
MEASURE-EXPANSIVE SYSTEMS

C. A. MORALES

Abstract. We call a dynamical system on a measurable metric space measure-
expansive if the probability of two orbits remain close each other for all time
is negligible (i.e. zero). We extend results of expansive systems on compact
metric spaces to the measure-expansive context. For instance, the measure-
expansive homeomorphisms are characterized as those homeomorphisms f for
which the diagonal is almost invariant for f × f with respect to the product
measure. In addition, the set of points with converging semi-orbits for such
homeomorphisms have measure zero. In particular, the set of periodic orbits
for these homeomorphisms is also of measure zero. We also prove that there
are no measure-expansive homeomorphisms in the interval and, in the circle,
they are the Denjoy ones. As an application we obtain probabilistic proofs of
some result of expansive systems. We also present some analogous results for
continuous maps.

1. Introduction

The expansive homeomorphisms, or, homeomorphisms for which two orbits cannot
remain close each other, were introduced by Utz in the middle of the twenty century
[40] (see also [20]). Since them an extensive literature about these homeomorphisms
has been developed.

For instance, [44] proved that the set of points doubly asymptotic to a given
point for expansive homeomorphisms is at most countable. Moreover, a homeo-
morphism of a compact metric space is expansive if it does in the complement of
finitely many orbits [45]. In 1972 Sears proved the denseness of expansive homeo-
morphisms with respect to the uniform topology in the space of homeomorphisms
of a Cantor set [38]. An study of expansive homeomorphisms using generators
is given in [8]. Goodman [19] proved that every expansive homeomorphism of a
compact metric space has a (nonnecessarily unique) measure of maximal entropy
and Bowen [4] added specification to obtain unique equilibrium states. In another
direction, [34] studied expansive homeomorphisms with canonical coordinates and
showed in the locally connected case that sinks or sources cannot exist. Two years
later, Fathi characterized expansive homeomorphisms on compact metric spaces as
those exhibiting adapted hyperbolic metrics [17] (see also [36] or [14] for more about
adapted metrics). Using this he was able to obtain an upper bound of the Haus-
dorff dimension and upper capacity of the underlying space using the topological
entropy. In [26] it is computed the large deviations of irregular periodic orbits for
expansive homeomorphisms with the specification property. The C0 perturbations
of expansive homeomorphisms on compact metric spaces were considered in [10].
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Besides, the multifractal analysis of expansive homeomorphisms with the specifica-
tion property was carried out in [39]. We can also mention [9] in which it is studied
a new measure-theoretic pressure for expansive homeomorphisms.

From the topological viewpoint we can mention [30] and [32] proving the exis-
tence of expansive homeomorphisms in the genus two closed surface, the n-torus
and the open disk. Analogously for compact surfaces obtained by making holes
on closed surfaces different from the sphere, projective plane and Klein bottle [25].
In [23] it was proved that there are no expansive homeomorphisms of the compact
interval, the circle and the compact 2-disk. The same negative result was obtained
independently by Hiraide and Lewowicz in the 2-sphere [22], [27]. Mañé proved
in [28] that a compact metric space exhibiting expansive homeomorphisms must
be finite dimensional and, further, every minimal set of such homeomorphisms is
zero dimensional. Previously he proved that the C1 interior of the set of expansive
diffeomorphisms of a closed manifold is composed by pseudo-Anosov (and hence
Axiom A) diffeomorphisms. In 1993 Vieitez [41] obtained results about expansive
homeomorphisms on closed 3-manifolds. In particular, he proved that the denseness
of the topologically hyperbolic periodic points does imply constant dimension of the
stable and unstable sets. As a consequence a local product property is obtained
for such homeomorphisms. He also obtained that expansive homeomorphisms on
closed 3-manifolds with dense topologically hyperbolic periodic points are both sup-
ported on the 3-torus and topologically conjugated to linear Anosov isomorphisms
[42].

In light of these results it was natural to consider another notions of expan-
siveness. For example, G-expansiveness, continuouswise and pointwise expansive-
ness were defined in [13], [24] and [33] respectivelly. We also have the entropy-
expansiveness introduced by Bowen [3] to compute the metric and topological en-
tropies in a large class of homeomorphisms.

In this paper we introduce a notion of expansiveness in which the Borel proba-
bility measures µ will play fundamental role. Indeed, we call a homeomorphism of a
measurable metric space measure-expansive (or µ-expansive to indicate dependence
on µ) if the probability of two orbits remain close each other for all time is zero.

It is clear that these homeomorphisms only exist for nonatomic measures and
that, for such measures, they include the expansive ones. Besides, not every
measure-expansive homeomorphism is expansive and the identity is one which is
entropy-expansive but not measure-expansive. We extend some result of the the-
ory of expansive systems to the measure-expansive context. For instance, measure-
expansive homeomorphisms are characterized as those homeomorphisms f for which
the diagonal is almost invariant for f × f with respect to the product measure. In
addition, the set of points with converging semi-orbits for such homeomorphisms
have measure zero. In particular, the set of periodic orbits for these homeomor-
phisms is also of measure zero. We also prove that there are no measure-expansive
homeomorphisms in any compact interval and, in the circle, we prove that they are
precisely the Denjoy ones. As an application we obtain probabilistic proofs of some
result of expansive systems. We also present some analogous results for continuous
maps.
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2. Definition and examples

In this section we introduce the definition of µ-expansive homeomorphisms and
present some examples. To motivate let us recall the concepts of expansive and
entropy-expansive homeomorphisms [40], [3].

A homeomorphism f : X → X of a metric space X is called expansive if there
is δ > 0 such that for every pair of different points x, y ∈ X there is n ∈ Z such
that d(fn(x), fn(y)) > δ. Equivalently, f is expansive if there is δ > 0 such that
Γδ(x) = {x} for all x ∈ X where

Γδ(x) = {y ∈ X : d(f i(x), f i(y) ≤ δ,∀i ∈ Z}
(when appropriated we write Γf

δ (x) to indicate dependence on f). On the other
hand, we call f entropy-expansive if there is δ > 0 such that h(f, Γδ(x)) = 0 for all
x ∈ X where h(f, ·) denotes the topological entropy operation.

These definitions suggest further notions of expansiveness related to a given
property (P) of the closed sets in X. More precisely, we say that f is expansive
with respect to (P) if there is δ > 0 such that Γδ(x) satisfies (P) for all x ∈ X. For
example, a homeomorphism is expansive or h-expansive depending on whether it is
expansive with respect to the property of being a single point or a zero entropy set
respectively. In this vein it is natural to consider the property of being negligible
in terms of some Borel probability measure µ of X. This motivates the following
definition.

Definition 2.1. A homeomorphism f is µ-expansive if there is δ > 0 such that
µ(Γδ(x)) = 0 for all x ∈ X. The constant δ will be referred to as an expansiveness
constant of f .

Let us present some examples related to this definition.

Example 2.2. Clearly a measure µ for which there are µ-expansive homeomor-
phisms must be nonatomic. On the other hand, if µ is nonatomic, then every
expansive homeomorphism is µ-expansive.

Example 2.3. As is well known [31], every complete separable metric space which
either is uncountable or has no isolated points exhibits nonatomic Borel probability
measures. It follows that every expansive homeomorphism in such a space is µ-
expansive for some Borel probability µ.

Example 2.4. There are expansive homeomorphisms on certain compact metric
spaces which are not µ-expansive for all Borel probability measure µ.

Proof. Consider the map p(x) = x3 in R and define X = {0, 1,−1} ∪ {pn(c) :
n ∈ N, c ∈ {− 1

2 , 1
2}}. We have that X is an infinite (but countable) compact

metric space with the induced metric d(x, y) = |x − y|. Observe that there are no
nonatomic Borel probability measures in X since every non-isolated set of X must
be contained in {−1, 0, 1}. Defining f(x) = p(x) for x ∈ X we obtain an expansive
homeomorphism f which is not µ-expansive for every Borel probability measure
µ. ¤

Further examples of homeomorphisms which are not µ-expansive for all Borel
probability measure µ can be obtained as follows. Recall that an isometry of a
metric space X is a homeomorphism f such that d(f(x), f(y)) = d(x, y) for all
x, y ∈ X.
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Example 2.5. There are no µ-expansive isometries of a separable metric space. In
particular, the identity map in these spaces (or the rotations in R2 or translations
in Rn) cannot be µ-expansive for all µ.

Proof. Suppose by contradiction that there is a µ-expansive isometry f of a sepa-
rable metric space X for some Borel probability measure µ. Since f is an isometry
we have Γδ(x) = B[x, δ], where B[x, δ] denotes the closed δ-ball around x. If δ is
an expansivity constant of f , then µ(B[x, δ]) = µ(Γδ(x)) = 0 for all x ∈ X. Never-
theless, since X is separable (and so Lindelof), we can select a countable covering
{C1, C2, · · · , Cn, · · · } of X by closed subsets such that for all n there is xn ∈ X such
that Cn ⊂ B[xn, δ]. Thus, µ(X) ≤ ∑∞

n=1 µ(Cn) ≤ ∑∞
n=1 µ(B[xn, δ]) = 0 which is

a contradiction. This proves the result. ¤
Example 2.6. Endow Rn with a metric space with the Euclidean metric and denote
by Leb the Lebesgue measure in Rn. Then, a linear isomorphism f : Rn → Rn is
Leb-expansive if and only if f has eigenvalues of modulus less than or bigger than
1.

Proof. Since f is linear we have Γδ(x) = Γδ(0) + x thus Leb(Γδ(x)) = Leb(Γδ(0))
for all x ∈ Rn and δ > 0. If f has eigenvalues of modulus less than or bigger than
1, then Γδ(0) is contained in a proper subspace of Rn which implies Leb(Γδ(0)) = 0
thus f is Leb-expansive. ¤
Example 2.7. As we shall see later, there are no µ-expansive homeomorphism of
a compact interval I for all Borel probability measure µ of I. In the circle S1 these
homeomorphisms are precisely the Denjoy ones.

Recall that a subset Y ⊂ X is invariant if f(Y ) = Y .

Example 2.8. A homeomorphism f is µ-expansive, for some Borel probability
measure µ, if and only if there is an invariant borelian set Y of f such that the
restriction f/Y is ν-expansive in Y for some Borel probability measure ν of Y .

Proof. We only have to prove the only if part. Assume that f/Y is ν-expansive in
Y for some Borel probability measure ν of Y . Fix δ > 0. Since Y is invariant we
have either Γf

δ/2(x) ∩ Y = ∅ or Γf
δ/2(x) ∩ Y ⊂ Γf/Y

δ (y) for some y ∈ Y . Therefore,

either Γf
δ/2(x) ∩ Y = ∅ or µ(Γf

δ/2(x)) ≤ µ(Γf/Y
δ (y)) for some y ∈ Y where µ is

the Borel probability of X defined by µ(A) = ν(A ∩ Y ). From this we obtain that
for all x ∈ X there is y ∈ Y such that µ(Γf

δ/2(x)) ≤ ν(Γf/Y
δ (y)). Taking δ as

an expansivity constant of f/Y we obtain µ(Γf
δ/2(x)) = 0 for all x ∈ X thus f is

µ-expansive with expansivity constant δ/2. ¤
The next example implies that µ-expansiveness is invariant by conjugations.

Given a Borel measure µ in X and a homeomorphism φ : X → Y we denote by
φ∗(µ) the pullback of µ defined by φ∗(µ)(A) = µ(φ−1(A)) for all borelian A.

Example 2.9. Let µ a Borel probability measure of X and f be a µ-expansive
homeomorphism. If φ : X → Y is a homeomorphism of compact metric spaces,
then φ ◦ f ◦ φ−1 is a φ∗(µ)-expansive homeomorphism of Y .

Proof. Clearly φ is uniformly continuous so for all δ > 0 there is ε > 0 such that
Γφ◦f◦φ

ε (y) ⊂ φ(Γf
δ (φ−1(y))) for all y ∈ Y . This implies

φ∗(µ)(Γφ◦f◦φ
ε (y)) ≤ µ(Γf

δ (φ−1(y))).
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Taking δ as the expansivity constant of f we obtain that ε is an expansivity constant
for φ ◦ f ◦ φ−1. ¤

For the next example recall that a periodic point of a homeomorphism (or map)
f : X → X is a point x ∈ X such that fn(x) = x for some n ∈ N+. The
nonwandering set of f is the set Ω(f) formed by those points x ∈ X such that for
every neighborhood U of x there is n ∈ N+ satisfying fn(U) ∩ U 6= ∅. Clearly a
periodic point belongs to Ω(f) but not every point in Ω(f) is periodic. If X = M is
a closed (i.e. compact connected boundaryless) manifold and f is a diffeomorphism
we say that an invariant set H is hyperbolic if there are a continuous invariant
tangent bundle decomposition THM = Es

H ⊕ Eu
H and positive constants K, λ > 1

such that

‖Dfn(x)/Es
x‖ ≤ Kλ−n and m(Dfn(x)/Eu

x ) ≥ K−1λn,

for all x ∈ H and n ∈ IN (m denotes the co-norm operation in M). We say that f
is Axiom A if Ω(f) is hyperbolic and the closure of the set of periodic points.

Example 2.10. Every Axiom A diffeomorphism with infinite nonwandering set of
a closed manifold is µ-expansive for some Borel probability measure µ.

Proof. Consider an Axiom A diffeomorphism f of a closed manifold. It is well known
that there is a spectral decomposition Ω(f) = H1 ∪ · · · ∪Hk consisting of finitely
many disjoint homoclinic classes H1, · · · ,Hk of f (see [21] for the corresponding
definitions). Since Ω(f) is infinite we have that H = Hi is infinite for some 1 ≤ i ≤
k. As is well known f/H is expansive. On the other hand, H is compact without
isolated points since it is a homoclinic class. It follows from Example 2.2 that f/H
is ν-expansive for some Borel probability measure ν of H, so, f is µ-expansive for
some µ by Example 2.8. ¤

3. Equivalences

In this section we present some equivalences for µ-expansiveness. Hereafter all
metric spaces X under consideration will be compact unless otherwise stated. We
also fix a Borel probability measure µ of X.

To start we observe an apparently weak definition of µ-expansiveness saying that
f is measure-expansive if there is δ > 0 such that µ(Γδ(x)) = 0 for µ-almost every
x ∈ X. However, this definition and the previous one are in fact equivalent by the
following lemma.

Lemma 3.1. A homeomorphism f is µ-expansive if and only if there is δ > 0 such
that µ(Γδ(x)) = 0 for µ-almost every x ∈ X.

Proof. We only have to prove the if part. Let δ > 0 be such that µ(Γδ(x)) = 0
for µ-almost every x ∈ X. We shall prove that δ/2 is a µ-expansiveness constant
of f . Suppose by contradiction that it is not so. Then, there is x0 ∈ X such that
µ(Γδ/2(x0)) > 0. Denote A = {x ∈ X : µ(Γδ(x)) = 0} so µ(A) = 1. Since µ is a
probability measure we obtain A∩Γδ/2(x0) 6= ∅ so there is y0 ∈ Γδ/2(x0) such that
µ(Γδ(y0)) = 0.

Now we observe that since y0 ∈ Γδ/2(x0) we have Γδ/2(x0) ⊂ Γδ(y0). In fact,
if d(f i(x), f i(x0)) ≤ δ/2 (∀i ∈ N) one has d(f i(x), f i(y0)) ≤ d(f i(x), f i(x0)) +
d(f i(x0), f i(y0)) ≤ δ/2 + δ/2 = δ (∀i ∈ N) proving the assertion. It follows that
µ(Γδ/2(x0)) ≤ µ(Γδ(y0)) = 0 which is a contradiction. This proves the result. ¤
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In particular, we have the following corollary in whose statement supp(µ) denotes
the support of µ.

Corollary 3.2. A homeomorphism f is µ-expansive if and only if there is δ > 0
such that µ(Γδ(x)) = 0 for all x ∈ supp(µ).

Another condition is as follows. For every bijective map f : X → X, x ∈ X,
δ > 0 and n ∈ N+ we define

Vf [x, δ, n] = {y ∈ X : d(f i(y), f i(y)) ≤ δ, for all − n ≤ i < n}.
It is then clear that

Γδ(x) =
⋂

n∈N+

Vf [x, δ, n]

and Vf [x, δ, 1] ⊃ Vf [x, δ, 2] ⊃ · · · ⊃ Vf [x, δ, n] ⊃ · · · so we have

µ(Γδ(x)) = lim
n→∞

µ(Vf [x, δ, n]) = inf
n∈N+

µ(Vf [x, δ, n])

for all x ∈ X and δ > 0. From this we have the following lemma.

Lemma 3.3. A homeomorphism f is µ-expansive if and only if there is δ > 0 such
that

lim inf
n→∞

µ(Vf [x, δ, n]) = 0, for all x ∈ X.

A direct application is the following measure-expansive version of Corollary
5.22.1-(ii) of [43].

Proposition 3.4. Given n ∈ Z \ {0} a homeomorphism f is µ-expansive if and
only if fn is.

Proof. We can assume that n > 0. First notice that Vf [x, δ, n ·m] ⊂ Vfn [x, δ,m].
If fn is expansive then by Lemma 3.3 there is δ > 0 such that for every x ∈ X
there is a sequence mj → ∞ such that µ(Vfn [x, δ,mj ]) → 0 as j → ∞. Therefore
µ(Vf [x, δ, n ·mj ]) → 0 as j → ∞ yielding lim infn→∞ µ(Vf [x, δ, n]) = 0. Since x is
arbitrary we conclude that f is positively µ-expansive with constant δ.

Conversely, suppose that f is µ-expansive with constant δ. Since X is compact
and n is fixed we can choose 0 < ε < δ such that if d(x, y) ≤ ε, then d(f i(x), f i(y)) <

δ for all −n ≤ i ≤ n. With this property one has Γfn

ε (x) ⊂ Γf
δ (x) for all x ∈ X

thus fn is µ-expansive with constant ε. ¤

One more equivalence is motivated by a well known condition for expansiveness
stated as follows.

Given two metric spaces X and Y we always consider the product metric in
X × Y defined by

d((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

If µ and ν are measures in X and Y respectively we denote by µ× ν their product
measure in X × Y . If f : X → X and g : Y → Y we define their product
f × g : X × Y → X × Y ,

(f × g)(x, y) = (f(x), g(y)).

Notice that f × g is a homeomorphism if f and g are. Denote by ∆ = {(x, x) : x ∈
X} the diagonal of X ×X.
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Given a map g of a metric space Y we call an invariant set I isolated if there is
a compact neighborhood U of it such that

I = {z ∈ U : gn(z) ∈ U, ∀n ∈ Z}.
As is well known, a homeomorphism f of X is expansive if and only if the diagonal ∆
is an isolated set of f×f (e.g. [1]). To express the corresponding measure-expansive
version we introduce the following definition. Let ν be a Borel probability measure
of Y . We call an invariant set I of g ν-isolated if there is a compact neighborhood
U of I such that

ν({z ∈ Y : gn(z) ∈ U,∀n ∈ Z}) = 0.

With this definition we have the following result in which we write µ2 = µ× µ.

Theorem 3.5. A homeomorphism f is µ-expansive if and only if the diagonal ∆
is a µ2-isolated set of f × f .

Proof. Fix δ > 0 and a δ-neighborhood Uδ = {z ∈ X ×X : d(z, ∆) ≤ δ} of ∆. For
simplicity we set g = f × f .

We claim that

(3.1) {z ∈ X ×X : gn(z) ∈ Uδ, ∀n ∈ Z} =
⋃

x∈X

({x} × Γδ(x)).

In fact, take z = (x, y) in the left-hand side set. Then, for all n ∈ Z there is pn ∈ X
such that d(fn(x), pn)+d(fn(y), pn) ≤ δ so d(fn(x), fn(y)) ≤ δ for all n ∈ Z which
implies y ∈ Γδ(x). Therefore z belongs to the right-hand side set. Conversely, if
z = (x, y) is in the right-hand side set then d(fn(x), fn(y)) ≤ δ for all n ∈ Z so
d(gn(x, y), (fn(x), fn(x))) = d(fn(x), fn(y)) ≤ δ for all n ∈ Z which implies that z
belongs to the left-hand side set. The claim is proved.

Let F be the characteristic map of the left-hand side set in (3.1). It follows that
F (x, y) = χΓδ(x)(y) for all (x, y) ∈ X × X where χA if the characteristic map of
A ⊂ X. So,

(3.2) µ2({z ∈ X ×X : gn(z) ∈ Uδ, ∀n ∈ Z}) =
∫

X

∫

X

χΓδ(x)(y)dµ(y)dµ(x).

Now suppose that f is µ-expansive with constant δ. It follows that∫

X

χΓδ(x)(y)dµ(y) = 0, ∀x ∈ X

therefore µ2({z ∈ X ×X : gn(z) ∈ Uδ, ∀n ∈ Z}) = 0 by (3.2).
Conversely, if µ2({z ∈ X ×X : gn(z) ∈ Uδ, ∀n ∈ Z}) = 0 for some δ > 0, then

(3.2) implies that µ(Γδ(x)) = 0 for µ-almost every x ∈ X. Then, f is µ-expansive
by Lemma 3.1. This ends the proof. ¤

Our final equivalence is given by using the idea of generators (see [43]). Call
a finite open covering A of X µ-generator of a homeomorphism f if for every
bisequence {An : n ∈ Z} ⊂ A one has

µ

( ⋃

n∈Z
fn(Cl(An))

)
= 0.

Theorem 3.6. A homeomorphism of X is µ-expansive if and only if it has a µ-
generator.
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Proof. First suppose that f is a µ-expansive homeomorphism and let δ be its ex-
pansivity constant. Take A as the collection of the open δ-balls centered at x ∈ X.
Then, for any bisequence An ∈ A one has⋂

n∈Z
fn(Cl(An)) ⊂ Γδ(x), ∀x ∈

⋂

n∈Z
fn(Cl(An)),

so

µ

( ⋂

n∈Z
fn(Cl(An))

)
≤ µ(Γδ(x)) = 0.

Therefore, A is a µ-generator of f .
Conversely, suppose that f has a µ-generator A and let δ > 0 be a Lebesgue

number of A. If x ∈ X, then for every n ∈ Z there is An ∈ A such that the closed
δ-ball around fn(x) belongs to Cl(An). It follows that

Γδ(x) ⊂
⋂

n∈N
f−n(Cl(An))

so µ(Γδ(x)) = 0 since A is a µ-generator. ¤

4. Properties

In this section we present some properties of µ-expansive homeomorphisms. For
this we introduce some basic notation. Let f : X → X be a homeomorphism of a
compact metric space X. If x, y ∈ X, n ∈ N+ and m ∈ N we define

A(x, y, n, m) = {z ∈ X : max{d(f i(z), x), d(f j(z), y)} ≤ 1
n

, ∀i ≤ −m ≤ m ≤ j}
and

A(x, y, n) =
⋃

m∈N
A(x, y, n, m).

Lemma 4.1. These sets satisfy the following properties:
(1) A(x, y, n,m) is compact;
(2) A(x, y, n,m) ⊆ A(x, y, n,m′) if m ≤ m′;
(3) A(x, y, n′,m) ⊆ A(x, y, n, m) and so A(x, y, n′) ⊆ A(x, y, n) if n ≤ n′.

Given z ∈ X we define ω(z) (resp. α(z)) as the set of points x = limk→∞ fnk(z)
for some sequence nk → ∞ (resp. nk → ∞). We say that z ∈ X is a point with
converging semi-orbit under f if both α(z) and ω(z) consist of a unique point.
Denote by A(f) the set of points with converging semi-orbits under f . We say that
x ∈ X is a fixed point of f if f(x) = x. Denote by Fix(f) the set of fixed points of
f .

Lemma 4.2. For every homeomorphism f of a compact metric space X there is
as sequence xk ∈ Fix(f) such that

(4.1) A(f) =
⋂

n∈N+

⋃

k,k′∈N
A(xk, xk′ , n).

Proof. We have that Fix(f) is compact since f is continuous. It follows that there is
a sequence xk in Fix(f) which is dense in Fix(f). We shall prove that this sequence
satisfies (4.1).

Take z ∈ A(f). Then, there are x, y ∈ X such that α(z) = x and ω(z) = y.
Fix n ∈ N+. Then, there is m ∈ N such that max{d(f i(z), x), d(f j(y), y)} ≤ 1

2n
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whenever i ≤ −m ≤ m ≤ j. But clearly x, y ∈ Fix(f), so there are k, k′ ∈ N such
that max{d(x, xk), d(y, xk′)} ≤ 1

2n . Hence,

max{d(f i(z), xk), d(f j(z), xk′)} ≤ 1
n

, ∀i ≤ −m ≤ m ≤ j

therefore z ∈ A(xk, xk′ , n, m). We have then proved that for all n ∈ N+ there are
k, k′ ∈ N such that z ∈ A(xk, xk′ , n) thus A(f) is contained in the right-hand side
set of (4.1).

Conversely if z belongs to the right-hand side set of (4.1), then there are se-
quences kn, k′n,mn ∈ N such that

max{d(f i(z), xkn), d(f j(z), xk′n)} ≤ 1
n

, ∀i ≤ −mn ≤ mn ≤ j.

By compactness there is a sequence nr →∞ such that xknr
→ x and xk′nr

→ x′ for
some fixed points x, x′ of f . We assert that α(z) = x and ω(z) = x′. Take ε > 0.
Then, there is r1 ∈ N such that 1

nr
≤ ε

2 and max{d(xknr
, x), d(xk′nr

, x′)} ≤ ε
2 for

all r ≥ r1. Then, for all r ≥ r1 and i ≤ −mnr
≤ mnr

≤ j one has d(f i(z), x) ≤
d(f i(z), xknr

)+ d(xknr
, x) ≤ ε

2 + ε
2 = ε and, further, d(f j(z), x′) ≤ d(f j(z), xk′nr

)+
d(xk′nr

, x′) ≤ ε
2 + ε

2 = ε proving the assertion.
From this assertion we have z ∈ A(f) then (4.1) holds. ¤
Hereafter we denote by B[x, δ] (resp. B(x, δ)) the closed (resp. open) δ-ball of

X around x.
The following represents the measure-expansive version of a result in [32].

Theorem 4.3. If µ is a Borel probability measure of a compact metric space X and
f : X → X is a µ-expansive homeomorphism, then the set of points with converging
semi-orbits under f has µ-measure 0.

Proof. Recall that A(f) denotes the set of points with converging semi-orbits under
f . To prove µ(A(f)) = 0 we assume by contradiction that µ(A(f)) > 0. By Lemma
4.2 there is a sequence of fixed points xk of f satisfying (4.1). From this we obtain

(4.2) µ


 ⋃

k,k′∈N
A(xk, xk′ , n)


 > 0, ∀n ∈ N+.

Fix an expansivity constant e of f . Fix n ∈ N such that 1
n ≤ e

2 . Applying (4.2)
to this n we can arrange k, k′ ∈ N such that µ(A(xk, xk′ , n)) > 0. On the other
hand, by Lemma 4.1-(3), the definition of A(x, y, n) and well known properties of
measurable spaces we have

µ(A(xk, xk′ , n)) = sup
m∈N

A(xk, xk′ , n,m).

Since µ(A(xk, xk′ , n)) > 0, we can arrange m ∈ N satisfying

µ(A(xk, xk′ , n, m)) > 0.

From this and the fact that A(xk, xk′ , n, m) is compact by Lemma 4.1-(1) we can
select z ∈ A(xk, xk′ , n, m)∩ supp(µ) and δz > 0 such that

µ(A(xk, xk′ , n, m) ∩B[z, δ′]) > 0, ∀0 < δ′ < δz.

But f is continuous and the pair (n,m) is fixed, so, there is 0 < δ′ < δz such that

d(f i(z), f i(w)) ≤ e

2
, ∀ −m ≤ i ≤ m,∀w ∈ B[z, δ′].
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Consider w ∈ A(xk, xk′ , n, m) ∩ B[z, δ′]. On the one hand, since w ∈ B[z, δ′]
we have d(f i(w), f i(z)) ≤ e for all −m ≤ i ≤ m and, on the other, since z, w ∈
A(xk, xk′ , n,m) and 1

n ≤ e
2 we have d(f i(w), f i(z)) ≤ d(f i(w), xk)+d(f i(z), xk) ≤ e

and d(f j(w), f j(z)) ≤ d(f j(w), xk′) + d(f j(z), xk′) ≤ e for all i ≤ −m ≤ m ≤ j.
This proves w ∈ Γe(z) so

A(xk, xk′ , n, m) ∩B[z, δ′] ⊂ Γe(z).

It follows that
µ(Γe(x)) ≥ µ(A(xk, xk′ , n,m) ∩B[z, δ′]) > 0

which contradicts the µ-expansiveness of f . This ends the proof. ¤

A direct corollary is the following µ-expansive version of Theorem 3.1 in [40].
Denote by Per(f) the set of periodic points of f .

Corollary 4.4. If f is a µ-expansive homeomorphism for some Borel probability
measure µ, then µ(Per(f)) = 0.

Proof. Recalling Fix(f) = {x ∈ X : f(x) = x} we have Per(f) = ∪n∈N+Fix(fn).
Now, fn is µ-expansive by Proposition 3.4 and every element of Fix(fn) is a point
with converging semi-orbits of fn thus µ(Fix(fn)) = 0 for all n by Theorem 4.3.
Therefore, µ(Per(f)) ≤ ∑

n∈N+ µ(Fix(fn)) = 0. ¤

We finish this section by describing µ-expansiveness in dimension one. To start
with we prove that there are no µ-expansive homeomorphisms of compact intervals.

Theorem 4.5. There are no µ-expansive homeomorphisms of a compact interval
I for all Borel probability measure µ of I.

Proof. Suppose by contradiction that there is a µ-expansive homeomorphism f of
I for some Borel probability measure µ of I. Since f is continuous we have that
Fix(f) 6= ∅. Such a set is also closed since f is continuous, so, its complement
I\Fix(f) in I consists of countably many open intervals J . It is also clear that
every point in J is a point with converging semi-orbits therefore µ(I\ Fix(f)) = 0
by Theorem 4.3. But µ(Fix(f)) = 0 by Corollary 4.4 so µ(I) = µ(Fix(f)) + µ(I\
Fix(f)) = 0 which is absurd. ¤

Now we consider the circle S1. Recall that an orientation-preserving homeomor-
phism of the circle S1 is Denjoy if it is not topologically conjugated to a rotation
[21].

Theorem 4.6. A homeomorphism of S1 is µ-expansive for some Borel probability
measure µ if and only if it is Denjoy.

Proof. Let f be a Denjoy homeomorphism of S1. As is well known f has no periodic
points and exhibits a unique minimal set ∆ which is a Cantor set [21]. In particular,
∆ is compact without isolated points thus it exhibits a nonatomic Borel probability
meeasure ν (c.f. Corollary 6.1 in [31]). On the other hand, one sees as in Example
1.2 of [11] that f/∆ is expansive so it is ν-expansive too. Then, we are done by
Example 2.8.

Conversely, let f be a µ-expansive homeomorphism of S1, for some µ, and sup-
pose by contradiction that it is not Denjoy. Then, either f has periodic points or is
conjugated to a rotation (c.f. [21]). In the first case we can assume by Proposition
3.4 that f has a fixed point. Then, we can cut open S1 along the fixed point to
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obtain a ν-expansive homeomorphism of I for some Borel probability measure ν
which contradicts Theorem 4.5. In the second case we have that f is conjugated to
a rotation. Since f is µ-expansive it would follow from Example 2.9 that there are
ν-expansive circle rotations for some Borel probabilities ν. However, such rotations
cannot exist by Example 2.5 since they are isometries. This contradiction proves
the result. ¤

In particular, there are no C2 µ-expansive diffeomorphisms of S1 for all Borel
probability measure µ of S1. Similarly, there are no C1 µ-expansive diffeomor-
phisms of S1 with derivative of bounded variation.

5. Probabilistic proofs in expansive systems

The goal of this short section is to present the proof of some results in expansive
systems using the ours.

To start with we obtain another proof of the following result due to Utz (see
Theorem 3.1 in [40]).

Corollary 5.1. The set of periodic points of an expansive homeomorphism of a
compact metric space is countable.

Proof. Let f be an expansive homeomorphism of a compact metric space X. Since
Per(f) = ∪n∈N+Fix(fn) it suffices to prove that Fix(fn) is countable for all n ∈
N+. Suppose by contradiction that Fix(fn) is uncountable for some n. Since f
is continuous we have that Fix(fn) is also closed, so, it is complete and separable
with respect to the induced topology. Thus, by Corollary 6.1 p. 210 in [31], there
is a nonatomic Borel probability measure ν in Fix(fn). Taking µ(A) = ν(Y ∩ A)
for all borelian A of X we obtain a nonatomic Borel probability measure µ of X
satisfying µ(Fix(fn)) = 1. Since Fix(fn) ⊂ Per(f) we conclude that µ(Per(f)) = 1.
However, f is expansive and µ is nonatomic so f is µ-expansive thus µ(Per(f)) = 0
by Corollary 4.4 contradiction. This contradiction yields the result. ¤

Next we obtain another proof of the following result by Jacobson and Utz [23]
(details in [7]).

Corollary 5.2. There are no expansive homeomorphisms of a compact interval.

Proof. Suppose by contradiction that there is an expansive homeomorphism of a
compact interval I. Since the Lebesgue measure Leb of I is nonatomic we obtain
that f is Leb-expansive. However, there are no such homeomorphisms by Theorem
4.5. ¤

The following lemma is motivated by the well known property that for every
homeomorphism f of a compact metric space X one has that supp(µ) ⊂ Ω(f) for
all f -invariant Borel probability measure µ of X. Inded, we shall prove that this
is true also for all µ-expansive homeomorphisms f of S1 even for non f -invariant
measures µ of S1.

Lemma 5.3. If µ is a Borel probability measure of S1, then supp(µ) ⊂ Ω(f) for
all µ-expansive homeomorphism f .

Proof. Suppose by contradiction that there is x ∈ supp(µ) \ Ω(f) for some µ-
expansive homeomorphism f of S1. Let δ be an expansivity constant of f . Since
x /∈ Ω(f) we can assume that the collection of open intervals fn(B(x, δ)) as n runs
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over Z is disjoint. Therefore, there is N ∈ N such that the length of fn(B(x, δ)) is
less than δ for |n| ≥ N . From this and the continuity of f we can arrange ε > 0
such that B(x, ε) ⊂ Γδ(x) therefore µ(Γδ(x)) ≥ µ(B(x, ε)) > 0 as x ∈ supp(µ).
This contradicts the µ-expansiveness of f and the result follows. ¤

We use this lemma together with Theorem 4.6 to obtain another proof of the
following result also by Jacobsen and Utz [23]. Classical proofs can be found in
Theorem 2.2.26 in [2], Subsection 2.2 of [11], Corollary 2 in [32] and Theorem 5.27
of [43].

Corollary 5.4. There are no expansive homeomorphisms of S1.

Proof. Suppose by contradiction that there is an expansive homeomorphism of
S1. Since the Lebesgue measure Leb of S1 is nonatomic we obtain that f is Leb-
expansive. It follows that supp(Leb) ⊂ Ω(f) by Lemma 5.3. However, Ω(f) is a
Cantor set since f is Denjoy by Theorem 4.6 and supp(Leb) = S1 thus we obtain
a contradiction. ¤

6. The map case

In this section we introduce the concept of positively µ-expansive map correspond-
ing to that of µ-expansive homeomorphisms.

First recall that a continuous map f : X → X of a metric space X is positively
expansive (c.f. [16]) if there is δ > 0 such that for every pair of distinct points
x, y ∈ X there is n ∈ N such that d(fn(x), fn(y)) > δ. Equivalently, f is positively
expansive if there is δ > 0 such that Φδ(x) = {x} where

Φδ(x) = {y ∈ X : d(f i(x), f i(y)) ≤ δ,∀i ∈ N}
(again we write Φf

δ (x) to indicate dependence on f). This motivates the following
definition

Definition 6.1. A continuous map f : X → X is positively µ-expansive if there is
δ > 0 such that µ(Φδ(x)) = 0 for all x ∈ X. The constant δ will be referred to as
expansiveness constant of f .

As in the homeomorphism case we have that f is positively µ-expansive if and
only if there is δ > 0 such that µ(Φδ(x)) = 0 for almost every x ∈ X. Atomic
measures µ do not exhibit positively µ-expansive maps and, for the nonatomic µ,
every positively expansive map is positively µ-expansive. With the same argument
as in the case of homeomorphisms we can easily construct positively µ-expansive
maps which are not positively expansive.

An interesting question is motivated by the well known fact that every compact
metric spaces supporting positively expanding homeomorphisms is finite [37] (or
[35] for another proof). Indeed, we ask if the analogous result replacing expansive
by µ-expansive holds or not. Actually, it seems that positively µ-expansive homeo-
morphisms on compact metric spaces do not exist (1). One reason for this belief is
that, as in the case of homeomorphisms, we can prove that if X exhibits a positively
µ-expansive map then supp(µ) has no isolated points (and so supp(µ) is infinite).

A necessary and sufficient condition for a given map to be positively µ-expansive
is given as in the homeomorphism case. Indeed, defining

Bf [x, δ, n] = {y ∈ X : d(f i(y), f i(x)) ≤ δ, ∀0 ≤ i < n}
1Actually these homeomorphisms do exist.
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we obtain

µ(Φδ(x)) = lim
n→∞

µ(Bf [x, δ, n]) = inf
n∈N+

µ(Bf [x, δ, n]), ∀x ∈ X, ∀δ > 0,

so, f is positively µ-expansive if and only if there is δ > 0 such that

(6.1) lim inf
n→∞

µ(Bf [x, δ, n]) = 0, for all x ∈ X.

It follows that for all n ∈ N+ a continuous map f is positively µ-expansive if and
only if fn is. The proof is analogous to the corresponding result for homeomor-
phisms.

Another equivalent condition for positively µ-expansiveness is given using the
idea of positive generators as in Lemma 3.3 of [12]. Call a finite open covering A
of X positive µ-generator of f if for every sequence {An : n ∈ N} ⊂ A one has

µ

( ⋃

n∈N
fn(Cl(An))

)
= 0.

As in the homeomorphism case we obtain the following proposition.

Proposition 6.2. A continuous map is µ-expansive if and only if it has a positive
µ-generator.

We shall use this proposition to obtain examples of positively µ-expansive maps.
If M is a closed manifold (i.e. a compact connected boundaryless manifold) we call
a differentiable map f : M → M volume expanding if there are constants K > 0
and λ > 1 such that |det(Dfn(x))| ≥ Kλn for all x ∈ M and n ∈ N. Denoting by
Leb the Lebesgue measure we obtain the following proposition.

Proposition 6.3. Every volume expanding map of a closed manifold is positively
Leb-expansive.

Proof. If f is volume expanding there are n0 ∈ N and ρ > 1 such that g = fn0

satisfies |det(Dg(x))| ≥ ρ for all x ∈ M . Then, for all x ∈ M there is δx > 0 such
that

(6.2) Leb(g−1(B[x, δ])) ≤ ρ−1Leb(B[x, δ]), ∀x ∈ M, ∀0 < δ < δx.

Let δ be half of the Lebesgue number of the open covering {B(x, δx) : x ∈ M} of
M . By (6.2) any finite open covering of M by δ-balls is a positive Leb-generator,
so, g is positively Leb-expansive by Proposition 6.2. Since g = fn0 we conclude
that f is positively Leb-expansive (see the remark after (6.1)). ¤

Again, as in the homeomorphism case, we obtain an equivalent condition for
positively µ-expansiveness using the diagonal. Given a map g of a metric space Y
and a Borel probability ν in Y we say that I ⊂ Y is a ν-repelling set if there is a
neighborhood U of I satisfying

ν({z ∈ Y : gn(z) ∈ U,∀n ∈ N}) = 0.

As in the homeomorphism case we can prove the following.

Proposition 6.4. A continuous map f is positively µ-expansive if and only if the
diagonal ∆ is a µ2-repelling set of f × f .
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To finish we introduce an entropy allowing us to detect µ-expansive maps. To
motivate it we recall the local entropy by Brin and Katok [6].

The local entropy of f with respect to µ is the map x ∈ X 7→ hµ(f, x) defined by

hµ(f, x) = lim
δ→0+

lim sup
n→∞

− log(µ(Bf [x, δ, n]))
n

.

Our entropy will be a variation of this definition. Consider the map δ 7→ eµ(f, δ),

eµ(f, δ) = inf
x∈X

lim sup
n→∞

− log(µ(Bf [x, δ, n]))
n

with the convention that − log 0 = ∞. Clearly eµ(f, δ) increases as δ decreases to
0+ so limδ→0+ eµ(f, δ) exists. We call this limit the metric BK-entropy of a f with
respect to µ. In other words,

eµ(f) = lim
δ→0+

inf
x∈X

lim sup
n→∞

− log(µ(Bf [x, δ, n]))
n

.

This entropy has properties analogous to that of the classical metric entropy [21].
For instance, eµ(fk) = keµ(f) for all k ∈ N and eµ(f) is invariant by measure-
preserving conjugacies. An example with eµ(f) = 0 is the identity map I : X → X.
Examples with eµ(f) > 0 are the C2 Anosov diffeomorphisms on closed manifolds
M (with µ being in this case the Lebesgue measure of M). This follows from the
Bowen-Ruelle volume lemma [5]. It can be proved as well that eµ(f) = 0 for atomic
measures µ therefore one can apply the Brin-Katok Theorem [6] and the classical
variational principle [15], [18], [43] to obtain the inequality

sup
µ∈Mf (X)

eµ(f) ≤ h(f),

where h(f) is the topological entropy and Mf (X) is the space of Borel probability
invariant measures of f .

Our interest by eµ(f) is given below.

Theorem 6.5. Every continuous map f for which eµ(f) > 0 is positively µ-
expansive

Proof. Since eµ(f) > 0 there are δ > 0, ρ > 0 and c > 0 such that for every x ∈ X

there is a sequence nx
k →∞ satisfying µ(Bf [x, δ, nx

k]) ≤ ce−ρnx
k for all k ∈ N. Since

ρ > 0 we have that µ(Bf [x, δ, nx
k]) → 0 as k →∞ so lim infn→∞ µ(Bf [x, δ, n]) = 0

for all x ∈ X. Then, the result follows from (6.1). ¤
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