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Abstract

We study the discretized version of a dynamical system given by a model proposed by
Yoccoz and Birkeland to describe the evolution of the population of Microtus Epiroticus on
Svalbard Islands, see http : //zipcodezoo.com/Animals/M/Microtus epiroticus. We prove
that this discretized version has an attractor Λ with a hyperbolic 2-periodic point p in it.
For certain values of the parameters the system restricted to the attractor exhibits sensibility
to initial conditions. Under certain assumptions that seems to be sustained by numerical
simulations, the system is topologically mixing (see definition 4.1) explaining some of the
high oscillations observed in Nature. Moreover, we estimate its order-2 Kolmogorov entropy
obtaining a positive value. Finally we give numerical evidence that there is a homoclinic
point associated with p.
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1 Introduction

We study the evolution of the population of Microtus Epiroticus (sibling vole) on Svalbard Islands in the Arctic
Ocean, using a model proposed by J. C. Yoccoz and H. Birkeland, see [Ar]. It is known that there are no significant
predation of these small mammals but in spite of that, the population presents high oscillations in its number
albeit the lack of food is not a determinant factor to the occurrence of these phenomena. This population exhibits
dramatic multi-annual fluctuations, by a factor greater than 20, [YI].

The Sibling Vole (Microtus Epiroticus) is a species of vole found through much of northern Europe. First
discovered in 1960 in the Grumantbyen area, they were thought to be the Common Vole until a genetic analysis
correctly identified them in 1990, [FJASY].

Since these rodents were introduced from Russia on Svalbard Isles between 1930 and 1960, [YI], the annual
oscillations of their number may be explained, at least in part, by a non total adaptation to the environment,
and by the pronounced seasonal fluctuation in climatic variability at Svalbard where temperatures of −30 degrees
Celsius are common, see [YI, LBY].

Figure 1: Microtus Epiroticus.

Let us first sketch the taxonomy classification of Microtus Epiroticus.

• Domain: Eukaryota

• Kingdom: Animalia

• Phylum: Chordata

• Class: Mammalia

• Order: Rodentia

• Family: Muridae

• Subfamily: Arvicolinae

• Genus: Microtus

• Species: Microtus Epiroticus

Jean Christophe Yoccoz and H. Birkeland, see [Ar], have proposed the following equation

N(t) =

∫ A1

A0

N(t − a)m(N(t− a))mρ(t− a)S(a)da , (1)
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to model the evolution in time of the population of Microtus Epiroticus. In the equation it is taken into account
only the number N(t) of fertile females at certain time t. Indeed, the inclusion in a model of the number of
males is justified when there are difficulties for a female to find a male (for instance if the density of population
is too small or if the ratio male-population : female-population is far away from 1 : 1) which is not the case for
these rodents. In fact as has been pointed out by R. A. Ims in [Ims], “spatial clumping of sexually receptive
females induces space sharing among male voles” which implies that it is not difficult for a female to find a male.
Moreover, the quantity of females is about the same as those of males for these rodents, [Ims2, YI].

Let us describe the parameters of the model given by equation (1):

1. t: is the time measured in years.

2. N(t): is the population of active females at time t.

3. A0: is the maturation age,

4. A1: is the maximal age expected for Microtus Epiroticus.

5. m(N): annual individual reproduction rate for a population of N individuals

6. mρ(t): is the reproduction probability at time t of the year.

7. S(a): probability to survive up to a years.

The model take into account the following facts:

(a) The age when the females of Microtus Epiroticus have their first offspring is about 50 days, i.e., A0 ≈ 0.14
years (see [YIS]).

(b) The maximal age of survival is about 2 years, i.e., A1 = 2 (see [YI]).

(c) The seasonal factor mρ(t), that is, the reproduction probability at time t of the year, varies sharply from
0 in Winter to 1 from Spring to Autumn. Thus, the definition of mρ(t) we adopt is

mρ(t) =

{
0 if 0 ≤ t mod (1) < ρ
1 if ρ ≤ t mod (1) < 1

.

(d) The annual individual reproduction rate m(N) for a population of N individuals, is too high when N(t) is
small. Indeed m(N) of the order of a constant m0 > 30 individuals is realistic due to the high fertility of
these rodents. The value of m(N(t)) decays sharply when the population N(t) increases. Following [Ar],
for m(N) we adopt

m(N) =

{
m0 if N ≤ 1

m0N
−γ if N > 1

; γ > 1 . (2)

We will assume that γ > 1 and for some calculations we take γ = 8.25. The reason for that is that there
is numerical evidence, see [Ar], that for this value of the parameter we have chaotic behavior.

(e) Finally for the survival probability S(a), again following [Ar], we consider a linear function:

S(a) = 1− a

A1
, if 0 ≤ a ≤ A1, and S(a) = 0 elsewhere .

Remark 1.1. Another choice of functions for S(a), for instance S(a) = exp(−κa), with κ > 0, are also usual
in the literature. It would be interesting to test the model given by (1) replacing the linear function at (e) by a
exponential one.

Let us describe how the integral equation

N(t) =

∫ A1

A0

N(t − a)m(N(t− a))mρ(t− a)S(a)da arises .

For N(t), the contribution of females of age in between [a, a+∆a] ⊂ [A0, A1] is

fem(t− a)× (reprod. rate(t− a)× ( season factor(t− a)× (prob. survive)× ℓ([a, a+∆a])

= N(t − a)×m(N(t− a))×mρ(t− a)× S(a)×∆a ,

where ℓ(J) is the length of the interval J and fem(t) is the number of females at time t. Here we assume that a
female of age near A1 can reproduce and ∆a is small. Taking a partition {a0 = t − A1, a1, . . . , an = t − A0} of
the interval [t− A1, t− A0] we find

N(t) ≈
n−1∑

j=0

N(t− aj)m(N(t− aj))mρ(t− aj)S(aj)∆aj , where ∆aj = (aj+1 − aj)

Letting n → ∞ we get at the limit the integral equation given by (1).
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1.1 The discrete model.

There is no special reason to prefer the continuous model above to its discretization: most of the quantities
involved, as N(t) and m(N), are by nature of discrete type. Moreover, from the experimental point of view, it
is more natural to split the year on days and even in groups of days since it is very difficult to monitor N(t)
experimentally. Hence, we assume that the year is split into p equal parts.

Since the expected value of survival is bounded by A1 = 2 years we will study the evolution of N(t) for
discrete values of t, modeling the period [0, A1] as a vector of A1p + 1 real entrances, from t = 0 at the initial
time of the first year, to t = 2p corresponding to A1 = 2 the final time of the second year.

In this case the probability of survival at age j
p
is given by

S(j) = 1− j

2p
, j = 0, 1, 2 . . . , 2p .

where A1p = 2p. It is also convenient to consider S(j) = 1 − j
2p+1

. This takes into account the case where
S(2p) > 0, i.e., when these animals can reproduce till the final of their lives.

Given an initial vector value (N0, N1, N2, . . . , NA1p−1, NA1p) ∈ IRA1p+1 , the evolution of N(t) = Nt, t ∈ IN ,
is governed by

Nt =

A1 p−1∑

h=A0 p

Nt−hm(Nt−h)mρ(t− h)S(h)∆h (3)

=
1

p

2 p−1∑

h=A0 p

Nt−hm(Nt−h)mρ(t− h)S(h) .

Next we explain the choices in equation (3).

1. We take A0p =
[
50×p
365

]
≈ 14 which corresponds to the age at which the females have their first litter of

pups (about 50 days). Note that if p = 100 then A0 = 0.14 corresponds to 51 days.

2. We take ∆h = 1
p
years that corresponds to the length of the unit interval in which we split the year. When

p = 100 this gives ∆h = 1
100

years = 3.65 days.

Note that the value of N at t depends only on the values of N in [t−A1; t−A0]. Thus, the knowledge of Nt for
t ∈ [−A1p, 0] (two years of observation) enables us to predict Nt for t ∈ [0, A0p]. When p = 100 and A0 = 0.14
this means that the knowledge of (N0, N1, N2, . . . , N200) enables us to compute N201, . . . , N214. Recursively we
may compute Nj for all j ≥ 0.

2 The dynamical system

Equation (3) defines a discrete dynamical system in IR2p+1 as follows:

(N0, N1, . . . , N2p) 7→ T (N0, N1, . . . , N2p) = (Np, Np+1, . . . , N3p) ,

where we have used that A1 = 2 and T : IR2p+1 → IR2p+1 is defined recursively by equation (3) for t =
2p+ 1, . . . , 3p.

In order to describe theoretical properties of a system given by the discretized version (3) of Yoccoz-Birkeland
equation (1), let us assume the following restrictions that weaken those given by conditions (a)–(e) described
before. Doing this allows to apply the conclusions to different species respecting equation (3) and those restrictions.
In particular, these conclusions will apply to the original system modeling Microtus Epiroticus.

1. m(N) is a continuous function, m : IR+ → IR+,

2. there is m0 ∈ IR+ such that
{

m0 ≥ m(N) ≥ m0/2 if N ≤ 1 and
m0N

−γ ≥ m(N) ≥ min{m0
2
,m0 ·N−γ} if N > 1 ,

(4)

3. 0 ≤ mρ(t) ≤ 1 (so that we now allow 0 < mρ(t) < 1 for certain values of t),

4. There is ǫ ≥ 0 such that mρ(t) = 1 for t in an interval of length 1− ρ− ǫ > 0,
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5. 0 < 2A0 < A1 and A0 + 1 < A1 (this means that in average each individual has at least two opportunities
to reproduce),

6. Defining c0 as c0 = 1
p

(∑A0p+p
h=A0p+(ρ+ǫ)p S(h)

)
we require c0 m0 > 2. From the definition of S(h) it follows

c0 =
1

p




A0p+p∑

h=A0p+(ρ+ǫ)p

(1− h

pA1
)


 = (1− ρ− ǫ)

(
1−

(
(1 + ρ+ ǫ) + 2A0

2A1

))
. (5)

The condition c0 m0 > 2 will imply, as we will see below in Proposition 2.3, that the population does not
extinguish, that is, it has the permanence property (see Definition 2.1).

7. The exponent γ satisfies γ > 1.

The following proposition shows that a dynamical system governed by equation (3) and respecting the re-
strictions 1. to 7. above is bounded.

Proposition 2.1. For all t = 1, 2, . . . , A0p we have Nt ≤ Nmax := m0

(
(A1−A0)

2

2A1

)
.

Proof. Since γ > 1, inequalities (4) imply Njm(Nj) ≤ m0 for all j. Moreover from mρ ≤ 1 we obtain

Nt =

A1p−1∑

h=A0p

N(t− h)m(N(t− h))mρ(t− h)S(h)∆h ≤

A1p∑

h=A0p

m0S(h)
1

p
=

m0

p

A1p∑

h=A0p

S(h) =
m0

p

A1p∑

h=A0p

(1− h

pA1
) =

m0

p

(
(A1 − A0)p− A1p(A1p+ 1)− A0p(A0p+ 1)

2A1p

)
≤

m0

(
(A1 − A0)− A1(A1 + 1/p)− A0(A0 + 1/p)

2A1

)
≤

m0

(
(A1 − A0)− A2

1 − A2
0

2A1

)
= m0

(
(A1 − A0)

2

2A1

)
.

By induction we obtain that for all t ≥ 0, Nt ≤ Nmax.

Remark 2.2. For the values A1 = 2, A0 = 0.18, m0 = 50 we have Nmax ≈ 41.4 .

2.1 Permanence.

In this section we verify that the population given by equation (3) and respecting the restrictions 1. to 7. above,
in particular conditions (4) and (5), does not extinguish.

Definition 2.1. We say that a system P (t) modeling the evolution of a population is permanent, or satisfies the
permanence property, if for any positive initial vector value P0, there is ǫ > 0 such that the solution P (t) satisfies

lim inf
t≥0

P (t) ≥ ǫ .

If a given system is permanent then, assuming that the environmental conditions do not change in time,
the associated population will not extinguish. Thus, concerning with population dynamics this property is very
important.

The next proposition shows that the system under study satisfies the permanence property.

Proposition 2.3. If i(N) = min{Nt, t ∈ [−pA1, 0]} > 0 then Nt > 0 for all t = 0, 1, . . . , A0p. Moreover,

• If i(N) ≤ N1−γ
max then Nt ≥ c0 m0

2
i(N) > i(N), t ∈ [0, pA0].

• If i(N) ≥ N1−γ
max then Nt ≥ c0 m0

2
N1−γ

max, t ∈ [0, pA0].
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Proof. If N(t− h) ≤ 1 then, by (4),

N(t− h)m(N(t− h)) ≥ N(t− h)
m0

2
≥ i(N)

m0

2
.

Otherwise N(t− h) > 1 and then, again by (4),

N(t− h)m(N(t− h)) ≥ min{N(t − h)1−γ m0

2
, N(t− h)

m0

2
} ≥ min{N1−γ

max
m0

2
, i(N)

m0

2
} .

Hence we have

Nt =

2p−1∑

h=A0p

N(t− h)m(N(t− h))mρ(t− h)S(h)∆h ≥

1

p
min{N1−γ

max
m0

2
, i(N)

m0

2
}

2p−1∑

h=A0p

mρ(t− h)S(h) ≥

min
{
N1−γ

max
m0

2
, i(N)

m0

2

} 1

p




A0p+p∑

h=A0p+(ρ+ǫ)p

(1− h

pA1
)



 = min
{
N1−γ

max
c0m0

2
, i(N)

c0m0

2

}
.

Since, by (5), c0 m0 > 2 we get by induction that N(t) > 0 for all t ∈ [0, A0p].

Clearly Proposition 2.3 implies that Nt > 0 for all t ≥ 0.

Corollary 2.4. There is t0 > 0, depending on the initial vector value, such that we have N(t) ≥ c0m0
2

N1−γ
max,

t ≥ t0.

2.2 Existence of fixed points.

The following corollary is a straightforward consequence of Propositions 2.1 and 2.3.

Corollary 2.5. If Nt > 0 for all t ∈ [−Ap, 0] then there is t0 > 0 such that c0m0
2

N1−γ
max ≤ Nt ≤ Nmax for t ≥ t0.

In particular T maps the compact set

K =
[c0m0

2
N1−γ

max, Nmax

]pA1+1

into itself .

Now set
H :=

{
N = (N0, N1, . . . , N2p) ∈ IR2p+1 : ∀ j = 0, 1, . . . 2p : Nj > 0

}
. (6)

Observe that Proposition 2.3 together with Corollary 2.4 imply that T maps H into itself.
Next we prove that T : H → H is Lipschitz.

Lemma 2.6. T : H → H is a Lipschitz function.

Proof. We put in IR2p+1 the sup norm: ‖x‖ = ‖(x0, x1, . . . , x2p)‖ = supt=0,...,2p |xj |.
From the definition of T we have T (N0, N1, . . . , N2p) = (Np, Np+1, . . . , N3p). Hence for all j = 0, . . . , p we

have
|(T (N)− T (N ′))j | = |Nj+p −N ′

j+p| ≤ ‖N −N ′‖ . (7)

For j = p+ 1, . . . , 2p, the difference |N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))| can be estimated as follows:

(a) If N(t−h) ≤ 1 and N ′
(t−h) ≤ 1 then by inequalities (4) we have that

|N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))| ≤ m0|N(t−h) −N ′
(t−h)| .

(b) If N(t−h) ≥ 1 and N ′
(t−h) ≥ 1 then, again by (4), we have that

|N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))| ≤ |(N(t−h))
1−γ − (N ′

(t−h))
1−γ |m0 .

By the Mean Value Theorem, there is Ñ ∈ (N(t−h), N
′
(t−h)) such that

|(N(t−h))
1−γ − (N ′

(t−h))
1−γ | = |1− γ|Ñ−γ |N(t−h) −N ′

(t−h)| .

Since γ > 1 and Ñ > 1 we obtain

m0|(N(t−h))
1−γ − (N ′

(t−h))
1−γ | ≤ m0(γ − 1)|N(t−h) −N ′

(t−h)| .
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(c) If one of the above quantities is greater than 1 and the other is not, say N ′
(t−h) > 1 and N(t−h) ≤ 1, then

|N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))| = m0|N(t−h) − (N ′
(t−h))

1−γ | .

If N(t−h) ≥ (N ′
(t−h))

1−γ then, since 0 < N(t−h) ≤ 1 and 1− γ < 0 we get

m0|N(t−h) − (N ′
(t−h))

1−γ | = m0(N(t−h) − (N ′
(t−h))

1−γ) ≤

m0((N(t−h))
1−γ − (N ′

(t−h))
1−γ) =

m0|(N(t−h))
1−γ − (N ′

(t−h))
1−γ | ≤ m0(γ − 1)|N(t−h) −N ′

(t−h)| .
Otherwise, if N(t−h) < (N ′

(t−h))
1−γ then, since N ′

(t−h) > 1 and 1 − γ < 0, we have 0 > N(t−h) −
(N ′

(t−h))
1−γ > N(t−h) −N ′

(t−h) and therefore

|N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))| = m0|N(t−h) − (N ′
(t−h))

1−γ | ≤ m0|N(t−h) −N ′
(t−h)| .

Next, to estimate |Nt − N ′
t | for t = p, p + 1, . . . , A0p, we use (a), (b) and (c) above as below. Let L =

max{m0,m0(γ − 1)}. Taking into account that mρ(t − h) and S(h) are between 0 and 1 and ∆h = 1
p

we
obtain that:

|Nt −N ′
t | =

∣∣∣∣∣∣

2p−1∑

h=A0p

N(t−h)m(N(t−h))mρ(t− h)S(h)∆h−
2p−1∑

h=A0p

N ′
(t−h)m(N ′

(t−h))mρ(t− h)S(h)∆h

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1

p

2p−1∑

h=A0p

(
N(t−h)m(N(t−h))−N ′

(t−h)m(N ′
(t−h))

)
mρ(t− h)S(h)

∣∣∣∣∣∣
≤

1

p

2p−1∑

h=A0p

∣∣N(t−h)m(N(t−h))−N ′
(t−h)m(N ′

(t−h))
∣∣mρ(t− h)S(h) ≤

1

p

2p−1∑

h=A0p

L|N(t−h)−N ′
(t−h)| ≤

1

p

2p−1∑

h=A0p

Lmax
h

|N(t−h) −N ′
(t−h)| ≤ (A1 − A0)L‖N −N ′‖ . (8)

Taking into account that 1 ≤ (A1 − A0)L and inequalities (7) and (8) we have that for all j = 0, . . . , p, p +
1, . . . , p + A0p, |T (N) − T (N ′)|j ≤ (A1 − A0)L · ‖N − N ′‖. By induction, since A0p > 1, we obtain that
‖T (N)− T (N ′)‖ ≤ (A1 − A0)L · ‖N −N ′‖ finishing the proof.

Corollary 2.7. There is a fixed point p for T : K → K.

Proof. By Lemma 2.6 the map T is Lipschitz hence continuous. Moreover K is a (2p+1)-dimensional topological
disk. Hence Brouwer Fixed Point Theorem applies, [Sp, Chapter 4, Section 7].

Remark 2.8. Since every two years (A1 = 2) the rodent population is renewed perhaps it is more natural to
search for fixed points for T 2 : K → K. So, we are interested in both, fixed points and period-two points N ∈ K.
Their existence is guaranteed by Corollary 2.7.

In Appendix E we estimate the coordinates of a fixed point p of T 2 : H → H. We find that the distance given
by the norm of the supremum between p and T 2(p) is about 8.0148×10−14 and the l1 norm is about 4.0353×10−12 .
This estimate of p is better than that obtained by Arlot, [Ar, Section B.8], which is of order 10−4 for the l1 norm.

3 Existence of an attractor for the discrete model.

Proposition 3.1. Let Λ =
⋂

n≥0 T
n(K). Then Λ 6= ∅ is compact T -invariant and there is a neighborhood

U = U(Λ) such that T (U) ⊂ U , i.e., Λ is an attractor for T .

Remark 3.2. We are not assuming that Λ is transitive in the definition of attractor.
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Proof. Since T (K) ⊂ K we have that Cn = ∩n
j=0T

j(K) is a decreasing sequence of non empty compact subsets of
IR2p+1; C0 ⊃ C1 ⊃ · · · ⊃ Cn ⊃ · · · . Thus, by Baire Theorem, we have that Λ 6= ∅ and Λ is compact.

By definition of Λ we have

T (Λ) = T (∩n≥0T
n(K)) ⊂ ∩n≥0T

n+1(K) ⊂ ∩n≥0T
n(K) = Λ ,

proving that Λ is T -invariant.
Let [K]ǫ := {N ∈ IR2p+1 : dist(N,K) ≤ ǫ} and ǫ > 0 be so small that

[K]ǫ ⊂ H = {N = (N0, N1, . . . , N2p) ∈ IR2p+1 : ∀ j = 0, 1, . . . 2p : Nj > 0} .
By Proposition 2.3 and Proposition 2.5, for all x ∈ [K]ǫ there is n(x) > 0 such that Tn(x)(x) ∈ K. By continuity
of T , see Lemma 2.6, there is U(x) a neighborhood of x contained in H such that Tn(x)(y) ∈ K for all y ∈ U(x).
By compactness of [K]ǫ there is n1 > 0 such that Tn([K]ǫ) ⊂ K for all n ≥ n1.

Let now U(Λ) be a neighborhood of Λ contained in [K]ǫ.

Claim 3.1. There is n0 > 0 such that Tn(K) ⊂ U(Λ) for all n ≥ n0.

Proof. The proof goes by contradiction. If it were not true, for all j ∈ IN there would exist xj ∈ K and nj > nj−1,
such that Tnj (xj) /∈ U(Λ). Since K is compact there exists a convergent subsequence from {Tnj (xj)}j∈IN .
Without loss we may assume that {Tnj (xj)}j∈IN itself converges to a point z ∈ K. Such a point z cannot

be in Λ since Tnj (xj) /∈ U(Λ) for every j ∈ IN . But, since Tn+1(K) ⊂ Tn(K) for all n ∈ IN, we obtain
Tnj (xj) ∈ ∩nj

h=0T
h(K). Moreover, z ∈ ∩nj

h=0T
h(K), otherwise there is ǫ > 0 such that dist(z,∩nj

h=0T
h(K)) > ǫ.

But ∩nj

h=0T
h(K) ⊃ ∩nj+1

h=0 T h(K) for all j ∈ IN , so that dist(z,∩nj+l

h=0 T h(K)) ≥ ǫ for every l ≥ 0 contradicting the
fact that Tnj+l(xj+l) → z when l → ∞. It follows that Tn(K) ⊂ U(Λ) for all n ≥ n0, proving the claim.

To conclude the proof of the proposition it is enough to verify that there is n2 > 0 such that Tn2(U(Λ)) ⊂
U(Λ). This follows from the fact that Tn0(K) ⊂ U(Λ) ⊂ U(Λ) ⊂ [K]ǫ taking n2 = n0 + n1, thus Λ is an
attractor.

It is clear that the fixed point p given by Corollary 2.7 belongs to Λ. In [Ar, Section B.8] by numerical
methods it is found a candidate to be a fixed point. As we have pointed out above, in view of Corollary 2.7, the
search for such a fixed point has sense.

Remark 3.3. By Corollary 2.5, the basin of attraction of Λ is the whole set H of points with positive coordinates
(see equation (6) ). Moreover, since K is a disk, we can choose U(Λ) simply connected in the proof of Proposition
3.1. These facts have some theoretical implications that we discuss in section 4.

Lemma 3.4. Assume that S(2p − 1) > 0 and mρ(1) = 1. Moreover also assume that T depends smoothly on

N = (N0, N1, . . . , N2p) and that
∂(Njm(Nj ))

∂Nj
6= 0, j = 0, 1, . . . , p. Then the differential DNT : IR2p+1 → IR2p+1 is

a non singular linear map.

Proof. Let us duplicate the (p + 1)-th coordinate, Np, of N = (N0, . . . , Np, . . . , N2p), i.e., we write N̂ =

(N0, . . . Np, Np, . . . N2p) = (N(0), N(1)), and consider T̂ (N(0), N(1)) = (N(1), N(2)) where N(2) = (N2p, . . . , N3p).

Thus, since the pth-coordinate equals the (p+1)th-coordinate, T̂ (N(0), N(1)) is such that Πp(T̂ (N(0), N(1)) = T (N)

and if T̂ is locally injective then T is locally injective too. Here Πp : IR2p+2 → IR2p+1 is the projection

Πp(x0, . . . , xp, xp+1, . . . , x2p+1) = (x0, . . . , xp−1, xp+1, . . . , x2p+1) .

Taking into account that (N2p, . . . , N3p) depends on (N0, . . . , Np, . . . , N2p), this artifice allows us to write

T̂ (N(0), N(1)) = (N(1), F (N(0), N(1))), and therefore

DT̂ =




A | Id
−−−− −−−− −−−−

∂F
∂N(0)

| ∂F
∂N(1)




where A is a (p+ 1)× (p+ 1) matrix of the form

A =




0 0 · · · 0 1
0 0 · · · 0 0
· · · · · · · · · · · ·
0 0 · · · 0 0
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and Id is the identity (p+ 1)× (p+ 1) matrix.

To prove that T̂ is locally injective it suffice to prove that detDT̂ 6= 0. Hence, since det(A) = 0 we are left

to prove that det
(

∂F
∂N(0)

)
6= 0. For this we proceed as follows. Using the expression for Nt given at equation (3)

and denoting
∂(Njm(Nj ))

∂Nj
by h(Nj) we compute ∂F

∂N(0)
and find

1

p




h(N0)mρ(1)S(2p−1) h(N1)mρ(2)S(2p−2) . . . . . . . . . h(Np)mρ(p)S(p)
0 h(N1)mρ(1)S(2p−1) . . . . . . . . . h(Np)mρ(p− 1)S(p+1)
0 0 . . . . . . . . . . . . . . . . . .

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 . . . . . . . . . h(Np)mρ(1)S(2p−1)




.

Since by hypothesis h(Nj) 6= 0 the thesis follows.

Corollary 3.5. Under the hypothesis of Lemma 3.4 we have that T : Λ → Λ is locally injective.

Remark 3.6. Albeit T : H → H is locally injective by Lemma 3.4 it is not globally injective. To see this
assume that Nmax > 1, γ > 1 and that the definition of m(N) is given by equation (2). If (N0, N1, . . . , N2p−1) =
(Nmax, Nmax, . . . , Nmax) then for t = 2p , 2p+ 1, . . . , 2p+ A0p we get

Nt =
1

p

2 p−1∑

h=A0 p

Nt−hm(Nt−h)mρ(t− h)S(h) =
1

p

2 p−1∑

h=A0 p

Nmaxm(Nmax)mρ(t− h)S(h)

=
1

p
N1−γ

max m0

2 p−1∑

h=A0 p

mρ(t− h)S(h) . (9)

Similarly if we put (N0, N1, . . . , N2p−1) = (N1−γ
max, N

1−γ
max, . . . , N

1−γ
max) we obtain the same values for Nt. By

induction we get that all values are the same for t ≥ 2p implying that T is not globally injective.

Let us point out that:

1. In the original model, [Ar], m(Nj) is given by equation (2) i.e., m(Nj) = m0 if Nj ≤ 1 andm(Nj) = m0N
−γ

if Nj > 1. Hence Njm(Nj) = m0Nj if Nj ≤ 1 and Njm(Nj) = m0N
1−γ
j if Nj > 1 implying that

h(Nj) =
∂(Njm(Nj))

∂Nj
=

{
m0 if Nj ≤ 1

m0(1− γ)N−γ
j if Nj > 1

.

Since γ > 1, we have h(Nj) 6= 0 for all Nj 6= 1.

2. Assuming that T 2 is C1, Lemma 3.4 gives that the fixed point p found at Corollary 2.7 has all its eigenvalues
different from zero. The numerical approximation of the eigenvalues of DT 2

p , for the estimated value of p
obtained by [Ar, Section 4.2.7] and our own estimates gives that there is a single eigenvalue of modulus
greater than 1 which is negative, and there are A1p eigenvalues of modulus less than 1. Hence p is a
codimension one hyperbolic fixed point of T 2.

3. The hypothesis S(2p − 1) 6= 0 is reasonable: otherwise one can see that for two initial vectors N =
(N0, N1, · · · , N2p) and N ′ = (N ′

0, N1, · · · , N2p) with N0 6= N ′
0 we get T (N) = T (N ′). Thus the number

NA1p of individuals at time A1p is not affected by the first set N0 of initial individuals. In another words
the system looses memory for a number of years less than A1 and so the actual dimension of the domain
of T would be less than A1p+ 1.

4 Study of Λ for (A0, ρ, γ) = (0.18, 0.30, 8.25).

In what follows we will assume that T is smooth ( see [Ar, Section 2]) and that the calculations made for the
parameter values (0.18, 0.30, 8.25) are accurate enough to obtain that if p is the fixed point given by Corollary 2.7
then the eigenvalues λ1, λ2, . . . , λ2p and µ of DpT satisfies |λj | < 1 for every j = 1, . . . , 2p, and µ ≈ −3.335, in
particular |µ| > 11. Lemma 3.4 proves that p is in fact a hyperbolic fixed point with W s(p) being a codimension

1Arlot in [Ar, Section 4.2.7], obtains that µ ≈ −2, 29 for the parameter values (0.15, 0.30, 8.25).

9



one manifold and W u(p) an arc. Moreover, since Λ is an attractor, we have that W u(p) ⊂ Λ from which the
fractal dimension of Λ is strictly greater or equal than 1. The calculations made in [Ar, Section 4.2.5] give for
this fractal dimension a value around 1.33 from which Arlot conjectures that locally the attractor is the product
of a line by a Cantor set.

Here we shall discuss if for the choice A0 = 0.18, ρ = 0.30 and γ = 8.25 the system given by T can be
transitive.2

Definition 4.1. Let f : X → X be a continuous map defined in the topological space X. We say that the system
defined by f is (topologically) transitive if for every pair of non-empty open subsets A, B of X there is n ∈ ZZ
such that fn(A)∩B 6= ∅. The dynamical system defined by f is topologically mixing if for every pair of non-empty
open subsets A, B of X there is N > 0 such that fn(A) ∩ B 6= ∅ for all n ≥ N .

In [Ar, Section 5] it is pointed out the interest in studying the case where the parameters are A0 = 0.18,
ρ = 0.30, γ = 8.25: it is because the numerical simulations indicates that for this parameter choice T|Λ is
transitive, see [Ar, Section 4.1.3, figure 12]. Moreover, in [Ar, Section 4.2.7, figures 34 and 35] the geometry of
the attractor Λ is depicted from the successive iterates of the local unstable manifold of the fixed point p. This
suggests that W u(p) is dense in Λ. This was confirmed by the numerical simulations done by us, see figure 2. The
next proposition shows that if the orbit of a point in W u(p) is dense in Λ then T|Λ is in fact topologically mixing.

Proposition 4.1. Let us assume that there exists x0 ∈ W u(p) such that clos(orbit+(x0)) = Λ that there exists a
homoclinic point x for p that we do do not have tangencies between the stable and unstable manifold of p and that
forward iterates by T 2 of an unstable segment s ⊂ W u(p) has diameter bounded away from zero. Then T : Λ → Λ
is topologically mixing.

Proof. Observe that by hypothesis we have in particular that closW u(p) = Λ. Let A 6= ∅ and B 6= ∅ be open
subsets of Λ, i.e., there are open subsets A and B of IR2p+1 such that A = A∩Λ and B = B∩Λ. We will prove that
there exists n0 such that for all n ≥ n0 we have Tn(A)∩B 6= ∅ thus proving that T is topologically mixing. Since
W u(p) is dense in Λ there is n2 > 0 such that Tn2(x0) ∈ A. Thus W u(p) cuts A in an arc s containing Tn2(x0).
Since orbit(x0) is dense in Λ there exists n1 > n2 such that Tn1−n2(x0) ∈ U(p) where U(p) is a neighborhood
of p in which we may assume that we have C1-linearizing coordinates, and Tn1−n2(s) contains an arc J which
intersects transversally W s

loc(p), this follows from the assumptions we have done. By the Inclination Lemma, see
[PM, Chapter 2, §7], Tn(J) C1-approaches on compact segments of W u(p). Let ν > 0 be the radius of a ball
contained in B. There is n0 > n1 such that Tn0(J) is ν/2-dense in Λ and hence Tn(J) is ν/2-dense in Λ for all
n > n0. Thus Tn(J) cuts B implying that Tn(A) ∩ B 6= ∅ for n ≥ n0. But since W u(p) ⊂ Λ (Λ is an attractor)
we conclude that Tn(A) ∩B 6= ∅ for n ≥ n0 proving that T is topologically mixing.

Remark 4.2. Roughly speaking the above result means that for the parameter values A0 = 0.18, ρ = 0.30 and
γ = 8.25, from the topological viewpoint we have that all possible states (N0, N1 . . . , N2p) ∈ Λ are visited and so a
chaotic behavior should be expected. On the other hand, since there are fixed points like p in Λ if (N0, N1 . . . , N2p)
is very near p in practice we will see the same behavior for large periods of time seeming that the population of
these rodents is in equilibria. On the other hand the hypothesis we have assumed seems to be rather strong.

Another consequence of the density of the unstable manifold of p in Λ is the following (see also Remark 6.1).

Proposition 4.3. If clos(W u(p)) = Λ then T 2
|Λ : Λ → Λ is injective.

Proof. Indeed, T 2 is injective when restricted to W u(p), for, if it were not true, there would exist x, y ∈ W u(p)
such that T 2(x) = T 2(y). But, since T 2(p) = p it holds that W u(p) = ∪

n∈INT 2(W u
ε (p)) where W u

ε (p) is the

ε-local-unstable manifold of p. Thus there is N > 0 such that x, y ∈ T 2N (W u
ε (p)) and, hence, there is an arc

γ ⊂ W u(p) with end points x and y. Applying T 2 to γ we find a closed loop T 2(γ) contained in W u(p) which
contradicts the fact that W u(p) is homeomorphic to IR.

Assume now that there are x, y ∈ Λ such that T 2(x) = T 2(y). Since T 2 is locally injective there is r1 > 0
such that y /∈ B(x, r1) where T 2

|B(x,r1)
: B(x, r1) → H is a homeomorphism. There exists also r2 > 0 such that

T 2
|B(y,r2)

: B(y, r2) → H is a homeomorphism. Hence we may find V (x) ⊂ B(x, r1) a neighborhood of x and

V (y) ⊂ B(y, r2) a neighborhood of y such that T 2(V (x)) = T 2(V (y)) . Since, by assumption, W u(p) is dense in
Λ, there is an arc γ ⊂ W u(p) such that has its end points x′ ∈ V (x) and y′ ∈ V (y) such that T 2(x′) = T 2(y′)
contradicting that W u(p) is homeomorphic to IR.

2We thank Enrique Pujals for fruitful discussions on this topic.
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We point out that the numerical simulations presented in the appendices justify that the hypothesis assumed
in Propositions 4.1 and 4.3 are reasonable. Indeed we found:

1. If there is a homoclinic point we must have positive entropy. We estimate in Appendix A the order-2
Kolmogorov entropy of the attractor, [Ta], and found a positive value ≈ 0.75.

2. The absence of tangencies should be checked in a certain way, at least in a neighborhood of p. In algorithm
”homclin4” presented in Appendix B, we compute the angle between the local unstable manifold W u

ǫ (p)
and the iterate Tm(ℓ), of an arc ℓ ⊂ W u

ǫ (p), for m > 0 such that Tm(ℓ) is near p, founding in all cases
values close to π or 0 radians, thus W u

ǫ (p) and Tm(ℓ) are almost parallel.

3. That there is a point in W u(p) whose orbit is dense is a rather strong assumption. But when we plot the
image of the first 1000 iterates of a single point of the local unstable manifold W u

loc(p), projected into IR3

we roughly recover the image of Λ obtained plotting all the sequences of points pseudo-randomly generated,
see Appendix F. Moreover, in all the simulations done in algorithm ”entropia3” presented in Appendix B,
we always obtain that if N 6= N ′ then T 2(N) 6= T 2(N ′), indicating that the hypothesis of the density of
W u(p) in Λ assumed in Propositions 4.1 and 4.3 is consistent.

4. That forward iterates of a non trivial segment s ⊂ W u(p) have their diameters bounded away from zero also
is rather strong. But again in all the simulations done, in particular in all runs of algorithm ”homclin4”,
presented in Appendix B, we verify that this is the case.

5. Moreover, there are theoretical results that point out that in a setting like that of this model, we cannot
expect T 2

|Λ to be C1-robustly transitive. Indeed, by construction the attractor Λ is contained in a simply

connected neighborhood U ⊂ IR201. Then by a C1-small perturbation we may create a sink (see [RS] for
instance) whose basin of attraction may contain (part of) W u(p) . Nevertheless, the type of perturbations
we can perform with T is not arbitrary and so we cannot reject a priori that for certain parameter values
(like (A0, ρ, γ) = (0.18, 0.30, 8.25)) the system is transitive.

In the following subsections we check numerically the hypothesis of Propositions 4.1 and 4.3.

4.1 Estimation of the Kolmogorov Entropy of the Attractor

As a first step to estimate the presence of chaos in Λ is to verify that it has sensibility with respect to initial data.
To do so we have made computer simulations of the system given by (3) with the parameter values (0.18, 0.30, 8.25).
That Λ presents sensibility to initial conditions has been pointed out by Arlot, [Ar, Section 4.2.6]. To test this
property we proceed as follows:

1. We generate M independent initial vectors N (j) = (N
(j)
0 , N

(j)
1 , . . . , N

(j)
A1p

), 1 ≤ j ≤ M . In fact what we
have done is to generate M = 400 files with initial data chosen in a pseudo-random way. We assume that
these 400 initial data are independent.

2. We iterate ℓ-times by T 2 so that T 2ℓ(N (j)) can be assumed, from the practical point of view, to belong to
the attractor. The value of ℓ that we have chosen is ℓ = 10000 so that we are considering T 20000(N (j)).
For simplicity of notation we still denote this iterate by N (j).

3. We add a small noise ∆N (j) to N (j) obtaining Ñ (j) = N (j) + ∆N (j). In the computer simulations we
choose 10−10 ≤ ‖∆N (j)‖ ≤ 10−8.

4. We specify a initial distance d0 and compute for every j the integer bj such that

‖T 2i(N (j) − T 2i(Ñ (j))‖ ≤ d0, 0 ≤ i < bj , and ‖T 2bj (N (j) − T 2bj (Ñ (j))‖ > d0 .

We choose d0 = 0.1 since we observe fast divergence between the orbits when this distance is achieved.

5. In all the simulations we have done we find that bj ≤ 80. In fact, we change the size of the perturbation
finding that even with 10−18 < ‖∆N (j)‖ ≤ 10−16, the value of bj satisfies bj ≤ 200. We conclude that
there are numerical evidences that T|Λ exhibits high sensibility to initial conditions.

As a second step to test the chaotic behavior on Λ we estimate its order-2 Kolmogorov entropy K giving by
the average time for two initially near orbits of the attractor to diverge. More precisely, K is calculated from
the average time t0 that is needed for two points in the attractor, which are initially within a specified maximum
distance d0, to separate until the distance between these points has become larger than d0.

The Kolmogorov entropy of an attractor can be considered as a measure for the rate of information loss along
the attractor or as a measure for the degree of predictability of points along the attractor given an initial data.

11



In general, a positive entropy is considered as the conclusive proof that the dynamical system is chaotic. A zero
entropy represents a constant or a regular phenomena that can be represented by a fixed point or a periodic
attractor, [Ta].

Here we apply the definitions of the order-2 Kolmogorov entropy suggested by Takens in [Ta] and by Grass-
berger and Procaccia in [GP], see also [GP2]. According to these definitions, we will estimate the entropy from
the average time required for two nearby distinct orbits of the attractor to diverge.

According to Takens [Ta] and Grassberger and Procaccia [GP], the separation of distinct nearby orbits is
assumed to be exponential and the time interval t0 required for two initially nearby points to separate by a
distance larger than d0 will be exponentially distributed according to

C(t0) ∼ e−Kt0 ,

where K is the Kolmogorov entropy, see [GP3]. For practical purposes C(t0) may be transformed into a discrete
distribution function defined as

C(b) = e−Kbτs , with b = 1, 2, 3, . . . ,

where τs is the time step between two sampled data points. Given an initial pair of independent points within a
distance d0, the variable b is the number of sequential pairs of points on the attractor such that the interpoint
distance is for the first time bigger than d0.

To estimate K we proceed as follows.

1. We generate Z independent initial vectorsN (j) = (N
(j)
0 , N

(j)
1 , . . . , N

(j)
A1p

), 1 ≤ j ≤ Z. For practical purposes
we take for Z the same M = 400 files used to estimate sensibility to initial conditions.

2. We iterate ℓ-times by T 2 so that T 2ℓ(N (j)) can be assumed, from the practical point of view, to belong to
the attractor. The value of ℓ that we have chosen is ℓ = 10000 so that we are considering T 20000(N (j)) ∈ Λ.
For simplicity we still denote this iterate by N (j) and will denote the initial N (j) by T−20000(N (j)), but
this is just a notation; we are not claiming that T is globally invertible.

3. For each j = 1, . . . , Z, we write in the file number j the values of

T−20000(N (j)), N (j), T 2(N (j)), T 4(N (j)), . . . , T 2044(N (j)) .

4. Given a distance d > 0, we search for pairs of vectors T hj (N (j)), T hi(N (i)) such that ‖T hj (N (j)) −
T hi(N (i))‖ < d. According to [STB] the value of d should be smaller than 1

100
of the absolute deviation

δN The simulations we have done give that the mean value < N > of the population Nt is about 2.335
and the average absolute deviation

δN =
1

400× 2046 × 200

∑

h,j,i

∣∣∣T h(N j)i− < N >
∣∣∣ ≈ 0.97 ,

thus, we take d ≤ 0.97 × 10−2 (the greater value of d we have used is d = 1
128

).

5. Given d, T hj (N (j)) and T hi(N (i)) as in item 4. above, we compute the integer b = b(i, j, hi, hj) such that

‖T 2s(T hj (N (j)))− T 2s(T hi(N (i)))‖ ≤ d, 0 ≤ s < b, and

‖T 2b(T hj (N (j)))− T 2b(T hi(N (i)))‖ > d .

6. Letting M = M(d) be equal to the number of distinct pairs

T hj (N (j)), T hi(N (i)), 1 ≤ j < i ≤ 400 ,

verifying item 4. we compute b̄ = 1
M

∑M
j=1 bj . The program doing this task has to take care to not duplicate

the number of times a given pair T hj (N (j)), T hi(N (i)) is computed and also to not consider as different
strings the one starting at s = 0

‖T 2s(T hj (N (j)))− T 2s(T hi(N (i)))‖ ≤ d, 0 ≤ s < b, and

‖T 2b(T hj (N (j)))− T 2b(T hi(N (i)))‖ > d ,

with the sub-strings starting at s = s0 > 0

‖T 2s(T hj (N (j)))− T 2s(T hi(N (i)))‖ ≤ d, 0 < s0 ≤ s < b, and

‖T 2b(T hj (N (j)))− T 2b(T hi(N (i)))‖ > d .
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7. Finally we estimate the value of the entropy K of T 2 by

K̂ = − 1

τs
ln

∣∣∣∣1−
1

b̄

∣∣∣∣ ,

where K̂ is the maximum-likelihood estimate of the entropy K (see [STB]).

8. We repeat the items above for several values of d. Taking d ≈ 1/100 we find more than 2000 verifying item
4., while for values of d < 1/50000 the number of such pairs is too low, less than 100. More precisely, for
d = 1/65536 = 0.0000152587890625 we find 53 strings. This is reflected in the estimate of the standard
deviation of the entropy: for values of d too small the sample is also small and the estimation of K is less
accurate, as one can see in Appendix A.

To test a confidence interval for the values obtained to K̂ we need to estimate its standard deviation. For
this note that the standard deviation of K̂ can be obtained from the variance of b. To do so recall, [STB], that

var(b) =
ek

(ek − 1)2
, where k = K τs .

The standard deviation in the estimate of b̄, computed in item 6. is given by

σ(b̄) =
√

var(b)/M =
ek̂/2√

M(ek̂ − 1)
.

For large values of M , σ(b̄) will be small. In that case we can use the derivative of the function k = − ln(1− 1/b)

in the point k̂ = K̂τs to estimate the standard deviation of k.

The values obtained for the entropy of T 2 are listed in two tables in Appendix A which contain also the
values of d we have used and those of the standard deviation σK of the entropy. For both extreme values used
for d, namely d = 1/128 = 0.0078125 and d = 1/65536 = 0.0000152587890625 the results are less accurate, since
0.0078125 is “too big” with respect to 0.97 ≈ 1, and for 0.0000152587890625 there are few sample points, see
[ER].

Nevertheless all the estimates obtained show that T 2
|Λ has positive entropy, which implies that T|Λ also has

positive order-two entropy K ≈ 0.37.
Thus we have strong numerical evidence that Λ is a chaotic attractor.

Remark 4.4. We do not claim that we have estimated the entropy of T|Λ. The calculations made has to be seen
as an indication that the model given by equation (3) exhibits a chaotic behavior. Rigorous proofs are needed to
confirm our estimations.

5 Existence of homoclinic points: numerical approach.

In dynamical systems the presence of chaotic behavior is often associated to the existence of homoclinic points.
We have assumed their existence in Proposition 4.1 to obtain that Λ is topologically mixing. Next we check
numerically their existence. To do it we proceed as follows:

5.1 Approximated W u

loc
(p).

Due to the fact that W u(p) is one dimensional a first attempt is to try to pick a fundamental domain in W u
loc(p)

and search by brute force if it is possible to find a candidate to be a homoclinic point there. Problem: we do not
know precisely W u

loc(p). Moreover, the value of the fixed point p is known only by an approximate value p̂. But
we know that there are only one eigenvalue µ of modulus greater than 1 of DT 2

p and µ is negative. Hence, since
the other A1p eigenvalues are small in modulus, in fact all of them have modulus less than 0.5, we may assume
that W s

loc(p) is a A1p-dimensional disk so if we iterate p̂ by T 2, since µ < 0 we have that the segment [p̂, T 2(p̂)]
cuts W s

loc(p) at a unique point. By the λ-lemma we have that the successive iterates of [p̂, T 2(p̂)] by T 2 converges
to W u

loc(p).
Thus for numerical simulations we can take as W u

loc(p) one of these segments. In some of our simulations we
choose [T 38(p̂), T 40(p̂)] as W u

loc(p) and in others we take W u
loc(p) as [T 30(p̂), T 32(p̂)]. Observe that the length of

[T 38(p̂), T 40(p̂)] is less than 10−3 and the length of [T 30(p̂), T 32(p̂)] is less than 10−4. Hence, since the mean value
of the data is 2.335 and that the absolute deviation is 0.97 such lengths are relatively small.
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We subdivide the chosen segments in 10000 equal parts and iterate more than 2000 times by T every point y
of the subdivision finding the iterate T 2j(y) closer to p̂. In order to not consider misleading solutions, we discard
the first 20 iterates and check that the orbit of y is “returning near the point p̂ ”, i.e., we check that the minimum
distance is not achieved in the 21th iterate. Then we create a table containing the values of y and of the iterate
of y closer to p̂. Not that this procedure does not prove that any of such a point y is a homoclinic point.

5.2 Returning points.

After this we find the value of y0 and j0 that minimizes dist(T 2j(y), p̂). In the simulations corresponding to
W u

loc(p) ≈ [T 38(p̂), T 40(p̂)] we find that

y0 = T 38(p̂) +
5102

10000

(
T 40(p̂)− T 38(p̂)

)
and j0 = 629 .

We find a suitable sub-interval I0 such that y0 ∈ I0 ⊂ I ⊂ [T 38(p̂), T 40(p̂)] , we iterate 10 times by T 2 the
point y0 and the extreme points of the segment I0, calling them L0 and R0

3. After this we subdivide again
T 20(I0) and find a small interval I1 ⊂ T 20(I0) around T 20(y0) and iterate again their end points L1, R1 and
also T 20(y0). We continue with this procedure finding segments Ih ⊂ T 20(Ih−1) and their end-points Lh, Rh till
we arrive to the value of j0. There are cases that we cannot iterate 10 times by T 2 because distances become
relatively large or because we cannot assume T 20([Lh, Rh]) to be a straight segment and in that cases we reduce
the step size. The final step does not have to be a multiple of 10. We found that a suitable value for the length
of the initial segment I0 is 1.122 × 10−7. To validate this procedure we have to check several things:

1. control that the length of T 20(Ih) does not increase too much: we do not accept a length greater than
10−4. If the length of T 20(Ih) is greater than 10−4 we reduce the step used: first to 8 iterates by T 2 and
finally by 2 iterates by T 2. In our computations we do not need to further reduce this number of iterates.

2. control that the segment T 20(Ih) (or T
16(Ih) or T

4(Ih) in case that we have to choose a smaller step) does
not bend too much: we require that T 20(Ih) behaves like a straight segment. To do so we subdivide the
segment Ih into four equal smaller segments [Lh, L

′
h], [L

′
h, T

20h(y0)], [T
20h(y0), R

′
h], and [R′

h, Rh]. Next we
check that after 10 iterates of these intervals by T 2, the sum of their lengths satisfies that

T 20([Lh, L
′
h]) + T 20([L′

h, T
20h(y0)]) + T 20([T 20h(y0), R

′
h]) + T 20([R′

h, Rh])

is almost the same as the length of T 20([Lh, Rh]). We reject any case where the quotient between both
quantities is greater than 1.0001, reducing the number of iterates if it were necessary4.

5.3 Far from tangencies.

After computing T j0(y0) and the corresponding points Lh0 and Rh0 for suitable h0
5 we compute the angle

between [Lh0 , Rh0 ] and [T 38(p̂), T 40(p̂)]. We expect to have an angle close to 0 or 180 degrees, and in fact this is
the case in all the simulations: we obtain for the angle the value of 3.108 × 10−5 radians. This is an indication
that we are not near a tangency.

5.4 Evidence of homoclinic points.

1. For a suitable choice of I0 = [L0, R0] we compute the angle between the segments [p̂, Lh0 ] and [p̂, Rh0 ]. This
is a key point in our calculations. Before we indicate how we proceed to do so, recall that the codimension
one submanifold W s

loc(p) of IR
A1p+1 locally separates IRA1p+1 in two regions that we denote by W s,+ and

W s,−.

On the one hand, if Lh0 ∈ W s,+ and Rh0 ∈ W s,− then [Lh0 , Rh0 ] intersects W s
loc(p) and so we have a

homoclinic point in this segment [Lh0 , Rh0 ]. Hence, by the λ-lemma the angle between successive iterates
of the vectors [p̂, Lh0 ] and [p̂, Rh0 ] would increase up to a value close to π.

3To try to subdivide the interval I ⊂ [T 38(p̂), T 40(p̂)] around y0 of end points T 38(p̂)+ (5101/10000)(T 40(p̂)−
T 38(p̂)) and T 38(p̂) + (5103/10000)(T 40(p̂) − T 38(p̂)) to obtain more precision is not a good idea since forward
iterates by T 2 of I increases their length exponentially fast. We loose any precision in the calculus after less than
20 iterations by T 2.

4In fact at the scale we have chosen this has never been the case for reasonable values of ℓ([Lh, Rh]).
5If the number of iterates is always 10 then we get h0 =

[
j0
10

]
.
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On the other hand, if both points are in the same region with respect to W s
loc(p), say Lh0 , Rh0 ∈ W s,+,

then the segment [Lh0 , Rh0 ] will not cut W
s
loc(p) and, again by the λ-lemma, we have that the angle between

successive iterates of the vectors [p̂, Lh0 ] and [p̂, Rh0 ] goes to zero when we iterate by T 2. In this case the
existence of a homoclinic point cannot be guaranteed.

In the simulations we have done, see Appendix F, we obtain that for I0 of length 1.122 × 10−7 the initial
angle between [p̂, Lh0 ] and [p̂, Rh0 ] is 1.337 radians, approximately 77 degrees. For the angle between
[p̂, T 2(Lh0)] and [p̂, T 2(Rh0)] we obtain a value of 3.011 radians which is about 173 degrees. For the angle
between [p̂, T 4(Lh0)] and [p̂, T 4(Rh0)] we obtain a value of 3.139 radians which is about 180 degrees and
for the angle between [p̂, T 6(Lh0)] and [p̂, T 6(Rh0)] we obtain a value of 3.140 radians. For the subsequent
iterates the angle diminishes slightly but up to the 14th iterate we find that the angle is close to π. Thus
in that case we find evidence that a homoclinic point exists.

2. There are choices for the length of I0 that does not lead to such evidence. Due to the exponential dilation
in the unstable direction the behavior is rather sensible to this value. If we choose ℓ(I0) = 1.046 × 10−7,
instead of 1.122 × 10−7, we obtain at the final step that for this value both Lh0 and Rh0 belong to the
same local connected component of IRA1p+1\W s

loc(p). In this case we have that the angle between [p̂, Lh0 ]
and [p̂, Rh0 ] is 1.358 × 10−3 radians, the angle between [p̂, T 2(Lh0)] and [p̂, T 2(Rh0)] is 2.922 × 10−5 and
the angle between [p̂, T 4(Lh0)] and [p̂, T 4(Rh0)] is 4.582× 10−6. This indicates that both points belong to
the same region with respect to W s

loc(p). Thus we cannot ensure the existence of homoclinic points in this
case.

But as we have shown above, there are choices for the length of I0, subject to all the mentioned restrictions,
that render numerical evidence that we in fact do have a homoclinic point associated to the fixed point p.

In the Appendix D we give the pseudo-code of the algorithms employed to test the existence of homoclinic
points.

In Appendix F we show the values of the approximate homoclinic point y0 ∈ W u
loc(p) and the angular values

for the iterates [p̂, T 2j(Lh0)] and [p̂, T 2j(Rh0)] for j = 0, 1 . . . , 7.
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José L. Vieitez thanks Universidad de Santiago de Compostela, Spain, UFRJ and IMPA, Rio de Janeiro,
Brazil, for their kind hospitality during part of the preparation of this article.

6 Appendices.

6.1 Appendix A: numerical results for the entropy.

The following tables gives the estimation of KT2 with d varying from d = 1/128 to d = 1/2048 and d varying
from d = 1/4096 to d = 1/65536 respectively. The values of d are evenly distributed.

15



entropy estimated standard deviation d of the estimation

0.71868973392930086 0.019083966799452565 0.0078125
0.72369632526302973 0.01900037121106015 0.00732421875
0.72434809650524738 0.019137203419564205 0.0068359375
0.71294980785612502 0.019363360739997387 0.00634765625
0.72339347917167310 0.019254622891041776 0.005859375
0.72850976773398998 0.019582964739043648 0.00537109375
0.72335976581552290 0.019863263097474933 0.0048828125
0.72087894452782916 0.020143892470160681 0.00439453125
0.73055620248396048 0.020338205554372255 0.00390625
0.73804687146973547 0.020719763256481047 0.00341796875
0.75191849797535868 0.021276865360116811 0.0029296875
0.73746684855086799 0.022038110478093715 0.00244140625
0.74278320582790917 0.022619630761394613 0.01953125
0.74484051347505878 0.023688490322879650 0.00146484375
0.75258445595582577 0.025936858832676262 0.0009765625
0.77155883257911018 0.030932730422267861 0.00048828125

entropy estimated standard deviation d of the estimation

0.79719104033302477 0.038944604944862542 0.000244140625
0.80273603232729273 0.040161477427822390 0.0002288818359375
0.80026054504518599 0.040945123242474202 0.000213623046875
0.80048080034198759 0.042277355365906191 0.0001983642578125
0.78529717602382290 0.043744279577575359 0.00018310546875
0.78083504948163185 0.045414270447522060 0.0001678466796875
0.79617940645818047 0.047304274588613750 0.000152587890625
0.80929969245707451 0.049841776725230737 0.0001373291015625
0.80683413899432532 0.053337136165239741 0.0001220703125
0.83598552255847603 0.056494298338862138 0.0001068115234375
0.80841322520717467 0.061957796245919238 0.000091552734375
0.86342039883772544 0.068153726594861803 0.0000762939453125
0.85991632434641512 0.076013458407264910 0.00006103515625
0.90006789636726776 0.091761409503824907 0.0000457763671875
0.79158725337319783 0.122667989144921260 0.000030517578125
0.96758402626170560 0.186693997202307350 0.0000152587890625

6.2 Appendix B: description of algorithms.

Taking into account [TR], we do not care so much about the embedding dimension and use directly as vectors of
data those given by N = (N0, N1, . . . , N200).

• A first algorithm called “ratones” is used to generate 400 files named datos[i] i = 1, 2, . . . , 400, each of
which contains the following data:

1. A random seed is generated to initialize a pseudo-random generator.

2. For each i from 1 to 400 an initial vector of dimension 201 in which every component is a real number
Nh. This real number Nh is in fact a floating point number of 80 bits following IEEE 754-19856

standards for the representation, calculations and manipulations of real numbers in a computer. The
value of every elementNh for h = 0 to h = 199 is generated calling the RANDOM function available in
the Software Library. The value of N200 is calculated from equation (3). N init = (N0, N1, . . . , N200)
is stored as the first value in the corresponding file datos[i].

3. From equation (3) we compute the different values of Nh for h ≥ 201, defining in this way recursively

T 2(N init), T 4(N init), T 6(N init), . . . .

6IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985). Also known as IEC
60559:1989, Binary floating-point arithmetic for microprocessor systems.
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We discard the first 9999 iterates and stored in datos[i] the following 1024 ones,

T 20000(N init). T 20002(N init), . . . , T 22046(N init) .

• A second algorithm that we call “ratones1” is used to perturb randomly T 20000(N init) in each of the 400 files

generated by “ratones” obtaining a vector Ñ . The random perturbations done vary from −2−50 ≈ −10−15

to 2−50 ≈ 10−15 in each of the h-coordinates of T 20000(N init) for h from 0 to 199. Ñ200 is computed from
equation (3).

• The third algorithm we use, called “sensible”, computes for each i from 1 to 400 the number bi such that
for j = 0 to j = bi − 1

‖T j(T 20000(N init))− T j(Ñ)‖ ≤ 0.1 and ‖T bi(T 20000(N init))− T bi(Ñ)‖ > 0.1

We use the supremum norm in the calculations since this accelerate the computations and it is clear that
the results do not depend on the norm used.

• Algorithm, “sensible”, also computes the mean value < b > of bi as

< b >=
1

400

400∑

i=1

bi ,

in all the simulations done the value of bi was less than 180 and < b >≈ 100.

• The forth algorithm, “dispersion”, calculates the mean value < N (i) > of data stored in the files datos[i].
It calculates also the mean value of all data which gives a result of < N >≈ 2.34.

• Algorithm “dispersion” also computes the absolute average deviation

δN =
1

400× 2046 × 200

∑

h,j,i

∣∣∣T h(N j)i− < N >
∣∣∣ ≈ 0.97 .

• Given a value d > 0 the algorithm “entropia3” compares the data stored in datos[j] with that stored in
datos[i] discarding the initial vectors (only after 20000 iterates by T we assume that the vectors are in
Λ). For 1 ≤ j < i ≤ 400 “entropia3” searches for pairs T hj (N (j)), T hi(N (i)) such that their distance,
given by the norm of the supremum, is less d. “entropia3” runs 32 times generating 32 files named info[k],
k = 1, . . . , 32, of records each of which contains

1. The number i of file datos[i],

2. the number of iterates hi by T from N (i),

3. the value of T hi(N (i)),

4. the number j of file datos[j],

5. the number of iterates hj by T from N (j),

6. the value of T hj (N (j)).

For values of d not so small we obtain huge files info[k], and as d decreases the size of these files decreases.
For computational reasons we choose dmax = 1/128 (corresponding to info[1] with 6, 602KB) and dmin =
1/65536 (corresponding to info[32] with 196KB). Of course the files info[k] contain a lot of redundant
information since if dist(T hj (N (j)), T hi(N (i))) < d and also dist(T hj+l(N (j)), T hi+l(N (i))) < d, with
l > 0 less than the least positive value b such that dist(T hj+b(N (j)), T hi+b(N (i))) ≥ d, we are storing
(j, hj , T

hj (N (j)); i, hi, T
hi(N (i))), and also (j, hj + l, T hj+l(N (j)); i, hi + l, T hi+l(N (i))).

• Finally the algorithm “entropia4” computes the estimation of the second order entropy, K̂, and its standard
deviation using the information stored in the files info[k] and the formulas given in [STB].

For this we calculate for each (j, hj , T
hj (N (j)); i, hi, T

hi(N (i))) the least positive value b such that dist(T hj+b(N (j)), T hi+b(N (i)

d,. In order not to duplicate information, once the value b corresponding to (j, hj , T
hj (N (j)); i, hi, T

hi(N (i)))

is calculated, we discard in this step the records (j, h′
j , T

h′

j (N (j)); i, h′
i, T

h′

i(N (i))) such that hj + b ≥ h′
j or

hi + b ≥ h′
i since these should have been taken into account in the previous step.

Remark 6.1. Although we have not taken care of the possibility that T 20000(N (i)) = T 20000(N (j)) with i 6= j,
this (very rare) possibility did not occurred in any of the simulations we have done. Moreover, in accordance with
Proposition 4.3, in all these simulations, in particular in algorithm ”entropia3”, we always obtain that if N 6= N ′

then T 2(N) 6= T 2(N ′), so that the conjecture that W u(p) is dense in Λ is not contradicted.
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6.3 Appendix C: Pseudo-code of the algorithms employed

Here we give the pseudo code of the programs in a language close to FreePascal, the style of programming is
procedural.

constants used
A0= 0.18; p = 100; A1 = 2; gamma=8.25; m0=50; rho=0.30; pipa=1024; na=400;

type of data structures used is standard, in particular “extended” means a floating point number of 10 bytes
and “longint” or “integer” means an integer number occupying 4 bytes of memory according to the standards of

IEEE. We also use arrays of extended or of integer and store the data in sequential files of records.

function S(h:integer):extended;
{INPUT: h ∈ ZZ OUTPUT: S(h) ∈ IR+}

begin
if (h < 0) or (h > A1 ∗ p) then S:=0 else S:= 1− h/(A1 ∗ p+ 1)

end;

function mrho(h:integer):extended;

{ INPUT: h ∈ ZZ OUTPUT: mρ(h) =

[
1 if 0 ≤ h mod 1 < ρ
0 elsewhere

}
begin

entrho:=trunc(rho*p);
if ((h mod p) <entrho) then mrho:=0 else mrho:=1;

end;

function eme(N:extended):extended;
{INPUT: N ∈ IR+ OUTPUT: m(N) ∈ IR+}

begin
eme:=m0; lm:=N;

if lm>1 then eme:=eme*lm**(-gamma)
end;

procedure comienzoazar;
begin

randomize; semilla:=maxlongint;
end;

procedure AZAR(var n:longint);
{INPUT: random seed OUTPUT: pseudo-random number∈ IN}

begin
x:=random(200000); n:=x;

end;

function calculo(t:integer;ene:especial):extended;
{INPUT: t ∈ ZZ OUTPUT: N ∈ IR2A1p+1}

type
especial = array[1..2*A1*p+1] of extended;

begin
lc:=0;

for h:=floor(A0*p) to A1*p do begin
lc:=lc+ene[t-h]*eme(ene[t-h])*mrho(t-h)*S(h ) end;

calculo:=lc/p
end;

procedure eneinicial;
{INPUT: random; OUTPUT: first vector N ∈ IRA1p+1}

begin
for i:=1 to A1*p do begin nhi[i]:=0; rnhi[i]:=0 end;

for i:= 1 to A1*p do begin
AZAR(l); nhi[i]:=l +500; { we assume that at least 500 rodents are alive}
rnhi[i]:=nhi[i]/55000 {we normalize values; Nt := 1 means 55000 rodents}
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end;
for i:=1 to A1*p do rnhaux[i]:=rnhi[i];

for i:=A1*p+1 to 2*A1*p+1 do rnhaux[i]:=0;
rnhi[A1*p+1]:=calculo(A1*p+1,rnhaux);

{warning: the coordinates of the vector N begin with 1 and finishes with A1*p+1}
end;

procedure rnhgen(ene:rentrada;var ere:rentrada);
{INPUT: N ∈ IRA1p+1 OUTPUT: T 2(N) ∈ IRA1p+1}

type
rentrada = array[1..A1*p+1] of extended;

begin
t:=1;bo:=A1*p+1;

for j:= 1 to bo do begin rnhaux[j]:=ene[j]; ere[j]:=0 end;
for j:=bo+1 to 2*A1*p+1 do rnhaux[j]:=0;

for t:=bo+1 to 2*A1*p+1 do begin z:=calculo(t,rnhaux);
rnhaux[t]:=rnhaux[t]+z end;

for i:=1 to bo do ere[i]:=rnhaux[i+A1*p]
end;

begin {of program “ratones”}
{INPUT: parameter values, random data

OUTPUT: na files of data representing time series of population of Microtus Epiroticus }
for jj:=1 to na do

begin
rewrite(datos[jj]); comienzoazar;
writeln(’generating datos[’,jj,’]’);
eneinicial; rnhgen(rnhi,rnh);
for j:=1 to 10000 do begin

rnhv:=rnh; rnhgen(rnhv,rnh)
end; {20000 iterates of T: N–¿T**(20000)(N)}

for i:=1 to pipa do begin
archi[i].numero:=0;

for j:=1 to A1*p+1 do archi[i].serie[j]:=0;
end;

archi[1].serie:=rnhi; archi[2].numero:=20000; archi[2].serie:=rnh;
for i:=3 to pipa do begin

rnhv:=rnh; rnhgen(rnhv,rnh); {2 iterates of T each time}
archi[i].numero:=20000+2*(i-2); archi[i].serie:=rnh;

end;
for i:=1 to pipa do begin write(datos[jj],archi[i]); end;

end; {of “for jj”}
writeln(’type any key to finish’); ch:= readkey; exit

end. {of “ratones”}

———————————————————-

procedure AZAR1(n: extended);
{INPUT: random seed OUTPUT: pseudo-random number∈ IR}

begin
x:=random; n:=x-0.5;
end; {of AZAR1}

procedure eneperturb1;
{INPUT: rnhi ∈ IRA1p+1 OUTPUT: rnhi+∆rnhi ∈ IRA1p+1}

begin
for i:=1 to A1*p do begin nhi[i]:=0; end;

for i:= 1 to A1*p do begin
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AZAR1(l); nhi[i]:=l ;
rnhi[i]:=rnhi[i]+nhi[i]/(2**50)

end;
for i:=1 to A1*p do rnhaux[i]:=rnhi[i];

for i:=A1*p+1 to 2*A1*p+1 do rnhaux[i]:=0;
rnhi[A1*p+1]:=calculo(A1*p+1,rnhaux);

end;

begin {of program “ratones1”}
{INPUT: a file ”datos” generated by “ratones”

OUTPUT: a file “datosp” representing an initial small perturbation of “datos”}
for ii:=1 to na do

begin
rewrite(datosp[ii]); comienzoazar;

reset(datos[ii]); xx.numero:=-1; ayuda:=true;
while (not Eof(datos)) and (ayuda=true) do

begin
read(datos,xx);

if xx.numero=0 then begin archi[1].numero:=0; archi[1].serie:=xx.serie end;
write(xx.numero,’ serie ’,xx.serie[1],’ — ’, xx.serie[100]);

writeln;
if xx.numero=20000 then begin
rnhi:= xx.serie; ayuda:=false

end;
end;

eneperturb1; rnh:=rnhi;
for i:=2 to pipa do

begin
archi[i].numero:=0;

for j:=1 to A1*p+1 do archi[i].serie[j]:=0; end;
archi[2].numero:=20000; archi[2].serie:=rnh;

for i:=3 to pipa do
begin

for j:=1 to 1 do
begin

rnhv:=rnh; rnhgen(rnhv,rnh);
end;

archi[i].numero:=20000+2*(i-2); archi[i].serie:=rnh;
end;

for i:=1 to pipa do begin write(datosp,archi[i]); end;
reset(datos); reset(datosp);

while (not Eof(datos)) and (not Eof(datosp)) do
begin

read(datos,xx); read(datosp,yy);
write(xx.numero,’ serie ’,xx.serie[1],’ — ’,yy.numero,’ serie ’, yy.serie[1]);

writeln;
end end;

writeln(’press any key to finish’); ch:= readkey; exit
end. {of “ratones1”}

————————————————————–

function comparar(rnhx,rnhy: rentrada):longint;
{INPUT: rnhx, rnhy ∈ IRA1p+1 OUTPUT: 0 or 1}

{if “comparar” =0 then ||rnhx − rnhy|| < tol, if 1 then > 0 }
begin
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i:=1;
cmaux:=0; {we assume that at the beginning “comparar” is 0}

while (cmaux=0) and (i<=A1*p) do
begin

if (abs(rnhx[i]-rnhy[i])>=tol) then cmaux:=1; i:=i+1;
end;

comparar:=cmaux;
end;

begin {of program “entropia3”}
{INPUT: na files generated by “ratones”,

OUTPUT: 16 files with pairs of time series di-near, i = 1, 2, . . . 16; mean value < N > of Nt;
absolute standard deviation of Nt}

for jj:=1 to na do begin
reset(datos[jj]); j:=0; z[jj]:=0;

while (not Eof(datos[jj])) do begin
for i:=1 to 8 do begin

y:=0; read(datos[jj],xx); j:=j+1;
for h:=1 to A1*p do y:=y+xx.serie[h];
y:=y/(A1*p); z[jj]:=z[jj]+y; end

end; {of “while not Eof”}
z[jj]:=z[jj]/j;

writeln(’the mean value of file datos[’,jj,’] is: ’, z[jj]);
end; {of “ for jj”}

prom:=0; for jj:=1 to na do prom:= prom+z[jj];
prom:=prom/na; writeln(’total mean value ’, prom);
writeln(’press any key to continue’); readkey(leer);

for jj:=1 to na do begin
reset(datos[jj]); j:=0; w[jj]:=0;

while (not Eof(datos[jj])) do begin
y:=0;

read(datos[jj],xx); j:=j+1;
for h:=1 to A1*p do y:=y+abs(xx.serie[h]-z[jj]);

y:=y/(A1*p); w[jj]:=w[jj]+y;
end; {of “while”}
w[jj]:=w[jj]/j;

writeln(’the absolute deviation value for datos[’,jj,’] is ’, w[jj]);
end; {of “for jj”}

dis:=0;
for jj:=1 to na do dis:=dis+w[jj]; dis:=dis/na;

writeln(’total deviation = ’, dis);
writeln(’to continue press ENTER’); readln(leer);

{we collect data}
tol:=1/(2**(10));

{“tol” is what is called d in the algorithm; here we exemplify with tol ≈ 0.001 }
rewrite(info);

for jj:=1 to na-1 do begin
reset(datos[jj]);

If (not Eof(datos[jj])) then read(datos[jj],xx); {we discard the first}
for ii:=jj+1 to na do begin

while (not Eof(datos[jj])) do begin
read(datos[jj],xx); reset(datos[ii]);

If (not Eof(datos[ii])) then read(datos[ii],yy); {we discard the first}
while (not Eof(datos[ii])) do begin

read(datos[ii],yy);
u:=comparar(xx.serie,yy.serie);

if u=0 then {that is: ||T l(N) − T l(N ′)|| < tol}
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begin
estx.numarch1:=jj; estx.numarch2:=ii;

estx.numiter1:=xx.numero; estx.numiter2:=yy.numero;
estx.punto1:=xx.serie; estx.punto2:=yy.serie;

write(info,estx);
end {of “if”}

end {of “while not Eof(datos[ii])”}
end {of “while not Eof(datos[jj])”}
end {of “for ii”} end {of “for jj”}

writeln(’teclee cualquier tecla para finalizar’); ch:= readkey; exit;
end. {of program “entropia”}

———————————————————————–

begin {of program “entropia4”}
{INPUT: A file with pairs of time series di-near,

OUTPUT: an estimation of the second order Kolmogorov-entropy K̃;
an estimation of its standard deviation σK̃}

rewrite(androide);
for jj:=1 to na do reset(datos[jj]);

tol:=1/(2**(10))
begin

base:=1; reset(info);
while (not Eof(info)) do begin

read(info,estx);
if base>tope then begin writeln(’error, table too small’); halt end;

tabla[base].numarch1:=estx.numarch1; tabla[base].numarch2:=estx.numarch2;
tabla[base].numiter1:=estx.numiter1; tabla[base].numiter2:=estx.numiter2;

rnh1:=estx.punto1; rnh2:=estx.punto2; j:=0;
repeat

rnh1v:=rnh1; rnhgen(rnh1v,rnh1); rnh2v:=rnh2; rnhgen(rnh2v,rnh2); j:=j+1;
until comparar(rnh1,rnh2)<>0;

tabentr[base]:=j;
if base>1 then begin

if (tabla[base].numarch2=tabla[base-1].numarch2) and
(tabla[base-1].numiter2+tabentr[base-1]>=tabla[base].numiter2)

then base:=base-1 {overlap of data}
else
begin

if (tabla[base].numarch1=tabla[base-1].numarch1) and
(tabla[base-1].numiter1+tabentr[base-1]>=tabla[base].numiter1)

then base:=base-1 {overlap of data}
end end;

base:=base+1;
end; {of “while not Eof”}

tiempos:=0;
for i:=1 to base-1 do begin

tiempos:=tiempos+tabentr[i]; end;
tiempos:=tiempos/(base-1); entropy:=-Ln(abs(1-1/tiempos));

writeln(’the values of bj are’);
for j:=1 to base -1 do

begin writeln(’b’,j,’ = ’,tabentr[j],’ | ’); end;
writeln(’average of bj is <b > = ’,tiempos);

writeln(’ Entropy estimated is ’,entropy, ’, the size of the sample is ’,base-1);
rna:=base-1;

writeln(’standard deviation of K is :’, 1/(sqrt(rna)*entropy*sqrt(tiempos*(tiempos-1))));
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resultado:=entropy;
desvio:= 1/(sqrt(rna)*entropy*sqrt(tiempos*(tiempos-1)));

writeln(’to finish press any key ’); ch:=readkey;
end. {of program “entropia4”}

6.4 Appendix D: pseudo-code of homclin4.

Program “homclin4”
{INPUT: a table with the candidates to be homoclinic points}

{OUTPUT: A point in W u
loc(p) such that near it there is numerical evidence that it exists a homoclinic point}

This program uses, apart from the functions and procedures defined above, two functions “distl2” and ”angulo”.
”distl2” computes the Euclidean distance between points, and “angulo” computes the angle between a pair of
vectors. “angulo“ uses a function “prodint” that calculates the inner product between vectors. The program
also uses two procedures, “minimo” that computes the minimum between real data stored in a file called

“candihomclin” and “iterar” that iterates the function T 2 a prescribed number of times.

function distl2(rnhx,rnhy: rentrada):extended;
{calculates euclidean distance between points}

var cmaux,i:longint; raux,dist:extended; maximo:extended; rnhd:rentrada;
begin

i:=2; maximo:=abs(rnhx[1]-rnhy[1]);
while i<=A1*p+1 do begin

if abs(rnhx[i]-rnhy[i])> maximo then maximo:=abs(rnhx[i]-rnhy[i]);
i:=i+1 end;

if maximo<>0 then
for i:=1 to A1*p+1 do rnhd[i]:= abs(rnhx[i]-rnhy[i])/maximo;

i:=1; dist:=0; { assume distance is 0}
if maximo<>0 then

while (i<=A1*p+1) do begin
dist:=dist+rnhd[i]*rnhd[i]; i:=i+1; end;

distl2:=maximo*sqrt(dist);
end;

function prodint(rnhx,rnhy: rentrada):extended;
{computes inner product of vectors}

var i:longint; prod:extended; rnhd,rnhe:rentrada;maximox,maximoy:extended;
begin

i:=2; maximox:=abs(rnhx[1]);maximoy:=abs(rnhy[1]);
while i<=A1*p+1 do begin

if abs(rnhx[i]) > maximox then maximox:=abs(rnhx[i]);
if abs(rnhy[i]) > maximoy then maximoy:=abs(rnhy[i]);

i:=i+1 end;
if (maximox*maximoy<>0) then begin

for i:=1 to A1*p+1 do
begin rnhd[i]:= rnhx[i]/maximox; rnhe[i]:=rnhy[i]/maximoy end;

i:=1; prod:=0;
while i<=A1*p+1 do begin

prod:=prod+rnhd[i]*rnhe[i]; i:=i+1 end;
prodint:=prod*maximox*maximoy; end

else prodint:=0;
end;

function angulo(rnhx,rnhy:rentrada):extended;
var equis, ye, zeta:extended;

begin
zeta:= prodint(rnhx,rnhy); equis:=sqrt(prodint(rnhx,rnhx)); ye:=sqrt(prodint(rnhy,rnhy));

if (equis=0) or (ye=0) then angulo:=0 else angulo:=arccos(zeta/(equis*ye));
end;
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procedure minimo;
var minaux:extended;fijmin:rentrada; seguir:boolean;

begin
min:=1; seguir:=true; {“min” is set to a value which will not be the minimum}

while (not Eof(refcandihomclin)) and (seguir=true) do begin
read(refcandihomclin,homocl); if homocl.punto[2]<>0 then begin

seguir:=false; min:=10**(-2); refhomocl:=homocl end;
if (homocl.punto[2]=0) and (homocl.punto[1]<min) and (homocl.numh<700)

and (homocl.numh>10) then begin
min:=homocl.punto[1]; refhomocl:=homocl end;

end; {of while}
end;

procedure iterar(paso:integer;sota:rentrada;var sota1:rentrada);
var rnhj,rnhjv:rentrada; {“paso” controls the number of iterations}

begin rnhjv:=sota;
for j:=1 to paso do

begin rnhgen(rnhjv,rnhj); rnhjv:=rnhj; end;
sota1:=rnhj;

end;

begin {of homclin4}
while not Eof(candihomclin) do begin

read(candihomclin,homocl);
if (homocl.punto[2]=0.0) and (homocl.punto[1]¡0.001) then

write(refcandihomclin,homocl);
if homocl.punto[2]¡¿0.0 then write(refcandihomclin,homocl)

end; {of while}
reset(refcandihomclin);

minimo;
writeln(’minimum distance to p is ’, min);

writeln(’value of i=’,refhomocl.numi,’ iterate closest to p is ’,refhomocl.numh+10);
writeln(’initial approximation to candidate to homoclinic point M is ’);

for j:=1 to A1*p+1 do begin
fijo12[j]:=fijo6[j]+(10000-refhomocl.numi)*fijo8[j];

if (j mod 3=0) then writeln(fijo12[j],’—’)
else write(fijo12[j],’ —’); end;
tolerancia: {a label of reference}

if (refhomocl.numh mod 2 = 0) then techo:=refhomocl.numh+10
else techo:=refhomocl.numh+10;

fijo8:=restar(fijo6,fijo4);
for j:=1 to A1*p+1 do fijo8[j]:=fijo8[j]/10000;

writeln;
writeln(’Next we refine the choice, in particular we find L and R’);

writeln(’points in [T 38(p), T 40(p)] identified with W u
loc(p)’);

writeln(’such that M is between them and such that the iterates’);
writeln(’of L and R are in different components with respect to’);

writeln(’the local stable manifold W s
loc(p) of p.’);

writeln(’For convenience we continue to denote by M, L and R their iterates by T 2’);
writeln(’Enter gap distance as a real exponent of 2 not greater than 30’);

writeln(’the gap distance will be 2(−exponent)’);
write(’To finish the program enter exponent=0, exponente = ’);

readln(semillon);
if semillon< 0 then

begin semillon:=-semillon;
writeln(’a negative value has been entered, ’,semillon,’ will be assumed’);

end;
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if semillon> 20 then
begin

writeln(’exponent too large, a value of 10 will be assumed’);
semillon:=10 end;

while semillon<> 0 do
begin

tol:=2**(semillon); writeln(’tol=’,1/tol);
for j:=1 to A1*p+1 do

begin
fijo12[j]:=fijo6[j]+(10000-refhomocl.numi)*fijo8[j];

fijo11[j]:=fijo12[j]-fijo8[j]/tol;
fijo13[j]:=fijo12[j]+fijo8[j]/tol;

fijo115[j]:=fijo12[j]-fijo8[j]/(2*tol);
fijo135[j]:=fijo12[j]+fijo8[j]/(2*tol);

end;
while techo> 0 do

begin
if techo>= 10 then begin

iterar(10,fijo12,rnh1); iterar(10,fijo11,rnh0);
iterar(10,fijo13,rnh2); iterar(10,fijo115,rnh05);

iterar(10,fijo135,rnh25); techo:=techo-10;
writeln(’distance between left and right iterates L and R is ’,distl2(rnh0,rnh2));

writeln(’dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= ’,
distl2(rnh0,rnh05)+distl2(rnh05,rnh1)+distl2(rnh1,rnh25)+distl2(rnh25,rnh2));

if (distl2(rnh0,rnh2) > 0.0001) or
(distl2(rnh0,rnh05)+distl2(rnh05,rnh1)+distl2(rnh1,rnh25)+distl2(rnh25,rnh2)

> 1.001*distl2(rnh0,rnh2))
then begin

writeln(’distance between iterates is too large or curvature is big’);
techo:=techo+10; iterar(8,fijo12,rnh1);

iterar(8,fijo11,rnh0); iterar(8,fijo13,rnh2);
iterar(8,fijo115,rnh05); iterar(8,fijo135,rnh25);

techo:=techo-8;
writeln(’iterating 8 times the new distance between L and R is ’,distl2(rnh0,rnh2));

writeln(’dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= ’,
distl2(rnh0,rnh05)+distl2(rnh05,rnh1)+distl2(rnh1,rnh25)+distl2(rnh25,rnh2));

if (distl2(rnh0,rnh2) > 0.0001) or
(distl2(rnh0,rnh05)+distl2(rnh05,rnh1)+distl2(rnh1,rnh25)+distl2(rnh25,rnh2)

> 1.001*distl2(rnh0,rnh2))
then begin

writeln(’distance between iterates continues to be too large or curvature is big’);
techo:=techo+8; iterar(2,fijo12,rnh1);

iterar(2,fijo11,rnh0); iterar(2,fijo13,rnh2);
iterar(2,fijo115,rnh05); iterar(2,fijo135,rnh25);

techo:=techo-2;
writeln(’iterating 2 times the new distance between L and R is ’,distl2(rnh0,rnh2));

writeln(’dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= ’,
distl2(rnh0,rnh05)+distl2(rnh05,rnh1)+distl2(rnh1,rnh25)+distl2(rnh25,rnh2));

end {of inner “if then”}
end end {of outer “if then”}

else begin { now “techo” is less or equal than 10}
iterar(techo,fijo12,rnh1); iterar(techo,fijo11,rnh0);

iterar(techo,fijo13,rnh2); techo:=0
end;

fijo8:=restar(rnh2,rnh0); fijo12:=rnh1;
for j:=1 to A1*p+1 do
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begin
fijo11[j]:=fijo12[j]-fijo8[j]/tol; fijo13[j]:=fijo12[j]+fijo8[j]/tol;

fijo115[j]:=fijo12[j]-fijo8[j]/(2*tol); fijo135[j]:=fijo12[j]+fijo8[j]/(2*tol);
end;

writeln(’ iterates= ’,refhomocl.numh+10-techo,’
distance between endpoints L and R previous to iteration is ’);

writeln(distl2(fijo11,fijo13));
if distl2(fijo11,fijo13) ¿ 0.00001 then for j:=1 to A1*p+1 do

begin
fijo11[j]:=fijo12[j]-fijo8[j]/(16*tol); fijo13[j]:=fijo12[j]+fijo8[j]/(16*tol)

end;
if distl2(fijo11,fijo13)¡=0.0000000000000001 then begin

writeln(’tol is too small, please, reduce the exponent’); goto tolerancia; end;
end; {del while techo}

dist0:=distl2(fijo,rnh0); dist1:=distl2(fijo,rnh1);
dist2:=distl2(fijo,rnh2); writeln;

writeln(’ Euclidean dist from p to original point T 2’,*(refhomocl.numh+10),’is ’,dist1);
writeln(’ Euclidean dist from p to left point ’,dist0);
writeln(’ Euclidean dist from p to right point ’,dist2);

writeln(’ Euclidean dist between left and right points is ’); writeln(distl2(rnh0,rnh2));
if (refhomocl.numh mod 2 = 0) then techo:=refhomocl.numh+10

else techo:=refhomocl.numh+10;
fijo14:=restar(fijo4,fijo2); fijo16:=restar(rnh2,rnh0); rnhgen(fijo6,fijo8);

writeln(’angle between W u
e (p) and iterated arc LM is = ’);

write(angulo(fijo14,fijo16));
writeln(’ angle in degrees is approx = ’ ,round(angulo(fijo14,fijo16)*180/Pi));

writeln(’ Euclidean dist between left end-point of W u
e (p) and L is ’);

writeln(distl2(fijo6,rnh0));
writeln(’ Euclidean dist between left end-point of W u

e (p) and R is ’);
writeln( distl2(fijo6,rnh2));

writeln(’ Euclidean dist between right end-point of W u
e (p) and L is ’);

writeln(distl2(fijo8,rnh0));
writeln(’ Euclidean dist between right end-point of W u

e (p) and R is ’);
writeln(distl2(fijo8,rnh2));

rnhgen(rnh0,rnh0v);rnhgen(rnh2,rnh2v);
writeln(’rate of dist between rnh0, rnh2 and their iterates by T 2 is ’);

writeln(distl2(rnh0v,rnh2v)/distl2(rnh0,rnh2));
fijo18:=restar(fijo,rnh0); fijo20:=restar(fijo,rnh2);

writeln(’angle between vectors (p,L) and (p,R) is ’);
write(angulo(fijo18,fijo20));

writeln(’ angle in degrees is approx = ’,round(angulo(fijo18,fijo20)*180/Pi));
fijo18:=restar(fijo,rnh0v); fijo20:=restar(fijo,rnh2v);

writeln(’angle between vectors (p,T 2(L)) and (p,T 2(R)) is ’);
write(angulo(fijo18,fijo20));

writeln(’ angle in degrees is approx = ’,round(angulo(fijo18,fijo20)*180/Pi));
for ii:=1 to 6 do begin

newfix[2*ii-1]:=rnh0v;newfix[2*ii]:=rnh2v;
rnhgen(newfix[2*ii-1],rnh0v);rnhgen(newfix[2*ii],rnh2v);
fijo18:=restar(fijo,rnh0v); fijo20:=restar(fijo,rnh2v);

writeln(’angle between vectors (p,T 2’,*(ii+1),’(L)) and (p,T 2’,*(ii+1),’(R)) is ’);
write(angulo(fijo18,fijo20));

writeln(’ angle in degrees is approx = ’,round(angulo(fijo18,fijo20)*180/Pi));
end; writeln;

nuevofijo2:=restar(nuevofijo,rnh0); nuevofijo4:=restar(nuevofijo,rnh2);
writeln(’angle between vectors (p̂, L) and (p̂, R) is ’);

write(angulo(nuevofijo2,nuevofijo4));
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writeln(’ angle in degrees is approx = ’,round(angulo(nuevofijo2,nuevofijo4)*180/Pi));
writeln; fijo8:=restar(fijo6,fijo4);

for j:=1 to A1*p+1 do fijo8[j]:=fijo8[j]/10000;
writeln; writeln(’Enter gap distance as a real exponent of 2 no greater than 30’);

writeln(’last exponent used is ’,semillon);
write(’To finish the program enter exponent=0, exponent = ’);

readln(semillon);
if semillon< 0 then begin

semillon:=-semillon;
writeln(’a negative value has been entered, ’,semillon,’ will be assumed’);

end;
if semillon> 20 then begin

writeln(’exponent too large, a value of 10 will be assumed’);
semillon:=10;

end end;
write(candihomclin2,homocl);

writeln(’To continue press ENTER’); read(leer); writeln(’Press any key to finish’); ch:=readkey;
end.

6.5 Appendix E: coordinates of fixed point.

Approximate coordinates of the fixed point p ∈ IR201 of T 2(N) are given in the following table.

1.2326490487970465E + 0000 1.2110482116814741E + 0000 1.1906886685005045E + 0000
1.1717713776064593E + 0000 1.1545319083055524E + 0000 1.1392463406313234E + 0000
1.1262379872047533E + 0000 1.1158849347082125E + 0000 1.1086283238645345E + 0000
1.1049811591622351E + 0000 1.1055372415914759E + 0000 1.1109795220165019E + 0000
1.1220867468556205E + 0000 1.1397366769671205E + 0000 1.1649033774342367E + 0000
1.1986450973703732E + 0000 1.2420781384673748E + 0000 1.2087810376155805E + 0000
1.1754839367637863E + 0000 1.1421868359119921E + 0000 1.1088897350601978E + 0000
1.0755926342084036E + 0000 1.0422955333566094E + 0000 1.0089984325048151E + 0000
9.7570133165302088E − 0001 9.4240423080122665E − 0001 9.0910712994943241E − 0001
8.7581002909763817E − 0001 8.4251292824584393E − 0001 8.0921582739404970E − 0001
7.7591872654225546E − 0001 7.4463460038547187E − 0001 7.1528062031461468E − 0001
6.8777896512033852E − 0001 6.6205661495172081E − 0001 6.3804515773116380E − 0001
6.1568060751297437E − 0001 5.9490323430406656E − 0001 5.7565740489494235E − 0001
5.5789143427761938E − 0001 5.4155744725456250E − 0001 5.2661124986901219E − 0001
5.1301221031245340E − 0001 5.0072314898939969E − 0001 4.8971023744324276E − 0001
4.7994290586969646E − 0001 4.7139375896640730E − 0001 8.3241286907550863E − 0001
1.1774339903181779E + 0000 1.5083543629435397E + 0000 1.8248209517576603E + 0000
2.1271151896510347E + 0000 2.4160208699409385E + 0000 2.6923595086534992E + 0000
2.9569342453691580E + 0000 3.2105209755162044E + 0000 3.4538676455028848E + 0000
3.6876953663770639E + 0000 3.9126999878684479E + 0000 4.1295537791098290E + 0000
4.3389071105434127E + 0000 4.5413901032229220E + 0000 4.7376142351332896E + 0000
4.9281739025629719E + 0000 5.1136479378130289E + 0000 5.4622938956939894E + 0000
5.5692297788707215E + 0000 5.5592343648444013E + 0000 5.5318006317643429E + 0000
5.5004355530098589E + 0000 5.4679067992365053E + 0000 5.4349605692581039E + 0000
5.4018415509009528E + 0000 5.3686426726693849E + 0000 5.3354035019177187E + 0000
5.3021425008934430E + 0000 5.2688689546762325E + 0000 5.2355878340449946E + 0000
5.2023019446101286E + 0000 5.1690129433312447E + 0000 5.1357218479879554E + 0000
5.1024293056141891E + 0000 5.0691357402363859E + 0000 5.0358409167684584E + 0000
5.0025458322320211E + 0000 4.9692507815459950E + 0000 4.9359558081745136E + 0000
4.9026609256467161E + 0000 4.8693661415807602E + 0000 4.8360714621823154E + 0000
4.8027768933916233E + 0000 4.7694824412520072E + 0000 4.7361881120565536E + 0000
4.7028939124217354E + 0000 4.6695998493345792E + 0000 4.6363059301899531E + 0000
4.6030121628245493E + 0000 4.5697185555504526E + 0000 4.5364251171897114E + 0000
4.5031318571107021E + 0000 4.4698387852668010E + 0000 4.4365458667634358E + 0000
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4.4032531103361234E + 0000 4.3699605252784317E + 0000 4.3366681214830976E + 0000
4.3033759094851984E + 0000 4.2700839005086080E + 0000 4.2367921065161327E + 0000
4.2035005402636639E + 0000 4.1702092153587075E + 0000 4.1369181463236780E + 0000
4.1036273486643819E + 0000 4.0703368389441578E + 0000 4.0370466348641843E + 0000
4.0037567553505172E + 0000 3.9704672206484750E + 0000 3.9371780524250502E + 0000
3.9038809515732566E + 0000 3.8705838507214630E + 0000 3.8372867498696694E + 0000
3.8039896490178758E + 0000 3.7706925481660822E + 0000 3.7373954473142887E + 0000
3.7040983464624951E + 0000 3.6708012456107015E + 0000 3.6375041447589079E + 0000
3.6042070439071143E + 0000 3.5709099430553207E + 0000 3.5376128422035272E + 0000
3.5043157413517336E + 0000 3.4710186404999400E + 0000 3.4377218198045367E + 0000
3.4044252993439741E + 0000 3.3711291008502547E + 0000 3.3378332478631211E + 0000
3.3045377659003338E + 0000 3.2712426826458989E + 0000 3.2379480281583430E + 0000
3.2046538351014030E + 0000 3.1713601389998044E + 0000 3.1380669785231534E + 0000
3.1047743958013707E + 0000 3.0714824367755503E + 0000 3.0381911515886585E + 0000
3.0049005950210884E + 0000 2.9716108269767829E + 0000 2.9383219130264393E + 0000
2.9050851936346499E + 0000 2.8718528731824328E + 0000 2.8386253205708071E + 0000
2.8054029398018444E + 0000 2.7721861737242195E + 0000 2.7389755082227071E + 0000
2.7057714769095989E + 0000 2.6725746663842937E + 0000 2.6393857221368817E + 0000
2.6062053551826095E + 0000 2.5730343495269334E + 0000 2.5398735705757476E + 0000
2.5067239746226584E + 0000 2.4735866195652930E + 0000 2.4404626770260829E + 0000
2.4073534460803303E + 0000 2.3742603688263723E + 0000 2.3411850480701324E + 0000
2.3081292418906175E + 0000 2.2750949308401385E + 0000 2.2420843237904744E + 0000
2.2090998874484834E + 0000 2.1761443801015639E + 0000 2.1432208902575048E + 0000
2.1103328809563707E + 0000 2.0774842406657146E + 0000 2.0446793418285290E + 0000
2.0119231083205840E + 0000 1.9792210932957181E + 0000 1.9465795691608410E + 0000
1.9140056317346885E + 0000 1.8815073210149785E + 0000 1.8490937614183503E + 0000
1.8167753248789589E + 0000 1.7845638208093313E + 0000 1.7524727176575964E + 0000
1.7205174017417589E + 0000 1.6887154797718421E + 0000 1.6570871330214122E + 0000
1.6256555322735251E + 0000 1.5944473242987124E + 0000 1.5634932024257111E + 0000
1.5328285757821936E + 0000 1.5024943539853568E + 0000 1.4725378663866274E + 0000
1.4430139373005373E + 0000 1.4139861407724177E + 0000 1.3855282600450476E + 0000
1.3577259774985657E + 0000 1.3306788197951572E + 0000 1.3045023793744458E + 0000
1.2793308262228334E + 0000 1.2553197117722144E + 0000 1.2326490487971048E + 0000

From the analytic expression of T , it is clear that T (p) 6= p so that p has period 2.

6.6 Appendix F: homoclinic points search.

We plot a projection of the attractor in three-dimensional space (averaging some coordinates at the beginning of
the year, in the middle of the year and in Spring). For that purpose we use MATLAB c© . When we plot the
image of the first 1000 iterates of a single point of the local unstable manifold W u

loc(p) we roughly recover the
image of Λ obtained plotting all the sequences of points pseudo-randomly generated. This is an indication that
W u(p) may be dense in Λ. The small red circle in the figures, indicates the approximate position of the fixed

point p.
We also give approximate coordinates of the homoclinic point y0 and angular values obtained with an initial
length of I0 of 1.122 × 10−7 in the appendix below with two copies of runnings of “homclin7.exe” which is a
refinement of ”homclin4.exe” which generates an output close to LaTeX. In these runs we use three values for
the parameter ”exponent”, one of them is 10.80 and the other is 15.03. We also exhibit one exponent, 11.00

which fails to detect homoclinic points. Observe that 10.80 is not very far apart from 11.00.
We only exhibit samples of the runs since they are rather extensive. It is possible to observe that the program

corrects the quantity of iterations when the results are larger than certain bounds.

Runs of ”homoclin7”

Enter gap as an exponent of 2 not greater than 20 and greater than 3, we choose gap=2exponent.
This gap will be used to divide the distance between three consecutive points
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Figure 2: A thousand iterates of y ∈ W u

loc
(p) projected in 3D (in black) versus the projection of

Λ (in green).

of the initial subdivision of [T 38(p), T 40(p)] centered around
the rough homoclinic point y0 previously found.

To finish the program enter exponent=0,
exponent = 1.0800000000000000E+0001 gap = 1782.8875536 exponent = 10.8000000

iter= 0, dist(L,R) previous to iteration is 3.5890677421214318E-0010
dist between L and R after applying T 20 is 6.3294602762248157E-0007

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 6.3294602764511862E-0007
iter= 10, dist(L,R) previous to iteration is 7.1002349673070908E-0010
dist between L and R after applying T 20 is 1.0395709474479636E-0008

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.0395709474479637E-0008
iter= 20, dist(L,R) previous to iteration is 1.1661654789708924E-0011
dist between L and R after applying T 20 is 6.7123467133053106E-0010

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 6.7123467133053267E-0010
...

...
...

...
...

...
...

...
...

iter= 600, dist(L,R) previous to iteration is 1.7874017013569691E-0011
dist between L and R after applying T 20 is 3.5203152021803773E-0006

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 3.5203152021804383E-0006
iter= 610, dist(L,R) previous to iteration is 3.9490041813784173E-0009
dist between L and R after applying T 20 is 4.3191750633612666E-0005

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 4.3191750633619148E-0005
iter= 620, dist(L,R) previous to iteration is 4.8451457912339789E-0008
dist between L and R after applying T 18 is 2.7846424585034373E-0003

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 2.7846424590282723E-0003
iter= 629, dist(L,R) previous to iteration is 3.1237443470096728E-0006

Sup distance from fixed point p to point T 1258(y0) is 0.00022627982
L1 distance from fixed point p to point T 1258(y0) is 0.01670265394

Euclidean distance from fixed point p to point T 1258(y0) is 0.00141044319
Euclidean distance from fixed point p to point L is 0.00007862956
Euclidean distance from fixed point p to point R is 0.00280177267

Euclidean distance between L and R is 0.00278464246
angle between W u

e (p) and iterated arc LR = 0.00003 radians, angle in degrees is ≈ 0
angle between vectors (p,L) and (p,R) is 1.33746 angle in degrees is ≈ 77

angle between vectors (p, T 2(L)) and (p, T 2(R)) is 3.01126 radians, angle in degrees is ≈ 173
angle between vectors (p, T 4(L)) and (p, T 4(R)) is 3.13900 radians angle in degrees is ≈ 180
angle between vectors (p, T 6(L)) and (p, T 6(R)) is 3.14031 radians angle in degrees is ≈ 180

29



Figure 3: Coordinates of (rough) homoclinic point y0 associated to p.

angle between vectors (p, T 8(L)) and (p, T 8(R)) is 3.13743 radians angle in degrees is ≈ 180
angle between vectors (p, T 10(L)) and (p, T 10(R)) is 3.12545 radians angle in degrees is ≈ 179
angle between vectors (p, T 12(L)) and (p, T 12(R)) is 3.10750 radians angle in degrees is ≈ 178
angle between vectors (p, T 14(L)) and (p, T 14(R)) is 3.05523 radians angle in degrees is ≈ 175

Enter gap distance as a real exponent of 2 between 3 and 20
last exponent used is 10.80000000

To finish the program enter exponent=0. Chosen exponent = 15.03200000
gap = 33502.9380910 exponent = 15.0320000

iter= 0, dist(L,R) previous to iteration is 1.9099531465388560E-0011
dist between L and R after applying T 30 is 1.4460501331114946E-0008

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.4460501331114946E-0008
iter= 15, dist(L,R) previous to iteration is 8.6323753141429872E-0013
dist between L and R after applying T 30 is 1.6945248777241631E-0009

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.6945248777241637E-0009
iter= 30, dist(L,R) previous to iteration is 1.0115684115597356E-0013
dist between L and R after applying T 30 is 2.4222230946916936E-0009

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 2.4222230946916942E-0009
...

...
...

...
...

...
...

...
...

...
...
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iter= 594, dist(L,R) previous to iteration is 1.2923688152099415E-0009
dist between L and R after applying T 30 is 9.5328543032789122E-0004

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 9.5328543041795548E-0004
distance between iterates is too large or curvature is big

dist between L and R after applying T 16 is 6.3306020056154999E-0008
dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 6.3306020056154999E-0008
iter= 602, dist(L,R) previous to iteration is 3.7791322627648531E-0012
dist between L and R after applying T 30 is 1.9472974658090783E-0005

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.9472974658261263E-0005
iter= 617, dist(L,R) previous to iteration is 1.1624636981219546E-0009
dist between L and R after applying T 24) is 2.7688866606693677E-0003

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 2.7688866611853443E-0003
iter= 629, dist(L,R) previous to iteration is 1.6529216948955862E-0007

Sup distance from fixed point p to point T 1258(y0) is 0.00022627982
L1 distance from fixed point p to point T 1258(y0) is 0.01670265394

Euclidean distance from fixed point p to point T 1258(y0) is 0.00141044319
Euclidean distance from fixed point p to point L is 0.00279389720
Euclidean distance from fixed point p to point R is 0.00008060930

Euclidean distance between L and R is 0.00276888666
angle between W u

e (p) and iterated arc LR = 3.14156 radians, angle in degrees is ≈ 180
angle between vectors (p,L) and (p,R) is 1.24158 angle in degrees is ≈ 71

angle between vectors (p, T 2(L)) and (p, T 2(R)) is 2.76672 radians, angle in degrees is ≈ 159
angle between vectors (p, T 4(L)) and (p, T 4(R)) is 3.13482 radians angle in degrees is ≈ 180
angle between vectors (p, T 6(L)) and (p, T 6(R)) is 3.14036 radians angle in degrees is ≈ 180
angle between vectors (p, T 8(L)) and (p, T 8(R)) is 3.13746 radians angle in degrees is ≈ 180
angle between vectors (p, T 10(L)) and (p, T 10(R)) is 3.12554 radians angle in degrees is ≈ 179
angle between vectors (p, T 12(L)) and (p, T 12(R)) is 3.10770 radians angle in degrees is ≈ 178
angle between vectors (p, T 14(L)) and (p, T 14(R)) is 3.05600 radians angle in degrees is ≈ 175

Enter gap distance as a real exponent of 2 between 3 and 20
last exponent used is 15.03200000

To finish the program enter exponent=0. Chosen exponent = 11.00000000
gap = 2048.0000000 exponent = 11.0000000

iter= 0 dist(L,R) previous to iteration is 3.1244649405582926E-0010
dist between L and R after applying T 24 is 7.0403463016490730E-0008

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 7.0403463017652905E-0008
iter= 12, dist(L,R) previous to iteration is 6.8753381889103818E-0011
dist between L and R after applying T 24 is 1.6655785942826604E-0007

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.6655785942826604E-0007
iter= 24, dist(L,R) previous to iteration is 1.6265415954054225E-0010
dist between L and R after applying T 24 is 4.1674332229362251E-0008

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 4.1674332229362251E-0008
iter= 36, dist(L,R) previous to iteration is 4.0697590197929017E-0011
dist between L and R after applying T 24 is 3.5735658309920103E-0007

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 3.5735658309920103E-0007
iter= 48, dist(L,R) previous to iteration is 3.4898103807564854E-0010
dist between L and R after applying T 24 is 3.1598931331358240E-0006

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 3.1598931331363929E-0006
iter= 60, dist(L,R) previous to iteration is 3.0858331376860077E-0009
dist between L and R after applying T 24 is 8.7084375703600538E-0005

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 8.7084375703625518E-0005
iter= 72, dist(L,R) previous to iteration is 8.5043335648104785E-0008
dist between L and R after applying T 24 is 1.3240893865632102E-0003

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.3240893866628222E-0003
distance between iterates is too large or curvature is big
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dist between L and R after applying T 16 is 2.2719494014277907E-0004
dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 2.2719494016150623E-0004

D dist between iterates continues to be too large or curvature is big
dist between L and R after applying T 4 is 7.0995114872475991E-0006

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 7.0995114872475992E-0006
iter= 74, dist(L,R) previous to iteration is 6.9331166869485615E-0009
dist between L and R after applying T 24 is 1.3422129968050613E-0005

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 1.3422129968054511E-0005
...

...
...

...
...

...
...

...
...

iter= 624, dist(L,R) previous to iteration is 4.5100485932166933E-0010
dist between L and R after applying T 10 is 4.4858004094609686E-0007

dist(L,L1)+dist(L1,M)+dist(M,R1)+dist(R1,R)= 4.4858004094609686E-0007
iter= 629, dist(L,R) previous to iteration is 4.3806644611849589E-0010

Sup distance from fixed point p to point T 1258(y0) is 0.00022627982
L1 distance from fixed point p to point T 1258(y0) is 0.01670265394

Euclidean distance from fixed point p to point T 1258(y0) is 0.00141044319
Euclidean distance from fixed point p to point L is 0.00141021923
Euclidean distance from fixed point p to point R is 0.00141066714

Euclidean distance between L and R is 0.00000044858
angle between W u

e (p) and iterated arc LR = 0.00003 radians, angle in degrees is ≈ 0
angle between vectors (p, L) and (p,R) is 0.00002 angle in degrees is ≈ 0

angle between vectors (p, T 2(L)) and (p, T 2(R)) is 0.00000 radians, angle in degrees is ≈ 0
angle between vectors (p, T 4(L)) and (p, T 4(R)) is 0.00000 radians angle in degrees is ≈ 0
angle between vectors (p, T 6(L)) and (p, T 6(R)) is 0.00000 radians angle in degrees is ≈ 0
angle between vectors (p, T 8(L)) and (p, T 8(R)) is 0.00000 radians angle in degrees is ≈ 0
angle between vectors (p, T 10(L)) and (p, T 10(R)) is 0.00000 radians angle in degrees is ≈ 0
angle between vectors (p, T 12(L)) and (p, T 12(R)) is 0.00001 radians angle in degrees is ≈ 0
angle between vectors (p, T 14(L)) and (p, T 14(R)) is 0.00009 radians angle in degrees is ≈ 0

Enter gap distance as a real exponent of 2 between 3 and 20
last exponent used is 11.00000000

To finish the program enter exponent=0. Chosen exponent = 0.00000000
Press ENTER to finish the program.
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Stochastique et Statistique, Université Paris Sud XI (2004), p. available at -
http://www.di.ens.fr/ ˜ arlot/ .

[FJASY] K. Fredga, M. Jaarola, R. A. Ims, H. Steen, Nigel G. Yoccoz, The ‘common vole’ in
Svalbard identified as Microtus epiroticus by chromosome analysis, Polar Research, Vol 8, Issue
2 (1990), p. 283-290.

[GP] P. Grassberger, I. Procaccia, Characterization of Strange Attractors, Physical Review Let-
ters, Vol 50, No 5 (1983), p. 346-349.

[GP2] P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors, Physica D,
9 (1983), p. 189-208.

[GP3] P. Grassberger, I. Procaccia, Dimensions and entropies of strange attractors from a fluctu-
ating dynamics approach., Physica D, 13 (1984), p. 34-54.

[Ims] R. A. Ims, Spatial clumping of sexually receptive females induces space sharing among male voles.,
Nature, 335(6190) (1988), p. 541-543.

[Ims2] R. A. Ims, “ It is a reasonable assumption that sex ratio is 1:1. We know that this for sure at

birth (lab studies). ”, Personal communication,

32



.

[LBY] X. Lambin, V. Bretagnolle, N. G. Yoccoz, Vole population cycles in northern and southern
Europe: is there a need for different explanations for single pattern?, The Journal of animal
ecology, 335(75(2) (2006), p. 340-349.

[PM] J. Palis, W. de Melo, Geometrical Theory of Dynamical Systems, Springer, 1982.

[ER] J.-P. Eckmann, D. Ruelle, Fundamental limitations for estimating dimensions and Lyapunov
exponents in dynamical systems, Physica D, 56 (1992), p. 185-187.

[Sp] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.

[STB] J. C. Schouten, F. Takens, C. M. van den Bleek, Maximum-likelihood estimation of the
entropy of an attractor, Phisical Review E, Vol 49 No 1 (1994), p. 126-129.

[RS] David Ruelle, Dennis Sullivan, Current flows and diffeomorphisms, Topology, 14 (1975),
p. 319-327.

[Ta] F. Takens, Invariants Related to Dimensions and Entropy, Atas do 13o Coloquio Brasileiro de
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