# ROBUST ATTRACTOR SETS WITHOUT DOMINATED SPLITTING ON MANIFOLDS WITH BOUNDARY 

D. CARRASCO-OLIVERA, B. SAN MARTÍN


#### Abstract

In this paper we prove that there exists a positive integer $k$ with the following property: Every compact 3 -manifold with boundary carries a $C^{\infty}$ vector field exhibiting a $C^{k}$-robust attractor set without dominated splitting.


## 1. Introduction

Let $M$ be a compact 3-manifold with boundary $\partial M$. Denote by $\mathscr{X}^{k}(M, \partial M)$, $k \geq 1$ (or $k=\infty$ ), the space of $C^{k}$ vector fields in $M$ tangent to $\partial M$ (if nonempty) endowed with the standard $C^{k}$ topology. We fix $X \in \mathscr{X}^{1}(M, \partial M)$ and denote by $X_{t}, t \in \mathbb{R}$, the flow generated by $X$ in $M$. A compact invariant set $\Lambda$ of $X$ is isolated if there is an open set $U \supset \Lambda$, called an isolating block, such that

$$
\Lambda=\bigcap_{t \in \mathbb{R}} X_{t}(U) .
$$

An attracting set is an isolated set with a positively invariant isolating block $U$, i.e., $X_{t}(U) \subset U$ for all $t>0$. Given $p \in M$ we define its omega-limit set,

$$
\omega(p)=\left\{q \in M: q=\lim _{n \rightarrow \infty} X_{t_{n}}(p) \text { for some sequence } t_{n} \rightarrow \infty\right\}
$$

An compact invariant $\Lambda$ of $X$ is transitive if $\Lambda=\omega(p)$ for some $p \in \Lambda$. An attractor is a transitive attracting set (further definitions of attractors can be found in [7]). An invariant set $\Lambda$ of $X$ is non-trivial if it is not a single orbit.

If $k \in \mathbb{N}^{+}$and $X \in \mathcal{X}^{k}(M, \partial M)$ we say that an isolated set $\Lambda$ of $X$ is a $C^{k}$-robust transitive set if it exhibits an isolating block $U$ such that the continuation

$$
\Lambda_{Y}=\bigcap_{t \in \mathbb{R}} Y_{t}(U)
$$

of $\Lambda$ for $Y C^{k}$-close to $X$ is a non-trivial transitive set of $Y$. A $C^{k}$-robust attractor is a $C^{k}$-robust transitive set which is simultaneously an attracting set. A singularity $\sigma$ of $X$ is called Lorenz-like if it has three real eigenvalues $\lambda_{s s}, \lambda_{s}, \lambda_{u}$ satisfying $\lambda_{s s}<\lambda_{s}<0<-\lambda_{s}<\lambda_{u}$ up to some order.

[^0]Let $\Lambda$ be a compact invariant set of $X$. A continuous invariant splitting $T_{\Lambda} M=$ $E_{\Lambda} \oplus E_{\Lambda}$ over $\Lambda$ is dominated if there are positive constants $C, \lambda$ such that

$$
\frac{\left\|D X_{t}(x) /_{E_{x}}\right\|}{\left\|m\left(D X_{t}(x) /_{F_{x}}\right)\right\|} \leq C \lambda^{t} \text { for all } t>0 \text { and for all } x \in \Lambda
$$

The motivation of this paper is the work [11] dealing with $C^{1}$ robust transitive sets for vector fields on compact boundaryless 3-manifolds. Indeed, it was proved that these sets are robust attractors, exhibit a dominated splitting and that their singularities are Lorenz-like up to flow reversing. This result certainly suggests the same for vector fields on compact 3-manifolds with boundary, but it seems that it is not so. In fact the recent work [3] proved that there is $r \in \mathbb{N}^{+}$with the following property: Every compact 3 -manifold with boundary carries a $C^{\infty}$ vector field $X$ exhibiting a $C^{r}$-robust transitive set with a singularity that is not Lorenz-like for $X$ or $-X$. Nevertheless the $C^{r}$-robust transitive sets obtained there are not attractors, so, it is still possible that the singularities of a robust attractor for vector fields on compact 3-manifolds with boundary be Lorenz-like ones. Moreover also it is still possible that robust attractor for vector fields on compact 3 -manifolds with boundary exhibit dominated splitting. The result below given a negative answer for this last question.

Theorem 1.1. There is a positive integer $k$ such that every compact 3-manifold with boundary carries a $C^{\infty}$ vector field exhibiting a $C^{k}$-robust attractor without dominates splitting.

The integer $k$ above and $r$ in [3] may be different (this will be clear in the context).

## 2. Proof

Let consider a vector field $X \in \mathscr{X}^{\infty}(M, \partial M)$ satisfying the following properties:
(a) $X$ has three hyperbolic singularities $\sigma_{0}, \sigma_{1}$ and $\sigma_{2}$ such that $\sigma^{i} \in \partial M$, for $i=0,1,2$.
(b) If the singularities $\sigma^{i}$ have real eigenvalues $\lambda_{s s}^{i}$, $\lambda_{s}^{i}$ and $\lambda_{u}^{i}$ with $\lambda_{s s}^{i}<\lambda_{s}^{i}<$ $0<\lambda_{u}^{i}, \alpha_{i}=-\frac{\lambda_{s}^{i}}{\lambda_{u}^{i}}$ and $\beta_{i}=-\frac{\lambda_{s s}^{i}}{\lambda_{u}^{i}}$ for $i=0,1,2$, then (b-1) $\beta_{0} \alpha_{i}<1$ and $\alpha_{0}+\beta_{0} \beta_{i}>1$, for $i=1,2$.
(c) The unstable manifold $W^{u}\left(\sigma_{0}\right)$, stable manifold $W^{s}\left(\sigma_{i}\right)$ and strong stable manifold $W^{s s}\left(\sigma_{i}\right)$ satisfy $W^{u}\left(\sigma_{0}\right) \cap\left(W^{s}\left(\sigma_{i}\right) \backslash W^{s s}\left(\sigma_{i}\right)\right) \neq \emptyset$, for $i=1,2$.
(d) There are two positive real numbers $\bar{a}, \tilde{a}$ such that $X$ is $C^{2}$-linear in the cubes

$$
\begin{aligned}
Q_{0} & =\{(x, y, x):|x| \leq 1,|y| \leq 1,0 \leq z \leq 1\} \\
Q_{1} & =\{(\bar{x}, \bar{y}, \bar{z}):|\bar{x}| \leq \bar{a},|\bar{y}| \leq \bar{a}, 0 \leq \bar{z} \leq 1\} \\
Q_{2} & =\{(\tilde{x}, \tilde{y}, \tilde{z}):|\tilde{x}| \leq \tilde{a},|\tilde{y}| \leq \tilde{a}, 0 \leq \tilde{z} \leq 1\}
\end{aligned}
$$

containing to $\sigma_{i}$, for $i=0,1,2$, respectively. Moreover, the trajectories of the unstable manifold of $\sigma_{i}$, for $i=1,2$, intersect the top rectangle $\Sigma_{0}=\{(x, y, x):|x| \leq 1,|y| \leq 1, z=1\}$ of the cube $Q_{0}$.
(e) The corresponding eigenspace associate to $\lambda_{s s}^{i}, E_{\sigma_{i}}^{s s}$, and $T_{\sigma_{i}} \partial M$, for $i=$ $0,1,2$, are transversals.
(f) $X$ has a trapping region.
(g) There exists a vertical invariant contracting stable $C^{1}$ foliation in $\Sigma_{0}$ for the first return Poincaré map.
(h) The dynamic in the space of the leaf is expansive.

Note that rectangle $\Sigma_{0}$ is divided by the stable manifold of $\sigma_{0}$ in two subrectangles $\Sigma_{0}^{+}$and $\Sigma_{0}^{-}$. We let us consider $\Sigma_{0}^{*}=\Sigma_{0}^{+} \cup \Sigma_{0}^{-}, \Sigma_{1}^{+}=\{(x, y, z):|x| \leq 1, y=$ $1,0 \leq z \leq 1\}, \Sigma_{1}^{-}=\{(x, y, z):|x| \leq 1, y=-1,0 \leq z \leq 1\}, \Sigma_{2}^{+}=\{(\bar{x}, \bar{y}, \bar{z}):$ $|\bar{x}| \leq \bar{a}, y=-\bar{a}, 0 \leq \bar{z} \leq 1\}, \Sigma_{2}^{-}=\{(\tilde{x}, \tilde{y}, \tilde{z}):|\tilde{x}| \leq \tilde{a}, y=\tilde{a}, 0 \leq \tilde{z} \leq 1\}, \Sigma_{3}^{+}=$ $\{(\bar{x}, \bar{y}, \bar{z}):|\bar{x}| \leq \bar{a},|\bar{y}| \leq \bar{a}, \bar{z}=1\}$ and $\Sigma_{3}^{-}=\{(\tilde{x}, \tilde{y}, \tilde{z}):|\tilde{x}| \leq \tilde{a},|\tilde{y}| \leq \tilde{a}, \tilde{z}=1\}$.

Figure 1 show the principal features of the vector field $X$.


Figure 1
As $X$ is $C^{2}$-linear in the cube $Q_{0}, X$ is the three model linear differential equations:

$$
\left\{\begin{array}{l}
\dot{x}=\lambda_{s}^{0} x \\
\dot{y}=\lambda_{u}^{0} y \\
\dot{z}=\lambda_{s s}^{0} z
\end{array}\right.
$$

Which with initial conditions $\left(x_{0}, y_{0}, 1\right)$ in $\Sigma_{0}^{*}$, the solution is given by

$$
\left\{\begin{array}{l}
x(t)=e^{\lambda_{s}^{0}} x_{0} \\
y(t)=e^{\lambda_{u}^{u}} y_{0} \\
z(t)=e^{\lambda_{s s}^{0}} .
\end{array}\right.
$$

The trajectories of points $\left(x_{0}, y_{0}, 1\right) \in \Sigma_{0}^{*}$ meets the plane $\Sigma_{1}^{+}$when

$$
\left\{\begin{array}{l}
x=x_{0} y_{0}^{\alpha_{0}}  \tag{2.1}\\
y=1 \\
z=y_{0}^{\beta_{0}} .
\end{array}\right.
$$

In similar form to (2.1) we obtain for points $\left(x_{0}, y_{0}, 1\right) \in \Sigma_{0}^{*}$ meets the plane $\Sigma_{1}^{-}$.
As $X$ is $C^{2}$-linear in the cube $Q_{1}, X$ is the three model linear differential equations:

$$
\left\{\begin{array}{l}
\dot{\bar{x}}=\lambda_{s s}^{1} \bar{x} \\
\dot{\bar{y}}=\lambda_{s}^{1} \bar{y} \\
\dot{\bar{z}}=\lambda_{u}^{1} \bar{z}
\end{array}\right.
$$

Which with initial conditions $\left(\bar{x}_{0},-\bar{a}, \bar{z}_{0}\right)$ in $\Sigma_{1}^{+}$, the solution is given by

$$
\left\{\begin{aligned}
\bar{x}(t) & =e^{\lambda_{s s}^{1}} \bar{x}_{0} \\
\bar{y}(t) & =e^{\lambda_{s}^{1}} \\
\bar{z}(t) & =e^{\lambda_{u}^{2}} .
\end{aligned}\right.
$$

The trajectories of points $\left(\bar{x}_{0},-\bar{a}, \bar{z}_{0}\right) \in \Sigma_{1}^{+}$meets the plane $\Sigma_{2}^{+}$when

$$
\left\{\begin{array}{l}
\bar{x}=\bar{x}_{0} \bar{z}_{0}^{\beta_{1}}  \tag{2.2}\\
\bar{y}=-\bar{a} \bar{z}_{0}^{\alpha_{1}} \\
\bar{z}=1
\end{array}\right.
$$

Finally, as $X$ is $C^{2}$-linear in the cube $Q_{2}, X$ is the three model linear differential equations:

$$
\left\{\begin{array}{l}
\dot{\tilde{x}}=\lambda_{s s}^{2} \tilde{x} \\
\dot{\tilde{y}}=\lambda_{s}^{2} \tilde{y} \\
\dot{\tilde{z}}=\lambda_{u}^{2} \tilde{z} .
\end{array}\right.
$$

Which with initial conditions $\left(\tilde{x}_{0}, \tilde{a}, \tilde{z}_{0}\right)$ in $\Sigma_{1}^{-}$, the solution is given by

$$
\left\{\begin{array}{l}
\tilde{x}(t)=e^{\lambda_{s s}^{2}} \tilde{x}_{0} \\
\tilde{y}(t)=e^{\lambda_{s}^{2}}(\tilde{a}) \\
\tilde{z}(t)=e^{\lambda_{u}^{2}} .
\end{array}\right.
$$

The trajectories of points $\left(\tilde{x}_{0}, \tilde{a}, \tilde{z}_{0}\right) \in \Sigma_{1}^{-}$meets the plane $\Sigma_{2}^{-}$when

$$
\left\{\begin{array}{l}
\tilde{x}=\tilde{x}_{0} \tilde{z}_{0}^{\beta_{2}}  \tag{2.3}\\
\tilde{y}=\tilde{a} \tilde{z}_{0}^{\alpha_{2}} \\
\tilde{z}=1 .
\end{array}\right.
$$

There exists fourth non-linear return maps: $\Pi_{\text {out }}^{1,+}: \Sigma_{1}^{+} \rightarrow \Sigma_{2}^{+}, \Pi_{\text {out }}^{3,+}: \Sigma_{3}^{+} \rightarrow \Sigma_{0}$, $\Pi_{\text {out }}^{1,-}: \Sigma_{1}^{-} \rightarrow \Sigma_{2}^{-}$and $\Pi_{\text {out }}^{3,-}: \Sigma_{3}^{-} \rightarrow \Sigma_{0}$. We let consider

$$
\Pi_{l o c}^{*}=\Pi_{l o c}^{2, *} \circ \Pi_{o u t}^{1, *} \circ \Pi_{l o c}^{0, *}, \text { for } *=+,-
$$

Therefore, if we suppose that $\Pi_{o u t}^{1, *}=I d$, we $I d$ is the is the identity map, for $*=+,-$ then from (2.1), (2.2) and (2.3) we obtain

$$
\Pi_{l o c}^{+}(x, y)=\left(a x y^{\alpha_{0}+\beta_{0} \beta_{1}}, b y^{\beta_{0} \alpha_{1}}\right) \text { if } y>0
$$

for some real constants $a$ and $b$ (depending only of $X$ ) and

$$
\Pi_{l o c}^{-}(x, y)=\left(c x y^{\alpha_{0}+\beta_{0} \beta_{2}}, d y^{\beta_{0} \alpha_{2}}\right) \text { if } y<0
$$

for some real constants $c$ and $d$ (depending only of $X$ ). So two Poincaré maps are defined: $R^{*}=\Pi_{o u t}^{3, *} \circ \Pi_{l o c}^{*}: \Sigma_{0}^{*} \rightarrow \Sigma_{0}$, for $*=+,-$. As by hyphoteses there exists a invariant contracting $C^{1}$ foliation in $\Sigma_{0}$ which is invariant by return map $R$ were $\left(R(x, y)=R^{+}(x, y)\right.$ if $y>0$ and $R(x, y)=R^{-}(x, y)$ if $\left.y<0\right)$, then using this foliation, $R$ can by defined by

$$
R(x, y)=(F(x, y), f(y))
$$

where

$$
\begin{cases}(a) F(x, y)>\frac{1}{4} & \text { for } y>0 \\ (b) F(x, y)<\frac{1}{4} & \text { for } y<0\end{cases}
$$

and where $f$ satisfies the properties:

$$
\begin{cases}(a) f\left(0^{+}\right)=-\frac{1}{2} & f\left(0^{+}\right)=-\frac{1}{2}  \tag{2.4}\\ (b) f^{\prime}(x)>\sqrt{2} & \text { for } x \in[-1,1] \backslash\{0\} \\ (c)-\frac{1}{2}<f(x)<\frac{1}{2} & \text { for } x \in[-1,1] \backslash\{0\}\end{cases}
$$

(b) and (c) holding throughout the range $-\frac{1}{2} \leq x \leq \frac{1}{2}$.

Moreover there exists a trapping region (isolated block) $U$ of the cube above. Define

$$
\Lambda=\bigcap_{t \geq 0} X_{t}(U)
$$

This finish the construction of $X$ and $\Lambda$. Now we will prove that $\Lambda$ is $C^{k}$-robust attractor set.

The assumption of $C^{2}$ linearing coordinates nearby $\sigma_{i}(Y)$, imply $Y \in \mathscr{X}_{i}^{k}(M, \partial M)$ where

$$
k_{i}>2+\frac{4 \cdot \min \left\{\lambda_{s s}^{i},-\lambda_{u}^{i}\right\}-\log (56)}{\max \left\{\lambda_{s}^{i},-\lambda_{u}^{i}\right\}}
$$

We choose $k=\min \left\{k_{i}\right\}, i=0,1,2$. Now we fix such $k$.
Take any neighborhood $\mathscr{U}$ of the vector field $X$ in the $C^{k}$ topology. Now fix such $k$ and $Y \in \mathscr{U}$, and let us consider the continuations $\sigma_{i}(Y), i=0,1,2$, of singularities $\sigma_{i}$ as well defined. The vector field $Y$ is $C^{2}$-linearizable nearby $\sigma_{i}(Y)$, $i=0,1,2$.

We can assume that the cross-sections $\Sigma_{0}, \Sigma_{1}^{*}, \Sigma_{2}^{*}, \Sigma_{3}^{*}$, for $*=+,-$, remain transverse to any $Y C^{k}$-close to $X$. Moreover we can assume that any $Y C^{k}$-close to $X$ is $C^{2}$-linear in the cubes $Q_{i}$, for $i=0,1,2$. In the same way $\lambda_{s s}^{i}(Y), \lambda_{s}^{i}(Y)$ and $\lambda_{u}^{i}(Y)$, for $i=0,1,2$, the respective continuations of the eigenvalues $\lambda_{s s}^{i}, \lambda_{s}^{i}$ and $\lambda_{u}^{i}$. Denote $\alpha_{Y}^{i}=-\frac{\lambda_{s}^{i}(Y)}{\lambda_{u}^{i}(Y)}$ and $\beta_{Y}^{i}=-\frac{\lambda_{s s}^{i}(Y)}{\lambda_{u}^{i}(Y)}$, for $i=0,1,2$.

Also we denote by $\Pi_{l o c, Y}^{0, *}, \Pi_{l o c, Y}^{2, *}, \Pi_{o u t, Y}^{1, *}, \Pi_{o u t}^{3, *}, R_{Y}^{*}$ and $R_{Y}$, for $*=+,-$, the continuation of $\Pi_{l o c}^{0, *}, \Pi_{l o c}^{2, *}, \Pi_{o u t}^{1, *}, \Pi_{o u t}^{3, *}, R^{*}$ and $R$, respectively.

Now by choice of $k$ for any vector filed $Y C^{k}$-close to $X$ there are $C^{2}$ linearizing coordinates at the singularity $\sigma(Y)_{i}$, for $i=0,1,2$, so the Poincaré map $P_{Y}$ is a $C^{2}$ map. Additionally, we suppose that $\Pi_{o u t}^{1, *}$ preserves the "horizontal "lines and $\Pi_{o u t}^{3, *}$, for $*=+,-$ put $\Sigma_{3}^{*}$ into $\Sigma_{0}$ expanding in "vertical" direction. So, again the techniques in [2] give us a $R_{Y}$-invariant contracting $C^{1}$ foliation $\mathscr{F}$ (see also [12]). This construction can be made in a such way that the set $\{y=0\},\left\{y=-\frac{1}{2}\right\}$ and $\left\{y=\frac{1}{2}\right\}$ are leaves of this foliation.

We can use this foliation to put new coordinates $(x, y)$ on $\Sigma_{0}$, still linearizing, such that for all $(x, y) \in \Sigma_{0}^{*}$

$$
\begin{equation*}
R_{Y}(x, y)=\left(H_{Y}(x, y), f_{Y}(y)\right) \tag{2.5}
\end{equation*}
$$

for some $C^{1}$ maps $f_{Y}(\cdot, \cdot)$ and $g_{Y}(\cdot)$. Moreover, $g_{Y}(a)$ and $g_{Y}(b)$ are greater than 1.

It follows from the above that

$$
\Lambda_{Y}=\bigcap_{t \in \mathbb{R}} Y_{t}(U)=C l\left(\bigcup_{t \in \mathbb{R}} Y_{t}\left(\bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)\right)\right)
$$

So, in order to prove that $\Lambda_{Y}$ is a transitive set, we only need to prove that the maximal invariant set

$$
\begin{equation*}
\bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right) \tag{2.6}
\end{equation*}
$$

is a transitive set for $R_{Y}$ and for this purpose essentially we follow the arguments given in [3]. Other argument can be find in [4].

Definition 2.1. Define $\mathscr{A}_{L}$ as the set of $C^{1}$-maps $f:[-1 / 2,1 / 2] \backslash\{0\} \rightarrow[-1 / 2,1 / 2]$ satisfying the following properties:
(a) $f^{\prime}(y)>\sqrt{2}$ on $[-1 / 2,1 / 2] \backslash\{0\}$;
(b) $f$ is strictly increasing on $[-1 / 2,1 / 2] \backslash\{0\}$;
(c) $f\left(0^{-}\right)=1 / 2$ and $f\left(0^{+}\right)=-1 / 2$;
(d) $f^{\prime}(y) \rightarrow \infty$ as $y \rightarrow 0$ (from right and left).
(e) There are $\alpha_{f}^{1}<1, \alpha_{f}^{2}<1$ and two $C^{1}$ function $H_{f}^{1}:[-1 / 2,0) \rightarrow \mathbb{R}$, $H_{f}^{2}:(0,1 / 2] \rightarrow \mathbb{R}$ with $\lim _{y \rightarrow 0} \frac{D H_{f}^{1}(y)}{y}=0$ and $\lim _{y \rightarrow 0} \frac{D H_{f}^{2}(y)}{y}=0$ such that $f(x)=a_{1}+|y|^{\alpha_{f}^{1}} H_{f}^{1}(y)$, for all $y \in[-1 / 2,0)$ and $f(y)=a_{2}+|y|^{\alpha_{f}^{2}} H_{f}^{2}(x)$, for all $y \in(0,1 / 2]$, for some real numbers $a_{1}$ and $a_{2}$.

To every $f \in \mathscr{A}_{L}$ we called the Lorenz-like map. In $\mathscr{A}_{L}$ we define a $C^{1}$ topology induced by the following metric:

$$
\begin{aligned}
d_{\mathscr{A}_{L}}(f, g)= & \max \left\{\sup _{y}|f(y)-g(y)|, \sup _{y}|D f(y)-D g(y)|, \sup _{y}\left|H_{f}^{1}(y)-H_{g}^{1}(y)\right|,\right. \\
& \sup _{y}\left|H_{f}^{2}(y)-H_{g}^{2}(y)\right|, \sup _{y} \frac{1}{|y|}\left|D H_{f}^{1}(y)-D H_{g}^{1}(y)\right|, \\
& \sup _{y} \frac{1}{|y|}\left|D H_{f}^{2}(y)-D H_{g}^{2}(y)\right|,\left|\alpha_{f}^{1}-\alpha_{g}^{1}\right|, \\
& \left.\left|\alpha_{f}^{2}-\alpha_{g}^{2}\right|: y \in[-1 / 2,1 / 2] \backslash\{0\}\right\},
\end{aligned}
$$

for all $f, g \in \mathscr{A}$.
Proposition 2.2. (Eventually onto, [4]). Let $f:[-1 / 2,1 / 2] \backslash\{0\} \rightarrow[-1 / 2,1 / 2]$ be a Lorenz-map. If $J \subset[-1 / 2,1 / 2]$ is a subinterval, then, for all $g C^{1}$-close to $f$ there exists a integer $\hat{n}=\hat{n}(g, J)$ and a subinterval $\hat{J}$ such that $g^{\hat{n}}(\hat{J})=$ $[-1 / 2,1 / 2]$.

Proof. Fix the Lorenz-like map $f:[-1 / 2,1 / 2] \backslash\{0\} \rightarrow[-1 / 2,1 / 2]$ and $J \subset I$ and $g C^{1}$-close to $f$.

Let $I_{0}=J$ if $0 \notin J$. If $0 \in J$, let $I_{0}$ be the bigger of the two intervals 0 splits $J$ into. Define $I_{1}=g\left(I_{0}\right)$ if $0 \notin g\left(I_{0}\right)$. If $0 \in g\left(I_{0}\right)$, let $I_{1}$ be the bigger of the two intervals 0 splits $g\left(I_{0}\right)$ into.

Suppose that for each $i$ such that $I_{i}$ is well defined. Let

$$
I_{i+1} \begin{cases}f\left(I_{i}\right), & \text { if } 0 \notin f\left(I_{i}\right) \\ \text { bigger of two parts } 0 \text { splits } f\left(I_{i}\right) \text { into, } & \text { if } 0 \in f\left(I_{i}\right)\end{cases}
$$

Let $\lambda=\min _{x \in I} f^{\prime}(x)>\sqrt{2}$. By Mean Value Theorem,

$$
\text { length }\left(g\left(I_{i+1}\right)\right)=g^{\prime}\left(\xi_{0}\right) \text { length }\left(I_{i+1}\right), \text { for some } \xi_{0} \in I_{i+1}
$$

Therefore for all $g \in \mathscr{V}_{\eta}\left(\eta\right.$-neighborhood), we get $g^{\prime}\left(\xi_{0}\right)>f^{\prime}\left(\xi_{0}\right)-\eta$

$$
\text { length }\left(g\left(I_{i+1}\right)\right) \geq(\lambda-\eta) \operatorname{length}\left(I_{i+1}\right)
$$

Therefore if $0 \notin g\left(I_{i}\right)$ and $0 \in g\left(I_{i+1}\right)$ we get

$$
\text { length }\left(I_{i+2}\right)>\frac{(\lambda-\eta)^{2}}{2} \text { length }\left(I_{i}\right)
$$

Define $\hat{\lambda}$ such that
$\lim _{\eta \rightarrow 0^{+}}(\lambda-\eta)>\hat{\lambda}>\sqrt{2}$. Thus

$$
\text { length }\left(I_{i+2}\right) \geq \frac{\hat{\lambda}^{2}}{2} \text { length }\left(I_{i}\right)
$$

But as $\frac{\hat{\lambda}^{2}}{2}>1$, this last inequality cannot always hold.

Then there exists an integer $n=n(J, g)$ such that $f\left(I_{n-1}\right)$ contain 0 and an end point of $I$. So, either $g\left(I_{n-1}\right)=[-1 / 2,0]$ or $g\left(I_{n-1}\right)=[0,1 / 2]$. We suppose that $g\left(I_{n-1}\right)=[0,1 / 2]$ then $g\left(I_{n}\right)$ contains to $[-1 / 2,0]$. Therefore, $g^{3}\left(I_{n}\right)=I$. Thus, there exists an integer $\hat{n}$ and a subinterval $\hat{J} \subset J$ such that $g^{\hat{n}}(\hat{J})=[-1 / 2,1 / 2]$. The proof follows.
Proposition 2.3. Let $f:[-1 / 2,1 / 2] \backslash\{0\} \rightarrow[-1 / 2,1 / 2]$ be a Lorenz-map. Then all $g C^{1}$-close to $f$ is hyperbolic, i.e., there exists $\lambda>1$ such that for all $n \in \mathbb{N}$, for all $y$ with $g^{j}(y) \in[-1 / 2,1 / 2] .0 \leq j \leq n-1,\left|D g^{n}(y)\right| \geq \lambda^{n}$.

Proof. This is a consequence of the hyperbolicity of $f$ and by the fact that its is a open property.
Proposition 2.4. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and $k$ as above. Then for all $Y C^{k}{ }_{-}$ close to $X$, the map $g_{Y}(\cdot)$ satisfies the following properties:
(a) $g_{X}(\cdot) \in \mathscr{A}_{L}$;
(b) $g_{Y}(\cdot)$ is $d_{\mathscr{A}_{L}}$ close to $g_{X}(\cdot)$.

Proof. Let $Y C^{k}$ close to $X$. We define $\Pi_{o u t, Y}=\Pi_{o u t, Y}^{+}$
By Taylor expansion near $q_{0}(Y)=(0,0)$,

$$
\Pi_{o u t, Y}(\bar{x}, \bar{y})=\Pi_{\text {out }}\left(q_{0}(Y)\right)+D \Pi_{\text {out }, Y \cdot}(\bar{x}, \bar{y})+\mathscr{O}_{\text {out }, Y}(\bar{x}, \bar{y}),
$$

where

$$
D \Pi_{o u t, Y}\left(q_{0}(Y)\right)=\left[\begin{array}{cc}
a_{Y} & b_{Y} \\
c_{Y} & d_{Y}
\end{array}\right]
$$

with $a_{Y}, b_{Y}, c_{Y}, d_{Y} \in \mathbb{R}$ and $\lim _{(\bar{x}, \bar{y}) \rightarrow(0,0)} \frac{\Theta_{\text {out }, Y}(\bar{x}, \bar{y})}{\|(\bar{x}, \bar{y})\|}=0$.
As $D \Pi_{\text {out }, Y}\left(q_{1}(Y)\right) \cdot e_{1}=\left(a_{Y}, c_{Y}\right)$ and $D \Pi_{\text {out }, Y}\left(q_{1}(Y)\right) \cdot-e_{2}=\left(-b_{Y},-d_{Y}\right)$, by assumption about orientation of $D \Pi_{o u t, Y}$, we have that $a_{Y}>0 b_{Y}$ and $d_{Y}$ are negatives and $c_{Y}=0$. Also we have that $\Pi_{o u t, Y}\left(q_{1}(Y)\right)=\left(x_{0}(Y), y_{0}(Y)\right)$. Then

$$
\begin{aligned}
\Pi_{\text {out }, Y}(\bar{x}, \bar{y})= & \left(x_{0}(Y)+a_{Y} \cdot \bar{x}+b_{Y} \cdot \bar{y}+\Theta_{1, Y}(\bar{x}, \bar{y}),\right. \\
& \left.y_{0}(Y)+d_{Y} \cdot \bar{y}+\Theta_{2, Y} \bar{x}, \bar{y}\right)
\end{aligned}
$$

where $\Theta_{\text {out }, Y}=\left(\Theta_{1, Y}, \Theta_{2, Y}\right)$.
Note that $\Theta_{2, Y}(\bar{x}, 0)=0$.
Remember that

$$
\Pi_{l o c, Y}^{+}(x, y)=\left(a x y^{\alpha_{0}(Y)+\beta_{0}(Y) \beta_{1}(Y)}, b y^{\beta_{0}(Y) \alpha_{1}(Y)}\right) \text { if } y>0
$$

Then

$$
R_{Y}(x, y)=\left(x_{0}(Y)+a_{Y} \cdot \bar{x}+b_{Y} \cdot \bar{y}+\Theta_{1, Y}(\bar{x}, \bar{y}), y_{0}(Y)+d_{Y} \cdot \bar{y}+\Theta_{2, Y}(\bar{x}, \bar{y})\right)
$$

where,

$$
\begin{aligned}
& \bar{x}=a x y^{\alpha_{0}(Y)+\beta_{0}(Y) \beta_{1}(Y)} \\
& \bar{y}=b y^{\beta_{0}(Y) \alpha_{1}(Y)}
\end{aligned}
$$

Note that $H_{Y}(x, y)=x_{0}(Y)+a_{Y} \cdot \bar{x}+b_{Y} \cdot \bar{y}+\Theta_{1, Y}(\bar{x}, \bar{y})$ and $f_{Y}(y)=y_{0}(Y)+$ $d_{Y} \cdot \bar{y}+\Theta_{2, Y}(\bar{x}, \bar{y})$ therefore,

$$
\begin{aligned}
f_{Y}(y) & =y_{0}(Y)+d_{Y} \cdot b y^{\beta_{0}(Y) \alpha_{1}(Y)}+\Theta_{2, Y}(\bar{x}, \bar{y}) \\
& =y_{0}(Y)+y^{\beta_{0}(Y) \alpha_{1}(Y)}\left(d_{Y} \cdot b+\frac{\Theta_{2, Y}(\bar{x}, \bar{y})}{d_{y} b}\right) \\
& =y_{0}(Y)+y^{\beta_{0}(Y) \alpha_{1}(Y)} H_{g}^{1}(y),
\end{aligned}
$$

where $H_{g}^{1}(y)=d_{Y} b+\frac{\Theta_{2, Y}(\bar{x}, \bar{y})}{d_{y} b}$. Note on the one hand that

$$
f_{y}^{\prime}(y)=y^{\beta_{0}(Y) \alpha_{1}(Y)-1}\left(\beta_{0}(Y) \alpha_{1}(Y) H_{g}^{1}(y)+\frac{D H_{g}^{1}(y)}{y}\right)
$$

Also we obtain,

$$
f_{y}^{\prime}(y)=y^{\beta_{0}(Y) \alpha_{1}(Y)-1}\left(\beta_{0}(Y) \alpha_{1}(Y) a_{y} b+A(y)+B(y)\right),
$$

were

$$
A(y)=\frac{\partial \Theta_{2, Y}(\bar{x}, \bar{y})}{\partial \bar{x}} \frac{a\left(\alpha_{0}(Y)+\beta_{0}(Y) \beta_{1}(Y)\right) \bar{x} y^{\alpha_{0}(Y)+\beta_{0}(Y) \beta_{1}(Y)-\beta_{0}(Y) \alpha_{1}(Y)}}{\left(\beta_{0}(Y) \alpha_{1}(Y)\right) a_{y} b}
$$

and

$$
B(y)=\frac{\partial \Theta_{2, Y}(\bar{x}, \bar{y})}{\partial \bar{y}} \frac{1}{a_{Y}} .
$$

As $\lim _{y \rightarrow 0} H_{g}^{1}(y)=a_{Y} b$ then $\lim _{y \rightarrow 0} \frac{D H_{g}^{1}(y)}{y}=0$. Therefore $\lim _{y \rightarrow 0} f_{Y}^{\prime}(y) \rightarrow \infty$. The estimates for $\Pi_{o u t, Y}^{-}$is in similar form.
Therefore under iterations of the maps $f_{Y}$ and $f_{X}$ we obtain the result required.

We need to introduce some definition related to cone fields. Denote by $T \Sigma_{0}$ the tangent bundle of $\Sigma_{0}$. Given $p \in \Sigma_{0}$ and $\gamma>0$, we denote by $C_{H}^{\gamma}(p)$ the horizontal $\gamma$-cone with inclination $\gamma$, i.e.,

$$
C_{H}^{\gamma}(p)=\left\{v \in T_{p} \Sigma_{0}: v=(u, w) ;|w| \leq \gamma \cdot|u|\right\} .
$$

Also, we denote by $C_{V}^{\gamma}(p)$ the vertical $\gamma$-cone with inclination $\gamma$, i.e.,

$$
C_{V}^{\gamma}(p)=\left\{v \in T_{p} \Sigma_{0}: v=(u, w) ;|u| \leq \gamma \cdot|w|\right\} .
$$

A $\gamma$-cone field in $\Sigma_{0}$ is a continuous map $C^{\gamma}: p \in \Sigma_{0} \mapsto C^{\gamma}(p) \subset T_{p} \Sigma_{0}$, where $C^{\gamma}(p)$ is a $\gamma$-cone with constant inclination $\gamma$ on $T_{p} \Sigma_{0}$. Let $R: \Sigma_{0} \rightarrow \Sigma_{0}$ be any map. A $\gamma$-cone field $C^{\gamma}$ is called $R$-invariant if $D R\left(C^{\gamma}(p) \backslash\{0\}\right) \subset \operatorname{int}\left(C^{\gamma}(R(p))\right)$ for all $p \in \Sigma_{0}$. A $\gamma$-cone field $C^{\gamma}$ is called $R$-expanding if there are $C>0$ and $\lambda>1$ such that $\left\|D R^{n}(p) \cdot v\right\| \geq C \cdot \lambda^{n} .\|v\|, \forall n \in \mathbb{N}, \forall p$ with $R^{j}(p) \in \Sigma_{0}$, $0 \leq j \leq n-1$ and $\forall v \in C^{\gamma}(p)$. A $\gamma$-cone field $C^{\gamma}$ is called transversal to a foliation $\mathscr{F}$ on $\Sigma_{0}$ if $T_{p} L \cap C^{\gamma}(p)=\{0\}, \forall p \in L$ and $\forall L \in \mathscr{F}$.

Proposition 2.5. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and $k$ as above. Then exists $\gamma$ with $0<\gamma \leq 1$ such that for all $Y C^{1}$-close to $X$ there are invariants $\gamma$-cone fields $C_{H}^{\gamma}$ and $C_{V}^{\gamma}$ on $\Sigma_{0}$. Moreover $C_{H}^{\gamma}$ is $R_{Y}^{-1}$-expanding and $C_{V}^{\gamma}$ is $R_{Y}$-expanding and transversal to the foliation $\mathscr{F}$.

Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the Statements of Proposition. Then there exists a $\gamma$ with $0<\gamma \leq 1$ such that for all $Y C^{1}$-close to $X$ there is a horizontal $\gamma$-cone field $C_{H}^{\gamma}$ on $\Sigma$ which is invariant and expanding by $R_{Y}^{-1}$ (see [2]).

From now on we fix such $\gamma, C_{H}^{\gamma}$ and $C_{V}^{\gamma}$.
Proposition 2.6. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and $k$ as above. Then, there exist a neighborhood $\mathscr{V}$ of $X$ in $\mathscr{X}^{k}(M, \partial M)$ such that: For all $Y \in \mathscr{V}, R_{Y}$ is hyperbolic on $\Sigma_{0}$. More precisely, there are $C_{1}=C_{1}(Y)>0$ and $\lambda_{1}=\lambda_{1}(Y)>1$ such that $\forall n \in \mathbb{N}$, $\forall p$ with $R_{Y}^{i}(p) \in \Sigma_{0},-n+1 \leq i \leq 0$ and $\forall v \in C_{H}^{\gamma}(p)$ we have

$$
\begin{equation*}
\left\|D R_{Y}^{-n}(p) \cdot v\right\| \geq C_{1} \cdot \lambda_{1}^{n} \cdot\|v\| \tag{2.7}
\end{equation*}
$$

and there are $C_{2}=C_{2}(Y)>0$ and $\lambda_{2}=\lambda_{2}(Y)>1$ such that $\forall n \in \mathbb{N}, \forall p$ with $R_{Y}^{i}(p) \in \Sigma_{0}, 0 \leq i \leq n-1$ and $\forall v \in C_{V}^{\gamma}(p)$ we have

$$
\begin{equation*}
\left\|D R_{Y}^{n}(p) \cdot v\right\| \geq C_{2} \cdot \lambda_{2}^{n} \cdot\|v\| \tag{2.8}
\end{equation*}
$$

Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the statement of Proposition.
By Proposition 2.5 we can choice a neighborhood $\mathscr{V}_{1}$ of $X$ in $\mathscr{X}^{k}(M, \partial M)$ such that for all $Y \in \mathscr{V}_{1}$ the $\gamma$-cone fields $C_{H}^{\gamma}$ and $C_{V}^{\gamma}$ exist. Moreover, $C_{H}^{\gamma}$ is invariant and expanding by $R_{Y}^{-1}$ and $C_{V}^{\gamma}$ is $R_{Y}$-invariant and transversal to $\mathscr{F}$.

By Proposition 2.4, the one dimensional map $g_{X}$ is a $C^{1}$, belongs to $\mathscr{A}_{L}$. Then by Proposition 2.4 and 2.3 , there exists a neighborhood $\mathscr{U}$ of $g_{X}$ in $\mathscr{A}_{L}$ such that each $g \in \mathscr{U}$ is hyperbolic. We can choice a neighborhood $\mathscr{V}_{2}$ of $X$ in $\mathscr{X}^{k}(M, \partial M)$ in a such a way that for all $Y \in \mathscr{V}_{2}, g_{Y}$ belongs to $\mathscr{U}$ because item (b) in Proposition 2.4. Define $\mathscr{V}=\mathscr{V}_{1} \cap \mathscr{V}_{2}$.

Fix $Y \in \mathscr{V}$. The existence of $C_{1}$ and $\lambda_{1}$ (which depend only on $Y$ ) satisfying the inequality (2.7) is a consequence of the fact that $C_{H}^{\gamma}$ is $R_{Y}^{-1}$-invariant and $R_{Y}^{-1}$-expanding.

Now we will prove the remainder of the Proposition 2.6. Indeed, as $g_{Y} \in \mathscr{U}$ we have that there exists $\lambda=\lambda(Y)>1$ such that for all $n \in \mathbb{N}$, for all $y$ with $g_{Y}^{i}(y) \in[-1 / 2,1 / 2] \backslash\{0\}, 0 \leq i \leq n-1$ we obtain

$$
\begin{equation*}
\left|D g_{Y}^{n}(y)\right| \geq \lambda^{n} \tag{2.9}
\end{equation*}
$$

Define

$$
C_{2}=\frac{1}{\max \{\gamma, 1\}} \text { and } \lambda_{2}=\lambda
$$

Fix $n \in \mathbb{N}, p=(x, y)$ with $R^{i}(p) \in \Sigma_{0}, 0 \leq i \leq n-1$ and $v \in C_{V}^{\gamma}(p)$ with $v=(u, w)$. Then have that $g_{Y}^{i}(y) \in[-1 / 2,1 / 2] \backslash\{0\}, 0 \leq i \leq n-1$.

Moreover, from (2.5) we have

$$
D R_{Y}^{n}(p) v=\left(u_{n}, w_{n}\right)=\left(u_{n}, \partial_{y} g_{Y}^{n}(y) w\right)
$$

Therefore, from this equality, the inequality (2.9) and definitions of $C_{2}$ and $\lambda_{2}$ we get that

$$
\begin{aligned}
\left\|D R_{Y}^{n}(p) \cdot v\right\| & =\max \left\{\left|u_{n}\right|,\left|\partial_{y} g_{Y}^{n}(y)\right| \cdot|w|\right\} \\
& \geq\left|\partial_{y} g_{Y}^{n}(y)\right| \cdot|w| \\
& \geq \frac{\left|\partial_{y} g_{Y}^{n}(y)\right|}{\max \{\gamma, 1\}} \cdot\|v\| \\
& \geq \frac{C}{\max \{\gamma, 1\}} \cdot \lambda^{n} \cdot\|v\| \\
& =C_{2} \cdot \lambda_{2}^{n} \cdot\|v\|
\end{aligned}
$$

where $\|\cdot\|$ denote the maximum norm. This shows (2.8) and finishes the proof.
Proposition 2.7. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and $k$ as above. Then, there exist a neighborhood $\mathscr{W}$ of $X$ in $\mathscr{X}^{k}(M, \partial M)$ such that: For all $Y \in \mathscr{W}$, for all smooth curve $\zeta$ tangent to $C_{V}^{\gamma}$ with $\zeta \cap\left(\bigcap_{i=0}^{\infty} R_{Y}^{-i}\left(\Sigma_{0}\right)\right) \neq \emptyset$ there exist an integer $n=n\left(R_{Y}, \zeta\right)$ and a smooth curve $\hat{\zeta}$ contained in $\zeta$ such that $R_{Y}^{n}$ is continuous on $\hat{\zeta}$ and $\Pi^{\mathscr{F}}\left(R_{Y}^{n}(\hat{\zeta})\right)=[-1 / 2,1 / 2]$.
Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the statement of Proposition 2.7. Note that $X$ has associate an one dimensional map $g_{X}$. From Proposition 2.4 (see statements (a)) we get that $g_{X}$ is a $C^{1}$ map, $g_{X} \in \mathscr{A}_{L}$ and $g_{X}$ has derivative bigger $\sqrt{2}$. Then by proposition 2.2 , there exists a $d_{\mathscr{A}_{L}}$-neighborhood $\mathscr{U}$ of $g_{X}$ in $\mathscr{A}_{L}$ such that for all $g \in \mathscr{U}$ and for all interval $J \subset I$ there exist $n=n(g, J) \geq 0$ such that $g^{n}(J)=[-1 / 2,1 / 2]$. We can choice a neighborhood $\mathscr{W}$ of $X$ in $\mathscr{X}^{k}(M, \partial M)$ in a such away that for all $Y \in \mathscr{W}, g_{Y}$ belongs to $\mathscr{U}$ because item (b) in Proposition 2.4.

Fix $Y \in \mathscr{W}$ and a curve $\zeta$ tangent to $C_{V}^{\gamma}$ with $\zeta \cap\left(\bigcap_{i=0}^{\infty} R_{Y}^{-i}\left(\Sigma_{0}\right)\right) \neq \emptyset$ and define $J=\Pi^{\mathscr{F}}(\zeta)$. Therefore there exist an integer $n=n\left(g_{Y}, J\right)$ such that $g_{Y}^{n}(J)=$ $[-1 / 2,1 / 2]$. So, we obtain $\Pi^{\mathscr{F}}\left(R_{Y}^{n}(\hat{\zeta})\right)=g_{Y}^{n}\left(\Pi^{\mathscr{F}}(\hat{\zeta})\right)=g_{Y}^{n}(\hat{J})=[-1 / 2,1 / 2]$. The Proposition follows.

Now, we will prove that for all $Y \in \mathscr{V} \cap \mathscr{W}, \Lambda_{Y}$ is a transitive set, where $\mathscr{V}$ is given in Proposition 2.6 and $\mathscr{W}$ is given in Proposition 2.7. So, we need to prove that the maximal invariant set $\bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$ given in (2.6) is a transitive for $R_{Y}$.

Claim A: For all $p \in \bigcap_{n \geq 0} R^{-n}\left(\Sigma_{0}\right)$ the stable leaf $L=\mathscr{F}(p) \in \mathscr{F}$ is accumulate by hyperbolic periodic points of saddle type, i.e. every neighborhood of $L$ contains a hyperbolic periodic point of saddle type.

Indeed, let $U$ a neighborhood of $L$. We can take $U$ in a such way that $U=$ $\left(\Pi^{\mathscr{F}}\right)^{-1}\left(\Pi^{\mathscr{F}}(U)\right)$. Take a small curve $\zeta \subset U$ through $p$ and tangent to $C_{V}^{\gamma}$. From Proposition 2.7 there are $\hat{\zeta} \subseteq \zeta$ and $n \in \mathbb{N}$ such that $R_{Y}^{i}(\hat{\zeta}) \subseteq \Sigma_{0} \forall 0 \leq i \leq n-1$
and $R_{Y}^{n}(\hat{\zeta})$ meets all leaf in $\mathscr{F}$. Thus, for $\hat{J}=\Pi^{\mathscr{F}}(\hat{\zeta})$ we have that $\hat{J} \subset g_{Y}^{n}(\hat{J})$. Then there is $y \in \hat{J}$ such that $g_{Y}^{n}(y)=y$ and so $L(y)=\left(\Pi^{\mathscr{F}}\right)^{-1}(y) \subset U$ is a periodic leaf of $\mathscr{F}$. This implies that there exists a periodic point of $R_{Y}$ belonging to $L(y) \subset U$. By Proposition 2.6 this periodic point is hyperbolic of saddle type. This proves the claim A.

Claim B: The hyperbolic periodic points of saddle type of $R_{Y}$ are dense in $\bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$.

Indeed, take a point $z \in \bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$ and take a neighborhood $V$ of $z$. Take an integer $n$ large enough such that $L=\mathscr{F}\left(R_{Y}^{-n}(z)\right)$ the leaf that contains $R_{Y}^{-n}(z)$ is applied by $R_{Y}^{n}$ into $V$. So the same applies to a small horizontal band $U$ around the leaf $L$. By Claim A there exists a periodic point of saddle type in $U$. Therefore the orbit of this periodic point visits the neighborhood $V$ and the claim B follows.

To finish the proof of the transitivity of $R_{Y}$ we will use the classical Birkhoff's criterium to prove transitivity: for all $p, q \in \bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$ and $\varepsilon>0$ there are $z \in \bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$ and $n_{z} \in \mathbb{N}$ such that $d(z, p)<\varepsilon$ and $d\left(R_{Y}^{n_{z}}(z), q\right)<\varepsilon$. Indeed, fix $p, q$ and $\epsilon$. By the above claim B we can assume that $p$ and $q$ are hyperbolic periodic points of saddle type. Fix a curve $\gamma$ in $W^{u}(p)$ contained in $\Sigma$. We can assume that $\gamma$ intersects to the leaf $\mathscr{F}(q)$ transversely in some point $z^{*}$ by Proposition 2.7. Since the positive (resp. negative) orbit of $z^{*}$ is asymptotic to $q$ (resp. $p$ ) we have $z^{*} \in \bigcap_{n \in \mathbb{Z}} R_{Y}^{n}\left(\Sigma_{0}\right)$. By taking the negative orbit of $z^{*}$ we have some $n_{1}^{*} \in \mathbb{N}$ such that

$$
d\left(R_{Y}^{-n_{1}^{*}}\left(z^{*}\right), p\right)<\varepsilon .
$$

By taking the positive orbit of $z^{*}$ we have some $n_{2}^{*} \in \mathbb{N}$ such that

$$
d\left(R_{Y}^{n_{2}^{*}}\left(z^{*}\right), q\right)<\varepsilon
$$

Then $z=R_{Y}^{-n_{1}^{*}}\left(z^{*}\right)$ and $n_{z}=n_{1}^{*}+n_{2}^{*}$ works.
Therefore, the proof of Fist step, Second step and Third step follows. Therefore $\Lambda$ is $C^{k}$-robust transitive set. The proof follows.

The following lemma is as in [8].
Lemma 2.8. $F_{\sigma_{0}}=E_{\sigma_{0}}^{s s}, F_{\sigma_{0}}^{c}=E_{\sigma_{0}}^{c u}, E_{\sigma_{1}}^{s s}=F_{\sigma_{1}}^{s}$ and $F_{\sigma_{1}}^{c}=E_{\sigma_{1}}^{c}$.
Proof. This a consequence of the uniqueness of the dominates splitting $T_{\Lambda} M=$ $F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$.
Remark 2.9. As $F_{\sigma_{0}} \not \subset T_{\sigma_{0}} \partial M$ then by the invariance of $T \partial M$ and Lemma 2.8 we have that $F_{\sigma_{0}}^{c}=T_{\sigma_{0}} \partial M$.
Lemma 2.10. The invariant transitive set $\Lambda$ does not has dominates splitting.

Proof. By contradiction we suppose that $\Lambda$ has a dominated splitting $T_{\Lambda} M=$ $F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$. Take $x \in \gamma \subset W^{u}\left(\sigma_{0}\right) \cap W^{s}\left(\sigma_{1}\right)$ close to $\sigma_{0}$ then $F_{x}^{s} \not \subset T_{x} \partial M$ by continuity of the splitting $T_{\Lambda} M=F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$ and Remark 2.9. Moreover note that $W^{u}\left(\sigma_{0}\right) \subset \partial M$ and $W^{s}\left(\sigma_{1}\right) \subset \partial M$. We take $v_{x} \in T_{x} \partial M \backslash F_{x}^{s}$ with $v_{x} \neq 0$. Using the fact that the splitting $T_{\Lambda} M=F_{\Lambda}^{s} \oplus F_{\Lambda}^{c}$ is dominated and $F_{x}^{s} \not \subset T_{x} \partial M$ we have that angle $\angle\left(D X_{t}(x) \cdot v_{x}, F_{X_{t}(x)}^{c}\right)$ goes to 0 exponentially as $t \rightarrow \infty$ (see also Remark 2.2 [8]). Moreover, as $D X_{t}(x) \cdot v_{x} \in T_{X_{t}(x)} \partial M$, then using the continuity of the dominates splitting and $\omega(x)=\sigma_{1}$ we get $\left.\angle T_{\sigma_{1}} \partial M, F_{\sigma_{1}}^{c}\right)=0$ and so $F_{\sigma_{1}}^{c}=T_{\sigma_{1}} \partial M$ because that $\operatorname{dim}\left(T_{\sigma_{1}} \partial M\right)=\operatorname{dim}\left(F_{\sigma_{1}}^{c}\right)$ and this is a contradiction with $F_{\sigma_{1}}^{c}=E_{\sigma_{1}}^{c}$ (see Lemma 2.8). The proof follows.

## ACKNOWLEDGEMENTS

The first author wants to thanks to the Instituto Nacional de Matemática Pura e Aplicada, IMPA-Brasil, for partial support and for its hospitality.

## D. Carrasco-Olivera

Departamento de Matemática
Facultad de Ciencias
Universidad del Bío Bío
Casilla 5-C, Concepción, Chile
e-mails address: dcarrasc@ubiobio.cl
B. San Martín

Departamento de Matemática
Facultad de Ciencias
Universidad Católica del Norte
Av Angamos 0610, Casilla 1280, Antofagasta, Chile
e-mails address: sanmarti@ucn.cl

## References

[1] V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type Trudy Moskov. Mat. Obshch. 44 (1982), 150-212 (Russian).
[2] R. Bamón, R. Labarca, R. Mañé and M.J. Pacífico, The explosion of singulay cycles. Inst. Hautes Etudes Sci. Publ. Math., 78 (1993), 207-232.
[3] D. Carrasco-Olivera, C.A. Morales and B. San Martín, Singular Cycles and $C^{k}$-robust transitive set on manifold with boundary Communications in Contemporary Mathematics. Acccepted for publication.
[4] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors. Inst. Hautes Etudes Sci. Publ. Math., (1979), no. 50, 59-72.
[5] Hirsch, M. W.; Pugh, C. C.; Shub, M., Invariant manifolds. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York 583 (1977).
[6] R. Labarca and M.J. Pacífico, Stability of singularity horseshoes Topology 25 (1986), no 3, 337-352.
[7] J. Milnor, On the concept of attractor. Comm. Math. Phys., 99 (1985), no. 2, 177-195.
[8] C.A. Morales, Sufficient conditions for a partially hyperbolic attractor to be a homoclinic class. J. Differential Equations, 249 (2010), no. 8, 2005-2020.
[9] C. A. Morales, M. J. Pacifico, E. R. Pujals, Robust Transitive Singular Sets for 3-Flows Are Partially Hyperbolic Attractors or Repellers. The Ann. of Math., 160 (2004), 275-432.
[10] C. A. Morales, M. J. Pacifico, E. R. Pujals, $C^{1}$ robust singular transitive sets for threedimensional flows. C. R. Acad. Sci. Paris, 326 (1998), 81-86.
[11] C. A. Morales, M. J. Pacifico, E. R. Pujals, Singular hyperbolic systems. Proc. Am. Math. Soc., 127, no. 11 (1999), 3393-3401.
[12] Rovella, A., The dynamics of perturbations of the contracting Lorenz attractors. Bol. Soc. Bras. Math., 24 (1993), 233-259.


[^0]:    2000 AMS Subject Classification: 34D45, 37D30 (Primary), 37C10 (Secondary). Key words and phrases: Robust transitive sets. Attractor sets. Dominated splitting. DC is partially supported by Proyecto de Inserción de Nuevos Investigadores en la Academia, Folio 79090039, CONICYT-UBB, Chile and IMPA, Post-Doctorado Verano 2011, Rio de Janeiro, Brasil. BS is partially supported by Proyecto FONDECYT No 1110717, CONICYT, Chile.

