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Abstract

In this paper we present a subgradient type algorithm for solving convex feasibility problem

on Riemannian manifold. We prove that the sequence generated by the algorithm converges to a

solution of the problem when the sectional curvature of the manifold is non negative. Moreover,

assuming a Slater type qualification condition we propose a variant of the first algorithm which

ensures finite convergence property, i.e., a feasible point is obtained after a finite number of

iteration. We show some examples motivating the application of the algorithm for feasibility

problems not necessarily convex (in the usual sense).

Key words: Feasibility problem, Subgradient algorithm, Riemannian manifolds.

1 Introduction

Consider m closed convex subsets C1, . . . , Cm of a metric vector space X, such that

Ci = {x ∈ X : fi(x) ≤ 0},
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where fi : X → R is a convex function for each i = 1, . . . ,m. Note that if some set Ci is given in

any other form then it can be represented as above by choosing fi = d2(., Ci), the squared distance

to the set Ci. The convex feasibility problem is:

find a point x∗ ∈ C =
m⋂
i=1

Ci.

This problem is fundamental in many areas of application such as image recovery, radiation

therapy treatment planning and crystallography. It is studied in many different context, see for

instance [1, 2, 3, 4, 5]. Usual approaches for solving convex feasibility problems are projection

methods, subgradient type methods and their variants, see e.g., [1, 2] for excellent disscussions on

the subject. Subgradient type methods consist of a simple and efficient strategy for solving such a

problem. One of its variant is as follows:

Algorithm

Step 1: Take x0 ∈ Rn arbitrary;

Step 2: Guntitled folder 2iven xk and ik ∈ {1, 2, . . . ,m} such that ik = (k mod m) + 1,

calculate the next iterate xk+1 by

xk+1 =

 xk − αk
fik (xk)

‖sk‖2 s
k, if fik(xk) > 0,

xk, otherwise,

where sk ∈ ∂fik(xk) is a subgradient of fik at the point xk, and the sequence of relaxation param-

eters, {αk}, is such that ε1 ≤ αk ≤ 2 − ε2, for all k ≥ 0, with ε1, ε2 > 0 arbitrarily small. See, for

example, [2, 6].

Our main interest here is to extend this algorithm for solving convex feasibility problem on

Riemannian manifolds. The subgradient method was proposed in the early sixties, see Shor [7] and

Polyak [8]. Since then, many extensions and improvements of this method have been studied. It

is known that a convexity structure on a Riemannian manifold can be considered, where a set is

convex if and only if geodesics connecting any two of its points is entirely inside the set. Convex

functions are the ones which composed with geodesics are convex in the usual sense. Therefore
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it is natural to attempt to extend the subgradient method to the Riemannian context. Such

an extension for solving a convex optimization problem on a non compact (connected) complete

Riemannian manifold was done by Ferreira and Oliveira [9].

Recently, extension of concepts, techniques and algorithms from Euclidean spaces to Riemannian

manifolds with practical and theoretical purposes have been the subject of many research, see

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The main advantages of such extensions are

that non convex problems in the classical sense may become convex through the introduction

of an appropriate Riemannian metric (see [19] and Example 4.1 of Section 4), and constrained

optimization problems may be seen as unconstrained ones, see [9, 16, 23]. Also, these extensions

give rise to interesting theoretical questions.

In this paper we propose and analyze two algorithms to solve the convex feasibility problem

on a non compact (connected) complete Riemannian manifold. Assuming that the manifold has a

non negative sectional curvature, we prove full convergence of the sequence generated by the first

algorithm to a solution of the problem. Moreover, assuming a Slater type qualification condition

and considering a variant of the first algorithm, we prove finite convergence of the sequence to a

solution of the problem, i.e., a feasible solution is obtained after a finite number of iteration. We

present some functions (sets) which are not convex in the usual sense, but a Riemannian metric

is considered in such a way that these functions (sets) become convex in the Riemannian context.

This is a simple situation where a feasibility problem (not necessarily convex) may be solved by

the algorithm proposed here.

This article is organized as follows. In Section 2 we recall some basic results of Riemannian

geometry to be used throughout this paper. In Section 3 we recall some results on convex analysis

on Riemannian manifolds. In Section 4 we present the convex feasibility problem in the Riemannian

context and we propose and analyze an algorithm to solve it. In Section 5 we propose a variant of

the first algorithm and we study its convergence property.
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2 Preliminaries on Riemannian geometry

In this section, we introduce some properties and notations on Riemannian geometry. These basics

facts can be found in any introductory book of Riemannian geometry, for instance [24, 25].

Let M be a n-dimensional connected manifold. We denote by TxM the n-dimensional tangent

space of M at x, by TM = ∪x∈MTxM tangent bundle of M and by X (M) the space of smooth

vector fields over M . When M is endowed with a Riemannian metric 〈 , 〉, with corresponding norm

denoted by ‖.‖, then M is a Riemannian manifold. Recall that the metric can be used to define

the length of piecewise smooth curves γ : [a, b] → M joining x to y, i.e., such that γ(a) = x and

γ(b) = y, by

l(γ) =

∫ b

a
‖γ′(t)‖dt,

and, moreover, by minimizing this length functional over the set of all such curves, we obtain a

Riemannian distance d(x, y) which induces the original topology on M . The metric induces a map

f 7→ gradf ∈ X (M) which associates to each scalar function smooth over M its gradient via the

rule 〈gradf,X〉 = df(X), X ∈ X (M). Let ∇ be the Levi-Civita connection associated to (M, 〈 , 〉).

A vector field V along γ is said to be parallel if ∇γ′V = 0. If γ′ itself is parallel we say that γ is a

geodesic. Because the geodesic equation ∇ γ′γ
′ = 0 is a second order nonlinear ordinary differential

equation, then the geodesic γ = γv(., x) is determined by its position x ∈ M and velocity v at x.

When there is no confusion, the notation γv meaning γ′v(0) = v will also be used. It is easy to check

that ‖γ′‖ is constant. We say that γ is normalized if ‖γ′‖ = 1. The restriction of a geodesic to a

closed bounded interval is called a geodesic segment. A geodesic segment joining x to y in M is said

to be minimal if its length is equals to d(x, y) and this geodesic is called a minimizing geodesic.

A Riemannian manifold is complete if and only if the geodesics are defined for any values of

t ∈ R. Hopf-Rinow Theorem ([25, Theorem 1.1, page 84]) asserts that if a Riemannian manifold

is complete then any pair of points can be joined by a (not necessarily unique) minimal geodesic

segment. Moreover, (M,d) is a complete metric space and bounded and closed subsets are compact.

If R is the curvature tensor defined by R(X,Y ) = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z, with
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X,Y, Z ∈ X (M), where [X,Y ] = Y X −XY , then the sectional curvature with respect to X and

Y is given by K(X,Y ) = 〈R(X,Y )Y,X〉/(||X||2||Y ||2 − 〈X , Y 〉2), where ||X|| = 〈X,X〉1/2.

The following result is an immediate consequence of the known Topogonov Theorem, see [25].

Proposition 2.1. Let M be a complete Riemannian manifold with sectional curvature K ≥ 0. If

γu1 and γu2 are normalized geodesics such that γu1(0) = γu2(0), then

d(γu1(r1), γu2(r2)) ≤ ||r2u2 − r1u1||.

From now on, M denotes a non compact (connected) complete Riemannian manifold.

3 Convexity on Riemannian manifolds

In this section we introduce some definitions and notations of convexity on Riemannian manifolds.

We also present some properties of the directional derivative and the subdifferential of a convex

function, see [26] for more details.

A function f : M → R is convex if and only if for any geodesic segment γ : [−δ, δ]→M , δ > 0,

the composition f ◦ γ : [−δ, δ]→ R is convex (in the usual sense). Given x ∈M , a vector s ∈ TxM

is said to be a subgradient of f at x, if for any geodesic segment γ : [−δ, δ] → R, δ > 0, with

γ(0) = x,

(f ◦ γ)(t) ≥ f(x) + t〈s, γ′(0)〉, t ∈ [−δ, δ], (1)

where 〈·, ·〉 denotes the inner product at TxM . The set of all subgradients of f at x, ∂f(x), is called

the subdifferential of f at x.

We mention that a convex function on a Riemannian Manifold is continuous.

In the following, we consider a convex function f : M → R, a point x ∈ M , a vector v ∈ TxM

and γ : [−δ , δ]→M the geodesic segment such that γ(0) = x and γ′(0) = v.

Due to the convexity of f ◦ γ : [−δ , δ]→ R, the function qγ : (0 , δ]→ R, given by

qγ(t) :=
f(γ(t))− f(p)

t
, (2)
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is non decreasing and bounded near zero. This leads to the following definition:

Definition 3.1. The directional derivative of f at x in the direction of v is defined by

f ′(x, v) := lim
t→0+

qγ(t) = inf
t>0

qγ(t). (3)

Theorem 3.1. For every y ∈ M , ∂f(y) is non empty, convex and compact. Moreover, the

following characterization holds,

∂f(y) =
{
s ∈ TyM : f ′(y, w) ≥ 〈s, w〉, ∀ w ∈ TyM

}
.

Proof. See [26, pages 74 and 75].

Proposition 3.1. The functional f ′ : TM → R is upper semicontinuous on TM , i.e., if {(xk, vk)}

converges to (x, v) ∈ TM , then

lim sup
k→+∞

f ′(xk, vk) ≤ f ′(x, v).

Proof. The proof follows by Proposition 3.1 and Remark 3.3 of [12].

Proposition 3.2. Let {xk} ⊂M a bounded sequence. If the sequence {vk} is such that vk ∈ ∂f(xk),

for each k ∈ N, then {vk} is also bounded.

Proof. Since {xk} is a bounded sequence, it has an accumulation point x̄ ∈ M , by Hopf-Rinow

Theorem. We may assume, taking a subsequence if necessary, that {xk} converges to x̄. Let Ux̄

be a neighborhood of x̄ such that TUx̄ = Ux̄ × Rn. Since TUx̄ ⊂ TM is an open set and {xk}

converges to x̄, we may also assume that the whole sequence {(xk, vk)} is in TUx̄. Let us assume,

by contradiction, that the sequence {vk} is unbounded. Therefore there exists a subsequence {vkj}

such that

lim
j→+∞

‖vkj‖ = +∞.
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Considering the sequence {wj} defined by wj = vkj/‖vkj‖, for each j ∈ N, and taking a subsequence

if necessary, we may assume that {wj} converges to some w̄ ∈ Rn. Thus, {(xkj , wj)} converges to

(x̄, w̄), and by Proposition 3.1 follows that

lim sup
j→+∞

f ′(xkj , wj) ≤ f ′(x̄, w̄) < +∞. (4)

Since vkj ∈ ∂f(xkj ), we obtain by Theorem 3.1 that f ′(xkj , wj) ≥ 〈vkj , wj〉 = ‖vkj‖. Therefore

lim sup
j→+∞

f ′(xkj , wj) = +∞,

contradicting (4), and the result follows.

4 Algorithm 1: basic properties and convergence result

In this section we present the convex feasibility problem on Riemannian manifolds. We propose

and analyze an algorithm to solve it. We prove some basic results here for the sake of completeness.

The convex feasibility problem CFP in the Riemannian context is:

find a point x∗ ∈ C :=

m⋂
i=1

Ci,

where Ci = {x ∈ M : fi(x) ≤ 0}, and fi : M → R is a convex function for each i = 1, . . . ,m. We

assume that C 6= ∅.

Next, we present an example illustrating the fact that non convex functions (resp. sets) in the

usual sense may become convex functions (resp. sets) in the Riemannian context with the choice

of a suitable Riemannian metric. We observe, although, that in general to find such a metric is a

difficult task.

Example 4.1. Let M =
(
R2

++, g
)

be the Riemannian manifold, where R2
++ = {(x1, x2) ∈ R2 :

x1, x2 > 0} and g = (gij) is the affine-scaling metric, i.e., gij(x) =
δij
xixj

. It is well known that M

is a complete Riemannian manifold, with sectional curvature K ≡ 0 and tangent plane at x ∈ M ,

7



denoted by TxM , equals to R2. The geodesic curve γ : R → M satisfying γ(0) = a ∈ M e

γ′(0) = s ∈ TaM is

t 7→ γ(t) =
(
a1 e(a1/s1)t, a2e(a2/s2)t

)
.

Consider the functions f1, f2 : M → R defined by

f1(x1, x2) = lnx2 − lnx1 and f2(x1, x2) = x1x2 − 1,

and consider Ci = {(x1, x2) ∈ R2
++ : fi(x1, x2) ≤ 0}, i = 1, 2. Note that C = C1 ∩C2 6= ∅, and it is

a non convex set in the usual sense, i.e., in the case that R2
++ is endowed with the Euclidean metric.

However, since fi◦γ is convex on R, i = 1, 2, it follows that f1 and f2 are convex functions on M and

consequently C is a convex set on M . It is easy to see that the functions g1,p(x1, x2) = x
1/p
1 + lnx2,

g2,p(x1, x2) = xp1
√
x2 and g3,p(x1, x2) = (x1x2)

1
p , p = 1, 2, . . ., are convex in M , but they are non

convex functions in the usual sense. Consequently, sublevel sets of these functions are convex on

M , but are non convex in the usual sense.

Next we present an algorithm to solve CFP.

Algorithm 1

Step 1: Take x0 ∈M arbitrary. Set k = 0.

Step 2: Let ik ∈ {1, 2, . . . ,m} such that ik = (k mod m)+1. If fik(xk) ≤ 0 then set xk+1 = xk.

Otherwise, take sk ∈ ∂fik(xk), calculate the geodesic γvk satisfying γvk(0) = xk and γ′
vk

(0) = vk,

with vk = −sk/‖sk‖. Take tk = δk
fik (xk)

‖sk‖ and define

xk+1 = γvk(tk),

where δ ≤ δk ≤ 2− δ and 0 < δ < 2.

Note that if sk = 0 then xk is a minimizer of fik and, therefore, fik(xk) ≤ 0 and xk+1 = xk.

Hence Algorithm 1 is well defined.

Let M be the Riemannian manifold of Example 4.1 and h : R2
++ → R a differentiable function.

The Riemannian gradient of h is given by

grad h = g−1∇h. (5)
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So, if f1 and f2 are the functions considered in Example 4.1, then

grad f1(x) =

 −x1

x2

 and grad f2(x) =

 x2x
2
1

x1x
2
2

 .

In this case, if at some iteration k, fik(xk) > 0, then the iterate xk+1 of Algorithm 1 is given by

xk+1 = γvk(tk) =
(
xk1 e(xk1/v

k
1 )tk , xk2 e(xk2/v

k
2 )tk
)
,

where vk = −grad f1(xk) if ik = 1, vk = −grad f2(xk) if ik = 2, and tk is as in Step 2 of

Algorithm 1.

It is immediate to see that, Algorithm 1 stops at some iteration k if and only if xk is a fea-

sible point. Therefore, we assume that it generates infinite sequences {xk}, {sk}, {vk} and {tk}.

Moreover, from now on we assume that the sectional curvature K of the manifold M is non negative.

Lemma 4.1. Let {xk}, {sk}, {vk} and {tk} be the sequences generated by Algorithm 1. For every

y ∈M and k ∈ {0, 1, 2, . . .} such that fik(xk) > 0, the following inequality holds

d2(xk+1, y) ≤ d2(xk, y) + t2k + 2
tk
||sk||

(fik(y)− fik(xk)). (6)

Proof. Take y ∈ M and let γu1 be the normalized minimizing geodesic such that γu1(0) = xk and

γu1(r1) = y where r1 = d(xk, y). Moreover, take u2 := vk = − sk

‖sk‖ and let γu2 be the geodesic such

that γu2(0) = xk and γ′u2(0) = u2. Therefore γu2(tk) = xk+1 and we obtain from Proposition 2.1

that

d2(xk+1, y) ≤ ‖ − tk
sk

||sk||
− r1u1‖2 = t2k + d2(xk, y) + 2

tkr1

||sk||
〈sk, u1〉. (7)

On the other hand, since sk ∈ ∂fik(xk), it follows from the subgradient inequality (1) that

r1〈sk, u1〉 ≤ fik(y)− fik(xk).

Therefore, the result follows from the last inequality combined with (7).
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Remark 4.1. Inequality (6) is well known when M = Rn. It was generalized to Riemannian

manifolds of non negative sectional curvature in [23], in the particular case when fik is differentiable.

Corollary 4.1. For every z ∈ C and k ∈ {0, 1, 2, . . .} such that fik(xk) > 0,

d(xk+1, z) < d(xk, z).

Proof. For each z ∈ C, it follows from Lemma 4.1 that

d2(xk+1, z) ≤ d2(xk, z) + t2k + 2
tk
||sk||

(−fik(xk)), k = 0, 1, . . . .

Using the definition of tk, it follows that

d2(xk+1, z) ≤ d2(xk, z) + δk(δk − 2)
f2
ik

(xk)

||sk||2
, k = 0, 1, . . . . (8)

The result follows from (8) observing that δ ≤ δk ≤ 2− δ and 0 < δ < 2.

Definition 4.1. A sequence {yk} in the complete metric space (M,d) is said to be Fejér convergent

to a set W ⊂M iff for every w ∈W ,

d(yk+1, w) ≤ d(yk, w) k = 0, 1, . . . .

Proposition 4.1. Let {yk} be a sequence in the complete metric space (M,d). If {yk} is Fejér

convergent to a non empty set W ⊂ M , then {yk} is bounded. If, furthermore, an accumulation

point y of {yk} belongs to W , then lim
k→∞

yk = y.

Proof. See for example [16].

Next we present our main convergence result.

Theorem 4.1. The sequence {xk} generated by Algorithm 1 converges to a solution of the feasibility

problem.
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Proof. Take z ∈ C. From Corollary 4.1, it follows that d(xk, z) ≤ d(x0, z) for any k ≥ 1 and

consequently the sequence {xk} is bounded. Thus, from Hopf-Rinow Theorem, there exists a

subsequence {xkj} converging to some point x̄. Since ikj := kj(modm) + 1 ∈ {1, 2, . . . ,m} for all

j, there exists at least one index i and an infinite set of indeces J ⊂ N such that ikj = i for all

j ∈ J . Without loss of generality we assume that i = 1. Let us show that f1(x̄) ≤ 0. Observe

that if f1(xkj ) ≤ 0 infinitely often for j ∈ J , then f1(x̄) ≤ 0 because {xkj} converges to x̄ and f1

is continuous. Assuming now that there exists j0 sufficiently large such that f1(xkj ) > 0 for all

j ≥ j0, j ∈ J . It follows from (8) that

d2(xkj+1, z) ≤ d2(xkj , z) + δk(δk − 2)
f2

1 (xkj )

||skj ||2
, j ≥ j0, j ∈ J,

with 0 < δ ≤ δk ≤ 2− δ. Thus,

d2(xkj+1, z) ≤ d2(xkj , z)− δ2 f
2
1 (xkj )

||skj ||2
, j ≥ j0, j ∈ J.

Since {xk} is bounded, it follows by Proposition 3.2 that {sk} is also bounded. Let L > 0 such

that ‖sk‖ ≤ L, k = 0, 1, . . .. Therefore,

d2(xkj+1, z) ≤ d2(xkj , z)− δ2 f
2
1 (xkj )

L2
, j ≥ j0, j ∈ J. (9)

On the other hand, Corollary 4.1 implies that {d(xk, z)} is convergent. Thus, we obtain

f2
1 (x̄) = lim

j∈J,j→∞
f2

1 (xkj ) ≤ L2

δ2
lim

j∈J,j→∞

(
d2(xkj , z)− d2(xkj+1, z)

)
= 0,

proving that the statement is true, that is, f1(x̄) ≤ 0. Similarly we prove that f2(x̄) ≤ 0. In order

to do that we show first that there exists a subset J1 of J with infinite indeces such that {xkj+1}j∈J1
converges to x̄. Indeed, if f1(xkj ) ≤ 0 infinitely often for j ∈ J , then xkj+1 = xkj infinitely often for

j ∈ J , by definition of Algorithm 1 and using that ikj = 1. In this case the statement is trivially

true, because {xkj}j∈J converges to x̄. We may assume, without loss of generality, that f1(xkj ) > 0

for all j ∈ J . Therefore, by Lemma 4.1, we obtain that

d2(xkj+1, x̄) ≤ d2(xkj , x̄) + t2kj + 2
tkj
||skj ||

(
− f1(xkj )

)
, j ∈ J,
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which, combined with definition of tkj , implies

d2(xkj+1, x̄) ≤ d2(xkj , x̄) + δk(δk − 2)
f2

1 (xkj )

‖skj‖2
, j ∈ J.

Now, since 0 < δk < 2, it follows that d(xkj+1, x̄) < d(xkj , x̄), j ∈ J . Thus, as {xkj}j∈J converges

to x̄, {xkj+1}j∈J also converges to x̄. It is easy to see that

i(kj+1) := (kj + 1)(mod m) + 1 = ikjmod m + 1.

Since we are assuming ikj = i = 1, j ∈ J , it follows that i(kj+1) = 2, j ∈ J . Therefore we may

repeat a similar argument as before to prove that f2(x̄) ≤ 0. It is easy to see that this argument

can be repeated in order to conclude that fi(x̄) ≤ 0 for i = 3, · · · ,m and consequently that the

point x̄ satisfies fi(x̄) ≤ 0 for i = 1, 2, · · · ,m, that is, x̄ belongs to C. Since from Corollary 4.1,

{xk} is Fejér convergent to C, we conclude that the full sequence {xk} converges to an element of

C, by Proposition 4.1.

5 Algorithm 2 and convergence result

In this section we propose and analyze a variant of Algorithm 1. We show that, under a Slater

type qualification condition, the algorithm has finite convergence property, that is, a feasible point

is obtained after a finite number of iterations.

H1. (Slater’s qualification) There exists x̂ ∈M satisfying fi(x̂) < 0, i = 1, . . . ,m.

In order to state the algorithm we need, for the step size rule, estimates f∗i such that

fi(x̂) ≤ f∗i < 0, i = 1, . . . ,m. (10)

Remark 5.1. We mention that to obtain estimates f∗i satisfying (10) is a difficult task. In order to

apply this algorithm, a possible choice for these estimates is to consider f∗i = −η, where η > 0 is a

small parameter, and to use some measure of feasibility, for example check if
∑m

i=1 max{fi(xk), 0} is

small. If after some iterations of the algorithm, the measure of feasibility is increasing substancially,
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then a small parameter η may be required. However, we emphasize that we are interested here in

theoretical questions.

Algorithm 2

Step 1: Take x0 ∈M arbitrary. Set k = 0.

Step 2: Let ik ∈ {1, 2, . . . ,m} such that ik = (k mod m)+1. If fik(xk) ≤ 0 then set xk+1 = xk.

Otherwise, take sk ∈ ∂fik(xk), calculate the geodesic γvk with γvk(0) = xk, γ′
vk

(0) = vk := −sk/‖sk‖

and let

xk+1 = γvk(tk),

where tk := δk
fik (xk)−f∗ik
‖sk‖ is the step size rule, with δ ≤ δk ≤ 2− δ, 0 < δ < 2.

Note that the well definition of Algorithm 2 is similar to the one of Algorithm 1 and xk is

feasible if and only if the algorithm stops.

Lemma 5.1. Let xk be a non feasible point generated by Algorithm 2, and f∗i as in (10), i =

1, . . . ,m. Then, for all y ∈ S := {y ∈M : fi(y) ≤ f∗i , i = 1, . . . ,m}, it holds that

d(xk+1, y) ≤ d(xk, y). (11)

Proof. Note that if fik(xk) ≤ 0 then, by Step 2 of Algorithm 2, xk+1 = xk and (11) trivially holds.

Let us assume that fik(xk) > 0. Similarly to the proof of Lemma 4.1, for all z ∈M we obtain that

d2(xk+1, z) ≤ d2(xk, z) + t2k + 2
tk
||sk||

(fik(z)− fik(xk)). (12)

Let y ∈ S. Taking z := y in (12) and using the step size rule of Algorithm 2, we obtain

d2(xk+1, y) ≤ d2(xk, y) + δk
fik(xk)− f∗ik
‖sk‖2

(
δk(fik(xk)− f∗ik) + 2(fik(y)− fik(xk)

)
. (13)

Using that fik(y) ≤ f∗ik and 0 < δ < δk < 2− δ, (13) yields

d2(xk+1, y) ≤ d2(xk, y)− δ2
(fik(xk)− f∗ik)2

||sk||2
, (14)

and the result follows.
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Theorem 5.1. The sequence {xk} generated by Algorithm 2 has finite convergence.

Proof. Suppose by contradiction that Algorithm 2 generates an infinite sequence {xk}. Taking x̂

satisfying (10), Lemma 5.1 implies that {d(xk, x̂)} is convergent and {xk} is bounded, which in

turn implies that {sk} is also bounded, by Proposition 3.2. Let {xkj} be a subsequence converging

to some x̄, and L > 0 such that ‖sk‖ ≤ L, k = 0, 1, . . .. Assuming that fikj (xkj ) > 0 for sufficiently

large j, and taking y = x̂ in (14), we obtain

(
fikj (xkj )− f∗ikj )

)2 ≤ L2

δ2

(
d2(xkj , x̂)− d2(xkj+1, x̂)

)
.

Since the sequence {d(xk, x̂)} is convergent, it follows from the last inequality that

lim
j→∞

(fikj (xkj )− f∗ikj ) = 0. (15)

Observing that ikj ∈ {1, 2, . . . ,m} for all j, there exists at least one index l ∈ {1, . . . ,m} such that

ikj = l for infinite indices j. Considering a subsequence if necessary, we may assume, without loss

of generality, that ikj = l, for all j. From (15) follows that lim
j→∞

fl(x
kj ) = f∗l . Since {xkj} converges

to x̄ and fl is continuous, we have fl(x̄) = f∗l < 0. Now, as {xkj} converges to x̄ and fl(x̄) < 0,

we obtain that fl(x
kj ) < 0 for all j ≥ j0 and some j0. In particular, as l = ikj , for all j, it follows

from Step 2 of Algorithm 2 that xkj+1 = xkj for all j ≥ j0. Therefore {xkj+1} also converges to x̄.

On the other hand if fikj (xkj ) ≤ 0 infinitely often then xkj+1 = xkj infinitely often, by definition

of Algorithm 2. Therefore, in any case, using a subsequence if necessary, we may assume without

loss of generality that {xkj+1} converges to x̄. Similarly to previous arguments, observing that

ikj+1 = l + 1 and if l=m then l + 1 := 1, we prove that limj→∞ fl+1(xkj+1) = fl+1(x̄) = f∗l+1 < 0.

Analogously we may prove that fi(x̄) = f∗i < 0, i = 1, . . . ,m, which implies that x̄ ∈ S. Combining

Lemma 5.1 with Proposition 4.1 we obtain that {xk} converges to x̄. Thereby for sufficiently large

k, it follows that fi(x
k) < 0 for all i = 1, 2, . . . ,m. Thus, Algorithm 2 stops at xk, which is a

contradiction with the assumption on the sequence {xk}, concluding the proof.
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