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Abstract

We consider the projected gradient method for solving the problem of finding a

Pareto optimum of a quasiconvex multiobjective function. We show convergence of

the sequence generated by the algorithm to a stationary point. Furthermore, when

the components of the multiobjective function are pseudoconvex, we obtain that the

generated sequence converges to a weakly efficient solution.
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1 Introduction

In multicriteria optimization, several objective functions have to be minimized simultane-

ously. Usually, no single point will minimize all given objective functions at once, and so the

concept of optimality has to be replaced by the concept of Pareto-optimality or efficiency.

Finding efficient points for the preference order induced by the Paretian cone Rm
+ is a

very relevant problem on many areas, such as engineering, statistics, design and others, see

[1, 2, 3, 4, 5, 6, 7].

A popular strategy for solving multiobjective optimization problems is the scalarization

approach. The most widely used scalarization technique is the weighting method. Basically,

one minimizes a linear combination of the objectives, where the vector of “weights” is not

known a priori and, so, this procedure may lead to unbounded numerical problems, which,

therefore, may lack minimizers, see [8, 9, 10]. Another disadvantage of this approach is

that the choice of the parameters is not known in advance, leaving the modeler and the

decision-maker with the burden of choosing them.

The class of quasiconvex multiobjective functions has many applications in the real life

problems, for example in economy. For this kind of problems the weighting method has

another weakness: linear combinations of quasiconvex functions may not be quasiconvex.

This fact is showed in the following example:

Given m, n ∈ N, m odd and n even, m > n, consider the quasiconvex multiobjective

function f : R→ R
2 defined by

f(x) =

 f1(x)

f2(x)

 =

 −xm

m

xn

n

 .

Take the parameters w = (α , β) ∈ R2
++. The scalar functions

F (α,β)(x) = 〈w , f〉(x) = αf1(x) + βf2(x) = −α
xm

m
+ β

xn

n
,
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are not quasiconvex.

In this paper we are interesting in the study of the projected gradient algorithm for

solving quasiconvex multiobjective optimization problem. An advantage of this method over

the weighting method is that it explores the structure of quasiconvexity of the problem, as

we will show.

Recently, the gradient method was proposed for multiobjective optimization problem

in [11]. Since then, it has been considered in more general setting, for instance, for vector

optimization problem, see [12], and for constrained vector optimization, see [13, 14]. Classical

methods for solving scalar optimization problem have been extended for the setting of vector-

valued optimization problem, see [11, 13, 15, 16, 17, 18].

We analyze the projected gradient method for quasiconvex multicriteria optimization.

Under suitable assumption, we show that the sequence generated by the algorithm converges

to a stationary point. Moreover, when the components of the multiobjective function are

pseudoconvex we obtain that the sequence converges to a weakly efficient point.

The outline of this article is as follows. In Section 2 we present some basic definitions,

assumptions and some preliminary materials. In Section 3 we present the projected gradient

method for multiobjective optimization. Section 4 contains the convergence analysis of the

algorithm.

2 Basic definitions and preliminary material

For u, v ∈ Rm, u � v (u ≺ v) means ui ≤ vi (ui < vi) for i = 1, . . . ,m. The usual inner

product in Rn is denoted by 〈·, ·〉. The norm determined by the inner product is ‖·‖. In that

follows f : Rn → R
m is a continuously differentiable function, fi : R

n → R, i = 1, . . . ,m,

are its coordinate functions, C ⊆ Rn is a nonempty closed convex set and for x ∈ Rn, the
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orthogonal projection of x onto C is denoted by PC(x).

An element x ∈ C is a Pareto optimum or efficient for f restricted to C if and only if

there does not exist y ∈ C such that f(y) � f(x) and f(y) 6= f(x). The problem of finding

an efficient point for f restricted to C is the following

min
Rm

+

f(x) s.t. x ∈ C. (1)

Observe that Problem (1) becomes a scalar-valued optimization problem when m = 1 and

� is the usual order in R.

A weakly efficient solution for Problem (1) is a point x ∈ C such that there does not

exist y ∈ C satisfying f(y) ≺ f(x). A necessary condition for a point x ∈ C to be weakly

efficient is that

−Rm
++ ∩ Jf (x)(C − x) = ∅, (2)

where C − x = {y − x : y ∈ C}. This condition, in general, is not sufficient for a point to

be weakly efficient, see [19]. The points of C satisfying (2) are called stationary points.

A scalar function g : Rn → R is called quasiconvex if and only if g(αx + (1 − α)y) ≤

max{g(x), g(y)} for every α ∈ [0, 1] and x, y ∈ Rn. When g is differentiable, g is quasiconvex

if and only if for each x, y ∈ Rn, the inequality g(x) ≤ g(y) implies that 〈∇g(y) , x− y〉 ≤ 0,

see [20].

A multiobjective function f : Rn → R
m is quasiconvex if and only if every coordinate

function fi, i = 1, . . . ,m, is quasiconvex, see [21].

A differentiable function g : Rn → R is said to be pseudoconvex if and only if 〈∇g(x), y−

x〉 ≥ 0 implies g(y) ≥ g(x). It is well known that pseudoconvex functions are quasiconvex.

We will consider a special class of multiobjective quasiconvex functions, the ones such

that each component is pseudoconvex. When the components of f are pseudoconvex then

(2) is a necessary and sufficient condition for a point to be weakly efficient. Indeed, suppose
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to the contrary, that there exists y ∈ C such that f(y) ≺ f(x). Since fi is pseudoconvex for

each i = 1, . . . ,m, it follows that 〈∇fi(x), (y − x)〉 < 0 and therefore Jf (x)(y − x) ∈ −Rm
++,

contradicting (2). This last result, in general, does not hold for quasiconvex functions, see

[22].

The convergence analysis of the proposed algorithm is based on quasi-Fejér convergence.

We recall that a sequence {zk} ⊂ Rn is said to be quasi-Fejér convergent to a set V , V 6= ∅,

if and only if for each z ∈ V there exists a sequence {εk} ⊂ R+ such that
∑+∞

k=1 εk < +∞

and

‖zk+1 − z‖2 ≤ ‖zk − z‖2 + εk.

The following result on quasi-Fejér convergence is well known.

Lemma 1. If {zk} ⊂ Rn is quasi-Fejér convergent to some set V 6= ∅, then:

i) The sequence {zk} is bounded;

ii) if an accumulation point of {zk} belongs to V , then {zk} is convergent to some z ∈ V .

Proof. See Theorem 1 in [23].

3 Projected gradient algorithm

Consider two constants: β > 0 and σ ∈ (0, 1). The projected gradient algorithm is as follows.

Initialization: Take x0 ∈ C.

Iterative step: Given xk, compute

vk := arg min
v∈C−xk

{
‖v‖2

2
+ β max

1≤i≤m
〈∇fi(x

k) , v〉
}
. (3)
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If vk = 0, then stop. Otherwise compute

j(k) := min{j ∈ Z+ : f(x
k + 2−jvk) � f(xk) + σ2−jJf (x

k)vk}. (4)

Set

xk+1 = xk + γkv
k, (5)

where γk = 2−j(k).

This algorithm was proposed by Fliege and Svaiter in [11] for unconstrained multiob-

jective problem. Its extension for the constrained case was studied by Graña and Iusem in

[13]. Other variants of this algorithm can be found in [14] and [12]. It is an extension of the

classical (scalar) projected gradient algorithm to the constrained multiobjective problem.

Indeed, taking m = 1, (3) becomes

vk = arg min
v∈C−xk

{
‖v‖2

2
+ β〈∇f(xk) , v〉

}
= arg min

v∈C−xk

{
‖v‖2

2
+ β〈∇f(xk) , v〉+ β2

2
‖∇f(xk)‖2

}
= arg min

v∈C−xk

{
1

2
‖v + β∇f(xk)‖2

}
= PC−xk

(
−β∇f(xk)

)
.

Combining the last equation with (5) and using the definition of PC , we obtain

xk+1 = (1− γk)x
k + γkPC

(
xk − β∇f(xk)

)
.

The convergence analysis of variants of this algorithm (m = 1), for quasiconvex objectives,

can be seen in [24], [25] and [26].

4 Convergence analysis

¿From now on, {xk} is the sequence generated by the projected gradient algorithm. Observe

that if xk is not a stationary point then Jf (x
k)vk ≺ 0. Thus, Armijo rule (4) is well defined,

see Proposition 1 of [13].
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Proposition 1. The sequence generated by the projected gradient algorithm is feasible and

{fi(xk)}∞k=0, i = 1, . . . ,m, are monotone decreasing.

Proof. The feasibility of the sequence {xk} is a consequence of the definition of the algorithm,

see [13, Proposition 5], and the decreasing property follows from (4).

Assuming only differentiability of f the main result on the convergence of the projected

gradient algorithm is the following.

Proposition 2. Every accumulation point, if any, of {xk} is a stationary point of Problem

(1).

Proof. See Theorem 1 in [13].

The novelty of this paper occurs in what follows.

Lemma 2. For all x ∈ C and each k, there exists {λk
j}mj=1 ⊂ [0, 1] satisfying

∑m
j=1 λ

k
j = 1,

and

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γkβ〈
m∑
j=1

λk
j∇fj(x

k) , x− xk〉+ 2β

σ

m∑
j=1

(
fj(x

k)− fj(x
k+1)

)
.

Proof. Fix k ≥ 0. The function

ϕk(v) :=
‖v‖2

2
+ β max

1≤i≤m

{
〈∇fi(x

k) , v〉
}
,

is strongly convex. Therefore the first order optimality condition for the problem min
v∈C−xk

ϕk(v)

is necessary and sufficient. So, there exist a feasible direction vk and uk ∈ ∂ϕk(vk) such that

〈uk , v − vk〉 ≥ 0, ∀ v ∈ C − xk. (6)

It follows from the expression of ϕk that there exist λk
j > 0, j ∈ Jk ⊆ {1, 2, . . . ,m}, such

that ∑
j∈Jk

λk
j = 1,
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and

uk = vk + β
∑
j∈Jk

λk
j∇fj(x

k). (7)

Defining λk
j = 0 for j /∈ Jk, (7) can be rewriting as

uk = vk + β

m∑
j=1

λk
j∇fj(x

k), (8)

with
m∑
j=1

λk
j = 1. (9)

After some simple algebra, for each x ∈ C, we obtain

dk := ‖xk − x‖2 − ‖xk+1 − x‖2 + ‖xk+1 − xk‖2 = 2〈xk+1 − xk, x− xk〉.

Using the update formula xk+1 = xk + γkv
k, it follows that

dk = 2γk〈vk , x− xk〉

= 2γk〈vk , x− xk − vk + vk〉

= 2γk〈vk , x− xk − vk〉+ 2γk‖vk‖2. (10)

Using (8) and (10), we get

dk − 2γk‖vk‖2 = 2γk〈uk − β

m∑
j=1

λk
j∇fj(x

k) , x− xk − vk〉

= 2γk

(
〈uk , x− xk − vk〉 − β〈

m∑
j=1

λk
j∇fj(x

k) , x− xk − vk〉
)

≥ −2γk

(
β〈

m∑
j=1

λk
j∇fj(x

k) , x− xk〉 − β〈
m∑
j=1

λk
j∇fj(x

k) , vk〉
)
,

where the inequality above follows from (6). Therefore,

‖xk − x‖2 − ‖xk+1 − x‖2 + γk(γk − 2)‖vk‖2 = dk − 2γk‖vk‖2

≥ 2γkβ
(
〈

m∑
j=1

λk
j∇fj(x

k) , xk − x〉+ 〈
m∑
j=1

λk
j∇fj(x

k) , vk〉
)
.
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Rewriting this last inequality and using that f(xk+1) � f(xk) + σγkJf (x
k)vk with γk =

2−j(k) < 1, it follows that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γkβ〈
m∑
j=1

λk
j∇fj(x

k) , x− xk〉+ 2β

σ

m∑
j=1

λk
j

(
fj(x

k)− fj(x
k+1)

)
.

Using that f(xk+1) � f(xk) and 1 ≥ λk
j ≥ 0 for all j = 1, ...,m, we obtain

m∑
j=1

(
fj(x

k)− fj(x
k+1)

)
≥

m∑
j=1

λk
j

(
fj(x

k)− fj(x
k+1)

)
,

establishing the result.

We are interested in the study of the convergence properties of the projected gradient

algorithm when the objective function is quasiconvex. Define

T =
{
x ∈ C : f(x) � f(xk), ∀ k

}
.

Proposition 3. Assume that f is quasiconvex and x ∈ T . Then, 〈∇fi(x
k) , x− xk〉 ≤ 0 for

all k and all i = 1, ...,m.

Proof. Since f is quasiconvex, the fi for i = 1, ...,m are quasiconvex. Then, the result is

only the classical characterization of the differentiable quasiconvex functions, see [20].

The next theorem establishes a sufficient condition for the convergence of the sequence

{xk}. This result is the main convergence result in the quasiconvex case.

Theorem 1. Assume that f is a quasiconvex function. If T 6= ∅ then {xk} converges to a

stationary point.
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Proof. By Proposition 1, the sequence {f(xk)} is strictly monotone decreasing, i.e., fi(x
k) >

fi(x
k+1), for all k and i = 1, . . . ,m. Therefore εk :=

m∑
i=1

[
fi(x

k)− fi(x
k+1)

]
is positive for all

k. Take x ∈ T . By Lemma 2, we get

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2γkβ〈
m∑
i=1

λk
i∇fi(x

k) , x− xk〉+ 2β

σ
εk.

It follows from Proposition 3 that

‖xk+1 − x‖2 ≤ ‖xk − x‖2 + 2β

σ
εk.

Observe that the series
∞∑
k=1

εk is convergent. Indeed, εk > 0 for all k and

∑̀
k=0

εk =
∑̀
k=0

(
m∑
i=1

(fi(x
k)− fi(x

k+1))

)
=

m∑
i=1

(∑̀
k=0

(fi(x
k)− fi(x

k+1))

)

=
m∑
i=1

(fi(x
0)− fi(x

`+1)) ≤
m∑
i=1

(fi(x
0)− fi(x)).

Therefore, {xk} is quasi-Fejér convergent to T . Using Lemma 1(i) the sequence {xk} is

bounded. Let x̄ be an accumulation point of {xk}. By Proposition 1, the sequence {f(xk)}

is monotone decreasing, which implies that x̄ ∈ T . It follows from Lemma 1(ii) that {xk} is

convergent to x̄, which is stationary by Proposition 2.

It is well known that convex functions are quasiconvex, but the converse is not true in

general. Therefore, the above theorem generalizes the results in [13] and [14] to the case

where the multiobjective function is quasiconvex. Also it generalizes the scalar case in [26].

Now, we present the main convergence result in the pseudoconvex case.

Corollary 1. Assume that the components of f are pseudoconvex. If T 6= ∅ then {xk}

converges to a weakly efficient point.
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Proof. By Theorem 5, Section 3, Chapter 9 of [20], pseudoconvexity implies quasiconvexity.

Then using Theorem 1, we obtain that {xk} converges to a stationary point, which is weakly

efficient point.

Note that when f is quasiconvex, {xk} has cluster points if and only if T is a nonempty set.

Indeed, if there exists an accumulation point x of {xk} then, {fi(xk)}∞k=0 converge to fi(x)

for all i = 1, . . . ,m. Since fi(x
k), i = 1, . . . ,m, are monotone decreasing, x belongs to T .

The converse result follows from Theorem 1.

The assumption that T 6= ∅ was used in [13] and [14] for proving the convergence of the

algorithm in the convex case. All these assumptions have relation with the completeness of

the image of f , namely that all non-increasing sequences in the image of f have lower bound.

It is important to say that completeness is a standard assumption for ensuring existence of

efficient points [10].
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