ROBUST ATTRACTOR SETS WITHOUT DOMINATED SPLITTING ON MANIFOLDS WITH BOUNDARY

D. CARRASCO-OLIVERA, B. SAN MARTÍN

ABSTRACT. In this paper we prove that there exists a positive integer k with the following property: Every compact 3-manifold with boundary carries a C^{∞} vector field exhibiting a C^k -robust attractor set without dominated splitting.

1. INTRODUCTION

Let M be a compact 3-manifold with boundary ∂M . Denote by $\mathscr{X}^k(M, \partial M)$, $k \geq 1$ (or $k = \infty$), the space of C^k vector fields in M tangent to ∂M (if nonempty) endowed with the standard C^k topology. We fix $X \in \mathscr{X}^1(M, \partial M)$ and denote by $X_t, t \in \mathbb{R}$, the flow generated by X in M. A compact invariant set Λ of X is *isolated* if there is an open set $U \supset \Lambda$, called an *isolating block*, such that

$$\Lambda = \bigcap_{t \in \mathbb{R}} X_t(U).$$

An attracting set is an isolated set with a positively invariant isolating block U, i.e., $X_t(U) \subset U$ for all t > 0. Given $p \in M$ we define its omega-limit set,

$$\omega(p) = \{ q \in M : q = \lim_{n \to \infty} X_{t_n}(p) \text{ for some sequence } t_n \to \infty \}.$$

An compact invariant Λ of X is *transitive* if $\Lambda = \omega(p)$ for some $p \in \Lambda$. An *attractor* is a transitive attracting set (further definitions of attractors can be found in [7]). An invariant set Λ of X is *non-trivial* if it is not a single orbit.

If $k \in \mathbb{N}^+$ and $X \in \mathcal{X}^k(M, \partial M)$ we say that an isolated set Λ of X is a C^k -robust transitive set if it exhibits an isolating block U such that the continuation

$$\Lambda_Y = \bigcap_{t \in \mathbb{R}} Y_t(U)$$

of Λ for $Y \ C^k$ -close to X is a non-trivial transitive set of Y. A C^k -robust attractor is a C^k -robust transitive set which is simultaneously an attracting set. A singularity σ of X is called *Lorenz-like* if it has three real eigenvalues $\lambda_{ss}, \lambda_s, \lambda_u$ satisfying $\lambda_{ss} < \lambda_s < 0 < -\lambda_s < \lambda_u$ up to some order.

²⁰⁰⁰ AMS Subject Classification: 34D45, 37D30 (Primary), 37C10 (Secondary). Key words and phrases: Robust transitive sets. Attractor sets. Dominated splitting. DC is partially supported by Proyecto de Inserción de Nuevos Investigadores en la Academia, Folio 79090039, CONICYT-UBB, Chile and IMPA, Post-Doctorado Verano 2011, Rio de Janeiro, Brasil. BS is partially supported by Proyecto FONDECYT No 1110717, CONICYT, Chile.

Let Λ be a compact invariant set of X. A continuous invariant splitting $T_{\Lambda}M = E_{\Lambda} \oplus E_{\Lambda}$ over Λ is dominated if there are positive constants C, λ such that

$$\frac{||DX_t(x)/E_x||}{||m(DX_t(x)/E_x)||} \le C\lambda^t \text{ for all } t > 0 \text{ and for all } x \in \Lambda.$$

The motivation of this paper is the work [11] dealing with C^1 robust transitive sets for vector fields on compact boundaryless 3-manifolds. Indeed, it was proved that these sets are robust attractors, exhibit a dominated splitting and that their singularities are Lorenz-like up to flow reversing. This result certainly suggests the same for vector fields on compact 3-manifolds with boundary, but it seems that it is not so. In fact the recent work [3] proved that there is $r \in \mathbb{N}^+$ with the following property: Every compact 3-manifold with boundary carries a C^{∞} vector field X exhibiting a C^r -robust transitive set with a singularity that is not Lorenz-like for X or -X. Nevertheless the C^r -robust transitive sets obtained there are not attractors, so, it is still possible that the singularities of a robust attractor for vector fields on compact 3-manifolds with boundary be Lorenz-like ones. Moreover also it is still possible that robust attractor for vector fields on compact 3-manifolds with boundary be Lorenz-like ones attractor for vector fields on the possible that robust attractor for vector fields on compact 3-manifolds with boundary exhibit dominated splitting. The result below given a negative answer for this last question.

Theorem 1.1. There is a positive integer k such that every compact 3-manifold with boundary carries a C^{∞} vector field exhibiting a C^k -robust attractor without dominates splitting.

The integer k above and r in [3] may be different (this will be clear in the context).

2. Proof

Let consider a vector field $X \in \mathscr{X}^{\infty}(M, \partial M)$ satisfying the following properties:

- (a) X has three hyperbolic singularities σ_0 , σ_1 and σ_2 such that $\sigma^i \in \partial M$, for i = 0, 1, 2.
- (b) If the singularities σ^i have real eigenvalues λ_{ss}^i , λ_s^i and λ_u^i with $\lambda_{ss}^i < \lambda_s^i < 0 < \lambda_u^i$, $\alpha_i = -\frac{\lambda_s^i}{\lambda_u^i}$ and $\beta_i = -\frac{\lambda_{ss}^i}{\lambda_u^i}$ for i = 0, 1, 2, then (b-1) $\beta_0 \alpha_i < 1$ and $\alpha_0 + \beta_0 \beta_i > 1$, for i = 1, 2.
- (c) The unstable manifold $W^u(\sigma_0)$, stable manifold $W^s(\sigma_i)$ and strong stable manifold $W^{ss}(\sigma_i)$ satisfy $W^u(\sigma_0) \cap (W^s(\sigma_i) \setminus W^{ss}(\sigma_i)) \neq \emptyset$, for i = 1, 2.
- (d) There are two positive real numbers \bar{a}, \tilde{a} such that X is C²-linear in the cubes

$$Q_{0} = \{(x, y, x) : |x| \leq 1, |y| \leq 1, 0 \leq z \leq 1\};$$

$$Q_{1} = \{(\bar{x}, \bar{y}, \bar{z}) : |\bar{x}| \leq \bar{a}, |\bar{y}| \leq \bar{a}, 0 \leq \bar{z} \leq 1\} \text{ and }$$

$$Q_{2} = \{(\tilde{x}, \tilde{y}, \tilde{z}) : |\tilde{x}| \leq \tilde{a}, |\tilde{y}| \leq \tilde{a}, 0 \leq \tilde{z} \leq 1\}$$

containing to σ_i , for i = 0, 1, 2, respectively. Moreover, the trajectories of the unstable manifold of σ_i , for i = 1, 2, intersect the top rectangle $\Sigma_0 = \{(x, y, x) : |x| \le 1, |y| \le 1, z = 1\}$ of the cube Q_0 .

- (e) The corresponding eigenspace associate to λ_{ss}^i , $E_{\sigma_i}^{ss}$, and $T_{\sigma_i}\partial M$, for i =0, 1, 2, are transversals.
- (f) X has a trapping region.
- (g) There exists a vertical invariant contracting stable C^1 foliation in Σ_0 for the first return Poincaré map.
- (h) The dynamic in the space of the leaf is expansive.

Note that rectangle Σ_0 is divided by the stable manifold of σ_0 in two subrectangles
$$\begin{split} &\Sigma_{0}^{+} \text{ and } \Sigma_{0}^{-} \text{. We let us consider } \Sigma_{0}^{*} = \Sigma_{0}^{+} \cup \Sigma_{0}^{-}, \ \Sigma_{1}^{+} = \{(x,y,z) : |x| \leq 1, y = 1, 0 \leq z \leq 1\}, \ \Sigma_{1}^{-} = \{(x,y,z) : |x| \leq 1, y = -1, 0 \leq z \leq 1\}, \ \Sigma_{2}^{+} = \{(\bar{x},\bar{y},\bar{z}) : |\bar{x}| \leq \bar{a}, y = -\bar{a}, 0 \leq \bar{z} \leq 1\}, \ \Sigma_{2}^{-} = \{(\tilde{x},\tilde{y},\tilde{z}) : |\tilde{x}| \leq \tilde{a}, y = \tilde{a}, 0 \leq \bar{z} \leq 1\}, \ \Sigma_{3}^{+} = \{(\bar{x},\bar{y},\bar{z}) : |\bar{x}| \leq \bar{a}, |\bar{y}| \leq \bar{a}, \bar{z} = 1\} \text{ and } \Sigma_{3}^{-} = \{(\tilde{x},\tilde{y},\tilde{z}) : |\tilde{x}| \leq \tilde{a}, |\tilde{y}| \leq \tilde{a}, \bar{z} = 1\}. \end{split}$$

FIGURE 1

As X is C^2 -linear in the cube Q_0 , X is the three model linear differential equations:

$$\begin{cases} \dot{x} = \lambda_s^0 x \\ \dot{y} = \lambda_u^0 y \\ \dot{z} = \lambda_{ss}^0 z \end{cases}$$

Which with initial conditions $(x_0, y_0, 1)$ in Σ_0^* , the solution is given by

$$\begin{cases} x(t) &= e^{\lambda_u^0} x_0 \\ y(t) &= e^{\lambda_u^0} y_0 \\ z(t) &= e^{\lambda_{ss}^0}. \end{cases}$$

The trajectories of points $(x_0, y_0, 1) \in \Sigma_0^*$ meets the plane Σ_1^+ when

(2.1)
$$\begin{cases} x = x_0 y_0^{\alpha_0} \\ y = 1 \\ z = y_0^{\beta_0}. \end{cases}$$

In similar form to (2.1) we obtain for points $(x_0, y_0, 1) \in \Sigma_0^*$ meets the plane Σ_1^- . As X is C^2 -linear in the cube Q_1 , X is the three model linear differential equations:

$$\begin{cases} \dot{\bar{x}} &= \lambda_{ss}^1 \bar{x} \\ \dot{\bar{y}} &= \lambda_s^1 \bar{y} \\ \dot{\bar{z}} &= \lambda_u^1 \bar{z}. \end{cases}$$

Which with initial conditions $(\bar{x}_0, -\bar{a}, \bar{z}_0)$ in Σ_1^+ , the solution is given by

$$\begin{cases} \bar{x}(t) &= e^{\lambda_{ss}^1} \bar{x}_0 \\ \bar{y}(t) &= e^{\lambda_s^1} (-\bar{a}) \\ \bar{z}(t) &= e^{\lambda_u^2}. \end{cases}$$

The trajectories of points $(\bar{x}_0, -\bar{a}, \bar{z}_0) \in \Sigma_1^+$ meets the plane Σ_2^+ when

(2.2)
$$\begin{cases} \bar{x} = \bar{x}_0 \bar{z}_0^{\beta_1} \\ \bar{y} = -\bar{a} \bar{z}_0^{\alpha_1} \\ \bar{z} = 1. \end{cases}$$

Finally, as X is C^2 -linear in the cube Q_2 , X is the three model linear differential equations:

$$\begin{cases} \dot{\tilde{x}} &= \lambda_{ss}^2 \tilde{x} \\ \dot{\tilde{y}} &= \lambda_s^2 \tilde{y} \\ \dot{\tilde{z}} &= \lambda_u^2 \tilde{z}. \end{cases}$$

Which with initial conditions $(\tilde{x}_0, \tilde{a}, \tilde{z}_0)$ in Σ_1^- , the solution is given by

$$\begin{cases} \tilde{x}(t) = e^{\lambda_{ss}^2} \tilde{x}_0 \\ \tilde{y}(t) = e^{\lambda_s^2} (\tilde{a}) \\ \tilde{z}(t) = e^{\lambda_u^2}. \end{cases}$$

The trajectories of points $(\tilde{x}_0, \tilde{a}, \tilde{z}_0) \in \Sigma_1^-$ meets the plane Σ_2^- when

(2.3)
$$\begin{cases} \tilde{x} = \tilde{x}_0 \tilde{z}_0^{\beta_2} \\ \tilde{y} = \tilde{a} \tilde{z}_0^{\alpha_2} \\ \tilde{z} = 1. \end{cases}$$

There exists fourth non-linear return maps: $\Pi_{out}^{1,+}: \Sigma_1^+ \to \Sigma_2^+, \ \Pi_{out}^{3,+}: \Sigma_3^+ \to \Sigma_0,$ $\Pi_{out}^{1,-}: \Sigma_1^- \to \Sigma_2^-$ and $\Pi_{out}^{3,-}: \Sigma_3^- \to \Sigma_0.$ We let consider

$$\Pi_{loc}^* = \Pi_{loc}^{2,*} \circ \Pi_{out}^{1,*} \circ \Pi_{loc}^{0,*}, \text{ for } * = +, -.$$

Therefore, if we suppose that $\Pi_{out}^{1,*} = Id$, we Id is the is the identity map, for * = +, - then from (2.1), (2.2) and (2.3) we obtain

$$\Pi^+_{loc}(x,y) = (axy^{\alpha_0 + \beta_0 \beta_1}, by^{\beta_0 \alpha_1}) \text{ if } y > 0;$$

for some real constants a and b (depending only of X) and

$$\Pi^{-}_{loc}(x,y) = (cxy^{\alpha_0 + \beta_0\beta_2}, dy^{\beta_0\alpha_2}) \text{ if } y < 0;$$

for some real constants c and d (depending only of X). So two Poincaré maps are defined: $R^* = \prod_{out}^{3,*} \circ \prod_{loc}^* : \Sigma_0^* \to \Sigma_0$, for * = +, -. As by hyphoteses there exists a invariant contracting C^1 foliation in Σ_0 which is invariant by return map R were $(R(x, y) = R^+(x, y) \text{ if } y > 0 \text{ and } R(x, y) = R^-(x, y) \text{ if } y < 0)$, then using this foliation, R can by defined by

$$R(x, y) = (F(x, y), f(y))$$

where

$$\begin{cases} (a)F(x,y) > \frac{1}{4} & \text{for } y > 0\\ (b)F(x,y) < \frac{1}{4} & \text{for } y < 0 \end{cases}$$

and where f satisfies the properties:

(2.4)
$$\begin{cases} (a)f(0^+) = -\frac{1}{2} & f(0^+) = -\frac{1}{2} \\ (b)f'(x) > \sqrt{2} & \text{for } x \in [-1,1] \setminus \{0\} \\ (c) -\frac{1}{2} < f(x) < \frac{1}{2} & \text{for } x \in [-1,1] \setminus \{0\} \end{cases}$$

(b) and (c) holding throughout the range $-\frac{1}{2} \le x \le \frac{1}{2}$.

Moreover there exists a trapping region (isolated block) U of the cube above. Define

$$\Lambda = \bigcap_{t \ge 0} X_t(U).$$

This finish the construction of X and A. Now we will prove that A is C^k -robust attractor set.

The assumption of C^2 linearing coordinates nearby $\sigma_i(Y)$, imply $Y \in \mathscr{X}_i^k(M, \partial M)$ where

$$k_i > 2 + \frac{4 \cdot \min\{\lambda_{ss}^i, -\lambda_u^i\} - Log(56)}{\max\{\lambda_s^i, -\lambda_u^i\}}$$

We choose $k = \min\{k_i\}, i = 0, 1, 2$. Now we fix such k.

Take any neighborhood \mathscr{U} of the vector field X in the C^k topology. Now fix such k and $Y \in \mathscr{U}$, and let us consider the continuations $\sigma_i(Y)$, i = 0, 1, 2, of singularities σ_i as well defined. The vector field Y is C^2 -linearizable nearby $\sigma_i(Y)$, i = 0, 1, 2.

We can assume that the cross-sections Σ_0 , Σ_1^* , Σ_2^* , Σ_3^* , for * = +, -, remain transverse to any $Y \ C^k$ -close to X. Moreover we can assume that any $Y \ C^k$ -close to X is C^2 -linear in the cubes Q_i , for i = 0, 1, 2. In the same way $\lambda_{ss}^i(Y)$, $\lambda_s^i(Y)$ and $\lambda_u^i(Y)$, for i = 0, 1, 2, the respective continuations of the eigenvalues λ_{ss}^i , λ_s^i and λ_u^i . Denote $\alpha_Y^i = -\frac{\lambda_s^i(Y)}{\lambda_u^i(Y)}$ and $\beta_Y^i = -\frac{\lambda_{ss}^i(Y)}{\lambda_u^i(Y)}$, for i = 0, 1, 2. Also we denote by $\Pi^{0,*}_{loc,Y}$, $\Pi^{2,*}_{out,Y}$, $\Pi^{3,*}_{out,Y}$, R^*_Y and R_Y , for * = +, -, the continuation of $\Pi^{0,*}_{loc}$, $\Pi^{2,*}_{loc}$, $\Pi^{1,*}_{out}$, $\Pi^{3,*}_{out}$, R^* and R, respectively.

Now by choice of k for any vector filed Y C^k -close to X there are C^2 linearizing coordinates at the singularity $\sigma(Y)_i$, for i = 0, 1, 2, so the Poincaré map P_Y is a C^2 map. Additionally, we suppose that $\Pi_{out}^{1,*}$ preserves the "horizontal "lines and $\Pi_{out}^{3,*}$, for * = +, - put Σ_3^* into Σ_0 expanding in "vertical" direction. So, again the techniques in [2] give us a R_Y -invariant contracting C^1 foliation \mathscr{F} (see also [12]). This construction can be made in a such way that the set $\{y = 0\}, \{y = -\frac{1}{2}\}$ and $\{y = \frac{1}{2}\}$ are leaves of this foliation.

We can use this foliation to put new coordinates (x, y) on Σ_0 , still linearizing, such that for all $(x, y) \in \Sigma_0^*$

(2.5)
$$R_Y(x,y) = (H_Y(x,y), f_Y(y)),$$

for some C^1 maps $f_Y(\cdot, \cdot)$ and $g_Y(\cdot)$. Moreover, $g_Y(a)$ and $g_Y(b)$ are greater than 1.

It follows from the above that

$$\Lambda_Y = \bigcap_{t \in \mathbb{R}} Y_t(U) = Cl\left(\bigcup_{t \in \mathbb{R}} Y_t\left(\bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)\right)\right).$$

So, in order to prove that Λ_Y is a transitive set, we only need to prove that the maximal invariant set

(2.6)
$$\bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$$

is a transitive set for R_Y and for this purpose essentially we follow the arguments given in [3]. Other argument can be find in [4].

Definition 2.1. Define \mathscr{A}_L as the set of C^1 -maps $f : [-1/2, 1/2] \setminus \{0\} \rightarrow [-1/2, 1/2]$ satisfying the following properties:

- (a) $f'(y) > \sqrt{2}$ on $[-1/2, 1/2] \setminus \{0\}$;
- (b) f is strictly increasing on $[-1/2, 1/2] \setminus \{0\}$;
- (c) $f(0^{-}) = 1/2$ and $f(0^{+}) = -1/2$;
- (d) $f'(y) \to \infty$ as $y \to 0$ (from right and left).
- (e) There are $\alpha_f^1 < 1$, $\alpha_f^2 < 1$ and two C^1 function $H_f^1 : [-1/2, 0) \to \mathbb{R}$, $H_f^2 : (0, 1/2] \to \mathbb{R}$ with $\lim_{y\to 0} \frac{DH_f^1(y)}{y} = 0$ and $\lim_{y\to 0} \frac{DH_f^2(y)}{y} = 0$ such that $f(x) = a_1 + |y|^{\alpha_f} H_f^1(y)$, for all $y \in [-1/2, 0)$ and $f(y) = a_2 + |y|^{\alpha_f^2} H_f^2(x)$, for all $y \in (0, 1/2]$, for some real numbers a_1 and a_2 .

To every $f \in \mathscr{A}_L$ we called the *Lorenz-like map*. In \mathscr{A}_L we define a C^1 topology induced by the following metric:

$$\begin{aligned} d_{\mathscr{A}_{L}}(f,g) &= \max \Big\{ \sup_{y} |f(y) - g(y)|, \sup_{y} |Df(y) - Dg(y)|, \sup_{y} |H_{f}^{1}(y) - H_{g}^{1}(y)|, \\ \sup_{y} |H_{f}^{2}(y) - H_{g}^{2}(y)|, \sup_{y} \frac{1}{|y|} |DH_{f}^{1}(y) - DH_{g}^{1}(y)|, \\ \sup_{y} \frac{1}{|y|} |DH_{f}^{2}(y) - DH_{g}^{2}(y)|, |\alpha_{f}^{1} - \alpha_{g}^{1}|, \\ |\alpha_{f}^{2} - \alpha_{g}^{2}| : y \in [-1/2, 1/2] \backslash \{0\} \Big\}, \end{aligned}$$

for all $f, g \in \mathscr{A}$.

Proposition 2.2. (Eventually onto, [4]). Let $f : [-1/2, 1/2] \setminus \{0\} \rightarrow [-1/2, 1/2]$ be a Lorenz-map. If $J \subset [-1/2, 1/2]$ is a subinterval, then, for all $g C^1$ -close to f there exists a integer $\hat{n} = \hat{n}(g, J)$ and a subinterval \hat{J} such that $g^{\hat{n}}(\hat{J}) = [-1/2, 1/2]$.

Proof. Fix the Lorenz-like map $f : [-1/2, 1/2] \setminus \{0\} \to [-1/2, 1/2]$ and $J \subset I$ and $g \ C^1$ -close to f.

Let $I_0 = J$ if $0 \notin J$. If $0 \in J$, let I_0 be the bigger of the two intervals 0 splits J into. Define $I_1 = g(I_0)$ if $0 \notin g(I_0)$. If $0 \in g(I_0)$, let I_1 be the bigger of the two intervals 0 splits $g(I_0)$ into.

Suppose that for each i such that I_i is well defined. Let

$$I_{i+1} \begin{cases} f(I_i), & \text{if } 0 \notin f(I_i) \\ \text{bigger of two parts } 0 \text{ splits } f(I_i) \text{ into, } & \text{if } 0 \in f(I_i). \end{cases}$$

Let $\lambda = \min_{x \in I} f'(x) > \sqrt{2}$. By Mean Value Theorem,

$$length(g(I_{i+1})) = g'(\xi_0) length(I_{i+1})$$
, for some $\xi_0 \in I_{i+1}$.

Therefore for all $g \in \mathscr{V}_{\eta}$ (η -neighborhood), we get $g'(\xi_0) > f'(\xi_0) - \eta$

$$length(g(I_{i+1})) \ge (\lambda - \eta)length(I_{i+1}).$$

Therefore if $0 \notin g(I_i)$ and $0 \in g(I_{i+1})$ we get

$$length(I_{i+2}) > \frac{(\lambda - \eta)^2}{2} length(I_i).$$

Define $\hat{\lambda}$ such that $\lim_{\eta \to 0^+} (\lambda - \eta) > \hat{\lambda} > \sqrt{2}$. Thus

$$length(I_{i+2}) \ge \frac{\hat{\lambda}^2}{2} length(I_i).$$

But as $\frac{\hat{\lambda}^2}{2} > 1$, this last inequality cannot always hold.

D. CARRASCO, B. SAN MARTIN

Then there exists an integer n = n(J, g) such that $f(I_{n-1})$ contain 0 and an end point of I. So, either $g(I_{n-1}) = [-1/2, 0]$ or $g(I_{n-1}) = [0, 1/2]$. We suppose that $g(I_{n-1}) = [0, 1/2]$ then $g(I_n)$ contains to [-1/2, 0]. Therefore, $g^3(I_n) = I$. Thus, there exists an integer \hat{n} and a subinterval $\hat{J} \subset J$ such that $g^{\hat{n}}(\hat{J}) = [-1/2, 1/2]$. The proof follows.

Proposition 2.3. Let $f: [-1/2, 1/2] \setminus \{0\} \rightarrow [-1/2, 1/2]$ be a Lorenz-map. Then all $g \ C^1$ -close to f is hyperbolic, i.e., there exists $\lambda > 1$ such that for all $n \in \mathbb{N}$, for all y with $g^j(y) \in [-1/2, 1/2]$. $0 \le j \le n - 1$, $|Dg^n(y)| \ge \lambda^n$.

Proof. This is a consequence of the hyperbolicity of f and by the fact that its is a open property.

Proposition 2.4. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and k as above. Then for all Y C^k -close to X, the map $g_Y(\cdot)$ satisfies the following properties:

- (a) $g_X(\cdot) \in \mathscr{A}_L$;
- (b) $g_Y(\cdot)$ is $d_{\mathscr{A}_L}$ close to $g_X(\cdot)$.

Proof. Let Y C^k close to X. We define $\Pi_{out,Y} = \Pi^+_{out,Y}$

By Taylor expansion near $q_0(Y) = (0, 0)$,

$$\Pi_{out,Y}(\bar{x},\bar{y}) = \Pi_{out}(q_0(Y)) + D\Pi_{out,Y}(\bar{x},\bar{y}) + \mathscr{O}_{out,Y}(\bar{x},\bar{y}),$$

where

$$D\Pi_{out,Y}(q_0(Y)) = \begin{bmatrix} a_Y & b_Y \\ c_Y & d_Y \end{bmatrix}$$

with $a_Y, b_Y, c_Y, d_Y \in \mathbb{R}$ and $\lim_{(\bar{x}, \bar{y}) \to (0,0)} \frac{\Theta_{out,Y}(\bar{x}, \bar{y})}{\|(\bar{x}, \bar{y})\|} = 0.$

As $D\Pi_{out,Y}(q_1(Y)) \cdot e_1 = (a_Y, c_Y)$ and $D\Pi_{out,Y}(q_1(Y)) \cdot -e_2 = (-b_Y, -d_Y)$, by assumption about orientation of $D\Pi_{out,Y}$, we have that $a_Y > 0$ b_Y and d_Y are negatives and $c_Y = 0$. Also we have that $\Pi_{out,Y}(q_1(Y)) = (x_0(Y), y_0(Y))$. Then

$$\Pi_{out,Y}(\bar{x},\bar{y}) = (x_0(Y) + a_Y \cdot \bar{x} + b_Y \cdot \bar{y} + \Theta_{1,Y}(\bar{x},\bar{y}), y_0(Y) + d_Y \cdot \bar{y} + \Theta_{2,Y}\bar{x},\bar{y}),$$

where $\Theta_{out,Y} = (\Theta_{1,Y}, \Theta_{2,Y}).$

Note that $\Theta_{2,Y}(\bar{x},0) = 0$.

Remember that

$$\Pi^+_{loc,Y}(x,y) = (axy^{\alpha_0(Y) + \beta_0(Y)\beta_1(Y)}, by^{\beta_0(Y)\alpha_1(Y)}) \text{ if } y > 0;$$

Then

 $R_Y(x,y) = (x_0(Y) + a_Y \cdot \bar{x} + b_Y \cdot \bar{y} + \Theta_{1,Y}(\bar{x},\bar{y}), y_0(Y) + d_Y \cdot \bar{y} + \Theta_{2,Y}(\bar{x},\bar{y})),$ where,

$$\bar{x} = axy^{\alpha_0(Y) + \beta_0(Y)\beta_1(Y)}$$
$$\bar{y} = by^{\beta_0(Y)\alpha_1(Y)}.$$

8

Note that $H_Y(x,y) = x_0(Y) + a_Y \cdot \bar{x} + b_Y \cdot \bar{y} + \Theta_{1,Y}(\bar{x},\bar{y})$ and $f_Y(y) = y_0(Y) + d_Y \cdot \bar{y} + \Theta_{2,Y}(\bar{x},\bar{y})$ therefore,

$$f_{Y}(y) = y_{0}(Y) + d_{Y} \cdot by^{\beta_{0}(Y)\alpha_{1}(Y)} + \Theta_{2,Y}(\bar{x}, \bar{y})$$

$$= y_{0}(Y) + y^{\beta_{0}(Y)\alpha_{1}(Y)} \left(d_{Y} \cdot b + \frac{\Theta_{2,Y}(\bar{x}, \bar{y})}{d_{y}b} \right)$$

$$= y_{0}(Y) + y^{\beta_{0}(Y)\alpha_{1}(Y)} H_{g}^{1}(y),$$

where $H_g^1(y) = d_Y b + \frac{\Theta_{2,Y}(\bar{x},\bar{y})}{d_y b}$. Note on the one hand that

$$f'_{y}(y) = y^{\beta_{0}(Y)\alpha_{1}(Y)-1} \left(\beta_{0}(Y)\alpha_{1}(Y)H^{1}_{g}(y) + \frac{DH^{1}_{g}(y)}{y}\right)$$

Also we obtain,

$$f'_{y}(y) = y^{\beta_{0}(Y)\alpha_{1}(Y)-1} \Big(\beta_{0}(Y)\alpha_{1}(Y)a_{y}b + A(y) + B(y)\Big),$$

were

$$A(y) = \frac{\partial \Theta_{2,Y}(\bar{x}, \bar{y})}{\partial \bar{x}} \frac{a(\alpha_0(Y) + \beta_0(Y)\beta_1(Y))\bar{x}y^{\alpha_0(Y) + \beta_0(Y)\beta_1(Y) - \beta_0(Y)\alpha_1(Y)}}{(\beta_0(Y)\alpha_1(Y))a_yb}$$

and

$$B(y) = \frac{\partial \Theta_{2,Y}(\bar{x}, \bar{y})}{\partial \bar{y}} \frac{1}{a_Y}.$$

As $\lim_{y\to 0} H_g^1(y) = a_Y b$ then $\lim_{y\to 0} \frac{DH_g^1(y)}{y} = 0$. Therefore $\lim_{y\to 0} f'_Y(y) \to \infty$. The estimates for $\Pi_{out,Y}^-$ is in similar form.

Therefore under iterations of the maps f_Y and f_X we obtain the result required.

We need to introduce some definition related to cone fields. Denote by $T\Sigma_0$ the tangent bundle of Σ_0 . Given $p \in \Sigma_0$ and $\gamma > 0$, we denote by $C_H^{\gamma}(p)$ the horizontal γ -cone with inclination γ , i.e.,

$$C_{H}^{\gamma}(p) = \{ v \in T_{p}\Sigma_{0} : v = (u, w); |w| \le \gamma \cdot |u| \}.$$

Also, we denote by $C_V^{\gamma}(p)$ the vertical γ -cone with inclination γ , i.e.,

$$C_V^{\gamma}(p) = \{ v \in T_p \Sigma_0 : v = (u, w); |u| \le \gamma \cdot |w| \}.$$

A γ -cone field in Σ_0 is a continuous map $C^{\gamma} : p \in \Sigma_0 \mapsto C^{\gamma}(p) \subset T_p\Sigma_0$, where $C^{\gamma}(p)$ is a γ -cone with constant inclination γ on $T_p\Sigma_0$. Let $R : \Sigma_0 \to \Sigma_0$ be any map. A γ -cone field C^{γ} is called *R*-invariant if $DR(C^{\gamma}(p) \setminus \{0\}) \subset int(C^{\gamma}(R(p)))$ for all $p \in \Sigma_0$. A γ -cone field C^{γ} is called *R*-expanding if there are C > 0 and $\lambda > 1$ such that $\| DR^n(p) \cdot v \| \geq C \cdot \lambda^n \cdot \| v \|, \forall n \in \mathbb{N}, \forall p \text{ with } R^j(p) \in \Sigma_0, 0 \leq j \leq n-1 \text{ and } \forall v \in C^{\gamma}(p).$ A γ -cone field C^{γ} is called transversal to a foliation \mathscr{F} on Σ_0 if $T_pL \cap C^{\gamma}(p) = \{0\}, \forall p \in L \text{ and } \forall L \in \mathscr{F}.$

Proposition 2.5. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and k as above. Then exists γ with $0 < \gamma \leq 1$ such that for all Y C¹-close to X there are invariants γ -cone fields C_H^{γ} and C_V^{γ} on Σ_0 . Moreover C_H^{γ} is R_Y^{-1} -expanding and C_V^{γ} is R_Y -expanding and transversal to the foliation \mathscr{F} .

Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the Statements of Proposition. Then there exists a γ with $0 < \gamma \leq 1$ such that for all $Y C^1$ -close to X there is a horizontal γ -cone field C_H^{γ} on Σ which is invariant and expanding by R_Y^{-1} (see [2]). \Box

From now on we fix such γ , C_H^{γ} and C_V^{γ} .

Proposition 2.6. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and k as above. Then, there exist a neighborhood \mathscr{V} of X in $\mathscr{X}^{k}(M, \partial M)$ such that: For all $Y \in \mathscr{V}$, R_{Y} is hyperbolic on Σ_{0} . More precisely, there are $C_{1} = C_{1}(Y) > 0$ and $\lambda_{1} = \lambda_{1}(Y) > 1$ such that $\forall n \in \mathbb{N}, \forall p \text{ with } R_{Y}^{i}(p) \in \Sigma_{0}, -n+1 \leq i \leq 0 \text{ and } \forall v \in C_{H}^{\gamma}(p) \text{ we have}$

(2.7)
$$\| DR_Y^{-n}(p) \cdot v \| \ge C_1 \cdot \lambda_1^n \cdot \| v \|$$

and there are $C_2 = C_2(Y) > 0$ and $\lambda_2 = \lambda_2(Y) > 1$ such that $\forall n \in \mathbb{N}, \forall p \text{ with } R_Y^i(p) \in \Sigma_0, 0 \le i \le n-1 \text{ and } \forall v \in C_V^\gamma(p) \text{ we have}$

(2.8)
$$\| DR_Y^n(p) \cdot v \| \ge C_2 \cdot \lambda_2^n \cdot \| v \| .$$

Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the statement of Proposition.

By Proposition 2.5 we can choice a neighborhood \mathscr{V}_1 of X in $\mathscr{X}^k(M, \partial M)$ such that for all $Y \in \mathscr{V}_1$ the γ -cone fields C_H^{γ} and C_V^{γ} exist. Moreover, C_H^{γ} is invariant and expanding by R_V^{-1} and C_V^{γ} is R_Y -invariant and transversal to \mathscr{F} .

By Proposition 2.4, the one dimensional map g_X is a C^1 , belongs to \mathscr{A}_L . Then by Proposition 2.4 and 2.3, there exists a neighborhood \mathscr{U} of g_X in \mathscr{A}_L such that each $g \in \mathscr{U}$ is hyperbolic. We can choice a neighborhood \mathscr{V}_2 of X in $\mathscr{X}^k(M, \partial M)$ in a such a way that for all $Y \in \mathscr{V}_2$, g_Y belongs to \mathscr{U} because item (b) in Proposition 2.4. Define $\mathscr{V} = \mathscr{V}_1 \cap \mathscr{V}_2$.

Fix $Y \in \mathscr{V}$. The existence of C_1 and λ_1 (which depend only on Y) satisfying the inequality (2.7) is a consequence of the fact that C_H^{γ} is R_Y^{-1} -invariant and R_Y^{-1} -expanding.

Now we will prove the remainder of the Proposition 2.6. Indeed, as $g_Y \in \mathscr{U}$ we have that there exists $\lambda = \lambda(Y) > 1$ such that for all $n \in \mathbb{N}$, for all y with $g_Y^i(y) \in [-1/2, 1/2] \setminus \{0\}, 0 \le i \le n-1$ we obtain

$$|Dg_Y^n(y)| \ge \lambda^n$$

Define

(

$$C_2 = \frac{1}{\max\{\gamma, 1\}}$$
 and $\lambda_2 = \lambda_2$

Fix $n \in \mathbb{N}$, p = (x, y) with $R^i(p) \in \Sigma_0$, $0 \le i \le n - 1$ and $v \in C_V^{\gamma}(p)$ with v = (u, w). Then have that $g_Y^i(y) \in [-1/2, 1/2] \setminus \{0\}, 0 \le i \le n - 1$.

Moreover, from (2.5) we have

$$DR_Y^n(p)v = (u_n, w_n) = (u_n, \partial_y g_Y^n(y)w)$$

10

Therefore, from this equality, the inequality (2.9) and definitions of C_2 and λ_2 we get that

$$\| DR_Y^n(p) \cdot v \| = \max\{|u_n|, |\partial_y g_Y^n(y)| \cdot |w|\} \\ \geq |\partial_y g_Y^n(y)| \cdot |w| \\ \geq \frac{|\partial_y g_Y^n(y)|}{\max\{\gamma, 1\}} \cdot \| v \| \\ \geq \frac{C}{\max\{\gamma, 1\}} \cdot \lambda^n \cdot \| v \| \\ = C_2 \cdot \lambda_2^n \cdot \| v \|,$$

where $||\cdot||$ denote the maximum norm. This shows (2.8) and finishes the proof. \Box

Proposition 2.7. Let $X \in \mathscr{X}^{\infty}(M, \partial M)$ and k as above. Then, there exist a neighborhood \mathscr{W} of X in $\mathscr{X}^{k}(M, \partial M)$ such that: For all $Y \in \mathscr{W}$, for all smooth curve ζ tangent to C_{V}^{γ} with $\zeta \cap (\bigcap_{i=0}^{\infty} R_{Y}^{-i}(\Sigma_{0})) \neq \emptyset$ there exist an integer $n = n(R_{Y}, \zeta)$ and a smooth curve $\hat{\zeta}$ contained in ζ such that R_{Y}^{n} is continuous on $\hat{\zeta}$ and $\Pi^{\mathscr{F}}(R_{V}^{n}(\hat{\zeta})) = [-1/2, 1/2].$

Proof. Fix $X \in \mathscr{X}^{\infty}(M, \partial M)$ as in the statement of Proposition 2.7. Note that X has associate an one dimensional map g_X . From Proposition 2.4 (see statements (a)) we get that g_X is a C^1 map, $g_X \in \mathscr{A}_L$ and g_X has derivative bigger $\sqrt{2}$. Then by proposition 2.2, there exists a $d_{\mathscr{A}_L}$ -neighborhood \mathscr{U} of g_X in \mathscr{A}_L such that for all $g \in \mathscr{U}$ and for all interval $J \subset I$ there exist $n = n(g, J) \ge 0$ such that $g^n(J) = [-1/2, 1/2]$. We can choice a neighborhood \mathscr{W} of X in $\mathscr{X}^k(M, \partial M)$ in a such away that for all $Y \in \mathscr{W}$, g_Y belongs to \mathscr{U} because item (b) in Proposition 2.4.

Fix $Y \in \mathscr{W}$ and a curve ζ tangent to C_V^{γ} with $\zeta \cap (\bigcap_{i=0}^{\infty} R_Y^{-i}(\Sigma_0)) \neq \emptyset$ and define $J = \Pi^{\mathscr{F}}(\zeta)$. Therefore there exist an integer $n = n(g_Y, J)$ such that $g_Y^n(J) = [-1/2, 1/2]$. So, we obtain $\Pi^{\mathscr{F}}(R_Y^n(\hat{\zeta})) = g_Y^n(\Pi^{\mathscr{F}}(\hat{\zeta})) = g_Y^n(\hat{J}) = [-1/2, 1/2]$. The Proposition follows. \Box

Now, we will prove that for all $Y \in \mathcal{V} \cap \mathcal{W}$, Λ_Y is a transitive set, where \mathcal{V} is given in Proposition 2.6 and \mathcal{W} is given in Proposition 2.7. So, we need to prove that the maximal invariant set $\bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$ given in (2.6) is a transitive for R_Y .

Claim A: For all $p \in \bigcap_{n \ge 0} R^{-n}(\Sigma_0)$ the stable leaf $L = \mathscr{F}(p) \in \mathscr{F}$ is accumulate by hyperbolic periodic points of saddle type, i.e. every neighborhood of L contains a hyperbolic periodic point of saddle type.

Indeed, let U a neighborhood of L. We can take U in a such way that $U = (\Pi^{\mathscr{F}})^{-1}(\Pi^{\mathscr{F}}(U))$. Take a small curve $\zeta \subset U$ through p and tangent to C_V^{γ} . From Proposition 2.7 there are $\hat{\zeta} \subseteq \zeta$ and $n \in \mathbb{N}$ such that $R_Y^i(\hat{\zeta}) \subseteq \Sigma_0 \ \forall 0 \leq i \leq n-1$

and $R_Y^n(\hat{\zeta})$ meets all leaf in \mathscr{F} . Thus, for $\hat{J} = \Pi^{\mathscr{F}}(\hat{\zeta})$ we have that $\hat{J} \subset g_Y^n(\hat{J})$. Then there is $y \in \hat{J}$ such that $g_Y^n(y) = y$ and so $L(y) = (\Pi^{\mathscr{F}})^{-1}(y) \subset U$ is a periodic leaf of \mathscr{F} . This implies that there exists a periodic point of R_Y belonging to $L(y) \subset U$. By Proposition 2.6 this periodic point is hyperbolic of saddle type. This proves the claim A.

Claim B: The hyperbolic periodic points of saddle type of R_Y are dense in $\bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$.

Indeed, take a point $z \in \bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$ and take a neighborhood V of z. Take an integer n large enough such that $L = \mathscr{F}(R_Y^{-n}(z))$ the leaf that contains $R_Y^{-n}(z)$ is applied by R_Y^n into V. So the same applies to a small horizontal band U around the leaf L. By Claim A there exists a periodic point of saddle type in U. Therefore the orbit of this periodic point visits the neighborhood V and the claim B follows.

To finish the proof of the transitivity of R_Y we will use the classical Birkhoff's criterium to prove transitivity: for all $p, q \in \bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$ and $\varepsilon > 0$ there are $z \in \bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$ and $n_z \in \mathbb{N}$ such that $d(z, p) < \varepsilon$ and $d(R_Y^{n_z}(z), q) < \varepsilon$. Indeed, fix p, q and ϵ . By the above claim B we can assume that p and q are hyperbolic periodic points of saddle type. Fix a curve γ in $W^u(p)$ contained in Σ . We can assume that γ intersects to the leaf $\mathscr{F}(q)$ transversely in some point z^* by Proposition 2.7. Since the positive (resp. negative) orbit of z^* is asymptotic to q (resp. p) we have $z^* \in \bigcap_{n \in \mathbb{Z}} R_Y^n(\Sigma_0)$. By taking the negative orbit of z^* we have some $n_1^* \in \mathbb{N}$ such that

$$d(R_Y^{-n_1^*}(z^*), p) < \varepsilon.$$

By taking the positive orbit of z^* we have some $n_2^* \in \mathbb{N}$ such that

$$d(R_Y^{n_2^*}(z^*), q) < \varepsilon.$$

Then $z = R_Y^{-n_1^*}(z^*)$ and $n_z = n_1^* + n_2^*$ works.

Therefore, the proof of Fist step, Second step and Third step follows. Therefore Λ is C^k -robust transitive set. The proof follows.

The following lemma is as in [8].

Lemma 2.8. $F_{\sigma_0} = E_{\sigma_0}^{ss}, F_{\sigma_0}^c = E_{\sigma_0}^{cu}, E_{\sigma_1}^{ss} = F_{\sigma_1}^s \text{ and } F_{\sigma_1}^c = E_{\sigma_1}^c.$

Proof. This a consequence of the uniqueness of the dominates splitting $T_{\Lambda}M = F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$.

Remark 2.9. As $F_{\sigma_0} \not\subset T_{\sigma_0} \partial M$ then by the invariance of $T \partial M$ and Lemma 2.8 we have that $F_{\sigma_0}^c = T_{\sigma_0} \partial M$.

Lemma 2.10. The invariant transitive set Λ does not has dominates splitting.

Proof. By contradiction we suppose that Λ has a dominated splitting $T_{\Lambda}M = F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$. Take $x \in \gamma \subset W^{u}(\sigma_{0}) \cap W^{s}(\sigma_{1})$ close to σ_{0} then $F_{x}^{s} \not\subset T_{x}\partial M$ by continuity of the splitting $T_{\Lambda}M = F_{\Lambda}^{s} \oplus F_{\Lambda}^{C}$ and Remark 2.9. Moreover note that $W^{u}(\sigma_{0}) \subset \partial M$ and $W^{s}(\sigma_{1}) \subset \partial M$. We take $v_{x} \in T_{x}\partial M \setminus F_{x}^{s}$ with $v_{x} \neq 0$. Using the fact that the splitting $T_{\Lambda}M = F_{\Lambda}^{s} \oplus F_{\Lambda}^{c}$ is dominated and $F_{x}^{s} \not\subset T_{x}\partial M$ we have that angle $\angle(DX_{t}(x) \cdot v_{x}, F_{X_{t}(x)}^{c})$ goes to 0 exponentially as $t \to \infty$ (see also Remark 2.2 [8]). Moreover, as $DX_{t}(x) \cdot v_{x} \in T_{X_{t}(x)}\partial M$, then using the continuity of the dominates splitting and $\omega(x) = \sigma_{1}$ we get $\angle T_{\sigma_{1}}\partial M, F_{\sigma_{1}}^{c}) = 0$ and so $F_{\sigma_{1}}^{c} = T_{\sigma_{1}}\partial M$ because that $dim(T_{\sigma_{1}}\partial M) = dim(F_{\sigma_{1}}^{c})$ and this is a contradiction with $F_{\sigma_{1}}^{c} = E_{\sigma_{1}}^{c}$ (see Lemma 2.8). The proof follows.

ACKNOWLEDGEMENTS

The first author wants to thanks to the Instituto Nacional de Matemática Pura e Aplicada, IMPA-Brasil, for partial support and for its hospitality.

D. Carrasco-Olivera Departamento de Matemática Facultad de Ciencias Universidad del Bío Bío Casilla 5-C, Concepción, Chile *e-mails address:* dcarrasc@ubiobio.cl

B. San Martín
Departamento de Matemática
Facultad de Ciencias
Universidad Católica del Norte
Av Angamos 0610, Casilla 1280, Antofagasta, Chile
e-mails address: sanmarti@ucn.cl

References

- V. S. Afraimovich, V. V. Bykov, and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type Trudy Moskov. Mat. Obshch. 44 (1982), 150–212 (Russian).
- [2] R. Bamón, R. Labarca, R. Mañé and M.J. Pacífico, The explosion of singulay cycles. Inst. Hautes Etudes Sci. Publ. Math., 78 (1993), 207–232.
- [3] D. Carrasco-Olivera, C.A. Morales and B. San Martín, Singular Cycles and C^k-robust transitive set on manifold with boundary Communications in Contemporary Mathematics. Accepted for publication.
- J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors. Inst. Hautes Etudes Sci. Publ. Math., (1979), no. 50, 59–72.

- [5] Hirsch, M. W.; Pugh, C. C.; Shub, M., *Invariant manifolds*. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York 583 (1977).
- [6] R. Labarca and M.J. Pacífico, Stability of singularity horseshoes Topology 25 (1986), no 3, 337–352.
- [7] J. Milnor, On the concept of attractor. Comm. Math. Phys., 99 (1985), no. 2, 177–195.
- C.A. Morales, Sufficient conditions for a partially hyperbolic attractor to be a homoclinic class. J. Differential Equations, 249 (2010), no. 8, 2005–2020.
- [9] C. A. Morales, M. J. Pacifico, E. R. Pujals, Robust Transitive Singular Sets for 3-Flows Are Partially Hyperbolic Attractors or Repellers. The Ann. of Math., 160 (2004), 275–432.
- [10] C. A. Morales, M. J. Pacifico, E. R. Pujals, C¹ robust singular transitive sets for threedimensional flows. C. R. Acad. Sci. Paris, **326** (1998), 81–86.
- [11] C. A. Morales, M. J. Pacifico, E. R. Pujals, Singular hyperbolic systems. Proc. Am. Math. Soc., 127, no. 11 (1999), 3393–3401.
- [12] Rovella, A., The dynamics of perturbations of the contracting Lorenz attractors. Bol. Soc. Bras. Math., 24 (1993), 233–259.