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ABSTRACT. In this paper we prove that there exists a positive integer k with
the following property: Every compact 3-manifold with boundary carries a C'**®
vector field exhibiting a C*-robust attractor set without dominated splitting.

1. INTRODUCTION

Let M be a compact 3-manifold with boundary M. Denote by 27*(M, M),
k > 1 (or k = 00), the space of C* vector fields in M tangent to M (if nonempty)
endowed with the standard C* topology. We fix X € 2 Y(M,0M) and denote
by X;, t € R, the flow generated by X in M. A compact invariant set A of X is
isolated if there is an open set U D A, called an isolating block, such that

A= X(0).

An attracting set is an isolated set with a positively invariant isolating block U,
ie, X;(U) CU for all t > 0. Given p € M we define its omega-limit set,

wp)={qgeM:q= nhj& X, (p) for some sequence t,, — co}.

An compact invariant A of X is transitive if A = w(p) for some p € A. An
attractor is a transitive attracting set (further definitions of attractors can be
found in [7]). An invariant set A of X is non-trivial if it is not a single orbit.

If k € Nt and X € X*(M, M) we say that an isolated set A of X is a C*-robust
transitive set if it exhibits an isolating block U such that the continuation

Ay = [ Yu(U)
teR
of A for Y CF-close to X is a non-trivial transitive set of Y. A CF-robust at-
tractor is a C*-robust transitive set which is simultaneously an attracting set. A
singularity o of X is called Lorenz-like if it has three real eigenvalues A, Ag, Ay
satisfying A\gs < Ay < 0 < =\ < A, up to some order.
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Let A be a compact invariant set of X. A continuous invariant splitting Th M =
E\ @ E, over A is dominated if there are positive constants C, A such that

|1DXi(2)/ .|
|Im(DX:(x)/ k)|

The motivation of this paper is the work [11] dealing with C* robust transitive
sets for vector fields on compact boundaryless 3-manifolds. Indeed, it was proved
that these sets are robust attractors, exhibit a dominated splitting and that their
singularities are Lorenz-like up to flow reversing. This result certainly suggests
the same for vector fields on compact 3-manifolds with boundary, but it seems
that it is not so. In fact the recent work [3] proved that there is r € N* with
the following property: Every compact 3-manifold with boundary carries a C'*
vector field X exhibiting a C"-robust transitive set with a singularity that is not
Lorenz-like for X or —X. Nevertheless the C"-robust transitive sets obtained
there are not attractors, so, it is still possible that the singularities of a robust
attractor for vector fields on compact 3-manifolds with boundary be Lorenz-like
ones. Moreover also it is still possible that robust attractor for vector fields
on compact 3-manifolds with boundary exhibit dominated splitting. The result
below given a negative answer for this last question.

< COMX forallt >0 and for all z € A.

Theorem 1.1. There is a positive integer k such that every compact 3-manifold
with boundary carries a C* wvector field exhibiting a C*-robust attractor without
dominates splitting.

The integer k above and r in [3] may be different (this will be clear in the
context).
2. PROOF

Let consider a vector field X € 27°°(M,0M) satisfying the following proper-
ties:
(a) X has three hyperbolic singularities oo, oy and o9 such that o € OM, for

i=01,2.
(b) If the singularities o* have real eigenvalues X’ , A} and X, with A, < \. <
0 <A, a; = —2 and ff; = —2 for i = 0, 1,2, then

(b—].) Boa; < 1 and ag + Bof; > 1, for i =1, 2.
(¢) The unstable manifold W*"(0y), stable manifold W*(¢;) and strong stable
manifold W**(o;) satisfy W*(oo) N (W*(0;)\W?**(0;)) # 0, for i = 1, 2.
(d) There are two positive real numbers @, a such that X is C?-linear in the

cubes
Q = {(zy2): 2| < Lyl <1,0<2 <1}
Q = {(z,9,2):|7|<aly <a0<z<1}and
Q: = {(#,9,2) |7 <a,]gl <a0<z2<1}
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containing to o;, for ¢« = 0,1, 2, respectively. Moreover, the trajectories
of the unstable manifold of o;, for ¢ = 1,2, intersect the top rectangle
Yo={(z,y,2) : |z| <1,]y| <1,z =1} of the cube Q.
(e) The corresponding eigenspace associate to A\, E;?, and T,,0M, for i =
0, 1,2, are transversals.
(f) X has a trapping region.
(g) There exists a vertical invariant contracting stable C! foliation in %, for
the first return Poincaré map.
(h) The dynamic in the space of the leaf is expansive.
Note that rectangle ¥y is divided by the stable manifold of o in two subrectangles
¢ and Y. We let us consider X3 = ¥ UX,, Xf = {(z,y,2) : |z| < 1,y =

Z )
{(z,9,2) :|z| <a,|gl <a,z=1} and 53 = {(2,9,2) : [7] < a, |yl < a,Z =
Figure 1 show the principal features of the vector field X.

FIGURE 1

As X is C*linear in the cube Qg, X is the three model linear differential
equations:

i = Nz
o= Ay
= Nz
Which with initial conditions (zg, o, 1) in X, the solution is given by
z(t) = eMag
y(t) = ey

2(t) = s
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The trajectories of points (zg,yo, 1) €

(2.1) y

O, B. SAN MARTIN
¥# meets the plane X1 when

= moyé“’
1

Yo'

In similar form to (2.1) we obtain for points (xg, yo, 1) € X meets the plane X7 .
As X is C*linear in the cube Q;, X is the three model linear differential

equations:

VL K-

Which with initial conditions (z

The trajectories of points (Zg, —a, Zo)

(2.2)

0, —

1 —
3o
‘fy
= A,z

A
A
A
)

a, %) in X7, the solution is given by

€ X7 meets the plane ¥ when

ToZ!
= —az
1.

Finally, as X is C?-linear in the cube Q,, X is the three model linear differential

equations:

NS KR

Which with initial conditions (Zy, a,

(2.3)

There exists fourth non-linear return
I, % — %5 and I, : 05 — 5.

out ou
*
loc

— H2,* o H

loc

17
out ©

A7
A%
A2z,

Zp) in X7, the solution is given by

eMs T
= M (a)

M

Y] meets the plane ¥, when

= Fo3>
= azy’
= 1
R L yes e G S
maps: I, : X7 — X5, I, « X5 — X,

We let consider

* 0,% _
IL,,, for » =

+, -
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Therefore, if we suppose that I = Id, we Id is the is the identity map, for
* =4, — then from (2.1), (2.2) and (2.3) we obtain

(2, y) = (azy o0 by if y > 0;
for some real constants a and b (depending only of X) and
Hl_oc(xvy) - (nyao-i-ﬁo@’ dyﬁoozz) if y < 0;

for some real constants ¢ and d (depending only of X). So two Poincaré maps
are defined: R* = I3 o I}, « B35 — %, for * = 4, —. As by hyphoteses there
exists a invariant contracting C* foliation in ¥y which is invariant by return map
R were (R(z,y) = R (z,y) if y > 0 and R(z,y) = R (z,y) if y < 0), then using
this foliation, R can by defined by

R(x,y) = (F(z,y), f(y))

(a)F(z,y) > 3
(b)F(z,y) <3  fory<0.

and where f satisfies the properties:
@fO0) =4 fOH) =~}
(2.4) ) f(z) > V2 for x € [-1,1]\{0}
(c)— 3 < flz) <3 forxze[-1,1\{0}.
(b) and (c) holding throughout the range —% <z < 3
Moreover there exists a trapping region (isolated block) U of the cube above.

Define
A=(X(U
>0
This finish the construction of X and A. Now we will prove that A is C*-robust
attractor set.
The assumption of C? linearing coordinates nearby o;(Y'), imply Y € 2;¥(M,0M)
where

where

4 -min{\i,, —\'} — Log(56)
max{\,, —\i } '
We choose k = min{k;}, i =0, 1,2. Now we fix such k.

Take any neighborhood % of the vector field X in the C* topology. Now fix
such k and Y € %, and let us consider the continuations o;(Y"), i = 0, 1,2, of
singularities o; as well defined. The vector field Y is C?-linearizable nearby o;(Y),
i=0,1,2.

We can assume that the cross-sections ¥y, X7, X3, X3, for * = +, —, remain
transverse to any Y C*-close to X. Moreover we can assume that any Y C*-close
to X is C*linear in the cubes Q;, for i = 0,1,2. In the same way A’ (Y), A,(Y)
and X (Y), for i = 0, 1,2, the respective continuations of the eigenvalues ., \!

and \!. Denote o, = _//\\%((};)) and 3% = for:=0,1,2.

k; > 2+

Az y)7
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0 2 1 3
Also we denote by TI,;7y, TIo7 o, Ty, Ty, Ry and Ry, for x = 4, —, the

continuation of 1T, I TIL* TI27% R* and R, respectively.

Now by choice of k for any vector filed Y C*-close to X there are C? linearizing
coordinates at the singularity o(Y);, for i = 0,1, 2, so the Poincaré map Py is a
C? map. Additionally, we suppose that Hi;ft preserves the "horizontal ”lines and
Hi;j;, for x = 4+, — put X3 into X expanding in "vertical”direction. So, again the
techniques in [2] give us a Ry-invariant contracting C! foliation .7 (see also [12]).
This construction can be made in a such way that the set {y = 0}, {y = —3
and {y = 3} are leaves of this foliation.

We can use this foliation to put new coordinates (x,y) on X, still linearizing,

such that for all (z,y) € 3§

(25) RY(xvy) = (Hy(x,y),fy(y)),

for some C! maps fy(-,-) and gy (-). Moreover, gy (a) and gy (b) are greater than
1.
It follows from the above that

Ay =(\Y(U) =CI (UYt (ﬂ R@(E@)) :

teR teR neZ

So, in order to prove that Ay is a transitive set, we only need to prove that the
maximal invariant set

(2.6) ) Ry (Zo)

nez

is a transitive set for Ry and for this purpose essentially we follow the arguments
given in [3]. Other argument can be find in [4].

Definition 2.1. Define o, as the set of C*-maps f : [—1/2,1/2]\{0} — [-1/2,1/2]
satisfying the following properties:

(a) f'(y) > V2 on [=1/2,1/2]\{0};
[ is strictly increasing on [—1/2,1/2]\{0};

)

) f(07) =1/2 and f(07) = —1/2;

) f'(y) — o0 as y — 0 (from right and left).

) There are oy < 1, o} < 1 and two C* function H; : [-1/2,0) — R,
H? :(0,1/2] — R with lim,, o DH;(y) =0 and lim,_,g P _ 0 such that

J(@) = ay + [y|*T H} (), for all y € [~1/2,0) and f(y) = as + |y|*7 H} (x),
for ally € (0,1/2], for some real numbers ay and as.

(b
(c
(d
(

e
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To every f € o, we called the Lorenz-like map. In 7}, we define a C* topology
induced by the following metric:

de, (f.9) = maX{Sl;mf(y)—g(y)|,sgp|Df(y)—Dg(y)\,sgplﬂ}(y)—Hj(y)I,

1

Sup |H3(y) — Hﬁ(y)l,SIylp E|DH}(?J) — DH, (y)|,
1

St;p mIDH?(y) — DHZ(y), laj — oy,

% — a2l 1y € [<1/2,1/2)\{0}}.
for all f,g € .
Proposition 2.2. (Eventually onto, [4]). Let f :[—1/2,1/2\{0} — [-1/2,1/2]

be a Lorenz-map. If J C [—1/2,1/2] is a subinterval, then, for all g C'-close
to f there exists a integer i = n(g,J) and a subinterval J such that g"(J) =

(~1/2,1/2].

Proof. Fix the Lorenz-like map f : [-1/2,1/2]\{0} — [-1/2,1/2] and J C I and
g Cl-close to f.

Let [y =Jif0¢ J. If 0 € J, let Iy be the bigger of the two intervals 0 splits
J into. Define I} = g(1y) if 0 ¢ g(Ip). If 0 € g(1y), let I; be the bigger of the two
intervals 0 splits g(/p) into.

Suppose that for each i such that I; is well defined. Let

I { £(5), g ()
! bigger of two parts Osplits f(/;) into,  if0 € f(I;).
Let A = min,e; f'(z) > v/2. By Mean Value Theorem,
length(g(I;11)) = ¢’ (&o)length(I;11), for some & € I;y.
Therefore for all g € ¥, (n-neighborhood), we get ¢'(&) > /() — 7
length(g(Li+1)) = (A — n)length(Iis1).
Therefore if 0 ¢ g(I;) and 0 € g(I;41) we get

A\ — 2
length(I;12) > ( 277) length(I;).

Define \ such thatA
lim, o+ (A —1n) > A > /2. Thus

~

2
length(I;yo) > %length(]i).

But as ’\72 > 1, this last inequality cannot always hold.
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Then there exists an integer n = n(J, g) such that f(/,_;) contain 0 and an end
point of I. So, either g(I,,-1) = [—1/2,0] or g(I,,-1) = [0,1/2]. We suppose that
g(In—1) = [0,1/2] then g(I,,) contains to [—1/2,0]. Therefore, ¢*(1,) = I. Thus,
there exists an integer 7 and a subinterval J C J such that ¢"(J) = [-1/2,1/2).
The proof follows. U
Proposition 2.3. Let f: [-1/2,1/2]\{0} — [—1/2,1/2] be a Lorenz-map. Then
all g Ct-close to f is hyperbolic, i.e., there exists X\ > 1 such that for alln € N,
for all y with ¢’(y) € [-1/2,1/2]. 0 <j <n—1, [Dg"(y)| > \".

Proof. This is a consequence of the hyperbolicity of f and by the fact that its is
a open property. Ul

Proposition 2.4. Let X € 2°°(M,0M) and k as above. Then for all Y C*-
close to X, the map gy (-) satisfies the following properties:

(a) gx() € L,
(b) gy (+) is du, close to gx(-).
Proof. Let Y C* close to X. We define Iy = Hjut,Y
By Taylor expansion near ¢o(Y") = (0,0),
1_-[out,Y (i" ?j) = Hout(qo (Y)) + DHout,Y-(:i'a g) + ﬁout,Y(fa g)a

where

cy dy

Dy (90(Y)) = [ o by ]

with ay, by, cy,dy € R and limz 3)—(0,0) %ﬁ@ = 0.

As DIy (q1(Y)) - e1 = (ay, cy) and Doy (qi(Y)) - —e2 = (—by, —dy), by
assumption about orientation of DII,,;y, we have that ay > 0 by and dy are

negatives and ¢y = 0. Also we have that Iy (q1(Y)) = (zo(Y), yo(Y)). Then
Woury (7,9) = (20(Y) +ay - +by -7+ O1y(T,7),
YY) +dy -+ Oy, 7),
where Ouury = (O1y,02y).
Note that Oy (Z,0) = 0.
Remember that
I}y (2, y) = (azy®) G byh)a)) i ¢ > 0;
Then
Ry (x,y) = (xo(Y) + ay - T+ by - §+ O1y(Z,9),%(Y) + dy - § + Oy (7, 7)),
where,
amyao(y)-l-ﬁo(y)ﬁl(y)

byﬁo (Y)ar(Y)

Kl
Il

Nl



Robust attractors with non Lorenz-like singularities on manifolds with boundary 9

Note that Hy(z,y) = 2o(Y) +ay - T+ by - ¥+ O1y(Z,7) and fy(y) = yo(Y) +
dy - §+ Osy(Z, y) therefore,

@) = w)+dy by®™Ma0) 10, (z,7)

= yo(Y) 4y (dy b+ W)
Y

= yo(Y) + y*NOVH(y),

where H](y) = dyb+ 62#(;’@. Note on the one hand that

DHgl(y)>

fi(y) =y a1 <5O(Y)a1(Y)Hgl(y) + y

Also we obtain ,

fyly) =y 0 (G (¥ ) (V)ayb + A(y) + B(y) ).

were
Aly) = 002y (Z,7) alag(Y) + Go(Y)51(Y))Zy (Y)4+Bo(Y)B1(Y)—Bo(Y)a1(Y)
R Bo e
and
005y (Z,y) 1

As lim,_o H}(y) = ayb then lim, DHyW) _ (), Therefore lim, o f3(y) — oo.
The estimates for II_ , ;- is in similar form.

Therefore under iterations of the maps fy and fx we obtain the result required.
O

We need to introduce some definition related to cone fields. Denote by T3,
the tangent bundle of ¥y. Given p € ¥ and v > 0, we denote by C},(p) the
horizontal ~y-cone with inclination 7, i.e.,

Chp) ={veT,X:v=(uw);w <~v-lul}.
Also, we denote by CJ.(p) the vertical y-cone with inclination v, i.e.,
Cp) ={veT,X:v=(u,w);|ul <v-|w|}

A y-cone field in ¥y is a continuous map C7 : p € ¥y — C7(p) C T,X¢, where
C7(p) is a y-cone with constant inclination v on 7,%. Let R : ¥y — X, be any
map. A y-cone field C7 is called R-invariant if DR(C7(p)\ {0}) C int(C7(R(p)))
for all p € ¥y. A ~v-cone field C7 is called R-expanding if there are C' > 0 and
A > 1 such that || DR™(p) -v ||> C - X" || v ||, Vn € N, Vp with RI(p) € %,
0 <j<n-—1and Vv € C?(p). A y-cone field C7 is called transversal to a
foliation .# on %, if T,L N C7(p) = {0}, Vp € L and VL € .Z.
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Proposition 2.5. Let X € Z°(M,0M) and k as above. Then exists v with
0 < v <1 such that for all Y C'-close to X there are invariants y-cone fields
C} and CJ. on Xy. Moreover C}; is Ry'-expanding and CY, is Ry -expanding and
transversal to the foliation % .

Proof. Fix X € 2°°(M,0M) as in the Statements of Proposition. Then there
exists a v with 0 < v < 1 such that for all Y C'-close to X there is a horizontal
y-cone field C}; on X which is invariant and expanding by Ry (see [2]). O

From now on we fix such v, C}; and CY.

Proposition 2.6. Let X € Z°°(M,0M) and k as above. Then, there ezist a
neighborhood ¥ of X in Z*(M,0M) such that: For allY € ¥, Ry is hyperbolic
on Xo. More precisely, there are C; = C1(Y) > 0 and Ay = \(Y) > 1 such that
Vn € N, Vp with Ry, (p) € o, —n+1 <4 <0 and Vv € C};(p) we have

(2.7) | DRy"(p) - v [|= Cr- AL~ | v |

and there are Cy = Co(Y) > 0 and Ay = Xo2(Y) > 1 such that Vn € N, Vp with
Rl (p) € £, 0 <i<n—1 and Vv € C}(p) we have

(2.8) | DRy (p) - v [|= Co- A3~ [l v |-

Proof. Fix X € Z'°>°(M,0M) as in the statement of Proposition.

By Proposition 2.5 we can choice a neighborhood # of X in 2°*(M,dM) such
that for all Y € %] the ~-cone fields C}; and C7, exist. Moreover, C7; is invariant
and expanding by Ry and C} is Ry-invariant and transversal to .%#.

By Proposition 2.4, the one dimensional map gy is a C*, belongs to .7,. Then
by Proposition 2.4 and 2.3 , there exists a neighborhood % of gx in .o/, such
that each ¢ € % 1is hyperbolic. We can choice a neighborhood 7#; of X in
ZF(M,0M) in a such a way that for all Y € %5, gy belongs to % because item
(b) in Proposition 2.4. Define ¥ = %, N %5.

Fix Y € #. The existence of C; and A; (which depend only on Y') satisfying
the inequality (2.7) is a consequence of the fact that C7}, is Ry'-invariant and
Ry '-expanding.

Now we will prove the remainder of the Proposition 2.6. Indeed, as gy € %
we have that there exists A = A(Y') > 1 such that for all n € N, for all y with
g (y) € [-1/2,1/2]\{0}, 0 < i < n — 1 we obtain

(2.9) |Dgy-(y)| = A"
Define 1
=——— and \y = .
Cg max{’y,l} an )\2 A

Fix n € N, p = (z,y) with R'(p) € X0, 0 < i <n—1and v € CJ(p) with
v = (u,w). Then have that gi-(y) € [-1/2,1/2]\{0}, 0<i<n—1.
Moreover, from (2.5) we have

DRy (p)v = (tn, wy) = (un, Iygy-(y)w).
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Therefore, from this equality, the inequality (2.9) and definitions of Cy and As
we get that

I DRy (p)-v || = max{|unl, 9,95 (y)] - [w]}
>[99y (y)] - [w]
> 19,97 ()l
> =5 vl
max{7, 1}
O n
> ——— A" vl
max(7, 1]
= G )‘g H v H7
where |||| denote the maximum norm. This shows (2.8) and finishes the proof. [

Proposition 2.7. Let X € 2°°(M,0M) and k as above. Then, there exist
a neighborhood W of X in Z*(M,0M) such that: For all Y € W, for all

smooth curve ¢ tangent to CF, with ¢ N ([ Ry (Xo)) # 0 there exist an integer
i=0

n = n(Ry,() and a smooth curve Q: contained in ¢ such that Ry is continuous on
¢ and T7 (R} () = [~1/2,1/2].

Proof. Fix X € Z°°(M,0M) as in the statement of Proposition 2.7. Note that X
has associate an one dimensional map gx. From Proposition 2.4 (see statements
(a)) we get that gx is a C' map, gx € 7, and gx has derivative bigger v/2.
Then by proposition 2.2, there exists a d., -neighborhood % of gx in 7}, such
that for all ¢ € % and for all interval J C I there exist n = n(g, J) > 0 such that
g"(J) =[-1/2,1/2]. We can choice a neighborhood # of X in Z7%(M,0M) in a
such away that for all Y € #, gy belongs to % because item (b) in Proposition
2.4.

Fix Y € # and a curve ( tangent to C, with ¢ N ([ By (Xo)) # 0 and define
i=0

J = II7(¢). Therefore there exist an integer n = n(gy, J) such that g3 (J) =
[—1/2,1/2]. So, we obtain II7 (R}(()) = g (H%)) = g (J) = [-1/2,1/2].
The Proposition follows.

Now, we will prove that for all Y € ¥ N#', Ay is a transitive set, where ¥ is
given in Proposition 2.6 and #  is given in Proposition 2.7. So, we need to prove
that the maximal invariant set (), ., Ry (2o) given in (2.6) is a transitive for Ry.

Claim A: For all p € (-, R7"(X0) the stable leaf L = .% (p) € .# is accumulate
by hyperbolic periodic points of saddle type, i.e. every neighborhood of L contains
a hyperbolic periodic point of saddle type.

Indeed, let U a neighborhood of L. We can take U in a such way that U =
(II7)~Y(T17 (U)). Take a small curve ¢ C U through p and tangent to C7.. From

Proposition 2.7 there are ( C ¢ and n € N such that R@(é) CYyV0<i<n-—1
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and R%(C) meets all leaf in .. Thus, for J = II7 () we have that J C git(J).
Then there is y € J such that ¢gi(y) = y and so L(y) = (II7)"Y(y) Cc U is a
periodic leaf of .%. This implies that there exists a periodic point of Ry belonging
to L(y) C U. By Proposition 2.6 this periodic point is hyperbolic of saddle type.
This proves the claim A.

Claim B: The hyperbolic periodic points of saddle type of Ry are dense in
mnEZ R?’ (EO) :

Indeed, take a point z € (o, Ry (20) and take a neighborhood V' of z. Take an
integer n large enough such that L = .#(Ry,"(2)) the leaf that contains Ry"(z)
is applied by RY into V. So the same applies to a small horizontal band U
around the leaf L. By Claim A there exists a periodic point of saddle type in
U. Therefore the orbit of this periodic point visits the neighborhood V' and the
claim B follows.

To finish the proof of the transitivity of Ry we will use the classical Birkhoft’s
criterium to prove transitivity: for all p,q € [),c; Ry (X0) and € > 0 there are
2 € (,ez By (X0) and n, € N such that d(z,p) < ¢ and d(Ry*(z),q) < €. Indeed,
fix p,q and e. By the above claim B we can assume that p and ¢ are hyperbolic
periodic points of saddle type. Fix a curve v in W*(p) contained in ¥. We
can assume that v intersects to the leaf .#(q) transversely in some point z* by
Proposition 2.7. Since the positive (resp. negative) orbit of z* is asymptotic to ¢
(resp. p) we have z* € (), o, Ry (o). By taking the negative orbit of z* we have
some nj € N such that

d(Ry™ (2"),p) < e.

By taking the positive orbit of z* we have some nj € N such that
d(RY? (), q) < e.

Then z = R;nik (2*) and n, = nj + n} works.
Therefore, the proof of Fist step, Second step and Third step follows. Therefore
A is C*-robust transitive set. The proof follows.

|
The following lemma is as in [8].

Lemma 2.8. F,, = £}, F; =Lk, B3 =F; and Fy; = E7 .

oo’ oo’

Proof. This a consequence of the uniqueness of the dominates splitting ThM =
Fi @ Ff. O

Remark 2.9. As F,, ¢ T,,0M then by the invariance of TOM and Lemma 2.8
we have that Fy, = T,;,0M.

Lemma 2.10. The invariant transitive set A does not has dominates splitting.
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Proof. By contradiction we suppose that A has a dominated splitting Th\M =
F;@® F{. Take v € v C W¥%(0op) N W#(ay) close to oy then F: ¢ T,0M by
continuity of the splitting TA\M = F; & F{ and Remark 2.9. Moreover note that
Wt (oy) C OM and W*(oy) C OM. We take v, € T,0M\F? with v, # 0. Using
the fact that the splitting ThyM = F{ @& F§ is dominated and F ¢ T,0M we
have that angle Z(DXy(x) - v, F,(,)) goes to 0 exponentially as ¢ — oo (see also
Remark 2.2 [8]). Moreover, as DX;(z) - v, € Tx,(z)OM, then using the continuity
of the dominates splitting and w(z) = o, we get £T, 0M,F;) = 0 and so
Fg = T, 0M because that dim(1,,0M) = dim(Fy,) and this is a contradiction
with Fy = E; (see Lemma 2.8). The proof follows. O
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