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A. We prove that for certain partially hyperbolic skew-products, non-uniform hyperbolicity
along the leaves implies existence of a finite number of ergodic absolutely continuous invariant prob-
ability measures which describe the asymptotics of almost every point. The main technical tool is an
extension for sequences of maps of a result of de Melo and van Strien relating hyperbolicity to recurrence
properties of orbits. As a consequence of our main result, we also obtain a partial extension of Keller’s
theorem guaranteeing the existence of absolutely continuous invariant measures for non-uniformly
hyperbolic one dimensional maps.

1. I

In this paper we study the existence of absolutely continuous invariant probability measures for
non-uniformly expanding maps in dimensions larger than 1.

It is a classical fact (see Mañé, [13]) that every uniformly expanding smooth map on a compact
manifold admits a unique ergodic absolutely continuous invariant measure, and this measure
describes the asymptotics of almost every point. Moreover, see Bowen [6], uniformly hyperbolic
diffeomorphisms also have a finite number of such physical measures, describing the asymptotics of
almost every point. Actually, in this case, the physical measures are absolutely continuous only
along certain directions, namely, the expanding ones.

The present work is motivated by the question of knowing, to what extent, weaker forms of
hyperbolicity are still sufficient for the existence of such measures. A precise statement in this
direction is:

Conjecture (Viana, [23]). If a smooth map has only non-zero Lyapunov exponents at Lebesgue almost every
point, then it admits some physical measure.

Two main results provide some evidence in favor of this conjecture. The older one is the
remarkable theorem of Keller [11] stating that for maps of the interval with finitely many critical
points and non-positive Schwarzian derivative, existence of absolutely continuous invariant probability is
guaranteed by positive Lyapunov exponents, i.e.,

lim sup
n→∞

1
n

log |D f n(x)| > 0 (1.1)

on a positive measure set of points x (see Subsection 3.1 for definitions involved). In fact, Keller
proved the existence of a finite number of these measures whose union of basins have full Lebesgue
measure, in the case that (1.1) holds for Lebesgue almost every point.

Then, more recently, Alves, Bonatti and Viana [4] proved that every non-uniformly expanding local
diffeomorphism on any compact manifold admits a finite number of ergodic absolutely continuous invariant
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measures describing the asymptotics of almost every point. This notion of non-uniform expansion means
that

lim inf
n→∞

1
n

n−1∑
j=0

log ||D f ( f j(x))−1
||
−1
≥ c > 0 (1.2)

almost everywhere. Alves, Bonatti and Viana [4] also give a version of this result for maps with
singularities, that is, which fail to be a local diffeomorphism on some subset S of the ambient
manifold. However, due to the presence of singularities they need an additional hypothesis (of
slow recurrence to the singular set S) which is often difficult to verify. Given that Keller’s theorem
has no hypothesis about the recurrence to the singular set (in his caseS = {critical points}), one may
ask to what extent this condition is really necessary.

This question was the starting point of the present work. Before giving our statements, let us
mention a few related results.

One partial extension of both Keller [11] and Alves, Bonatti and Viana [4], was obtained recently
by Pinheiro [16]: he keeps the slow recurrence condition but is able to weaken the hyperbolicity
condition substantially, replacing lim inf by lim sup in (1.2).

Another important result was due to Tsujii [21]: Cr partially hyperbolic endomorphisms on a
compact surface admit finitely many ergodic physical measures and the union of their basins is a
total Lebesgue measure set. When the center Lyapunov exponents are positive, these measures are
absolutely continuous.

Our own results holds for a whole, explicitly defined, family of transformations on surfaces. We
prove existence and finiteness of ergodic absolutely continuous invariant measures, assuming only
non-uniform expansion (slow recurrence is not necessary).

Motivated by a family of maps introduced by Viana [22] and studied by several other authors
(see for example [2, 5, 8, 19, 3]) we consider transformations of the form ϕ : T1

× I0 → T1
× I0,

(θ, x) 7→ (g(θ), f (θ, x)), where g is a uniformly expanding circle map, each f (θ, ·) is a smooth interval
map with non-positive Schwarzian derivative, and ϕ is partially hyperbolic with vertical central
direction:

|∂θg(θ)| > |∂x f (θ, x)| at all points.

We prove that if ϕ is non-uniformly expanding then it admits some absolutely continuous in-
variant probability. Moreover, there exist finitely many ergodic absolutely continuous invariant
probabilities whose union of basins is a full Lebesgue measure set.

The Viana maps [22] correspond to the case when g is affine, g(θ) = dθ (mod 1) with d >> 1,
and f has the form f (θ, x) = a0 + α sin(2πθ) − x2 (actually, [22] deals also with arbitrary small
perturbations of such maps). It was shown in [22] that Viana maps are indeed non-uniformly
expanding. Moreover, Alves [2] proved that they have a unique physical measure, which is
absolutely continuous and ergodic. Their methods hold even for a whole open set of maps not
necessarily of skew-product form. In fact, the argument of [2] rely on a proof of slow recurrence to
the critical set which in that case is the circle T1

× {0}.
For the family of maps which we consider (see Theorem A), we do not assume the slow recurrence

condition, fundamental in [4], [2] and [16]. On the other hand, our method is completely different
from the one used in the mentioned works. We view ϕ as a family of smooth maps of the interval,
namely, its restrictions to the vertical fibers {θ}× I0. Thus, our main technical tool is an extension for
such families of maps of a result proved by de Melo and van Strien [14, Theorem V.3.2, page 371]
for individual unimodal maps saying, in a few words, that positive Lyapunov exponents manifest
themselves at a macroscopic level: intervals that are mapped diffeomorphically onto large domains
under iterates of the map. This, in turn, allows us to make use of the hyperbolic times technique
similar to the one introduced by Alves, Bonatti and Viana [4].
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Let us remark that in the setting of piecewise expanding maps in high dimensions, there are
several works which deal with existence of absolutely continuous invariant measures. Among
them, let us mention [1, 7, 9, 10, 18]. In all the cases, additional conditions on the expanding
constants and (or) the boundary behavior are required.

1.1. Organization of the paper. This paper is organized as follows. In section 2 we give the precise
statement of the main results. In section 3 we introduce a few preliminary facts, which will be useful
in the sequel. In section 4 we prove our Theorem B, which is the extension of [14, Theorem V.3.2,
page 371] mentioned before. The section 5 contains the proof of one partial extension of Keller’s
theorem.

In section 6 we prove another key result (Proposition 6.3): for each interval which is mapped
diffeomorphically onto a large domain under an iterate of the skew-product, there exists an open
set containing this interval which is sent diffeomorphically onto its image under the same iterate.
Moreover, this map has bounded distortion and the measure of the image is bounded away from
zero. We call these iterates hyperbolic-like times, because their behavior is similar to hyperbolic times
introduced in [4].

In section 7 we combine the main lemma (Lemma 4.1) used in the proof of Theorem B, with
the Pliss Lemma to conclude that the set of points with infinitely many (and even positive density
of) hyperbolic-like times has positive Lebesgue measure. The construction of the absolutely conti-
nuous invariant measure for the skew-product ϕ follows along well-known lines, as we explain in
subsection 7.3. Finally, on subsection 7.4, we prove the ergodicity of the measure and the existence
of finitely many SRB measures.

Acknowledgements. The results of this work are essential part of my doctoral thesis made at IMPA.
I am thankful to Marcelo Viana for advice, constant encouragement and valuable conversations. I
am indebted to Vilton Pinheiro and Vitor Araújo for suggestions and insightful discussions. I also
thank Sebastian van Strien for readily clarifications of important points in his book with de Melo.

2. S   

Let us present the precise statements of our results.

2.1. Non-uniformly expanding skew-products. Let I0 be an interval and let T1 be the circle. We
consider C3 partially hyperbolic skew-products defined onT1

× I0 with critical points in the vertical
direction. The mappings we consider are precisely

ϕ : T1
× I0 → T1

× I0
(θ, x) → (g(θ), f (θ, x))

where g is a uniformly expanding smooth map on T1 and fθ : I0 → I0 , x → f (θ, x) is a smooth
map with critical points for every θ ∈ T1. We assume our map is partially hyperbolic, it means that
satisfies (3.1) below (see subsection 3.2).

In the result of Alves, Bonatti and Viana (see [4, Theorem C]), the set S of singular points of
ϕ satisfies the non-degenerate singular set conditions. These conditions allow the co-existence of
critical points and points with |det Dϕ| = ∞. We will only admit critical points.

We denote by C the set of critical points and by Cθ the set of critical points contained in the
θ-vertical leaf. By distvert we denote the distance induced by the Riemmanian metric in the vertical
leaf, i.e, if z = (θ, x) for some x, distvert(z,C ) = dist(z,Cθ).

Let M = T1
× I0 and C ⊂ M a compact set. We consider a C3 skew product map ϕ : M → M

which is a local C3 diffeomorphism in the whole manifold except in a critical set C such that:
(F1) p = sup #Cθ < ∞ ;
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there exists B > 0 such that, for every z ∈M \ C , w ∈M with dist(z,w) < distvert(z,C )/2

(F2)
∣∣∣log |∂x f (z)| − log |∂x f (w)|

∣∣∣ ≤ B
distvert(z,C )

dist(z,w) ;

and for all θ ∈ T1

(F3) S f (θ, x) ≤ 0, for x ∈ I0 where this quantity is defined.
When M = I0, if f satisfies the one dimensional definition of non-flatness and S f ≤ 0 (see subsection
3.1 for definitions), then it automatically satisfies these conditions. Now, we are in position to state
our main result.

Theorem A. Assume that ϕ : T1
× I0 → T1

× I0 is a C3 partially hyperbolic skew product satisfying (F1),
(F2) and (F3). If ϕ is non-uniformly expanding, i.e, for Lebesgue almost every z ∈ T1

× I0,

lim infn→∞
1
n

n−1∑
j=0

log ‖Dϕ(ϕ j(z))−1
‖
−1 > 0 , (2.1)

then ϕ admits an absolutely continuous invariant measure. Moreover, if the limit in (2.1) is bounded away
from zero, then there exist finitely many ergodic absolutely continuous invariant measures and their basins
cover M up to a zero Lebesgue measure set.

Remark 2.1.
(i) Note that (F2) implies that for any z ∈M, dist(z,C ) ≥ distvert(z,C )

2 .
(ii) If Cθ = ∅ for some θ ∈ T1 then, as a consequence of (F2), Cθ = ∅ for every θ ∈ T1. This case

is covered by [4, Corollary D], but also follows from (a simple version of) our arguments. For
completeness we define dist(z, ∅) = 1.

(iii) When the critical set C is such that dist(z,C ) ≥ ηdistvert(z,C ) for all z ∈ M and some η > 0,
then we may replace distvert by dist in the condition (F2).

2.2. Sequences of smooth one dimensional maps. In order to prove Theorem A, we analyze the
dynamics of the transformation along the family of vertical leaves. The main technical point is to
bound the distortion of the iterates along suitable subintervals of the leaves. The precise statement
is given in Theorem B. Beforehand, we need to introduce some notations.

Given an interval I0, let us consider a sequence { fk}k≥0 of C1 maps fk : I0 → I0. Let us denote by
Ck the set of critical points of fk, for every k ≥ 0. Notice that Ck could be an empty set for any k ∈N.
We are interested on the study of the dynamics given by the compositions of maps in the sequence.
Thus, we define for i ≥ 1 and x ∈ I0,

f i(x) = fi−1 ◦ . . . ◦ f1 ◦ f0(x)

and we denote f 0(x) = x for x ∈ I0.
Based on the definitions of Ti(x) and ri(x) on the case that there are just iterates of a function (see

for instance [14, page 335]), we define for i ∈N and x ∈ I0:

Ti
(
{ fk}, x

)
:= Maximal interval contained in I0, containing x,

such that f j(Ti(x)) ∩ C j = ∅ for 0 ≤ j < i ;

Li
(
{ fk}, x

)
,Ri

(
{ fk}, x

)
:= Connected components of Ti

(
{ fk}, x

)
\ {x} ;

ri
(
{ fk}, x

)
:= min

{ ∣∣∣ f i (Li
(
{ fk}, x

))∣∣∣ , ∣∣∣ f i (Ri
(
{ fk}, x

))∣∣∣ } .
When it does not lead to confusion, we denote these functions just by Ti(x), Li(x), Ri(x), ri(x). In this
subsection and in the proof of the results of this subsection, we will use this simplified notation,
since the sequence { fk} is fixed.
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Our goal is to show that positive Lyapunov exponents imply that the average of the ri is positive.
We consider a sequence { fk}with positive Lyapunov exponents. Namely, { fk} satisfies the following
condition: there exists λ > 0 such that

lim inf
n→∞

1
n

log |D f n(x)| > 2λ (2.2)

for every x in some subset of I0.
The following compactness condition on the sequence of maps { fk}k≥0, together with positive

Lyapunov exponents, guarantee the positiveness of the average of the ri.
Recall that a sequence { fk}k of C1 maps fk : I0 → I0 is said to be C1-uniformly equicontinuous if,

given ζ > 0, there exists ε > 0 such that

|x − y| < ε implies
{
| fk(x) − fk(y)| < ζ

|D fk(x) −D fk(y)| < ζ
(2.3)

for all k ∈ N. Recall also that a sequence { fk}k of C1 maps fk : I0 → I0 is said to be C1-uniformly
bounded if there exists Γ > 0 such that for every x ∈ I0,

| fk(x)| , |D fk(x)| ≤ Γ (2.4)

for all k ∈N.
Our main result in this setting is the following.

Theorem B. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence of smooth maps
fk : I0 → I0 for which p = supk #Ck < ∞, and (2.2) holds for all x in a set H, for some λ > 0. Then, there
exists ς > 0 such that

lim inf
n→∞

1
n

n∑
i=1

ri
(
{ fk}, x

)
≥ ς (2.5)

for Lebesgue almost every x ∈ H.

Remark 2.2. We do not require that fk be a multimodal map, for any k ≥ 0. The non-positive
Schwarzian derivative condition is not necessary.

This result may be viewed as a “random” version of Theorem V.3.2 (page 371) in de Melo, van
Strien [14]. Notice however, that this does not follow from the result of de Melo and van Strien
because the dynamics of the maps we consider is more complicated. For example, in the unimodal
case the hypothesis ensures that the critical point is not periodic, in our context one can not prevent
the iterates of the critical set from intersecting the critical set.

Notice that in the setting of Theorem A, the result of Theorem B is applied to the restrictions of
ϕ to the orbits of the vertical leaves.

The result of Theorem B still holds replacing lim inf by lim sup.

Corollary 2.1. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence of smooth
maps fk : I0 → I0 for which p = supk #Ck < ∞, and there exists λ > 0 such that

lim sup
n→∞

1
n

log |D f n(x)| > 2λ (2.6)

for all x in a set H. Then, there exists ς > 0 such that lim supn→∞
1
n
∑n

i=1 ri
(
{ fk}, x

)
≥ ς , for Lebesgue

almost every x ∈ H.

In the case that the sequence { fk}k≥0 is constant ( fk = f , for all k ≥ 0), we obtain the following
result for multimodal maps. For definitions involved, see Subsection 3.1.
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Corollary 2.2. Let f : I0 → I0 be a C3 multimodal map with non-flat critical points. Assume that f does not
have neutral periodic points. If (1.1) holds for Lebesgue almost every point, then there exists an absolutely
continuous invariant measure.

Notice that the hypothesis is weaker than in Keller [11], because we make no assumption on the
Schwarzian derivative. On the other hand, we only prove existence (not finiteness) of the absolutely
continuous invariant measure.

In particular, for C3 multimodal maps with non-flat critical points and with eventual negative
Schwarzian derivative (i.e, there exists k ∈ N such that f k has negative Schwarzian derivative),
positive Lyapunov exponents implies the existence of an absolutely continuous invariant measure.
Indeed, since for these class of maps, the neutral periodic points are attracting points (see [24,
Theorem 2.5]), we can apply Corollary 2.2.

3. P 

We first recall some well-known properties and tools for one dimensional maps to be used in this
work.

3.1. One dimensional dynamics. Let I be an interval and let f : I → I be a differentiable map. A
point c ∈ I is called a critical point if f ′(c) = 0. A map is called smooth if it is at least a C1 map with
any number (possibly zero) of critical points. A map is called multimodal if it is a smooth map and
there is a partition of I in finitely many subintervals on which f is strictly monotone. It is called
unimodal if the partition has exactly two subintervals. Without loss of generality it is assumed that
for a multimodal map f , f (∂I) ⊂ ∂I. Let c1, . . . , cd be the critical points of f . We say that the critical
point ci is Cn non-flat of order li > 1 if there exist a local Cn diffeomorphism φi with φi(ci) = 0, such
that near ci, f can be written as

f (x) = ±|φi(x)|li + f (ci).
The critical point is Cn non-flat if it is Cn non-flat of order li for some li > 1. In all that follows, we
will just say that ci is a non-flat critical point of a Cn multimodal map f if ci is a Cn non-flat critical
point. Here n = 3 is enough for Corollary 2.2.

When the map f is C3 (or three times differentiable) we can define

S f (x) =
f ′′′(x)
f ′(x)

−
3
2

(
f ′′(x)
f ′(x)

)2

for x such that f ′(x) , 0. This quantity is called the Schwarzian derivative of f at the point x. There are
many results for one dimensional dynamics that are only known for those maps whose Schwarzian
derivative is non-positive.

One standard way to prove the existence of absolutely continuous invariant measures for f is to
define a Markov map associated to f and take advantage of the known fact of the existence of this
kind of measures for Markov maps.

Definition 3.1. We call a map F : J → J Markov if there exists a countable family of disjoint open
intervals {Ji}i∈N with Leb(J \ ∪Ji) = 0, such that:

(M1) there exists K > 0 such that for every n ∈N and every T such that F j(T) is contained in some
Ji for j = 0, 1, . . . ,n, it holds

|DFn(x)|
|DFn(y)|

≤ K for x, y ∈ T;

(M2) if F(Jk) ∩ Ji , ∅ then Ji ⊂ F(Jk);
(M3) there exists r > 0 such that |F(Ji)| ≥ r for all i.
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Condition (M1) is known as bounded distortion. Given open intervals J ⊂ T, let L, R be the
connected components of T \ J. We say that T is a κ-scaled neighborhood of J if both connected
components of T \ J have length κ|J|. We define b(T, J) = |J||T|/|L||R|, and when f is monotone
continuous, B( f ,T, J) = b( f (T), f (J))/b(T, J) (this is known as cross ratio operator). Koebe Principle
claims that the control of cross ratio operator plus κ-scalation (for some κ > 0) imply bounded
distortion (see [14, Theorem IV.1.2]). When S f ≤ 0, cross ratio satisfies the condition required on
Koebe Principle. In order to control the distortion when we consider iterates of a single map without
Schwarzian derivative assumptions, we use the next result. Recall that a periodic point p of period
k is repelling if |D f k(p)| > 1, attracting if |D f k(p)| < 1 and neutral if |D f k(p)| = 1. The proof of the result
follows from [12, Theorem B] for the unimodal case, and [20, Theorem C] for the multimodal case.
The hypothesis of these theorems are less restrictive than ours.

Theorem 3.1. Let f : I→ I be a C3 multimodal map with non-flat critical points. Assume that the periodic
points of f are repelling. Then, there exists C > 0 such that if I ⊂M are intervals and f n

|M is a diffeomorphism,

B( f n,M, I) ≥ exp(−C| f n(M)|2).

Finally let us state the following theorem which we use in the proof of Corollary 2.2. Recall that
an interval J ⊂ I is called a wandering interval for f : I → I if the intervals J, f (J), . . . are pairwise
disjoint and the images f n(J) do not converge to a periodic attractor when n → ∞. De Melo, van
Strien and Martens [15] proved that, if f : I → I is a C2 map with non-flat critical points then f has
no wandering interval. Recall also that the Lebesgue measure is said to be ergodic for f : J → J, if
for each X ⊂ J such that f−1(X) = X, one of the sets X or {X have full Lebesgue measure.

Theorem 3.2. Let f : I → I be a C3 map without wandering intervals and with all the periodic points
repelling (i.e, f does not have either attracting or neutral periodic points). Then:

(i) the set of preimages of the critical set C is dense in I.
Moreover, if the map f is multimodal then:

(ii) every non-wandering critical point is approximated by periodic points;
(iii) if the critical points are non-flat: there are finitely many forward invariant sets X1, . . . ,Xk such

that ∪B(Xi) has full measure in I, and f|B(Xi) is ergodic with respect to the Lebesgue measure (here,
B(Xi) = {y;ω(y) = Xi} is the basin of Xi). In the unimodal case we have k = 1, so f is ergodic with
respect to Lebesgue measure.

The proof of item (i) follows from standard arguments. For item (ii), see [25]. The proof of item
(iii) is contained in the proof of Theorem E of [20].

On our Theorem B we adapt some tools used on one dimensional dynamics: given a smooth
map f : I0 → I0 and x ∈ I0, for every n ∈N, let Tn(x) be, the maximal interval containing x where f n

is a diffeomorphism. Let rn(x) be the length of the smallest component of f n(Tn(x)) \ f n(x). Koebe
Principle guarantees distortion bounds in the orbit of a point x, if the respective rn(x) are not too
small. Of course, a lower bound on rn(x) implies that the images of the monotonicity intervals are
not too small. This gives some idea of the importance of the result of Theorem B.

3.2. Partial hyperbolicity, slow recurrence. We call a C1 mapping ϕ : M → M partially hyperbolic
endomorphism if there are constants 0 < a < 1, C > 0 and a continuous decomposition of the
tangent bundle TM = Ec

⊕ Eu such that:
(a) ||Dϕn

|Eu(z)|| > C−1a−n

(b) ||Dϕn
|Ec(z)|| < Can

||Dϕn
|Eu(z)||

for all z ∈ M and n ≥ 0. The subbundle Ec is called central and the Eu is called unstable. Observe
that we do not ask invariance of the subbundles. For the skew-product maps that we consider, the
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central subbundle is given by the vertical direction. The unstable one is given by the horizontal
direction. Notice that the partial hyperbolicity property in our skew-product context means that,
for all (θ, x) ∈ T1

× I0, ∏n−1
i=0 |∂x f (ϕi(θ, x))|
|∂θgn(θ)|

≤ Can. (3.1)

Let us remark that in the condition (F2) of Theorem A we may put distvert(z,C )γ (with γ > 1) instead
of distvert(z,C ), if we had a better domination for ϕ, namely, if for all (θ, x) ∈ T1

× I0,∏n−1
i=0 |∂x f (ϕi(θ, x))|γ

|∂θgn(θ, x)|
≤ Can.

Finally, recall that the condition of slow recurrence to the critical set C (see [4, Equation (6)]) means
that given δ > 0, there exists ε > 0 such that for Lebesgue almost every x ∈M

lim sup
n→∞

1
n

n−1∑
j=0

− log distδ(ϕ j(x),C ) ≤ ε,

where distδ(ϕ j(x),C ) = dist(ϕ j(x),C ) if dist(ϕ j(x),C ) < δ and distδ(ϕ j(x),C ) = 1 otherwise.

4. C     

Here we prove Theorem B. In the sequel we introduce some definitions and state results whose
proofs are left to the end of the section. Theorem B follows from these results.

4.1. Proof of Theorem B. We begin by introducing some sets useful for the proof of the theorem.
Recalling the definitions in subsection 2.2, for every n ∈N and δ > 0 we denote by,

An
(
{ fk}, δ

)
:=

{
x ∈ I0 ;

1
n

n∑
i=1

ri(x) < δ2, rn(x) > 0
}
, (4.1)

and given λ > 0, we define for n ∈N ,

Yn
(
{ fk}, λ

)
:=

{
x;

1
n

log |D f n(x))| > λ
}
. (4.2)

When it does not lead to confusion, we denote these sets by An(δ) and Yn(λ). In fact, we will do it
in all this section.

It is clear that (2.5) holds (for ς = δ2) for Lebesgue almost every x ∈ H, if |∩n≥N ({An(δ)∩Yn(λ))∩H|
converges to |H|, when N → ∞ (where |B| denotes the Lebesgue measure of B and {B denotes the
complement set of B). We claim that, in effect, this happens. Indeed, for every N ∈N, it holds

H ∩

⋂
n≥N

Yn(λ)

 ∩{
⋃

n≥N

An(δ) ∩ Yn(λ)

 ⊂H ∩

⋂
n≥N

{An(δ) ∩ Yn(λ)

 .
Since (2.2) holds for all x ∈ H, |H ∩ (∩n≥NYn(λ)) | converges to the Lebesgue measure of H. Thus, to
prove our claim we just need to prove that | ∪n≥N An(δ)∩Yn(λ)| converges to zero. For this purpose
we will state the following result which is the main lemma for proving Theorem B.

Lemma 4.1. Let { fk} be a C1-uniformly equicontinuous and C1-uniformly bounded sequence of smooth maps
fk : I0 → I0 for which p = supk #Ck < ∞. Then, given λ > 0, there exist δ > 0 such that

|An
(
{ fk}, δ

)
∩ Yn

(
{ fk}, λ

)
| ≤ |I0| exp(−nλ/2) (4.3)

for n big enough. Moreover, δ depends only on λ, the modulus of continuity (2.3), the uniform bound Γ in
(2.4) and the uniform bound p for the number of critical points.
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Proof that Theorem B follows from Lemma 4.1. As we have remarked, Lemma 4.1 clearly implies that⋃
N∈N

⋂
n≥N

{An(δ) ∩ Yn(λ)

has full Lebesgue measure in H. Hence, (2.5) holds for ς = δ2, where δ is the constant found on
Lemma 4.1. This concludes the proof of Theorem B. �

4.2. Connected components of the set An(δ) . The proof of Lemma 4.1 relies on bounding the
number of connected components of the set An(δ) whose intersection with Yn(λ) is non-empty. We
define a family of sets related to these components. It seems easier to deal and to count the elements
of this family than the components of An(δ), and it will be enough for our purposes.

For δ > 0, ai ∈ {0, 1} for i = 1, 2, . . . ,n,

Cδ(a1, a2, . . . , an) := {x ∈ I0 ; ri(x) ≥ δ if ai = 1, 0 < ri(x) < δ if ai = 0}

Note that every connected component of Cδ(a1, . . . , as, as+1) is contained in a connected component
of Cδ(a1, . . . , as). Moreover, every connected component of Cδ(a1, . . . , as) is a union of connected
components (with its boundaries) of Cδ(a1, . . . , as, as+1). Also note (recall the definition of Ti(x) in
subsection 2.2) that for every connected component I of Cδ(a1, . . . , as), we have I ⊂ Ts(x) for all x ∈ I.

Given x ∈ I0 and n ∈ N, if f i(x) < Ci for 0 ≤ i < n, we can associate to it a sequence {ai(x)}ni=1,
according to the last definition, in a natural way:

ai(x) =

0 if 0 < ri(x) < δ
1 if ri(x) ≥ δ

.

For this sequence the inequality (a1(x) + . . . + an(x))δ ≤
∑n

i=1 ri(x) is satisfied. In particular, for every
x ∈ An(δ), the associated sequence {ai(x)}ni=1 is such that a1(x) + . . . + an(x) < δn. Therefore, if we
define

Cn(δ) :=
⋃

a1+...+an<δn

Cδ(a1, . . . , an),

we conclude that An(δ) ⊂ Cn(δ).
But in fact, we are interested on the connected components of An(δ) which intersect the set Yn(λ).

We will say that a connected component J of An(δ) is a connected component of A′n(δ) if J∩Yn(λ) , ∅.
Analogously we will say that a connected component I of Cδ(a1, a2, . . . , an) is a connected component
of C′δ(a1, a2, . . . , an) if I ∩ Yn(λ) , ∅.

We can associate to each connected component of A′n(δ), a connected component of C′δ(a1, a2, . . . , an),
where a1 + a2 + . . . + an < δn: for a connected component J of A′n(δ), there exist a1, . . . , an (such that
a1 +a2 + . . .+an < δn) and a connected component I of C′δ(a1, a2, . . . , an), for which J∩I , ∅. Indeed, we
can consider ai = ai(x) (1 ≤ i ≤ n) for x ∈ J∩Yn(λ), and I the connected component of C′δ(a1, a2, . . . , an)
which contains x. Thus, we associate to J the component I.

We would like to bound the number of connected components of A′n(δ) by the number of con-
nected components of C′δ(a1, a2, . . . , an), varying a1, . . . , an such that a1 + a2 + . . . + an < δn. But every
connected component of C′δ(a1, a2, . . . , an) (with a1 + a2 + . . .+ an < δn) could intersect more than one
connected component of A′n(δ). By this reason we define the following set:

A′′n (δ) :=
⋃

J′∈A′n(δ)

J′′,

where

J′′ := J′ ∪

⋃
a1+...+an<δn

{connected components of Cδ(a1, . . . , an) which intersect J′ ∩ Yn(λ)}
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Obviously, a connected component of A′′n (δ) could contain more than one connected component of
A′n(δ). However, the restriction of f n to every connected component of A′′n (δ) is a diffeomorphism.
Using this fact, we will show in the proof of Lemma 4.1 that in order to obtain (4.3), it is enough to
estimate the number of connected components of A′′n (δ).

Since every component of A′′n (δ) intersect at least one component of C′δ(a1, . . . , an), we conclude
that

# A′′n (δ) ≤
∑

# C′δ(a1, . . . , an) (4.4)

where the sum is over all a1, . . . , an such that a1 + . . . + an < δn, and #X denotes the number of
connected components of X.

As we have said, Lemma 4.1 is a consequence of the following result, which gives an estimate of
the number of connected components of A′′n (δ) .

Lemma 4.2. Given λ > 0, there exists δ > 0 such that the number of connected components of A′′n (δ) is less
than exp(nλ/2). Moreover, δ depends only on λ, the modulus of continuity (2.3), the uniform bound Γ in
(2.4) and the uniform bound p for the number of critical points.

4.3. Consequences of expansion and continuity. For the proof of Lemma 4.2 we will use several
results that we state now. First we give some notations. Given ε > 0, for every k ≥ 0, we call VεCk a
neighborhood of Ck defined as the union of all B(x, ε) (ball centered in x of ratio ε) varying x ∈ Ck.
In order to simplify the notation we say that f j(x) ∈ VεC if f j(x) ∈ VεC j for any j ∈ N. The next
lemma asserts that for points in Yn(λ), the frequency of visits to the neighborhood VεC can be made
arbitrarily small, if ε is chosen small enough.

Lemma 4.3. Given γ > 0, there exists ε > 0, such that for x ∈ Yn(λ),

1
n

n−1∑
j=0

χVεC
( f j(x)) < γ.

Moreover, ε does not depend on n, but it depends on λ, on the modulus of continuity of { fk} and on the
uniform bound of {D fk}.

Proof. Using the fact that the sequence { fk}k≥0 is C1-uniformly equicontinuous, we conclude that
given ζ > 0, there exists ε = ε(ζ) such that

|x − Ck| < ε implies |D fk(x)| < ζ for all k ≥ 0. (4.5)

On the other hand, since { fk}k≥0 is C1-uniformly bounded, |D fk(x)| ≤ Γ for all k ≥ 0 and x ∈ I0. Thus,
log |D f j( f j(x))| < log ζ if f j(x) ∈ VεC and log |D f j( f j(x))| ≤ log Γ otherwise.

Since λn <
∑n−1

j=0 log |D f j( f j(x))| for x ∈ Yn(λ) and log ζ → −∞ when ζ → 0, there must exist ε as
stated. �

Corollary 4.1. Assume that for Lebesgue almost every x ∈ I0

lim inf
n→∞

1
n

log |D f n(x))| ≥ λ > 0.

Then, given γ > 0, there exists ε > 0, such that for Lebesgue almost every x ∈M,

lim sup
n→∞

1
n

n−1∑
j=0

χVεC
( f j(x)) < γ.

Let us denote for i, j ∈N, and x ∈ I0,

f j
i (x) = fi+ j−1 ◦ . . . fi+1 ◦ fi(x)
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and f 0
0 (x) = x. Notice that f j

0(x) = f j(x) for j ≥ 0 and x ∈ I0. Again by the C1-uniform equicontinuity
of the sequence { fk}, we have the following property.

Lemma 4.4. Given ε > 0 and l ∈N, there exists δ = δ(l) such that

|x − y| ≤ 2δ implies | f j
i (x) − f j

i (y)| < ε (4.6)

for all i ≥ 0 and 0 ≤ j ≤ l. Moreover, δ just depends (on l, ε and) on the modulus of continuity of { fk}.

Remark 4.1. When l → ∞ then δ(l) → 0. Observe that we also have: given ε > 0 and δ > 0, there
exists l = l(δ) ∈N such that (4.6) holds for 0 ≤ j ≤ l.

From now on, #{I ⊂ Cδ(a1, . . . , an); I satisfies the property P} denotes the number of connected
components of Cδ(a1, . . . , an) which satisfy the property P.

In order to count the components whose intersection with Yn(λ) is non-empty, let us decompose
this set in a convenient way. Given ε > 0, m ≤ n, {t1, . . . , tm} ⊂ {0, 1, . . . ,n − 1}, we define

Yn,ε(t1, . . . , tm) = {x ∈ Yn(λ); f j(x) ∈ VεC if and only if j ∈ {t1, . . . , tm}}

By Lemma 4.3 we conclude that given γ > 0, there exists ε > 0 such that

Yn(λ) = ∪
γn
m=0 ∪t1,...,tm Yn,ε(t1, . . . , tm) (4.7)

where the second union is over all subsets {t1, . . . , tm} of {0, 1, . . . ,n − 1}. This together with (4.4)
yields,

#A′′n (δ) ≤
∑

a1,...,an

∑
t1,...,tm

#{I ⊂ Cδ(a1, . . . , an); I ∩ Yn,ε(t1, . . . , tm) , ∅} (4.8)

where the first sum is over all a1, . . . , an such that a1 + . . . + an < δn and the second one is over all
subsets {t1, . . . , tm} ⊂ {0, 1, . . . ,n − 1}with m < γn.

4.4. Connected components of Cδ(a1, . . . , as) . To prove Lemma 4.2 we just need to bound the
double sum in (4.8). For this we will show some claims related to the number of connected
components of the sets Cδ(a1, . . . , an). Recall that p is the maximum number of elements in any Ck
(for k ≥ 0). Given I ⊂ I0 and s ∈N, we say f s(I) ∩ C = ∅ (resp. , ∅) if f s(I) ∩ Cs = ∅ (resp. , ∅).

Claim 4.1. For any a1, a2, . . . , as with a j ∈ {0, 1} for all j,

#Cδ(a1, . . . , as, 0) + #Cδ(a1, . . . , as, 1) ≤ 3(p + 1)#Cδ(a1, . . . , as)

Claim 4.2. Let s,n ∈N and J be a component of Cδ(a1, . . . , as, 0). If f s+i(J) ∩ C = ∅ for 1 ≤ i ≤ n, then

#{I ⊆ Cδ(a1, . . . , as, 0i+1), I ⊆ J} ≤ i + 1.

for 1 ≤ i ≤ n, where 0i+1 means that the last i + 1 terms are equal to 0.

To bound the number of connected components whose intersection with
Yn,ε(t1, . . . , tm) is non-empty, we have the following claim.

Claim 4.3. Let l ∈ N and ε > 0 be constants and let δ = δ(l) be the number given by Lemma 4.4. For any
a1, . . . , as with a j ∈ {0, 1}, {t1, . . . , tm} ⊂ {0, 1, . . . ,n− 1}. If {s + 1, . . . , s + i} ∩ {t1, . . . , tm} = ∅ and i ≤ l, then

#{I ⊆ Cδ(a1, . . . , as, 0i+1), I∩Yn,ε(t1, . . . , tm) , ∅} ≤ (i+1)#{I ⊆ Cδ(a1, . . . , as, 0), I∩Yn,ε(t1, . . . , tm) , ∅}.

Proof of Lemma 4.2. We prove the lemma assuming the claims above. We have basically four cons-
tants, namely, δ, γ, ε, l. It is very important the order in what they are chosen. First, we choose l ∈N
according to the equation (4.12), then we choose γ > 0 according to (4.13). Next, we find ε > 0,
using Lemma 4.3, in such a way that (4.7) holds. Finally, given ε and l, let δ > 0 be the constant
given by Lemma 4.4 and satisfying (4.14).
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Given m < n, δ > 0 and ε > 0, let us consider a1, . . . , an with ai ∈ {0, 1} (such that a1+a2+. . .+an < δn)
and {t1, . . . , tm} ⊂ {0, . . . ,n−1}. We can decompose the sequence a1 . . . an in maximal blocks of 0’s and
1’s. We write the symbol ξ in the j-th position if a j = 1 or, a j = 0 and j = tk for some k ∈ {1, . . . ,m}.
In this way we have,

a1a2 . . . an = ξi1 0 j1ξi2 0 j2 . . . ξih 0 jh (4.9)

with 0 ≤ ik, jk ≤ n for k = 1, . . . , h,
∑h

k=1(ik + jk) = n and
∑h

k=1 ik < m + δn.
Lets us assume that a1, . . . , an are as in (4.9). Let l, ε and δ be as in Lemma 4.4. Using claims 4.1

and 4.3 we have,

#{I ⊂Cδ(a0, . . . , an), I ∩ Yn,ε(t1, . . . , tm) , ∅} ≤

≤ (3(p + 1)(l + 1)
jh
l +1(3(p + 1))ih ) . . . (3(p + 1)(l + 1)

j1
l +1(3(p + 1))i1 )

≤ (3(p + 1))
∑h

k=1 ik (3(p + 1))h(l + 1)
∑h

k=1 jk
l +h

≤ (3(p + 1))m+δn+h(l + 1)
n
l +h.

Let us remark some useful properties about the decomposition (4.9):

• if m < γn then, since a1 + a2 + . . . + an < δn, we have that
∑h

k=1 ik < γn + δn;
• if a1 + a2 + . . . + an < δn and m < γn, the number of blocks ζit 0 jt is bounded by the sum of

these quantities, i.e, h < (δ + γ)n + 1.

Therefore, if a1 + a2 + . . .+ an < δn and m < γn we conclude from the inequality above that for n big
enough,

#{I ⊂ Cδ(a1, . . . , an), I ∩ Yn,ε(t1, . . . , tm) , ∅}

≤ (3(p + 1))γn+δn(3(p + 1))2(δ+γ)n(l + 1)
n
l +2(δ+γ)n

≤ exp(n ψ0(l, γ, δ))
(4.10)

where ψ0(l, γ, δ) = 3(δ + γ) log(3(p + 1)) + 2(δ + γ + 1
l ) log(2l).

On the other hand, by the Stirling’s formula, the number of subsets of {0, 1, . . . ,n − 1} of size less
than γn is bounded by exp(n(ψ1(γ))) and ψ1(γ) → 0 when γ → 0. Therefore, from this fact and
(4.10), we conclude∑

t1,...,tm

#{I ⊂ Cδ(a1, . . . , an); I ∩ Yn,ε(t1, . . . , tm) , ∅} ≤ exp(n ψ2(l, γ, δ)) (4.11)

where the sum is over all subset {t1, . . . , tm} ⊂ {0, 1, . . . ,n−1}with m < γn, andψ2(l, γ, δ) = ψ0(l, γ, δ)+
ψ1(γ).

Once again, using the Stirling’s formula we conclude that the number of sequences a1, a2, . . . , an
of 0’s and 1’s such that a1 + a2 + . . . + an < δn is less or equal than exp(nψ3(δ)) with ψ3(δ)→ 0 when
δ→ 0. Hence, by (4.8) and (4.11), we have that whenever γ and ε satisfy (4.7),

#A′′n (δ) ≤ exp(n ψ4(l, γ, δ))

where

ψ4(l, γ, δ) = 3(δ + γ) log(3(p + 1)) + 2
(
δ + γ +

1
l

)
log(2l) + ψ1(γ) + ψ3(δ).

Hence, we have to choose l such that
2
l

log(2l) <
λ
14

(4.12)
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and, let γ > 0 be such that

2γ log(2l) <
λ
14

3γ log(3(p + 1)) <
λ
14

ψ1(γ) <
λ
14


. (4.13)

Next, we find ε > 0, using Lemma 4.3. Finally, given ε and l, let δ > 0 be the constant given by
Lemma 4.4 and satisfying

2δ log(2l) <
λ
14

3δ log(3(p + 1)) <
λ
14

ψ3(δ) <
λ
14


. (4.14)

With this choice, ψ4(l, γ, δ) ≤ λ
2 . Hence the first part of Lemma 4.2 is proved, assuming the three

claims. Now we will prove the claims. �

4.5. Proof of claims, Lemmas 4.1 and 4.2.
Proof of Claim 4.1. Let I be a connected component of Cδ(a1, . . . , as).

Case 1. f s(I)∩C = ∅. In this case, I is divided at most in 3 connected components of Cδ(a1, . . . , as, 0)∪
Cδ(a1, . . . , as, 1). Indeed, since I ⊂ Ts+1(x) for every x ∈ I, if I′ ⊂ I is a component of Cδ(a1, . . . , as, 0),
it can not exist one component of Cδ(a1, . . . , as, 1) at each side of I′. Hence, the following situations
can occur:

i) There are two components of Cδ(a1, . . . , as, 0) in I, each of them has one extreme of I, and
between them there is one component of Cδ(a1, . . . , as, 1).

ii) There is exactly one component of Cδ(a1, . . . , as, 0) in I. In this case there is at most one
component of Cδ(a1, . . . , as, 1) in I.

iii) There are no components of Cδ(a1, . . . , as, 0) in I. In this case I is a component of Cδ(a1, . . . , as, 1).
Case 2. f s(I) ∩ C , ∅. First I is divided at most in p + 1 components, each one with at least one

boundary which goes by f s to C . After that, following the same arguments used in case 1, we
conclude that each one of these components is divided at most in 3 components.

Proof of Claim 4.2. The proof will be by induction on i. For i = 1, it follows by the proof of
Claim 4.1. Let us assume that the statement is true for j ≤ i − 1. Let I1, . . . , It be the compo-
nents of Cδ(a1, . . . , as, 0(i−1)+1) contained in I. By the induction hypothesis t ≤ i and we assume that
f i(I) ∩ C = ∅. We claim that there exist at most one k ∈ {1, . . . , t} such that Ik is divided in two com-
ponents of Cδ(a1, . . . , as, 0i+1) (the others Ik’s generate one or none component of Cδ(a1, . . . , as, 0i+1)).
Indeed, if Ik1 and Ik2 are divided in two components of Cδ(a1, . . . , as, 0i+1), let I+

k1
and I−k1

be the compo-
nents of Cδ(a1, . . . , as, 0i+1) and let Jk1 be the component of Cδ(a1, . . . , as, 0i, 1) contained on Ik1 . Anal-
ogously, let I+

k2
, I−k2

, Jk2 be the corresponding components for Ik2 . Two of the I∗k j
( j ∈ {1, 2}, ∗ ∈ {+,−})

are between Jk1 and Jk2 . This is a contradiction because rs+i+1(x) < δ for x ∈ I∗k j
and rs+i+1(x) ≥ δ for

x ∈ Jk1 ∪ Jk2 . Hence, there are at most i + 1 components of Cδ(a1, . . . , as, 0i+1) contained in J. �

Proof of Claim 4.3. Let I be a connected component of Cδ(a1, . . . , as, 0). Then we have | f s+1(I)| ≤ 2δ,
and by Lemma 4.4, | f s+i(I)| < ε for i ≤ l + 1. If f s+ j(I) ∩ C , ∅ for some j ≤ i, then for all x ∈ I,
f s+ j(x) ∈ VεC . Since {s + 1, . . . , s + i} ∩ {t1, . . . , tm} = ∅, then I ∩ Yn,ε(t1, . . . , tm) = ∅.
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Hence, if I ∩ Yn,ε(t1, . . . , tm) , ∅ and {s + 1, . . . , s + i} ∩ {t1, . . . , tl} = ∅, then f s+ j(I) ∩ C = ∅ for all
1 ≤ j ≤ i. The result follows using Claim 4.2. �

End of proof of Lemma 4.2. We have proved the existence of δ (given λ) such that the number of
connected components of A′′n (δ) is less than exp(nλ/2). On the other hand, observe that the choice
of δ is given fundamentally by Lemmas 4.3 and 4.4. Namely, δ depends on: the constant λ in the
definition of Yn(λ); the uniformity of ε (given ζ > 0) on the equation (4.5); the uniform boundedness
of |D fk| on the proof of Lemma 4.3; the uniformity of δ (given ε and l) on the equation (4.6); and the
uniform boundedness of the number of critical points for fk, where k ≥ 0. So, δ depends only on the
modulus of continuity (2.3), the uniform bound Γ in (2.4) and the uniform bound p for the cardinal
of the set of critical points, as stated. This concludes the proof of Lemma 4.2. �

Finally we will prove that Lemma 4.1 follows as a consequence of Lemma 4.2.

Proof of Lemma 4.1. Note that if J′′ is a connected component of A′′n (δ) then f n restricted to J′′ is
a diffeomorphism onto its image. Since the set Yn(λ) is an open subset of I0, there exist at most
countably many components {Ik}k∈N of Yn(λ) ∩ An(δ) on J′′. For all k ∈N,

|Ik| < (exp(−nλ))| f n(Ik)|,

since for every x ∈ Ik, |D f n(x)| > exp(λn). Adding these inequalities (k ∈N),

| ∪k Ik| < (exp(−nλ))
∑

k

| f n(Ik)| ≤ (exp(−nλ))| f n(J′′)|.

Then, since | f n(J′′)| is bounded by |I0|,

|(An(δ) ∩ J′′) ∩ Yn(λ)| < |I0| exp(−nλ)

for every connected component J′′ of A′′n (δ). To finish the proof of this lemma it is enough to use
the estimate of the number of components of A′′n (δ) given by Lemma 4.2. The statement about the
dependence of δ follows from the analogous conclusion on Lemma 4.2. �

5. C  T B

We prove Corollaries 2.1 and 2.2. Recall that this last result deals with only one single interval
map.

5.1. Proof of Corollary 2.1. Since (2.6) holds for all x ∈ H, H ⊂ ∪k≥nYn(λ) (for any n ∈N). Thus∣∣∣∣∣∣∣
⋂

k≥n

Ak(δ) ∪{Yk(λ)

 ∩H

∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
⋂

k≥n

Ak(δ) ∪{(Yk(λ))

 ∩⋃
k≥n

Yk(λ)

∣∣∣∣∣∣∣ ≤

∞∑
k=n

|Ak(δ) ∩ Yk(λ)|

for any n ∈N. By Lemma 4.1, for any ε > 0, the last sum is less than ε if n ≥ N(ε). This implies that
|(∩n≥N(ε) ∪

∞

k=n {Ak(δ) ∩ Yk(δ)) ∩H| ≥ |H| − ε. This means that the setx ∈ H; lim sup
n→∞

1
n

n∑
i=1

ri(x) ≥ δ2


has Lebesgue measure greater than |H|−ε. Since this can be done for any ε > 0, the corollary follows
with ς = δ2. �
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5.2. Proof of Corollary 2.2. The proof that we give is similar to the proof by de Melo and van Strien
[14, Theorem V.3.2] for Keller’s theorem. We also construct a Markov map F induced by f .

Proof of Corollary 2.2. By Theorem 3.2 (item (iii)) and Corollary 2.1 (applied to fn = f for n ≥ 0),

X =

x ∈ I0; lim sup
n→+∞

1
n

n∑
i=1

ri(x) ≥ ς


has full Lebesgue measure for some ς > 0.

Let us consider a partition P of I0 into (a finite number of) subintervals, with norm less than ς/4
and such that the set of extremes of such subintervals is forward invariant. The existence of this
partition follows from Theorem 3.2 (items (i) and (ii)). Let ς′ be the minimum of the lengths of the
elements of P. For every x ∈ I0, we denote by J(x) the subinterval of the partition which contains x.
And for every J ∈ P, let us denote by J− (resp. J+) the rightmost (resp. leftmost) subinterval of the
partition next to J. We choose N ∈ N such that the intervals of monotonicity of f n have length less
than ς′/4, for n ≥ N.

Given x ∈ X, there are infinitely many k′s such that rk(x) > ς/2. Let k(x) ≥ N be minimal such that

f k(x)(Tk(x)(x)) ⊃ J( f k(x)(x)) ∪ J( f k(x)(x))+
∪ J( f k(x)(x))−, (5.1)

and consider I(x) ⊂ Tk(x)(x) such that f k(x)(I(x)) = J( f k(x)(x)).Obviously, for every y ∈ I(x), k(y) ≤ k(x);
and using the forward invariance of the set of extremes of the subintervals of P, we conclude
that in fact, k(y) = k(x) and I(y) = I(x). Hence, we can define F : ∪x∈XI(x) → ∪J∈P J, by F|I(x) =

f k(x)
|I(x). We claim that this map is Markov (recall Definition 3.1). Indeed, (M3) is satisfied because

|F(I(x))| = |J(F(x))| ≥ ς′. Since I(x) does not contain extremes of subintervals of P in its interior, I(x)
is completely contained on some element of P. This implies that (M2) holds.

By Theorem 3.1, B( f k(x),T,M) ≥ K′ for any M ⊂ T ⊂ Tk(x). On the other hand, by (5.1), f k(x)(Tk(x)(x))
contains a neighborhood τ-scaled of f k(x)(I(x)), where τ = 4ς′/ς. Hence, by Koebe Principle (see [14,
Theorem IV.1.2]), F has bounded distortion on I(x). It remains to show bounded distortion for the
iterates of F. Given x ∈ X and s ∈N; let m(s, x) ∈N be such that Fs(x) = f m(s,x)(x) and let Is(x) be the
domain of Fs containing x. By the choice of N, since m(s, x) ≥ N, Tm(s,x)(x) is contained in at most
two elements of P. Using this and (5.1) we can prove inductively that for x ∈ X and s ≥ 1 ,

f m(s,x)(Tm(s,x)(x)) ⊃ J( f m(s,x)(x)) ∪ J( f m(s,x)(x))+
∪ J( f m(s,x)(x))−.

So, (M1) holds and F is a Markov map as we claimed. Hence, there exists an ergodic absolutely
continuous invariant measure ν for F (see [14, Theorem V.2.2]). This measure induces an absolutely
continuous invariant measure for f if

∑
∞

i=1 k(i)ν(Ii) < ∞ (see [14, Lemma V.3.1]). Assume by
contradiction that

∑
∞

i=1 k(i)ν(Ii) = ∞. By Birkhoff’s Ergodic Theorem,

ns(x)
s

=
k(x) + k(F(x)) + . . . + k(Fs(x))

s
→

∫
k(x)dν(x) =

∞∑
i=1

k(i)ν(Ii) = ∞

for ν-almost every point x. For every x ∈ X and i ∈ N, if ni(x) ≤ n < ni+1(x) and rn(x) > ς/2, then
n − ni(x) < N, since in this case f n(Tn(x)) covers one element of the partition and its two neighbors.
Thus we have for ns(x) ≤ n < ns+1(x),

1
n

n∑
i=1

ri(x) =
1
n

∑
i,ri(x)>ς/2

ri(x) +
1
n

∑
i,ri(x)≤ς/2

ri(x) <
N(s + 2)

ns(x)
|I0| + ς/2

which implies that lim supn→∞ 1/n
∑n

i=1 ri(x) < ς. Since it holds for ν-almost every x, it contradicts
that X has full Lebesgue measure. Hence there exists absolutely continuous invariant measure for f .

�
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6. H- 

In this section we develop some preparatory tools for the proof of Theorem A. The arguments
are independent from the previous sections. We prove a similar behavior of points with rk ≥ σ (for
some σ > 0) and points with k being one of its (σ′, δ)-hyperbolic times. See Lemma 5.2 of [4] and
Proposition 6.3 below. Because of this, if rk(z) ≥ σ, we say k is a σ-hyperbolic-like time for z ∈ M. We
need to adapt some notations from subsection 2.2 to the setting defined by Theorem A.

For every z = (θ, x) ∈ T1
× I0, let us denote by Ti(θ, x) (or Ti(z)) the function Ti

(
{ fn}, x

)
defined

on subsection 2.2, considering the sequence { fn}n≥0 given by fn = fgn(θ) for all n ≥ 0. We proceed
analogously for Li(θ, x) (or Li(z)), Ri(θ, x) (or Ri(z)) and ri(θ, x) (or ri(z)). We also define

Ti(z) := {θ} × Ti(z);
Li(z), Ri(z) := {θ} × Li(z), {θ} × Ri(z);

for every z = (θ, x) ∈ T1
× I0 and every i ∈ N. In all the results below we assume that we are in the

conditions of Theorem A.

6.1. Horizontal behavior of dominated skew-products. One important property of our mappings
due to the domination condition is the preservation of the nearly horizontal curves. This means
that the iterates of nearly horizontal curves are still nearly horizontal. We state it in a precise way.

Definition 6.1. We call X̂ ⊂ T1
× I0 a t−curve if there exists J ⊂ T1 and X : J → I0 such that:

X̂ = graph(X), X is C1 and |X′(θ)| ≤ t for every θ ∈ J.

There exists an analogous definition given by Viana (see [22], section 2.1), but he also asks the
second derivative to be less than t. He calls the curves with these properties admissible curves. In his
setting he proves that the admissible curves are preserved under iteration.

Proposition 6.1. There exist α > 0 and n0 ∈N such that, if X̂ is an α-curve and ϕn(X̂) is the graph of a C1

map, then ϕn(X̂) is an α-curve, provided that n ≥ n0. Moreover, there exists C1 = C1(α) such that if X̂ is a
α-curve, then ϕn(X̂) is a C1-curve, for all n, provided that ϕn(X̂) is a graph.

Proof. Let X̂ = {(θ,X(θ));θ ∈ J} be a C1 curve with |X′(θ)| ≤ α for every θ ∈ J. Let us define
inductively for n ≥ 1, Xn(gn(θ)) = f (gn−1(θ),Xn−1(gn−1(θ))), where X0 = X. Thus we can prove by
induction that ϕn(θ,X(θ)) = (gn(θ),Xn(gn(θ))), for n ≥ 1.

Proceeding similarly as in [22, Lemma 2.1], using the partial hyperbolicity (see inequality (3.1))
and considering L = sup(∂θ f/∂θg), we have that

|X′n(gn(θ))| ≤ L +

n−1∑
k=1

LC(a)k + Canα ≤ LCA + Canα

for n ≥ 1, where A =
∑
∞

k=0 ak. Hence, for some α and n0 big enough, |X′n(gn(θ))| ≤ α for all n ≥ n0. �

Since all the iterates of α-curves are almost horizontal then their lengths are given basically by
the derivative of ϕ in the horizontal direction. We state this in the following result.

Proposition 6.2. Let C1 = C1(α) be the constant found on Proposition 6.1. There exists C2 = C2(α) > 0,
such that if X̂ = {(θ,X(θ));θ ∈ J} and ϕk(X̂) = {(θ,Xk(θ));θ ∈ Jk} are graphs with |X′|, |X′k| ≤ C1, then for
all z,w ∈ ϕk(X̂),

distX̂(ϕ−k(z), ϕ−k(w)) ≤ C2|∂θ(gk(θk)|−1 distϕk(X̂)(z,w)

for some θk ∈ J, where distA is the distance induced by the metric over the curve A.
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Proof. Let us consider the canonical norm in the tangent space, i.e, ||(v1, v2)|| = (|v1|
2 + |v2|

2)
1
2 , where

v = (v1, v2) ∈ Tz(T1
× I0), v1 ∈ TθT1, v2 ∈ TxI0 and z = (θ, x).

We denote the tangent vector to the curve X̂ at the point (θ,X(θ)) by (v1(θ), v2(θ)). Let us consider
θz, θw ∈ J such that ϕk(θz,X(θz)) = z and analogously for w. Then, since |v2(θ)|/|v1(θ)| ≤ C1,

distϕk(X̂)(z,w) =

∫ θw

θz

||Dϕk(θ,X(θ))(v1(θ), v2(θ))||dθ ≥
∫ θw

θz

|∂θgk(θ)||v1(θ)|dθ ≥

≥
1

(1 + (C1)2)
1
2

∫ θw

θz

|∂θgk(θ)|(|v1(θ)|2 + |v2(θ)|2)
1
2 dθ

≥
1

(1 + (C1)2)
1
2

|∂θgk(θk)|distX̂(ϕ−k(z), ϕ−k(w))

where θk is such that |∂θgk(θk)| ≤ |∂θgk(θ)| for θ ∈ [θz, θw]. This means that we may take C2 =

(1 + (C1)2)
1
2 . �

6.2. Properties of the hyperbolic-like times. In the case that k is a hyperbolic time for z, there is
contraction for all the inverse iterates in a certain neighborhood of ϕk(z). In the case of hyperbolic-
like times this property is not necessarily verified. However, it holds the following result

Proposition 6.3. Given σ > 0, there exists δ1 > 0 such that for z ∈ M with rk(z) ≥ σ for some k ∈ N,
there exists a neighborhood Vk(z) of z such that ϕk : Vk(z) → Bδ1 (ϕk(z)) is a diffeomorphism with bounded
distortion (it depends on σ, but it is independent of z and k).

Proof. Let z = (θ, x) ∈ T1
× I0 for some θ ∈ T1 and x ∈ I0. Let Tk(z) be the maximal interval such that

ϕ j(Tk(z)) ∩ C = ∅ for all j < k and let Lk(z), Rk(z) be the components of Tk(z) \ {z}. By hypothesis
|ϕk(Lk(z))| ≥ σ and |ϕk(Rk(z))| ≥ σ. Let us consider Ik(z) ⊂ Tk(z) such that every component
of ϕk(Tk(z)) \ ϕk(Ik(z)) has length equal to σ/2. In particular, we have that both components of
ϕk(Ik(z) \ {z}) have length greater or equal than σ/2. By definition of ϕ, we know that the horizontal
component of ϕk(z) is gk(θ). Let us consider η1 > 0 and η2 > 0 such that gk : (θ − η1, θ + η2) →
(gk(θ)− ρ′, gk(θ) + ρ′) is a diffeomorphism. Here ρ′ is a sufficiently small constant whose value will
be made precise in (6.4).

Let Ik(z) be the projection of Ik(z) onto I0. Let us consider the set Bk(z) = (θ−η1, θ−η2)× Ik(z). For
every w = (θ, xw) ∈ Ik(z), we denote by Bw the line joining the points (θ − η1, xw) and (θ + η2, xw).
We denote by B j

w (for j ≤ k) the curve given by the image of Bw under ϕ j, i.e, which satisfies
ϕ j(Bw) = B

j
w. Observe that B0

w = Bw for any w ∈ Ik(z).
In the same way we denote by wk the image under ϕk of the point w = w0 and by T j the set

ϕ j(Tk(z)) (since z and k are fixed along the proof, there is no confusion in omitting in the notation
the dependence of T j on z and k).

Claim 6.1. ϕk : Bk(z)→ ϕk(Bk(z)) is a diffeomorphism.

Proof. We will use the bounded distortion of the map g. Namely, there exists D > 0 such that, if we
have J ⊂ T1 and n ∈N for which gn : J→ gn(J) is a diffeomorphism, then

|∂θgn(θ)|
|∂θgn(ω)|

≤ D (6.1)

for all θ,ω ∈ J. We claim that B j
w ∩ C = ∅ for j < k and for any w ∈ Ik(z).

Recall the constants C, C1, C2 and D, specified in (3.1), Proposition 6.1, Proposition 6.2 and (6.1),
respectively. Let us assume that for every w ∈ Ik(z), |Bk

w| ≤ ρ, where ρ satisfies the conditions



18

C2ρ < (σ/4)(DC)−1 and ρC1 < σ/4. (6.2)

Let us fix w ∈ Ik(z). First, for all j < n, B j
w are C1-curves (see Definition 6.1 and Proposition 6.1). On

the other hand, there exists C2 such that |Bk− j
w | ≤ C2|∂θg j(θ j)|−1

|B
k
w| for some (θ j, x j) ∈ B

k− j
w , where |B|

denotes the arc length of the curve B (see Proposition 6.2).
On the other hand, for j ≤ k, let us denote by Ik− j

w,+ and Ik− j
w,− the connected components of

T
k− j
\ {wk− j

}. By the mean value theorem, we have that |Ik− j
w,+| ≥ (

∏ j−1
i=0 |∂x f (ϕi(ω j, y j))|)−1(σ/2) for

some (ω j, y j) ∈ I
k− j
w ; and |Ik− j

w,−| ≥ (
∏ j−1

i=0 |∂x f (ϕi(ω′j, y
′

j))|)
−1(σ/2), for some (ω′j, y

′

j) ∈ I
k− j
w,−. So, two

cases can occur: (i) |Ik− j
w,+| ≤ |I

k− j
w,−|, or (ii) |Ik− j

w,+| > |I
k− j
w,−|.

Let us assume that we have the case (i) (the other case is totally analogous). Then combining
(3.1) and (6.1), we have

|∂θg j(θ j)|−1 < DC a j

 j−1∏
i=0

∣∣∣∂x f (ϕi(ω j, y j))
∣∣∣
−1

.

From Proposition 6.2, the last inequality and (6.2), we have

|B
k− j
w | ≤ C2 |∂θg j(θ j)|−1 ρ < a j

 j−1∏
i=0

∣∣∣∂x f (ϕi(ω j, y j))
∣∣∣
−1

(σ/4) ≤ a j distvert(wk− j,C )
2

. (6.3)

for w ∈ Ik(z). This equation, and the condition (F2) satisfied by the skew-product, implies that
B

k− j
w ∩ C = ∅ (for every j < n). Therefore the map ϕk : Bk → ϕk(Bk) is a local diffeomorphism.
We claim that the map is injective. Indeed, if there exist (θ1, x1) and (θ2, x2) in Bk such that

ϕk(θ1, x1) = ϕk(θ2, x2) ∈ B, since in the horizontal direction there is expansion (∂θg > 1), it must be
θ1 = θ2. Next, by the differentiability of the functions f (θ, ·), if x1 , x2, there must be at least one
point (θ1, xw) between (θ1, x1) and (θ1, x2) and j < k such that this point is mapped by ϕ j in a critical
point. But this would imply that B j

w ∩ C , ∅ (for some w ∈ Ik(z)), which is a contradiction. Hence
x1 = x2, which implies that the map ϕk : Bk → ϕk(Bk) is injective.

Therefore, if ρ is as in (6.2), Claim 6.1 follows. It just remains to state precisely the value of ρ′.
Given ρ, we choose ρ′ < ρ maximal such that

given J ⊂ T1 interval with length ρ′ and X : J→ I0 a curve with |X′| ≤ C1, (6.4)
the arc length of graph(X) is less or equal than ρ.

where C1 is the constant given in Proposition 6.1. It finishes the proof of the claim.
�

Let us prove now that the transformation of Claim 6.1 has bounded distortion.

Claim 6.2. There exists K1 = K1(σ) > 0 such that for z1, z2 ∈ Ik(z) ⊂ Bk(z),

1
K1
≤
|det Dϕk(z1)|
|det Dϕk(z2)|

≤ K1.

Proof. Let z1 and z2 be points in Ik(z), where z = (θ, x) for some x ∈ I0 and θ ∈ T1. We have that
Ik(z) ⊂ Tk(z) (since Ik(z) ⊂ Tk(z) and these sets are the corresponding projections onto I0). Recall the
notation f k

θ = fgk−1(θ)◦ . . .◦ fg(θ)◦ fθ, where fθ(x) = f (θ, x) for θ ∈ T1 and x ∈ I0. Sinceϕ j(Tk(z))∩C = ∅

for j < k, we have that f k
θ : Tk(z) → f k

θ(Tk(z)) is a C3 diffeomorphism. By the way we have chosen
Ik(z) we know that every component of f k

θ(Tk(z))\ f k
θ(Ik(z)) has length equal to σ/2. Then there

exists κ > 0 (depending only on σ), such that f k
θ(Tk(z)) contains a κ-scaled neighborhood of f k

θ(Ik(z))
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(i.e, both components of f k
θ(Tk(z)) \ f k

θ(Ik(z)) have length ≥ κ|J|). Thus, by Koebe Principle (see [14,
Theorem IV.1.2]), there exists K1 = K1(κ) > 0 such that for y1, y2 ∈ Ik(z),

1
K1
≤
|D f k

θ(y1)|

|D f k
θ(y2)|

≤ K1.

Now, for z1 = (θ, y1) ∈ Ik(z), |det Dϕk(z1)| = |∂θgk(θ)||D f k
θ(y1)|. It finishes the proof. �

Claim 6.3. There exists K2 = K2(σ) > 0 such that for z1 ∈ Ik(z) and z2 in the same horizontal leaf Bz1 of z1,

1
K2
≤
|det Dϕk(z1)|
|det Dϕk(z2)|

≤ K2.

Proof. Using the condition (F2) satisfied by the skew-product, together with (6.1), we conclude∣∣∣∣∣∣log
|det Dϕk(z1)|
|det Dϕk(z2)|

∣∣∣∣∣∣ ≤ log D + B
k∑

j=1

dist(ϕk− j(z1), ϕk− j(z2))
distvert(ϕk− j(z1),C )

and by (6.3), we have ∣∣∣∣∣∣log
|det Dϕk(z1)|
|det Dϕk(z2)|

∣∣∣∣∣∣ ≤ log D + B
k∑

j=1

a j
≤ B′

∞∑
j=1

a j = K′2.

This concludes the proof of the claim. �

Combining Claim 6.2 and Claim 6.3, we get thatϕk : Bk(z)→ ϕk(Bk(z)) has bounded distortion. To
finish the proof of Proposition 6.3, it remains to show that ϕk(Bk) contains Bδ1 (ϕk(z)) for some δ1 > 0.

Recall that z = (θ, x). The image of the horizontal curves of Bk(z), i.e. Bk
w, are C1-curves for

all w ∈ Ik(z) (see Definition 6.1 and Proposition 6.1). Using this fact and (6.2) we conclude that
ϕk(Bk(z)) contains the set

(gk(θ) − ρ′, gk(θ) + ρ′) × ( f k
θ(x) − σ/4, f k

θ(x) + σ/4)

where ρ′ was defined on (6.4) and it does neither depend on the point z, nor on the iterate k.
Hence there exists δ1 > 0 such that Bδ1 (ϕk(z)) ⊂ ϕk(Bk(z)). Considering Vk(z) ⊂ Bk(z) such that
ϕk(Vk(z)) = Bδ1 (ϕk(z)), Proposition 6.3 follows. �

6.3. Neighborhoods associated to hyperbolic-like times. For every σ > 0 and i ∈ N, we denote
by Hi(σ) the set of points z ∈ M with ri(z) ≥ σ. The following lemma will be very useful in the
construction of the absolutely continuous invariant measure for ϕ.

Lemma 6.1. Given σ > 0, there exists τ = τ(σ) > 0 such that for every i ∈ N and for any measurable
set Z, there exists a finite set of points z1, . . . , zN in Hi(σ) and neighborhoods V′i (z1), . . . ,V′i (zN) which are
two-by-two disjoint. For every k = 1, . . . ,N, ϕi : V′i (zk) → Bδ1/4(ϕi(zk)) is a diffeomorphism with bounded
distortion and the union Wi = V′i (z1) ∪ . . . ∪ V′i (zN) satisfies

Leb(Wi ∩Hi(σ) ∩ Z) ≥ τLeb(Hi(σ) ∩ Z).

Remark 6.1. The constant δ1 and the distortion bound which appear in this lemma are the same
given in Proposition 6.3, which are independent on the point z ∈M and on the iterate i ∈N.

Proof. This is analogous to the proofs of Proposition 3.3 and Lemma 3.4 of [4], using hyperbolic-like
times instead of hyperbolic times.
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7. A   

Here we prove Theorem A. In order to do it, we need to control the measure of the points with
many (positive density) hyperbolic-like times.

7.1. Points with infinitely many hyperbolic-like times. We are going to show that, for some ε > 0,
the points with many ε-hyperbolic-like times are a positive Lebesgue measure set.

Recall that we denote T1
× I0 by M and the Lebesgue measure of M by Leb. Given any λ > 0,

let Z(λ) be the set of points in M for which the limit in (2.1) is greater than 2λ. Also, for n ∈ N, we
define,

Zn(λ) =

{
z ∈ Z(λ);

1
n

n−1∑
j=0

log ‖Dϕ(ϕ j(z))−1
‖
−1 > λ

}
,

and for δ > 0,

AM
n (δ) =

{
z ∈M;

1
n

n∑
i=1

ri(z) < δ2, rn(z) > 0
}

where ri(z) = ri(θ, x) denotes the function ri
(
{ fn}, x

)
defined on subsection 2.2, considering the

sequence fn = fgn(θ) for n ≥ 0. As we will now see, these sets have relation with the sets defined by
equations (4.2) and (4.1).

We denote by An(θ, δ) the set An
(
{ fn}, δ

)
(defined on (4.1)), and by Yn(θ, λ) the set Yn

(
{ fn}, λ

)
(defined on (4.2)), with fn = fgn(θ) for n ≥ 0. Thus, we can conclude that

Zn(λ) ⊂ ∪θ∈T(θ × Yn(θ, λ)) and AM
n (δ) = ∪θ∈T(θ × An(θ, δ)). (7.1)

For every θ ∈ T1, { fgn(θ)} is a C1-uniformly equicontinuous and C1-uniformly bounded sequence
of smooth maps. It also holds that p = sup #Cgn(θ) < ∞. Thus, we are in the context of Lemma
4.1. Moreover, for fixed λ > 0, the constant δ given by Lemma 4.1 does not depend on θ, i.e., the
constant δ is the same for any sequence { fgn(θ)}. This happens because the modulus of continuity
(2.3), the uniform bound Γ in (2.4) and the uniform bound p for the number of critical points, are
the same for any sequence { fgn(θ)} (varying θ ∈ T1). The last is true since ϕ is C3 and (F1) holds.

Proposition 7.1. In the conditions of Theorem A, given λ > 0, there exist ε = ε(λ) > 0 such that

Leb
({

z ∈ Z(λ) ;
n∑

i=1

ri(z) ≥ 2εn, for all n ≥ n0

})
≥ Leb

(
∩n≥n0 Zn(λ)

)
/2.

for n0 big enough. Moreover, for Lebesgue almost every z ∈ Z(λ), lim infn→∞
1
n
∑n

i=1 ri(z) ≥ 2ε.

Proof. For λ, δ > 0 and every N ∈N,∫
T1

∫
I0

χ
{∩∞n=N{AM

n (δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ) ≥
∫
T1

∫
I0

χ
{∩∞n=NZn(λ)}(θ, x)dmI0 (x)dmT1 (θ) −

−

∫
T1

∫
I0

χ
{∪∞n=NAM

n (δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ).

where mI0 and mT1 denote the Lebesgue measure on I0 and T1. On the other hand, by Lemma 4.1,
there exists δ > 0 such that for every θ ∈ T1,

mI0

 ∞⋃
n=N

An(θ, δ) ∩ Yn(θ, λ)

→ 0,
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when N→∞. This together with (7.1) yield,∫
T1

∫
I0

χ
{∪∞n=NAM

n (δ)∩Zn(λ)}(θ, x)dmI0 (x)dmT1 (θ) ≤
∫
T1

∫
I0

χ
{∪∞n=NAn(θ,δ)∩Yn(θ,δ)}(x)dmI0 (x)dmT1 (θ) −→ 0

when N→∞. Considering ε such that 2ε < δ2, the proposition follows. �

7.2. Positive density of the hyperbolic-like times. We prove that for every point z such that∑n
i=1 ri(z) ≥ 2εn, (for some ε > 0), the density of hyperbolic-like times is uniformly positive.
Recall that for every ε > 0 and n ∈N, we denote by Hn(ε) the set of points z ∈M with rn(z) ≥ ε.

Lemma 7.1. Given ε > 0, there exists ζ = ζ(ε) > 0 such that

# { 1 ≤ i ≤ n; z ∈ Hi(ε) }
n

≥ ζ

for any z such that
∑n

i=1 ri(z) ≥ 2εn.

Proof. Considering c2 = 2ε and c1 = ε, applying the Pliss lemma (see [17]), there are q ≥ ζn and
0 < n1 < . . . < nq ≤ n such that

ni∑
j=k+1

r j(z) ≥ ε(ni − k) for every 0 ≤ k < ni, and i = 1, . . . , q.

Observe that ζ does not depend on z neither on n. Hence, for any z as in the statement of the lemma,
there exist 0 < n1 < . . . < nq ≤ n such that rni (z) ≥ ε (1 ≤ i ≤ q) and q/n ≥ ζ. �

7.3. Construction of the measure. We consider the sequence

µn =
1
n

n∑
i=1

ϕi
∗ Leb

of averages of forward iterates of Lebesgue measure on M. The main idea is to decompose µn (for
every n) as a sum of two measures, νn and ηn, such that νn is uniformly absolutely continuous and
has total mass bounded away from zero. The measure νn will be the part of µn carried on balls of
radius δ1 around points ϕi(z), where z is a point which has 1 ≤ i ≤ n as ε-hyperbolic-like time.

Let us fix λ > 0 such that Leb(Z(λ)) > 0. Let us consider the corresponding ε = ε(λ) > 0 from
Proposition 7.1. Let Wi be the set given by Lemma 6.1 for σ = ε. We consider the measures

νn =
1
n

n∑
i=1

ϕi
∗ LebWi

and ηn = µn − νn, where LebX denotes the restriction of the Lebesgue measure to X.

Proposition 7.2. The measures νn are uniformly absolutely continuous and give positive (bounded away
from zero) weight to Z(λ), for all large n.

Proof. By Proposition 6.3, the measures ϕi
∗ LebVi(z) are absolutely continuous and the densities are

uniformly bounded from above. It also holds for the measures ϕi
∗ LebWi , since Wi is a disjoint union

of sets V′i s. Therefore, νn are absolutely continuous and the densities are uniformly bounded from
above. It just remains to prove the claim about Z(λ). By Lemma 6.1, there exists τ = τ(ε) such that

νn(Z(λ)) ≥ τ
1
n

n∑
i=1

Leb(Hi(ε) ∩ Z(λ)).
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So, it suffices to control the right side of the last expression. For this, let us consider the measure πn
in {1, 2, . . . ,n} defined by πn(B) = #(B)/n, for every subset B. Using Fubini’s theorem, we have

1
n

n∑
i=1

Leb(Hi(ε) ∩ Z(λ)) =

∫ ∫
Z(λ)
χ(z, i)d Leb(z)dπn(i) =

∫
Z(λ)

∫
χ(z, i)dπn(i)d Leb(z)

where χ(z, i) = 1 if z ∈ Hi(ε) and χ(z, i) = 0 otherwise. By Lemma 7.1, it holds
∫
χ(z, i)dπn(i) ≥ ζ if z

is such that
∑n

i=1 ri(z) ≥ 2εn. Hence

1
n

n∑
i=1

Leb(Hi(ε) ∩ Z(λ)) ≥ ζLeb
({

z ∈ Z(λ);
n∑

i=1

ri(z) ≥ 2εn
})

In this way, we conclude using Proposition 7.1 that the weight of Z(λ) for the measure νn is bounded
away from zero, for n big enough. �

The limit of any convergent subsequence of {νn}n is an absolutely continuous measure. It just
remains to prove that we can find our measure in such a way that it is invariant. Let us choose {nk}k
such that µnk , νnk and ηnk converge to µ, ν and η, respectively. We can decompose η = ηac + ηs as the
sum of an absolutely continuous measure ηac and a singular measure ηs (with respect to Lebesgue
measure). Then, µ = (ν+ηac)+ηs gives one decomposition of µ as sum of one absolutely continuous
and one singular measure. Since the push forward under ϕ preserves the class of absolutely
continuous measures and µ is invariant, µ = ϕ∗µ = ϕ∗(ν + ηac) + ϕ∗ηs gives another decomposition
of µ as sum of one absolutely continuous and one singular measure. By the uniqueness of the
decomposition we must have ϕ∗(ν+ηac) = ν+ηac. Hence, ν+ηac is a non-zero absolutely continuous
invariant measure for ϕ.

7.4. Ergodicity and finite number of measures. To finish the proof of Theorem A, it remains to
prove the ergodicity of the absolutely continuous invariant measure and the finiteness claim in
the statement of the theorem. Fixed λ > 0, we consider the constant ε > 0 given on Proposition
7.1. Recall that for σ = ε, we denote by Vk(z) (for k ∈ N, z ∈ M) the neighborhood constructed on
Proposition 6.3: it is mapped diffeomorphically onto the ball of radius δ1 > 0 around ϕk(z) by ϕk.

Lemma 7.2. Let λ > 0 and ε = ε(λ) be as in Proposition 7.1. Let us consider G0 ⊂M an open set. Then for
any z ∈ Z(λ) ∩ G0, Vk(z) ⊂ G0 whenever z ∈ Hk(ε) and k is big enough.

Proof. In Proposition 6.3 we fixed the constant ρ′ according to (6.4) and we constructed the neigh-
borhood Vk(z). This neighborhood is such that Vk(z) ⊂ Bk(z) = (θ − η1, θ − η2) × Ik(z), where: (i)
gk : (θ − η1, θ + η2) → (gk(θ) − ρ′, gk(θ) + ρ′) is a diffeomorphism; (ii) Ik(z) ⊂ Tk(z) and f k

θ is a
diffeomorphism restricted to Tk(z). To conclude the proof, it is enough to show that η1, η2 and |Ik(z)|
goes to zero when k goes to infinity. The claim about η1 and η2 follows from the uniform expansion
of g. Since z ∈ Zk(λ) for k big enough, the bounded distortion on f k

θ : Ik(z)→ f k
θ(Ik(z)) (see the proof

of Claim 6.2) implies that |Ik(z)| goes to zero. �

Lemma 7.3. For any positively invariant set G ⊂ Z(λ) there exists some disk ∆ with radius δ1/4 such that
Leb(∆ \ G) = 0.

Proof. The proof is analogous to the proof of Lemma 5.6 of [4]. We make use of ε(λ)-hyperbolic-like
times instead of (σ, δ)-hyperbolic times. Thus, the only difference is the reason why the neighbor-
hoods Vk(z) decrease with k. In our case, this is given by Lemma 7.2. �

End of proof of Theorem A. At the end of subsection 7.3, we construct an absolutely continuous in-
variant measure ν0 := ν + ηac with ν0(Z(λ)) > 0. Since Z(λ) is positively invariant, we can suppose



23

that ν0(Z(λ)) = 1. On the other hand, by Lemma 7.3, each invariant set on Z(λ) with positive ν0-
measure has full Lebesgue measure in some disk with fixed radius. Since the manifold is compact,
there can be only finitely many disjoint invariant sets on Z(λ) with positive ν0-measure. Hence ν0

can be decomposed as a sum of ergodic measures. Namely, ν0 =
∑l

i=1 ν0(Di)νi, where D1, . . . ,Dl are
disjoint invariant sets with positive measure and νi is the normalized restriction of ν0 to Di. The
measures νi (1 ≤ i ≤ l) are ergodic absolutely continuous probabilities. Therefore, they are SRB
measures.

If Z1 = Z(λ)\∪s
i=1Bi (where Bi denotes the basin of the measureµi) has positive Lebesgue measure,

then we can repeat the arguments in this section with Z1 in the place of Z(λ). Thus we construct new
absolutely continuous invariant ergodic measures. Repeating this procedure, we find absolutely
continuous invariant ergodic measures such that almost every point in Z(λ) is in the basin of one
of these measures. The number of measures is finite since the basins are invariant sets and Lemma
7.3 holds. It finishes the proof of Theorem A.

�
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