects W ss

ε∗(y) transversally, so, W s(O)⊂H by the Inclination lemma [87]
applied to the backward orbit of W ss

ε∗(q). From this we get Cl(W s(O))⊂ ω(q) since
ω(q) is compact invariant. Therefore Cl(W s(O)) is a hyperbolic set contained in
ω(q) which can be used to construct a hyperbolic repeller inside ω(q). So, ω(q) =
Cl(W s(O)) = H is a hyperbolic repeller containing q and the result follows. ut
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Theorem 2.9. Let M be a compact manifold and X ∈X 1(M). If q ∈M and
ω(q) is a sectional-hyperbolic set with singularities of X, then ω(q) cannot
contain any local strong stable manifold.

Proof. For simplicity we write Λ = ω(q). Denote by TΛ M = Es
Λ ⊕Ec

Λ the sectional-
hyperbolic splitting over Λ . Denote also by dim(Es

Λ ) and dim(Ec
Λ ) the dimension of

the subbundles Es
Λ and Ec

Λ respectively. We have that the set-valued map x ∈ Λ 7→
W ss

δ (x) is continuous for all fixed δ > 0.
Assume by contradiction that Λ contains a local strong stable manifold W s

ε (x)
where x ∈Λ . Fix 0 < ε∗ < ε and define

H =
{

y = lim
n→∞

Xtn(zn) for some sequences tn→−∞ and zn ∈W ss
ε∗(x

∗)
}

.

Clearly H is compact invariant and H ⊂ Λ since Λ is invariant and W ss
ε∗(x

∗) ⊂
W ss

ε (x∗)⊂Λ . We shall obtain the contradiction depending on whether H contains a
singularity or not.

If H contains a singularity σ , then there are sequences tn→−∞ and zn ∈W ss
ε∗(x

∗)
such that

σ = lim
n→∞

Xtn(zn).

Since 0 < ε∗ < ε we can choose δ > 0 such that

W ss
δ (zn)⊂W ss

ε (x∗), ∀n ∈ N.

Then, since W ss(Λ) is contracting and W ss
ε (x∗)⊂Λ one has

W ss
δ (Xtn(zn))⊂Λ , ∀n ∈ N.

Taking limit as n→∞ and using the fact that Λ is closed and the map z→W ss
δ (z) is

continuous one has W ss
δ (σ) ⊂ Λ . Therefore Λ ∩W ss

δ (σ) = W ss
δ (σ) which together

with Corollary 2.7 would imply W ss
δ (σ) = {σ}, an absurdity since W ss

δ (σ) is a
neighborhood of σ in W ss(σ). This gives the desired contradiction if H contains a
singularity.

If H contains no singularities, then H is hyperbolic by the hyperbolic lemma.
Consequently q ∈ H by Lemma 2.9 and so Λ = H which is absurd since Λ has
singularities and H does not. This contradiction proves the result. ut

Let us derive some corollaries of Theorem 2.9. The first one is motivated by
Proposition 5.5 in [32] in which it is proved that a transitive, isolated, hyperbolic set
containining a local strong stable manifold W ss

ε (x) is a hyperbolic repeller. Indeed,
we obtain the same conclusion but for sectional-hyperbolic sets. More precisely we
have the following.

Corollary 2.10. A transitive, isolated, sectional-hyperbolic set containing a local
strong stable manifold of a vector field on a compact manifold is a hyperbolic



2.3 Properties of sectional-hyperbolic sets 71

saddle-type repeller. Hence the hyperbolic saddle-type repellers are the sole re-
pellers which are sectional-hyperbolic sets.

Proof. If the set under consideration has a singularity, then it cannot contain any lo-
cal strong stable manifold by Theorem 2.9. But this is against the hypothesis hence
such a set is non-singular so hyperbolic. Then the conclusion follows from the afore-
mentioned proposition in [32]. The last part follows immediately from the first. ut

Recall that a subset of a manifold is proper if it is not the whole manifold.

Corollary 2.11. A proper, transitive, sectional-hyperbolic set of a vector field on a
compact manifold has empty interior.

Proof. If a proper, transitive, sectional-hyperbolic set has no singularities, then it is
hyperbolic by the hyperbolic lemma so it has no interior by well known result (e.g.
Theorem 1 in [1]). If it has singularities and some interior point, then it would con-
tain also some local strong stable manifold against Theorem 2.9. This contradiction
proves the result. ut

Remember that a metric space Λ has topological dimension dim(Λ) if it is empty,
and dim(Λ) =−1, or it is non-empty and dim(Λ) is the last integer for which every
point has arbitrarily small neighborhoods whose boundaries have dimension less
than dim(Λ) (see [70]). The topological dimension of a compact invariant set with-
out singularities on a transitive singular-hyperbolic set in dimension three has been
computed to be 1 in [101].

Corollary 2.12. A proper, transitive, sectional-hyperbolic set of a vector field on a
compact n-manifold has topological dimension ≤ n−1.

Proof. The proof is a direct consequence of Corollary 2.11 and Corollary 1 p. 46 in
[70]. ut

2.3.3 Singular partitions for sectional-hyperbolic sets

We continue with existence results whose main ideas come from [103].
Let X denote a vector field on a compact 3-manifold M. A rectangle of X is a

cross section D diffeomorphic to [0,1]× [0,1]. In this case ∂D consists of two parts
∂D = ∂ vD∪∂ hD in a way that ∂ vD = Dl

v∪Dr
v and ∂ hD = Dt

h∪Db
h, where the curves

Di
v (i ∈ {l,r}) and Di

h (i = t,b) are as in Figure 2.3. We always assume that ID, the
image of 0× [0,1], is a curve tangent to the centre direction T D∩Ec. Here T D
denotes the tangent space of D.

In the case when there is a stable foliation W s for X (e.g. in a neighborhood of a
sectional-hyperbolic set of X) we can define a continuous one-dimensional foliation
F s = {F s(x,D) : x ∈ D} in a rectangle D by intersecting the leaves of W s with D.
We then say that a rectangle D is a foliated rectangle if the leaves of F s have the
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form ∗× [0,1] up to identification. In such a case ∂ vD is formed by leaves of F s

while ∂ hD is transverse to F s.
The following result about existence of singular partitions is based on the follow-

ing definition.

Definition 2.13. Given Σ ⊂ M we say that q ∈ M satisfies Property (P)Σ
if Cl(O+(q))∩ Σ = /0 and there is open arc I in M with q ∈ ∂ I such that
O+(x)∩Σ 6= /0 for every x ∈ I.

Again M will denote a compact 3-manifold and X ∈X 1(M). The closure and
boundary operations will be denoted by Cl(·) and ∂ (·) respectively.

Theorem 2.14. Let M be a compact 3-manifold, X ∈ X 1(M) and q ∈ M
be a point satisfying (P)Σ for some closed subset Σ . If ω(q) is sectional-
hyperbolic, then ω(q) has singular partitions of arbitrarily small size.

Proof. By Proposition 1.50 it suffices to show that for all z ∈ ω(q) regular there is
a cross section Σz such that z ∈ Int(Σz) and ω(q)∩∂Σz = /0. Fix z ∈ ω(q) regular.

We claim that ω(x)∩W ss(z) has empty interior in W ss(z). Indeed, if ω(q) has
a singularity, then the result follows from Theorem 2.9. Otherwise ω(q) would
contain a local strong stable manifold and so it would be a hyperbolic repeller by
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Lemma 2.9. But since q satisfies (P)Σ we have that the hyperbolic repeller ω(q)
accumulates W s(q) by one-side only. Therefore W s(q) is what is called a stable
boundary leaf of ω(q) (see [23]). As such leaves are formed by stable manifolds of
periodic orbits (e.g. Lemme 1.6 p. 129 in [23] applied to −X) we conclude that q
belongs to the stable manifold of a periodic orbit. It then follows that ω(q) is a pe-
riodic orbit, a contradiction since it contains the two-dimensional manifold W s(q).
This proves the claim.

By the claim we can fix a foliated rectangle of small diameter R0
z such that z ∈

Int(R0
z ) and ω(x)∩∂ hR0

z = /0. If the positive orbit of x intersects F s(z,R0
z ) infinitelty

many times we would have as in Theroem 4.24 that ω(x) is a periodic orbit in whose
case the result is trivial. Therefore, we can assume that the positive orbit of q does
not intersect F s(z,R0

z ). Then, it intersects either only one or the two connected
components of R0

z \F s(z,R0
z ). We shall assume that it does in one component only.

The proof for the other case is similar.
Let I be the interval in the definition of Property (P)Σ . The positive orbit of q

carries the positive orbit of I into that component. Hence we can assume that I
itself is contained in R0

z . We have that I defines a subrectangle RI in R0
z formed

by the stable leaves in Ro
z intersecting I. We clearly have that ω(q)∩ Int(RI) for

otherwise it would exist a point x ∈ I whose positive orbit is asymptotic to that
of q in whose case O+(x)∩Σ contradicting (P)Σ . Take z′ ∈ Int(RI) and z′′ in the
component of R0

z \F s(z,R0
z ) which does not intersect the positive orbit of q. Hence

the subrectangle Σz bounded by F s(z′,R0
z ) and F s(z′′,R0

z ) satisfies the required
properties. This finishes the proof. ut

Again M will denote a compact 3-manifold and X ∈X 1(M). The length of an
arc J will be denoted by Length(J).

Theorem 2.15. Let q ∈ M with sectional-hyperbolic omega-limit set ω(q)
and TU M = Ês

U ⊕ Êc
U be a continuous extension of the sectional-hyperbolic

splitting Tω(q)M = Es
ω(q)⊕Ec

ω(q) of ω(q) to a neighborhood U of ω(q). Let I

be an arc tangent to Êc
U , transverse to X, with q as boundary point. If ω(q)

is not a singularity, then for every singular partition R of H there are S ∈
R, δ > 0, a sequence q̂1, q̂2, · · · ∈ S of points in the positive orbit of q and
a sequence of intervals Ĵ1, Ĵ2, · · · ⊂ S in the positive orbit of I with q̂ j as a
boundary point of Ĵ j (∀ j) such that

Length(Ĵ j)≥ δ , ∀ j = 1,2,3, · · · .

Proof. Since ω(q) is sectional-hyperbolic and not a singularity we have that ev-
ery singularity in ω(q) is Lorenz-like, and so, they have one-dimensional unstable
manifold. Then, Lemma 1.20 applied to R implies that the return map Π = ΠR

associated to R satisfies the following properties:
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(A) O+
X (q) ∩R = {q1,q2, · · ·} is an infinite sequence ordered in a way that

Π(qi) = qi+1.
(B) There is δ > 0 such that if n ∈ {1,2, · · ·} then either Bδ (qn) ⊂ Dom(Π) and

Π/Bδ (qn) is C1 or there is a curve cn ⊂W s
X (Sing(X)∩ω(q))∩Bδ (qn) such that

B+
δ (qn)⊂ Dom(Π) and Π/B+

δ (qn) is C1,

where B+
δ (qn) denotes the connected component of Bδ (qn)\ cn containing qn.

We shall assume the second alternative in (B) since the first one is easier to
handle.

We can assume that there is i0 large such that qi ∈ Int(R) for all i≥ i0. Otherwise
ω(q)∩∂R 6= /0 and we get a contradiction because R is a singular-partition of ω(q)
(see Definition 1.49). We can assume i0 = 1 without loss of generality. By (A) there
is a sequence n1,n2, · · · ∈ {1, · · · ,k} such that

qi ∈ Sni , ∀i.

By using the positive orbit of I we can assume

I ⊂ Sn1 ∩Dom(Π).

By shrinking I if necessary we can further assume that I1 ⊂ Int(B+
δ (q1)), where δ

comes from (B).
Define I1 = I and, inductively, the interval sequence Ii = Π(Ii−1) = Π i(I) as long

as Ii−1 = Π i−1(I)⊂ Bδ (qi−1).
Now we recall I is tangent to Êc

Λ and transverse to X by hypothesis. Then, the
volume expansivity of Ec

Λ implies that Π is expanding along I (see [110] p. 370).
Therefore the sequence Ii = Π(Ii−1) satisfies Length(Ii)→ ∞ if Ii ⊂ B+

δ (qi) for
all i. Since the elements of R have finite diameter we conclude that there is a first
index i1 such that

Ii1 6⊂ B+
δ (qi1).

On the other hand, the positive orbits starting in Ii1 meet Σ by (P)Σ while the
ones in ci do not for they go to Sing(X)∩ω(q) by (B). From this we conclude that

Ii1 ∩ ci1 = /0.

Therefore, the connected component Ji1 of Ii1 ∩Bδ (qi1) containing qi1 joints qi1 to
some point in ∂Bδ (qi1). This last assertion implies

Length(Ji1)≥ δ .

In conclusion we have found an index i1 and an interval Ji1 ⊂ Ii1 (and so in the
positive orbit of I) such that qi1 is a boundary point of Ji1 and Length(Ji1)≥ δ .

Repeating the argument we get a sequence i1, i2, · · · ∈ {1, · · · ,k}, a sequence of
points qi1 ,qi2 , · · · with qi j ∈ Si j , and a sequence of intervals Ji j ⊂ Si j in the positive
orbit of I such that qi j is a boundary point of Ji j and Length(Ji j)≥ δ .
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As {1, · · · ,k} is a finite set and contains i j we can assume that i j = r for some
fixed index r ∈ {1, · · · ,k}. Denoting S = Sr, q̂ j = qi j and Ĵ j = Ji j we get the result.

ut





Chapter 3
Anosov and sectional-Anosov flows: definition
and examples

In this chapter we introduce the definition of Anosov and sectional-Anosov flows.
Actually we introduced the Anosov group actions including Anosov diffeomor-
phisms and flows. Afterward we present examples of Anosov systems which clarify
the underliying definitions. We finish this chapter with some examples of sectional-
Anosov flows.

3.1 Definition of Anosov flows

We start with the general definition of Anosov flows.

Definition 3.1. An Anosov flow is a vector field for which the ambient mani-
fold is a hyperbolic set.

3.2 Examples

In this section we introduce some examples of Anosov flows.

3.2.1 Suspended Anosov flows

First we recall the definition of Anosov diffeomorphism.

77
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Definition 3.2. A diffeomorphism f : M → M of a manifold M is Anosov if
there are a continuous splitting

T M = Es⊕Eu,

such that the following properties hold:

1. Es and Eu are invariant for f , namely D f (x)Eσ
x = Eσ

f (x) (σ = u,s), for
all x ∈M.

2. ∃c, λ > 0 such that ∀x ∈M
{
• ||D f n(x)/Es

x|| ≤ ce−λn, ∀n ∈ N
• ||D f n(x)/Eu

x || ≥ c−1 eλn, ∀n ∈ N

An example of an Anosov diffeomorphism is as follows. Consider the linear map

Â =
(

2 1
1 1

)
: R2→R2. Since det(Â) = 1 we have that Â(Z2) = Z2 (note that Â has

integer entries). So, there is a diffeomorphism A = T 2 =R2/Z2→ T 2 which makes
the diagram below to commute

R2 Â−−−−→ R2

π
y

yπ

T 2 A−−−−→ T 2

Here π : R2→ T 2 is the natural projection.

Proposition 3.3. A is Anosov .

Proof. It suffices to show that Â is Anosov. The eigenvalues of Â are given by

X2− tr ÂX +det Â = 0⇔ X2−3X +1 = 0

⇒ X =
3±√5

2

{
λu = 3+

√
5

2

λs = 3−√5
2

= 0 < λs < 1 < λu

Let Eσ
0 be the eigenspace associate to λσ (σ = s,u). We set for every z ∈ R2

Eσ
z = z+Eσ

0 , σ = s,u

Since R2 = Es
0⊕Eu

0 we have
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TzR2 = Es
t ⊕Eu

z ∀ t ∈ R2

In addition,

DÂ(z)(Eσ
z ) = Â(z+Eσ

0 ) = Â(z)+ Â(Eσ
0 )

= Â(z)+Eσ
0 = Eσ

A(z)

∴ TR2 = Es⊕Eu is invariant.

Onto finishes, fix vσ
z ∈ Eσ

z ∴ vσ
z = z+ vσ

0 for some vσ
0 ∈ Eσ

0 and ||vσ
z ||z = ||vσ

0
(|| · ||z is the norm in TzR2). Moreover,

DÂ(z)(vσ
z ) = Â(z+ vσ

0 ) = Â(z)+ Â(vσ
0 )

= Â(z)+λσ · vσ
0

∴
||DÂ(z)(vσ

z )||Â(z) = λσ ||vσ
0 ||= λσ ||vσ

z ||z
Hence

• ||DÂ(z)(vs
z)||Â(t) = λs||vs

z||z
• ||DÂ(z)(vu

z )||Â(z) = λu||vs
z||t

Proving that Es (resp. Eu) is contracting (resp. expanding) since 0 < λs < 1 < λu.
ut

Next we prove the following result.

Proposition 3.4. If f is an Anosov diffeomorphism on a manifold M, then the sus-

pended flow X f is Anosov .

Proof. Denote by T M = Ês⊕ Êu the splitting associated to f . Define the splitting

T Mt = Es⊕E0⊕Eu.

For (0,x) ∈ 0×M we set

Es
(0,x) = Ês

x ; Eu
0,x) = Êx

(We use here the obvious identification T (0×M) = T M). For (t,x) ∈ [0,1]×M we
set {

Es
(t,x) = DX f

t (0,x)(Ês
x);

Eu
(t,x) = DX t

t (0,x)(Êu
x ).

The splitting is well defined an invariant since f preserves the splitting TxM =
Êu

x ⊕ Ês
x (note that the return map of X f in 0×M 'M is f ). Let us prove that Es is

contracting. Observe that Es
(t0,x) = DX f

t0(x)(Ê
s
x) by definition. Hence,
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M

TM

x

x

(x,t)

DX
f
t

s
Ê u
x

Ê x E s
x

E u
x

(x,t)

Fig. 3.1

DX f
−t0(t0,x)(E

2
(t0,x)) = Ês

x

by taking inverse. Fix t > 0 then

DX t
t (t0,x) = DX f

t+t0−t0(t0,x) = DX f
t0+t(x) ·DX f

−t0(t0,x)

∴ DX f
t (t0,x)/Es

t0,x) = DX f
t+t0(x)/Ês

x

By this formula we can assume that t0 = 0 i.e. (t0,x) ∈ 0×M. Set t = [t] + r,
r ∈ [0,1) where [·] denotes integer part. By definition we have

X t
[t] = f [t] in O×M

then,

DX f
t (x) = DX f

[t](x) = DX f
r ( f [t](x)) ·D f [y](x)

∴ ||DX f
t (x)

/
Ês

x|| ≤ ||DX f
r ( f [t](x))|| · ||D f [t](x)

/
Ês

x|| ≤ K.c.e[t] logλ λ ∈ (0,1)

∴ Es is contracting. Analogously we prove that Eu is expanding. ut
In analogy with the previous construction we can construct a suspension with

“variable time”. Set ϕ : M→ R be smooth positive bounded map we set

M(ϕ) = {(t,x) : 0≤ t ≤ ϕ(x);x ∈M}.

The quocient space

M f (ϕ) = M(ϕ)/(ϕ(x),x)' (0, f (x))



3.2 Examples 81

is equipped with the vector field Xϕ , f induce by the trivial vector field (t,x) 7→ ∂
∂v
∼=

(1,0) in M(ϕ).

Proposition 3.5. If f is Anosov, then Xϕ , f also is.

Proposition 3.6. An Anosov flow X on M is suspended if and only if there is a closed
codimension 1 submanifold S |∩X in M intersecting every orbit of X. In particular,
all suspended Anosov flows are topologically equivalent to Xϕ, f for some ϕ, f and
viceversa.

3.2.2 Geodesic flows

Let M be a closed manifold equipped with a Riemannian metric 〈·, ·〉. Denote by
∇ the Riemannian connection of M, namely, the unique connection of the tangent
bundle Π : T M→M which is symmetric and compatible with 〈·, ·〉. A vector field
along a curve c(t) on M is a map V assigning to each t a tangent vector V (t)∈ Tc(t)M.
In particular, the derivative c′(t) of c(t) is a vector field along c(t). A vector field
V (t) along c(t) is parallel if DV

dt (t) = 0 for all t where DV
dt (t) = ∇c′(t)V is the covariant

derivative induced by ∇. As is well known for every curve c : (−ε,ε)→ M and
every tangent vector v ∈ Tc(0)M there is a parallel vector field Wv(t) along c(t) with
Wv(0) = v called the parallel transport of v along c(t). A geodesic of M is a curve
whose derivative is a parallel vector field along itself. It is also well known that for
every θ ∈ T M there is a unique geodesic γθ (t) with γ ′θ (0) = θ . When γ is a geodesic
we obtain

‖γ ′(t)‖
dt

= 2
〈

Dγ
dt

(t),γ ′(t)
〉

= 0

thus ‖γ ′(t)‖= ‖γ ′(0)‖ for all t. In particular, ‖γ ′θ (t)‖= ‖θ‖ for all t.

Define the geodesic flow as the vector field G in T M with flow Gt(θ) = γ ′θ (t).
From the above remarks we see that G is tangent to the unitary tangent bundle
of M, that is, the submanifold T1M = {θ ∈ T M : ‖θ‖= 1} of T M.

Now we introduce the concept of sectional curvature of M. Denote by R the
Riemann tensor of M which assigns to each triple of C∞ vector fields X ,Y,Z in M
the C∞ vector field R(X ,Y )Z defined by

R(X ,Y )Z = ∇Y ∇X Z−∇X ∇Y Z +∇[X ,Y ]Z.

A direct computation shows that R is a tensor field, that is, R is additive in each
variable separately and satisfies R( f X ,Y )Z = R(X , fY )Z = R(X ,Y ) f Z = f R(X ,Y )Z
for all X ,Y,Z and all C∞ real valued map f of M. From this it follows that for every
triple of tangent vectors Xp,Yp,Zp ∈ TpM with p∈M the number R(Xp,Yp)Zp is well
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defined by R(Xp,Yp)Zp = R(X ,Y )Z(p) where X ,Y,Z are vector fields with X(p) =
Xp,Y (p) = Yp and Z(p) = Zp. This allows us to define the sectional curvature of M
as the map κ which assigns to each p ∈M and each plane σp ⊂ TpM the number

κ(σp) =
〈R(Xp,Yp)Xp,Yp〉

‖Xp‖2‖Yp‖2−〈Xp,Yp〉2

where Xp,Yp is a base of σp. It turns out that the value of κ(σp) does not depend on
the chosen base Xp,Yp of σp.

We say that the Riemannain manifold M has negative sectional curvature if
κ(σp) < 0 for all p ∈M and all plane σp ⊂ TpM.

Now we state the following result which according to some authors is due to
Cartan, Hadamard and Lobachevskii.

Theorem 3.7. The geodesic flow restricted to the unitary tangent bundle of a
closed manifold with negative sectional curvature is Anosov.

Proof. To simplify the exposition we prove this result for manifolds M with constant
sectional curvature, i.e., the value κ(σp) = κ independs on p ∈M and σp ⊂ TpM.

Consider the derivative DΠ : T T M→ T M of the tangent bundle projection Π :
T M→M. A first remark is that

DΠ(G(θ)) = θ , ∀θ ∈ T M. (3.1)

Indeed, DΠ(G(θ)) = (Π ◦ z)(0) where z(t) is a curve in T M with velocity G(θ) at
t = 0. We can just choose z(t) = Gt(θ) = γ ′θ (t) to obtain

DΠ(G(θ)) =
d
dt

∣∣∣∣
t=0

[Π(γ ′θ (t)] = γ ′θ (0) = θ .

We shall call a vector ξ ∈ T T M horizontal if DΠ(ξ ) = 0. Clearly the set of all
vertical vectors H in T T M is a vector bundle H over T M with fiber H(θ) = {ξ ∈
Tθ T M : DΠ(ξ ) = 0}. Hereafter we write DΠ(θ)ξ instead of DΠ(ξ ) in order to
emphasize the base point θ of ξ .

Now we use the Riemannian connection ∇ to define horizontal vectors in T T M.
First define the connection map K : T T M→ T M by

K(ξ ) = ∇(Π◦z)′(0)z,

where z(t) is a curve in T M with velocity ξ at t = 0. It is a routine exercice to
prove that the value of K(ξ ) independs on the chosen curve z. It turns out that
K(θ) : Tθ T M→ TΠ(θ)M is linear. Now we say that ξ is horizontal if K(ξ ) = 0. For
instance, G(θ) is a horizontal vector for all θ ∈ T M. Indeed, choosing z(t) = Gt(θ)
as above we see that
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K(G(θ)) = ∇ d
dt |t=0[Π(γ ′θ (t))]γ

′
θ = ∇γ ′θ (0)γ

′
θ = 0

since γθ (t) is a geodesic. Again we write K(θ)ξ instead of K(ξ ) to emphasize the
base point θ . We have a vector bundle V → T M with fiber V (θ) = {ξ ∈ Tθ T M :
K(θ)ξ = 0} inducing the direct sum of vector bundles

T T M = H⊕V.

Moreover, the linear maps K(θ) : V (θ)→ TΠ(θ)M and DΠ(θ) : H(θ)→ TΠ(θ)M
are linear isomorphisms.

We have the identity

Tθ T1M = {ξ ∈ Tθ T M : 〈K(θ)ξ ,θ〉= 0}, ∀θ ∈ T1M. (3.2)

Indeed, if ξ ∈ Tθ T1M, then there is a curve z(t) in T1M with velocity ξ at t = 0.
Since z(t) ∈ T1M we have 〈z(t),z(t)〉= 1 for all t and then

0 =
d
dt

∣∣∣∣
t=0
〈z(t),z(t)〉= 2〈K(θ)ξ ,θ〉.

Going into the reversed direction we get (3.2). Since K(θ)ξ = 0 for horizontal vec-
tors ξ we immediately get the inclusion

H(θ)⊂ Tθ T1M, ∀θ ∈ T1M. (3.3)

Next we introduce the so-called Sasaki metric in T T M which is nothing but the
metric that makes the above direct sum orthogonal, namely,

〈〈ξ ,η〉〉= 〈DΠ(θ)ξ ,DΠ(θ)η〉+〈K(θ)ξ ,K(θ)η〉, ∀θ ∈ T M,∀ξ ,η ∈ Tθ T M.

Define S as the orthogonal complement of the geodesic field G in T1M with respect
to the Sasaki metric. It turns out that S is a subbundle of T T1M whose fiber S(θ) at
θ ∈ T1M is given by

S(θ) = {ξ ∈ Tθ T1M : 〈〈ξ ,G(θ)〉〉= 0}.

We clearly have
T T1M = S⊕EG, (3.4)

where EG is the one-dimensional subbundle of T T1M generated by the geodesic
field G. Next we define the subbundles Es,Eu of S by

Es =
{

ξ ∈ S : DΠ(ξ ) =−K(ξ )√−κ

}
and Eu =

{
ξ ∈ S : DΠ(ξ ) =

K(ξ )√−κ

}
.

Let us prove the direct sum decomposition

S = Es⊕Eu. (3.5)
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If ξ ∈ Es
θ ∩Eu

θ then

DΠ(θ)ξ =−K(θ)ξ√−κ
=

K(θ)ξ√−κ

yielding K(θ)ξ = 0 and so DΠ(θ)ξ = 0. Therefore ξ is simultaneously horizontal
and vertical hence ξ = 0. This proves Es

θ ∩Eu
θ = {0}. It remains to prove S(θ) =

Es
θ + Eu

θ . Take ξh ∈ S(θ)∩H(θ). In particular, K(θ)ξh = 0. Since K(θ) restricted
to V (θ) is an isomorphism onto TΠ(θ)M which in turn contains

√−κDΠ(θ)ξh we
have that there is a unique η ∈V (θ) such that K(θ)η =

√−κDΠ(θ)ξh. Since

〈K(θ)η ,θ〉=√−κ〈DΠ(θ)ξh,θ〉=
√−κ〈〈ξh,G(θ)〉〉= 0

for ξh ∈ S(θ) we get η ∈ Tθ T1M (recall (3.2)). As

〈〈η ,G(θ)〉〉= 〈DΠ(θ)η ,θ〉= 〈0,θ〉= 0

for η is vertical we get η ∈ S(θ). If now ξ u = ηh+η
2 then ξ u ∈ S(θ) and

DΠ(θ)ξ u = DΠ(θ)
ηh +η

2
=

DΠ(θ)ξh

2
=

K(θ)η
2
√−κ

=
K(θ)( ξh+η

2 )√−κ
=

K(θ)ξ u
√−κ

proving ξ u ∈ Eu
θ . Setting ξ s = ξh−η

2 ∈ S(θ) an analogous computation shows ξ s ∈
Es

θ and then ξh = ξ s +ξ u ∈ Es
θ +Eu

θ proving

S(θ)∩H(θ)⊂ Es
θ +Eu

θ .

Analogously we prove
S(θ)∩V (θ)⊂ Es

θ +Eu
θ .

But now we observe that

S(θ) = (S(θ)∩H(θ))+(S(θ)+V (θ))

for if ξ ∈ S(θ), then ξ = ξh + ξv for unique (ξh,ξv) ∈ H(θ)×V (θ) and we have
ξh ∈ H(θ)⊂ Tθ T1M by (3.3). Moreover,

0 = 〈〈ξ ,G(θ)〉〉= 〈〈ξh,G(θ)〉〉+ 〈〈ξh,G(θ)〉〉= 〈〈ξh,G(θ)〉〉

since G(θ) is horizontal, so, 〈〈ξh,G(θ)〉〉= 0 proving ξh ∈ S(θ). Thus ξh ∈ S(θ)∩
H(θ) and then ξv = ξ − ξh ∈ S(θ) yielding ξv ∈ S(θ)∩V (θ). This suffices. We
therefore obtain

S(θ) = (S(θ)∩H(θ))+(S(θ)∩V (θ))⊂ Es
θ +Eu

θ

yielding (3.5). Applying it and (3.4) we get the splitting

T T1M = Es⊕EG⊕Eu.
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The final step consists of proving that this is a hyperbolic splitting for the
geodesic field restricted to T1M. For this purpose we shall use the following def-
inition. Given ξ ∈ T T M we define the curve Jξ (t) by

Jξ (t) = DΠ(Gt(θ))(DGt(θ)ξ ) whenever ξ ∈ Tθ T M

We shall analyze these curves when θ ∈ T1M. For simplicity we write J and γ isntead
of Jξ and γθ . First we remark that J(t) is a vector field along the geodesic γ(t).
Moreover,

J(t) =
∂
∂ s

∣∣∣∣
s=0

(Π ◦Gt ◦ z)(s),

where z(s) is a curve in T1M with velocity ξ at s = 0. So,

DJ
dt

(t) =
D
dt

∂
∂ s

∣∣∣∣
s=0

(Π ◦Gt ◦ z)(s) =
D
ds

∣∣∣∣
s=0

∂
∂ t

(π ◦Gt ◦ z)(s) =

D
ds

∣∣∣∣
s=0

∂
∂ t

[γz(s)(t)] =
D
ds

∣∣∣∣
s=0

Gt(z(s)).

Derivating again and taking into account well known properties of the Riemann
tensor R we get

D2J
dt2 (t)=

D
dt

D
ds

∣∣∣∣
s=0

Gt(z(s))=
D
ds

∣∣∣∣
s=0

D
dt

Gt(z(s))+R
(

∂
∂ s

∣∣∣∣
s=0

[γz(s)(t)],γ ′(t)
)

γ ′(t).

Now we observe that Gt(z(s)) = γz(s)(t) is a geodesic, for fixed s, so D
dt Gt(z(s)) = 0.

Replacing above we get

D2J
d2 (t) = R

(
∂
∂ s

∣∣∣∣
s=0

[γz(s)(t)],γ ′(t)
)

γ ′(t).

But (Π ◦Gt ◦ z)(s) = γz(s)(t) so J(t) = ∂
∂ t [γz(s)(t)] and then J(t) is the solution of

following initial-value problem known as Jacobi equation:




D2J
dt2 (t)+R(γ ′(t),J(t))γ ′(t) = 0

J(0) = DΠ(θ)ξ
J̇(0) = K(θ)ξ

(3.6)

where γ = γθ and J̇(0)
de f
= DJ

dt (0).
We claim that if ξ ∈ S(θ), then the solution J(t) of (3.6) is orthogonal to γ(t),

i.e., 〈J(t),γ ′(t)〉= 0 for all t. To see it define the auxiliary real-valued map

h(t) = 〈J(t),γ ′(t)〉.

Clearly
h(0) = 〈J(0),γ ′(0)〉= 〈DΠ(θ)ξ ,θ〉= 〈〈ξ , ,G(θ)〉〉= 0
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for ξ ∈ S(θ). Moreover,

h′(t) =
〈

DJ
dt

(t),γ ′(t)
〉

and so
h′(0) = 〈K(θ)ξ ,θ〉= 0

for θ ∈ T1M and ξ ∈ Tθ T1M (recall (3.2)). Derivating again we get

h′′(t) =
〈

D2J
dt2 (t),γ ′(t)

〉
=−〈R(γ ′(t),J(t))γ ′(t),γ ′(t)〉

from (3.6). But now we make use of the fundamental identity

〈R(X ,Y )Z,T 〉= κ · (〈X ,Z〉〈Y,T 〉−〈X ,T 〉〈Y,Z〉) (3.7)

in order to get
h′′(t) = κ · (〈J(t),γ ′(t)〉−〈J(t),γ ′〉) = 0.

We conclude that h(t) solves h′′ = 0 with initial conditions h(0) = h′(0) = 0 and
so h(t) = 0 proving the desired orthogonality. It follows in particular that the vector
field

T (t) = R(γ ′(t),J(t))γ ′(t)−κ · J(t)

is orthogonal to γ(t). Using again the fundamental identity (3.7) we obtain

〈T (t),T (t)〉= 〈R(γ ′(t),J(t))γ ′(t),T (t)〉=

κ · (〈J(t),T (t)〉−〈γ ′(t),J(t)〉〈γ ′(t),T (t)〉) = κ · 〈J(t),T (t)〉= 〈κ · J(t),T (t)〉
so 〈T (t),T (t)〉= 0 and then T (t) = 0. Therefore,

R(γ ′(t),J(t))γ ′(t) = κ · J(t)

and then Jacobi’s reduces to




D2J
dt2 (t)+κ · J(t) = 0

J(0) = DΠ(θ)ξ
J̇(0) = K(θ)ξ .

(3.8)

There is a direct method to solve this equation. Take

J(t) = y(t)Wξ (t)

where y(t) is real valued and Wξ (t) = WΠ(θ)ξ (t) is a parallel transport of DΠ(θ)ξ
along γ(t). Replacing in (3.8) we get that y is the solution of the initial-value Prob-
lem
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y′′+κ · y = 0
y(0) = 1

y′(0) = 〈K(θ)ξ ,DΠ(θ)ξ 〉
‖DΠ(θ)ξ‖2 .

(3.9)

If ξ satisfies either

DΠ(θ)ξ =−K(θ)ξ√−κ
or DΠ(θ)ξ =

K(θ)ξ√−κ

we get the respective solutions

y(t) = e−
√−κt or y(t) = e

√−κt

of (3.9) corresponding to the solutions

Jξ (t) = e−
√−κtWξ (t) or Jξ (t) = e

√−κtWξ (t)

of (3.8). Consequently

Es
θ ⊆ {ξ ∈ Tθ T1M : Jξ (t) = e−

√−κtW (t) for some parallel field W (t) along γ(t)}

and

Eu
θ ⊆ {ξ ∈ Tθ T1M : Jξ (t) = e

√−κtW (t) for some parallel field W (t) along γ(t)}.

But conversely, if Jξ (t) = e−
√−κtW (t) for some parallel vector field W (t) along γ(t)

then we have DΠ(θ) = W (0) (taking t = 0) and so K(θ)ξ = J̇(0) = −√−κW (0)
yielding DΠ(θ)ξ =−K(θ)ξ√−κ . Analogously for the unstable space so we have proved
the identities

Es
θ = {ξ ∈ Tθ T1M : Jξ (t) = e−

√−κtW (t) for some parallel field W (t) along γ(t)}

and

Eu
θ = {ξ ∈ Tθ T1M : Jξ (t) = e

√−κtW (t) for some parallel field W (t) along γ(t)}.

Let us use them to prove the invariance of Es and Eu. Indeed, if ξ ∈ Es
θ and s ∈ R

the chain rule yields

JDGs(θ)ξ (t) = DΠ(Gt(Gs(ξ )))(DGt(Gs(θ))DGs(θ)ξ ) =

DΠ(Gt+s(θ))(DGt+s(θ)ξ ) = Jξ (t + s) = e−
√−κ(t+s)W (t + s) = e−

√−κtW (t)

where W (t) = e−
√−κsW (t +s) is clearly a parallel field along the geodesic γGs(θ)(t).

This proves DGs(θ)ξ ∈Es
Gs(θ) for all ξ ∈Es

θ and s∈R hence DGs(θ)(Es
θ ) = Es

Gs(θ).
Analogously DGs(θ)(Eu

θ ) = Eu
Gs(θ) for all s ∈ R. The invariance follows.
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Finally we prove that G is contracting and expanding along Es and Eu respec-
tively. For this we can use any metric in T1M since T1M is compact. The one we are
going to use is nothing but the metric induced by thet Sasaki metric of T M. Denote
by ‖|·|‖ the norm induced by this metric. If ξ ∈Eu

θ and t ≥ 0 then Jξ (t) = e
√−κtW (t)

for some parallel field W (t) so J̇ξ (t) =
√−κJξ (t) =

√−κDΠ(Gt(θ))(DGt(θ)ξ )
by the definition of Jξ (t). Using ξ ∈ Eu we get

J̇ξ (t) = K(Gt(θ))DGt(θ)ξ .

From this and the definition of Jξ (t) we obtain

‖|DGt(θ)ξ |‖2 = 〈Jξ (t),Jξ (t))〉+(−κ)〈Jξ (t),Jξ (t)〉= e2
√−κt(1−κ)‖W (t)‖2.

But

‖|ξ |‖2 = 〈〈ξ ,ξ 〉〉= 〈Jξ (0),Jξ (0)〉+(−κ)〈Jξ (0),Jξ (0)〉= (1−κ)‖W (0)‖2

and ‖W (0)‖= ‖W (t)‖ for W (t) is parallel hence ‖|ξ |‖2 = (1−κ)‖|W (t)|‖2. From
this we get

‖|DGt(θ)ξ |‖= e
√−κt‖|ξ |‖, ∀θ ∈ T1M,∀ξ ∈ Eu

θ ,∀t ≥ 0

so Eu is expanding. Replacing Eu by Es in the previous argument we get

‖|DGt(θ)ξ |‖= e−
√−κt‖|ξ |‖, ∀θ ∈ T1M,∀ξ ∈ Es

θ ,∀t ≥ 0

so Es is contracting. This proves the result. ut

3.2.3 Algebraic Anosov systems

These are generalization the previous examples.

Definition 3.8. An algebraic Anosov flow is an Anosov flow which is also
algebraic.

As hyperbolic toral diffeomorphisms as considered in Example (1) are algebraic
we get the following result.

Corollary 3.9. The suspension of a hyperbolic toral diffeomorphism is an algebraic
Anosov flow.

Proposition 3.10. A geodesic Anosov flow on a closed 3-manifold is algebraic.
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Proof. Let M = T S(1) the unitary tangent bundle of a negatively curved surface S.
Let wt be its corresponding geodesic flow. As is well known the universal cover of S
is isometric toH and Γ = π1(M) is a discrete subgroup ofH in a way that S = Γ \H
the action Γ ×H→H passed to an action Γ ×TH(1)→ TH(1) via derivation. We
have the commutative diagram

PSL(2,R)
gt−−−−→ PSL(2,R)

ψ
y

yψ

TH(1) −−−−→ TH(1)y
y

M = T S(1) = Γ \TH(1) wt−−−−→ Γ \TH(1) = T S(1) = M

since
ḡt(A) = Aexp(t ·α)

where

α =
(

1/2 0
0 −1/2

)

we obtain the result. ut
We have proved the following

Corollary 3.11. Suspended and geodesic Anosov flows on closed 3-manifolds are
algebraic Anosov flows.

A sort of converse of this corollary was proved by Tomter [143].

Theorem 3.12 (Tomter). If φt : M → M is an algebraic Anosov flow on a
closed 3-manifoled M, then there is a finite covering M̃ → M such that the
lifted flow φ̂t of φt in M̂ is either geodesic or suspended.

This theorem implies the following.

Corollary 3.13. Algebraic Anosov flow on closed 3-manifolds are transitive.

The next example describes a non-algebraic Anosov flow on certain closed 3-
manifold.

3.2.4 Anomalous Anosov flows

In this example we describe an intransitive (and hence non algebraic) Anosov flow
on certain closed 3-manifoled. More precisely we show the following result due to
Franks and Williams [46]:
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Theorem 3.14. There is a closed 3-manifold supporting an intransitive
Anosov flow.

Proof. We start with the Anosov diffeomorphism A in T 2 induced by the linear

map
(

2 1
1 1

)
in R2. This map has a fixed point p0 corresponding to (0,0) ∈ R2. The

portrait face of A around p0 is as Figure 3.2.

W (     )
u

p
0

W (     )p
0

s

p
0

Fig. 3.2

The restriction A/W s(p0) of A in the stable manifold W s(p0) is as below:

graph of A/W (p )

W (p )
s

p 0
0

W (p )
u

0

Fig. 3.3
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In other words A/W s(p0) is a contraction. We deform such a diffeomorphism in
order to obtain a one-parameter family of diffeomorphism Aµ , µ ∈ [0,1], A0 = A
so that the family Aµ/W s p0) bifurcates as in Figure 3.4.

Fig. 3.4

In T 2 the deformation looks as in Figure 3.5.

µ=0 µ=1/2

µ=1

Fig. 3.5

The resulting diffeomorphism A1 = T 2→ T 2 satisfies the follows properties [149].

(1) Ω(A1) = {p0}∪Λ where now p0 is a repelling fixed point and A is a hyperbolic
attractor.

(2) The stable manifold of A are the ones of A0 = A except for W s(p0). The two
connected components of W s(p0)\{p0} are leaves of the stable foliation of Λ .
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W (p )
s

0

Stable foliation of Λ

Fig. 3.6

The next step is to consider the suspension X1 = XA1 of A1 defined in the closed
3-manifold M1 = MA1 as in Figure 3.7.

0θ

Fig. 3.7

The flow X1 has a nonwandering decomposition

Ω(X1) = θ0∪Ω 1

where θ0 is a repelling closed orbit corresponding to p0 , and Ω 1 is a hyperbolic
attractor corresponding to Λ .
Afterward we fix a torus T 1 |∩X1 which is the boundary of a solid torus neighborhood
of θ0 as in Figure 3.8.
Let us consider the stable foliation F s of ∆ the attractor Ω of X1. Hence F s |∩T 2

and the trace F s∩T 2 of F 2 in T 2 is as in Figure 3.9.
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θ0

T1

Fig. 3.8

or

Fig. 3.9

Remove from M1 the solid torus with boundary T 1 to obtain a compact 3-manifold
M̂1 whose boundary is T 1.
Observe that X1 is a vector field pointing inward in ∂M̂1 = T 1.
Consider now the reversed vector field X2 =−X1 defined in M̂2 where is a copy of
M̂1 ∴ ∂M̂2 = T 2 ' T 1 while X1 contains an attractor Ω 1 in M̂1 the flow X2 contains
a repeller Ω 2 in M̂2 whose unstable manifold intersects ∂M̂2 = T 2 as F s does in
T 1. Hence we have Figure 3.11 for F s∩T 1 and F u∩T 2 respectively:
We put a diffeomorphism ϕ : T 1→ T 2 carrying F s∩T 1 into T 2 as Figure 3.12.
Hence ϕ(F s∩T 2) |∩F u∩T 2.
By gluing M = M̂1 ∪ϕ M̂2 along ∂M̂1 = T 1, ∂M̂2 = T 2 using ϕ we get a vector
field X in M (see Figure 3.13).
As ϕ(F s∩T 2) |∩(F u∩T 2) we have that the vector field X is Anosov. As

Ω(X) = Ω0∪Ω1
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Solid torus with boundary T
1

M
^

Fig. 3.10

F T F T1 2

Fig. 3.11

and Ω0, Ω1 6= M we have that X is not transitive. This provides the result. ut

Corollary 3.15. There are non-algebraic Anosov flow on a certain closed
3-manifold.
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Fig. 3.12

M
^ 1

X
2X1

M
^ 2

attractor repeller
ϕ

Ω0
Ω1

Fig. 3.13

3.2.5 Dehn surgery and Anosov flows

A Dehn surgery on a 3-manifold M is a procedure consisting of remove a
solid torus in M and regluing it different in M. This procedure yields a new
manifold M̂ which is general is quite different from M.

To fix ideas we have the example M = S3 with the solid torus being an unknotted
one.

Different “gluing” can produce: M̂ = S2× S1 (the one sending meridians into
meridians) or even M̂ = Lens space.

In particular the Dehn surgery transforms S3 (which is simply connected) into
S2×S1 (which has infinite cyclic π1). Another procedure (still called Dehn surgery)
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can be obtained by considering a two-side embedded torus T = T 2 in a 3-manifold
M: Let M0 be the manifold obtained by cutting open M along T 2. M0 may be con-
nected or not. In the later case M0 has just two connected components M+

0 , M−0

or

connected case
disconnected case

cut here

M
0

+
M

0

-
T T T T

( )
( )

Fig. 3.14

In any case we have two boundary tori which are copies of T . By gluing the
copies through suitable diffeomorphism we obtain a new manifold M̂ (in general
6= M).

Example: (Connected case) M = S1×T 2 = T 3, the 3-torus and T = 0×T 2.

Cutting open M along T we get the manifold I × T 2 with boundary tori 0× T 2

and 1× T 2 (here I = [0,1]). By gluing 0× T 2 and 1× T 2 with a diffeomorphism
ϕ : T 2→ T 2 we can get a manifold M̂ whose fundamental group may be non-abelian
∴ M̂ 6= M. If now we suppose that M is equipped with a vector field X then we can
obtain a new vector field X̂ in the surgered manifold M̂.

Example: M and T as before. X = vector field
∂
∂ t

in S1×T 2 = T 3 = M. If ϕ : T 2→
T 2 (the gluing map) is Anosov, the X̂ is an Anosov flow. This procedure transforms
X (which is not Anosov) into an Anosov flow X̂ .

Example: Let M = T S(1) the unitary tangent bundle on a negatively curved closed
orientable surface S. Let gt be its corresponding geodesic flow (gt is Anosov). Pick
a closed geodesic c in S.

Let π : T S(1) → S the projection induced by the fibration T S → S. Hence
π−1(c) = T is a torus in M. Note that c itself lift to a closed orbit d = c′ in T of
gt ∴ T 6 |∩gt . Analogously B =−c′ is a closed orbit of gt in T . The following result
was proved by Handel and Thurston [61]:
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S

c

Fig. 3.15

Theorem 3.16. There is a Dehn surgery on M = T S(1) along T = π−1(c)
which transforms the geodesic flow gt (which is algebraic) into a transitive
non-algebraic Anosov flow. In particular, there are transitive non-algebraic
Anosov flows on certain closed 3-manifolds.

More examples of this type are constructed as follows. Let M0 be a closed 3-
manifoled supporting a vector field X0. Suppose that X0 has an closed orbit A and
an repelling closed orbit R both exhibiting solid tori neighborhoods ST A, ST R re-
spectively. We can choose ST A and ST b such that X0 points inward to ST A and
outward in ST R. Removing from M0 the solid tori ST A, ST R we get a manifold M1

which is compact with boundary ∂M1 = T A∪T R (disjoint union). Moreover, M1 is
equipped with a vector field X1 (equals to X0 in M1 ↪→ M0) which points inward
(resp. outward) to M1 in T R (resp. T A)

Let F : T A→ T R be a diffeomorphism (we call it gluding map). Let M(F) be the
manifold obtain from M1 by identifying X ∈ T A with F(x) ∈ T R.

By a simple modification we can see that the gluing map F induce a vector field
XF for which the torus T = T A ' T R is transverse. The following question is natural

Question: Is there a gluing map F such that XF is Anosov in M(F) ?

The following necessary conditions for a positive answer hold:
(1) X0 is non-singular Axiom A flow.
(2) Every closed orbit of X0 different from A,R is saddle type (i.e. (dimEu =

dimEs = 1)).

These conditions do not suffice for the existence of F such that XF is Anosov.

By (1) we have a spectral decomposition
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M 1

T
A

TR

Fig. 3.16

M(F)

M(F)

Fig. 3.17

Ω(X0) = A∪R∪Λ1∪·· ·∪ΛR

where the Λi’s are basic sets of X0 inside M1. Clearly such basic sets are basic sets
of XF as well.

Problem: Is it true that if XF is Anosov and k = 1, then Λ1 reduces to a closed
orbit?

One can prove that if k = 1 and XF is Anosov, then XF is transitive. See [104] for
a proof when Λ1 reduces to a closed orbit. If k = 0 (i.e. Ω(X0) = A∪R) it is possible
to find M0, X0 and F such that the resulting flow XF is Anosov. On the other hand,
there are examples with k = 1 where no gluing map F leads to XF Anosov. If
k = 1, and Λk reduces to a closed orbit, then it is possible to find an “Anosov gluing
map F ” This was used by Bonatti and Langevin to prove the following
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Theorem 3.17. There are transitive Anosov flows with a transverse torus on
certain closed 3-manifolds which are not suspended.

Proof. Let us consider a vector field X0 on the solid torus M0 whose phase portrait
is as in Figure 3.18.

The following “elements” are indicates in this figure:




•AT = top annulus in ∂M0

•AB = bottom annulus in ∂M0

•AL = left annulus in ∂M0

•AR = right annulus in ∂M0





•θ = hyperbolic saddle-type periodic orbit of X0

(the core of M0)

•`T , `B = closed curves in AT , AB contained in the local stable

manifold W s
loc(θ) of θ (resp.)

•`L, `R = closed curves in AL, AR contained in the local unstable

manifold W u
loc(θ) of θ (resp.)

•F T,R = radial foliation in AT

•F B,R = radial foliation in AB.

lB

lT

AR

AT

AB

Al

O

F
^ T,R

F
T,R

lR

ll

Fig. 3.18
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We require the following properties:

(1)(AT ∪AB) |∩X0 (pointing inward to M0)
and (AL∪AR) |∩X0 (pointing outward to M0)

(2)There is a holonomy map
π : Dom(π) = (AT ∪AB)\(`T ∪ `B)→ AL∪AR

induced by X0 with image ℑ(π) = (AL∪AR)\(`L∪ `R).
Let F̂ T,R (F̂ B,R) be the image by π of the radial foliation F T,R (F B,R).

(3)F̂ T,R (F̂ B,R) spirals toward `R∪ `L as indicates in Figure 1.
(4)The leaves of F̂ T,R (F̂ B,R) are almost parallel to the circles concentric to `R∪`L.
(5)The holonomy π expands the leaves of F B,R∪F T,R.

Figure 2 below give a better description of F̂ T,R, F̂ B,R:

ll l
R

gB

gT

Fig. 3.19

The arrows indicate an orientation of the leaves in the radial foliations.
We glue the top (Bottom) boundary curves of AL and AR with an Orientation-

Reversing map gT (gB) to obtain a torus which we denote by T out

The foliations F̂ T,R F̂ B,R induce a foliaiton in T out whose leaves spiral toward
`R, `L as indicated in Figure 3 below

By the hypothesis (4) we have that the image’s foliaiton depicted in Figure 3
is close to the parallel circles in T out. Analogously we glue the boundary curve
of AT , AB to obtain a torus T in. Such a gluing is done in a way that the vector
field X0 induces a vector field X1 in the esulting manifoled M1, X1 then have two
transverse tori T in (pointing inward) and T out (pointing outward). By construction
X1 is Morse-Smale with Ω(X1) = θ . In addition, there is a holonomy π : T in\(`T ∪
`B)→ T out\(`L ∪ `R) carrying meridians to almost parallel curves in an expanding
way. By gluing T in and T out with a map sending parallels in T out have to meridians
in T in we get an Anosov flow X with the following properties:

(1)X has a transverse torus T ' T out ' T in
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Tout

T in

meridians

Fig. 3.20

(2)There is only one orbit of X which does not intersect T .

These properties imply that X is transitive and non-suspended. ut

Remark 3.18. Barbot used the name “Anosov BL-flows” for the example
above. We shall see later along the course that Anosov BL-flows are not
geodesic either. There are no Anosov BL-flows on closed 4-manifolds (see
[37]).

Corollary 3.19. The Anosov BL-flow above is not algebraic.

Proof. It follows from the Tomter’s Theorem that any algebraic Anosov flow is (up
to finite covering) either geodesic or suspended (see Example (4)). ut

3.3 Definition of sectional-Anosov flows

We define sectional-Anosov flows.

Definition 3.20. A sectional-Anosov flow is a vector field for which the max-
imal invariant set is a sectional-hyperbolic set.
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3.4 Examples

In this section we present examples of sectional-Anosov flows.

3.4.1 The geometric Lorenz attractor

In this section we give a presentation of a geometric Lorenz attractor which differs
from the classical ones (e.g. Subsection 2.3.2 p. 71 of [6]). The construction is done
through three steps the first of which consisting of the choice of certain constants.

In fact, we claim that for every 0 < c, 0 < β < 1 and 0 < ∆ < 1 there is α∗ > 0
such that if α > α∗, then

(√
2

β

) 1
β−1

<

(
1
2

) 1
α

and
(

α + c∆
β

)
∆ (α−β ) ≤ 1

2
· c. (3.10)

Indeed, since 0 < β < 1 we have β <
√

2 and then
(√

2
β

) 1
β−1

< 1. In addition
( 1

2

) 1
α → 1 as α → ∞ so there is α0 > 0 such that

α > α0 =⇒
(√

2
β

) 1
β−1

<

(
1
2

) 1
α

.

On the other hand, since 0 < ∆ < 1, β and c are fixed we have

lim
α→∞

(α
c

+∆
)

∆ (α−β ) = 0

Therefore, since β > 0 there is α1 > 0 such that

α > α1 =⇒
(α

c
+∆

)
∆ (α−β ) ≤ 1

2
·β =⇒

(
α + c∆

β

)
∆ (α−β ) ≤ 1

2
· c.

Then, α∗ = max{α0,α1} works.
To state the lemma below we need some short definitions. Given ∆ > 0 we define

Σ∆ = {(x,y) ∈ R2 : |x| ≤ ∆ , |y| ≤ 1} and Σ ∗∆ = Σ \{x = 0}.

If additionally α,β ,b ∈ R we define the map F∆ ,α ,β ,b : Σ ∗∆ → R2 by

F∆ ,α ,β ,b(x,y) =
{

(|x|β −∆ ,y|x|α +b) if x > 0
(∆ −|x|β ,y|x|α −b) if x < 0.

(3.11)

It is clear that F∆ ,α,β ,b is C∞.
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Given c > 0 we define the cone field C∆
c = {C∆

c (p) : p ∈ Σ} by

C∆
c (p) =

{
(u,v) ∈ TpΣ∆ :

|v|
|u| ≤ c

}
.

We denote by ‖(u,v)‖= max{|u|, |v|} the maximun norm in T Σ∆ .

Lemma 3.1. Let 0 < c < 1, α > 0, ∆ > 0 and
√

2
2 < β < 1 be satisfying

2
1

β−1 < ∆ < min





(√
2

β

) 1
β−1

,

(
1
2

) 1
α



 and ∆ α < 1−∆ α . (3.12)

Then, F∆ ,α,β ,b satisfies the following properties for all b ∈ (∆ α ,1−∆ α):

1. F∆ ,α,β ,b is injective and F∆ ,α,β ,b(Σ ∗∆ )⊂ Σ∆ .
2. F∆ ,α,β ,b preserves and contracts the foliation F in Σ∆ whose leaves are the ver-

tical straight lines.
3. If p ∈ Σ ∗∆ , then DF∆ ,α,β ,b(p)(Cc(p))⊂C 1

2 ·c(F∆ ,α ,β ,b(p)).
4. The lateral limits limx→0+ F∆ ,α ,β ,b(x,y) and limx→0− F∆ ,α,β ,b(x,y) exist, do not

depent on y and belong to {x =−∆} and {x = ∆} respectively.
5. If additionally (

α + c∆
β

)
∆ (α−β ) ≤ 1

2
· c, (3.13)

then there is a constant λ >
√

2 such that ‖DF∆ ,α,β ,b(p) ·w‖ ≥ λ · ‖w‖ for all
p ∈ Σ ∗∆ and w ∈Cc(p).

Proof. We only prove these properties in the region x > 0 for the proof in x < 0 is
analogous. For simplicity we write Σ = Σ∆ , Σ ∗ = Σ ∗∆ and F = F∆ ,α ,β ,b.

Proof of (1). It follows directly from (3.11) that F is injective. To prove F(Σ ∗)⊂
Σ we need to verify the inequalities |xβ −∆ | ≤ ∆ and |yxα +b| ≤ 1. The first one is
clearly equivalent to 0 ≤ xβ ≤ 2∆ . Since xβ ≤ ∆ β we have it as soon as ∆ β < 2∆
which in turns follows from the first inequality of (3.12). For the second one we
notice that −∆ α + b ≤ yxα + b ≤ ∆ α + b. Since ∆ α < b < 1−∆ α we have 0 <
yxα +b < 1 yielding the result.

Proof of (2). We first observe that F preserves F because of (3.11). In addition,

‖DF(0,v)‖= ‖(0,xα v)‖ ≤ ∆ α‖(0,v)‖

and certainly ∆ α < 1/2 because of the first inequality in (3.12).

Proof of (3). Notice that if p = (x,y) ∈ Σ and (u,v) ∈ TpΣ then

‖DF(u,v)‖= ‖(u,v)‖= max
{

1,
|v|
|u|

}
· |u| ≥ |u|= βxβ−1|u| ≥ β∆ β−1|u|.
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Now take λ = β∆ β−1. By (3.12) and 0 < β < 1 we have

∆ <

(√
2

β

) 1
β−1

=⇒ ∆−1 >

(√
2

β

) 1
1−β

=⇒ ∆ β−1 >

√
2

β
=⇒ β∆ β−1 >

√
2

proving λ >
√

2. But if (u,v)∈Cc(p) we have from c < 1 that ‖(u,v)‖= |u|whence

‖DF(p) · (u,v)‖ ≥ λ · ‖(u,v)‖.

Proof of (4). Just compute the lateral limits using (3.11).

Proof of (5). We notice that according to (3.11) the expression of DF at some
tangent vector (u,v) of (x,y) is given by

DF(u,v) =
{

(β |x|β−1u,αy|x|α−1u+ |x|α v) if x > 0
(−β |x|β−1u,αy|x|α−1u−|x|α v) if x < 0.

(3.14)

Setting F(u,v) = (u,v) we have for (u,v) ∈C that

|v|
|u| =

∣∣∣∣
αyxα−1u+ xα v

βxβ−1u

∣∣∣∣ =
∣∣∣∣
α
β

yx(α−β ) +
1
β

x(α−β+1) v
u

∣∣∣∣≤

α
β

∆ (α−β ) +
c
β

∆ (α−β+1) =
(

α + c∆
β

)
∆ (α−β ).

Now (3.13) applies. ut ut
Denoting Σ = Σ∆ and Σ ∗ = Σ ∗∆ we have that for F = F∆ ,α,β ,b as in (3.11) we

can define the compact set sequence Λn(F) inductively by Λ0(F) = Σ and Λn(F) =
Cl(F(Λn−1(F)∩Σ ∗)) for n≥ 1. We define the attracting set of F by

Λ(F) =
⋂

n≥0

Λn(F).

The following corollary is a direct consequence of Theorem 1.48 in Appendix 1.8.

Corollary 3.21. If F as in (3.11) satisfies (1) to (5) of Lemma 3.1, then Λ(F) is a
homoclinic class of F.

By the solid bitorus we mean the handlebody of genus 2 (see Subsection 3.4.4).

Theorem 3.22. There is a C∞ suspended sectional-Anosov flow in the solid
bitorus which is both Cr robustly transitive and Cr robustly periodic for all
r ≥ 1.

Proof. Fix 0 < c < 1 and
√

2
2 < β < 1. Then,
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2 >

√
2

β
=⇒ 2

1
β−1 <

(√
2

β

) 1
β−1

so we can fix ∆ satisfying

2
1

β−1 < ∆ <

(√
2

β

) 1
β−1

.

In particular, 0 < ∆ < 1. For such c,β ,∆ we pick α∗ such that (3.12) and (3.13)
hold for all α > α∗. We fix α > α∗. In particular

∆ <

(
1
2

) 1
α

=⇒ ∆ α <
1
2

=⇒ ∆ α < 1−∆ α

therefore we can fix b ∈ (∆ α ,1−∆ α). Hereafter we write Σ = Σ∆ , Σ ∗∆ and F =
F∆ ,α,β ,b.

Now take three real numbers λ1,λ2,λ3 satisfying

λ2 < λ3 < 0 < λ1, β =
−λ3

λ1
and α =

−λ2

λ1
.

Consider the vector field X in R3 represented by the following ODE




ẋ = λ1x
ẏ = λ2y
ż = λ3z.

(3.15)

Solving it we get the flow

Xt(x,y,z) = (xeλ1t ,yeλ2t ,zeλ3t), ∀(x,y,z).

We shall use the identification Σ ≈ {(x,y,1) : (x,y) ∈ Σ} and fix the cross-sections
Σ+ = {x = 1} and Σ− = {x = −1}. Using the flow above we have the holonomy
map Πloc(x,y) = Xt0(x,y,1) from Σ ∗ to Σ− ∪Σ+ where t0 is the flight time. Thus,

|x|eλ1t0 =±1 hence t0 = ln |x|−
1

λ1 which yields

Πloc(x,y) = (y|x|α , |x|β ).

Next we introduce a global vector field outside the cube [−1,1]3 whose flow carries
a neighborhood of Πloc(Σ ∗) in Σ−∪Σ+ back into the section {z = 1}. A customary
(but certainly not unique) way to do it is described in Figure 3.21-(a).

The resulting vector field L is then equipped with a second holonomy map Π f ar :
σ−∪Σ+→ Σ for which the following formula is assumed:

Π f ar(y,z) =
{

(z−∆ ,y+b) if (y,z) ∈ Σ+

(∆ − z,y−b) if (y,z) ∈ Σ−.
(3.16)
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Π loc
Π loc

Π far Π far

Σ

Σ Σ+−

x

y0

0

σ=(0,0,0)
W (   ) W (   )σσu u

(a)

(b)

(c)

M

Fig. 3.21 Construction of L.

Then, there is a return map Π f ar ◦Πloc : Σ ∗→ Σ and it follows from (3.15) and
(3.16) that F = Π f ar ◦Πloc. So, by Lemma 3.1 and Corollary 3.21, the attracting set
Λ(F) of F is a homoclinic class of F .

Now we define the attracting set of L,

AL = W u(σ)∪
(

⋃

t≥0

Lt(Λ(F))

)
,

where σ = (0,0,0) is the equilibrium point of (3.15) (see Figure 3.21-(a)).
Since Λ(F) is a homoclinic class of F which is a return map of L we have that

AL is a homoclinic class of L, and so, AL is transitive with dense periodic orbits.
It is not difficult to obtain a solid bitorus M in a way that L ∈X ∞(M) satisfying
AL = M(L). This can be done by deforming Figure 3.21-(a) first into Figure 3.21-(b)
and then into Figure 3.21-(c).

Now we prove that L is a sectional-Anosov flow. Since M(L) = AL we need to
find a sectional-hyperbolic splitting TAL M = Es

AL
⊕Ec

AL
. We define Es

p for p ∈ AL at
once as the subbundle parallel to the y-axis (which corresponds to the eigenspace
associated to λ2). To define Ec

p we consider two cases, namely, either the negative
orbit of p intersects Σ infinitely many times or not. In the first case we take tp as the
first non-negative number satisfying L−tp(p) ∈ Σ . Since the negative orbit intersects
Σ infinitely many times we can arrange a sequence xn with x0 = L−tp(p) in a way
that Fn(xn) = x0. Then, we set

Ec
p = DLtp(x0)

(
EL

x0
⊕ Êc

x0

)
,

where C(x) = C∩TxΣ for all x ∈ Σ and
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Êc
x0

=
⋂

n≥0

DFn(C(xn)).

Figure 3.22-(a) explain this construction.

Êx

p

0

x0 c

E
L
x0 DL  (x )t 0p

Σ

E
L
x0

Ê
c
x0

E
c
p

p

E
c
p

λ

λ

λ

1

2

3

σ

(b)(a)

Fig. 3.22 Construction of Ec
p.

If the negative orbit of p intersects Σ finitely many times only we necessarily
have p ∈W u(σ). For such points we define Ec

p as the unique plane of TpM contain-
ing EL

p such that DL−t(p)(Ec
p) converges to the eigenspace of Tσ M generated by the

eigenvalues λ1,λ3 of DL(σ). This is explained in Figure 3.22-(b).
The contraction of Es

AL
follows because any positive orbit spends a finite amount

of time far from σ , and close to σ the contraction is clear since Es
AL

keeps parallel
to the eigenspace associated to the negative eigenvalue λ2.

The dominance of Es
AL

over Ec
AL

is obtained from λ2 < λ3 < 0 < λ1.
The sectional expansivity of Ec

AL
is obtained depending on whether the positive

orbit of p passes either far from σ or close to σ . In the first case we get sectional
expansivity because DF expands the vectors in C and, in the second, we use the
eigenvalue relation −λ3 < λ1 which follows from β < 1.

To prove that L is Cr robustly transitive and Cr robustly periodic for all r ≥ 1 we
just observe that for every Cr vector field Y that is Cr close to L there are continu-
ations σY and FY of the singularity σ and the return map F which satisfy the same
properties of σ and F . Inparticular, the attracting set Λ(FY ) is still a homoclinic
class of FY . It follows also that M(Y ) = AY where AY =W u(σY )∪(⋃

t≥0 Yt(Λ(FY ))
)

thus Y is both transitive with dense periodic orbits. This ends the proof. ut ut
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The geometric Lorenz attractor is precisely the sectional-Anosov flow in the
solid torus in Theorem 3.22.

3.4.2 The annular attractor

Next we present the annular attractor introduced in [116]. The motivation for this
example is Corollary 4.10 which proves that every C∞ transitive Anosov flow on
a compact manifold is both Cr robustly transitive and Cr robustly periodic for all
r ≥ 1. The following result proved in shows that this is false for general sectional-
Anosov flows.

Theorem 3.23. There are C∞ transitive suspended sectional-Anosov flows
with dense periodic orbits on certain compact manifolds which are neither Cr

robustly transitive nor Cr robustly periodic for all r ≥ 1.

Proof. Consider a two-dimensional annulus A and let X be the vector field whose
flow is described in Figure 3.23-(a). Notice that there is a return map Π from A \ l
into A where l is a curve in the stable manifold of the singularity σ . It turns out
that Π preserves and contracts the radial foliation in A and, moreover, it preserves
and expands a cone field around the angular curves in A. The image Π(A) of A is
described in Figure 3.23.

One can be proved as in Theorem 1.48 that the attracting set of Π ,
⋂

n≥0 Λn(Π),
where Λn(Π) = A (for n = 0) or Cl(Π n(Λn−1(F) \ l)) (for n ≥ 1) is a homoclinic
class of Π . From this we see that there is a compact 3-manifold with boundary M
such that X ∈ X ∞(M) is a transitive sectional-Anosov flow with dense periodic
orbits. To prove that it is neither Cr robustly transitive nor Cr robustly periodic we
consider the C∞ perturbation of X whose return maps on A correspond to the botton
picture in Figure 3.23-(b). It turns out that such a flow neither is transitive nor has
dense periodic orbits for the curve C there belongs to the maximal invariant set (for
it is part of the unstable manifold of the periodic orbit O in Figure 3.23-(a)) but not
in the non-wandering set (for the nonwandering set is inside the cross section Σ in
Figure 3.23-(b)). ut

As a final remark let us mention that the compact 3-manifold supporting the
sectional-Anosov flow in Theorem 3.23 is not the solid bitorus (although it is
bounded by a bitorus). Indeed, such a manifold is nothing but (T 2 \D)× [0,1] where
T 2 is the two-dimensional torus and D is a two-disk in T 2.
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Fig. 3.23 Annular attractor.

3.4.3 Venice masks

It follows from Corollary 2.6 that every Anosov flow with dense periodic orbits on
a closed manifold is transitive (recall that transitivity of X means that the maximal
invariant set M(X) is transitive). This fact is not true for sectional-Anosov flows due
to the following example.

Theorem 3.24. There are sectional-Anosov flows with dense periodic orbits
on certain compact manifolds which are not transitive.

A flow with three singularities satisfying the conclusion of this theorem is de-
scribed in Figure 3.24.

One with a unique singularity can be obtained from the dual of Figure 3.25 (for a
more accurate construction see [22]). Notice that this example of sectional-Anosov
flow is suspended (indeed the double of the cross section Σ in Figure 3.25 is a global
cross section of the flow). From this example we obtain that not every codimension
one suspended sectional-Anosov flow on a compact manifold is transitive (as is
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H

H

1

2

Fig. 3.24 A venice mask with three singularities

well known all suspended codimension one Anosov flows on closed manifolds are
transitive).

Σ

W

W

W

u(    )
(    )W
u

σ
σ

ss(    )σ

ο

σ

s
(    )σ

Fig. 3.25 A venice mask with a unique singularity

Motivated by Theorem 3.24 we introduce the following definition which will be
analyzed later one.

Definition 3.25. A venice mask(1) is a sectional-Anosov flow with dense pe-
riodic orbits which is not transitive.

It follows from this definition that all venice masks on compact manifolds have at
least one singularity, and so, they do not exist on closed manifolds. We shall describe
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the dynamics and the perturbation of venice masks with only one singularity on
compact 3-manifolds in chapters 6.2 and 6.3 respectively.

3.4.4 Sectional-Anosov flows on handlebodies

Here we present the results from [98].
A handlebody of genus n ∈ N (or cube with n-handles) is a compact 3-manifold

with boundary V containing a disjoint collection of n properly embedded 2-cells
such that the result of cutting V along these disks is a 3-cell ([66] p. 15). For exam-
ple, the orientable Handlebodies of genus 0 and 1 are precisely the 3-ball and the
solid torus respectively.

It possible to prove that a handlebody of genus ≤ 1 cannot support transitive
sectional-Anosov flows. On the other hand, as alreadys saw in Theorem 3.22, the
handlebody of genus 2 supports transitive sectional-Anosov flows. These remarks
motivate the following result.

Theorem 3.26. Every orientable Handlebody of genus n≥ 2 supports a tran-
sitive sectional-Anosov flow.

Proof. The proof uses the following definition. A map f : [0,1]→ [0,1] is called
n-Lorenz map if there are n ∈ N and C = {c0, · · · ,cn} with 0 < cn < cn−1, · · · ,c1 <
c0 = 1/2 such that the following properties hold.

1. C is the set of discontinuity points of f .
2. limx→c−i

f (x) = 1 for all i = {1, · · · ,n}.
3. limx→c+

i
f (x) = r+

i exist for all i = {1, · · · ,n}.
4. f is C1 on [0,1]\C and there is λ >

√
2 such that f ′(x)≥ λ if x ∈ [0,1]\C.

In Figure 3.26 we describe the graph of f .
The n-Lorenz map is a direct generalization of the classical Lorenz maps in the

interval [0,1] (which corresponds to 0-Lorenz maps). Note that a n-Lorenz map has
just n + 1 discontinuity points. For every n-Lorenz map f we consider the (n + 1)-
vector ( f (0),r+

1 , · · · ,r+
n ). The norm of f is the Euclidian norm of such a vector.

As usual we say that f is transitive if it has a dense forward orbit. Following the
classical Guckenheimer-Williams argument for transitivity of Lorenz maps [60] it
can be proved that every n-Lorenz map with sufficiently small norm is transitive
(see also the proof of Theorem 1.48).

Next we describe a deformation first introduced in [120]. Start with the classical
Cherry flow in the torus described in [87]. We cut open the torus along the trajectory
in the stable manifold of the Cherry flow’s singularity in order to obtain the small
piece of the flow described below:
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0 1c0c1
c2cn

Fig. 3.26 n-Lorenz map

Fig. 3.27 Small piece of the Cherry flow

This piece is nothing but a rectangle equipped with the flow described in the
figure. By increasing a strong contracting subbundle to this flow we obtain the three-
dimensional flow in Figure 3.28-(b) that will be refered to as a Cherry flow box. It
turns out that a Cherry flow-box has two singularities of saddle type: one with one-
dimensional unstable manifold (say s1) and another with two-dimensional stable
manifold (say s2). We can construct a Cherry flow box by deforming a tubular flow
box around a regular orbit path R which we call regular flow box in Figure 3.28-(a).
From any Cherry flow box we obtain a solid bitorus by just removing the cylinder-
like 3-ball B centered at s2 in Figure 3.28-(b).

Denote by X2 the sectional-Anosov flow on the solid bitorus ST2 given by the
geometric Lorenz attractor described in Figure 3.29-(a). We deform this flow by
inserting a Cherry flow box as described in Figure 3.29.

More precisely, we choose a path R contained in a regular orbit of X2 as indicated
in Figure 3.29-(a). By deforming a regular flow box around an orbit path R by a
Cherry flow box we get a vector field as described in Figure 3.29-(b). We note
that such a deformation produces a positively invariant Handlebody ST3 which is
obtained by removing a 3-ball B centered at s2 from the original ST2. Afterward
we twist the cusp points of the resulting vector field as explained in Figure 3.29-(b).
This produce yields the vector field X3 described in Figure 3.29-(c). We observe that
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Fig. 3.28 (a) regular flow box. (b) Cherry flow box
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Fig. 3.29 Deforming the geometric Lorenz attractor

ST3 is still a positively invariant compact neighborhood of X3. The deformation is
done in a way that the top square in Figure 3.29-(a) realizes as a cross section of X3.
The corresponding Poincaré map Π(x,y) in the top square preserves the vertical
foliation {x = cnt}, contracts such a foliation and induces a 2-Lorenz map with
small norm in the verticals. In other words

Π(x,y) = ( f (x),g(x,y)),

where f is a 2-Lorenz map with small norm and | ∂yg(x,y) | is uniformly small.
We can show that the maximal invariant set

⋂
t>0 X3

t (ST3) is sectional-hyperbolic
exactly as in the Lorenz’s case. Therefore X3 is a sectional-Anosov flow on the
Handlebody ST3. By repeating this proceeding n times we get a sectional-Anosov
flow with n+1 singularities Xn+3 in the genus n+2 Handlebody STn+3. Indeed, for
such flows, we still have that the same the top square is a cross section of X3 but the
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return map now has the form ( fn(x),gn(x,y)) where fn is a n-Lorenz-like map with
small norm and | ∂yg | is small. As already noticed fn (and so Xn+3) are transitive.
This finishes the proof. ut ut

3.4.5 Sectional-Anosov flows without Lorenz-like singularities

We start with the following remark which was important in [21]:

Remark 3.27. As we shall see later in Theorem 4.18 every singularity of a
sectional-Anosov flow which is transitive or with dense periodic orbits on a
compact 3-manifold is Lorenz-like. On the other hand, it would follow from
Proposition 9.25-(1) in [28] that every singularity of a sectional-Anosov flow
must be Lorenz-like. An analogous conclusion would follow from Lemma 3.45
p.153 of [6]. However, we can easily find examples of sectional-Anosov flows
exhibiting non Lorenz-like singularities. Consequently the aforementioned
proposition and lemma in [28] and [6] respectively are false.

Since the counterexamples in the preceding remark also have Lorenz-like singu-
larities we can ask if every sectional-Anosov flow with singularities on a compact
3-manifold has a Lorenz-like one. However, the answer is negative by the following
result [97].

Theorem 3.28. There is a compact 3-manifold supporting a sectional-Anosov
flow with singularities none of which is Lorenz-like.

Proof. Suspend the DA-diffeomorphism in the torus T 2 to obtain an Axiom A vec-
tor field X0 on a closed manifold M0. Its non-wandering set consists of a non-trivial
hyperbolic attractor A and a repelling periodic orbit O. Pick a solid torus neigh-
borhood U of O in M0 such that the stable foliation of A intersects the boundary
torus ∂U of U as depicted in Figure 3.30. Note that the intersection consists of two
Reeb components. The core of the top component is denoted by C. Note that C is
transverse to the intersection of the stable manifold of A with ∂U . Remove the in-
terior of U from M0 to obtain a compact manifold M1 whose boundary is the torus
∂U . Denote by X1 the restriction of X0 to M1. It turns out that X1 is transverse to
∂M1 = ∂U pointing inward to M1. All of this is similar to the proof of Theorem
3.14.

Next we consider the solid torus M2 equipped with the vector field X2 whose
flow is depicted in Figure 3.31. In particular, X2 has two hyperbolic singularities σ1
(which is repelling) and σ2 (which is a saddle with one-dimensional stable direction
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C

Stable manifold of A restricted to U

l

Fig. 3.30

Es
σ1

). This vector field is also transverse to the torus boundary ∂M2 of M2 pointing
outward. Note that there is a meridian curve C′ in ∂M2 which is the boundary of a
meridian disk contained in the unstable manifold W u(σ2) of σ2.

σ1 σ2

C’

M2

l’

Fig. 3.31

As in [55] we perform a Dehn surgery between M1 and M2 by identifying C ∈
∂M1 with C′ ⊂ ∂M2. In this way we obtain a new 3-manifold M which is obviously
closed. We can glue X1 with X2 to obtain a new vector field X in M because X1

points inward to M1 in ∂M1 and X2 points outward to M2 in ∂M2.
We claim that M and X satisfy the conclusion of Theorem 3.28. Indeed, define

A∗ = W u(σ2)∩A.

It follows from the construction that the nonwandering set of X is contained in the
disjoint union of σ1 and A∗. We have that A∗ is attracting since we can obtain a
positively invariant isolating block by just removing a small 3-ball centered at σ1
whose S2 boundary is transverse to X .
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Now we prove that A∗ is singular-hyperbolic. For this we need to find a dom-
inated splitting TA∗M = Es

A∗ ⊕ Ec
A∗ so that Es

A∗ is contracting and Ec
A∗ is volume

expanding. To find Es
A∗ we use the transversality between C′ ≈ C and the stable

manifold of A in ∂U . This transversality allows us to extend the stable direction to
A to A∗ via Inclination-lemma [87]. The resulting extension Es

A∗ is continuous, con-
tracting and contains Es

σ1
. The central direction Ec

A∗ of A∗ is defined to be TW u(σ2)
(in W u(σ2)) and the old stable direction of A (in A). The splitting TA∗M = Es

A∗⊕Ec
A∗

is dominated by the Inclination-Lemma. The subbundle Ec
A∗ is volume expanding

again by the Inclination-Lemma because A is hyperbolic and C ≈ C′ is transverse
to the stable foliation of A in ∂U . The proof follows since X has no Lorenz-like
singularities. ut ut

Remark 3.29. Note the manifold M supporting the flow in Theorem 3.28 is
not B3. Indeed the meridian curve l ⊂ ∂M1 = ∂U in Figure 3.30, which is
identified with the longitude curve l′ ⊂ ∂M2 in Figure 3.31, represents a non-
trivial element of π1(M).

3.4.6 Pathological examples

The purpose is to present the examples in [97] of sectional-Anosov flows on com-
pact 3-manifolds whose maximal invariant sets accumulate on the singularities in a
pathological way. The pathology will be described as follows.

Denote by A the set of (2×2)-matrices with entries in {0,1}, i.e.

A =
{(

a11 a12
a21 a22

)
: ai j ∈ {0,1},∀i, j ∈ {1,2}

}

Denote by F : A → A (resp. C : A → A ) the bijection which interchanges the
rows (resp. columns) of A ∈A , i.e.,

F
((

a11 a12
a21 a22

))
=

(
a21 a22
a11 a12

)
and C

((
a11 a12
a21 a22

))
=

(
a12 a11
a22 a21

)
.

Denote by < F,G > the subgroup generated by {F,G} in the group of bijections of
A . Then there is an action < F,G > ×A → A . For simplicity we identify A ∈A
with its own orbit.

Consider a compact 3-manifold M and X ∈ X 1(M). Let σ be a Lorenz-like
singularity of X with stable manifold W s(σ), unstable manifold W u(σ) and center-
unstable manifold W cu(σ). The last manifold is divided by W u(σ) and W s(σ)∩
W cu(σ) in the four sectors s11,s12,s21,s22 described in Figure 3.32. There is also a
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projection π : Vσ →W cu(σ) defined in a neighborhood Vσ of σ via the strong stable
foliation of Λ . We denote by Cl(B) the closure of a subset B.

Definition 3.30. We define

M(σ) =
(

a11 a12
a21 a22

)

where

ai j =
{

0 if σ ∈Cl(π(M(X)∩Vσ )∩ si j)
1 if σ /∈Cl(π(M(X)∩Vσ )∩ si j).

Define M (X) = {M(σ) : σ ∈Λ is a Lorenz-like singularity of X}.
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Fig. 3.32

Figure 3.32 describes an example with M(σ) =
(

1 1
0 0

)
. It turns out that M(σ)

does not depend on the chosen center-unstable manifold W cu(σ).
We have that M (X) is not defined if X has no Lorenz-like singularities (c.f.

Theorem 3.28), but it does for transitive sectional-Anosov flows with singularities.
In the case of the geometric Lorenz attractor L we have

M (L) =
{(

1 1
1 1

)}
.
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See Figure 3.32. Analogously for the examples [116] and [113]. On the other hand,
every transitive sectional-Anosov flow with singularities X satisfies

M (X)
⋂{(

0 0
0 0

)
,

(
1 0
0 0

)
,

(
0 1
0 1

)}
= /0.

In [21] there are examples of such flows where
(

1 1
1 1

)
∈M (X)

However, these examples have more than one singularity. Finally, if X is a transitive
sectional-Anosov flow with a unique singularity σ , then

M(σ) 6=
(

1 0
0 1

)
.

As we shall see later this result is false for sectional-Anosov flows with more than
one singularity (Theorem 3.31).

These examples motivates the question which matrices belong to M (X) for some
sectional-Anosov flow X . The answer is given by the result below.

Theorem 3.31. For every A ∈
{(

1 1
1 1

)
,

(
1 1
0 1

)
,

(
1 0
0 1

)}
there is a transi-

tive sectional-Anosov flow X on a compact 3-manifold such that A ∈M (X).

If A =
(

1 1
1 1

)
then X can be chosen with only one singularity.

Proof. The proof follows from the three examples below.
The first one is a sectional-Anosov flow X1 with two singularities σ1,σ2 derived

from the template in Figure 3.33-(a) (see [52] or [39]). Actually, we get the flow
from the template by multiplying it by a strong contracting direction. The singularity
σ1 in that example has the following property: There are cross-sections A,B,C,D
arbitrarily close to σ1 such that

• M(X1)∩A = /0, M(X1)∩B 6= /0, M(X1)∩C 6= /0 and M(X1)∩D = /0.

This property implies

M(σ1) =
(

1 0
0 1

)
.

Notice from the figure that X1 is supported on a Handlebody of genus three. The
transitivity is proved as in the Lorenz attractor’s case: The return map of the flow
associated to the interval I is exactly the classical one-dimensional Lorenz map with
a single discontinuity c and derivative >

√
2 (see Figure 3.33-(b)).
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σ

σ2

1

B D

A C

S

I

I

c

(a)
(b)

I

Fig. 3.33 The flow X1

The second example is the geometric model X2 with three singularities σ1,σ2,σ3
depicted in Figures 3.34-(a). The singularity σ1 has the following property: There
are cross-sections A,B,C,D arbitrarily close to σ2 such that

• M(X2)∩A 6= /0, M(X2)∩B 6= /0, M(X2)∩C = /0 and M(X2)∩D 6= /0.

This property implies

M(σ2) =
(

1 1
0 1

)
.

One sees that X2 is supported on a Handlebody of genus three. The transitivity is
proved again as in the Lorenz’s case. Indeed, the return map corresponding to Figure
3.34-(b) has an invariant contracting foliation whose associated foliation map has
derivative >

√
2. This lower bound implies that the positive iterates of any connected

interval transverse to the foliation contain a connected interval of the form I1, I2, I3, I4
in Figure 3.34. The iterates of any of these intervals eventually intersects any stable
leaf proving the desired transitivity.

The last example X3 with only one singularity σ3 outlined in Figure 3.35-(a).
Note the similarity of this example with the well known Plykin attractor [52] p.36,
[124], [122], [105]. The singularity σ3 has the following property: There are cross-
sections A,B,C,D arbitrarily close to σ3 such that
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Fig. 3.34 The flow X2

• M(X3)∩A 6= /0, M(X3)∩B 6= /0, M(X3)∩C 6= /0 and M(X3)∩D 6= /0.

This property implies

M(σ3) =
(

1 1
1 1

)
.

On the other hand, we can see from the figure that X3 is supported on a Handlebody
of genus two (a bitorus). The transitivity is proved as in the previous example but
now using the form of the return map depicted in Figure 3.35-(b). This finishes the
proof. ut ut

Let us present some remarks relating the above examples to the works [110],
[28], [11], [10] and [6].

The first one is that we don’t know if there is a sectional-Anosov flow with only
one singularity σ such that

M(σ) =
(

1 1
1 1

)
.

On the other hand, it would follow from Theorem 4.1 in [110] (or Theorem 3.61
p. 169 in [6]) that the unstable manifold of a periodic orbit a transitive sectional-
Anosov flow with singularities on a compact 3-manifold intersects the stable man-
ifold of every singularity of the flow. However, this is false because it would imply
that all sectional-Anosov flows X on compact 3-manifolds satisfy
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Fig. 3.35 The flow X3

M (X)⊂
{(

1 1
0 0

)
,

(
1 1
0 1

)
,

(
1 1
1 1

)}
, (3.17)

a contradiction by Theorem 3.31 since
(

1 0
0 1

)
does not belong to the right-hand

side set. Nevertheless we shall see later that the main results in [110] are correct.
In order to state our last remark we observe that in all known examples of transi-

tive sectional-Anosov flows on compact 3-manifolds the maximal invariant set is a
homoclinic class (this also includes the ones in Theorem 3.31). This motivated the
following conjecture whose three-dimensional version appeared first in [101]:

Conjecture 3.1 (Homoclinic class conjecture). The maximal invariant set of a
transitive sectional-Anosov flow on a compact manifold is a homoclinic class.

It follows from the proof of Theorem 3.22 that this conjecture is true in the case
of the geometric Lorenz attractor (see also [18] for the original proof).

A proof of the Homoclinic class conjecture on 3-manifolds was announced
in Theorem C of [11]. It relies on transversal sections Σ j, like A ∪ B or C ∪D
in Figure 3.34, with j running over twice the number of singularities of the at-
tractor. The ones intersecting the attractor form a system of transversal sections
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Σ(E) := {Σi(E) : 1≤ i≤ k} of size E. On each component Σi(E) there is an inter-
val Qi := Σi(E)∩W s

loc(σ), where σ is the corresponding singularity, such that the
difference set Σ̂i(E) := Σi(E)\Qi consists of two connected components like A and
B or C and D in Figure 3.34. It would follow from Lemma 4 p.12 and the proof of
the Main Theorem p.18 in [11] that for any small ε > 0 the attractor would intersect
both connected components of Σ̂i(E) for any i ∈ {1, · · · ,k} and any size E < ε . In
other words, the attractor would intersect each element of either {A,B} or {C,D} or
{A,B,C,D}. This would imply that every sectional-Anosov flow X satisfies (3.17)
which is not true due to Theorem 3.31.

Although there is a revised version [10] of [11] we have observed that the proof
of Lemma 3.5 p. 80 in [10] is incorrect (althought the first part of such a lemma is
true because of Corollary 6.29).

3.4.7 Recurrence far from closed orbits

The objective is to exhibit a sectional-Anosov flows on a compact manifold with
recurrent points which cannot be accumulated by closed orbits. The construction
goes through three steps.

First we describe the so-called Cherry flow ([27], [87]) which was used before.
Let N0 the two-dimensional torus and X0 be a C∞ vector field in N0 satisfying the
following properties:

S

O

b

a

Σ Σ

c

ba

f(y)

y

(a) (b)

P
D

N 0

c

Fig. 3.36 : Cherry flow

(A)X0 has two singularities, a hyperbolic saddle S and a hyperbolic sink P.
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(B)X0 is transverse to a meridian circle Σ in N0.
(C)One of the two orbits in W u(S)\{S} belongs to W s(P) and so it does not intersect

Σ . The remaining orbit denoted by O intersects Σ in a first point c.
(D)The eigenvalues of the saddle S are such that the following holds: There is an

open interval (a,b)⊂ Σ such that the positive orbit of y ∈ (a,b) goes directly to
P without re-intersecting Σ . The positive orbits of a or b do not re-intersect Σ
too but they go to S instead. In particular, a,b ∈W s(S). Finally, the positive orbit
of y ∈ Σ \ [a,b] re-intersects Σ in a first point f (y). This yields a Poincaré map
f : Σ \ [a,b]→ Σ which we require to be expanding, i.e., there is λ > 1 such that
f ′(y) > λ . Moreover, f ′(y)→ ∞ as y→ a− or y→ b+.

The map f in (D) can be extended to the whole Σ by setting f (y) = c for every
y∈ [a,b]. The resulting map f : Σ→Σ is then a continuous endomorphism of degree
1 in Σ . Therefore f has a well defined rotation number. The vector field X0 is called
Cherry flow if its associated f has irrational rotation number. Figures 3.36-(a) and
3.36-(b) describes X0 and f respectively.

The following lemma summarizes the main properties of the Cherry flow to be
used here. Its proof can be found in [87] p. 187. Call a point x ∈ Σ regular for X0 if
X0(x) 6= 0.

Lemma 3.2. If X0 is a Cherry flow, then

1. X0 has no periodic orbits.
2. Λ 0 = N0 \W s(P) is a transitive set of X0. Consequently X0 has a regular recur-

rent point p ∈Λ 0.

Next we describe a connected sum and construct an attracting set. Consider the
vector field Y in closed disk T described in Figure 3.37-(b). Note that Y has a hy-
perbolic repelling equilibrium at P′. Choose another closed disk D′ ⊂ Int(T ) with
interior Int(D′) containing P′ such that Y is transverse to l′ = ∂D′ pointing outward.
Choose one more closed disk D ⊂ N0 containing P in its interior such that X0 is
transverse to the boundary l = ∂D of D pointing outward. These disks are indicated
in figures 3.37-(b) and 3.36-(a) respectively.

Remove Int(D) from N0 to obtain the manifold with boundary N1 diffeomorphic
to the punctured torus in Figure 3.37-(a). Remove Int(D′) from T glue the resulting
manifold to N1 by identifying l′ and l. In this way we obtain the manifold in Figure
3.38-(a) which is diffeomorphic to a punctured torus. The vector fields X1 and Y
(which are transverse to l and l′ respectively) induce a vector field X2 in N2 whose
flow is depicted in Figure 3.38-(a). The point p in Figure 3.38-(a) represents the
regular recurrent point p in Lemma 3.2. We fix at once a compact interval I as in
Figure 3.38-(b).

Now we define an attracting set Λ to be used in Theorem A. Consider X2 as in
the previous subsection. Choose λ2 < 0 and consider the vector field F(x) = λ2 · x
in [−1,1]. Define X3 as the vector field in N3 = N2× [−1,1] whose flow is given by

X3
t (q,x) = (X2

t (q),Ft(x)), ∀(q,x) ∈ N3.
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S

p

T

(a) (b)

P’

l

D’

l’

Ν 1

I

Fig. 3.37 : Deformed Cherry flow

(b)
(a)

N2
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X
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X
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X
2

Q
I

p

Fig. 3.38 : Connected sum

The portrait face of X3 is depicted in Figure 3.38-(b). Notice that X3 is transverse
to both the square Q = I× [−1,1] and the cusp region R in the right-hand branch of
N3 indicated in Figure 3.38-(b).

Next we define a manifold U by flowing R back to N3 as indicated in Figure 3.39.
Notice that the resulting U is equipped with a vector field X induced by X3 which
is now transverse to the square Q = I× [−1,1] depicted in Figure 3.39. Moreover,
U has a fibration of the form {∗}× [−1,1].

The construction is done in a way that the positive orbits through Q goes to
a geometric Lorenz attractor L contained in U . As already explained in Theorem
3.22, L is a sectional-hyperbolic set with sectional-hyperbolic splitting

TLU = Fs
L ⊕Fc

L ,

where the subbundle Fs
L is tangent to the fibers {∗}× [−1,1] in U .
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U
X

X

Q

Fig. 3.39 : The attracting set

Finally, we define
Λ =

⋂

t≥0

Xt(U). (3.18)

As Xt(U) ⊂U for all t ≥ 0 we have that Λ is attracting set of X . We shall prove in
the next section that Λ is the attracting set required in Theorem A.

Now we put together the previous results in order to prove

Theorem A. There are sectional-Anosov flows on certain compact manifolds
having recurrent points which cannot be accumulated by closed orbits.

Proof. Let Λ the attracting set in (3.18), p be the recurrent point in Lemma 3.2 and
p×0∈Λ be the corresponding regular recurrent point in Λ . As p is regullar and not
accumulated by periodic orbits we have that p× 0 ∈ Λ is a recurrent point which
cannot be accumulated by closed orbits. It remains to prove that Λ is sectional-
hyperbolic. For this we proceed as follows.

Notice that N1×0 embeds into U and

Xt(N1×0)⊂ N1×0, t ≤ 0. (3.19)

Therefore, the set
S =

⋃

t≥0

Xt(N1×0)

is a submanifold of U . Let T S be the tangent space of S. Define the splitting

TSU = Gs
S⊕Gc

S
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over S by setting Gs
S as the line bundle tangent to the fibers {∗}× [−1,1] and Gc

S =
T S.

Now, one can easily prove that

Λ = S∪L, (3.20)

where L is the geometric Lorenz attractor. Recall that L has a sectional-hyperbolic
splitting TLU = Fs

L⊕Fc
L with Fs

L being tangent to the fibers {∗}× [−1,1] in U . Then,
(3.20) allows us to define a splitting

TΛ M = Es
Λ ⊕Ec

Λ

over Λ by setting

E i
z =

{
F i

z , if z ∈ L
Gi

z if z ∈ S

for i = s or c. This splitting is clearly invariant. Moreover, Es
Λ is contracting (and

dominates Ec
Λ ) if we choose λ2 with modulus large enough.

We claim that Ec
Λ is volume expanding. Indeed, the volume expansiveness is

clear in L so we only have to prove it in S. Now Ec
S = T S by the definition of Gc

S.
Let Λ 0 be the transitive set in Lemma 3.2. Then, Λ 0× 0 ⊂ S and so we have the
decomposition

S = (Λ 0×0)∪ (S\ (Λ 0×0)).

It follows from the expansivity of f in (D) above that TΛ 0×0S is volume expanding.
On the other hand, the points in S \ (Λ 0× 0) are precisely the points in S whose
positive orbit eventually fall into T ×0.

Since the circle l×0≈ l′×0⊂ N1×0 is transverse to the contracting subbundle
of L (i.e. the fibers {∗}× [−1,1]) one has that TS\(Λ 0×0)S is volume expanding too.
From this it follows that Ec

Λ is volume expanding concluding the proof. ut



Chapter 4
Some properties of Anosov and sectional-Anosov
flows

In this chapter we present properites of Anosov and sectional-Anosov flows

4.1 Properties of Anosov flows

We start with the Anosov flows.

4.1.1 Anosov closing and connecting lemmas. Structural stability

To begin with we state the following remark.

Remark 4.1. In the case X is Anosov we have the existence of the invariant
manifolds W s(x), W u(x), W ss(x) and W uu(x) for all x ∈ M. These manifolds
form partitions of M and in fact they are leaves of corresponding foliations
F s, F u, F ss and F uu. Although these foliations are of class C0 in general
we obtain in the codimension one case dim(Es⊕EX ) = 1 that F s is also C1

(if X is C2).

Next we present some consequences of the shadowing lemma for flows. Recall
that given a C1 vector field X in a manifold M and p,q ∈M we write p≺ q if for all
ε > 0 there is t > 0 such that Xt(Bε(p))∩Bε(q) 6= /0, where Bε(x) denotes the open
ε-ball around x.

127
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Theorem 4.2 (Anosov connecting lemma). If X is an Anosov flow on a closed
manifold M, p,q ∈M and p ≺ q, then there is x ∈M such that α(p) = α(x)
and ω(x) = ω(q).

Proof. Let ε > 0 small and δ > 0 be as in the shadowing lemma for Λ = M. We can
assume that q is not in the positive orbit of q (otherwise x = p works). Then, we can
use the negative orbit of p, the positive orbit of q and a trajectory from a point close
to p to a point closed q as in Figure 4.1 in order to construct a δ -orbit c(t) of X in
U which, by the shadowing lemma, can be ε-shadowed by the orbit of some x ∈M.

c(t)
qp

Fig. 4.1 Proof of the Anosov connecting lemma.

In particular, the negative (resp. positive) orbit of x stays ε-close to that of p
(resp. q) hence x ∈W u(p) (resp. x ∈W s(q)) from which we get α(p) = α(x) (resp.
ω(x) = ω(q)). ut

Analogously but using that the closed δ -orbits in the shadowing lemma are shad-
owed by periodic orbits we get the following classical result.

Corollary 4.3 (Anosov closing lemma). The nonwandering set of every
Anosov flow on a closed manifold is the closure of the periodic points.

From the Anosov closing lemma we derive the following property.

Theorem 4.4. Every Anosov flow is Axiom A.

Proof. Let X be an Anosov vector field on a manifold M. Clearly Ω(X) is hyper-
bolic since M is. By using the hyperbolic structure in M we can see that every
p ∈ Ω(X) can be approximated by closed orbits by the Anosov Closing Lemma.
Hence the closed orbits are dense in Ω(X) and we are done. ut

In particular, we have the following corollary.

Corollary 4.5. Every Anosov flow on a closed manifold has an attractor, a repeller
and so a periodic orbit.
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Proof. The existence of a periodic orbit follows at once from the Anosov closing
lemma since the nonwandering set is not empty (we can also appeal to the Spec-
tral Theorem). Since the time-reversed flow of an Anosov flow is Anosov, and
repellers became attractors under time reversing, we only need to prove that ev-
ery Anosov flow X on a closed manifold M has an attractor. For this purpose let
Ω(X) = H1∪·∪Hn be the decomposition of Ω(X) given in the Spectral Theorem. It
turns out that M =

⋃
i = 1nW s(Hi) and then there is some index 1≤ i≤ n for which

Int(W s(Hi)) 6= /0. By using the density of the periodic orbits in the homoclinic class
Hi we have that there is an open set U ⊂W s(Hi) and a periodic orbit O ⊂ Hi such
that W s(O) |∩U 6= /0. Applying the Inclination lemma to such a transverse intersec-
tion and using U ⊂W s(Hi) we get W u(O)⊂ Hi. Since Hi is a homoclinic class this
implies W u(x)⊂ Hi for all x ∈ Hi and then Hi is an attractor. ut

Now we present two direct consequences of the above corollary.

Theorem 4.6. An Anosov flow on a closed manifold is transitive if and only
if it has dense periodic orbits.

Proof. The direct implication follows at one from the Anosov closing lemma. For
the converse we see that every Anosov flow has a hyperbolic attractor by Corollary
4.5. The attractor must be the entire manifold since the periodic orbits are dense.
Then, the result follows since attractors are always transitive sets. ut

Theorem 4.7. An Anosov flow X on a closed manifold M is transitive if and
only if W s(p) is dense in M for all p ∈ M. Analogously replacing W s(p) by
W u(p).

Proof. It is clear that for a transitive Anosov flow we have that both W s(p) and
W u(p) are dense for all p ∈M (simply use the dense orbit to spread both invariant
manifolds). If each W s(p) (resp. W u(p)) is dense we have that X is transitive since
by Corollary 4.5 X has a repeller (resp. attractor). ut

In the sequel we study the perturbation and topology of the Anosov flows. The
most important result about the perturbation of Anosov flows is the following the-
orem proved by Anosov [5]. Hereafter r will denote a positive integer. Recall that
a Cr vector field X on a manifold M is Cr structural stable if for every Cr vector
field Y that is Cr close to X there is there is a homomorphism h : M → M (called
conjugation) which sends orbits of X into orbits of Y .
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Definition 4.8. Let X and Y be two flows on a manifold M. We say that X and
Y are topologicaly equivalent if there is a homomorphism h : M→M sending
the orbits of X into orbits of Y . A Cr flow X in M is Cr structural stable if any
other flow Y that is Cr close to X is topologicaly equivalent to X.

Theorem 4.9. Every Cr Anosov flow on a closed manifold is Cr structural
stable.

Proof. We present an outline of the proof using the shadowing lemma for flows
(details in [132]). Pick ε > 0 and let δ > 0 be as in the shadowing lemma for the
hyperbolic set Λ = M of X . Take x ∈ M and fix a rectangle Sx of small diameter
around x. Let Y be a Cr vector field that is Cr close to X . It is clear that the Y -orbit
OY (x) of x is a δ -orbit of X and, then, there is a unique X-orbit which ε-shadow
OY (x). It follows that such an orbit intersects Sx at some point h(x) which gives the
desired homomorphism. ut
Corollary 4.10. Every Cr transitive Anosov flow on a closed manifold is both Cr

robustly transitive and Cr robustly periodic.

Proof. Since Anosov flows are structural stable, and transitivity is invariant by con-
jugations, we have that every Cr transitive Anosov flow is Cr robustly transitive.
Since every Cr transitive Anosov flow has dense periodic orbits, and denseness of
periodic orbits is invariant by conjugations, we see that every Cr transitive Anosov
flow is also Cr robustly periodic. ut

4.1.2 Strong foliations and transitivity

Now we study the relationship between transitivity and denseness of strong stable
foliations. Recall that a flow X on a manifold M is transitive if it has a dense orbit. A
point p ∈M is a periodic point (of X) if it lies in a periodic orbit of X . The period of
p is the smallest T = Tp > 0 such that XT (p) = p. The main result is the one below
due to J. Plante [127].

Theorem 4.11. Let X be a transitive Anosov flow on a closed manifold M. As-
sume that there is a periodic point p ∈M such that W uu(p) is not dense in M.
Then, there is T > 0 and a closed codimension one submanifold S transverse
to X such that:
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1. S intersects all flowlines of X and so X is suspended (Definition 1.25).
2. XT (S) = S and S∩Xt(S) = /0 for all 0 < t < T .
3. If q is a periodic point of X with period Tq, then there is n ∈ N such that

Tq = nT .

The proof will use the following notation. Let X be a flow on a manifold M. If
C ⊂M and B⊂ R we denote

XB(C) = {Xt(x) : (t,x) ∈ B×C}.

It is clear that if T > 0 and C is compact in M, then X[0,T ](C) is a compact subset
of M. When X is an Anosov flow on a manifold M we have that M is a hyperbolic
set of M. In such a case the manifolds W s(x),W u(x),W ss(x),W uu(x) are defined
for all x ∈M. These manifolds form continuous foliations denoted respectively by
F s,F u,F ss,F uu. In particular, if F ∗

x denotes the leaf of F containing x, then
F ∗

x = W ∗(x) for ∗ = s,u,ss,uu. In general, if F is a foliation on a manifold M, a
subset B⊂M is called F -saturated in B is union of leaves of F . If B is a saturated
set of F then so is its closure B.

Lemma 4.1. If X is a transitive Anosov flow on a closed manifold M then W s(x)
and W u(x) are dense in M, ∀x ∈M.

Proof. We only prove the result for s since the proof for u is obtained with the
reversed flow −X . Pick x ∈M. Then the closure W s(x) is F s-invariant since W s(x)
is a leaf of F s. Since M is connected by definition we only have to prove that W s(x)
is open in M. For this end pick y ∈W s(x) and a neighborhood U of y. Let z ∈U be
periodic. If U is chosen small we have that W s(x)∩W u(z) 6= /0 by the Local Product
Structure. Then, z ∈W s(x) by the Inclination Lemma. As X is transitive we have
that the periodic points z are dense in U . Consequently U ⊂W s(x) and so W s(x) is
open. The result follows. ut
Lemma 4.2. Let X be a transitive Anosov flow on a closed manifold M. Let p be a
periodic point of X such that W uu(p) is not dense in M. If Tp is the period of p, then

M = X[0,Tp]

(
W uu(p)

)
.

Proof. Observe that X[0,Tp]

(
W uu(p)

)
is closed in M since W uu(p) is. On the other

hand
X[0,Tp]

(
W uu(p)

)
⊃ X[0,Tp] (W

uu(p)) = W u(p)

since Tp is the period of p. In addition, W u(p) is dense in M by Lemma 4.1 since X

is transitive. As X[0,Tp]

(
W uu(p)

)
is closed we obtain the result. ut
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Lemma 4.3. Let X be a transitive Anosov flow on a closed manifold M. If p is a
periodic point of X and W uu(p) is not dense in M, then there is T > 0 such that
XT (W uu(p)) = W uu(p) and

M =
⋃

t∈[0,T )

Xt

(
W uu(p)

)
.

In addition, the union is disjoint and then W uu(p)∩Xt(W uu(p))= /0 for all 0 < t < T .
If q is a periodic point of X with period Tq, then there is n ∈ N such that Tq = nT .

Proof. By Lemma 4.2 we have that

M = X[0,Tp]

(
W uu(p)

)
,

where Tp is the period of p. The Zorn’s Lemma implies that there is a non-empty
set K ⊂W uu(p) which is minimal respect to the following properties:

1. K is closed in M.
2. K is F uu-saturated.
3. XT (K) = K.

Define K∗ = X[0,Tp](K). By (1) we have that K∗ is closed in M and by (2) we
have that K∗ is F u-saturated. These fact together with Lemma 4.1 imply K∗ = M
and then

M = X[0,Tp](K).

First we claim that if 0 < t < Tp and K ∩Xt(K) 6= /0, then K = Xt(K). Indeed,
K∩Xt(K) satisfies the properties (1)-(3) above and so K∩Xt(K) = K by minimality.
It follows that K ⊂ Xt(K) and then X−t(K) ⊂ K. But X−t(K) also satisfies (1)-(3).
Then, X−t(K) = K proving K = Xt(K). This proves our first claim.

Second we claim that there is 0 < δ < Tp such that K∩Xt(K) = /0 for all 0 < t < δ .
Indeed, suppose by contradiction that there is no such a δ . Then, there is t > 0
arbitrarily close to 0 such that K∩Xt(K) 6= /0. Hence K = Xt(K) by the first claim. It
follows that K = Xnt(K) for all n ∈N. From this, and the fact that t is close to 0, we
would obtain that the set {r ∈ R : K = Xr(K)} is dense in R. It would follow that K
is dense in X[0,Tp](K) = M implying that W uu(p) is dense in M since K ⊂W uu(p).
This is a contradiction which proves our second claim.

Now we define

T = sup{0 < δ ≤ Tp : K∩Xt(K) = /0,∀0 < t < δ}.

The second claim implies T > 0. Also K∩XT (K) 6= /0 for, otherwise, K∩XT (K) = /0
and then it would exist δ ∈ (T,Tp) such that K∩Xt(K) = /0 for 0 < t < δ contradict-
ing the definition of T . Then, K = XT (K) by the first claim. Henceforth X[0,T ](K) is
F u-saturated. As such a set is also compact (and nonempty) we obtain from Lemma
4.1 that M = X[0,T ](K). As K = XT (K) we obtain the union
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M =
⋃

t∈[0,T )

Xt(K). (4.1)

Suppose r, t ∈ [0,T ) satisfy Xr(K)∩Xt(K) 6= /0. Assume r < t. Hence t−r∈ (0,T )
and K∩Xt−r(K) 6= /0. Then we get a contradiction by the definition of T . This proves
r≥ t. Interchanging the roles of r and t in the above argument we obtain r≤ t. Hence
r = t and so the union (4.1) is disjoint.

Third we claim that if q ∈M is a periodic point of X with period Tq, then there is
n ∈ N such that Tq = nT . Indeed, we have T ≤ Tq since the union (4.1) is disjoint.
Then there is an integer n≥ 1 and r ∈ [0,δ0) such that Tq = nT +r. By equality (4.1)
we can assume q ∈ K. In addition,

XTq(K) = XnT+r(K) = Xr(XnT (K))
(3)
= Xr(K).

Hence XTq(K) = Xr(K) and so q∈ Xr(K) because q = XTq(q)∈ XTq(K). As q∈K we
conclude that q ∈ K ∩Xr(K). Consequently K ∩Xr(K) 6= /0 and then r = 0 because
of the definition of T and 0≤ r ≤ T . Hence Tq = nT which proves our third claim.

Finally we prove K = W uu(p). Indeed, (4.1) implies that

p ∈ Xt(K) (4.2)

for some 0 ≤ t < T . Let us prove t = 0. By contradiction suppose that t > 0. As
p ∈ Xt(K) we obtain X−t(p) ∈ K and then W uu(X−t(p)) ⊂ K by properties (1) and
(2). Consequently X−t(W uu(p))⊂ K yielding

W uu(p)⊂ Xt(K).

This inclusion implies K ⊂ Xt(K) and then K∩Xt(K) = K 6= /0. The last contradicts
the definition of T since 0 < t < T . This contradiction proves t = 0. Replacing in
(4.2) we obtain p ∈ K. So W uu(p)⊂ K by properties (1) and (2). As K ⊂W uu(p) by
definition we conclude that K = W uu(p). Replacing in (4.1) we obtain the equality
of the lemma. The proof follows. ut
Lemma 4.4. Let X be a transitive Anosov flow on a closed manifold M. If p is
a periodic point of X such that W uu(p) is not dense in M, then W uu(p) is F ss-
saturated.

Proof. Suppose by contradiction that there is x ∈ W uu(p) such that W ss(x) 6⊂
W uu(p). Then, there is y ∈ W ss(x) \W uu(p). Let T be as in Lemma 4.3. By
Lemma 4.3 we have that y ∈ Xt(W uu(p)) for some t ∈ (0,T ). As y ∈W ss(x) one
has dist(XnT (y),XnT (x))→ 0 as n→ ∞. On the other hand, XnT (y) ∈ Xt(W uu(p))
and XnT (x) ∈W uu(p) because XT (W uu(p)) = W uu(p) by Lemma 4.3. It then fol-
lows that dist(Xt(W uu(p)),W uu(p)) = 0 and so W uu(p)∩Xt(W uu(p)) 6= 0 because
Xt(W uu(p)) and W uu(p) are compact. This contradicts 0 < t < T by Lemma 4.3 and
the proof follows. ut
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Lemma 4.5. Let X be a transitive Anosov flow on a closed manifold M. If p is a
periodic point of X such that W uu(p) is not dense in M, then W uu(p) is a closed
codimension one submanifold transverse to X.

Proof. To simplify we denote S =W uu(p). Clearly S is F uu-saturated and S is F ss-
saturated by Lemma 4.4. These facts can be used to construct a manifold structure
whose local coordinate systems on x ∈ S have the form

⋃

y∈Iss(x)

Iuu(y)

where Iss(x) is an open interval which contains x and is contained in W ss(x) ⊂ K;
and Iuu(y) is an open interval which contains y and is contained in W uu(y). With this
manifold structure we obtain that the tangent space TxS = Es

x⊕Eu
x for all x ∈ S. As

the sum TxM = Es
x⊕EX

x ⊕Eu
x is direct we obtain that X is transverse to S. The proof

follows. ut
Now we prove Theorem 4.11. Let X be a transitive Anosov flow on a closed

manifold M. Assume that there is a periodic point p of X such that W uu(p) is not
dense in M. By Lemma 4.5 we have that S = W uu(p) is a closed codimension one
submanifold transverse to X . By Lemma 4.3 we have that S intersects every flowline
of X . Moreover, there is T > 0 such that if Tp is the period of p, then Tp = nT for
some n ∈ N, XT (S) = S and S∩Xt(S) = /0 ∀0 < t < T . This proves the result. ut
Corollary 4.12. Let X be a transitive Anosov flow on a closed manifold M. Suppose
that there are a pair of periodic orbits of X whose periods T1,T2 satisfy T1/T2 6∈Q.
If p is a periodic point of X, then W uu(p) and W ss(p) are both dense in M.

Proof. By contradiction suppose that there is some periodic point p of X such that
W uu(p) is not dense in M. As X is transitive we conclude that there is a closed
submanifold S transverse to X and T > 0 satisfying the conclusions of Theorem
4.11. In particular, the conclusion (3) implies that there are positive integers n,m
such that T1 = nT and T2 = mT . Hence T1/T2 = nT/mT = n/m∈Qwhich is absurd.
This contradiction proves the result. The proof for W ss(p) is analogous. ut

Theorem 4.13. Let X be an Anosov flow on a closed manifold M such that the
subbundle Es

M⊕Eu
M in the hyperbolic decomposition T M = Es

M⊕EX
M⊕Eu

M of
X is tangent to a C1 foliation of M. Then, X is suspended.

Proof. Let F be the foliation tangent to the subbundle Es
M ⊕Eu

M . If L is a leaf of
F then L is tangent to Es

M⊕Eu
M . So, if t ∈ R we have that Xt(L) is also tangent to

Es
M⊕Eu

M . Consequently Xt(L) is also a leaf of F . Applying Lemma 1.6 we conclude
that F is tangent to a closed one form ω in M. Clearly X is transverse to Es

M⊕Eu
M

and so X is transverse to ker(ω). We then conclude by Theorem 1.32 that X has a
global cross section and so X is suspended. The proof follows. ut
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4.1.3 Existence of global cross sections

In this subsection we prove a classical criterium for the existence of cross sections
due to Verjovsky [148].

Proposition 4.14. Let M be a transitive Anosov flow on a closed n-manifold M.
Then, X is a suspension if and only if Rank(H1(M,Z)) = 1 and every closed orbit
of X represents a non-zero element of the free part of H1(M,Z).

Proof. Necessity. Assume that X is suspended. Then there is a transverse torus T
intertsecting all flowlines of X . By cutting open M along T and regluing one sees by
the Seifert-Van Kampen Theorem that π1(M) = Zn−1×A Z for some A ∈ Aut(Zn)
hyperbolic (in particular, A− Id is invertible in Zn−1). More precisely

π1(M) = {(a,m) ∈ Zn−1×Z},

with the product
(a,m) · (b,n) = (a+Am(b),m+n). (4.3)

Let G ≤ π1(M) be the subgroup G = {a,0) : a ∈ Zn−1}. One sees using (4.3) that
G is normal. We claim that G is the commutador [π1(M),π1(M)] of π1(M). In fact,
observe that an easily computation using (4.3) yields

[(a,m),(b,n)] = (a+Am(b)−An(a)−b,0).

Hence [π1(M),π1(M)]≤G. Conversely if (a,0)∈G we have that b =(A−Id)−1(a)∈
Zn−1 is well defined since A− Id is invertible in Zn−1. Hence

[(0,1),(b,0)] = (0+A(b)−b,0) = ((A− Id)(b),0) = (a,0)

proving G ≤ [π1(M),π1(M)]. The claim follows. On the other hand, the quotient
π1(M)/G is infinite cyclic generated by (0,1) ·G. By the Hurewicz Theorem we
have

H1(M,Z) = π1(M)/[π1(M),π1(M)] = π1(M)/G

is infinite cyclic. This proves Rank(H1(M,Z)) = 1. To finish we observe that all
closed orbits of X intersect T in the positive direction. This implies that all closed
orbit of X is non-zero in H1(M,Z) and the result follows.

Sufficiency. Assume that Rank(H1(M,Z)) = 1 and that all closed orbits of X are
non-zero in the free part of H1(M,Z). By projecting onto the free part Z of H1(M,Z)
we obtain an onto homomorphism c : H1(M,Z)→ Z whose kernel is the torsion
group of H1(M,Z). Let H : π1(M)→ H1(M,Z) be the Hurewizt homomorphism.
Then the composition h = c◦H yields an onto homomorphism h : π1(M)→ Z. The
kernel of h is formed precisely by those elements in π1(M) representing a torsion
element of H1(M,Z). Since all closed orbits of X are non-zero in the free part of
H1(M,Z) we conclude that h(γ) 6= 0 for every γ ∈ π1(M) represented by a closed
orbit of X . Let M̂ → M be the Galois covering associated to such a kernel. Such
a covering is regular and the group of covering maps is the free part of H1(M,Z)
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which is infinite cyclic. Hence M̂ → M is a Z-cover. Let X̂ the lift of X to M̂. X̂
is Anosov. Suppose that X̂ has a closed orbit Ô. Then Ô projects to a closed orbit
O of X . The element γ of π1(M) represented by such an orbit is clearly contained
in the kernel of h. Hence γ represents a torsion element of H1(M,Z) contradicting
the assumption. We conclude that X̂ has no closed orbits. By the Anosov closing
Lemma we conclude that Ω(X̂) = /0. Hence limt→∞(X̂t(x̂)) = ±∞ for every x̂ ∈ M̂.
Since X is transitive we can assume that limt→∞ X̂t(x̂) = ∞ for every x̂ ∈ M̂. This
implies that X is suspended by Theorem 1.26 and the proof follows. ut

The arguments above are used to prove the following.

Corollary 4.15. Let X be a transitive Anosov flow on a closed 3-manifold M. If
there is a cohomology class c ∈ H1(M,Z) such that c(γ) 6= 0 for every homology
class γ ∈ H1(M,Z) represented by a closed orbit of X, then X is suspended.

Proof. Let H : π1(M) → H1(M,Z) be the Hurewicz homomorphism and define
h = c ◦H. We have that h 6= 0 since c does not vanish at the closed orbits of X .
Note that the kernel of h is formed precisely by those elements of π1(M) represent-
ing an element in the kernel of c. We conclude that c(γ) 6= 0 for every element of
π1(M) represented by a closed orbit of π1(M). Let M̂→M be the Galois’s covering
associated to such a kernel. As before we have that such a covering is a Z-cover of
M. Let X̂ be the lift of X to M̂. Hence X̂ is Anosov. If Ω(X̂) 6= /0 then it would exists
a closed orbit Ô of X̂ in M̂. This closed orbit projects to a closed orbit O of X whose
representant γ in π1(M) satisfies h(γ) = 0. This contradicts the fact that c 6= 0 at the
closed orbits. This proves Ω(X̂) = /0. The rest of the proof is similar to the previous
proof. ut

4.2 Properties of sectional-Anosov flows

In this section we present some basic properties of sectional-Anosov flows.

4.2.1 Basic properties

In the case of sectional-Anosov flows X on M the strong stable manifold’s family
{W ss(p) : p ∈M(X)} extends to a continuous foliation W ss in M with the property
that every pair of points in the same leaf are asymptotic one to another. By adding
the flow direction to W ss we obtain a foliation W s now tangent to Es

M⊕EX
M . Unlike

the Anosov case W s may have singularities, all of which being the leaves through
the singularities of X . Note that W s is transverse to ∂M because it contains the flow
direction.

Next we state two direct consequences of the hyperbolic lemma.

Corollary 4.16. All sectional-Anosov flows on closed manifolds are Anosov.
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Proof. Note that in a boundaryless manifold the maximal invariant set is the man-
ifold itself. It then follows from Corollary 2.7 that the flows in the statement are
singular free. Now apply the hyperbolic lemma. ut

Observe that we can replace Corollary 2.7 by [148] in the above proof to obtain
the same conclusion.

Corollary 4.17. Every periodic orbit of a sectional-Anosov flow on a compact man-
ifold is hyperbolic. In particular, all such flows have countably many closed orbits.

The two alternatives in Lemma 2.8 can occur in the same sectional-Anosov flow.
The following theorem generalizes an observation in [114].

Theorem 4.18. If X is sectional-Anosov, σ ∈ Λ ∩ Sing(X) and Ω(X) \ {σ}
is not closed, then σ is Lorenz-like. In particular, every singularity of a
sectional-Anosov flow which either is transitive or has dense periodic orbits
on a compact 3-manifold is Lorenz-like.

Proof. Since Ω(X) \ {σ} is not closed there is a sequence xn → σ such that xn ∈
Ω(X)\{σ} for all n. Since xn 6= σ we can assume that xn ∈W u(σ)∪W s(σ).

Suppose that there is p = xn ∈W u(σ)\{σ} close to σ . Then, there are sequences
ym→ p and tm→∞ such that Xtm(ym)→ p. Clearly there is a sequence t ′m < tm such
that Xt ′m(ym)→ z for some z ∈W s(σ)\{σ}. Notice that such a z also exists if there
is xn ∈W s(σ).

Now suppose by contradiction that σ is not Lorenz-like. It follows from Lemma
2.8 that σ has two positive eigenvalues thus W ss(σ) = W s(σ). Now we observe that
the existence of z contradicts Lemma 2.7. ut

The following theorem gives a sufficient condition for a singularity of a sectional-
Amosov flow to be Lorenz-like.

Theorem 4.19. Every singularity in the closure of the unstable manifold of a
periodic orbit of a sectional-Anosov flow on a compact 3-manifold is Lorenz-
like.

Proof. Let X a sectional-Anosov flow on a compact 3-manifold M and O be
a periodic orbit of X . If σ ∈ Cl(W u(O)) were not Lorenz-like, then W s(σ) =
W ss(σ) would be one-dimensional. As σ ∈ Cl(W u(O)), and obviously σ 6∈ O, we
would have that Cl(W u(O)) contains also one of the two-connected components of
W s(σ)\{σ}. However, such connected components exit M by Lemma 2.8 contra-
diction. ut
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Proposition 4.20. Every sectional-Anosov flow without Lorenz-like singularities on
a compact 3-manifold has hyperbolic nonwandering set. In particular, all such flows
have homoclinic orbits and infinitely many periodic orbits.

Proof. Let X be a sectional-Anosov flow on a compact 3-manifold M as in the state-
ment. It is easy to see from Lemma 2.8 applied to Λ = M(X) that Ω(X)\Sing(X) is
closed in M since X has no Lorenz-like singularities. Therefore Ω(X) \ Sing(X)
is hyperbolic by the hyperbolic lemma. Then the result follows since Ω(X) =
(Ω(X)\Sing(X))∪Sing(X). ut

On the other hand, it is easy to see that all Anosov flows on compact 3-manifolds
are codimension one. The analogous fact holds easily for sectional-Anosov flows.

Proposition 4.21. Every sectional-Anosov flow on a compact 3-manifold is codi-
mension one.

It follows from corollaries 2.11 and 2.12 that the maximal invariant set of a tran-
sitive sectional-Anosov flow with singularities X on a compact n-manifold M has
empty interior and topological dimension ≤ n−1. In that case we have the inequal-
ities

dim(Ec
M(X))−1≤ dim(M(X))≤ n−1.

The lower bound dim(Ec
M(X))−1 is improved to dim(Ec

M(X)) when X has a periodic
orbit. More precisely we have the following corollary.

Corollary 4.22. If X is a transitive sectional-Anosov flow with singularities and
periodic orbits on a compact n-manifold M, then

dim(Ec
M(X))≤ dim(M(X))≤ n−1.

Proof. If O is a periodic orbit, then dim(W u(O)) = dim(Ec
M(X)). On the other hand,

W u(O)⊂M(X) and then dim(Ec
M(X))≤ dim(M(X)). The upper bound follows from

Corollary 2.12 since maximal invariant sets are proper. ut
The following definition is a minor modification of the classical definition of ex-

panding attractor [150]. A partially hyperbolic attractor Λ is expanding if its topo-
logical dimension coincides with the dimension of its central subbundle Ec

Λ . As
noted in [150] not every partially hyperbolic attractor is expanding (e.g. the am-
bient manifold of a transitive Anosov flow). The following gives a sufficient con-
dition for the maximal invariant set of a vector field to be an expanding attractor.
Recall that a sectional-Anosov flow is codimension one if its stable subbundle is
one-dimensional.

Corollary 4.23. The maximal invariant set of a transitive codimension one sectional-
Anosov flow with singularities and periodic orbits on a compact manifold is an ex-
panding attractor.

Proof. If X is a sectional-Anosov flow on a compact n-manifold as in the statement,
then dim(Ec

M(X)) = n−1. Now the result follows from Corollary 4.22. ut
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4.2.2 Existence of singular partitions

We present results about existence of singular partitions for sectional-Anosov flows.
The first one is the following.

Theorem 4.24. If X is a sectional-Anosov flow on a compact 3-manifold M
and q∈M, then every compact invariant subset H ⊂ω(q) of X with H 6= ω(q)
has singular partitions of arbitrarily small size.

Proof. To prove the result it suffices to prove by Proposition 1.50 that for every
z ∈ H regular there is a cross section of small diameter Σz such that z ∈ Int(Σz) and
H ∩∂Σz = /0. Fix z ∈ H regular.

We claim that H ∩W ss(z) has empty interior in W ss(z). Indeed, if ω(q) has a
singularity then ω(q) cannot contain a local strong stable manifold by Theorem
2.9. From this and H ⊂ ω(q) we conclude that H ∩W ss(z) has empty interior in
W ss(z). If ω(q) has no singularities then ω(q) (and so H) are hyperbolic sets by the
hyperbolic lemma. It would follow from Lemma 2.9 that H = ω(q) which is against
the assumption H 6= ω(q). This proves the claim.

Using it we can fix for all z ∈ H a foliated rectangle of small diameter R0
z such

that z ∈ Int(R0
z ) and H ∩ ∂ hR0

z = /0. Observe that ω(q) is not a periodic orbit for
it has a singularity. Hence the positive orbit of q cannot intersects the stable leaf
F s(z,R0

z ) infinitely many times (c.f. Lemma 5.6 p. 369 in [110]).
Therefore, the positive orbit of q intersects either only one or the two connected

components of R0
z \F s(z,R0

z ). In the former case we select some point q′ of the
positive orbit inside that component, a point z′ in the other component and define
Σz as the subrectangle of R0

z bounded by F s(q′,R0
z ) and F s(z′,R0

z ). Notice that
H ∩F s(q′,R0

z ) = /0 for if not then it would exist h ∈W ss(q)∩H which implies
ω(q) = ω(h)⊂ H and then H = ω(q) which is against the hypothesis once more.

On the other hand, we clearly have ω(q)∩F s(z′,R0
z )= /0 and so H∩F s(z′,R0

z )=
/0 since the positive orbit of q do not intersect the component of R0

z \F s(z,R0
z ) con-

taining z′. Since H ∩ ∂ hR0
z = /0 and ∂ hΣz ⊂ ∂ hR0

z = /0 we get that Σz satisfies the
required properties.

If the positive orbit of q intersects both components of R0
z \F s(z,R0

z ) we choose
two points q′,q′′ of the positive orbit in each connected component and define Σz as
the rectangle of R0

z bounded by F s(q′,R0
Z) and F s(q′′,R0

Z). In a similar way we can
prove that this Σz satisfies the required properties. ut

For the second result we shall use the following definition.
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Definition 4.25. We say that a C1 vector field X with hyperbolic closed orbits
has the Property (P) if for every periodic orbit O there is a singularity σ such
that W u(O)∩W s(σ) 6= /0.

The advantage of this property is given by the elementary fact below.

Lemma 4.6. Every point in the closure of the periodic orbits of a vector field with
the Property (P) is accumulated by points for which the omega-limit set is a singu-
larity.

With this definition we have the following.

Theorem 4.26. Let X be a sectional-Anosov flow with the Property (P) on
a compact 3-manifold M. If x ∈ M is not approximated by points for which
the omega-limit set has a singularity, then ω(x) has a singular partition of
arbitrarily small size.

Proof. By Proposition 1.50 we have to prove that for all z ∈ ω(x) there is a cross
section of small diameter Σz such that z ∈ Int(Σz) and ω(x)∩∂Σz = /0. For this we
shall proceed as in the proof of Theorem 4.24, but taking care with the fact that ω(x)
is not necessarily contained in a singular omega-limit set. Property (P) will supply
the alternative argument.

Suppose for a while that ω(x)∩Sing(X) 6= /0. Then, the constant sequence xn = x
yields a sequence of points whose omega-limit set has a singularity converging to x.
Since this contradicts the assumption we obtain ω(x)∩ Sing(X) = /0, and so, ω(x)
is hyperbolic by the hyperbolic lemma.

We claim that ω(x)∩W ss(z) has empty interior in W ss(z) for all z ∈ ω(x). In-
deed, suppose by contradiction that it is not so. Then, ω(x) contains a local strong
stable manifold through some of its points. Since ω(x) is hyperbolic we could apply
Lemma 2.9 to H = ω(x) in order to conclude that x belongs to a hyperbolic repeller.
It follows that there is a periodic orbit sequence accumulating on x. By Lemma 4.6
we would have that x is accumulated by points whose omega-limit set is a singularity
contradicting the assumption. Therefore, the claim is true.

By the claim we can fix for all z ∈ ω(x) a foliated rectangle of small diameter
R0

z such that z ∈ Int(R0
z ) and ω(x)∩ ∂ hR0

z = /0. If the positive orbit of x intersects
F s(z,R0

z ) infinitelty many times we would have as in Theorem 4.24 that ω(x) is a
periodic orbit in whose case the result is trivial. Therefore, we can assume that the
positive orbit of x does not intersect F s(z,R0

z ). Then, it intersects either only one or
the two connected components of R0

z \F s(z,R0
z ).

If the positive orbit intersects only one component we select some point x′ of the
positive orbit inside that component, a point z′ in the other component and define Σz
as the subrectangle of R0

z bounded by F s(x′,R0
z ) and F s(z′,R0

z ). Since the positive
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orbit does not passes through the connected component of R0
z \F s(z,R0

z ) containing
z′ we have that ω(x)∩F s(z′,R0

z ) = /0. Now suppose for a while that there is h ∈
ω(x)∩F s(x′,R0

z ). Since ω(x) is hyperbolic we can apply the shadowing lemma for
flows to the positive orbit of x in order to find a periodic orbit sequence accumulating
on h. Such periodic orbits are in turn accumulated by points for which the omega-
limit set is a singularity by Lemma 4.6. Since the stable manifolds in M(X) have
uniformly large size we have that x′ is also accumulated by points for which the
omega-limit set is a singularity. This would imply that x is accumulated by points
whose omega-limit set is a singularity, a contradiction. This contradiction proves
that ω(x)∩F s(x′,R0

z ) = /0. Since ∂ hΣz ⊂ ∂ hR0
z and ∂ vΣz = F s(z′,R0

z )∪F s(x′,R0
z )

we have that Σz has the required properties.
Now we consider the case when the positive orbit intersects both components

of R0
z \F s(z,R0

z ). In such a case we choose two points x′,x′′ of that orbit, in each
connected component, and define Σz as the rectangle of R0

z bounded by F s(x′,R0
Z)

and F s(x′′,R0
Z). Again we have that ω(x)∩ (F s(x′,R0

Z)∪F s(x′′,R0
Z)) = /0 so Σz

satisfies the required properties. This completes the proof. ut
To state our last result about existence of singular partitions we need the fol-

lowing short definition. Let M be a compact 3-manifold, X ∈X 1(M) and σ be a
Lorenz-like singularity of X . It follows that W ss(σ) splits W s(σ) in two connected
components denoted by W s,+(σ) and W s,−(σ) respectively (see Figure 4.2).

W

W

ss

s,+

(σ)

(σ)
σ

W
s,−
(σ)

Fig. 4.2 W s,+(σ) and W s,−(σ)

We use these sets in the following result.

Theorem 4.27. Let X a sectional-Anosov flow on a compact 3-manifold,
σ ∈ Sing(X) Lorenz-like and q ∈W u(σ) be non-recurrent. If there are p,r ∈
Per(X) such that
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W u(p)∩W s(σ)⊂W s,+(σ), W u(r)∩W s(σ)⊂W s,−(σ), (4.4)

W u(p)∩W s(σ) is dense in W s,+(σ) and W u(r)∩W s(σ) is dense in W s,−(σ),
then ω(q) has singular partitions of arbitrarily small size.

Proof. We can assume that ω(q) is not a periodic orbit for, otherwise, the result is
obvious. By Proposition 1.50 we only have to prove that for all z ∈ ω(q) there is
cross section Σz close to z such that z ∈ Int(Σz) and ω(q)∩∂Σz = /0.

First observe that W ss(z)∩ω(q) has empty interior in W ss(z) for, otherwise, q
would be recurrent which is against the hypothesis. From this we can fix a foliated
rectangle of small diameter R0

z such that z ∈ Int(R0
z ) and ω(q)∩∂ hR0

z .
We clearly have that W u(p)∩W s,+(σ) 6= /0 and W u(r)∩W s,−(σ) 6= /0 since they

are dense in W u(p) and W u(r) respectively. Using it and linear coordinates around
σ we can construct an open interval I = Ia, contained in a suitable cross section
throught a, such that I \{a} is formed by two intervals I+⊂W u(p) and I−⊂W u(q).
Since W u(p)∩W s(σ) is dense in W u(p) and W u(r)∩W s(σ) is dense in W u(r) we
have that W s,+(σ)∩ I+ is dense in I+ and W s,−(σ)∩ I− is dense in I−.

Since z∈ω(q) we have that the positive orbit of q contains a sequence in Int(R0
z )

converging to z. If infinitely many elements of such a sequence belongs to F (z,R0
z ),

then Lemma 5.6 in [110] implies that ω(q) is a periodic orbit which contradicts our
initial assumption. Therefore, the positive orbit of q intersects either only one or the
two connected components of R0

z \F s(z,R0
z ).

First assume these intersections occurs in one component only. Since the positive
orbit of q carries the positive orbit of I into such a component we can assume that the
whole I is contained in that component. Hence, the stable manifolds throught I form
a subrectangle RI in that component. On the other hand, RI \F s(q,R0

z ) is formed
by two components R+

I and R−I formed by the stable manifolds through I+ and I−
respectively (see Figure 4.3). Since W s,+(σ)∩ I+ is dense in I+ and W s,−(σ)∩ I−
is dense in I− we have that W s,+(σ)∩R+

I is dense in R+
I and W s,−(σ)∩ I− is dense

in R−I .
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z
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+
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Fig. 4.3 W s,+(σ) and W s,−(σ)
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Let us prove that ω(q)∩ Int(RI) = /0. Indeed suppose by contradiction that this
is not the case. Then, the positive orbits of q intersects RI infinitely many times. If
it does in F s(q,R0

z ) then ω(q) would be again a periodic orbit which is a contra-
diction. We conclude that the positive orbit intersects either R+

I or R−I . If it inter-
sects R+

I , then the positive orbit of I− would intersects R+
I . Since W s,+(σ)∩R+

I is
dense in R+

I we conclude that I− intersects W s,+(σ). But this contradicts (4.4) since
I− ⊂W u(r). Therefore the positive orbit of q does not intersect R+

I . In an analogous
way we can prove that such an orbit does not intersect R−I so we get a contradiction.
From this we conclude that ω(q)∩ Int(RI) = /0.

Now select any point z′ ∈ Int(RI), a point z′′ in the component of R0
z \F s(z,R0

z )
which is not intersected by the positive orbit of q and define Σz as the subrectangle
of R0

z bounded by F s(q′,R0
z ) and F s(z′,R0

z ). This rectangle satisfies the desired
properties.

If the positive orbit intersect both components of R0
z \F s(z,R0

z ) we carrie I with
the positive orbit as before to obtain two subrectangles Rt

I and Rb
I , like RI , in each

component. We then we select two points z′ ∈ Int(Rt
I) and z′′ ∈ Int(Rb

I ) and define
Σz as the rectangle in R0

z bounded by F s(z′,R0
z ) and F s(z′′,R0

z ). Again we have that
this Σz works. The proof follows. ut





Chapter 5
Codimension one Anosov flows

The results of this chapter will be based on the following definition.

An Anosov flow on a manifold M is codimension one if dim(Es
M) = 1 or

dim(Eu
M) = 1.

We start describing a relationship between the existence of codimension one
Anosov flows and the fundamental group of the underlying manifold. Afterward we
state some basic properties of these flows. Finally we prove the Verjovsky Theorem
of transitivity of codimension one Anosov flows on closed n-manifolds n≥ 4.

5.1 Some basic properties

Let X be a codimension one Anosov flow on a closed manifold M. We can assume
that dim(Es) = 1 for otherwise we consider the time-reversed flow. It follows that
F u and F s are foliations of M of codimension one and dimension two respectively.
Let π : M̂→M be the universal cover of M. Hence there is a freely properly discon-
tinuous action

π1(M)× M̂→ M̂

so that M = π1(M)\M̂. Let X̂ be the lift of X to M̂. Hence the diagram below

M̂ X̂t−−−−→ M̂

π
y

yπ

M Xt−−−−→ M

commutes, i.e.
Xt(π(x̂)) = π(X̂t(x̂)), ∀ t ∈ R ∀ x̂ ∈ M̂.

145
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The following two lemmas are straightforward.

Lemma 5.1. X̂t is Anosov.

Now, let F̂ uu, F̂ ss, F̂ u, F̂ s be the strong unstable, strong stable, unstable
and stable foliations of X̂t .

Lemma 5.2. If x̂ ∈ M̂ and x = π(x̂), then π/F̂ u : F̂ u
x̂ → F u

x is a covering map.
Analogously replacing u by s, uu, ss.

Lemma 5.3. The foliations F̂ ∗ (∗ = u,s,uu,ss) are all invariant by the action
π1(M)×M→M.

Proof. By definition we have the following:
Leaf of F̂ u = connected components of π−1(leaf of F u).

Pick a leaf L̂ of F̂ u and γ ∈ π1(M). Hence π(L̂) = L for same leaf L of F u. Clearly
γ(L̂) is connected and π(γ(L̂)) = π(L̂) = L (as π ◦ γ = π ∀γ ∈ π1(M)) ∴ γ(L̂) is a
leaf of F̂ u. Analogous proof works for u by s, uu, ss. ut
Lemma 5.4. Let γ ∈ π1(M)−1 and L̂ be a leaf of F̂ u.

(a) It γ(L̂) = L̂, then π(L̂) is a leaf of F u containing a closed orbit θ which
satisfies θ n ∈ γ for some n ∈ Z.

(b) If L = π(L̂) is a leaf of F u containing a closed orbit θ , then γ = [θ ] ∈ π1(M)
is a nontrivial (6= 1) element of π1(M) fixing L̂ (i.e. γ(L̂) = L̂).

Proof. (a). Suppose that γ(L̂) = L̂. Pick a base point x0 ∈ L := π(L̂) and let x̂ ∈
π−1(x0)∩ L̂. By the assumption one has γ(x̂) ∈ L̂. Since L̂ is path connected we
have that there is a curve ĉ⊆ L̂ joint x̂ with γ(x̂), i.e. ĉ(0) = x̂, ĉ(1) = γ(x̂). Define
c = π ◦ ĉ. Clearly c ∈ γ by the definition of fundamental group. On the other hand,
c is cannot be null-homotopic in L for, otherwise, γ(x̂) = x̂ ∴ γ = 1 since the action
π1(M)×M→ M is free. This contradicts γ 6= 1. Hence c is not null-homotopic in
L. It follow that L is not simply connected and then L is periodic (i.e. L contains a
closed orbit θ ). Since π1(L) =Zwith generator [θ ] it follows that ∃n∈Z s.t. θ n ∈ γ .
This proves (a).

(b). Suppose that L = π(L̂) is periodic, i.e. it contains a closed orbit θ . Let x ∈ θ
and T > 0 be the period of θ , i.e. XT (x) = x. We can assume that T = 1 without
loss of generality. Consider the closed curves c : [0,1]→ L given by c(t) = Xt(x).
Set γ = [c] ∈ π1(M). Observe that γ 6= 1 for, otherwise, θ would be null homotopic
in M which is absurd. The lift of c to M̂ is precisely the curve ĉ with ĉ(0) = x̂,
ĉ(1) = γ(x̂). Since ĉ⊆ L̂ we have γ(x̂) ∈ L̂ for x̂ ∈ L̂. Hence

γ(L̂)∩ L̂ 6= /0

∴ γ(L̂) = L̂ (recall that L̂, γ(L̂) are leaves of F̂ u). This proves (b). ut
Proposition 5.1. The leaves of F u are either planesRn−2×R or cilinder Rn−2×S1

or Moebious bands Rn−2 ×̂S1. In particular, the leaves of F̂ u are planes Rn−1 in M̂
and so M̃ is homeomorphic to Rn.
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Proof. The first assertion is a direct consequence of the hyperbolic theory. The sec-
ond assertion follows from the fact that the leaves of F u are all simply connected
(otherwise the leaves of F u would not π1-inject into M). Since M̂ is foliated by
planes we have that M̃ is homeomorphic to Rn by the Palmeira’s thesis. ut

Remark 5.2. (a) A leaf of F u is periodic⇔ it is either a cylinder or a Moe-
bious Band.

(b) If M is orientable, and F u is transversely orientable, then F u have no
Moebious band leaves.

Lemma 5.5. If M is a closed manifold supporting codimension one Anosov flows,
then M is aspherical.

Proof. Let π : M → M̂ be the universal cover of M. By the proposition we have
that M̂ is Rm where m = dimM. If n ≥ 2 then any continuous map f : Sn → M
lifts to a map f̂ : Sn → M̂ since π1(Sn) = 1 ∀n ≥ 2. By Proposition 1.19 the map

f̂ : Sn→ M̂ extends to a map f̂ : En+1→ M̂. Setting f̄ = π0 f̂ we obtain an exten-
sion f̄ : En+1→M of f : Sn→M to En+1 proving the result. ut
Lemma 5.6. If M is a closed manifold supporting codimension one Anosov flows,
then π1(M) is torsion free.

Proof. This follows from Lemma 5.5 since, by Proposition 1.22, the fundamental
group of an aspherical manifold of finite dimension is torsion-free. ut
Proposition 5.3. A closed manifold supporting codimension one Anosov flows is
irreducible.

Proof. Let M be a closed n-manifold supporting codimension one Anosov flows.
Then, the universal cover of M is Rn. Let S be an embedded (n− 1)-sphere in M.
Since π1(Sn) = 1 for n 6= 1 we can lift S to a sphere Ŝ in the universal covering
space Rn. This sphere bounds a n-ball B̂ in Rn since Rn is irreducible (Generalized
Schoenflies’s Theorem). Such a ball is contained in the interior of a fundamental
domain of the covering Rn→M. Hence B̂ project to a n-ball with boundary S. ut

5.2 Exponential growth of fundamental group

In this section we give an important application of Theorem 1.24 concerning the
topology of closed manifolds supporting Anosov flows. The three-dimensional case
of the theorem below was proved by Margulis while the general case is due to Plante
and Thurston.
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Theorem 5.4 (Plante-Thurston-Margulis). If M is a closed manifold support-
ing codimension one Anosov flows, then π1(M) has exponential growth.

Proof. Let φt be an codimension one Anovov flow on M. Assume that dimEs =
1 ∴ dim(Eu⊕E0) = n− 1. By structural stability we can assume that φt is C∞ (C2

suffices). Hence Eu⊕E0 is C1 ∴ the weak unstable foliation F u (tangent to Eu⊕E0)
is C1. We have that F u has no null-homotopic closed transversal (this follows from
the C1 Haefliger Theorem since F u has no one-side holomony leaf). Hence any
leaf of F u satisfy the hypothesis (1) of the Plante’s Theorem. Let us check the
hypothesis (2) for every leaf W u(x) of F u which does not contain periodic orbits.

Fix ϕ 1-ball Dw
1 (x) in W uu(x) (the strong unstable manifold) centered at x. Fix

R > 0. For every y ∈ Duu
1 (x) we set

IR(y) = ϕ[0,R](y).

As M is compact we have that

length(IR(y))≈C ·R

for some continuous V > 0 independing on R. So

⋃

y∈Duu
1 (x)

IR(y)⊆
the (c ·R+1)-ball in W u(x)︷ ︸︸ ︷

Dc·R+1(x)

∴

G(x,c ·R+1)≥ Volume


 ⋃

y∈Duu
1 (x)

IR(y)


 . (⊕)

But ⋃

y∈Duu
1 (x)

IR(y) =
⋃

0≤t≤R

ϕt(Duu
1 (x))

Thus, by Fubini’s Theorem, we get

Vol(


 ⋃

y∈Duu
1 (x)

IR(y)


 =

∫ R

0
area(Duu

1 (x)) ·dt

(Here we use that W u(x) does not contain periodic orbits.) As Duu
1 (x)⊆W uu(x) we

get
Area(ϕt(Duu

1 (x))≥ δ ·K · eλ t .

Where K, λ are the hyperbolicity constant and δ = dim(Duu
1 (x)) > 0. Hence
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uu
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ϕt( D1( x))
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uu
( ϕ

R
( x))
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R
( x)

W u( x) = L(x)

y

Fig. 5.1

Vol


 ⋃

y∈Duu
1 (x)

IR(y)


≥

∫ R

0
δ ·K · eλ t dt

=
δ ·K

λ
[eλ t ]R0 =

δ ·K
λ
· [eλR−1]

≥ δ ·K
λ
· eλR.

Applying (⊕) we get

G(x,c ·R+1)≥ δ ·K
λ
· eλR.

Hence

G(x,R)≥ δ ·K
λ
· eλ ( R−1

c ) = B · ecR

where {
B = δ ·K

λ · eλ/c

C = λ
c

This prove (2) i.e. every non periodic leaf L(x) of F u has exponential growth. Now
the result follows from Theorem 1.24. ut
Corollary 5.5. The manifolds T 3, S3, S2×S1 cannot support Anosov flows.

Proof. These manifolds are closed and the groups π1(T 3), π1(S3), π1(S2×S1) have
no exponential growth. ut

5.3 Verjovsky Theorem

In this section we shall prove the following theorem due to Verjovsky [145].
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Theorem 5.6 (Verjovsky). A codimension one Anosov flow on a closed n-
manifold n≥ 4 is transitive.

The proof we present here is the one in the Barbot’s thesis [16]. Some previous
lemmas are needed. To begin with we consider a codimension one Anosov flows X
on closed n-manifolds M. In the lemmas below we shall assume that dim(Es) = 1.
Hence F u of X is codimension one and F s is two-dimensional. Let M̃→M be the
universal cover of M. Let X̃ be the lift of X to M̃. Let F̃ ∗ be the lift of F ∗ to M̃
(∗= S,u,ss,uu).

Lemma 5.7. A leaf of F̃ u intersects a leaf of F̃ ss at most once.

Proof. If there were a lift L̃ of F̃ u intersecting a lift ˜̀ of F̃ ss in two points, then
we would have an picture as below (note that F̃ ss is orientable because M̃ is simply
connected):

L

l
~

~

Fig. 5.2

With this it would be easy to construct a null homotopy closed curve (C = π ◦ c̃)
of F u in M a contradiciton. ut
Lemma 5.8. If X̃ , ỹ ∈ M̃ satisfy the property below

∃ X̃n→ X̃ and Tn ≥ 0 such that yn := X̃Tn(xn)→ ỹ as n→ ∞ (**)

then X̃ and ỹ belongs to the same orbit of X̃ .

Proof. Let L̃X̃ , L̃ỹ be leaves of F̃ u containing x̃, ỹ, resp. By using local product
structure and the stable foliation F̃ s we can assume in (**) that X̃n ∈ L̃x̃ ∀n (unless
Tn is bounded).
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~

Fig. 5.3

By using local product once more we see that ỹ ∈ L̃x̃ unless L̃x̃ intersects `ỹ twice
(`ỹ is the leaf of F̃ ss containing ỹ). The last is absurd hence ỹ ∈ L̃x̃ . We conclude
that the negative X̃-orbit of ỹ contains X̃ . ut

Theorem 5.7. The orbit space M̃/X̃ is diffeomorphic to Rn.

Proof. First we observe that M̃/X̃ is a (n− 1)-manifold. (The chards are obtained
from the ones of M̃ by just projecting). Let πθ : M̃→ M̃/X̃ be the natural projec-
tion. We observe that ∀Õ ∈ M̃/X̃ there is an open neighborhood Ũ of Õ such that
π−1

θ (Ũ) ∼= Ũ × OX̃ (x̃) for some x̃ ∈ M̃ ∴ πθ : M̃→ M̃/X̃ is a fibration with fiber R
(to obtain the last property one uses the fact that Ω(X̃) = /0). By the exact sequence
of the fibration we have

1→ π1(Fibre) ↪→ π1(M̃)→ π1(M̃/X̃)→ 1 ∴ π1(M̃/X̃) = 1/1 = 1
q q
1 1

This proves that M̃/X̃ is simply connected. By Lemma 2 we have that M̃/zX̃ is
Hausdorff. Moreover, the projection πθ (F̃ u) of F̃ u yields a foliation by (n− 2)
planes of

M̃/X̃ ∴ M̃/X̃ = Rn−1

by Palmeira’s Theorem [65]. ut
Notation:

• OX = orbit space M̃/X̃ of X̃
• πθ : M̃→ OX the natural projection.
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• Y σ = πθ (F̃ σ ) (σ = s,u) are the projection of F̃ σ to θX . Therefore, Y u is a
foliation by (n−2) planes of OX ' Rn−1 and Y s is a foliation by lines of OX .

Recall that there is an action

π1(M)× M̃→ M̃

preserving F̃ σ (σ − s,u,ss,uu). This actions induces an action

π1(M)×θX → θX

which preserves Y σ (σ = s,u).

Remark 5.8. Not every leaf of Y u intersects all leaves of Y s (one can have
a picture as below).

s

u

G

G

Fig. 5.4

Proof of Theorem 5.6: We rever the flow to assume cod F s = 1. By passing to a
double cover if necessary we can assume that F u is orientable. We can define (via
orientability of F u) ∀x ∈M the sets

[x,∞), (x,∞), (−∞,x], (−∞,x)

as the oriented half-intervals in F u
x . To prove that X is transitive we shall prove that

every repeller Ω0 of X is an attractor of X . To prove it we use the following lemma:

Lemma 5.9. If x ∈Ω0⇒ (x,∞)∩Ω0 6= /0 and (−∞,x)∩Ω0 6= /0.

Proof. We only prove (x,∞)∩Ω0 6= /0 ∀x ∈ Ω0 (the other proof is similar). By
contradiction we assume that
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A = {x ∈Ω0 : (x,∞)∩Ω0 = /0} 6= /0.

We claim that A is a finite union of closed orbits. In fact, pick x0 ∈ A and consider
y ∈ αY (x0)

(x  ,   )8

x

y

unable intersection

0

0

α(x  )0y

F

F

ss
x

0

y
ss

Fig. 5.5

Obvioiusly y ∈Ω0 (because Ω0 is a repellor) ∴ F s
y ⊆Ω0. Now suppose that the

orbit of x0 hits a cross-section of y infinitely many times. By using local product
structure we observe that x0 ∈F s

y . As t ∈ αY (x0) we have that the X-orbit of y is
periodic and that x0 ∈ orbit of y. This proves the claim.

By the claim we pick x0 ∈ A and let θ0 = XR(x0) be the orbit of x0 (which is
periodic). Let γ0 = [θ0] be the element θ0 represents in π1(M). Then θ0 is a fixed
point of γ0 (viewing γ0 as a map Ox←↩). Denote by F0 the leaf of Y s containing θ0 .
Set f ′0 = F0−θ0

By the claim once more we have that every orbit in A is closed. Since the ones
represented by elements in F ′0 are not closed we have that

x ∈ Γ def= F s
x0
−θ0 implies (x,∞)∩Ω0 6= /0.

By local product (and Ω0 = F s
x0

) the last is equivalent to

(x,∞)∩F s
x0
6= /0, ∀x ∈ Γ .

Consequently, ∀θ ∈ F ′0 one has

(θ ,∞)∩F0 6= /0.

(Where (∗,∞) is the half-intend induced by Y u0
in OX ). This allow us to define the

map
h : F ′0→ OX

by the identity
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`[θ ,h(θ)] = inf{`[θ ,θ ′] : θ ′ ∈ (θ ,∞)∩F0}.
Local product structure implies

h(θ) > 0, ∀θ ∈ F ′0 .

0(θ ,   ) 8(θ ,   )8

θ
0

θ

forbiden
intersection

Fig. 5.6

Key fact: (KF)
Since n = dimM ≥ 4⇒ n− 2 > 2⇒ dim(F0) > 2 (dimY s = n− 2) ∴ F ′0 =

F0−θ0 is connected.
Our second claim is that there is a leaf F1 of Y s such that h(θ) ∈ F1, ∀θ ∈ F ′0.

In fact, we set ∀z ∈ θX

V (z) = {θ ∈ F ′0 : h(θ) = Y s
z }

(•) F ′0 =
⋃

z∈θX

V (z) (obvious because h(θ) ∈ Y s
h(θ))

(•) V (z) is open in F ′0
(•) The V (z)’s are pairwise disjoint.
(•) V (z) is closed in F ′0 (because of the previous two statements).
By the KF we get V (z) = F ′0 for some z and the claim follows.
Now we observe that F1 6= F0. Indeed, if F1 = F0 then we would have a picture

as below which is impossible by local product structure. We conclude that F1 6= F0.
Our third claim is that if F1 is leaf as in the second claim, then γ0 (viewed as a

covering map) fixes F1. Indeed, we first observe that γ0 commutes with h, i.e.

h(γ0θ) = γ0(hθ) ∀θ ∈ F ′0

to see this we observe that γ0 carries [θ ,hθ ] to an interval [γ0θ ,γ0(hθ)] in Y u
θ be-

cause Y u
θ is γ0-invariant. We have the figure below. Analogously F0 does not in-

tersect (γ0θ ,γ0hθ) because it is fixed by γ0 ∴ γ0(hθ) = h(γ0θ). Now, h(θ) ∈ F1
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∀θ ∈ F0

⇒ h(θ) ∈ F1∩ γ−1
0 (F1)

∴ F1∩ γ−1
0 (F1) 6= /0

∴ γ0(F1) = F1 proving our third claim.

Now we finish the proof of Lemma 5.9. Because γ0 6= Id it follows from our third
claim that γ0 has a unique fixed point θ1 in F1. Moreover, γ0/F0 , γ0/F1 are con-

tractions with global fixed points θ0, θ1 respectively. Take a

dim(OX )=n−1 dimF0=n−2︷ ︸︸ ︷
(n−3)− sphere

S0 in F0 centered at θ0 ∴ S1 = h(S0) is also a (n−3)-sphere in F1. Clearly S0 is the
boundary of a (n− 2)-ball Bn−2

0 ⊆ F0 centered at θ0. By Jordan-Browder (or gen-
eralized Alexander’s Theorem) we get that S1 is also the boundary of a (n−2) ball
B′1 ⊆ F1 . As F1 6= F0 the set
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S = B0∪
(

⋃

θ∈S0

[θ ,h(θ)]

)
∪B1

is then a (n−2) sphere in OX =Rn−1. It follows that S bounds a (n−1)-ball B in Ox
Note that the curve [θ0,∞) enters in B through θ0 ∈ S−∂B. Observe that [θ0,∞) has
no accumulation points in θX . In fact, any accumulation point of (θ0,∞) produces a
closed curve in M̃ transverse to F̃ s ∴ exists null-homotopic closed curve in M |∩F s

a contradiction (alternatively any accumation point of (θ0,∞) produces a couple of
intersection points between a leaf of F̃ u and a leaf of F̃ s contradicting Lemma
5.7).

It follows that (θ0,∞) must intersect ∂B in another point 6= θ0 . This point must be
in B1 ⊆ F1 ∴ (θ0,∞)∩F1 6= /0 ∴ (θ0,∞)∩F0 6= /0 a contradiciton. This contradiction
proves Lemma 5.9. ut

Now we finish with the proof of Theorem 5.6.
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As before we consider a repeller Ω0 of X and we have to prove that Ω0 is an
attractor. By Lemma 5.9 one has

(x,∞)∩Ω0 6= /0, (−∞,x)∩Ω0 6= /0 ∀x ∈Ωo

We claim that ∀x ∈ Ω0 , (x,∞)∩Ω0 is dense in (x,∞). Indeed, suppose that exists
x ∈ Ω0 such that (x,∞)∩Ω0 is not dense in (x,∞). Then, there is an open interval
IX ⊆ (x,∞) with Ix∩Ω0 = /0. By taking a bigger interval if necessary we can assume
that x ∈ ∂ Ix . Let y ∈ ωX (x) be fixed. By using Ix as in the proof of Remark 1 (see
proof of Lemma 5.9) we obtain that y is a periodic point (and x ∈W s(y)). By the
λ -Lemma we have that the positive orbit of Ix accumulates on (y,∞). Then, as Ix ∩
Ω0 = /0, we get (y,∞)∩Ω0 = /0. This contradicts Lemma 5.9 because y ∈ Ω0 . This
contradiction shows the claim.

Now, by the previous claim and the fact that Ω0 is closed we get [x,∞) ⊆ Ω0 .
Analogously we ge (∞,x]⊆Ω0 and so F u

x ⊆Ω0 ∀x ∈Ω0 . With this information it
is easy to prove that Ω0 is an attractor. Since Ω0 is also a repeller we conclude that
Ω0 = M. As Ω0 is transitive for X we have that X is transitive flow. This completes
the proof of Theorem 5.6. ut

5.4 Anosov flows on 3-manifolds

In this section we study Anosov flows on closed 3-manifolds.

5.4.1 Transverse torus

We shall prove the following result due to Fenley and Brunella [44], [34] (see [93]).
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Theorem 5.9. If T is a torus transverse to an Anosov flow on a closed 3-
manifold, then T is incompressible.

Proof. Let M be a closed 3-manifold and let T be a torus transverse to an Anosov
flow X in M. It follows that T is 2-sided. As M supports Anosov flows and dimM = 3
we have that M is irreducible. It follows from Corollary 1.13 that one of the follow-
ing properties hold:

(1) T is incompressible,
(2) T bounds a solid torus ST ,
(3) T belongs to the interior of a 3-ball B.

If (1) holds then we are done. If (3) holds then T separates M and one of the con-
nected components of M\T (M′ say) belongs to the interior Int(B) of B (prove it
as exercise). As T separates M we have that Ω(X)∩T = /0. In particular, X is not
transitive and so there is a spectral decomposition

Ω(X) = Λ1∪·· ·∪Λk

formed by hyperbolic basis sets. One of then (Λ1, say) is an attractor which can
be assumed to belong to M′ by reversing the flow it necessary. Hence Λ1 ⊆ M′ ⊆
Int(B) ∴ Λ1 is contained in the 3-ball B. Since B is simply connected we conclude
that X has a null-homotopic periodic orbit (e.g. one in Λ1). This is a contradiction
which proves that (3) cannot occur. Now we assume (2). As before we can assume
that exists attractor Λ1 of X contained in the interion Int(ST ) of ST . Let U be a
smooth compact isolating block of Γ1 contained in Int(ST ). We can choose ∂U |∩X
(Lyapunov function) ∴ ∂U is a finite union of tori T1, . . . ,Tk. Now, since Ti is con-
tained in ST (which is a solid torus) we have that none of the Ti’s is incompressible
because π1(ST ) = Z and π1(T ) = Z⊕Z. Cleary such tori are 2-sided (as they are
|∩X). As M is irreducible, Corollary 1.13 implies that either Ti is contained in a 3-
ball or Ti bounds a solid torus ∀ i. In the first case we get a contradiciton as before
(case (3)). Hence Ti bounds a solid torus in M, ∀ i. With this argument, replacing T
by Ti if necessary, we can assume that T = Ti and that ST is a isolating block of Λ1.

Next the apply an argument due to Brunella. Define FST as the foliation induced
by F u (the wave unstable foliation) in ST . Clearl FST is transverse to ∂ (ST ) = T
(recall X |∩T ). Moreover, FST has no Reeb components (X Anosov ∴ F u has no
closed leaves). Let 2FST be the double foliation defined in the double manifold
2ST . (2ST is obtained by gluing two copies of ST with the identity map Id : T =
∂ (ST )→ T ). Hence 2ST is a genus one closed 3-manifold as ST is a solid torus
[He]. It follow from Seifet-Van Kampen that

π1(2ST ) = Z ∴ π1(2ST ) has no exponential growth. (*)

Actually 2ST = S2× S1. On the other hand, we can see that 2FST has no Reeb
component. Indeed, suppose that there is a Reeb component R of 2FST . Since FST
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has no Reeb component we would have that R intersects 2(ST ) in a way that R∩ST
is a Half-Reeb component as below:

T= ST( )

R ST

ST

Fig. 5.12

By observing that X points outward to ST in T = ∂ST (say) we observe that
∂ (R∩ST ) has a closed orbit θ . Such a closed orbit must be contained in Λ1 (ST is
an solated block) ∴ its full unstable manifold also belongs to Λ1 (Λ1 is an attractor).
This is a contradiction since ∂ (R∩ST ) is part of the unstable manifold of θ . Hence
2FST has no Reeb component as desired. To finish the proof one see that 2FST
has a leaf of exponential growth (a non periodic leaf in Λ1). Since FST has no
Reeb component we get that no leaf of 2FST intersects a null-homotopic closed
transversal of 2FST (this is the Novikov theorem). It would follow from the Plante’s
Theorem that π1(2ST ) has exponential growth contradicting (*). This contradiciton
proves the result. ut

Next we present some applications of Theorem 5.9. A 3-manifold is called
atoroidal if it does not have incompressible torus.

Corollary 5.10 ([44]). Anosov flows on closed atoroidal orientable 3-manifolds are
transitive.

Proof. Every non-transitive Anosov flow X on a closed 3-manifold M exhibits an
attractor A 6= M. By using Lyapunov functions we can arrange an isolating block
U of A whose boundary ∂U is a disjoint union of closed surfaces |∩X . Since X is
defined on an orientable manifold all such surfaces are tori. By Theorem 5.9 all
such tori are incompressible which contradicts that M is atoroidal. This proves the
result. ut

Recall that a manifold is hyperbolic if it admits a metric with negative curvature.

Corollary 5.11 ([44]). An Anosov flow on a closed hyperbolic 3-manifold is transi-
tive.
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Proof. By passing to a double covering we can assume that the manifold is ori-
entable. It follows from the Preissman’s Theorem [129] that every hyperbolic 3-
manifold is atoroidal. Then Corollary 5.10 applies. ut

Remark 5.12. These are examples of closed hyperbolic 3-manifolds support-
ing Anosov flows (this was proved by S. Goodman [55]).

Another application is given below.

Theorem 5.13. An Anosov flow on a torus bundle over S1 is transitive.

Proof. By passing to a double covering we can assume that the torus bundle M is
orientable. Let X be an Anosov flow in M. If X were not transitive then there were a
transverse torus T of X which in the boundary of an isolating block U of an attractor
A of X (the argument is the same as in the proof of Corollary 1.9. By Theorem 5.9
we have that T is incompressible. As M is a torus bundle over S1 and M supports
Anosov flows we have that M has Anosov monodromy. Then T is isotopic to the
torus fiber of M (see Lemma 5.2 p. 54 in [63]). Hence the manifold M1 obtained
by containing open M along T is diffeomorphic to [0,1]×T 2. (Note that T |∩X ⇒ T
is two-sided). Let 2M1 be the double of M1 and let 2FM1 be the double foliation
FM1 = F u/M1. One can see that 2M1 = T 3 (the 3-torus). As in the Brunella’s ar-
gument we observe that 2FM1 does not exhibit closed null-homotopic transversals
∴ no leaf of 2FM1 intersect such transversals. Again 2FM1 has a leaf with ex-
ponential growth. Hence π1(2M1) would have exponential growth, a contradiction
because π1(2M1) = π1(T 3) = Z3. This contradiction proves the result. ut

5.4.2 Product Anosov Flows

In this chapter we describe some techniques for the study of Anosov flows. To start
with we consider an Anosov flow on a closed 3-manifold M.

We denote by F s,F u the weak stable and weak unstable foliations of X respec-
tively. We can assume that X is C∞ and then F u is C1. Denote by π : M̂→ M the
universal cover of M.

Note that π1(M) is identified with the set of fiber-preserving diffeomorphisms
in M̂ and M = M̂/π1(M). In addition, since π is a local diffeomorphism, there is a
vector field X̂ in M̂ such that for all x̂ ∈ M̂ one has X̂(x̂) = Dπ−1(X)(X(X)) where
x = π(x̂).

The vector field X̂ is called the lift of X to M̂. It follows that X̂ is Anosov since
X is. In particular X̂ is equipped with the weak stable and the weak unstabe folia-
tions F̂ s,F̂ u respectively. Such foliations are precisely the ones obtained by lifting
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F s,F u to M̂ via π , namely a leaf of F̂ ∗ is a connected component of π−1(L) for
some leaf L of F ∗ (∗= s,u).

Note that π ◦α = π for all α ∈ π1(M) since M is precisely the space of orbits
of the action of π1(M) over M̂. Hence if L̂ is a leaf of F ∗ and α ∈ π1(M) then the
commom value π(α(L̂)) = π(L̂) is a leaf of F ∗ (∗= s,u). In particular, if L̂ is a leaf
of F ∗ and α ∈ π1(M) then α(L̂) is also a leaf of F ∗.

Now suppose that L̂ is a leaf of F u which is fixed by some α ∈ π1(M)\{1}. If
x̂ ∈ L̂ then α(x̂) ∈ L̂ is different from x̂ since α 6= 1. There is a curve ĉ in L̂ joining x̂
with α(x̂) since L̂ is path-connected. Such a curve is not closed because x̂ 6= α(x̂).

The curve c = π ◦ ĉ is a closed curve contained in the leaf L = π(L̂) of F u.
Clearly c is not null homotopic in L as c lift to the non-closed curve ĉ in L̂.

We conclude that L is not a plane leaf of F u and so it contains a periodic orbit
of X . Conversely suppose that L is a leaf of F u containing a periodic orbit O of X .

Let α be the element of π1(M) represented by the closed curve O⊂M. Note that
α 6= 1 since O is not null homotopic.

Let us prove that α(L̂) = L̂ for all leaf L̂ of F̂ u with π(L̂) = L. It suffices to show
that α(L̂)∩ L̂ 6= /0 since both α(L̂) and L̂ are leaves of F̂ u. Choose x̂ ∈ L̂ such that
π(x̂) ∈ O.

Since L̂ is simply connected we have that π : L̂→ L is precisely the universal
cover of L. Then we can lift O to a curve Ô in L̂ such that Ô(0) = x̂. By definition
α(x̂) = Ô(1) ∈ L̂ which proves x̂ ∈ L̂∩α−1(L̂). Hence L̂∩α−1(L̂) 6= /0 and then
α(L̂)∩ L̂ 6= /0 as desired.

We have then proved that a leaf L̂ of F u is fixed by some α ∈ π1(M) \ {1}
precisely when the leaf π(L̂) of F u contains a periodic orbit of X . Similarly for the
leaves of F̂ s.

Next we consider the leave spaces V s,V u of F̂ s,F̂ u respectively. As F̂ u is a
foliation by planes we have that M̂ is homeomorphic to R3 by the Palmeira’s thesis.

On the other hand, we can endow V u with an structure of 1-manifold by consid-
ering intervals transverse to F̂ u in M̂. Such an structure is well defined since the
leaves of F̂ u do not have self-accumulation (otherwise we could construct a closed
transversal to F via π).

It is clear that every leaf of F̂ u disconnects M̂ (again by the abcense of closed
transversal to F u). Moreover V u is simply connected. It then follows that V u is a
simply connected 1-manifold possibly non-Hausdorff. Similarly for V s.

Since the action of π1(M) in M̂ leads invariant F̂ s,F̂ u we have that such an
action induces an action π1(M)×V ∗→V ∗ (∗= s,u). Such an action plays a funda-
mental role in some results in the theory of Anosov flows.

The result below summarizes some important properties of these actions. The
statement is done for V u and a similar statement holds for V s. See the previous
Chapter 5 for the proof.

Theorem 5.14. The following properties hold:
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1. α ∈ π1(M)\{1} has a fixed point in V u if and only if α is represented by
a periodic orbit of X.

2. X is transitive if and only if the action π1(M)×V u → V u is minimal, i.e.
the orbit O( f ) = {α( f ) : α ∈ π1(M)} is dense in V u, ∀ f ∈V u.

3. The isotropy group Stab( f ) = {α ∈ π1(M) : α( f ) = f} of f is either trivial
or infinite cyclic, ∀ f ∈ V u. Such a group is not trivial precisely when f
represents a leaf L̂ of F̂ u whose projection L = π(L̂) contains a periodic
orbit of X. In that case Stab( f ) is the infinite cyclic group generated by the
representant of the unique periodic orbit of X in L.

4. The set { f ∈V u : α( f ) = f for some α ∈ π1(M)\{1}} is dense in V u.
5. If f is a fixed point of α ∈ π1(M)\{1} then α is contracting or expanding

in a neghborhood of f . In particular, the set Fix(α) of fixed points of α is
discrete.

The structure of the 1-manifold V u is also interesting. As mentioned before we
have that V u may be non-Hausdorff. This motivates the following definition.

Definition 5.15. An Anosov flow X on a closed 3-manifold is product if V u is
Hausdorff (⇔ V u is homeomorphic to R).

Not every Anosov flow is product. Many examples of this type can be obtained
by the following observation due to Barbot [15].

Theorem 5.16. Product Anosov flows are transitive.

Proof. By hypothesis we have V u =R. Since X is not transitive the action π1(M)×
R→ R is not minimal and so there is an orbit of π1(M) whose closure Γ is not R.
Let I a maximal open interval in R\Γ and f be a boundary point of I. We claim that
Stab( f ) 6= 1. In fact, there is α ∈ π1(M)\{1} fixing some element of I by part (4)
of Theorem 5.14. Since I is maximal we have that α(I) = I and so α2 fixes f . This
proves α2 ∈ Stab( f )\{1} since π1(M) is torsion free. By part (3) of Theorem 5.14
we have that Stab( f ) is infinite cyclic. Then we can fix δ ∈ Stab( f )\{1} a generator
of Stab( f ). On one hand, by Theorem 5.14 there is an open interval J containing f
such that δ/J is contracting. In particular, δ k(g) 6= g for all g∈ J and k ∈N∗. On the
other hand, we have that there is g ∈ J fixed by some α ∈ π1(M)\{1}. Necessarily
one has α(I) = I and then α2( f ) = f . It follows that α2 ∈ Stab( f ) and then there is
k ∈ Z∗ such that α2 = δ k yielding δ k(g) = g. Obviously we can assume that k > 0
and so we obtain a contradiction since δ k(g) 6= g ∀g ∈ J. The proof follows. ut
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It follows that the Anomalous Anosov flow in Chapter 1 is not product. We say
that f1, f2 ∈ V u are separated if they exhibit disjoint neighborhoods in V u. Other-
wise f1, f2 are non-separated (denoted by f1 ≈ f2). Given α ∈ π1(M) we denote
Fix≈(α) = { f ∈V u : α( f )≈ f}. The following gives a sufficient condition for X to
be product.

Theorem 5.17. Anosov flows on closed 3-manifolds whose fundamental
group have non-trivial center are product.

Proof. Recall the definition of the center Z = Z(π1(M)) in Chapter 6. By assump-
tion there is δ ∈ Z \ {1} which can be assumed to be orientation-preserving. Fix
n ∈N∗. Every f ∈ Fix(δ n) represents a periodic orbit of X . Since the set of periodic
orbits of X is countable we have that Fix(δ n) is countable. But Fix≈(δ n)\Fix(δ n)
is formed by non-separated points of V u. As the set of non-separating points of
V u is countable we conclude that Fix≈(δ n) \Fix(δ n) is countable for all n ∈ N∗
too. It follows that Fix≈(δ n) = Fix(δ n)∪ (Fix≈(δ n) \Fix(δ n)) is countable. It is
clear that Fix≈(δ n) is also closed in V u. As δ ∈ Z we have that Fix(δ n) is π1(M)-
invariant. In fact, consider α ∈ π1(M) and f ∈ Fix≈(δ n). Hence δ n( f ) ≈ f and
then αδ n( f )≈ α( f ). Because δ ∈ Z(π1(M)) we have δ n(α(x)) = αδ n(x)≈ α( f )
proving α( f )∈Fix≈(δ n). Hence α(Fix≈(δ n)) = Fix≈(δ n) for all α ∈ π1(M) as de-
sired. The last invariance implies that the union of the leaves in M̂ representing some
element in Fix≈(δ n) is projected into M to a compact F u-invariant subset which
is transversely countable. The existence of closed tranversely countable sets implies
necessarily the existence of a compact leaf of F u, a contradiction. We conclude that
Fix≈(δ n) = /0 and so δ n( f ) and f are separated ∀ f ∈V u.

For all n ∈ N∗ we consider the family Gn = {J ⊂ V u : J is an open δ n-invariant
interval}. This family is not empty for some n ∈ Z∗. In fact, let V̂ = V u/δ be the
quotient space induced by the action of δ in V u. Since δ has no fixed points and V u

is simply connected we have that the natural quotient map V u→ V̂ is the universal
covering of V̂ . Note that π1(V̂ ) =< δ > is non-trivial. Then there is a path γ in V̂
which is not null-homotopic. The lift of γ to V u yields a closed interval [ f ,δ n( f )] in
V u joining f to δ n( f ) for some ( f ,n) ∈V u×Z∗. Hence J = ∪k∈Zδ kn([ f ,δ n( f )]) is
an open δ n-invariant interval. This proves Gn 6= /0. Without loss of generality we can
assume that n = 1. If J,J′ ∈ G then J∩ J′ is either /0 or an open interval. In the last
case the boundary points of J ∩ J′ are fixed by δ since δ is orientation-preserving.
Because δ has no fixed points we conclude that the family G is disjoint. If J ∈ G
and α ∈ π1(M) then α(J) ∈F because δ commutes with α . Hence H = ∪J∈G J
is π(M)-invariant. One sees that H is open and closed in V u. In fact, note that
K = H \H is formed by non-separating points of V u and so K is countable. On
the other hand, K is closed because H is open. And K is π1(M)-invariant because
K is δ -invariant and δ is central. As before we can use K to construct a transversely
countable compact F u-invariant set. Since F has no closed leaves we conclude that
K = /0 and so H is closed in V u. To finish we let N̂ be the union of the leaves of
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F̂ u represented by points in H and let N be the projection of N̂ to M. As H is
open-closed in V u we have that N is open-closed in M. Since M is connected we
conclude that N = M. This proves that H = V u and so X is product. The result
follows. ut

One can easily see that a torsion free group with non-trivial center has an infinite
cyclic normal subgroup (e.g. the cyclic group generated by a central element). A
sort of converse holds for by the following lemma.

Corollary 5.18. Anosov flows on closed 3-manifolds whose fundamental group con-
tains an infinite cyclic normal subgroup are product.

Proof. Let M be a closed 3-manifold whose fundamental group π1(M) contains
an infinite cyclic normal subgroup. By the previous corollary we have that π1(M)
exhibits a finite index normal subgroup H with non-trivial center. Let M̃→M be the
Galois covering associated to H. Such a covering is finite since H has finite index.
Hence M̂ is closed. Every Anosov flow in M lifts to an Anosov flow in M̂ which
is product by Theorem 5.17. Since M̂ and M have the same universal covering we
conclude that all Anosov flows in M are product. The proof follows. ut

By definition, a 3-manifold M is Seifert if it exhibits a foliation by circles with
some exceptional leaves [66]. Since all closed Seifert 3-manifolds have infinite
cyclic normal subgroup we obtain the following corollary.

Corollary 5.19. Anosov flows on closed Seifert 3-manifolds are product. In partic-
ular Anosov flows on circle bundles over closed surfaces are product.

Theorem 5.20. Circle bundles over a closed orientable surface cannot sup-
port suspended Anosov flows.

Proof. Let M be a circle bundle over a closed orientable surface Σ . Suppose by
contradiction that M supports suspended Anosov flows. It follows that M is a torus
bundle over S1. The exact sequence of the fibrering yields,

1−→ π(T 2)
β−→ π1(M) Φ−→ π1(S1)−→ 1

and
1−→ π1(S1)

φ−→ π1(M)
ϕ−→ π1(Σ)−→ 1

Let us suppose for a while that Ker(ϕ)∩ Im(β ) = 1. Let δ the generator of
Ker(ϕ) = Im(φ) = Z, and a,b be the generators of Im(β ) = Ker(Φ) = Z2. Since
Ker(ϕ) is normal we have aδa−1δ−1 ∈ Ker(ϕ) as δ ∈ Ker(ϕ). Since Im(β ) is
normal we have aδa−1δ−1 ∈ Im(β ) as a−1 ∈ Im(β ). Thus aδa−1δ−1 ∈ Ker(ϕ)∩
Im(β ) = 1 ∴ aδa−1δ−1 = 1, i.e. a and δ commute in π1(M). Analogously b and
δ commute in π1(M). On the other hand, if anbmδ k = 1 then anbm = δ−k and so
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anbm ∈ Im(β )∩Ker(ϕ) = 1. Thus anbm = 1 and so m = n = 0 since Im(β ) = Z2

is torsion free. If follows that k = 0 since π1(M) is torsion free (as M supports
Anosov flows). We conclude that the subgroup in π1(M) generated by a,b,δ is Z3.
In other words π1(M) contains Z3 as a subgroup. Then π1(M) could be finitely
covered by T 3 a contradiction since T 3 cannot support Anosov flows. Therefore
Ker(ϕ)∩ Im(β ) 6= 1. Then there is n ∈ Z∗ such that δ n ∈ Im(β ), where δ is the
generator of Ker(ϕ). As Im(β ) = Ker(Φ) we have 0 = Φ(δ n) = nΦ(δ ) ∴ Φ(δ ) =
0. We conclude that Ker(ϕ)⊂ Im(β ). In other words we have the normal sequence
Ker(ϕ)/ Im(β )/π1(M). By the Group Isomorphism Theorem we obtain

π1(M)
Im(β )

=
π1(M)/Ker(ϕ)
Im(β )/Ker(ϕ)

.

Thus one has

π1(S1) =
π1(Σ)

Im(β )/Ker(ϕ)
.

This proves that the quotient group Im(β )
Ker(ϕ) has infinite index in π1(Σ). By Poincaré

duality the cohomological dimension c.d Im(β )
Ker(ϕ) ≤ 1 and so Im(β )

Ker(ϕ) is free. Since such

a group is abelian we conclude that Im(β )
Ker(ϕ) = Z. Hence π1(Σ) has two generators,

and so, Σ = T 2. The above shows that M is a circle bundle over the torus. Hence
π1(M) exhibits a infinite cyclic normal subgroup with abelian quotient. By Lemma
1.1 we conclude that π1(M) is almost nilpotent and then π1(M) has polynomial
growth by Theorem 1.4. Since M supports Anosov flows we obtain a contradiction
by Theorem 5.4. This contradiction proves the result. ut

One can see that a suspended Anosov flow is product. The converse is false in
general by the following corollary.

Corollary 5.21. There are product Anosov flows which are not suspended.

Proof. Let X be the geodesic flow on the unitary tangent bundle M = T1Σ over a
negatively curved closed surface Σ . Since Σ is negatively curved we have that X
is Anosov by Theorem 3.7. Moreover, X is product by Corollary 5.19 since M is
a circle bundle over Σ . Finally X is not suspended by Theorem 5.20. The proof
follows. ut

The following lemma will be used in Section 5.4.3.

Lemma 5.10. Let X be a transitive Anosov flow on a closed 3-manifold M. Let
π1(M)×V u → V u be the action of the fundamental group π1(M) on the unstable
leave space V u of X in the universal cover. If A is a non-trivial abelian normal
subgroup of π1(M), then Fix(β ) = /0 ∀β ∈ A−1.

Proof. By Lemma 1.3 applied to the restricted action A×V u → V u one has that
∪β∈A−1Fix(β ) is discrete. Suppose by contradiction that Fix(β ) 6= /0 for some β ∈
A−1 and choose f ∈ Fix(β ). Since X is transitive we have that the action π1(M)×
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V u→V u is minimal. Hence we can find γ ∈ π1(M) such that γ( f ) 6= f is arbitrarily
close to f . Define β ′ = γβγ−1. Then f ′ = γ( f ) ∈ Fix(β ′) and β ′ ∈ A since A is
normal. Because ∪β∈A−1Fix(β ) is discrete and f ′ 6= f is arbitrarily close to f we
have that β ′ = 1. Hence β = 1 by the definition of β ′ which is impossible. This
contradiction proves that Fix(β ) = /0 ∀β ∈ A−1 and the theorem follows. ut

5.4.3 Armendariz Theorem

Here we shall prove a result about classification of Anosov flows on closed 3-
manifolds with solvable fundamental group due to Armendariz [9], [146].

Plante announced that the conclusion of this result holds for all codimension one
Anosov flows [124] on solvable manifolds. However, the three-dimensional part
of this result however has incorrect proof since it uses the (false) statement that
all transitive Anosov flows on closed 3-manifolds are product. A correct proof of
the Plante’s extension of the Armendariz’s Theorem is due to T. Barbot [16]. S.
Matsumoto [83] also proved the Plante’s extension but in dimension≥ 4. The proofs
by Barbot and Matsumoto are based on proving that the stable/unstable manifolds
of Anosov flows on solvable 3-manifolds are transversely afine. The proof giving
here is only three-dimensional and does not uses transversely afine structure.

We start with the following lemma.

Lemma 5.11. Let X be a transitive Anosov flow with a transverse torus T on a
closed 3-manifold M. Let V u be the unstable leave space in the universal cover
associated to X. If the fundamental group π1(T 2) of T 2 is fixed point free, then X is
suspended.

Proof. It suffices to prove that all closed orbits of X intersect T . To prove it we
assume by contradiction that there is a closed orbit which does not intersect T . Then,
there is a closed curve in T which is freely homotopic to a closed orbit of X (this is
proved using the transitivity of X and the boundary closed orbit trick). Hence some
element of π1(T 2)− 1 has a fixed point in V u a contradiction. This contradiction
proves the result. ut

From this we obtain the corollary below.

Corollary 5.22. Let X be a transitive Anosov flow on a closed 3-manifold M. Then,
X is a suspension if and only if X exhibits a normal torus, i.e. a transverse torus
whose fundamental group is normal in π1(M).

Proof. First suppose that X is suspended. Then M is a torus bundle over S1 and X
exhibits a transverse torus T which is isotopic to the fibre of M. Hence the fun-
damental group of T is normal in π1(M). Conversely suppose that X exhibits a
transverse torus whose fundamental group is normal in π1(M). Such a subgroup is
isomorphic to Z2 and then it is non-trivial abelian normal subgroup of π1(M). By
Lemma 5.10 we have that A = π1(T 2) is fixed point free. Hence X is suspended by
Lemma5.11 and the proof follows. ut
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Next we classify Anosov flows on torus bundles over S1.

Theorem 5.23. Anosov flows on torus bundles over S1 are suspended.

Proof. Let M be a torus bundle over S1. Let X be an Anosov flow on M. X is tran-
sitive by Theorem 5.13. As M is a torus bundle over S1 supporting Anosov flows
we have that H1(M,Z) is infinite cyclic. Note that π1(torus fibre of M) injects into
π1(M). This yields a rank-two free abelian normal subgroup A of π1(M). By Lemma
5.10 we have that there is no element in A−1 having fixed points. The last implies
that the closed orbits of X are non-zero elements of H1(M,Z). Then Theorem 4.14
applies. ut

Now we state the main result of this section.

Theorem 5.24. (Armendariz Theorem) An Anosov flow on a closed 3-
manifold with solvable fundamental group is suspended.

Proof. Let X be an Anosov flow on a closed 3-manifold M with solvable funda-
mental group π1(M). Let G0 = 1/G1 / · · ·/Gn−1 /Gn = π1(M) be the normal series
such that Gi+1/Gi is abelian for all 0≤ i≤ n−1. Define

i0 = sup{0≤ i≤ n :| G j/G j−1 |< ∞,∀i < j ≤ n}.

We have that Gi0 has finite index in π1(M) because G j/G j−1 is finite ∀ j ≥ i0 + 1
and ∣∣π1(M)/Gi0

∣∣ = |Gn/Gn−1| · |Gn−1/Gn−2| · · ·
∣∣Gi0+1/Gi0

∣∣ .
Let M̂ → M be the Galois covering associated to Gi0 . Hence M̂ is compact and
π1(M̂) = Gi0 . In particular π1(M̂) is solvable. We note that Rank(H1(M̂,Z))≥ 1. In
fact, H1(M̂,Z) = π1(M̂)/[π1(M̂),π1(M̂)] by the Hurewitz homomorphism. Hence
H1(M̂,Z) = Gi0/G′i0 where we denote H ′ = [H,H] for simplicity. As Gi0/Gi0−1 is
abelian we have that G′i0 ⊂ Gi0−1. By the definition of i0 we have that Gi0/Gi0−1 is
infinite. As

Gi0/Gi0−1 =
Gi0/G′i0

Gi0−1/G′i0
by the First Isomorphism Theorem one has that Gi0/G′i0 is infinite since Gi0/Gi0−1

is. We conclude that H1(M̂,Z) is infinite and then Rank(H1(M̂,Z) ≥ 1 as desired.
The last implies that there is an onto homomorphism h : H1(M̂,Z)→Z. Componing
with the Hurewizt homomorphism we obtain an onto homomorphism π1(M̂)→ Z
whose kernel is normal and even finitely generated by Theorem 1.16. Hence M̂ fibers
over S1 with fibre a closed surface F by Theorem 1.15. Since π1(M̂) is solvable we
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have that π1(F) = N also does. Hence F is either the torus or the Klein bottle. In
any case M̂ is finitely covered by a torus bundle over S1, and so, we can assume that
M̂ itself is a torus bundle over S1. By Theorem 5.23 we have that X̂ is suspended.
Hence X̂ has a cross section and then X also does by Proposition 1.33. This proves
that X is suspended and the result follows. ut

A nice corollary of the Armendariz’s Theorem is due to E. Ghys [53].

Theorem 5.25. Let X be an Anosov flow on a closed 3-manifold M. Then X
is suspended if and only if X is product and every closed orbit of X represents
a non-zero element of H1(M,Z).

Proof. Suppose that X is suspended. Then X exhibits a transverse torus T inter-
secting all the orbits of X . By analyzing the trace of the unstable foliation in T
we can prove that X is product. On the other hand, T defines an homomorphism
UT : π1(M)→ Z in the usual way (this is the Poincaré dual of T ). Clearly the com-
mutador [π1(M),π1(M)] is contained in the kernel Ker(UT ) of UT since Z is abelian.
Now, if γ ∈ π1(M) is represented by a closed orbit of X then UT (γ) 6= 0 since T in-
tersects every flowline of X . Hence γ /∈Ker(UT ) and then γ /∈ [π1(M),π1(M)]. It fol-
lows from the Hurewitz homomorphism that γ is not zero in H1(M,Z). Conversely
assume that X is product and that every closed orbit of X represents a non-zero
element in H1(M,Z). Hence the commutador [π1(M),π1(M)] admits a fixed point
free action in V u =R. By Theorem 1.5 we conclude that [π1(M),π1(M)] is abelian.
Hence π1(M) is solvable and so X is suspended by the Armendariz’s Theorem. The
proof follows. ut

An exercice for the reader is to prove that every Anosov flow with a transverse
torus on a closed 3-manifold with zero first Betti number is not transitive.

5.4.4 Abelian normal subgroup

We shall study Anosov flows on closed 3-manifolds for which the fundamental
group exhibits a non-cyclic abelian normal subgroup. This investigation is due to
T. Barbot [16].

We start with the following observation due to Verjovsky [145].

Proposition 5.26. If M is a closed 3-manifold supporting Anosov flows, then the
center of π1(M) is either trivial or infinite cyclic.

Proof. By contradiction suppose that there is a closed 3-manifold M supporting
Anosov flows X such that Z(π1(M)) is neither trivial nor infinite cyclic. In partic-
ular, π1(M) has non-trivial center and then X is product by Theorem 5.17. Hence
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there is a minimal hyperbolic action π1(M)×R→ R. Since X is Anosov we have
that there is α ∈ π1(M)− 1 such that Fix(α) 6= /0. Of course Fix(α) is discrete. It
has neither upper nor lower bound since such a bound must be fixed by Z(π1(M))
which is not cyclic, a contradiction. Hence we can assume that Fix(α) = Z. Now,
γ(Fix(α)) = Fix(α) for every γ ∈ Z(π1(M)) since γ and α commute. This yields
an homomorphism θ : Z(π1(M))→ Z given by translations. θ must have nontrivial
kernel since Z(π1(M)) is not cyclic. Then, there is β ∈ Z(π1(M))−1 fixing all the
elements of Fix(α). In particular, Fix(β ) 6= /0 contradicting Lemma 5.10. The proof
follows. ut

Recall that if A is a subgroup of a group G then the set ZG(A) defined by

ZG(A) = {g ∈ G : ga = ag,∀a ∈ A}

is called the centralizer of A in G.

Corollary 5.27. If M is a closed 3-manifold supporting Anosov flows and A is a
non-cyclic abelian normal subgroup of π1(M), then π1(M)/Zπ1(M)(A) is infinite.

Proof. Let M̂→M be the Galois covering associated to Z = Zπ1(M)(A), i.e. π1(M̂) =
Z. Hence M̂ is a closed 3-manifold as π1(M)/Zπ1(M)(A) is finite. Clearly A ≤
Z(π1(M̂)) and M̂ supports Anosov flows since M does. As A is not cyclic and
A ≤ Z(π1(M̂)) we conclude that Z(π1M)) is not cyclic contradicting Proposition
5.26. The proof follows. ut

Now we state the following result due to Barbot.

Theorem 5.28. Let X be an Anosov flow on a closed 3-manifold M. If π1(M)
contains a non-cyclic abelian normal subgroup, then X is suspended.

Proof. Let A / π1(M) be a non-cyclic abelian normal subgroup. Since π1(M) is
torsion free we have that either A is a rank-two free abelian group (i.e. Z2) or
Rank(A) = 1 ([66]). On the other hand, denote by G the set of groups G with
cdG < ∞ such that cdN < cdG− 1 for all subgroup N of infinite index in G. As
M suppors Anosov flows a theorem of Strebel [140] implies π1(M) ∈ G . Then,
Theorem 1.7 implies that either π1(M) is virtually solvable or π1(M)/Zπ1(M)(A) is
finite. However, the last possibility cannot occur by Corollary 5.27. Hence π1(M) is
virtually solvable and then X is suspended by the Armendariz’s Theorem. The proof
follows. ut

The celebrated Seifert Fibered Conjecture ([38] or [57]) asserts that, among
closed orientable 3-manifolds with infinite fundamental group, the Seifert ones are
precisely the ones whose fundamental group exhibit infinite cyclic normal sub-
groups. As a corollary of Theorem 5.28 and the Seifert Fibered Conjecture we obtain
the following result.
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Corollary 5.29. Let M be a closed 3-manifold supporting Anosov flows. If π1(M)
contains a non-trivial abelian normal subgroup, then M is either Seifert or a torus
bundle over S1.

A different proof of this corollary still using Poincaré duality can be found in
[102].



Chapter 6
Sectional-Anosov flows on 3-manifolds

In this chapter we present some properties of sectional-Anosov flows on compact
3-manifolds.

6.1 Singular partition

In this section we introduce the concept of singular cross section which is very
useful to study sectional-Anosov flows.

Hereafter M will denote a compact 3-manifold and X will denote a sectional-
Anosov flow in M.

Given a disjoint collection of rectangles S we define ∂ ∗S =
⋃

S∈S ∂ ∗S for
∗ ∈ {h,v,o} where So = S\∂ hS.

Definition 6.1. A singular cross section of X is a finite disjoint collection S
of foliated rectangles with M(X)∩∂ hS = /0 such that for every S ∈S there
is a leaf lS of F s in So such that the return time tS (x) for x ∈ S∩Dom(ΠS )
goes uniformly to infinity as x approaches lS. In other words,

lim
δ→0+

inf{tS (x) : x ∈ S∩Dom(ΠS ),dist(x, lS)≤ δ}= ∞. (6.1)

We define the singular curve of S as the union,

lS =
⋃

S∈S
lS.

It follows from the definition that if S is a singular cross section, then the leaf
space S /F s is a disjoint union of copies of [0,1]. So, there is a natural order ”<”
on each connected component. A leaf L will also denote the corresponding element

171
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of the leaf space. A band of S is a set V in some component of S which is union of
leaves of F s (or F s-invariant for short). It follows that the boundary ∂V is formed
by two leaves of F s, V− and V +, and two curves in ∂ hS transverse to F s. The union
of these curves will be denoted by ∂ vV and ∂ hV respectively. Note that V− < V +

in the natural order. If L < L′ are leaves of F s in the same connected component of
S we denote by [L,L′] (resp. (L,L′)) the unique band satisfying ∂ v[L,L′] = L∪L′
(resp. ∂ v(L,L′) = L∪L′) A band V will be open or closed depending on whether
V = [V−,V +] or V = (V−,V +). By a band around a leaf L of F s we mean a band
V with L ⊂V o, where V o = (V−,V +). We still call band a finite disjoint collection
of bands V . In such a case we denote

V o =
⋃

V∈V
V o.

6.1.1 Properties

Now we present some properties of singular cross sections. Hereafter X will be a
sectional-Anosov flow of a compact 3-manifold M. Denote by Bδ (K) the open δ -
ball around K.

Lemma 6.1. For every singular cross section S there is δ > 0 such that the follow-
ing properties hold for every band V ⊂ Bδ (lS ):

1. Dom(ΠV ) is F s-invariant.
2. If L is a leaf of F s and L ⊂ Dom(ΠV ), then there is a leaf f (L) of F s such

that ΠV (L) ⊂ Int( f (L)) and the restriction ΠV /L : L→ f (L) is continuous. In
particular, ΠV (L)∩∂ hV = /0.

Proof. By (6.1) we can select δ such that if V is a band V ⊂ Bδ (lS ), then tV (x) is
uniformly large for all x ∈ Dom(ΠV ).

Now pick a leaf L intersecting Dom(ΠV ) at some point x. We can assume that
L ⊂W ss

x by just projecting along the flow. Since tV (x) is uniformly large we have
that XtV (x)(L) stays close to ΠV (x). From this we get (1) by projecting onto V .
Setting f (L) = F s

ΠV (x) we get (2) by the Tubular Flow Box Theorem [87]. ut

For the next property we recoment the reader to see Definition 1.41 of triangular
maps and Definition 1.44 of properties (H1)-(H2) in Appendix 1.8.

Proposition 6.2. Let S be a singular cross section such that lS is not accumulated
by periodic orbits. There is δ > 0 such that if V ⊂ Bδ (lS ) is a band, then ΠV is a
triangular map satisfying (H1)-(H2).

Proof. By Lemma 6.1 there is δ > 0 such that if V ⊂ Bδ (V ) is a band, then ΠV

is a triangular map with associated foliation F s. Since lS is not accumulated by
periodic orbits we can further assume that V does not intersect the periodic orbits.
We shall use this last property to prove that ΠV satisfies (H1)-(H2). To simplify the
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notation we write F , Σ and F instead of ΠV , V and F s respectively. We also write
L ∈F to say that L is a leaf of F . Recall Definition 1.43.

Proof of (H1): Let L∈F be such that L⊂Dom(F) and n(L) = 0. It follows from
the definition of n(L) that F(L)⊂ Σ \ (L−∪L+) and so F(L)⊂ Int(Σ). Then, F is
C1 in a connected neighborhood of L by the Tubular Flow Box Theorem.

Proof of (H2): Let L∗ ∈F be such that L∗ ⊂ Dom(F), 1≤ n(L∗) < ∞ and

Fn(L∗)(L∗)⊂ Dom(F).

It follows from the definition of n(L∗) that

Fn(L∗)+1(L∗)⊂ Σ \ (L−∪L+).

Recalling the definition of n(L∗) one has that F i(L∗) ⊂ L− ∪ L+ for all 0 ≤ i ≤
n(L∗)−1. Denote by Li the leaf of F containing F i(L∗).

Now, for all 1≤ i≤ n(L∗) we choose bands Vi centered at Li. Although Vi is not
contained in Σ we have that Vi \ Li consists of two connected components V 1

i ,V 2
i

such that V 1
i (say) is contained in Σ \ (L−∪L+) and V 2

i is part of a small extension
of Σ (as a cross section).

By the Tubular Flow-Box Theorem we can choose these bands in a way that the
positive trajectories starting at Vi go directly to Vi+1 and the positive orbits in the
last band Vn(L∗) goes directly to Σ \ (L−∪L+).

There are two cases to consider, namely

L∗ ⊂ Σ \ (L−∪L+) or L∗ ⊂ L−∪L+.

We shall consider the case L∗ ⊂ Σ \ (L−∪L+) first.
As L∗ ⊂ Σ \ (L−∪L+) there are leaves L,L′ in the component of Σ containing L∗

such that L < L∗ < L′ (in the natural order).
Define S = [L,L′]. We make S close to L∗ by just taking L and L′ close to L∗.

Clearly S is a saturated neighborhood of L∗ in Σ which is also connected. On the
other hand, S\L∗ has two connected components, i.e., the saturated sets S1 = [L,L∗)
and S2 = (L∗,L]. We shall prove that if S is close to L∗ then S satisfies (H2).

If S is close to L∗ then the positive trajectories starting at S go directly to V1 since
F(L∗)⊂ L1. The positive trajectories in one component of S\L∗ (say S1) go directly
to V 1

1 while trajectories in the other component S2 go to V 2
1 .

Then, for the first component S1, one has F(S1)⊂V 1
1 and so

F(S1)⊂ Σ \ (L−∪L+).

For this component we define
n1(L∗) = 1.

This definition and the previous inclusion imply

Fn1(L∗)(S1)⊂ Σ \ (L−∪L+).
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Now we take care of the component S2. The positive trajectories through S2 meet
successively the bands V1, · · · ,Vn(L∗) before meet Σ \ (L−∪L+).

If no such trajectory intersects ∪1≤i≤n(L∗)V
1
i before it meets Σ \ (L−∪L+), then

we define
n2(L∗) = n(L∗)+1.

Otherwise the trajectories intersect ∪1≤i≤n(L∗)V
1
i in a first element V 1

i0 (1 ≤ i0 ≤
n(L∗)) and then we define

n2(L∗) = i0.

Observe that i0 6= 1 by the Tubular Flow Box Theorem because we have assume that
the positive trajectories through S1 goes directly to V 1

1 . Consequently

n2(L∗) 6= 1.

On the other hand,
Fn2(L∗)(S2)⊂ Σ \ (L−∪L+)

because F(Vn(L∗))⊂ Σ \ (L−∪L+) (if n2(L∗) = n(L∗)+1) and V 1
i0 ⊂ Σ \ (L−∪L+)

(otherwise).
All together imply (1) and (3) of (H2). We obtain (2) of (H2) as a consequence

of the Tubular Flow Box Theorem. This finishes the proof when L∗ ⊂ Σ \(L−∪L+).
The proof when L∗ ⊂ L− ∪ L+ follows from similar arguments with the sole

exception that we have that S\L∗ has one component instead of two. This completes
the proof. ut
Lemma 6.2. There is a neighborhood U of M(X) with the following property: For
every λ > 0 and every singular cross section S ⊂ U there is δ > 0 such that if
V ⊂ Bδ (lS ) is a band, then there is a cone field Cα in V transverse to F s such that
the following properties hold for all x ∈ Dom(ΠV ) where ΠV is differentiable,

DΠV (x)(C(x))⊂ Int(Cα/2(ΠV (x))) and || DΠV (x) · vx ||≥ λ · || vx ||,

for all vx ∈Cα(x).

Proof. Note that M(X) is Lyapunov stable for it is an attracting set. Then, Lemma
6.5 p.1589 in [108] implies that for all α ∈ (0,1] there are a neighborhood Uα of
M(X) and constants Tα ,Kα ,λα > 0 such that:

1. The sectional-hyperbolic splitting TM(X)M = Es
M(X)⊕Ec

M(X) extends to a contin-
uous splitting TUα M = Es

Uα
⊕Ec

Uα
on Uα with Es

Uα
being invariant.

2. If x ∈Uα and t ≥ Tα , then

DXt(x)(Cα(Ec
x ))⊂ Int(Cα/2(E

c
Xt (x))),

where
Cα(Ec

x ) = {vx ∈ TxM : ∠(vx,Ec
x )≤ α}.
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3. If x∈Uα is non-singular then X(x)∈Cα(Ec
x ) and if t ≥ Tα and vx ∈Cα(Ec

x )∩Nx,
then

|| Pt
x(vx) || · || X(Xt(x)) ||≥ Kα eλα t || vx || · || X(x) ||,

where Nx is the orthogonal complement of X(x) in TxM; and Pt
x is the Linear

Poincaré Flow induced by X (for the corresponding definition see Chapter 1).

Choose α ∈ (0,1] such that

inf{∠(vx,Es
x) : x ∈Uα ,vx ∈Cα(Ec

x )\{0}}> 0. (6.2)

For such an α we let Uα ,Tα ,Kα ,λα > 0 be satisfying (1)-(3) above.
Define U = Uα .
Taking λ > 0 and a singular cross section S ⊂U Fix D > 0 such that

|| X(x) ||
|| X(y) || ≥ D, ∀S ∈S and x,y ∈ S.

Fix Tλ > 0 large enough such that

Kα eλα t ·D≥ λ , ∀t ≥ Tλ . (6.3)

Take δ > 0 such that if V ⊂ Bδ (lS ) is a band, then

tV (x) > Tλ , ∀x ∈ Dom(ΠV ).

Define the cone field Cα in V by

Cα(x) = Cα(Ec
x )∩TxV .

By (6.2) we have that Cα is transverse to F s. Moreover, recalling (16) p. 1596 in
[108] one has

DΠV (x) = PtV (x)
x .

Then, Property (2) yields

DΠV (x)(Cα(x))⊂ Int(Cα/2(ΠV (x))

for all x ∈ Dom(ΠV ) where DΠV (x) exists. Then, Property (3) implies

|| DΠV (x)(vx) ||≥ Kα eλα tV (x) ·D || vx || .

So (6.3) with t = tV (x) implies

|| DΠV (x)(vx) ||≥ λ · || vx ||

proving the result. ut
Combining lemmas 6.1, 6.2 and Proposition 6.2 we obtain the main result of this

section.
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Theorem 6.3. Let X be a sectional-Anosov flow on a compact 3-manifold M.
For all singular cross section S close to M(X) and λ > 0 there is δ > 0
such that if V ⊂ Bδ (lS ) is a finite disjoint collection of bands, then ΠV is
a λ -hyperbolic triangular map with associated foliation F s. If additionally
lS does not intersect the closure of the periodic orbits, then ΠV also satisfies
(H1)-(H2).

6.1.2 Adapted bands

Let us present the definition of adapted band.

Definition 6.4. Let S be a singular cross section of a sectional-Anosov flow
on a compact 3-manifold. An adapted band of S is a closed band V satisfying
the following identity

∂ vV ∩Π−1
V (V o) = /0. (6.4)

In the sequel we present some properties of these bands.

6.1.2.1 Return map for adapted bands

We start with an study of the return map of an adapted band. Hereafter we consider
a sectional-Anosov flow X on a compact 3-manifold M.

Lemma 6.3. For all singular cross section S there is δ > 0 such that if V ⊂Bδ (lS )
is an adapted band, then Dom(ΠV o) is open in V o and ΠV o is a C1 local embed-
ding.

Proof. Take δ as in Lemma 6.1. By the Tubular Flow Box Theorem it suffices to
prove that there is no x ∈ Dom(ΠV o) such that Xt(x) ∈ ∂V for some t ∈ (0, tV o(x)].

Suppose by contradiction that such an x exists. Then, Xt(x) ∈ ∂ vV by Lemma
6.1-(2). Hence the number

tm = max{t ∈ (0, tV o(x)] : Xt(x) ∈ ∂ vV }

is well defined and satisfies
tm < tV o(x)

since V o is an open vertical band and Xtm(x) ∈ ∂ vV . Define
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z = Xtm(x).

Then, z ∈ ∂ vV . Since V o ⊂ V and tm < tV o(x) one has

z ∈ Dom(ΠV ).

But the definition of tV o(x) and tm implies

Xs(x) 6∈ V , ∀s ∈ (tm, tV o(x)).

So,
tV (z) = tV o(x)− tm.

Then,
ΠV (z) = ΠV o(x) ∈ V o

and so
z ∈Π−1

V (V o) .

It follows that
z ∈ ∂ vV ∩Π−1

V (V o)

and then
∂ vV ∩Π−1

V (V o) 6= /0

contradicting (6.4). The proof follows. ut
Now we prove a Markov-type property for the return map of an adapted band.

Lemma 6.4. If S is a singular cross section close to M(X), then there is δ > 0 such
that if V ⊂ Bδ (lS ) is an adapted band which does not intersect the stable manifolds
of the singularities, then for every closed band V ⊂ V o and every x ∈ Dom(ΠV o)
with ΠV o(x)⊂V o there is a closed band Bx⊂V o around F s

x satisfying the following
properties:

1. Bx ⊂ Dom(ΠV o) and ΠV o/Bx is continuous.
2. ΠV o(Bx)⊂V .
3. ΠV o(∂ vBx)⊂ ∂ vV .

Proof. Fix δ as in Lemma 6.3 and an adapted band V ⊂ Bδ (lS ). Denote by B the
set of open bands B⊂V o around F s

x satisfying (1)-(2) of the lemma.
Since V is adapted we have from Lemma 6.3 applied to V = {V} that ΠV o is

a C1 local embedding with open domain Dom(ΠV o). In particular, B 6= /0 since
ΠV o(x) ∈V ⊂ vo.

Endow B with the inclusion order, take its maximal element (B−x ,B+
x ) and define

Bx = [B−x ,B+
x ].

Let us prove that this Bx satisfies the conclusions of the lemma.
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V

x

Π (x)
V

V

Π V

Bx

Fig. 6.1 The band Bx.

It follows from the definition of B that (B−x ,B+
x ) is around F s

x , and so, Bx is
around F s

x too.
Now we claim that

Bx ⊂V o.

Indeed, it suffices to check
∂ vBx ⊂V o

since (B−x ,B+
x )⊂V o by definition. Suppose by contradiction that

∂ vBx 6⊂V o.

Then we have either
B−x 6⊂V o or B+

x 6⊂V o.

We shall assume the first possibility since the second one can be handled analo-
gously. In such a case we have B−x = V−. Choose a ∈ V− and let I ⊂ (B−x ,B+

x ) be
an open interval transverse to F s such that a ∈ ∂ I.

On the one hand, since V adapted, a ∈ ∂ hV and V ⊂V o we have

Cl(O+
X (a))∩V = /0

On the other hand, I ⊂ (B−x ,B+
x ) ∈B and so

O+
X (x)∩V 6= /0 ∀x ∈ I.

It follows that a satisfies (P)V and so a is contained in the stable manifold of a
periodic orbit or a singularity by Theorem B. However, the former case cannot occur
because of the argument involving the Inclination Lemma [87] in the third paragraph
of p. 367 in [110]. We conclude that a is in the stable manifold of a singularity, a
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contradiction since a ∈ V . This contradiction proves B−x ⊂ V . Therefore ∂ vBx ⊂ V
and the claim follows.

Replacing V ∗ by B∗x in the argument above (for ∗= +,−) one gets the inclusion

∂ vBx ⊂ Dom(ΠV o).

But (B−x ,B+
x )⊂ Dom(ΠV o) by the definition of B since (B−x ,B+

x ) ∈B. So,

Bx ⊂ Dom(ΠV o).

As V is adapted we have that ΠV o/Bx is continuous. Then Bx satisfies (1).
Now we check that Bx satisfies (2)-(3). Note that (2) is true in Intv(Bx) by the

definition of B since Intv(Bx) = (B−x ,B+
x ) ∈ B. Then (2) follows since ΠV o/Bx

continuous and V is a closed band. Because (B−x ,B+
x ) is maximal we obtain (3). The

proof follows. ut
Now we state the main results of this subsection.

Theorem 6.5. Let S be a singular cross section close to M(X). There is
δ > 0 such that if V ⊂ Bδ (lS ) is an adapted band which does not intersect
the stable manifold of the singularities, then V o contains a non-wandering
point if and only if V o contains a periodic point.

Proof. Choose δ as in Lemma 6.4 and an adapted band V ⊂ Bδ (lS ). Since every
periodic point is non-wandering we only have to prove that if V o contains a non-
wandering point, then V o contains a periodic point.

Assume that V o contains a non-wandering point p. Then Dom(ΠV o) 6= /0, and so,
there is q ∈V o such that ΠV o(q) is defined.

Choose a sequence of closed bands V n ⊂V o with the following properties for all
n large:

(d).q,ΠV o(q) ∈V o
n;

(e).V n ⊂V o
n+1;

(f).The vertical boundaries of V n are (1/n)-close to those of V .

By hypothesis V does not intersect the stable manifolds of the singularities. Then,
we can apply Lemma 6.4 to the bands V n and x = q in order to obtain a sequence
Bq,n ⊂V o of closed vertical bands satisfying (1)-(3) in that lemma. By (e) above one
has Bq,n ⊂ Bo

q,n+1 for all n so the union

B∞ =
⋃

n
Bq,n

is an open band in Dom(ΠV o). In addition, ΠV o/B∞ is continuous by Lemma 6.4-(1).
On the other hand, consider the one-dimensional map f : Dom( f ) ⊂ V → V in-

duced by ΠV o . which is continuous for V is adapted.
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The property (f) above together with Lemma 6.4-(3) and the fact that imply that
the lateral limits

lim
L→(B−∞ )+

f (L) and lim
L→(B+

∞ )−
f (L)

exist and belong to different elements of {V +,V−}. If [B−∞ ,B+
∞ ] ⊂ V then by the

above limits and the fact that ΠV o/B∞ is continuous we have that f has a fixed point
in V o. This fixed point corresponds to a leaf whose image under ΠV falls into itself.
Henceforth ΠV has a fixed point which corresponds to a periodic orbit intersecting
V . Then the result follows in this case.

(q)q

8 8 8

’
B B B

x

V

(a) (b)

f

Fig. 6.2 Graphs of f /B∞ and f /B∞∪B′∞ .

Now assume
[B−∞ ,B+

∞ ] 6⊂V.

As (B−∞ ,B+
∞)⊂V we conclude that B−∞ =V− or B+

∞ =V +. We shall assume B−∞ =V−
since the proof for the other case is similar.

As B−∞ = V− we have B+
∞ ⊂ V for, otherwise, B∞ = V and then f has a fixed

point since it has a non-wandering point and then we would be done too. We can
further assume that f/B∞ is orientation-preserving for, otherwise, f/B∞ would have
a fixed point and again we are done. It follows that the graph of f /B∞ in V o is like
that in Figure 6.2-(a). But p is a non-wandering point so Int(V \B∞)∩Dom( f ) 6= /0
therefore we can choose x ∈ Intv(V \B∞)∩Dom( f ).
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Replacing q by x in the previous argument we obtain an open vertical band B′∞
containing x such that the graph of f/B∞∪B′∞ is like that in Figure 6.2-(b). Then, the
result follows since this map has infinitely many periodic points. ut

We finish this subsection with a lemma about holonomy maps. Given a cross
section Σ of X and D⊂M disjoint from Σ we define the holonomy map ΠD,Σ from
D into Σ by

Dom(ΠD,Σ ) = {x ∈ D : Xt(x) ∈ Σ for some t > 0}

and
ΠD,Σ (x) = XtD,Σ (x)(x),

where tD,Σ (x) is the flight time

tD,Σ (x) = inf{t > 0 : Xt(x) ∈ Σ}.

Following the proof of Lemma 6.3 we can prove

Lemma 6.5. If V is an adapted band of a singular cross section and D is a sub-
manifold transverse to X and disjoint from V , then Dom(ΠD,V o) is open in D and
ΠD,V o is a C1 local embedding.

6.1.2.2 Existence

Now we give two results about existence of adapted bands.

Theorem 6.6. For every singular cross section S close to M(X) there is
δ > 0 such that if L0 ⊂ Bδ (lS ) is a leaf of F s which does not accumulated by
periodic orbits, then there is an adapted band around (and arbitrarily close
to) L0.

Proof. Let δ as in Theorem 6.3 with λ > 4 and L0 ⊂ Bδ (lS ) be a leaf which does
not accumulated by periodic orbits. Then, we can choose a closed band V ⊂ Bδ (lS )
around (and arbitrarily close to) L0 which does not intersect any periodic orbit. We
also choose V in a way that

(B).The leaves V− and V + are equidistant to L0 in the leaf space.

We claim that there is a leaf L− 6= L0 in V such that

L−∩Dom(ΠV ) = /0.

Indeed, if L− does not exist then every leaf L 6= L0 belongs to Dom(ΠV ). By the
choice of δ we have from Theorem 6.3 applied to V = {V} that the map
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F = ΠV /(V \L0) : V \L0→V

is a λ -hyperbolic triangular map with λ > 4 and domain V \ L0 satisfying (H1)-
(H2). Since such a map has a periodic point by Theorem 1.45 we have that V inter-
sects a periodic orbit which is absurd.

Without loss of generality we can assume that L− < L0 and then

L− < L0 < V +. (6.5)

We choose the desired band V = {Q} with Q being a closed band in S around
L0. For this we define the leaves Q− < Q+ in V and set

Q = (Q−,Q+).

We define Q− at once by
Q− = L−.

To define Q+ we proceed as follows. First of all define the closed band

W = [Q−,V +].

Next we proceed according to the following cases.

Case 1: V +∩Dom(ΠW ) = /0. In this case we define

Q+ = V +.

Therefore [Q−,Q+] = W . So, ∂ v[Q−,Q+]∩Dom(Π[Q−,Q+]) = /0 and then Q satisfies
(6.4). It follows that Q is adapted. By (6.5) we have that Q is around L0 and then we
are done.

Case 2: V +∩Dom(ΠW ) 6= /0. Then V + ⊂ Dom(ΠW ) by F s-invariance. Obviously
one has ΠW (V +)⊂ L−∪V +∪ Intv(W ) and so we have three possibilities:

ΠW (V +)⊂ L− or ΠW (V +)⊂V + or ΠW (V +)⊂ Intv(W ).

In the first possibility we define

Q+ = V +.

Let us prove that Q = [Q−,Q+] so defined satisfies (6.4). Indeed, as ΠW (V +)⊂ L−
we have that

(Q−∪V +)∩Π−1
W (Int(W )) = /0.

But
∂ v[Q−,Q+] = ∂ vW = Q−∪V +,

[Q−,Q+] = W and Int([Q−,Q+]) = Int(W ). Replacing above one gets

∂ v[Q−,Q+]∩Π−1
[Q−,Q+](Int([Q−,Q+])) = /0
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which is precisely (6.4). It follows that Q is adapted. By (6.5) we have that Q is
around L0 and then we are done.

In the second possibility we have that V + is an invariant leaf. Then it would exist
a periodic orbit passing through V + ⊂ V . This contradicts the fact that V does not
intersect such orbits. So, this possibility cannot occur.

Then we arrive to the third possibility

ΠW (V +)⊂ Intv(W ).

It follows that there is an intermediary leaf

L− ≤ Ṽ + < V +

such that the vertical band W̃ defined by

W̃ = (Ṽ +,V +]

satisfies
W̃ ⊂ Dom(ΠW ) and ΠW (W̃ )⊂ Intv(W ).

In particular, ΠW /W̃ is continuous (actually C1). Take the intermediary leaf Ṽ + so
that W̃ is maximal with these properties.

Now, we know from Proposition 6.2 that the derivative of ΠW along the direc-
tion transverse to F s is bigger than 4. Henceforth, the diameter of ΠW (W̃ ) in the
direction transverse to F s is at least twice the one of W̃ . Then, (B) implies

L0 < Ṽ +. (6.6)

If Ṽ +∩Dom(ΠW ) = /0 then we define

Q+ = Ṽ +.

We can prove as before that the resulting band Q satisfies (6.4). It follows that Q is
adapted. By (6.5) and (6.6) we have that Q is around L0 and then we are done.

If Ṽ +∩Dom(ΠW ) 6= /0 then Ṽ + ⊂ Dom(ΠW ) by invariance. Again we have

ΠW (Ṽ +)⊂ L−∪V +∪ Intv(W )

and so we have three situations:

ΠW (Ṽ +)⊂ L− or ΠW (Ṽ +)⊂V + or ΠW (Ṽ +)⊂ Intv(W ).

In the first situation we define
Q+ = Ṽ +

and the resulting band Q satisfies (6.4) hence it is adapted. By (6.5) and (6.6) we
have that Q is around L0 and then we are done.



184 6 Sectional-Anosov flows on 3-manifolds

To finish we prove that the remainder situations cannot occur. For the last one we
simply observe that if it does, then we could contradict the maximality of W̃ using
the Tubular Flow Box Theorem. For the second one

ΠW (Ṽ +)⊂V + (6.7)

we proceed as follows: Let f : Dom( f ) ⊂W →W be the one-dimensional map in-
duced by ΠW in the leaf space (e.g. Lemma 6.1). The inclusion (6.7) would imply
that f/(Ṽ +,V +] is orientation-reversing with f (Ṽ +) = V +. So, f /(Ṽ +,V +] has a
fixed point which represents an invariant leaf of ΠW . Consequently (Ṽ +,V +] inter-
sects a periodic orbit. Since (Ṽ +,V +]⊂V we arrive to a contradiction since V does
not intersect such orbits. This contradiction proves that (6.7) cannot occur and then
the result follows. ut

Next we extend the previous theorem to the singular curves.

Theorem 6.7. For every singular cross section S close to M(X) and S ∈S
there is an adapted band around (and close to) lS.

Proof. We can assume that lS is accumulated by periodic orbits for, otherwise, we
are done by Theorem 6.6 applied to L0 = lS.

Fix a closed band Q around lS such that Q+ and Q− are equidistant to lS. Since lS
is accumulated by periodic orbits we can select a leaf L′ ⊂Qo containing a periodic
orbit. Clearly L′ 6= lS and then either L′ < lS or L′ > lS in the leaf space. We shall
assume L′ < lS for the treatement in the remaining case is similar.

Notice that L′ ⊂ Dom(ΠQ) and there is a finite set of leaves L′0, · · · ,L′k ⊂
Dom(ΠQ) with L′0 = L′k = L′ such that Π i

Q(L′) = L′i for all i = 0, · · · ,k.
We have the following two possibilities,

• L′i < lS for all i;
• there is L′j such that L′j > lS.

In the latter case we take L′j0 realizing the minimal distance to lS of those leaves
L′j > lS; and L′i0 realizing the minimal distance to lS of those leaves L′i < L′. Hence
the band V = [L′i0 ,L

′
j0 ] satisfies the conclusion of the theorem.

Now we assume that L′i < lS for all i. Take L∗ as the leaf in {L′0, · · · ,L′k} realizing
the minimal distance to lS. Such a minimality certainly implies

L∗∩Π−1
[L∗,Q+]((L

∗,Q+)) = /0.

Now we proceed as in the proof of Theorem 6.6. If either Q+∩Dom(Π[L∗,Q+]) =
/0 or else both Q+ ⊂Dom(Π[L∗,Q+]) and Π[L∗,Q+](Q+)⊂ L∗∪Q+ hold, then we take
V = [L∗,Q+] and we are done. Hence we can assume

Q+ ⊂ Dom(Π[L∗,Q+]) and Π[L∗,Q+](Q
+)⊂ (L∗,Q+).
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From this we can select a maximal leaf L∗∗ ⊂ (L∗,Q+) such that

(L∗∗,Q+]⊂ Dom(Π[L∗,Q+]) and Π[L∗,Q+]/(L∗∗,Q+] is C1.

The equidistance hypothesis on Q implies lS < L∗∗. Again if L∗∗∩Dom(Π[L∗,Q+]) =
/0 or else L∗∗ ⊂ Dom(Π[L∗,Q+] and Π[L∗,Q+](L∗∗) ⊂ L∗ we are done by taking
V = [L∗,L∗∗]. Since Π[L∗,Q+](L∗∗) 6⊂ (L∗,Q+) whenever L∗∗ ⊂ Dom(Π[L∗,Q+]) by
the maximality of L∗∗ we are left to consider the case

L∗∗ ⊂ Dom(Π[L∗,Q+]) and Π[L∗,Q+](L
∗∗)⊂ Q+.

This together with Π[L∗,Q+](Q+) ⊂ (L∗,Q+) implies that Π[L∗,Q+]/(L∗∗,Q+] (or its
induced one-dimensional map) is orientation reversing. Hence such a map has a
fixed leaf L f ix ⊂ (L∗∗,Q+] (i.e. Π[L∗,Q+](L f ix)⊂ L f ix). Then we choose V = [L∗,L f ix]
and we are done. This proves the result. ut

6.2 Dynamical properties

In this section we apply the results of the previous section to analyze the dynamics
of sectional-Anosov flows X on compact 3-manifolds M.

6.2.1 Characterizing omega-limit sets

This subsection is motivated by two interesting properties related to the ordinary
differential equation in Figure 6.3. The first one is that the omega-limit set ω(q) of
the point q in the figure is a hyperbolic singularity of saddle-type. The second one
is that there is a closed subset Σ (the vertical segment in the figure) such that q has
Property (P)Σ .

It is natural to ask how these properties are related among those points q having
saddle type hyperbolic omega-limit set. For example if n ≥ 2 and ω(q) is a closed
orbit (i.e. a singularity or a periodic orbit), then q satisfies (P)Σ for some closed
subset Σ . The question is then whether the satisfaction of (P)Σ for some Σ closed
implies that ω(q) is a closed orbit. Indeed, this is true for n = 2 (e.g. [87] p. 145-146)
but false for n≥ 4 by the following counterexample:

Example 6.8. Let D2 and S1 be the two-dimensional closed unit disk and the unit
circle respectively. Consider the vector field X0 in the solid torus ST = D2 × S1

obtained from the suspension of the Smale Horseshoe in D2 (see [87]). As is well
known there is x0 ∈ ST whose omega-limit set H respect to X0 is a saddle type
hyperbolic set but not a closed orbit. Now define the vector field X in ST × [−1,1]
by X(x,y) = (X0(x),2y), ∀(x,y)∈ ST × [−1,1]. Fix q = (x0,0). Then, ω(q) = H×0
hence ω(q) is not a closed orbit but a saddle type hyperbolic set. However, q satisfies
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Σ

ω(   )q

q I

Fig. 6.3

(P)Σ for some closed subset Σ (e.g. take Σ = ST×1 with I = {(x0,y)∈ ST× [−1,1] :
0 < y≤ 1

2}). Analogous counterexample can be constructed for n≥ 4.

Here we give positive answer for the question above when n = 3. Actually we
do it among those points q having sectional-hyperbolic omega-limit set. More pre-
cisely, we prove the following result whose original proof can be found in [20].

Theorem B. Let X be a C1 vector field in a compact 3-manifold M. If q ∈M
has sectional-hyperbolic omega-limit set ω(q), then the following properties
are equivalent:

1. ω(q) is a closed orbit.
2. q satisfies (P)Σ for some closed subset Σ .

Proof. Let X a C1 vector field in a compact 3-manifold M and q ∈M. Suppose that
ω(q) is a sectional-hyperbolic set. We shall prove that ω(q) is a closed orbit if q
satisfies (P)Σ for some closed subset Σ .

To start with we fix a neighborhood U of ω(q) where the sectional-hyperbolic
splitting Tω(q)M = Es

ω(q)⊕Ec
ω(q) of ω(q) extends to a continuous splitting TU M =

Ês
U ⊕ Êc

U . Let W ss = {W ss(x) : x ∈U} be the corresponding strong stable foliation.
As U is a neighborhood of ω(q) we can assume that q ∈U .

Let I be the interval in the definition of (P)Σ . We can assume that I is both tangent
to Êc

U transverse to X . Indeed, observe that there is ε > 0 small such that the local
strong stable manifold W ss

ε (q) satisfies
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I∩
(

⋃

−1≤t≤1

Xt(W ss
ε (q))

)
= /0.

(Otherwise it would exist x ∈ I such that O+(x)∩ Σ = /0 as O+(x) is asymptotic
to O+(q).) Then, we can use W ss to project I onto an open interval Î, with q as a
boundary point, such that Î is tangent to Êc

U and transverse to X . As Cl(O+(q)) and
Σ are disjoint we can enlarge Σ a bit using W ss to obtain a closed subset Σ̂ with
Cl(O+(q))∩ Σ̂ = /0 such that O+(x)∩ Σ̂ 6= /0 for all x ∈ Î. Then, we can replace I by
Î and Σ by Σ̂ if necessary in order to assume that I is tangent to Êc

U and transverse
to X .

We have that ω(q) has a singular partition with arbitrarily small diameter R =
{S1, · · · ,Sk} by Theorem 2.14. We have R ⊂U (since R has small diameter) so the
projection F s(·,Si) of F ss into Si is well defined for every i = 1, · · · ,k.

As Cl(O+(q)) and Σ are disjoint there is a compact neighborhood W ⊂ U of
ω(q) such that

W ∩Σ = /0.

Furthermore we can assume that

O+(q)⊂W.

Because the diameter of the partition is small we can further assume that

R ⊂ Int(W ).

Now assume that ω(q) is not a singularity. As I is tangent to Êc
U and transverse

to X we obtain S, q̂i, Ĵi and δ from Theorem 2.15. Let x ∈ S be a limit point of q̂i.

x

S

q j

i
q̂

^ s

s

(q ,S)^
j

(x,S)

z

J i
^

Fig. 6.4
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If q̂i 6∈F s(x,S) for infinitely many i’s we have a situation which is similar to that
in Figure 2 of [110] p. 371: The splitting Tω(q)M = Es

ω(q)⊕Ec
ω(q) is dominated and

Ĵi is both tangent to Êc
U and transverse to X for all i. Therefore, the angle between

the arcs Ĵi and the leaves {F s(y,S), : y ∈ S} is bounded away from 0. As Length(Ĵi)
is also bounded away from 0 and q̂i→ x we eventually obtain an intersection point

z ∈ Ĵi∩F s(q̂ j,S)

between Ĵi and F s(q̂ j,S) for some i, j ∈ N (see Figure 6.4).
As z ∈ Ĵi we have that z is in the positive orbit of I so

O+(z)∩Σ 6= /0.

But z ∈F s(q̂ j,S) as well so O+(z) is asymptotic to O+(q) hence O+(z) cannot
escape from W because O+(q)⊂W . As W ∩Σ = /0 we conclude that

O+(z)∩Σ = /0

yielding a contradiction.
Therefore we can assume that q̂i ∈F s(x,S) for all i large. In this situation we

can apply Lemma 5.6 in [110] p. 369 to obtain that ω(q) is a periodic orbit. The
result follows. ut

6.2.2 Existence of periodic orbits

It follows from the Anosov closing lemma that every Anosov flow flow on a closed
manifold has a periodic orbit. The result below extends it to the sectional-Anosov
flows on compact 3-manifolds.

Theorem C. Every sectional-Anosov flow on a compact 3-manifold has a
periodic orbit.

Proof. Let X be a sectional-Anosov flow on a compact 3-manifold M. By Propo-
sition 4.20 we can assume that X has a Lorenz-like singularity. Hence the set
LSing(X) = {σ ∈ Sing(X) : σ is Lorenz-like} is not empty. Clearly every σ ∈
LSing(X) is hyperbolic and so it is equipped with the stable and unstable manifolds
W s(σ), W u(σ) tangent at σ to the eigenspace associated to the set of eigenvalues
{λ2,λ3} and {λ1}. In particular, dim(W s(σ)) = 2 and dim(W u(σ)) = 1. A further
invariant manifold, the strong stable manifold W ss(σ), is both well defined and tan-
gent at σ to the eigenspace associated the {λ2}. Consequently dim(W ss(σ)) = 1.

Take a linearizing coordinate system (x1,x2,x3) in a neighborhood of σ . Note
that W ss(σ) separates W s(σ) in two connected components, namely, the top and
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the bottom ones. In the top component we consider a rectangle St
σ of Xt together

with a curve lt
σ . Similarly we consider a rectangle Sb

σ and a curve lb
σ in the bottom

component. We take these rectangles so that the curve l∗σ are contained in W s(σ)\
W ss(σ) for ∗ = t,b. Moreover, both rectangles are foliated rectangles of X . The
positive flow lines starting at St

σ ∪Sb
σ \ (lt

σ ∪ lb
σ ) exit a small neighborhood of σ .

On the other hand, the positive orbits starting at lt
σ ∪ lb

σ goes directly to σ . We
note that the boundary of S∗σ is formed by four curves, two of them transverse to l∗σ
and two of them parallel to l∗σ . The union of the curves in the boundary of S∗σ which
are parallel (resp. transverse) to l∗σ is ∂ vS∗σ (resp. ∂ hS∗σ ).

By Lemma 2.8 we can choose St
σ ,Sb

σ satisfying M(X)∩ ∂ hS∗σ = /0 for ∗ = t,b.
Then, the collection

S =
⋃

σ∈LSing(X)

{St
σ ,Sb

σ}

is a singular cross-section with singular curve

lS =
⋃

σ∈LSing(X)

(lt
σ ∪ lb

σ ).

Clearly S can be constructed close to M(X).
Choose δ as in Theorem 6.3 with λ > 4 for such a cross-section. For each σ ∈

LSing(X) we select two closed bands V t
σ around lt

σ and V b
σ around lb

σ with V ∗σ ⊂
Bδ (l∗σ ) for ∗= t,b. It follows that the band

V =
⋃

σ∈LSing(X)

{V t
σ ,V b

σ }

satisfies V ⊂ Bδ (lS ). It follows from Theorem 6.3 that ΠV is a λ -hyperbolic trian-
gular map with associated foliation F s satisfying (H1)-(H2).

Now suppose that X has no periodic orbits. If there is x ∈ V \ lS whose positive
orbit does not intersect V , then ω(x) has no singularities and then it is hyperbolic
by the hyperbolic lemma. By the shadowing lemma for flows [62] applied to the
positive orbit of x we would have that X has a periodic orbit, a contradiction. It
follows that Dom(ΠV = V \ lS . Hence ΠV has large domain and then it has a
periodic point by Theorem 1.45. Hence X would have a periodic orbit which is a
contradiction. This contradiction proves the result. ut

Let us present some corollaries of Theorem C. Recall that by the stable manifold
theory [68], if O is a hyperbolic closed orbit of X with splitting TOM = Es

O⊕EX
O ⊕

Eu
O, then its unstable manifold

W u(O) = {q ∈M : dist(Xt(q),O)→ 0, t→−∞},

is indeed an immersed submanifold tangent at O to the subbundle EX
O ⊕Eu

O. Denote
by Cl(B) the closure of B⊂M. The following corollary improves [100].

Corollary 6.9. The maximal invariant set of a transitive sectional-Anosov flow with
singularities on a compact 3-manifold is an expanding attractor.
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Proof. All sectional-Anosov flows on compact 3-manifolds are codimension one by
Proposition 4.21 Then, the result follows from Corollary 4.23 since all such flows
have a periodic orbit by Theorem C. ut

Recall that X ∈X 1(M) is transitive if M(X) = ω(x) for some x ∈M(X). This
definition generalizes the classical definition of transitive vector fields on closed
manifolds.

Corollary 6.10. If X is a transitive sectional-Anosov flow on a compact 3-manifold
M, then M(X) = Cl(W u(O)) for some periodic orbit O.

Proof. By Theorem C there is a periodic orbit O. As before we have that O is saddle-
type and so dim(W u(O)) = 2. In addition, W u(O)⊂M(X) since M(X) is attracting.
To prove that W u(O) is dense in M(X) we proceed as in the proof of Theorem 4.1
p. 365 in [110] using dim(W u(O)) = 2, the dense orbit and the contracting direction
of X . This completes the proof. ut

We say that X ∈X 1(M) is C1robust transitive if every C1 vector field which is
C1 close to X is transitive with non-trivial maximal invariant set.

Corollary 6.11. All C1 robust transitive flows on compact 3-manifolds have a hy-
perbolic periodic orbit.

Proof. This is a direct consequence of the Theorem C since every flow as in the
statement is sectional-Anosov. ut
Corollary 6.12. A sectional-Anosov flow X on a compact 3-manifold M is transitive
if and only if there is x ∈M such that ω(x) = M(X).

Proof. The direct implication is obvious so we only need to prove the converse
one. Hence suppose that there is some x ∈ M such that ω(x) = M(X). Again by
Theorem C we can choose a periodic orbit O. Note that W u(O)⊂M(X). Hence the
positive orbit of x passes close to W u(O) and so we can assume that x itself is close
to W u(O). Then, the strong stable leaf W ss(x) intersects W u(O) at some point x∗.
Then, x∗ ∈M(X) and ω(x∗) = ω(x) = M(X) and so X is transitive. ut

6.2.3 Sectional-Anosov closing and connecting lemmas

To state our next result we use the following definition. Given X ∈ X 1(M) and
p,q∈M we write p≺ q if for all ε > 0 there is t > 0 such that Xt(Bε(p))∩Bε(q) 6= /0,
where Bε(x) denotes the open ε-ball around x.

A well known property of Anosov flows X on closed manifolds M is that for all
p,q ∈ M with p ≺ q there is x ∈ M such that α(p) = α(x) and ω(x) = ω(q). It is
natural to ask if the sectional-Anosov flows satisfy this conclusion as well. Never-
theless, consider the transitive sectional-Anosov flow in the solid bitorus depicted in
Figure 6.5 (this is a variation of an example in Chapter 2) which by Theorem C has
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σ σ σ12 3

Fig. 6.5

a periodic poit p. Then, p and q = σ2 (or σ3) in the figure satisfies the hypotheses
but not the conclusion of this lemma.

However, it is possible to observe in this example that both α(p) has no singu-
larities and there is x such that α(p) = α(x) and ω(x) = {σ1}.

We generalize this observation to all sectional-Anosov flows on compact 3-
manifolds. See [19] for the original proof.

Theorem D (Sectional-Anosov connecting lemma). Let X a sectional-Anosov
flow on a compact 3-manifold M and p,q ∈ M be such that α(p) has no
singularities. If p≺ q, then there is x ∈M such that α(p) = α(x) and ω(x) is
either ω(q) or a singularity of X.

Proof. The proof will be done through three steps.
The first one consists of assuming that p is a periodic point and q = σ is a sin-

gularity. Denote by O = O(p) the periodic orbit containing p. Let U and V be fixed
(but arbitrary) neighborhoods of p and σ respectively. Since p ≺ σ there are t > 0
and z ∈ Xt(U)∩V . Choosing U close to p we ensure that the strong stable manifold
through X−t(z) intersects W u(O) at some point z′. On the other hand, t > 0 can be
made large since σ 6∈O. Then, as z and z′ belongs to the same strong stable manifold,
we have that Xt(z′) ∈V . But z′ ∈W u(O) which is invariant, hence z′ ∈W u(O)∩V .
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Thus, W u(O)∩V 6= /0 and so σ ∈Cl(W u(O)) since V is arbitrary. We conclude that
σ is Lorenz-like by Theorem 4.19.

By Corollary 2.7 we have M(X)∩W ss(σ) = {σ}. From this we can select as in
the proof of Theorem C a singular cross-section S associated and close to σ (hence
disjoint from O) such that M(x)∩∂ hS = /0 and W u(O)∩ Int(S) has an accumulation
point in the singular leaf lS. Applying Theorem 6.7 to this section we can select two
adapted bands V0,V1 ⊂ S around lS with V0 ⊂V o

1 .
On the other hand, W u(O) accumulates on lS which is contained in V o

0 . Then, we
can select a point a∗ ∈W u(O)∩ Int(V0). Taking the backward orbit of a∗ we obtain
a fundamental domain (e.g. [87]) say Du = [a,b] of W uu(p) such that Du ∩ S = /0.
Moreover, b is in the positive orbit of a and a is in the negative orbit of a∗.

Notice that the intersection of the negative orbit of a∗ with V o
1 yields a finite

sequence {a∗0,a∗1, · · · ,a∗k} with a∗k = a∗ in a way that a∗i+1 = ΠV o
1
(a∗i ) for all i =

0, · · ·k− 1. We can assume that a∗ = a∗k is the unique intersection point between
such a negative orbit and V o

0 for otherwise we replace it by the first point with this
property.

Denote by Π : Dom(Π)⊂ Du→V o
1 the composition

Π = Π k
V o

1
◦ΠDu,V o

1
.

Since V1 adapted we have from Lemma 6.3 that Dom(ΠV o
1
) is open in V o

1 and ΠV o
1

is
C1. By the same reason we have from Lemma 6.5 that Dom(ΠDu,V 0

1
) is open in Du

and ΠDu,V o
1

is continuous. Therefore Dom(Π) is open in Du and Π is continuous.
On the other hand, it follows from the construction that a,b ∈Dom(Π) and Π(a) =
Π(b) = a∗. Hence

Π(a) = Π(b) ∈ Int(V0).

Now define q∗ as the supremum of the following set,

{s ∈ [a,b] : [a,s]⊂ Dom(Π),Π([a,s])⊂ Int(V0),Π/[a,s] is continuous}.

Since Π is continuous with open domain and Π(a)∈ Int(V0) we have that q∗ is well
defined and a < q∗.

If q∗ 6∈Dom(ΠDu,V o
1
) then q∗ would satisfy Property (P)V0 with I = (a,q∗). Since

ω(q∗) sectional-hyperbolic we would have from Theorem B that ω(q∗) is a periodic
orbit or a singularity. But ω(q∗) cannot be a periodic orbit by the argument in the
last part of the proof of Lemma 5.4 in [110]. Then, q∗ ∈W s(σ∗) for some singularity
σ∗. As q∗ ∈Du⊂W u(O) we have that x = q∗ works. In this case we are done. Hence
we can assume that q∗ ∈ Dom(ΠDu,V o

1
).

Denote q∗0 = ΠDu,V o
1

. If q∗0 6∈ Dom(ΠV o
1
) then q∗0 would satisfy (P)V0 with I =

ΠDu,V o
1
(a,q∗) and then ω(q∗0) would be a periodic orbit or a singularity by Theorem

B once more. Again the periodic orbit case cannot happen so ω(q∗0) would be a sin-
gularity and we are done as before. Hence we can assume that q∗0 ∈Dom(ΠV o

1
) thus

q∗1 = ΠV o
1
(q∗0) is well defined. Repeating this argument with the resulting sequence

q∗0, · · · ,q∗k we can assume q∗ ∈ Dom(Π) and so [a,q∗]⊂ Dom(Π).
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Since Π is continuous we have Π([a,q∗])⊂V0 and also that Π([a,q∗]) is a con-
nected arc transverse to the stable subbundle joining Π(a) to Π(q∗) ∈ ∂ vV0.

By replacing a by b in the above argument we obtain another point q∗∗ < b such
that Π([q∗∗,b]) is a connected arc transverse to the stable subbundle joining Π(b)
to Π(q∗∗) ∈ ∂ vV0.

But Π(a) = Π(b) so l = Π([q∗∗,b]∪ [a,q∗]) is a connected arc transverse to the
stable subbundle which joints two points in ∂ vV0. It follows from such a transver-
sality that these two points belong to different connected components of ∂ vV0.
From this and the connecteness of l we obtain an intersection point x ∈ l ∩ lS. As
lS ⊂W s(σ) and l⊂W u(p) we have x∈W s(σ)∩W u(p). It follows that α(p) = α(x)
and ω(x) = σ proving the result when p is periodic and q = σ is a singularity.

The second step consists of proving the result when q = σ is a singularity. We
have that α(p) is a hyperbolic set since it is non-singular [114]. Fix y ∈ α(p) and a
real number sequence tn→ ∞ such that X−tn(p)→ y.

As the negative orbit of p remains close α(p) which is hyperbolic, we can apply
graph transformed techniques ([68], [69]) to find ε > 0 and a sequence of open in-
tervals In = (Xtn(p)−ε,Xtn(p)+ε)⊂W uu(X−tn(p)) converging to the open interval
I = (y− ε,y+ ε)⊂W uu(y).

Applying the shadowing lemma for flows to the negative orbit of p we can
construct a sequence of periodic points pn → y whose strong unstable manifolds
W uu(pn) has uniformly large size and approaches to I as n→∞. Then, both W uu(pn)
and In approach to the common interval I. This allows us to fix positive integers
n0,n1 with the following property (to be applied twice below):

(Q) The stable manifold of every point close to X−tn0
(p) intersects W uu(pn1) and,

conversely, the stable manifold of every point close to pn1 intersects In0 (see
Figure 6.6).

As p ≺ σ we have Xtn0
(p) ≺ σ so there are sequences zm→ Xtn0

(p) and tm > 0
such that Xtm(zm)→ σ . Then, (Q) implies that there is a corresponding sequence
z′m ∈W uu(pn1) in the stable manifold of zm. Then, Xtm(z′m)→ σ and so pn1 ≺ σ).
Since pn1 is periodic it follows from the first step that there is x∗ such that α(pn1) =
α(x∗) and ω(x∗) is a singularity σ∗ (see Figure 6.6). By taking the backward orbit
of x∗ if necessary we can assume x∗ to be close to pn1 . Then, (Q) once more implies
that the stable manifold of x∗ intersects In0 at some point x (see Figure 6.6). Hence
α(x) = α(p) (for In0 ⊂W uu(p)) and ω(x) = ω(x∗) = σ∗ is a singularity. This proves
the result when q = σ is a singularity.

Now we prove the sectional-Anosov connecting lemma in the general case. If q
belongs to the positive orbit of p, then x = p satisfies the conclusion of the lemma,
so, we can assume that q does not belong to the positive orbit of p.

If either ω(p) or ω(q) contains a singularity σ , then p ≺ σ so the second step
applies. If α(q) contains a singularity σ , then the continuity of Xt and the fact that
q is not in the positive orbit of p imply p≺ σ hence step two applies once more.
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We are left to consider the case when the union ω(p)∪ α(q)∪ω(q) is non-
singular. In this case we shall prove that there is x such that α(x) = α(p) and ω(x) =
ω(q).

For all δ > 0 we denote by Bδ (A) the open δ -ball centered at A. Recall that
Sing(X) denotes the set of singularities of X .

As the union α(p)∪ω(p)∪α(q)∪ω(q) is non-singular we have that there is
δ1 > 0 such that p and q belongs to H1 defined by

H1 =
⋂

t∈R
Xt(M \Bδ1(Sing(X)).

Clearly H1 is a compact invariant set. Moreover, it is a hyperbolic set since it is
non-singular [114]. So, the strong unstable manifold W uu(p) is a well defined one-
dimensional manifold containing p.

Since p ≺ q there are sequences zn → p and tn > 0 such that Xtn(zn) → q.
We can take tn → ∞ since q is not in the positive orbit of p. But the size of the
strong stable manifold W ss(zn) is bounded away from zero and W uu(p) is a one-
dimensional manifold containing p. Then, we can assume that there is a sequence
z′n ∈W ss(zn)∩W uu(p) so that z′n→ p. As tn→ ∞ we obtain

Xtn(z
′
n)→ q. (6.8)

Suppose for a while that for every k ∈ N there is σk ∈ Sing(X) such that
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σk ∈Cl

(
∞⋃

n=k

O+(z′n)

)
.

As the number of equilibria in Λ is finite we can assume that σ = σk does not depend
on k. As z′n→ p we conclude that p≺ σ so step two applies.

Then, we can assume that there are k0 ∈ N and 0 < δ2 < δ1 such that
(

∞⋃

n=k

O+(z′n)

)
∩Bδ2(Sing(X)) = /0.

Observe that O+(z′n) ⊂ U since U is positively invariant. This together with the
above equality imply

O+(z′n)⊂U \Bδ2(Sing(X)), ∀n≥ k0.

On the other hand, z′n ∈W uu(p) so α(z′n) = α(p) is non-singular. Then, as z′n→ p,
we conclude that there is 0 < δ3 < δ2 such that

O−(z′n)⊂U \Bδ3(Sing(X)), ∀n≥ k0.

(Recall that O−(z) is the negative orbit of z.) Consequently each z′n (with n≥ k0) as
well as both p and q belong to

H =
⋂

t∈R
Xt(U \Bδ3(Sing(X))

which is non-singular and so hyperbolic by the hyperbolic lemma (c.f. Chapter 1).
Then, (6.8) and well known properties of hyperbolic sets yield x such that α(x) =
α(p) and ω(x) = ω(q). The result is proved. ut

The sectional-Anosov connecting lemma is false without the hypothesis that
α(p) be non-singular. Indeed, consider a transitive sectional-Anosov flow X with
a unique singularity σ on a compact 3-manifold M whose unstable branches are
both dense in M(X) (e.g. a generic flow in the solid bitorus as in Theorem 3.22, see
for instance [36]). Take p = σ and q a point in a periodic orbit of X . Since X is
transitive we have p and q satisfies the hypotheses of the theorem except that α(p)
is singular. If x ∈ M(X) satisfies α(p) = α(x), then x ∈W u(σ). If x 6= σ hence x
belongs to one of the unstable branches of σ . From this we get that ω(x) (which is
M(X)) is neither ω(q) (which a periodic orbit) nor a singularity(1).

A direct corollary of the sectional-Anosov connecting lemma is the following.
Given an invariant set H we define its stable and unstable manifolds by

W s(H) = {x ∈M : ω(x)⊂ H} and W u(H) = {x ∈M : α(x)⊂ H}

respectively. Denote by Cl(·) the closure operation.

1 We thank Professor A. Arbieto for providing us this counterexample.
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Corollary 6.13. If H is a compact invariant set without singularities of a sectional-
Anosov flow on a compact 3-manifold, then Cl(W u(H))∩Sing(X) 6= /0 if and only if
W u(H)∩W s(σ) 6= /0 for some σ ∈ Sing(X).

Proof. We only have to prove the direct implication since the converse one is trivial.
It follows from the hypothesis that there are a singularity q and a sequence xn→ q
such that α(xn) ⊂ H for all n. Take a closure point p of ∪nα(xn). Then, p and q
satisfy the hypothesis of the sectional-Anosov connecting and q is a singularity. So,
there is x ∈ M such that α(x) = α(p) and ω(x) is a singularity σ . In particular,
x ∈W s(σ) and, since H is compact, we have p ∈ H therefore α(x) = α(p)⊂ H so
x ∈W u(H). Hence x ∈W u(H)∩W s(σ) and the result follows. ut

Applying this corollary to a periodic orbit O we obtain the following statement:

Corollary 6.14. If O is a periodic orbit of a sectional-Anosov flow X on a compact
manifold satisfying Cl(W u(O))∩Sing(X) 6= /0, then there is σ ∈ Sing(X) such that
W u(O)∩W s(σ) 6= /0.

Such a corollary in turns is closely related to Theorem 4.1 in [110] which claims
that for every sectional-Anosov flow on a compact 3-manifold M with a dense orbit
in M(X) one has W u(O)∩W s(σ) 6= /0 for every periodic orbit O and every σ ∈
Sing(X). Indeed, such a theorem is false for a counterexample can be obtained by
taking the periodic orbit O and the equilibrium σ = σ2 in Figure 6.5. Despite of
this, the main results in [110] are correct since they are based on Theorem C in
[110] whose proof uses the conclusion of Corollary 6.14 only (see p. 364 of [110]).
Further applications of the above statement can be found in [35], [99], [108] or
[107].

We finish this chapter with the following corollary. Recall Definition 4.25 of
Property (P).

Corollary 6.15. Every sectional-Anosov flow with singularities and dense periodic
orbits on a compact 3-manifold has the Property (P).

Proof. Let X be a sectional-Anosov flow on a compact 3-manifold M as in the state-
ment. Take a periodic orbit O of X . If Cl(W u(O))∩Sing(X) = /0 then Cl(W u(O)) is
a hyperbolic set by the hyperbolic lemma. In such a case Cl(W u(O)) is an attracting
set and clearly it is closed in M(X). On the other hand, if M(X)\Cl(W u(O)) were
closed then Cl(W u(O)) would be a connected component of M(X). Since M(X) is
connected we would have Cl(W u(O)) = M(X) and so X has no singularities which
contradicts the hypothesis. Then, M(X)\Cl(W u(O)) cannot be closed so there is a
sequence xn ∈ M(X) \Cl(W u(O)) converging to some x ∈ Cl(W u(O)). But X has
dense periodic orbits so each xn is accumulated by periodic points which necessarily
belong to Cl(W u(O)) for this last set is attracting. This yields a contradiction unless
Cl(W u(O))∩Sing(X) 6= /0 and then Corollary 6.14 applies. ut

The second result of this section is motivated by the so-called Anosov closing
lemma which states that every recurrent point of an Anosov flow on a closed man-
ifold is approximated by periodic points [62]. It is natural to ask if this is true for
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sectional-Anosov flows instead of Anosov flows, but this is false by the example in
Theorem A. There is however a version the Anosov closing lemma for sectional-
Anosov flows which is a reformulation of the main result in [95].

Theorem E (Sectional-Anosov closing lemma). A recurrent point of a
sectional-Anosov flow on a compact 3-manifold can be approximated either
by periodic points or by points for which the omega-limit set is a singularity.

Proof. First we show that if q ∈Ω(X) and ω(q) has a singularity, then

W ss(q)∩Cl(Per(X)∪W s(Sing(X))) 6= /0. (6.9)

We can assume that q is not contained in the stable manifolds of the singularities
for, otherwise, q ∈W s(Sing(X)) and then we are done. Choose σ ∈ ω(q). Hence q
is regular and q /∈W s(σ). As σ ∈ω(q) we conclude that σ is Lorenz-like. From this
we can assume that q belongs to a singular cross-section as in the proof of Theorem
C.

Now, to prove W ss(q)∩Cl(Per(X)∪W s(Sing(X))) 6= /0, we shall assume by con-
tradiction that

W ss(q)∩Cl(Per(X)∪W s(Sing(X))) = /0.

Therefore
F s

q ∩Cl(Per(X)∪W s(Sing(X))) = /0. (6.10)

In particular, F s
q is not accumulated by periodic orbits. Then, by Theorem 6.6 ap-

plied to L0 = F s
q , we can choose an adapted band V around (and arbitrarily close

to) F s
q . Consequently we can assume that V is not accumulated by periodic orbits.

On the other hand, since V is close to F s
q , we can use (6.10) to assume that V

does not intersect the stable manifold of the singularities. Since V contains q which
is non-wandering we get from Theorem 6.5 that V intersects a periodic orbit. This
is a contradiction which proves F s

q ∩Cl(Per(X)∪W s(Sing(X))) 6= /0 yielding (6.9).

Now assume that q be a recurrent point. We must prove

q ∈Cl(Per(X)∪W s(Sing(X))) (6.11)

For this we consider two cases, namely, ω(q) contains a singularity or not. If ω(q)
has no singularities, then ω(q) is hyperbolic by the hyperbolic lemma and then
(6.11) holds by the Shadowing Lemma. Now assume that ω(q) contains a singular-
ity. Note that q∈Ω(X) since q is recurrent. Hence there is z∈W ss(q)∩Cl(Per(X)∪
W s(Sing(X))) by (6.9). As z ∈W ss(q) we have ω(z) = ω(q). But

ω(z)⊂Cl(Per(X)∪W s(Sing(X)))

since z ∈Cl(Per(X)∪W s(Sing(X))) which is compact invariant. So,
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ω(q)⊂Cl(Per(X)∪W s(Sing(X)))

and then (6.11) holds because q ∈ ω(q). This proves the result. ut
Observe that the sectional-Anosov connecting lemma doesn’t imply the sectional-

Anosov closing lemma due to the second alternative in the former lemma. Let us
explain why the conclusion of the sectional-Anosov closing lemma is sharp. First
of all we observe that every sectional-Anosov flow on a compact 3-manifold has a
periodic orbit by Theorem C, so, all such flows have recurrent points which can be
approximated by periodic points. Secondly, there is a sectional-Anosov flow on a
certain compact 3-manifold all of whose recurrent points are approximated by both
periodic points and by points for which omega-limit set is a singularity (e.g. the one
in Theorem 3.22).

The sectional-Anosov closing lemma is related to the aforementioned work [10]
whose main result would imply the three-dimensional case of the Homoclinic class
conjecture. See also the early version [11] of [10] or [97]. It would follow from such
a result that the periodic orbits are dense in the maximal invariant set of any transi-
tive sectional-Anosov flow on a compact 3-manifold. The sectional-Anosov closing
lemma doesn’t assume transitivity, but yields instead denseness of periodic points
or points for which the omega-limit set is a singularity. Anyway the conclusion of
the sectional-Anosov closing lemma is sharp in the general case.

6.2.4 Dynamics of venice masks

It is easy to see that the examples of venice mask in Subsection 3.4.3 satisfy that
the maximal invariant set is a non-disjoint union of two different homoclinic classes
(represented by H1 and H2 in the example of Figure 3.24). The goal of this section
is to prove that property holds for all venice masks with only one singularity on
compact 3-manifolds. In other words, we shall prove that the maximal invariant set
of these flows is a non-disjoint union of two different homoclinic classes. The result
of this section were originally proved in [107].

To start with we present a classical criterium for the transitivity of compact in-
variant sets due to Birkhoff.

Lemma 6.6. Let X a vector field and T be a compact invariant set of X. If for all
open sets U,V intersecting T there is t > 0 such that Xt(U ∩T )∩V 6= /0, then T is
transitive.

This criterium will be used together with the following lemma. Recall the nota-
tion W s,+(σ) and W s,−(σ) introduced in Theorem 4.27.

Lemma 6.7. Let X sectional-Anosov flow on a compact 3-manifold M, σ a Lorenz-
like singularity and p,r ∈ Per(X) be such that W u(p)∩W s,+(σ) 6= /0 and W u(r)∩
W s,+(σ)∩Cl(Per(X)) 6= /0. Then, for all neighborhoods U and V of p and r respec-
tively there is z ∈W u(p)∩U and t > 0 such that Xt(z) ∈ V . A similar result holds
replacing + by −.
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Proof. The proof is described in Figure 6.7. Pick p′ ∈W u(p)∩W s,+(σ) and r′ ∈
W u(r)∩W s,+(σ)∩Per(X). We can choose both p′ and r′ close to σ (and hence
close one to another) for they are in W s(σ). Since r′ ∈ Per(X) we can choose a
periodic point k nearby r′. It follows from the uniform size of the stable manifolds
that there is z′ ∈W s(k)∩W u(p). Therefore the positive orbit of z′ converges to the
periodic orbit through k. On the other hand, k is close to r′ which belongs to W u(r)
so the orbit through k enters into V . Hence there is a point z∈U in the negative orbit
of z′ whose positive orbit passes through V . ut

Next we recall the sufficient condition (4.4) for existence of singular partitions
in Theorem 4.27.

Proposition 6.16. For every venice mask X with a unique singularity σ on a com-
pact 3-manifold there are periodic points p and r satisfying (4.4).

Proof. Suppose by contradiction that no such periodic points exist. Take two open
sets U,V intersecting M(X). Since X has dense periodic orbits we can select p ∈
Per(X)∩U and r ∈ Per(X)∩V . We have three cases to consider, namely, either
W u(p)∩W s(σ)⊂W s,+(σ) or W u(p)∩W s(σ)⊂W s,−(σ) or W u(p)∩W s,+(σ) 6= /0
and W u(p)∩W s,−(σ) 6= /0.

If W u(p)∩W s(σ) ⊂W s,+(σ), then W u(r)∩W s,+(σ) 6= /0 since p and r do not
satisfy (4.4). Then, by Lemma 6.7, there are z ∈W u(p)∩U and t > 0 such that
Xt(z) ∈ V . Since W u(p) ⊂ M(X) we conclude that there is t > 0 such that Xt(U ∩
M(X))∩V 6= /0.

If W u(p)∩W s(σ)⊂W s,−(σ), then again we have W u(r)∩W s,−(σ) 6= /0 because
r and p do not satisfy (4.4). Then, by Lemma 6.7, there are z ∈W u(p)∩U and t > 0
such that Xt(z) ∈V , so, there is t > 0 such that Xt(U ∩M(X))∩V 6= /0.

Finally assume that W u(p)∩W s,+(σ) 6= /0 and W u(p)∩W s,−(σ) 6= /0. Since X
has Property (P) by Corollary 6.15 we have that W u(r)∩W s(σ) 6= /0. Since M(X)∩
W ss(σ) = {σ} by Corollary 2.7 applied to Λ = M(X) we have either W u(r)∩
W s,+(σ) 6= /0 or W u(r)∩W s,−(σ) 6= /0. It follows that either W u(p)∩W s,+(σ) 6= /0
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and W u(r)∩W s,+(σ) 6= /0 or W u(p)∩W s,−(σ) 6= /0 and W u(r)∩W s,−(σ) 6= /0. In
each case we conclude as before that there is t > 0 such that Xt(U ∩M(X))∩V 6= /0.

Since U and V are arbitrary we conclude from Birkhoff’s that M(X) is a transitive
set. Therefore X is transitive which is a contradiction since X is a venice mask. This
proves the result. ut
Proposition 6.17. If X is a venice mask with a unique singularity σ on a compact
3-manifold, then there is no sequence pn ∈ Per(X) converging to some point in
W s,+(σ) such that W u(pn)∩W s,−(σ) 6= /0 for all n. Similarly interchanging the
roles of + and −.

Proof. By Proposition 6.16 we can fix p,r ∈ Per(X) satisfying (4.4). In particular,
W u(p)∩W s(σ)⊂W s,+(σ). Since X satisfies Property (P) we can fix a ∈W u(p)∩
W s,+(σ). Suppose by contradiction that there is sequence pn ∈ Per(X) which both
converges to some point z ∈W s,+(σ) and satisfies W u(pn)∩W s,−(σ) 6= /0 for all
n. By taking forward orbits if necessary we can assume that both z and a are close
to σ . Since pn → z we have from the uniformly large size of the stable manifolds
that there is n large such that W s(pn)∩W u(p) 6= /0 (indeed, such an intersection
contains a point close to a). Applying the Inclination-lemma [87] and the fact that
W u(pn)∩W s,−(σ) 6= /0 we have that W u(p)∩W s,−(σ) 6= /0 which contradicts (4.4).
This contradiction proves the assertion for +. The assertion for − follows analo-
gously by considering the inclusion W u(r)∩W s(σ)⊂W s,−(σ) in (4.4). ut
Proposition 6.18. If X is a venice mask with a unique singularity σ on a compact
manifold, then σ /∈ ω(q) for all q ∈W u(σ)\{σ}.
Proof. Suppose by contradiction that σ ∈ ω(q). Without loss of generality we can
assume that there is z ∈ ω(q)∩W s,+(σ). Then we can choose a sequence qn in the
positive orbit of q such that qn→ z.

By Proposition 6.16 we can take r ∈ Per(X) as in (4.4). Choose r′ ∈W u(r)∩
W s,−(σ) and a sequence rn ∈W u(r) converging to r in a way that the positive orbit
of rn accumulates on q as indicated in Figure 6.8. Since X has dense periodic orbits
and W u(r) ⊂ M(X) we can select a sequence p′n ∈ Per(X) close to rn. Therefore,
p′n→ r. Since r ∈W s,−(σ), p′n ∈ Per(X) and p′n→ r we get from Proposition 6.17
that W u(p′n)∩W s,+(σ) = /0 and so

W u(p′n)∩W s(σ)⊂W s,−(σ), ∀n large. (6.12)

On the other hand, since p′n close to rn and the orbit of rn passes close to q we
can arreange pn in the positive orbit of p′n such that pn is close to qn. Therefore
pn→ z. Since z ∈W s,+(σ), pn ∈ Per(X) and pn→ z we get from Proposition 6.17
that W u(pn)∩W s,−(σ) = /0 and so W u(pn)∩W s(σ)⊂W s,+(σ) for all n large. But
pn belongs to the orbit of p′n so W u(p′n) = W u(pn). We conclude that

W u(p′n)∩W s(σ)⊂W s,+(σ), ∀n large

which clearly contradicts (6.12). This ends the proof. ut
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Theorem 6.19. If X is a venice mask with a unique singularity σ on a com-
pact manifold, then ω(q) is a periodic orbit with positive expanding eigen-
value for all q ∈W u(σ)\{σ}.

Proof. Fix q∈W u(σ)\{σ} and assume by contradiction that ω(q) is not a periodic
orbit. We have from Proposition 6.18 that σ 6∈ω(q) so q cannot be a recurrent point.
Moreover, by Proposition 6.16 there are p,r ∈ Per(X) satisfying (4.4). On the other
hand we have that X satisfies Property (P) by Corollary 6.15 so W u(z)∩W s(σ) is
dense in W u(z) for every z ∈ Per(X). In particular, W u(p)∩W s,+(σ) is dense in
W u(p) and W u(p)∩W s,−(σ) is dense in W u(r). It then follows from Theorem 4.27
that ω(q) has singular partitions R close to it.

Using that W u(p)∩W s,+(σ) 6= /0 and W u(r)∩W s,−(σ) 6= /0 and a linear coor-
dinate around σ we can construct an open interval I = Iq, contained in a suitable
cross-section throught q such that I \ {q} is formed by two intervals I+ ⊂W u(p)
and I− ⊂W u(r) in a way that I is tangent to the central subbundle Ec of X . Since
ω(q)∩Sing(X) = /0 (for Sing(X) = {σ} and σ /∈ω(q)) we can apply Theorem 2.15
to such an interval I in order to obtain S ∈R, a sequence q1,q2, · · · ∈ S of points in
the positive orbit of q and a sequence of intervals J1,J2, · · · ⊂ S in the positive orbit
of I with qn ∈ Jn such that {Length(Jn) : n = 1,2,3, · · ·} is bounded away from 0.
For all n we let J+

n and J−n denote the two connected components of Jn \ {qn} in a
way that J+

n is in the positive orbit of I+ and J−n is in the positive orbit of I−.
Since W u(p)∩W s(σ) is dense in W u(p) and W u(r)∩W s(σ) is dense in W u(r)

we have that W s,+(σ)∩ I+ is dense in I+ and W s,−(σ)∩ I− is dense in I−. So,
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W s,+(σ)∩ J+
n is dense in J+

n and W s,−(σ)∩ J−n is dense in J−n . From this and the
uniform size of the stable manifolds we have the following property for all curve
c⊂ S:

c |∩F s(qn,S) 6= /0 =⇒ c∩W s,+(σ) 6= /0 and c∩W s,−(σ) 6= /0. (6.13)

Now take a limit point x ∈ S of qn. Then x ∈ ω(q)∩ Int(S). Because I is tangent
to Ec the interval sequence Jn converges to an interval J ⊂W u(x) in the C1 topology
(W u(x) exists since ω(q) is hyperbolic).

We have that J is not trivial since the length of Jn is bounded away from 0. If
qn ∈F s(x,S) for n large we would obtain that x is a periodic point by [110, Lemma
5.6], a contradiction since ω(a) is not a periodic orbit. Therefore qn /∈F s(x,S), ∀n.

Consequently, as Jn→ J and qn→ x, we eventually have either J+
n+1∩F s(qn,S) 6=

/0 or J−n+1 ∩F s(qn,S) 6= /0. Since both intersections are transversal we conclude by
taking c = J+

n+1 or c = J−n+1 respectively in (6.13) that either I+ or I− intersects both
W s,+(σ) and W s,−(σ). Since I+ ⊂W u(p) and I− ⊂W u(r) we get a contradiction
by (4.4). This contradictions shows that ω(q) is a periodic orbit O.

Now we prove that the expanding eigenvalue of O is positive. Suppose by
contradiction that it is not so. From the Property (P) we have that W u(O) inter-
sects W s(σ) and so either W u(O) |∩W s,+(σ) 6= /0 or W u(O) |∩W s,−(σ) 6= /0. Sup-
pose that W u(O) |∩W s,+(σ) 6= /0 (the other case can be handled similarly). As
W u(O) |∩W s,+(σ) 6= /0, ω(q) = O and O has negative eigenvalues we have from the
Inclination-lemma that I−∩W s,+(σ) 6= /0. But I− ⊂W u(r) so W u(r)∩W s,+(σ) 6= /0
and then W u(r)∩W s(σ) 6⊂W s,−(σ) which contradicts the second inclusion in (4.4).
This contradiction proves the result. ut

In the sequel we shall assume that X is a venice mask with a unique singularity
σ on a compact 3-manifold M.

Let q ∈W s(σ) \ {σ} be fixed. By Theorem 6.19 we have that q ∈W s(O) for
some periodic orbit with positive expanding eigenvalue O. Since the expanding
eigenvalue of O is positive we have that W u(O) is a cylinder with generating curve
O and so O separates W u(O) in two connected components. It follows from the
proof of Theorem 6.19 that none of these components can intersect W s,+(σ) and
W s,−(σ) simultaneously (otherwise we would contradict (4.4) using the curve I and
the Inclination-Lemma). Then, we can denote them by W u,+ and W u,− in a way that
W u,+∩W s,−(σ) = /0 and W u,−∩W s,+(σ) = /0 or, equivalently,

W u,+∩W s(σ)⊂W s,+(σ) and W u,−∩W s(σ)⊂W s,−(σ). (6.14)

A basic property of these components is given below.

Proposition 6.20. If z ∈ Per(X) and W s(z)∩W u,+ 6= /0, then W s(z)∩W u,+ is dense
in W u,+. Similarly replacing + by −.
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Proof. First observe that W s,+
X (σ)∩W u,+ is dense in W u,+. Choose x ∈W u,+. As

W s,+(σ)∩W u,+ is dense in W u,+ we can choose an interval Ix ⊂W u,+ arbitrarily
close to x such that Ix∩W s,+(σ) 6= /0.

The positive orbit of Ix first passes through q and, afterward, it accumulates on
W u,+ by the Inclination-lemma (it cannot accumulates on W u,− for otherwise we
would have W u,+∩W s,−(σ) 6= /0 which contradicts (6.14)).

But W s(z)∩W u,+ 6= /0 by assumption, and such an intersection is transversal,
so the Inclination Lemma implies that the positive orbit of Ix intersects W s(z). By
taking the backward flow of the last intersection we arrive to W s(z)∩ Ix 6= /0. Since
Ix is close to x and Ix ⊂W u,+ we get that W s(z)∩W u,+ is dense in W u,+. This proves
the result. ut

Now we define

H+ = Cl({p ∈ Per(X) : W u(p)∩W s,+(σ) 6= /0}) (6.15)

and
H− = Cl({r ∈ Per(X) : W u(r)∩W s,−(σ) 6= /0}). (6.16)

Since W u,+∪W u,− ⊂W u(O) we have from (6.14) and the Property (P) of X respec-
tively that

O⊂ H+∩H− and M(X) = H+∪H−. (6.17)

More properties of these sets are given below.

Proposition 6.21. H+ = Cl(W u,+) and H− = Cl(W u,−).

Proof. Fix p ∈ Per(X) such that W u(p) ∩W s,+(σ) 6= /0. Choose z ∈ W u(p) ∩
W s,+(σ) close to σ . Since X has dense periodic orbits we can choose r ∈ Per(X)
close to z. Note that W u,+ ∩W s,+(σ) 6= /0 so we can choose t ∈W u,+ ∩W s,+(σ)
close to σ and then r and t are close one to another. Then, since the stable manifold
has uniform size we obtain that W s(r)∩W u,+ 6= /0 and so W u,+ accumulates on r
by the Inclination-lemma. From this we get that z (and so p) belong to Cl(W u,+).
Therefore

H+ ⊂Cl(W u,+).

Conversely fix x ∈W u,+. Since X has dense periodic orbits and W u,+ ⊂M(X) there
is p ∈ Per(X) close to x. In particular, W s(p)∩W u,+ 6= /0 because stable mani-
folds have uniformly size. If W u(p)∩W s,−(σ) 6= /0 then the Inclination Lemma
and W s(p)∩W u,+ 6= /0 would imply W u,+∩W s,−(σ) 6= /0 which contradicts (6.14).
So W u(p)∩W s(σ)⊂W s,+(σ) and then x ∈ H+ which proves

Cl(W u,+)⊂ H+

therefore H+ = Cl(W u,+). Analogously we prove H− = Cl(W u,−). ut
Recall that if z ∈ Per(X) then H(z) denotes the homoclinic class of z.

Proposition 6.22. If z ∈ Per(X) is close to some point in W u,+, then H(z) =
Cl(W u,+). Similarly replacing + by −.
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Proof. Take z close to some point in W u,+ hence W s(z)∩W u,+ 6= /0. On the one hand
we have that H(z)⊂Cl(W u,+) by the Inclination-lemma. On the other hand, W u,+∩
W s,−

X (σ) = /0 by (6.14) we have W u
X (z)∩W s

X (σ) ⊂ W s,+
X (σ) by the Inclination-

lemma. In addition W u(z)∩W s(σ) 6= /0 by Property (P), so, W u(z)∩W s,+(σ) 6= /0.
Then, W u(z) accumulates on W u,+ and so H(z) contains W s(z) ∩W u,+ by the
Inclination-lemma once more. But, W s(z)∩W u,+ is dense in W u,+ by Proposition
6.20 since W s(z)∩W u,+ 6= /0. So, Cl(W u,+) ⊂ H(z) since homoclinic classes are
closed set. This proves the result. ut
Corollary 6.23. H+ and H− are homoclinic classes.

Proof. We only explain the proof for H+ since that for H− is similar. By Proposition
6.21 it suffices to prove that Cl(W u,+) is a homoclinic class. Since X has dense
periodic orbit and clearly W u,+ ⊂M(X) we can choose a periodic point z close to
some point in W u,+. Then Cl(W u,+) = H(z) by Proposition 6.22 so Cl(W u,+) is a
homoclinic class. ut

Now we state the main result of this section.

Theorem F. The maximal invariant set of a venice mask with a unique sin-
gularity on a compact 3-manifold is a non disjoint union of two different ho-
moclinic classes.

Proof. Let X be a venice mask with a unique singularity σ on a compact 3-manifold
M. By (6.17) we can write M(X) = H+ ∪H− with H+ ∩H− containing a peri-
odic orbit O. We have that H+ and H− are homoclinic classes by Corollary 6.23.
Since M(X) = H+∪H−, X is not transitive and both H+,H− are homoclinic classes
(hence transitive) we see that H+ 6= H−. Finally H+∩H− 6= /0 since this intersection
contains O. ut

6.3 Perturbing sectional-Anosov flows

In this section we present some result about the perturbation theory of sectional-
Anosov flows on compact 3-manifolds.

6.3.1 A bound for the number of attractors

Recall that an attractor of a vector field X is a transitive set equals to
⋂

t>0 Xt(V ) for
some compact neighborhood V . In this chapter r will denote either ∞ or a positive
integer.
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Theorem G. Every attractor of every vector field Cr close to a Cr transi-
tive sectional-Anosov flow with singularities on a compact 3-manifold has a
singularity.

Proof. Suppose by contradiction that there is a Cr transitive sectional-Anosov flow
X on a compact 3-manifold M which is the Cr limit of a sequence of vector fields
Xn each one exhibiting an attractor without singularities An. It follows from the
hyperbolic lemma that all such attractors are hyperbolic for the corresponding flow.

We claim that

Sing(X)∩Cl

(
⋃

n∈N
An

)
6= /0.

Otherwise there is δ > 0 such that

Bδ (Sing(X))∩
(

⋃

n∈N
An

)
= /0. (6.18)

Define
H =

⋂

t∈R
Xt

(
M \Bδ/2(Sing(X))

)
.

Obviously Sing(X)∩H = /0 and then H is a hyperbolic set. Denote by Es⊕EX ⊕Eu

the corresponding hyperbolic splitting.
It follows from the stability of hyperbolic sets that there are compact neighbor-

hoods V,W
H ⊂ Int(V )⊂V ⊂ Int(W )⊂W

of H and ε > 0 such that if Y is a vector field that is C1 close to X and HY is a
compact invariant set of Y in W then:

(H1) HY is hyperbolic and its hyperbolic splitting Es,Y ⊕EY ⊕Eu,Y satisfies

dim(Eu) = dim(Eu,Y ), dim(Es) = dim(Es,Y ).

(H2) The local strong unstable manifolds W uu
Y (y,ε), y ∈HY , are one-dimensional

of uniform size ε .

We assert that An ⊂W for all n large. Indeed, suppose by contradiction that this
is not true. Then, there are sequences nk→∞ and xnk ∈ Ank such that xnk 6∈W for all
k. Since M is compact we can assume that xnk → x for some x ∈M. Clearly x ∈M \
Int(W ) and so x 6∈V . Then, since H =

⋂
t∈RXt

(
M \B δ

2
(Sing(X))

)
and H ⊂V , we

can arrange t ∈ R such that Xt(x) ∈ B δ
2
(Sing(X)). On the other hand, Xn→ X and

xnk → x so Xnk
t (xnk)→ Xt(x) hence Xnk

t (xnk) ∈ B δ
2
(Sing(X)) for k large. However,

An is Xn-invariant so Xnk
t (xnk) ∈ Ank yielding Xnk

t (xnk) ∈ Ank ∩B δ
2
(Sing(X)) from
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which we get Ank ∩B δ
2
(Sing(X)) 6= /0 in contradiction with (6.18). This proves the

assertion.
As Xn→ X the assertion and (H2) with Y = Xn and HY = An imply that W uu

Xn (y,ε)
has uniform size ε for all y ∈ An and n large.

Take xn ∈ An converging to some x ∈ M. Clearly x ∈ H. Note that the tangent
vectors of the curve W uu

Xn (xn,ε) at every c ∈W uu
Xn (xn,ε) belongs to Eu,Xn

c .
As Xn → X we have that the angle between the directions Eu,Xn

and Eu goes
to zero as n→ ∞. Henceforth the manifolds W uu

X (x,ε) and W uu
Xn (xn,ε) are almost

parallel as n→ ∞. As xn→ x we conclude that

W uu
Xn (xn,ε)→W uu

X (x,ε)

in the sense of C1 submanifolds [123].
Fix an open interval I ⊂W uu

X (x,ε) containing x. Since Sing(X) 6= /0 and X is
transitive, we have that there are q ∈ I and T > 0 such that

XT (q) ∈ Bδ/5(Sing(X)).

Then, by the Tubular Flow Box Theorem, there is an open set Vq containing q such
that

XT (Vq)⊂ Bδ/5(Sing(X)).

As Xn→ X we have
Xn

T (Vq)⊂ Bδ/4(Sing(X)) (6.19)

for all n large. But W uu
Xn (xn,ε)→W uu

X (x,ε), q∈ I ⊂W uu
X (p,ε), q∈Vq and Vq is open.

So,
W uu

Xn (xn,ε)∩Vq 6= /0

for all n large. Applying (6.19) to Xn for n large we have

Xn
T (W uu

Xn (xn,ε))∩Bδ/4(Sing(X)) 6= /0.

As W uu
Xn (xn,ε)⊂W u

Xn(xn) the invariance of W u
Xn(xn) implies

W u
Xn(xn)∩Bδ/2(Sing(X)) 6= /0.

Observe that W u
X (xn)⊂ An since xn ∈ An and An is an attractor. We conclude that

An∩Bδ (Sing(X)) 6= /0

which contradicts (6.18). The claim follows.

Let us continue with the proof of the theorem. By the previous claim we can
choose

σ ∈ Sing(X)∩Cl

(
⋃

n∈N
An

)
.

We have that σ is Lorenz-like and satisfies
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M(X)∩W ss
X (σ) = {σ}.

Let St = St
σ and Sb = Sb

σ be the singular cross-sections associated to σ as in the
proof of Theorem C. In particular,

M(X)∩
(

∂ hSt ∪∂ hSb
)

= /0.

As Xn → X we have that St ,Sb are singular-cross sections of Xn too. By implicit
function reasons we can assume that σ(Xn) = σ , where σ(Xn) is the continuation
of σ = σ(X) (c.f. [123]). Moreover,

lt ∪ lb ⊂W s
Xn(σ), ∀n. (6.20)

The one-dimensional subbundle Es of X extends to a contracting invariant subbun-
dle in M. Take a continuous (but not necessarily invariant) extension of Ec. We still
denoted by Es⊕Ec the above-mentioned extension.

By the Invariant Manifold Theory it follows that the splitting Es⊕Ec persists by
small perturbations of X . More precisely, for all n large the vector field Xn has an
splitting Es,n⊕Ec,n over U such that Es,n is invariant contracting, Es,n → Es and
Ec,n→ Ec as n→ ∞. In particular, Es,n⊕Ec,n is defined in St ∪Sb for all n large. In
what follows we denote by EY the subbundle in T M generated by a vector field Y in
M.

The dominance condition together with [42, Proposition 2.2] imply that for ∗ =
t,b one has

TxS∗∩ (
Es

x⊕EX
x
)

= Txl∗,

for all x ∈ l∗.
Denote by ∠(E,F) the angle between two linear subspaces. The last equality

implies that there is ρ > 0 such that

∠(TxS∗∩Ec
x ,Txl∗) > ρ ,

for all x ∈ l∗ (∗= t,b). But Ec,n→ Ec as n→ ∞. So for all n large we have

∠(TxS∗∩Ec,n
x ,Txl∗) >

ρ
2

, (6.21)

for all x ∈ l∗ (again ∗= t,b).
Fix ∗= t,b and a coordinate system (x,y) = (x∗,y∗) in S∗ such that

S∗ = [−1,1]× [−1,1], l∗ = {0}× [−1,1]

with respect to (x,y).
Denote by Π ∗ : S∗→ [−1,1] the projection

Π ∗(x,y) = x

and for ∆ > 0 we define
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S∗,∆ = [−∆ ,∆ ]× [−1,1].

Define the line field Fn in S∗,∆ by

Fn
x = TxS∗∩Ec,n

x , x ∈ S∗,∆ .

The continuity of Ec,n and (6.21) imply that ∃∆0 > 0 such that ∀n large the line
Fn is transverse to Π ∗. By this we mean that Fn(z) is not tangent to the curves
(Π ∗)−1(c).

Now recall that An is a hyperbolic attractor of Xn for all n. It follows that the
periodic orbits of Xn in An are dense in An ([123]). Then, as σ ∈Cl (∪n∈NAn), there
is a periodic orbit sequence On ∈ An accumulating on σ . It follows that there is
n0 ∈ N such that either

On0 ∩ Int(St,∆0) 6= /0 or On0 ∩ Int(Sb,∆0) 6= /0.

Because On0 ⊂ An0 we conclude that either

An0 ∩ Int(St,∆0) 6= /0 or An0 ∩ Int(Sb,∆0) 6= /0.

We denote Z = Xn0 , A = An0 , F = Fn0 for simplicity. Thus A is a hyperbolic attractor
of Z and so it is not a singularity of Z.

We can assume that A∩ Int(St,∆0) 6= /0. Note that ∂ hSt,∆0 ⊂ ∂ hSt by definition.
Then,

A∩∂ hSt,∆0 = /0.

We denote S = St,∆0 , (x,y) = (xt ,yt) and Π = Π t for simplicity. Note that A∩S is a
compact non-empty subset of S. Hence there is p ∈ S∩A such that

dist(Π(St ∩A),0) = dist(Π(p),0),

where dist denotes the distance in [−∆0,∆0].
Now, p ∈ A and so W u

Z (p) is a well defined two-dimensional submanifold. The
dominance condition of sectional-hyperbolicity implies that

Tz(W u
Z (p)) = Ec

z , ∀z ∈W u
Z (p).

Hence
Tz(W u

Z (p))∩TzS = Ec
z ∩TzS = Fz

for every z ∈W u
Z (p)∩S.

As W u
Z (p)∩ S is transversal, we have that W u

Z (p)∩ S contains a curve C whose
interior contains p as in Figure 6.9. The last equality implies that C is tangent to F .

As F is transverse to Π we have that C is transverse to Π (i.e. C is transverse to
the curves Π−1(c), for every c ∈ [−1,1]). We conclude that Π(C) contains an open
interval I ⊂ [−∆0,∆0] with Π(p) ∈ Int(I). So, there is z0 ∈C such that

dist(Π(z0),0) < dist(Π(p),0).
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Note that C⊂ S∩A since A is an attractor of Z. Moreover, p∈ A and C⊂W u
Z (p).

As A∩∂ hS = /0 we conclude that

dist(Π(S∩A),0) = 0.

As A is closed, this last equality implies

A∩ lt 6= /0.

Since lt ⊂W s
Z(σ) and A is closed invariant for Z we conclude that σ ∈ A. However,

this is impossible since A is a hyperbolic attractor. This contradiction implies the
result. ut

Let us present some corollaries of Theorem G.

Corollary 6.24. Every Cr vector field that is Cr close to a Cr transitive sectional-
Anosov flow with k ≥ 0 singularities on a compact 3-manifold has at most k + 1
attractors.

Proof. Let X be a Cr transitive sectional-Anosov flow with k ≥ 0 singularities on a
compact 3-manifold M. If k = 0 then X is robustly transitive and then every vector
field Y that is Cr close to X has M(Y ) as its unique attractor. Thus the result holds in
this case. If k ≥ 1, then Theorem G implies that every attractor of every vector field
Y that is Cr close to X has a singularity. Taking Y nearby X we can assume that Y
has also k singularities. As the family of attractors is pairwise disjoint, we conclude
that Y has at most k attractors. This proves the result. ut

We say that a singularity σ of a vector field X on M is isolated from the nonwan-
dering set if Ω(X)\{σ} is closed in M.
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Corollary 6.25. Every Cr vector field that is Cr close to a Cr transitive sectional-
Anosov flow with singularities on a compact 3-manifold has a singularity non-
isolated from the nonwandering set.

Proof. Suppose by contradiction that there is a Cr transitive sectional-Anosov flow
X on a compact 3-manifold M which is the limit of a sequence Xn all of whose
singularities are isolated from the nonwandering set.

Define Cn = Ω(Xn)\Sing(Xn) Then, Cn is a compact invariant set of Xn which
is hyperbolic for it is non-singular. Now, there is a disjoint union

Ω(Xn) = Cn∪Sing(Xn)

and Sing(Xn) is hyperbolic too. It follows that Ω(Xn) is a hyperbolic set of Xn. In
particular, the positive limit set L+ = L+(Xn) (which is the closure of the union of
the ω-limit sets) is hyperbolic since it is contained in Ω(Xn). It follows from the
Shadowing Lemma for flows that L+ is the closure of its closed orbits. Hence there
is a spectral decomposition L+ = L1∪ ·· · ∪Lk, where each Li is a hyperbolic basic
set of Xn (see [123]). Note that

M = W s
Xn(L+) =

k⋃

i=1

W s
Xn(Li)

so there is i0 such that W s
Xn(Li0) has non-empty interior. This implies that A = Li0 is

a hyperbolic attractor of Xn. But there is not such attractors by Theorem G. This is
a contradiction which proves the result. ut

We say that a hyperbolic singularity σ of X ∈X r(M) is Cr-stably non-isolated
from the nonwandering set if there is a neighborhood U of X in X r(M) such that
the continuation σ(Y ) of σ is non-isolated from the nonwandering set ∀Y ∈U . The
following is a direct consequence of the above corollary.

Corollary 6.26. If X is a Cr transitive sectional-Anosov flow with a unique singular-
ity σ on a compact 3-manifold, then σ is Cr stably non isolated in the nonwandering
set.

See [107] for a sort of converse of this result when r = 1.
Now recall Definition 4.6 of Property (P). We prove the openess of this property

among transitive sectional-Anosov flows.

Corollary 6.27. Every vector field Cr close to a Cr transitive sectional-Anosov flow
with with singularities on a compact 3-manifold has the Property (P).

Proof. By Corollary 6.14 it suffices to show that Cl(W u
Y (O))∩Sin(Y ) 6= /0 for every

vector field Y close to X and every periodic orbit O of Y .
Suppose by contradiction that there is Y close to X with a periodic orbit O such

that Cl(W u
Y (O))∩ Sin(Y ) = /0. It follows that Cl(W u

Y (O)) is a hyperbolic set by the
hyperbolic lemma. Since W u

Y (O) is a two-dimensional submanifold we can easily
prove that Cl(W u

Y (O)) is an attracting set of Y . This attracting set necessarily con-
tains a hyperbolic attractor. However, no such attractors exist by Theorem G. ut
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6.3.2 Omega-limit sets for perturbed flow

The second main result of this section is the following.

Theorem H. If X is a sectional-Anosov flow with the Property (P) on a com-
pact 3-manifold M, then every point in M is approximated by points for which
the omega-limit set with respect to X has a singularity.

Proof. Suppose by contradiction there is x∈M which is not approximated by points
for which the omega-limit set has a singularity. Since X has the Property (P) we can
apply Theorem 4.26 in order to find a singular partition S = {S1, · · · ,Sr} of ω(x)
close to it. Moreover, we can fix an open interval I around (and close to) x tangent
to Ec and orthogonal to EX such that I does not intersect the stable manifold of any
singularity.

Clearly ω(x) is not a singularity, by the absurd supposition, so we can apply
Theorem 2.15 to q = x in order to obtain S ∈ R, a sequence xn ∈ S of points in
the positive orbit of x and a sequence of intervals Jn ⊂ S in the positive orbit of I
with xn ∈ Jn such that if J+

n and J−n are the connected components of Jn \{xn} then
both sequences {Length(J+

n ) : n = 1,2,3, · · ·} and {Length(J−n ) : n = 1,2,3, · · ·} are
bounded away from 0.

Take a limit point w ∈ S of xn. Then w ∈ ω(x)∩ Int(S) since S is a singular
partition. Because I is tangent to Ec the interval sequence Jn converges to an interval
J ⊂W u(w) in the C1 topology (notice that W u(w) exists because w∈ω(x) and ω(x)
is hyperbolic by the hyperbolic lemma). J is not trivial since {Length(J+

j ) : j =
1,2,3, · · ·} and {Length(J−j ) : j = 1,2,3, · · ·} are bounded away from 0. It follows
from these lower bounds and x j → w that Jn intersects W s(w) for some n large.
Now, w is accumulated by periodic orbits which by Property (P) and Lemma 4.6
are accumulated by points for which the omega-limit set is a singularity. It then
follows from the continuous dependence in compact parts of the stable manifolds
that there is an intersection point between Jn and the stable manifold of a singularity
(see Figure 6.10).

Since the stable manifolds of the singularities are flow-invariant we see that I
itself intersects the stable manifold of a singularity which contradicts the choice of
I. This contradiction proves the result. ut

Let us present two corollaries of this theorem.

Corollary 6.28. For every Cr vector field that is Cr close to a Cr transitive sectional-
Anosov flow with singularities on a compact 3-manifold M every point in M is ap-
proximated by points for which the omega-limit set has a singularity.

Proof. The result follows from Theorem H since every vector field as in the state-
ment satisfies Property (P) by Corollary 6.27. ut
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The second corollary is the following one which is a reformulation of the main
result in [35].

Corollary 6.29. For every Cr vector field X that is Cr close to a Cr transitive
sectional-Anosov flow with singularities on a compact 3-manifold M there is a resid-
ual subset R such that ω(x)∩Sing(X) 6= /0 for all x ∈ R.

Proof. First we recall a basic definition in topological dynamics [24, Chapter V].
Given a non-empty compact invariant set C of a vector field Z we define

A(Z,C) = {z ∈M : ωZ(z)⊂C} and Aw(Z,C) = {z : ωZ(z)∩C 6= /0}

It follows from the definition that

A(Z,C)⊂ Aw(Z,C). (6.22)

We claim that Aw(Z,C) is dense in M if and only if Aw(Z,C) is residual in M.
Indeed, we only have to prove the direct implication, so, assume that Aw(Z,C) is
dense in M. Defining

Wn = {x ∈M : Zt(x) ∈ B1/n(C) for some t > n} ∀n ∈ N

one has
Aw(Z,C) =

⋂

n
Wn.

In particular Aw(Z,C)⊂Wn, and so, since Aw(Z,C) is dense, Wn is dense in M for all
n. On the one hand, Wn is open by the Tubular Flow Box Theorem because B1/n(T )
is. This proves that Wn is open and dense therefore the claim follows.

Now, let X be a Cr vector field that is Cr close to a Cr transitive sectional-Anosov
flow with singularities on a compact 3-manifold M. If we define R = Aw(X ,Sing(X))
it follows from (6.22) and Corollary 6.28 with Z = X and C = Sing(X) that R is
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dense in M, and so, it is residual in M by the claim. It follows from the definition
that R satisfies the conclusion of the corollary. ut

6.3.3 Small perturbations of venice masks

We start this subsection with the following result about small perturbations of venice
masks.

Theorem 6.30. Every Cr venice mask with a unique singularity on a compact
3-manifold M can be Cr approximated by Cr vector fields Y for which M(Y ) 6⊂
Ω(Y ).

Proof. Let X be a venice mask with a unique singularity σ on M. Fix q ∈W u(σ)
and observe that ω(q) is a periodic orbit O with positive expanding eigenvalues by
Theorem 6.19. Let W u,+ and W u,− be the two connected components of W u(O)\O.

We first claim that
Cl(W u,+)∩W s,−(σ) = /0. (6.23)

Indeed, suppose by contradiction that Cl(W u,+) ∩W s,−(σ) 6= /0. Choose r ∈
Per(X) for which there is r′ ∈W u(r)∩W s,−(σ). Notice that such an intersection
is transverse. Since Cl(W u,+)∩W s,−(σ) we can select an interval I ⊂W u,+ close
to some point in W s,−(σ). Fix i ∈ I. It follows from the uniform size of the stable
manifolds that the stable manifold through i intersects W u(r) at some point i′ as
described in Figure 6.11.

This point i′ is in turns approximated by some k ∈ Per(X) since X has dense
periodic orbits and i′ ∈W u(r)⊂M(X). Since I is transverse to the stable foliations
and k is close to i′ we get W s(k)∩ I 6= /0 and so W s(k)∩W u,+ 6= /0. Since k is periodic
and close to i′ ∈W u(r) we have that there is a point k′ in the orbit of k that is close
to r. But W s(k)∩W u,+ 6= /0 so W u,+ accumulates on k′ for it does in k. Since k′ is
close to r we conclude that r ∈ Cl(W u,+). Since r is arbitrary we conclude from
(6.16) that H− ⊂Cl(W u,+). On the other hand, H+ =Cl(W u,+) by Proposition 6.21
hence H− ⊂ H+ and so M(X) = H+ by the second equation in (6.17). But H+ is a
homoclinic class by Corollary 6.23 and homoclinic classes are always transitive sets
due to the Birkhoff-Smale Theorem. So, M(X) (and hence X) are transitive which
is a contradiction since X is a venice mask. This contradiction ends the proof of the
claim.

Now we fix cross-sections Σq and Σ ′q = X1(Σq) through q and X1(q) respectively
which define the tubular neighborhood O = X[0,1](Σq) as indicated in Figure 6.12.

Since ω(q) = O we have that the positive orbit of q enters into W s(O) through
some interval in W s(O) which is denoted by l′′s in the figure. We push backward
this interval to obtain intervals ls ⊂ Σq and l′s ⊂ Σ ′q in a way that l′s = X1(ls). Inside



214 6 Sectional-Anosov flows on 3-manifolds

r

(σ)W
s,−

σ

W(σ)
ss

r’

i
I

i’ k
k’

W(r)
u

Fig. 6.11

q

qq

q

K

K

K

K

’

’’

Σ ’

l
l ’

X1
(   )

σ

Σ

Wu,+

Os
s

ls’’

Fig. 6.12

Σq there is a cusped region through q corresponding to the positive orbits close to
W s,+(σ) which enter inside Σq. Analogously for −.

By standard way [87] we can perform a Cr perturbation inside O as described in
Figure 6.13 producing a vector field Y .

We claim that M(Y ) 6⊂ Ω(Y ). Indeed, we first observe that since X is a venice
mask there is r ∈ Per(X) such that W u(r)∩W s,−(σ) 6= /0. Such a non-empty in-
tersection gives rise an interval K ⊂W u(r) intersecting W s,−(σ) transversally as
described in Figure 6.12. The perturbation yielding Y produces the small interval
LY ⊂ K whose positive trajectory gives rise to the intervals L′Y ,L′′Y ,L′′′Y ,L′′′′Y in Fig-
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ure 6.13. The basic property of these intervals is that every positive orbit through
the final one L′′′′Y passes close to a foliated rectangle V through W u,− which covers
a fundamental domain. By (6.23) we have Cl(W u,+)∩W s,−(σ) = /0 so no positive
orbit through L′′′′Y passes close to W s,−(σ) for they pass through V first. From this
we get LY ∩Ω(Y ) = /0 and so M(Y ) 6⊂ Ω(Y ) since LY ⊂ M(Y ). This proves the
result. ut

We finish this chapter with an application of Theorem 6.30. Recall that a Cr

vector field X in M is Cr robustly transitive or Cr robustly periodic depending on
whether every Cr vector field Cr close to it is transitive or has dense periodic orbits. It
would follow from the main result in [10] that every Cr robustly transitive sectional-
Anosov flow on a compact 3-manifold is Cr robustly periodic. The converse is true
at least for flows with a unique singularity by the following corollary of Theorem
6.30.

Theorem I. Every Cr robustly periodic sectional-Anosov flow with a unique
singularity on a compact 3-manifold is Cr robustly transitive.

Proof. It follows from the definitions of robustly periodic vector fields and venice
masks that every Cr robustly periodic sectional-Anosov flow which is not Cr ro-
bustly transitive can be Cr approximated by Cr venice masks. In turns, by Theorem
6.30, every Cr venice mask with a unique singularity on a compact 3-manifold can
be approximated by vector fields for which the maximal invariant set is not the
nonwandering set. Then the result follows by contradiction since the closure of the
periodic orbits is contained in the nonwandering set. ut
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6.4 Topological properties

In this section we shall be interested in the topological of codimension one sectional-
Anosov flows on compact n-manifolds. The background in the nonsingular case
is very extensive as, for instance, it is well known that all such flows satisfy the
following properties:

1. Periodic orbits are not null homotopic;
2. The supporting manifold has infinite fundamental group, is covered by Rn and is

irreducible (e.g. Proposition 5.3);
3. For n = 3 every transverse surface is an incompressible torus or Klein bottle (c.f.

Theorem 5.9).

Another related result is Theorem 5.4. On the other hand, it is believed that for
n ≥ 4 the supporting manifolds of these flows fiber over the circle. This is part of
the so-called Verjovsky conjecture which claims that all such flows are suspended
(progress toward positive solution for this conjecture was done recently in [12]). The
situation is completely different for closed 3-manifolds since there are Anosov flows
like the geodesic flows on closed Riemannian surfaces, the Anomalous Anosov flow
[46], the Bonatti-Langevin examples [30] with a transverse torus intersecting all
orbits except one, the Handel-Thurston examples [61] or even the ones obtained by
Dehn surgeries [55] whose ambient manifolds do not fiber over the circle (in fact all
these manifolds are not homeomorphic one to another).

In the following three subsections we investigate the relationship between the
above results and the codimension one sectional-Anosov flows on compact man-
ifolds. Note that none of the properties listed above is true for codimension one
sectional-Anosov flows in general. Indeed there are sectional-Anosov flows not only
in the 3-ball but also on reducible manifolds with the 2-sphere as a boundary com-
ponent (e.g. Theorem 3.28).

6.4.1 Topology of the ambient manifold

An immediate question about codimension one sectional-Anosov flows is that if
they exist on every compact manifold with boundary. As we already seem these
flows exists not only in the 3-ball or the solid but also in every three-dimensional
handlebody.

The situation may change if we demand additional properties to the flow. Indeed,
the following result implies that there are no sectional-Anosov flows for which every
singularity is Lorenz-like in the 3-ball or the solid torus.

Theorem 6.31. Every sectional-Anosov flow on the 3-ball or the solid torus
has a non Lorenz-like singularity.
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Proof. First we show that in each case the flow has a singularity. In the case of the
3-ball we appeal to the Poincaré-Hopf Index Theorem [40, 90]. This argument does
not work for the solid torus since it has zero Euler number. However we can use the
following alternative argument.

Hereafter we denote by ST = S1×D2 the solid torus. Suppose by contradiction
that there is a nonsingular sectional-Anosov flow Z in ST . Since Z has no singulari-
ties we have that its stable foliation W s is a non-singular codimension one foliation
of ST transverse to ∂ (ST ).

Next we apply the argument used in the proof of Theorem 5.9 based on the
following definition: A half-Reeb component of W s is a saturated subset, bounded
by an annulus leaf A and an annulus K ⊂ ∂ (ST ) with ∂K = ∂A, such that the double
2ST is a Reeb component [50] of the double foliation 2W s (see Figure 6.14).

Reeb component

Half-Reeb component

K

A O

L

Fig. 6.14

We claim that W s has neither Reeb components nor half-Reeb components. In-
deed, since W s is induced by stable manifolds we have that W s has no compact
leaves in Int(ST ). Consequently W s has no Reeb components. Now suppose by
contradiction that it has a half-Reeb component H. Let A,K be the boundary annuli
of H with K ⊂ ∂ (ST ). Pick x ∈ Int(H). Note that the positive trajectory of x does
not intersect A. As Z points inward to ST as indicated in Figure 6.14 we have that
ω(x)⊂ Int(H).

Now, ω(x) is contained in ST (Z) which is hyperbolic. By using the orbit of x we
can construct a periodic pseudo-orbit close to ω(x). By the Shadowing Lemma for
flows [62] we have that such a pseudo-orbit is shadowed by a periodic orbit O ⊂
Int(H). We have that O is contained in a leaf L of W s and L 6= A. The last property
implies that L is a half-plane, and so, it is simply connected as well. Consequently,
O bounds a disk in L. Applying the Poincaré-Bendixon Theorem [87] to this disk
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we could find a singularity in ST (Z) which is absurd. This contradiction proves the
claim.

Now take the double foliation 2W s defined on the double manifold M = 2ST . On
the one hand, ST is a solid torus so M is diffeomorphic to S2× S1. Consequently,
π2(M) 6= 0. On the other hand, the claim says that W s has neither Reeb nor half-Reeb
components. Therefore, 2W s has no Reeb components. Then, standard results in
foliation theory (e.g. Theorem 1.10-(iii) p. 92 in [50]) imply that 2W s is the product
foliation S2×∗ of M = S2× S1. Then, W s itself is the product foliation D×∗ by
meridian disks on ST , and so, the leaves of W s are invariant disks. But applying
Poincare-Bendixon’s to one of such disks as before we could find a singularity of Z
in Int(ST ) which is absurd.

With this contradiction we prove that every sectional-Anosov flow on the 3-ball
or the solid torus has a singularity. That one of these singularities is not Lorenz-like
follows in both cases for, otherwise, the stable foliation of the flow would intersect
the corresponding boundaries in a singular foliation with only saddle-type singular-
ities, a fact which is againts the Poincaré-Hopf Theorem. ut

Combining this theorem with Corollary 4.18 we obtain the following.

Corollary 6.32. Neither the 3-ball nor the solid torus can support transitive
sectional-Anosov flows or sectional-Anosov flows with dense periodic orbits.

Notice that by Theorem 3.26 the above corollary is false for another handlebodies
different from the 3-ball or the solid torus.

On the other hand Theorem 3.22 implies that there are transitive sectional-
Anosov flows (and so with all its singularities of Lorenz-like type) in the solid
bitorus. The fact that the the fundamental group of the solid bitorus has exponential
growth (for it is the free product Z∗Z) motivates the following conjecture (see also
Problem 7.2).

Conjecture 6.1. The fundamental group of a compact manifold supporting
codimension one sectional-Anosov flows for which every singularity (if any)
is Lorenz-like has exponential growth.

This conjecture implies not only Theorem 6.31 but also the main result in [128].
Notice that if it were true, then every sectional-Anosov flow on a compact manifold
for which the fundamental group has subexponential growth has a singularity.

6.4.2 Transverse surfaces

Some authors have studied transverse torus for codimension one Anosov flows on
closed manifolds (e.g. Theorem 5.9 or [16]). But this case was benefited not only
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by the fact that the ambient manifold of the supporting manifolds are irreducible
(Proposition 5.3) but also by the fact that the periodic orbits are not null homotopic.
Since such properties are not true for sectional-Anosov flows in general we shall
assume them in the next results.

Theorem J. Every closed surface transverse to a sectional-Anosov flow with-
out null homotopic periodic orbits on a compact irreducible 3-manifold has
non-zero genus.

Proof. Let X be a sectional-Anosov flow on a manifold M as in the statement. Con-
sider a surface S in M transverse to X . We can assume that M is orientable for,
otherwise, we pass to a double covering. It follows that S is orientable. Then, to
prove that S non-zero genus, it suffices to prove that S is not a 2-sphere.

Suppose by contradiction that S is a 2-sphere. As M is irreducible we have that S
bounds a 3-ball B in M. We have two possibilities for the vector field X at S = ∂B,
namely, it points either inward or outward to B.

If X points inward to B at S have that X/B is a sectional-Anosov flow, so, X has
a periodic orbit in B by Theorem C. But B is a ball so such a periodic orbit is null
homotopic, contradiction.

Now suppose that X points outward to B at S and consider the foliation the sin-
gular stable manifold W s of X . If the singularities of W s do not intersect S, then W s

would induce a non-singular foliation in S since S is transverse to X . But a 2-sphere
cannot support non-singular foliations, contradiction. So, there is a singular leaf
W ss(σ) intersecting S. Obviously σ 6∈ S because X is transverse to S. As X points
outward to B in S = ∂B, we would obtain some point different from σ in W ss(σ)
whose entire backward orbit does not exit M. It follows that such a point belongs
to M(X)∩W ss(σ) which contradicts Corollary 2.7. This contradiction proves the
result. ut

A counterexample for this theorem in the reducible case is the one in Theorem
3.28.

Recall that a surface S in a 3-manifold V is incompressible if it has two sides
and the homomorphism π1(S)→ π1(V ) induced by the inclusion is injective. A 3-
manifold is ∂ -irreducible if it has irreducible boundary [66], [72]. Recall that by
a regular point of a vector field we mean a point where the vector field does not
vanish.

Corollary 6.33. For every Lorenz-like singularity σ of a sectional-Anosov flow
without null homotopic periodic orbits on a compact irreducible ∂ -irreducible 3-
manifold M there is a regular point in W s(σ) whose backward orbit does not exit
M.

Proof. Let X be a sectional-Anosov flow on M as in the statement. We have to show
that M(X)∩W s(σ) contains regular points.
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Suppose by contradiction that such a regular point does not exist. There is a fun-
damental domain in W s(σ) consisting of a circle C since dim(W s(σ)) = 2 (see [132]
for the corresponding definitions). We have that C∩M(X) = /0 since C consists of
regular points. Hence the negative orbits through C exit M. By taking these negative
orbits we obtain a Poincaré map Π : C→ ∂M which is smooth. As C is a circle
we conclude that C′ = Π(C) is a circle too contained in a single connected com-
ponent ∂ of ∂M. Note that C′ is null homotopic in M for it can be homotoped to
σ by taking the positive orbits through C′. As M is ∂ -irreducible we conclude that
C′ is null homotopic in ∂ . So, it is the boundary of a disk D′ in ∂ . As the positive
orbits through C′ = ∂D′ converges to σ we can push forward D′ with the flow of X
in order to obtain a transverse 2-sphere in M. But this contradicts Theorem J so the
result follows. ut

This corollary is false for non ∂ -irreducible 3-manifolds. Indeed, the suspension
of the Plykin attractor [124] in the three-punctured disk ([132]) is a hyperbolic at-
tractor of saddle type having the manifold in Figure 6.15-(a) as basin of attraction.
Such a manifold (throughout denote by N) is obtained by removing from the solid

SBTST

ST’

ST’’
σ

(a)

(b)

Fig. 6.15

torus ST in the figure the solid torus ST ′ which turns three times around the hole of
ST . Now, consider the solid bitorus SBT described in Figure 6.15-(b) equipped with
a vector field inwardly transverse to the boundary. Note that this vector field has a
unique singularity σ of index 1 and an internal attracting solid torus ST ′′ turning
once around the righ-hand handle of SBT . We also observe that the backward orbit
of every regular point in W s(σ) exit SBT . Removing ST ′′ from SBT and gluing N to
the resulting manifold along the torus boundary of ST in a suitable way we obtain
the desired counterexample.

Our next result generalizes to the sectional-Anosov case a well known result
about the incompressibility of torus transverse to Anosov flows on 3-manifolds [44].
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Theorem K. Let X be a sectional-Anosov flow on a compact irreducible 3-
manifold all of whose singularities are Lorenz-like. If X has no null homotopic
periodic orbits, then every torus transverse to X is incompressible.

Proof. Suppose by contradiction that X exhibits a transverse torus which is not in-
compressible. As M is irreducible we have that T either bounds a solid torus ST or
is contained in a 3-ball B in M (e.g. [63]). Let us analyse each case separately.

Suppose that T is the boundary of a solid torus ST and consider the foliation
in T induced by the stable foliation W s of X . Since every singularity is Lorenz-
like (and so index 1) it follows from Poincaré-Hopf index that such an induced
foliation is non-singular. From this we conclude that X has no singularities in ST .
So, either X/ST or−X/ST is a nonsingular sectional-Anosov flow in the solid torus
contradicting Theorem 6.31.

Now consider the case when T is contained in a 3-ball B. Hence T separates
M in two connected components one of which (V say) is contained in B (see for
instance [100]). As before we can see that X has no singularities in V . So, applying
the hyperbolic and shadowing lemmas to either X (if X points inward to V at T ) or
to −X (otherwise) we can find a periodic orbit in V . However V is contained in B
which is a ball hence such a periodic orbit would be null homotopic, contradiction.
This contradiction proves the result. ut

Remark 6.34. This theorem is false for flows with non Lorenz-like singular-
ities. In fact, by capping one of the holes of the basin of a geometric Lorenz
attractor (which is a solid bi-torus) with a 3-ball, we obtain an example of a
sectional-Anosov flow without null-homotopic periodic orbits (but with a non
Lorenz-like singularity) on the solid torus.

Recall that a 3-manifold is atoroidal if every incompressible torus on it is isotopic
to a boundary component [66], [72].

Corollary 6.35. A sectional-Anosov flow with singularities, all Lorenz-like, but
without null homotopic periodic orbits in a compact atoroidal 3-manifold exhibits
neither hyperbolic attractors nor hyperbolic repellers.

Proof. Let X be a sectional-Anosov flow on a manifold M as in the statement. By
hypothesis we have that X has singularities, so, ∂M 6= /0.

Now, assume by contradiction that X has hyperbolic attractor A. We have that

A =
⋂

t≥0

Xt(V )

for some compact 3-manifold with boundary V . Applying Xt with sufficiently large
t we see that V can be chosen close to A hence V ⊂ Int(M), the interior of M. Since
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the ∂V ’s components support non-singular foliations we see that ∂V is formed by
transverse tori T , all of which are incompressible by Theorem K. As M is atoroidal
we see that each T is boundary parallel. So, for each T there is a torus boundary
component T ′ of ∂M such that T and T ′ form the boundary of a submanifold W
of M diffeomorphic to T 2× I. By attaching to V all these manifolds W along the
corresponding tori T we obtain a compact 3-manifold U inside M such that ∂U ⊂
∂M. As M is connected we conclude that U = M. As every boundary component
of U is a torus we have the same for M. But X has singularities, all of index 1 for
they are Lorenz-like. So, there is a torus supporting a one-dimensional foliation with
singularities, all of saddle type. This contradicts the Poincaré-Hopf Index Theorem.
Analogously we prove that X exhibits no hyperbolic repellers. This proves the result.

ut
Recall that if X is a vector field on a manifold M, then a singularity non-isolated

in the nonwandering set of X is a singularity σ for which Ω(X)\{σ} is not closed
in M.

Corollary 6.36. Every sectional-Anosov flow with singularities, all Lorenz-like, but
without null homotopic periodic orbits on a compact atoroidal 3-manifold has a
singularity non-isolated in the nonwandering set.

Proof. Let X the flow and M be the manifold. By contradiction assume that X has
no singularities non-isolated in the nonwandering set. Denoting by Sing(X) the set
of singularities of X we obtain that Ω(X)\ Sing(X) is closed. But Ω(X)\ Sing(X)
is also invariant hence it is hyperbolic by the hyperbolic lemma. It then follows
that Ω(X) = (Ω(X)\Sing(X))∪Sing(X) is disjoint union of hyperbolic set hence
Ω(X) is a hyperbolic set. As M is three-dimensional we obtain that Ω(X) is also the
closure of the closed orbits (this follows from the flow version of a theorem in [121],
see also [35]). Then, we can apply the Smale’s Spectral Decomposition Theorem to
find a hyperbolic attractor. However no such attractors exist by Corollary 6.35. This
contradiction proves the result. ut

Remark 6.37. This corollary is also false for non atoroidal manifolds.

6.4.3 Existence of Lorenz-like singularities

As already seem in Theorem 6.31 every sectional-Anosov flow in the 3-ball has a
non Lorenz-like singularity. In this section we present a sufficient condition for the
existence of Lorenz-like singularities too. We believe however that this condition is
unnecessary.

The following definition is motivated by both the definition of cube with knotted
hole ([25] p. 218) and the definition of trivially embedded stable separatrices ([56]
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p. 980). We denote by ∂A the boundary of A. A curve is called simple if it has no
self-intersections.

Definition 6.38. Let c be a simple non-closed compact curve in a 3-ball B
satisfying ∂B∩ c = ∂c. We say that c is unknotted in B if there is a simple
compact curve β ∈ ∂B with ∂β = ∂c such that the simple closed curve β ∪ c
is unknotted in B (see Figure 6.16).

c

B B

c

unknotted knotted

Fig. 6.16

We shall use this definition in the following context. If σ is a singularity of
a sectional-Anosov flow X in B, then we have from Corollary 2.7 that B(X) ∩
W ss

X (σ) = {σ}, so, W ss(σ) is a simple curve satisfying ∂B∩W ss(σ) = ∂W ss(σ).
With this in mind we can state the following definition.

Definition 6.39. A sectional-Anosov flow X in B has unknotted singular man-
ifolds if the curve W ss(σ) is unknotted in B for all σ ∈ Sing(X).

This definition is motivated by the following example.

Example 6.40. There is X ∈X 1(B) having a hyperbolic singularity σ ∈ B with
one-dimensional stable manifold W s(σ) such that B(X)∩W s(σ) = {σ} but W s(σ)
is not unknotted in B.

It can be constructed in the following way: Take the vector field in Figure 6.17-
(a) and the small tubular neighborhood described in Figure 6.17-(b). Remove this
neighborhood from the ball and inserts the tubular flow depicted in Figure 1 p. 26
of [41] (or in Figure 6.17-(c)) instead. The resulting vector field in Figure 6.17-(d)
is the desired one.

With the above definitions in mind we can state the following result (see [94]).
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Theorem L. Every sectional-Anosov flow with unknotted singular manifolds
in the 3-ball has both Lorenz-like and non Lorenz-like singularities.

Proof. The existence of non Lorenz-like singularities follows at once from Theorem
6.31.

To prove that there are Lorenz-like singularities too we shall assume by contra-
diction that there is a sectional-Anosov flow without Lorenz-like singularities X in
B. Since B has Euler number 1 and X points inward in ∂B we have from Poincaré-
Hopf that X has only one singularity σ in B. It has index−1 because of Lemma 2.8.
On the other hand, B(X)∩W ss(σ) = {σ} by Corollary 2.7 so B(X)∩W s(σ) = {σ}.
We also have that W s(σ) = W ss(σ) is unknotted since X has unknotted singular
manifolds by hypothesis.

We claim that there is a solid torus ST ⊂ Int(B) such that X is inwardly transverse
to ∂ (ST ) and X has no singularities in ST . Indeed, since (

⋂
t≥0 Xt(B))∩W s(σ) =

{σ} we have that the separatrices of W s(σ) \ {σ} exit B in the past as in Figure
6.18.

Then, by using the flow of X we can construct a torus T transverse to X in the
interior of B by removing an small tubular neighborhood in B of the curve c =
W s

X (σ)∩B. Note that T is the boundary of a compact manifold ST contained in
the interior of B. Moreover, X points inward to ST in T = ∂ (ST ). Since W s(σ) is
unknotted we have that ST is a solid torus. The claim follows.

Since X is inwardly transverse to ∂ (ST ) we have that X/ST is a nonsingular
sectional-Anosov flow in the solid torus, a contradiction by Theorem 6.31. This
contradiction proves the result. ut

There are examples of a sectional-Anosov flow where the hypotheses of the
above theorem are fulfilled.

A natural question is if the conclusion of Theorem L holds without the unknot-
ted assumption. Note that Example 6.40 does not give negative answer for such
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σ
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a question because B(X) in that example may not be partially hyperbolic. Indeed,
B(X) intersects the tubular neighborhood in Figure 6.17-(c) due to the Wazewski
Principle (see p. 26 in [41]).

Further topological properties of sectional-Anosov flows but within the singular-
hyperbolic attractor’s terminology were obtained by E. Apaza in his thesis [4].





Chapter 7
Problems

In this chapter we shall present some problems for sectional-Anosov flows moti-
vated by some of the results about Anosov flows mentioned in Part I.

Let M a compact manifold with possibly nonempty boundary ∂M and X ∈
X 1(M). A subset Λ ⊂M(X) is called Lyapunov stable if for every neighborhood U
of Λ there is a neighborhood W ⊂U such that Xt(p) ∈U for every t ≥ 0 and p ∈W .
It is clear that every attracting set is Lyapunov stable (but not conversely).

The first problem is motivated by known fact that every hyperbolic Lyapunov
stable set is an attracting set too. It is then natural to ask if this is true as well
replacing the term hyperbolic by sectional-hyperbolic. More precisely, we have the
following question:

7.1. Is a sectional-hyperbolic Lyapunov stable set an attracting set?

The answer is unknown even for transitive sectional-hyperbolic Lyapunov sta-
ble sets. Results toward positive solution in dimension three have been reported
by S. Hayashi [64]. This problem was formulated first in [35] but in the context
of three-dimensional singular-hyperbolic flows. Under this dimensional restriction
the problem was solved positively in [108] as soon as the unstable branches at the
singularities are all dense in the set.

Our second problem is motivated by Theorem 5.4. Indeed, in light of this result
we can ask if compact manifolds supporting sectional-Anosov flows of codimen-
sion one also have fundamental group of exponential growth (by codimension one
sectional-Anosov flow we mean a sectional-Anosov flow for which the central sub-
bundle is two-dimensional). However, this is false since the the unit ball Bn supports
such flows for all n≥ 3. Nevertheless, since there are no transitive codimension one
sectional-Anosov flows in these balls we still can ask the following,

227
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7.2. Is the fundamental group of a compact manifold carrying transitive
sectional-Anosov flows of exponential growth?

The next problem is motivated by Proposition 5.3 which says that every closed
manifold carrying codimension one Anosov flows is irreducible. It is then natural
to believe that a similar result holds for sectional-Anosov flows, but this is false by
some examples reported in [97]. However, the verification of the following problem
is still possible.

7.3. Is a compact manifold carrying transitive sectional-Anosov flows of codi-
mension one irreducible?

We know by Theorem 3.26 that there are sectional-Anosov flows on every three-
dimensional orientable handlebody. This result was the motivation for the following
problem posed in [138]:

7.4. Are there sectional-Anosov flows on every compact manifold of dimen-
sion greater than 2?

To support positive answer [138] proved that there are sectional-Anosov flows in
punctured handlebodies too. On the other hand, we have seen in Subsection 3.2.5
that Dehn surgery can be used to construct Anosov flows from older ones. As al-
ready said such a method was used successfully in [55] to construct the first exam-
ples of Anosov flows on closed hyperbolic three-manifolds (see also [14] or [45]).
What we expect is that the same method can be applied to sectional-Anosov flows on
compact three-manifolds as well. More precisely, we pose the following problem:

7.5. Can we use Dehn surgery to obtain new examples of (transitive)
sectional-Anosov flows on compact 3-manifolds?

In particular, we would like to know what kind of sectional-Anosov flows can
arise from Dehn surgery on geometric Lorenz attractors.
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For the next question we recall that a vector field X is sensitive to initial con-
ditions if there is δ > 0 such that for every x ∈M and every neighborhood U of x
there are y ∈U and t ≥ 0 satisfying d(Xt(x),Xt(y))≥ δ (here d stands for the metric
induced by the Riemannian structure of M).

7.6. Is every sectional-Anosov flow on a compact manifold sensitive to initial
conditions?

A positive solution in dimension three was obtained in [7] but for vector fields
close to nonwandering sectional-Anosov flows.

A concept related to sensitiveness to initial conditions is a kind of expansiveness
introduced by Komuro in [76]. More precisely, we say that X is K-expansive if
for every ε > 0 there is δ > 0 such that, for any surjective increasing continuous
functions h : IR→ IR, if x,y ∈M(X) satisfy d(Xt(x),Xh(t)(y))≤ δ for all t ∈ IR, then
Xh(t0)(y) ∈ X[t0−ε ,t0+ε](x), for some t0 ∈ IR. (Notice however that K-expansiveness
does not imply sensitiveness to initial conditions and viceversa.)

7.7. Is every sectional-Anosov flow on a compact manifold K-expansive?

A positive solution in the three-dimensional transitive case have been claimed in
[8].

The motivation for the next problem is Theorem C about existence of periodic
points for sectional-Anosov flows on compact three-manifolds. Of course this im-
plies immediately the existence of infinitely many periodic points but not the ex-
istence of infinitely many periodic orbits. Therefore, we can suggest the following
problem.

7.8. Are there infinitely many periodic orbits for sectional-Anosov flows on
compact manifolds?

Results toward positive solution in codimension one have been reported in [131].
For the next problem we recall that a homoclinic point of X is a homoclinic point

q 6= p associated to a hyperbolic periodic point p of X .
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7.9. Are there homoclinic points for every sectional-Anosov flow on a com-
pact manifold?

(Notice that positive solution for this problem implies immediately positive so-
lution for Problem 7.8.)

Recall that a homoclinic class of X is the closure of the homoclinic points as-
sociated to a given periodic point. Homoclinic classes play fundamental role in the
hyperbolic theory of dynamical systems as, for instance, by the Spectral Theorem
(Theorem 2.5), the nonwandering set of every Axiom A vector field on a compact
manifold is a finite disjoint union of homoclinic classes. The following problem is
directly related to this fact.

7.10. Is the nonwandering set of every sectional-Anosov flow on a compact
manifold a finite union of transitive sets?

This problem was solved in dimension three but for venice masks with only one
singularity [106]. Notice that the union in this problem may be non-disjoint [22].

The resent results [135], which can be seen as a weak spectral theorem, implies
the existence of finitely many ergodic components for every C2 sectional-Anosov
flow of codimension one on compact manifolds. This result implies that Problem
7.8 has positive solution for C2 sectional-Anosov flows of codimension one (notice
however that Problem 7.9 is still open even for such flows). For a similar result but
for transitive sectional-Anosov flows on compact three-manifolds see [8].

A question dealing with homoclinic classes is related to a result by Newhouse as-
serting that the sole area-preserving diffeomorphisms on closed surface exhibiting a
hyperbolic nontrivial homoclinic class are the transitive Anosov ones (c.f. Proposi-
tion 2.3 p. 135 in [118]). C. Carballo expect a similar result for volume preserving
flows on closed three-manifolds too. In the contrary direction we expect negative
answer for the following problem:

7.11. Are there volume-preserving vector fields on closed 3-manifolds ex-
hibiting sectional-hyperbolic homoclinic classes with singularities?

On the other hand, a direct consequence of Theorem 2.5 is that every Axiom
A flow (including Anosov) on compact manifolds have finitely many homoclinic
classes. Then, we have the following natural question
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7.12. Are there finitely many homoclinic classes for sectional-Anosov flows
on a compact manifold?

For the next problem we recall the well-known result that the maximal invariant
set of a transitive Anosov flow on a compact manifold consists of a single homo-
clinic class. It is then natural to believe that this is true also for sectional-Anosov
flows:

7.13. Is the maximal invariant set of a transitive sectional-Anosov flow on a
compact manifold a homoclinic class?

This problem was referred to as the Homoclinic Class Conjecture in Subsection
3.4.6. It was solved positively for the geometric Lorenz attractor in [18]. The ver-
sions of this problem obtained by replacing the term transitive by nonwandering (or
even periodic) are all false [22].

The next problem is motivated by Theorem I.

7.14. Is a robustly periodic sectional-Anosov flow on a compact manifold ro-
bustly transitive?

This together with Theorem 3.23 suggests the following problem.

7.15. Find sufficent conditions for a sectional-Anosov flow on a compact man-
ifold to be transitive or robustly transitive.

For the next problem we introduce an additional terminology:
We say that X satisfies the singular general density theorem if the set of points

which either are periodic or whose omega-limit set is a singularity is dense in the
nonwandering set. We take this name from the well known Pugh’s general density
theorem [130] asserting that the set of points which are either periodic or singu-
lar is dense in the nonwandering set of a generic C1 vector field (notice that the
singular general density theorem reduces to the denseness of periodic points in the
nonwandering set in abscence of singularities).
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On the other hand, we also say that X satisfies the singular connecting lemma
if the following is true: Let p,q be a pair of points with the alpha-limit set of p
being non-singular. If for all ε > 0 there is a trajectory from a point ε-close to p
to a point ε-close to q, then there is a point whose alpha-limit set is that of p and
whose omega-limit set is either that of q or a singularity. Notice that, in abscence
of singularities, the singular connecting lemma reduces to the property that if two
points p,q satisfies that for every ε > 0 there is a trajectory from a point ε-close to
p to a point ε-close to q, then there is a point whose omega (resp. alpha) limit set is
that of p (resp. that of q).

7.16. Does every sectional-Anosov flow on a compact manifold satisfy the
singular general density theorem and the singular connecting lemma?

Theorems D and E give positive answer in dimension three.
The following problems are motivated by results in [127]. Given p ∈M of X we

denote by W uu(p), the strong unstable manifold throught p, i.e., the set of points
whose negative orbit is asymptotic to that of p. More precisely,

W uu(p) =
{

q ∈M : lim
t→−∞

d(Xt(q),Xt(p)) = 0
}

.

Evidently W uu(p)⊂M(X) whenever p ∈M(X) and by Theorem 4.11 every transi-
tive Anosov flows on compact manifolds satisfies either W uu(p) is dense in M(X)
for all p ∈M(X) or the flow is a constant-time suspension. As suspensions cannot
occur in the presence of singularities we can suggest the following problem:

7.17. Is W uu(p) dense in M(X) for every p ∈ Per(X) and every transitive
sectional-Anosov flow with singularities X of a compact manifold M?

(The corresponding problem for periodic sectional-Anosov flows instead of tran-
sitive ones has negative answer [22].)

It is also well known that if X is an Anosov flow on a closed manifold M, then
Ω(X) has nonempty interior if and only if Ω(X) ([127]). We call a vector field X
nonwandering if M(X) = Ω(X). It is then natural to consider the following:

7.18. Is the interior of the nonwandering set empty for every sectional-Anosov
flow with singularities of a compact manifold?
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Our next problem is concerned with the result in [124] that the sole Anosov
flows on compact manifolds for which the (weak) stable foliation is transversely
affine are the suspended ones. Transversely affine means roughly that the manifold
can be covered by distinguished open sets for which the submersions defining the
foliation have affine transition functions.

Since the sectional-Anosov flows also display (weak) stable foliations we can
ask whether this foliation is transversely affine or not for the geometric or multidi-
mensional Lorenz attractors [3], [29], [57], [60]. In fact, we believe negative answer
not only for this but also for the next question:

7.19. Can the stable foliation of a sectional-Anosov flow with singularities of
a compact manifold be transversely affine?

One more question is motivated by Corollary 6.28. This result was improved very
recently in [7] by proving that every vector field close to a nonwandering sectional-
Anosov flow with singularities on a compact three-manifold satisfies that the union
of the stable manifolds of the singularities is dense. These results motivate the fol-
lowing question:

7.20. Is the union of the stable manifolds of the singularities dense for every
vector field close to a nonwandering sectional-Anosov flow with singularities
of a compact manifold?

Another class of problems can be also derived Corollary 4.23 and from [79]
where it was proved that in certain geometric Lorenz attractors (more precisely, in
the homoclinic case) the Hausdorff dimension is greater than 2. Noticing that in all
these cases the corresponding central subbundle is two-dimensional we introduce
the following question:

7.21. Is the topological (resp. Hausdorff) dimension of the maximal invariant
set of a transitive sectional-Anosov flow with singularities on compact mani-
folds equal to (resp. greater than) the dimension of the central subbundle?

We still ask if it is possible to estimate the Hausdorff dimension as in Corollary
1 p. 700 of [79].
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