A DICHOTOMY FOR HIGHER-DIMENSIONAL FLOWS

A. ARBIETO AND C. MORALES

ABSTRACT. We analyze the dichotomy between the sectional-Aziom A flows
(c.f. [18]) and the flows with points accumulated by periodic orbits of different
indices. Indeed, we prove such a dichotomy for C' generic flows whose singu-
larities accumulated by periodic orbits have codimension one. This improves
[20].

1. INTRODUCTION

In his celebrated proof of the stability conjecture [15], Mafié asked if the star prop-
erty, i.e., the property of being far away from systems with non-hyperbolic periodic
orbits, is sufficient to guarantee that a system be Axiom A. Actually, the answer
is positive for diffeomorphisms [10] but not for flows by the geometric Lorenz at-
tractor [1], [8], [9]. On the other hand, if singularities are not allowed then the star
property for flows implies Axiom A, as showed in [5]. Previously, Mané connects
the star property with the nowadays called Newhouse phenomenon at least for sur-
faces. In fact, he proved that a C'-generic surface diffeomorphism either is Axiom
A or displays infinitely many sinks or sources [16].

In the extension of the aforementioned Mané’s work on surfaces, [20] obtained
the following results about C''-generic flows for closed 3-manifolds: Any C!-generic
star flow is singular-Axiom A and, consequently, any C'-generic flow is singular-
Axiom A or displays infinitely many sinks or sources. The notion of singular-Aziom
A was introduced in [21] inspired on the dynamical properties of both Axiom A
flows and the geometric Lorenz attractor.

It is then natural to investigate such generic phenomena in higher dimensions.
At a first sight, the natural questions are: Is a C'-generic star flow in a closed n-
manifold singular-Axiom A? Does a C'-generic vector field in a closed n-manifold is
singular-Axiom A or has infinitely many sinks or sources? Unfortunately, we only
know that the second question has negative answer for n > 5 as counterexamples
can be obtained by suspending the diffeomorphisms in Theorem C of [2] (but the
answer may be positive for n = 4).

A new light comes from the sectional-Axziom A flows introduced in [18]. Indeed,
the first author replaced the term singular-Axiom A by sectional-Axiom A above in
order to formulated the following conjecture on closed n-manifolds, n > 3 (compare
with one in p. 947 of [7]):

Conjecture 1. C'-generic star flows are sectional-Aziom A.
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Analogously we can ask if a C'-generic vector field in a closed n-manifold is
sectional-Axiom A or display infinitely many sinks or sources. But in this case the
answer is negative not only for n = 5, by the suspension of [2] as above, but also for
n = 4 by [24] and the suspension of certain diffeomorphisms [17] (which are singular-
Axiom A but not sectional-Axiom A). Nevertheless, in all these counterexamples
there are points accumulated by hyperbolic periodic orbits of different Morse indices.
Since it is possible to observe that phenomenon in a number of well-known examples
of non-hyperbolic systems and since, in dimension three, that phenomenon implies
existence of infinitely many sinks or sources, it is possible to propose the following
dichotomy (which, in virtue of Proposition 14, follows from Conjecture 1):

Conjecture 2. C'-generic vector fields X satisfy (only) one of the following prop-
erties:

(1) X has a point accumulated by hyperbolic periodic orbits of different Morse
indices;
(2) X is sectional-Aziom A.

In this paper we prove Conjecture 2 but in a case very close to the three-
dimensional one, namely, when the singularities accumulated by periodic orbits have
codimension one (i.e. Morse index 1 or n — 1). Observe that our result implies the
dichotomy in [20] since the assumption about the singularities is automatic for
n = 3. It also implies Conjecture 2 in large classes of vector fields as, for instance,
those whose singularities (if any) have codimension one.

2. STATEMENT OF THE MAIN THEOREM

In what follows M is a compact connected boundaryless Riemannian manifold of
dimension n > 3 (or a closed n-manifold for short). If X is a C! vector field in M
we will denote by X; the flow generated by X in M. A subset A C M is invariant if
Xi(A) = Aforallt € IR. By a closed orbit we mean a periodic orbit or a singularity.
We define the omega-limit set of p € M by

w(p) = {x €M :xz= lim X;, (p) for some sequence t,, — oo}
n—oo

and call A transitive if A = w(p) for some p € A. Clearly every transitive set is
compact invariant. As customary we call A nontrivial it it does not reduce to a
single orbit. We also say that A is robustly transitive if there is a neighborhood U
of it such that (,cp Y:(U) is a nontrivial transitive set of Y, for every vector field
Y that is C* close to X.

Denote by || - || and m(-) the norm and the minimal norm induced by the Rie-
mannian metric and by Det(-) the jacobian operation. A compact invariant set A
is hyperbolic if there are a continuous invariant tangent bundle decomposition

T\M = B3 ® EX @ E}
and positive constants K, A such that EY is the subbundle generated by X,
|DX,(z)/E3|| < Ke=™ and m(DX,(z)/EY) > K~'eM,

for all z € A and t > 0. Sometimes we write E2X, E“X to indicate dependence
on X.

A closed orbit O is hyperbolic if it does as a compact invariant set. In such a case
we define its Morse index I(O) = dim(E2)), where dim(-) stands for the dimension
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operation. If O reduces to a singularity o, then we write I(o) instead of I({c})
and say that o has codimension one if I(0c) =1 or I(c) = n — 1. It is customary
to call hyperbolic closed orbit of maximal (resp. minimal) Morse index sink (resp.
source).

On the other hand, an invariant splitting Ta M = Ex @ F over A is dominated
(we also say that Ex dominates Fy) if there are positive constants K, A such that

IDXe@)/Eell _ ey ne
m(DXy(x)/F)
In this work we agree to call a compact invariant set A partially hyperbolic if there

is a dominated splitting TAM = E} @© E{ with contracting dominating subbundle
E3, namely,

Ve A and ¢t > 0.

DX (x)/E:| < Ke ™, Vr € A and t > 0.
We stress however that this is not a standard usage (specially due to the lack of
symmetry in this definition). Anyway, in such a case, we say that A has contracting
dimension d if dim(E$) = d for all x € A. Moreover, we say that the central
subbundle Ef is volume expanding or sectionally expanding depending on whether

|Det(DX,(z))| > K~ e, VxeAandt >0
or
dim(ES) >2 and |Det(DX(z)/L.)| > K 'e*, VereAandt>0

and all two-dimensional subspace L, of E$. Notice that sectionally expansiveness
implies volume expansiveness but not conversely.

We call a partially hyperbolic set whose singularities (if any) are hyperbolic
singular-hyperbolic (resp. sectional-hyperbolic) if its central subbundle is volume
(resp. sectionally) expanding (1).

Now we recall the concept of sectional-Axiom A flow [18]. Call a point p € M
nonwandering if for every neighborhood U of p and every T > 0 there is t > T
such that Xy (U)NU # (). We denote by Q(X) the set of nonwandering points of
X (which is clearly a compact invariant set). We say that X is an Aziom A flow if
Q(X) is both hyperbolic and the closure of the closed orbits. The so-called Spectral
Decomposition Theorem [12] asserts that the nonwandering set of an Axiom A flow
X splits into finitely many disjoint transitive sets with dense closed orbits (i.e. with
a dense subset of closed orbits) which are hyperbolic for X. This motivates [21] to
define singular-Aziom A flow as a vector field X whose nonwandering set splits into
finitely many disjoint transitive sets with dense closed orbits which are either hy-
perbolic or singular-hyperbolic for X or singular-hyperbpolic for —X. Analogously
[18] stated the following definition:

Definition 3. A C! vector field X in M is called sectional-Aziom A flow if there
is a finite disjoint decomposition Q(X) = Q; U --- U Q formed by transitive sets
with dense periodic orbits €1, --, Q% such that, for all 1 < i < k, §; is either a
hyperbolic set for X or a sectional-hyperbolic set for X or a sectional-hyperbolic
set for —X.

Let X! denote the space of C! vector fields X in M. Notice that it is a Baire
space if equipped with the standard C! topology. The expression C'-generic vector
field will mean a vector field in a certain residual subset of X!. We say that a point

1Some authors prefer to keep the same name (i.e. singular-hyperbolicity) for both concepts.
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is accumulated by periodic orbits, if it lies in the closure of the union of the periodic
orbits, and accumulated by hyperbolic periodic orbits of different Morse index if it
lies simultaneously in the closure of the hyperbolic periodic orbits of Morse index
1 and j with ¢ #% j. With these definitions we can state our main result settling a
special case of Conjecture 2.

Main Theorem. A C'-generic vector field X € X' for which the singularities
accumulated by periodic orbits have codimension one satisfies (only) one of the
following properties:

(1) X has a point accumulated by hyperbolic periodic orbits of different Morse
indices;
(2) X is sectional-Axiom A.

Standard C!-generic results [3] imply that the sectional-Axiom A flows in the
second alternative above also satisfy the no-cycle condition.

The proof of our result follows that of Theorem A in [20]. However, we need a
more direct approach bypassing Conjecture 1. Indeed, we shall use some methods
in [20] together with a combination of results [6], [7], [18] for nontrivial transitive
sets (which were originally proved for robustly transitive sets).

3. PROOF

Hereafter we fix a closed n-manifold M, n > 3, X € X! and a compact invariant
set A of X. Denote by Sing(X,A) the set of singularities of X in A. We shall use
the following concept from [6].

Definition 4. We say that A has a definite index 0 < Ind(A) < n — 1 if there
are a neighborhood U of X in X! and a neighborhood U of A in M such that
I(0) = Ind(A) for every hyperbolic periodic orbit O C U of every vector field
Y € U. In such a case we say that A is strongly homogeneous (of index Ind(A)).

It turns out that the strongly homogeneous property imposes certain constraints
on the Morse indices of the singularities [7]. To explain this we use the concept of
saddle value of a hyperbolic singularity ¢ of X defined by

A(o) = Re(N) + Re(7)

where A (resp. 7y) is the stable (resp. unstable) eigenvalue with maximal (resp.
minimal) real part (c.f. [25] p. 725). Indeed, based on the Hayashi’s connecting
lemma [11] and well-known results about unfolding of homoclinic loops [25], Lemma
4.3 in [7] proves that, if A is a robustly transitive set which is strongly homogeneous
with hyperbolic singularities, then A(c) # 0 and, furthermore, I(c) = Ind(A) or
Ind(A) + 1 depending on whether A(o) < 0 or A(o) > 0, Vo € Sing(X,A).
However, we can observe that the same is true for nontrivial transitive sets (instead
of robustly transitive sets) for the proof in [7] uses the connecting lemma only once.
In this way we obtain the following lemma.

Lemma 5. Let A be a nontrivial transitive set which is strongly homogeneous with
singularities (all hyperbolic) of X. Then, every o € Sing(X,A) satisfies A(o) # 0
and one of the properties below:

o IfA(o) <0, then I(o) = Ind(A).

o If A(o) >0, then I(0) = Ind(A) + 1.
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On the other hand, the following inequalities for strongly homogeneous sets A
where introduced in [6]:

(1) I(c) > Ind(A), Vo € Sing(X, A).

(2) I(o) < Ind(A), Vo € Sing(X, A).

We shall use the above lemma to present a special case where one of these
inequalities can be proved.

Proposition 6. Let A be a nontrivial transitive set which is strongly homogeneous
with singularities (all hyperbolic of codimension one) of X. Ifn > 4 and 1 <
Ind(A) < n—2, then A satisfies either (1) or (2).

Proof. Otherwise there are 09,01 € Sing(X, A) satisfying I(og) < Ind(A) < I(o1).
Since both oy and o7 have codimension one and 1 < Ind(A) < n — 2 we obtain
I(og) =1 and I(c1) =n— 1. If A(og) > 0 then I(op) = Ind(A) + 1 by Lemma 5
so Ind(A) = 0 which contradicts 1 < Ind(A). Then A(og) < 0 and so Ind(A) =
I(op) = 1 by Lemma 5. On the other hand, if A(cy) < 0 then Ind(A) = I(01) =
n — 1 by Lemma 5. As Ind(A) = 1 we get n = 2 contradicting n > 4. Then
A(o1) > 0so I(o1) = Ind(A)+1 by Lemma 5 thus n = 3 contradicting n > 4. The
proof follows. O

The importance of (1) and (2) relies on the the following result proved in [6],
[7], [18]: A C! robustly transitive set A with singularities (all hyperbolic) which
is strongly homogeneous satisfying (1) (resp. (2)) is sectional hyperbolic for X
(resp. —X). However, we can observe that the same is true for nontrivial transitive
sets (instead of robustly transitive sets) as soon as 1 < Ind(A) < n — 2. The
proof is similar to that in [6],[7], [18] but using the so-called preperiodic set [26]
instead of the natural continuation of a robustly transitive sets. Combining this
with Proposition 7 we obtain the following corollary in which the expression up to
flow-reversing means either for X or —X.

Corollary 7. Let A be a nontrivial transitive set which is strongly homogeneous
with singularities (all hyperbolic of codimension one) of X. Ifn > 4 and 1 <
Ind(A) <n—2, then A is sectional-hyperbolic up to flow-reversing.

A direct application of this corollary is as follows. We say that A is Lyapunov
stable for X if for every neighborhood U of it there is a neighborhood W C U of it
such that X;(p) € U for every t > 0 and p € W.

It was proved in Theorem C of [20] that, for C! generic three-dimensional star
flows, every nontrivial Lyapunov stable set with singularities is singular-hyperbolic.
We will need a similar result for higher dimensional flows, but with the term
singular-hyperbolic replaced by sectional-hyperbolic. The following will supply such
a result.

Corollary 8. Let A be a nontrivial transitive set which is strongly homogeneous
with singularities (all hyperbolic of codimension one) of X. If n >4, 1 < Ind(A) <
n — 2 and A is Lyapunov stable, then A is sectional-hyperbolic for X .

Proof. By Corollary 7 it suffices to prove that A cannot be sectional-hyperbolic for
—X. Assume by contradiction that it does. Then, by integrating the corresponding
contracting subbundle, we obtain a strong stable manifold W*% (z), Vo € A. But
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A is Lyapunov stabile for X so W*% (z) C A, Va € A, contradicting p. 556 in [19].
Then, A cannot be sectional-hyperbolic for —X and we are done. ([

The following lemmas will be used only to prove Proposition 11. Denote by
CO(X,A) the union of the closed orbits of X in A. In the case when CO(X,A)
consists of hyperbolic closed orbits one has a natural splitting

T.M=ESaEX®EY, VzeCOX,A),

where E is the flow direction at x (thus EX = 0 if z is a singularity). This applies
for instance when A is sectional-hyperbolic. In such a case we have the following
lemma.

Lemma 9. Let A be a sectional-hyperbolic set of a vector field X in a closed n-
manifold, n > 3. Then,

Ei=Eie(B5NEY),  VoeCOX,A).

Proof. Since E? is contracting one has ES C ES and ES N E* = {0}. On the other
hand, every ¢° € E; can written as v° = v® +v¢ € E @ ES. It follows that v =
o —v® € ESNES yielding ES = B3+ (ESNES). As EENESNES € ESNES = {0}
we obtain the result. O

Lemma 10. If A is a nontrivial transitive sectional-hyperbolic set of a vector field
X in a closed n-manifold, n > 3, then dim(ES N ES) =1, VYo € Sing(X, A).

Proof. Clearly E5 N E* = {0} so E* C E¢ since E* is invariant and Ef dominates
E{. As T,M = E3 ® E* we conclude that T,M = E* + E¢.

If E5NES = {0} we would have T, M = ES @ ES hence dim(ES) = n—dim(E2).
But we also have dim(ES) = n — dim(E2) so we would have dim(E3) = dim(E2).

Let W*°(o) be the strong stable manifold obtained by integrating the strong
stable subbundle Ef (c.f. [13]).

As dim(W*(0)) = dim(E2) = dim(E2) = dim(W*(c)) and W*(¢) C W*(0)
we get W*5(o) = W#(o). But A is transitive and nontrivial so the dense orbit
will accumulate at some point in W#(o) \ {c}. As W*°(o) = W?*(0) such a point
must belong to (A N W?*(s)) \ {¢}. On the other hand, it is well known that
ANW*$(c) = {o} (c.f. [20]) so we obtain a contradiction. Therefore E5NES # {0}
and so dim(Es N ES) > 1. As dim(Es N ES) < 1 we are done. O

We use these lemmas to prove the following proposition.

Proposition 11. Every nontrivial transitive sectional-hyperbolic set A of a vector
field X in a closed n-manifold, n > 3, is strongly homogeneous and satisfies I (o) =
Ind(A) + 1, Vo € Sing(X, A).

Proof. Since transitiveness implies connectedness we have that the strong stable
subbundle E3 of A has constant dimension. From this and the persistence of the
sectional-hyperbolic splitting we obtain that A is strongly homogeneous of index
Ind(A) = dim(E2), for © € A. Now fix a singularity . By Lemma 10 one
has dim(E$ N ES) = 1 and so dim(ES) = dim(ES) + 1 by Lemma 9. Therefore
Ind(o) = dim(ES) = dim(E2) + 1 = Ind(A) + 1. O
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We say that A is an attracting set if there is a neighborhood U of it such that

A=) X (U).
>0

On the other hand, a sectional-hyperbolic attractor is a transitive attracting set
which is also a sectional-hyperbolic set. An unstable branch of a hyperbolic sin-
gularity o of a vector field is an orbit in W*(o) \ {o}. We say that A has dense
singular unstable branches if every unstable branch of every hyperbolic singularity
on it is dense in A.

The following is a straightforward extension of Theorem D in [20] to higher
dimensions (with similar proof).

Proposition 12. Let A be a Lyapunov stable sectional-hyperbolic set of a vector
field X in a closed n-manifold, n > 3. If A has both singularities, all of Morse
index n — 1, and dense singular unstable branches, then A is a sectional-hyperbolic
attractor of X.

We also use the star flow’s terminology from [26].

Definition 13. A star flow is a C! vector field which cannot be C'-approximated
by ones exhibiting non-hyperbolic closed orbits.

Corollary 8 together with propositions 11 and 12 implies the key result below.

Proposition 14. A C'-generic vector field X on a closed n-manifold, ¥n > 3,
without points accumulated by hyperbolic periodic orbits of different Morse indices
is a star flow. If, in addition, n > 4, then the codimension one singularities of
X accumulated by periodic orbits belong to a sectional-hyperbolic attractor up to
flow-reversing.

Proof. We will use the following notation. Given Z € X' and 0 < i < n — 1 we
denote by Per;(Z) the union of the hyperbolic periodic orbits of Morse index 4.
The closure operation will be denoted by CI(+).

Since X has no point accumulated by hyperbolic periodic orbits of different
Morse indices one has

(3)  Cl(Pery(X))NCl(Per;(X)) =0, Vi,j€4{0,--- ,n—1}, i#j.

Then, since X is C'l-generic, standard lower-semicontinuous arguments (c.f. [3])
imply that there are a neighborhood U of X in X! and a pairwise disjoint collection
of neighborhoods {U; : 0 < i < n — 1} such that Cl(Per;(Y)) C U; for all 0 < i <
n—landY €U.

Let us prove that X is a star flow. When necessary we use the notation Ix(O)
to indicate dependence on X. By contradiction assume that X is not a star flow.
Then, there is a vector field Y € U exhibiting a non-hyperbolic closed orbit O. Since
X is generic we can assume by the Kupka-Smale Theorem [12] that O is a periodic
orbit. Unfolding the eigenvalues of O is a suitable way we would obtain two vector
fields Z1, Zo € U of which O is a hyperbolic periodic orbit with Iz, (O) # Iz,(0O),
1<I7(0)<n—-1and 1 < Iz (0) <n—1. Consequently, O C U; NU; where
i =1Iz,(0) and j = Iz, (O) which contradicts that the collection {U; : 0 < i <n—1}
is pairwise disjoint. Therefore, X is a star flow.

Next we prove that Cl(Per;(X)) is a strongly homogeneous set of index i, V0 <
i <mn—1. Take Y € U and a hyperbolic periodic orbit O C U; of Morse index
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Iy(0) = j. Then, O C Cl(Per;(Y)) and so O C U; from which we get O C U;NU;.
As the collection {U; : 0 < i < n — 1} is disjoint we conclude that i = j and so
every hyperbolic periodic orbit O C U; of every vector field Y € U has Morse index
Iy (O) = i. Therefore, Cl(Per;(X)) is a strongly homogeneous set of index i.

Now, we prove that every codimension one singularity o accumulated by peri-
odic orbits belongs to a sectional-hyperbolic attractor up to flow-reversing. More
precisely, we prove that if I(c) = n — 1 (resp. I(c) = 1), then o belongs to
a sectional-hyperbolic attractor of X (resp. of —X). We only consider the case
I(c) = n—1 for the case I(0) =1 can be handled analogously by just replacing X
by —X.

Since I(c) = n — 1 one has dim(W"(c)) = 1 and, since X is generic, we can
assume that both CI(W*¥(0)) and w(q) (for ¢ € W*(o) \ {o}) are Lyapunov stable
sets of X (c.f. [4]). As o is accumulated by periodic orbits we obtain from Lemma
4.2 in [20] that Cl(W*(0)) is a transitive set.

We claim that CI(W"(c)) is strongly homogeneous. Indeed, since X is generic
the General Density Theorem [23] implies Q(X) = Cl(Per(X)USing(X)). Denote
by Sing*(X) is the set of singularities accumulated by periodic orbits. Then, there
is a decomposition

QX) = U ciperi(x)) | U U {0’}
0<i<n-—1 o'€Sing(X)\Sing*(X)
which is disjoint by (3). In addition, CI(W"“(o)) is transitive and so it is con-
nected and contained in Q(X). As o € Sing*(X) by hypothesis we conclude that
Cl(W"(o)) C Cl(Per;,(X)) for some 0 < iy < n — 1. But we have proved above
that Cl(Per;,(X)) is a strongly homogeneous set of index 4, so, CI(W" (o)) is also
a strongly homogeneous set of index ig. The claim follows.

On the other hand, X is a star flow and so it has finitely many sinks and sources
[14], [22]. From this we obtain 1 < ig < n —2 and so 1 < Ind(Cl(W*(0))) <
n — 2. Summarizing, we have proved that CI(W"(o)) is a transitive set with
singularities, all of them of codimension one, which is a Lyapunov stable strongly
homogeneous set of index 1 < Ind(Cl(W*(c))) < n — 2. As certainly Cl(W*(c))
is nontrivial Corollary 8 applied to A = CI(W"(o)) implies that CI(W" (o)) is
sectional-hyperbolic.

Once we have proved that Cl(W"(o)) is sectional-hyperbolic we apply Propo-
sition 11 to A = CI(W"(0)) yielding I(c’) = i + 1, Vo' € Sing(X, Cl(W"“(0))).
But 0 € CI(W*(0)) and I(c) = n —1 so ig = n — 2 by taking o’ = o above.
Consequently, I(c¢') = n — 1 and so dim(W%(o")) = 1, Vo' € CI{(W"(c)). This
implies two things. Firstly that every singularity in CI(W*(o)) has Morse index
n — 1 and, secondly, since X is generic, we can assume that CI(W"(o)) has dense
unstable branches (c.f. Lemma 4.1 in [20]). So, CI(W*¥(0)) is a sectional-hyperbolic
attractor by Proposition 12 applied to A = Cl(W"(0)). Since o € CI(W" (o)) we
obtain the result. O

The last ingredient is the proposition below whose proof follows from Theorem
B of [5] as in the proof of Theorem B p. 1582 of [20].

Proposition 15. If n > 3, every C'-generic star flow whose singularities accumu-
lated by periodic orbits belong to a sectional-hyperbolic attractor up to flow-reversing
is sectional-Azxiom A.
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Proof of the Main Theorem: Consider a C''-generic vector field on a closed
n-manifold, n > 3, such that every singularity accumulated by periodic orbits
has codimension one. Suppose in addition that there is no point accumulated by
hyperbolic periodic orbits of different Morse indices. Since X is C'-generic we have
by Proposition 14 that X is a star flow.

If n = 3 then, since X is generic, Theorem B in [20] implies that X is sectional-
Axiom A.

If n > 4 then, by Proposition 14, since the singularities accumulated by peri-
odic orbits have codimension one, we have that all such singularities belong to a
sectional-hyperbolic attractor up to flow-reversing. Then, X is sectional-Axiom A
by Proposition 15. O
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