
ROBUST TRANSITIVE SETS OF TRIANGULAR MAPS

D. CARRASCO-OLIVERA, B. SAN MARTÍN AND C. VIDAL

Abstract. In [BM] it was proved that discontinuous triangular maps with spe-
cific expanding hypotheses carry hyperbolic periodic orbits. Here we define a class
of discontinuous triangular maps with contracting hypotheses and prove that they
carry robustly transitivity sets with respect to a suitable weight topology.

1. Introduction

By a triangular map we mean a transformation

R : Dom(R) ⊂ X × Y → X × Y

with domain Dom(R) = A× Y , A ⊂ X, having the form

R(x, y) = (f(x), g(x, y))

for some f : A ⊂ X → X (throughout called the base map) and
g : Dom(R) → Y . We shall be interested in the case when both X
and Y are the unit interval I = [0, 1] and, in such a case, Σ = X × Y
is the unit square. We say that R is everywhere defined if A = X.

Ccontinuous everywhere defined triangular maps have been con-
sidered in the literature. For instance, in 1989, A.N. Sharkovsky (at
the European Conference on Iteration Theory, ECIT’89, Batschuns,
Austria) posed the problem of extending properties of the topolog-
ical entropy from continuous interval maps to continuous triangular
maps. For a chronological list of authors whom contributed to this and
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other interesting problems, see [S], [K1], [K2], [DJ], [BS], [D], [BGM],
[FPS1], [FPS2], [V].

On the other hand, discontinuous (or not everywhere defined) tri-
angular maps have been considered by some authors. A pionering
work in this direction is [G] (see also [GW] or [ABS]) where smooth
triangular maps defined everywhere except in a single vertical line
were studied. In particular, these authors obtained robustly transi-
tive sets under certain expanding conditions including their famous
lower bound

√
2 for the derivative of the base map f . We can also

mention [Ro] where a contracting condition was imposed and where
a two-parameter persistence of robustly transitivity was obtained in-
stead. The mixed case of discontinous triangular maps not everywhere
defined was considered in [BM]. In that paper it were imposed cer-
tain expanding hypotheses in order to obtain the existence of periodic
orbits. This last conclusion was recently improved in [Re] where exis-
tence of homoclinic orbits associated to hyperbolic periodic orbits was
proved instead. Further information about triangular maps and their
relationship with vector fields can be found in [B], [LP], [Ro], [PR],
[BLMP].

In this paper we introduce a family T of C1 but not everywhere
defined triangular maps in Σ exhibiting contracting properties in the
spirit of [Ro]. We also define a weight topology in T and select a
proper subset T̃ of T . It is proved that there is an open neighborhood
of T̃ in T with respect to that topology all of whose elements have
transitive maximal invariant set.

The organization of this paper is as follows. In Section 2 we intro-
duce the class of triangular maps we shall be interested in and present
the statement of our main result. In Section 3 we prove exponen-
tial growth of derivatives for the triangular maps under consideration.
Finally in the last section we will prove our result.
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2. Triangular maps and Statement of the Main Theorem.

In this section we introduce the class of triangular maps we shall
be interested in.

2.1. Triangular maps. Recall Σ = [0, 1] × [0, 1] denotes the unit
close square and U ⊂ R2 an open set containing Σ.

Denote by p = (x, y) = (xp, yp) the natural coordinate system in
U .

Fix two real numbers a, b with 0 < a < b < 1.

Put

L0 = {(x, y) : 0 ≤ x ≤ 1, y = 0}; La = {(x, y) : 0 ≤ x ≤ 1, y = a};

Lb = {(x, y) : 0 ≤ x ≤ 1, y = b} and L1 = {(x, y) : 0 ≤ x ≤ 1, y = 1}.
We call a closed subset H ⊆ Σ (resp. V ⊆ Σ) a horizontal (resp.
vertical) band if it is bounded by two disjoint continuous curves con-
necting the vertical (resp. horizontal) slides of Σ, {(0, y) : 0 ≤ y ≤ 1}
(resp. L0) and {(1, y) : 0 ≤ y ≤ 1} (resp. L1). See Figure 1.

Given a map R, we denote by Dom(R) the domain of R.

A curve c in U is the image of a C1 injective map c : Dom(c) ⊂
R → U with Dom(c) being a compact interval. We often identify c
with its image set. A curve c is horizontal if it is the graph of a C1

map h : [0, 1] → U ∩ R, i.e., c = {(x, h(x)) : x ∈ [0, 1]} ⊂ U .

Let M be a differentiable m dimensional manifold, m > 0. A
foliation F of dimension n, 0 < n < m, is a decomposition of M in n-
dimensional submanifolds, called leaves of the foliation. The foliation
F is Ck, k ≥ 0, if the holonomy map defined in transversal cross-
sections is a Ck map. If k = 0 we said that the F is a continuous
foliation.
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Figure 1. Shape of vertical and horizontal band.

Definition 2.1. A continuous foliation F on U is called horizontal if
its leaves are horizontal curves and the curves L0, La, Lb, L1 are leaves
of F .

It follows from the definition above that the leaves of a horizontal
foliation F are horizontal curves hence differentiable ones. In par-
ticular, for all leaf L, the tangent space TpL is well defined for all
p ∈ L.

Let Hy0,y1
denote the horizontal band [0, 1]× [y0, y1].

Definition 2.2. Let R : H0,a ∪ Hb,1 ⊂ Σ → U be a map and F be
a continuous foliation on U . We say that R preserves F if for every
leaf L of F contained in H0,a ∪Hb,1 there is a leaf L̃ of F such that

R(L) ⊂ L̃). In this case we say that F is contracting if there are a
constant C > 0 and 0 < λ < 1 such that

‖ DRn(p) · v ‖≤ C · λn,
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for all n ∈ N, p ∈ L, L ∈ F and v ∈ TpL.

Now we can define triangular map.

Definition 2.3. (Triangular map). A map R : H0,a ∪Hb,1 ⊂ Σ →
U is called triangular if it preserves and contrae a horizontal foliation
F . Moreover R(L0) ⊂ ([0, 1) × {0}), R(La) ⊂ U\Σ, R(Lb) ⊂ U\Σ
and R(L1) = {(c0, 0)} for some c0 ∈ (0, 1).

Notation. Let T denote the set of all the triangular maps R.

2.2. Quasi-hyperbolic triangular maps. The Quasi-hyperbolicity
will be defined through cone fields in U : Denote by TU the tangent
bundle of U . Given p ∈ U and γ > 0, we denote by Cγ(p) the vertical
cone with inclination γ, i.e.,

Cγ(p) = {v ∈ TpU : v = (u,w); |u| ≤ γ · |w|}.
A cone field in U is a continuous map Cγ : p ∈ U 7→ Cγ(p) ⊂ TpU ,
where Cγ(p) is a cone with constant inclination γ on TpU . Let R :
H0,a ∪ Hb,1 ⊂ Σ → U be any differentiable map. A cone field Cγ

is called R-invariant if DR(Cγ(p)\{0}) ⊂ int(Cγ(R(p))) for all p ∈
H0,a∪Hb,1. Moreover, Cγ is called transversal to a horizontal foliation
F on U if TpL ∩ Cγ(p) = {0}, ∀p ∈ L and ∀L ∈ F .

Now we can to define the class of triangular map satisfying con-
tracting hypotheses.

Definition 2.4. (Quasi-hyperbolic triangular map). Let R :
H0,a ∪ Hb,1 ⊂ Σ → U be a triangular map with associated horizontal
foliation F . For two maps α, α̃ : T → (1,∞) and numbers K0, K1,
ν and µ such that K0 > 0, K1 > 0 and 1 < ν ≤ µ, we say that R is
(K0, K1, ν, µ, α, α̃)-quasi hyperbolic if

(H1) R is a C1-diffeomorphism in H0,a ∪ (Hb,1 \ {y = 1}).
(H2) ν, µ, α = α(R) and α̃ = α̃(R) satisfy: ν · µ 1−α̃

α > 1.
(H3) yR(p) ≤ K0· | yp − 1 |α, ∀p ∈ Hb,1.
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(H4) There are 0 < γ < 1
2 and an invariant cone field Cγ in U

transverse to F such that:
(H4-a) ∀p ∈ Hb,1,∀v ∈ Cγ(p);

‖ DR(p) · v ‖≥ K1· | yp − 1 |α̃−1 · ‖ v ‖ .

(H4-b) ∀p ∈ H0,a,∀v ∈ Cγ(p)

ν· ‖ v ‖≤‖ DR(p) · v ‖≤ µ· ‖ v ‖ .

Notation. Let T̃ denote the set of all the maps R which are
(K0, K1, ν, µ, α, α̃)-quasi-hyperbolics.

Figure 2 displays the essential features of the map R ∈ T̃ .

H0,

,1
H

Figure 2. Shape of R.

2.3. Schwarzian derivative.

Definition 2.5. Let f : Dom(f) ⊂ R → R be a C3 map. The
Schwarzian derivative of f at x ∈ dom(f) with Df(x) 6= 0 is defined
as

Sf(x) =
D3f(x)

Df(x)
− 3

2
·
(D2f(x)

Df(x)

)2
.
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We say that f has negative Schwarzian derivative if Sf(x) < 0 for all
x ∈ Dom(f) such that Df(x) 6= 0.

From the definition 2.5, the following formula for the Schwarzian
derivative of the composition of two C3 maps follows immediately by
the chain rule,

S(g ◦ f)(x) = Sg(f(x))· | Df(x) |2 +Sf(x).

Hence, the Schwarzian derivative of the iterates of f is given by

Sfn(x) =
n−1∑

i=0

Sf(f i(x))· | Df i(x) |2 .

Therefore, if a map has negative Schwarzian derivative, so do all its
iterates.

The lemma below (see [MS], pg. 154) is the main analytical prop-
erty of maps of negative Schwarzian derivative that will be used in the
section 3.

Lemma 2.6. (Minimum Principle). Let T be a closed interval
with end points r, s and f : T ⊂ dom(f) → R be a map with negative
Schwarzian derivative. If Df(x) 6= 0 for all x ∈ T , then

| Df(x) |> min{| Df(r) |, | Df(s) |}, ∀x ∈ (r, s).

2.4. Hypothesis (H). We impose some regularity on a horizontal
foliation F associate to a triangular map.

To any horizontal foliation F we can associate the holonomy map
ΠF : U → R defined by

ΠF (p) = F (p) ∩ {0} × R,

where F (p) is the leaf of F through the point p.

A R-invariant horizontal foliation F can be used to define a new
coordinate system

(x̄, ȳ) = ϕ(x, y) = (x, ΠF (x, y))(2.1)
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in a such way that R̄ = ϕ ◦R ◦ ϕ−1 has the following shape:

R̄(x̄, ȳ) = (g(x̄, ȳ), f(ȳ))(2.2)

holds for some maps f : Dom(f) ⊂ R→ R and g : dom(g) ⊂ R2 → R.

Definition 2.7. (linear-contracting map). Let f : [0, a] ∪ [b, 1] ⊂
R→ R be a C3 map. We say that its is a linear-contracting if:

(h1) There exists ρf > 1 such that f(x) = ρf · x for all x ∈ [0, a].
Moreover, f is decreasing on [b, 1], f(1) = 0 and Df(x) = 0 if
and only if x = 1. Additionally f(a) > 1 and f(b) > 1.

(h2) f has negative Schwarzian derivative on [b, 1).

Figure 3 displays the essential features of a linear-contracting map
f .

r s

Figure 3. Shape of f .

Definition 2.8. (Hypothesis (H)). Let R : H0,a ∪ Hb,1 ⊂ Σ → U
be a triangular map with associate horizontal foliation F of class C3.
We say that R satisfies (H) if the map f given by (2.2) is linear-
contracting and ΠF additionally satisfies the property:

∣∣∣∂ΠF

∂x
(x, y)

∣∣∣ <
1

2
and

∣∣∣∂ΠF

∂y
(x, y)

∣∣∣ >
3

4
.
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2.5. Definition of the C1-topology in T̃ .

Definition 2.9. In the space of maps T̃ we consider the C1-topology
which is defined by the metric

dC1(R, R̂) = max
{
‖ R(p)− R̂(p) ‖, ‖ DR(p)−DR̂(p) ‖,

| α(R)− α(R̂) |, | α̃(R)− α̃(R̂) |: p ∈ H0,a ∪Hb,1

}
.

Our main theorem related to the robust transitive of the principal
map to consider is the following:

Theorem 2.10. (Main Theorem). Let R0 be a (K0, K1, ν, µ, α, α̃)-
quasi-hyperbolic map (i,e., R0 ∈ T̃ ) satisfying (H). Then there exists
a C1-neighborhood U = U (R0) of R0 in T̃ such that for all R ∈ U ,
the maximal invariant set,

(2.3)
⋂

n∈Z
Rn(Σ)

be transitive, i.e., there is z on it such that {Rn(z) : n ∈ N} is dense
in the maximal invariant set given by (2.3).

3. Elementary Results

We start with the following lemma.

Lemma 3.1. Let R0 be a triangular map with associate horizontal foli-

ation F of class C1 such that ΠF satisfies
∣∣∣∂ΠF

∂x (x, y)
∣∣∣ < 1

2 and
∣∣∣∂ΠF

∂y (x, y)
∣∣∣ >

3
4. Let (x̄, ȳ) = ϕ(x, y) be the coordinates given by (2.1) and f be the

map as in (2.2). Then, there exists a constant Ĉ0 = Ĉ0(R0) > 0 such
that for all i ∈ N, for all p ∈ dom(Ri

0) and for all v ∈ Cγ(p),

‖ DRi
0(p) · v ‖≥ Ĉ0· | Df i(ȳ) | · ‖ v ‖,(3.1)

where (x̄, ȳ) = ϕ(p) .
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Proof. Fix R0 as in the statement of the lema. Let consider the coor-
dinates (x̄, ȳ) given by (2.1):

(x̄, ȳ) = ϕ(x, y) = (x, ΠF (x, y)).(3.2)

So, R̄0 = ϕ ◦R0 ◦ ϕ−1 became the map

R̄0 = (g(x̄, ȳ), f(ȳ))(3.3)

according (2.2).

We define

M = max{‖ Dϕ(ẑ) ‖: ẑ ∈ dom(ϕ)}.
and

Ĉ0 =
1

2 ·M .

To continue we claim

Claim A. For all p̄ = (x̄, ȳ) ∈ dom(R̄0) and for all v̄ = (ū, w̄) ∈ R2

we obtain
‖ DR̄0(p̄) · v̄ ‖≥| Df(ȳ) | · | w̄ | .

Indeed, fix p̄ = (x̄, ȳ) ∈ dom(R̄0) and v̄ = (ū, w̄) ∈ R2.

From (3.3) and the definition of Jacobian matrix we obtain

DR̄0(p̄) · v̄ =

(
∂g
∂x̄(p̄) · ū + ∂g

∂ȳ(p̄) · w̄
Df(ȳ) · w̄

)
.

In this equality, we denote by ũ = ∂g
∂x̄(p̄)·ū+ ∂g

∂ȳ(p̄)·w̄ and w̃ = Df(ȳ)·w̄.
Therefore, considering the maximum norm, we obtain

‖ DR̄0(p̄) · v̄ ‖ = max{| ũ |, | w̃ |}.(3.4)

If | ũ |≥| w̃ | then of (3.4) and the of the definition of w̃ we have

‖ DR̄0(p̄) · v̄ ‖ = max{| ũ |, | w̃ |}
= | ũ |
≥ | w̃ |
= | Df(ȳ) | · | w̄ | .
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On the other hand, if | ũ |<| w̃ | then of (3.4) and the of the
definition of w̃ we get that

‖ DR̄0(p̄) · v̄ ‖ = max{| ũ |, | w̃ |}
= | w̃ |
= | Df(ȳ) | · | w̄ | .

This proof the Claim A.

Claim B. For all j ∈ N, for all p̄ = (x̄, ȳ) ∈ dom(R̄j
0) and for all

v̄ = (ū, w̄) ∈ R2 we have that

‖ DR̄j
0(p̄) · v̄ ‖≥| Df j(ȳ) | · | w̄ | .(3.5)

Indeed, using induction on j and the Claim A, the proof of (3.5) of
Claim B follows.

Now fix i ∈ N, p ∈ dom(Ri
0) and v ∈ Cγ(p). We denote by

p = (x, y) and v = (u,w).

From (3.2) and definition of Jacobian matrix we obtain

Dϕ(p) · v =

(
u

∂ΠF

∂x (p) · u + ∂ΠF

∂y (p) · w
)

.

We denote ū = u, w̄ = ∂ΠF

∂x (x, y) · u + ∂ΠF

∂y (x, y) · w and ϕ(p) = p̄ =

(x̄, ȳ).

For other hand, as ϕ ◦ϕ−1 = Id then for all q̄ ∈ dom(ϕ−1) and for
all z̄ ∈ R2 we have that

‖ z̄ ‖ = ‖ Dϕ(ϕ−1(q̄)) ·Dϕ−1(q) · z̄ ‖
≤ ‖ Dϕ(ϕ−1(q̄)) ‖ · ‖ Dϕ−1(q̄) · z̄ ‖

therefore we obtain

‖ Dϕ−1(q̄) · z̄ ‖≥ 1

M
· ‖ z̄ ‖ .(3.6)
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Remember that R0 = ϕ−1 ◦ R̄0 ◦ ϕ. Then from Chain Rule Theorem
and definition of v̄ we obtain

DRi
0(p) · v = Dϕ−1(R̄i

0(ϕ(p))) ·DR̄i
0(ϕ(p)) ·Dϕ(p) · v

= Dϕ−1(R̄i
0(ϕ(p))) ·DR̄i

0(ϕ(p)) · v̄.(3.7)

From (3.7), the definition of p̄, the inequality (3.6) ( taking q̄ =
R̄i

0(ϕ(p)) and z̄ = DR̄i
0(p̄) · v̄) and (3.5) of Claim B we get that

‖ DRi
0(p) · v ‖ = ‖ Dϕ−1(R̄i

0(ϕ(p))) ·DR̄i
0(p̄) · v̄ ‖

≥ 1

M
· ‖ DR̄i

0(p̄) · v̄ ‖

≥ 1

M
· | Df i(ȳ) | · | w̄ | .(3.8)

Then using that w̄ = ∂ΠF

∂x (p) ·u+ ∂ΠF

∂y (p) ·w, the bounds for the partial

derivatives of ΠF and the fact that 0 < γ < 1
2 , we obtain that

| w̄ | =
∣∣∣∂ΠF

∂x
(p) · u +

∂ΠF

∂y
(p) · w

∣∣∣

= | w | ·
∣∣∣∂ΠF

∂x
(p) · u

w
+

∂ΠF

∂y
(p)

∣∣∣

≥ | w | ·
(
−

∣∣∣∂ΠF

∂x
(p)

∣∣∣.
∣∣∣ u

w

∣∣∣ +
∣∣∣∂ΠF

∂y
(p)

∣∣∣
)

≥ | w | ·
(
− 1

2
· γ +

3

4

)

≥ | w | ·
(
− 1

2
.
1

2
+

3

4

)

=
1

2
· | w | .(3.9)

Therefore, (3.8) and (3.9) imply that

‖ DRi
0(p) · v ‖≥ 1

2 ·M · | Df i(ȳ) | · | w |
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By hypothesis, 0 < γ < 1
2 < 1 and v ∈ Cγ(p). So

‖ v ‖ = max{| u |, | w |}
≤ max{γ· | w |, | w |}
= | w | ·max{γ, 1}
= | w |,

then this inequality, the preceding estimates and definition of Ĉ0 imply
that

‖ DRi
0(p) · v ‖ ≥ 1

2 ·M · | Df i(ȳ) | · ‖ v ‖
= Ĉ0· | Df i(ȳ) | · ‖ v ‖,

and this proves (3.1) of Lemma 3.1. ¤

The Minimum Principle given by Lemma 2.6 will be used to find
an lower bound, non depending on i, for the derivative Df i(x) for all
x such that f i(x) is far from 1 and 0.

Lemma 3.2. Let f : [0, a] ∪ [b, 1] → R be a linear-contracting map
and let c̃ and d̃ be two real numbers with 0 < c̃ < d̃ < 1. Then there
exists a constant C̃0 = C̃0(f, c̃, d̃) > 0 such that for all i ∈ N and for
all x ∈ (0, a) ∪ (b, 1), if f i(x) ∈ [c̃, d̃], then

|Df i(x)| ≥ C̃0.(3.10)

Proof. Fix f : [0, a] ∪ [b, 1] → R and c̃ and d̃ as in lemma.

Define

C̃0 = min{c̃, 1− d̃}.

Let consider a interval J ⊂ R. We denote by lenght(J) the length
of J .

Now, fix i ∈ N and x ∈ (0, a) ∪ (b, 1) such that f i(x) ∈ [c̃, d̃].

Let us consider Ix = [ξ0, ξ1] the maximal interval containing x
where f i is defined. For maximality of Ix we have that either [0, c̃] ⊂
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f i([ξ0, x]) and [d̃, 1] ⊂ f i([x, ξ1]), or [d̃, 1] ⊂ f i([ξ0, x]) and [0, c̃] ⊂
f i([x, ξ1]).

In both cases, by Mean Valued Theorem there are ξ̃0, ξ̃1 with ξ0 <
ξ̃0 < x < ξ̃1 < ξ1 such that

| Df i(ξ̃0) | =
lenght(f i([ξ0, x]))

lenght([ξ0, x])
≥ lenght(f i([ξ0, x])) ≥ C̃0(3.11)

and

| Df i(ξ̃1) | =
lenght(f i([x, ξ1]))

lenght([x, ξ1])
≥ lenght(f i([x, ξ1])) ≥ C̃0,(3.12)

Using the Minimum Principle (Lemma 2.6), the definition of f
restricted to [0, a], the fact S(f i)(y) = S(f i−1|(b, 1) ◦ f |(0, a))(y) < 0
for all y ∈ (0, a), inequalities (3.11) and (3.12) we obtain either

|Df i(x)| > min
{
|Df i(ξ̃0)|, |Df i(ξ̃1)|

}
≥ C̃0,

or

|Df i(x)| = βi
f > 1 > C̃0.

Figure 4 it illustrates the situation for f i with i = 2.

Therefore, the proof follows. ¤
Lemma 3.3. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map (i,e.,
R0 ∈ T̃ ) satisfying (H) and let c and d be two real numbers with
0 < c < d < 1. Then there exists a constant C0 = C0(R0, c, d) > 0 such
that for every i ∈ N and every p ∈ dom(Ri

0), if Ri
0(p) ∈ [0, 1] × [c, d],

then

‖ DRi
0(p) · v ‖≥ C0· ‖ v ‖(3.13)

for all v ∈ Cγ(p).

Proof. Fix R0, c and d as in the statement of the lemma. Also consider
the R0-invariant foliation F and the coordinates (x̄, ȳ) defined by F
in (2.1) and R̄0 given by (2.2).
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Figure 4. Case f i for i = 2.

From Hypothesis (H), the quotient map f according (2.2) has neg-
ative Schwarzian derivative.

Take two real numbers c̃, d̃, with 0 < c̃ < d̃ < 1 such that

z = (x, y) ∈ [0, 1]× [c, d] =⇒ ȳ ∈ [c̃, d̃].(3.14)

Take C̃0 given by Lemma 3.2 applied to f , c̃ and d̃ as above, and take
Ĉ0 given by Lemma 3.1.

Taking

C0 = Ĉ0 · C̃0

we prove that C0 works. For this we fix i ∈ N, p = (x, y) ∈ dom(Ri
0)

with Ri
0(p) ∈ [0, 1]× [c, d] and v ∈ Cγ(p).

Note that for (3.14), f i(ȳ) ∈ [c̃, d̃], so Lemma 3.2 applied to ȳ give
us

| Df i(ȳ) |≥ C̃0.(3.15)

Therefore, from (3.1) of Lemma 3.1, (3.15) and definition of C0 we
obtain

‖ DRi
0(p) · v ‖≥ C0· ‖ v ‖,
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and the proof follows. ¤

Lemma 3.4. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map (i,e.,
R0 ∈ T̃ ) satisfying (H) and let c1 and d1 two real numbers with
0 < c1 < d1 < 1. Then there is C1 = C1(R0, c1, d1) > 0 such that for
each N ∈ N there exists a C1-neighborhood V1 = V1(R0, N, c1, d1) of R0

in T̃ such that for all l ≤ N , for all R ∈ V1 and for all p ∈ dom(Rl),
if Rl(p) ∈ [0, 1]× [c1, d1], then

‖ DRl(p) · v ‖≥ C1· ‖ v ‖,(3.16)

for all v ∈ Cγ(p).

Proof. Fix R0 and c1 and d1 as in the statement of the lemma. Take
the real numbers c and d such that 0 < c < c1 and d1 < d < 1. It
follow from the definition of the C1-topology of T̃ that for all j ≥ 1
there is a C1-neighborhood V̄ (j) of R0 in T̃ such that if R ∈ V̄ (j),

q ∈ dom(Rj) and Rj(q) ∈ [0, 1]× [c1, d1] then q ∈ dom(Rj
0) and

Rj
0(q) ∈ [0, 1]× [c, d].(3.17)

To see this, we extend the maps of T̃ to maps as it is shown in the
figure 5.

Take C0 given by Lemma 3.3 applied to R0, c and d as above.
It follows again from the definition of the C1-topology of T̃ that for
all i ≥ 1 there is a C1-neighborhood Ṽ (i) of R0 in T̃ such that if

R ∈ Ṽ (i), q̃ ∈ Σ and ṽ ∈ Cγ(q̃) then

‖ DRi
0(q̃) · ṽ −DRi(q̃) · ṽ ‖≤ C0

2
· ‖ ṽ ‖ .(3.18)

Define

C1 =
C0

2
.

Now fix an integer N ≥ 1. Define

V̄ = V̄ (f,N) =
⋂

1≤j≤N

V̄ (j)



ROBUST TRANSITIVE SETS OF TRIANGULAR MAPS 17

Figure 5. Shape of extension of R.

and

Ṽ = Ṽ (f,N) =
⋂

1≤i≤N

Ṽ (i).

Define

V1 = V̄ ∩ Ṽ .

Let us prove that the neighborhood V1 works. For this we fix
an integer 1 ≤ l ≤ N , R ∈ V1 and p ∈ dom(Rl) such that Rl(p) ∈
[0, 1]× [c1, d1] and v ∈ Cγ(p). In particular R ∈ V̄ , then (3.17) implies
that Rl

0(p) ∈ [0, 1] × [c, d] (taking j = l), then (3.13) in Lemma 3.3
(taking i = l) implies

‖ DRl
0(p) · v ‖≥ C0· ‖ v ‖ .(3.19)
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Moreover, as in particular R ∈ Ṽ , then (3.18) implies (taking
i = l, q̃ = p and ṽ = v)

‖ DRl
0(p) · v −DRl(p) · v ‖≤ C0

2
· ‖ v ‖ .(3.20)

From (3.20), (3.19) and definition of C1 we obtain

‖ DRl(p) · v ‖ = ‖ DRl(p) · v −DRl
0(p) · v + DRl

0(p) · v ‖
≥ ‖ DRl

0(p) · v ‖ − ‖ DRl(p) · v −DRl
0(p) · v ‖

≥ C0· ‖ v ‖ −C0

2
· ‖ v ‖

=
C0

2
· ‖ v ‖

= C1· ‖ v ‖
and the lemma follows. ¤

Let R ∈ T and δ > 0. Now, we define the sets

V (δ) = [0, 1]× ([0, a]) ∪ [b, 1− δ]);

W k
R(δ) =

{
p = (x, y) ∈ V (δ) : Ri(p) ∈ V (δ), i = 0, ..., k − 1

}
,

∀k ≥ 1;

ΛR(δ) =
⋂

k≥1

W k
R(δ).

This set is called the R-maximal invariant set on V (δ).

Definition 3.5. Let R ∈ T and δ > 0. We said that R is vertically
expansive on V (δ) if there are a vertical invariant cone field Cγ on
V (δ), a positive constant C = C(R, δ) > 0 and λ = λ(R, δ) > 1
such that if n ∈ N and p ∈ dom(Rn−1) satisfy Ri(p) ∈ V (δ) for every
i = 0, · · · , n− 1 then

‖ DRn(p) · v ‖> C · λn· ‖ v ‖
for all v ∈ Cγ(p).
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Lemma 3.6. Let R0 be a triangular map which satisfies the hypothesis
(H). Then for each δ > 0, R0 is vertical expansive on V (δ) = [0, 1]×
([0, a]) ∪ [b, 1− δ]).

Proof. Fix R0 as in the statement of the lemma. Let consider the R0-
invariant foliation F . By definition of the (x̄, ȳ) coordinates, R̄0 =
ϕ ◦R0 ◦ ϕ−1 according (2.2) became

R̄0(x̄, ȳ) = (g(x̄, ȳ), f(ȳ))

where f has negative Schwarzian derivative by Hypothesis (H).

Also fix δ > 0. Let us consider δ̄ = δ̄(δ) > 0 in such way that

z = (x, y) /∈ ([0, 1]× (1− δ, 1]) =⇒ ȳ /∈ (1− δ̄, 1].(3.21)

From (3.1) of Lemma 3.1, there exists Ĉ > 0 that for all k ∈ N,
for all p ∈ dom(Rk

0) and for all v ∈ Cγ(p) we get

‖ DRk
0(p) · v ‖ ≥ Ĉ· | Dfk(ȳ) | · ‖ v ‖(3.22)

where ϕ(p) = (x̄, ȳ).

By Singer’s and Misiurewicz’s Theorems (see [MS]) we have that
f is hyperbolic on [0, a] ∪ [b, 1 − δ̄] there are positive constants C̄ =
C̄(R̄0, δ̄) > 0 and λ̄ = λ̄(R̄0, δ̄) > 1 such that for all k ∈ N and
f i(ȳ) ∈ [0, a] ∪ [b, 1− δ̄], 0 ≤ i ≤ k − 1 we get that

| Dfk(ȳ) |≥ C̄ · λ̄k.(3.23)

Take C = Ĉ · C̄ and λ = λ̄. Fix k ∈ N and p with Ri
0(p) ∈

V (s), 0 ≤ i ≤ k − 1. So, from (3.21) we have that f i(ȳ) ∈ [0, a] ∪
[b, 1 − δ̄], 1 ≤ i ≤ k − 1 because Ri

0(p) ∈ V (s), 0 ≤ i ≤ k − 1. Note
that (x̄, ȳ) = ϕ(p) because (3.21).

Take v ∈ Cγ(p), then using (3.22), (3.23) and definition of C and
λ we obtain

‖ DRk
0(p) · v ‖≥ C · λk· ‖ v ‖ .

Therefore, from Definition 3.5, the proof follows. ¤
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In the following proposition, we show an easy characterization of
vertical expansivity in the terms of the maximal invariant set, like for
one dimensional hyperbolic set.

Proposition 3.7. Let R ∈ T and δ > 0. Then, R is vertically ex-
pansive on V (δ) if only if there is a vertical invariant cone field Cγ

on V (δ) such that for every p ∈ ΛR(δ) and ∀v ∈ Cγ(p) there exists a
positive integer k = k(p, v) such that

‖ DRk(p) · v ‖>‖ v ‖ .

Proof. If R is vertically expansive on ([0, 1]× [0, a])∪ ([0, 1]× [b, 1− δ])
we take k so that C ·λk > 1. So let us prove the reverse implication. So
suppose that ‖ DRk(p,v)(p)v ‖>‖ v ‖ for all p ∈ ΛR(δ) and ∀v ∈ Cγ(p).
Denote by B the set of v ∈ Cγ(p) such that ‖ v ‖= 1. By compactness
of ΛR(δ) × B and continuity of the derivative of R, there exists a
finite cover V1 × B1, · · · , Vk × Bk of ΛR(δ)× B by open sets, integers
n1, · · · , nk and number λ1, · · · , λk > 1, such that ‖ DRni(p) · v ‖> λi

for all (p, v) ∈ Vi ×Bi and every i = 1, · · · , k.

Let consider a neighborhood V =
⋃k

j=1 Vj. Note that exists n0 such

that if p /∈ V then there exists i smaller n0 with Ri(p) /∈ V (δ). Define
ñ = max{nj : 0 ≤ j ≤ k}, a = min{‖ DR(p) · v ‖: (p, v) ∈ V (δ)×B},
λ = min{ ni

√
λi : 0 < i ≤ k} and C = min{ai

λi : 1 ≤ i ≤ ñ}.
Take n ∈ N and p ∈ dom(Rn−1) such that Ri(p) /∈ [0, 1]× (1− δ, 1]

for every i = 0, · · · , n− 1. Take v ∈ Cγ(p).

We follows inductively the following alternatives:

a) If p /∈ V . Then n ≤ n0 ≤ ñ. So

‖ DRn(p) · v ‖=‖ DRn(p) · v

‖ v ‖ ‖ · ‖ v ‖> C · λn ‖ v ‖ .

b) If p ∈ V . Then, there is i, 1 ≤ i ≤ k such that (p, v
‖v‖) ∈ Vi×Bi.
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b-1) If n < ni then n ≤ ñ. So

‖ DRn(p) · v ‖=‖ DRn(p) · v

‖ v ‖ ‖ · ‖ v ‖> C · λn ‖ v ‖ .

b-2) If n ≥ ni then

‖ DRn(p) · v ‖ = ‖ DRn−ni(Rni(p)) · DRni(p) · v
‖ DRni(p) · v ‖ ‖ ·

‖ DRni(p) · v

‖ v ‖ ‖ · ‖ v ‖
≥ ‖ DRn−ni(q) · w ‖ ·λni· ‖ v ‖

where q = Rni(p) and w = DRni(p)·v
‖DRni(p)·v‖ . Then the proof follows recur-

sively. ¤
Remark 3.8. It is clear from definition that Vertical expansiveness
is an C1-open property. In our case, Vertical expansiveness is equiva-
lent to hyperbolicity because the existence of an invariant contracting
foliation.

Lemma 3.9. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map (i,e.,
R0 ∈ T̃ ) satisfying (H). Then there are δ2 = δ2(R0) > 0 and a
constant C2 = C2(R0) > 0 satisfying the following property: for
each δ < δ2, there are λ2 = λ2(R0, δ) > 1 and a C1-neighborhood
V2 = V2(R0, δ) of R0 in T̃ such that for all R ∈ V2, for all k ∈ N
and for all p ∈ dom(Rk) with p,R(p), ..., Rk−1(p) ∈ V (δ) but Rk(p) ∈
[0, 1]× [1− δ2, 1], then

‖ DRk(p) · v ‖≥ C2 · λk
2· ‖ v ‖,(3.24)

for all v ∈ Cγ(p).

Proof. Let consider R0 as in statement of the Lemma. Choose δ2 > 0,
c1, d1 with 0 < c1 < d1 < 1 and a C1-neighborhood V̄2 of R0 in T̃ in
such way that if R ∈ V̄2 and p ∈ dom(R) satisfy R(p) ∈ [0, 1]×[1−δ2, 1]
then p ∈ [0, 1]× [c1, d1].

Let C1 be as in Lemma 3.4 applied to R0, c1 and d1 chosen above.

Let consider C̃1 < inf{‖DR0(p)·v‖
‖v‖ : p ∈ [0, 1] × [c1, d1], v ∈ Cγ(p)}
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. Shrinking V̄2, we can suppose that for all R ∈ V̄2, for all p ∈
[0, 1]× [c1, d1] and for all v ∈ Cγ(p), ‖ DR(p) · v ‖> C̃1· ‖ v ‖.

Define

C2 = min{1, C1.C̃1

2
}.

Now fix δ, 0 < δ < δ2. For such a δ we shall take V2 and λ2 as follows:

From Lemma 3.6, R0 is vertical expansive on V (δ) = [0, 1]×([0, a]∪
[b, 1− δ]), so we can find a C1-neighborhood Ṽ = Ṽ (R0, δ) of R0 in T̃
and constants C̃ = C̃(R0, δ), λ̃ = λ̃(R0, δ), with C̃ > 0 and λ > λ̃ > 1

such that if R ∈ Ṽ and p satisfy Ri(p) ∈ V (δ), 0 ≤ i ≤ k − 1 and
v ∈ Cγ(p), then

‖ DRk(p) · v ‖≥ C̃ · λ̃k· ‖ v ‖,(3.25)

because this is an open property (see Remark 3.8).

From (3.25) we can find K = K(R0, δ) ∈ N and λ̂2 = λ̂2(R0, δ),

λ̃ > λ̂2 > 1 such that if k ≥ K, g ∈ Ṽ and p satisfy Ri(p) ∈ V (δ),
0 ≤ i ≤ k − 1 and v ∈ Cγ(p), then

‖ DRk(p) · v ‖≥ λ̂k
2· ‖ v ‖ .(3.26)

(Just take K = min{k : C̃ · λ̃k > 1} and λ̂2 such that 1 < λ̂2 <

min{λ̃ · C̃ 1
K , λ̃}).

Let V1 be the C1-neighborhood of R0 in T̃ given by Lemma 3.4
for this K.

Let us consider λ2 = λ2(R0, δ), 1 < λ2 < λ̂2 such that

λK
2 < 2.(3.27)

We show that Lemma work with V2 = V2(Ro, δ) = V̄2 ∩ Ṽ ∩ V1
and λ2 as was chosen.

Fix R ∈ V2, k ∈ N and p ∈ dom(Rk) with p,R(p), ..., Rk−1(p) ∈
V (δ) but Rk(p) ∈ [0, 1]× [1− δ2, 1]. Also fix v ∈ Cγ(p).
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If k ≥ K, then (3.26), the definition of λ2 and C2 imply that

‖ DRk(p) · v ‖≥ λ̂k
2· ‖ v ‖≥ C2 · λk

2· ‖ v ‖ .(3.28)

To the case when k < K, first we observe that Rk−1(p) belong to
[0, 1] × [c1, d1] because Rk(p) ∈ [0, 1] × [1 − δ2, 1] and by hypothesis
R ∈ V2. Then, definition of C̃1 for one side and (3.16) of Lemma 3.4
imply that

‖ DRk(p) · v ‖ = ‖ DR(Rk−1(p)) ·DRk−1(p) · v ‖
≥ C̃1· ‖ DRk−1(p) · v ‖
≥ C̃1 · C1· ‖ v ‖ .

So,

‖ DRk(p) · v ‖> C2 · λk
2(3.29)

because (3.27) and the definitions of C2 and λ2.

Finally, from (3.28) and (3.29) the lemma follows. ¤

Lemma 3.10. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map
(i,e., R0 ∈ T̃ ) and let C such that 0 < C ≤ 1. Then there are
a C1-neighborhood V3 = V3(R0, C) of R0 in T̃ and constants δ3 =
δ3(R0, C) > 0, λ3 = λ3(R0, C) > 1 and L = L(R0, C) ∈ N with
C · λL

3 > 1 such that for each R ∈ V3, for each p ∈ [0, 1] × [1 − δ3, 1)
there exists an integer l = l(R, p) > L such that Rj(p) ∈ [0, 1]× [0, a]
for j = 1, ..., l − 1 and

‖ DRl(p) · v ‖≥ λl
3· ‖ v ‖(3.30)

for all v ∈ Cγ(p).

Proof. Fix R0, K0, K1, ν, µ, α, α̃ and 0 < C < 1 as in statement of the
lemma. For every η > 0 we consider the C1-neighborhood for R0 of
size η in T̃ , that is

Vη = {R : dC1(R0, R) < η}.
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By (H2) we have ν · µ
1−α̃(R0)

α(R0) > 1. Then there is λ̂ = λ̂(R0) > 1 and
η > 0 small such that for all R ∈ Vη

ν · µ 1−α̃(R)
α(R) > λ̂ > 1.(3.31)

As R0({y = 1}) ⊆ {y = 0} we can choose 0 < δ̂ = δ̂(R0) < 1 such

that R0(p) ∈ [0, 1]×[0, a
2 ] for all p ∈ [0, 1]×(1−δ̂, 1). Shrinking η again,

we can assume that R(p) ∈ [0, 1] × [0, a] for all p ∈ [0, 1] × (1 − δ̂, 1)
and for all R ∈ Vη.

For R ∈ Vη and p ∈ [0, 1]× [1− δ̂, 1) we define

l(R, p) = inf{j ≥ 1 : Rj(R(p)) /∈ H0,a}.(3.32)

To choose λ3 we need to make some estimates. Let consider R ∈ Vη

and p ∈ [0, 1] × [1 − δ̂, 1) and v ∈ Cγ(p). By definition of l in (3.32)
we have that R(p), ..., Rl−1(p) ∈ [0, 1]× [0, a] and

yRl+1(p) > a.(3.33)

Claim. For all R ∈ T̃ , for all q ∈ Σ = [0, 1] × [0, 1] and n ∈ N
with q, R(q), R2(q), ..., Rn−1(q) ∈ H0,a then yRn(q) ≤ µn · yq.

Indeed, fix R ∈ T̃ , q ∈ Σ and n ∈ N such that q, R(q), R2(q), ...,
Rn−1(q) ∈ H0,a.

By definition we have

yRn(q) = (Πy ◦Rn)(q)

were Πy is the projection over the second variable y. Define for t ∈
[0, 1] the real valued map h(t) = yRn(xq,t), then

h(yq) = yRn(xq,yq).

By Mean Valued Theorem we have

(3.34) yRn(xq,yq) = h′(ξ).yq

for some ξ because yRn(xq,0) = 0.
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But
h′(ξ) = D(Πy ◦Rn)(xq, ξ) · (0, 1).

By (H4-b) because (0, 1) ∈ Cγ(x, y), ∀(x, y) ∈ H0,a with R(x, y),
..., Rn−1(x, y) ∈ H0,a, the cone Cγ is invariant and the fact that
‖ Πy ‖= 1 we get

| h′(ξ) | ≤ ‖ Πy ‖ · ‖ DRn(xq, ξ).(0, 1) ‖
≤ µn

and then (3.34) applies and proves the claim.

Moreover, for all R ∈ Vη and all p ∈ [0, 1] × [1 − δ̂, 1), the above
Claim (for q = R(p) and n = l) implies that

yRl+1(p) = yRl(R(p))

≤ µl · yR(p).

From this inequality and (3.33) we get

yR(p) > a · µ−l.(3.35)

But (H3) says

yR(p) ≤ K0· | yp − 1 |α(R) .(3.36)

Note that by definition of the neighborhood Vη,

α(R0)− η < αR < α(R0) + η

and
α̃(R0)− η < α̃(R) < α̃(R0) + η.

By definition of the neighborhood Vη, as p ∈ [0, 1] × [1 − δ̂, 1),
(3.35) and (3.36) we obtain

K0 · (δ̂)α(R0)−η ≥ a · µ−l.

Therefore,

l ≥ log(a)− log(K0)− (α(R0)− η) · log(δ̂)

log(µ)
= L(δ̂).(3.37)

Note that L(δ̂) →∞ as δ̂ → 0.
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Also, from (3.35) and (3.36) we have

| yp − 1 |α̃(R)−1 ≥
(

yR(p)

K0

) α̃(R)−1
α(R)

≥
(

a

K0

) α̃(R)−1
α(R)

·
(
µ

1−α̃(R)
α(R)

)l

.(3.38)

From the Chain Rule, (H4-a) and (H4-b) we get

‖ DRl(p) · v ‖ = ‖ DRl−1(R(p)) ·DR(p)v ‖
≥ ν l−1· ‖ DR(p) · v ‖
≥ ν l−1 ·K1· | yp − 1 |α̃(R)−1 · ‖ v ‖,(3.39)

for all v ∈ Cγ(p).

Moreover, by C1 proximity we have

α̃(R0)− 1− η

α(R0) + η
<

α̃(R)− 1

α(R)
<

α̃(R0)− 1 + η

α(R0)− η
.(3.40)

Using successively (3.39), (3.38), (3.31) and (3.40) we obtain that
for all v ∈ Cγ(p),

‖ DRl(p) · v ‖ ≥ ν l−1 ·K1 ·
(

a

K0

) α̃(R)−1
α(R)

·
(
µ

1−α̃R
αR

)l

· ‖ v ‖

=
K1

ν
·
(

a

K0

) α̃(R)−1
α(R)

·
(
νµ

1−α̃(R)
α(R)

)l

· ‖ v ‖

≥ K1

ν
·
(

a

K0

) α̃(R)−1
α(R)

· λ̂l· ‖ v ‖

= C(R0) · λ̂l· ‖ v ‖(3.41)

where C(R0) = min
{

K1

ν ·
(

a
K0

) α̃(R0)−1−η
α(R0)+η

, K1

ν ·
(

a
K0

) α̃(R0)−1+η
α(R0)−η

}
.

Now, fix L0 ∈ N such that C(R0) · λ̂L0 > 1. Also take λ3 such that

1 < λ3 < min{(C(R0))
1

L0 · λ̂, λ̂}.
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By (3.37) we take δ̂ such that for all p ∈ [0, 1]× [1− δ̂, 1) and R ∈ Vη

we have L(δ̂) > L0. Therefore, l = l(R, p) ≥ L0.

So, using inequality (3.41) and definition of λ3 we obtain

‖ DRl(p) · v ‖ ≥ C(R0) · λ̂L0 · λ̂l−L0· ‖ v ‖
≥ λL0

3 · λl−L0

3 · ‖ v ‖
= λ3

l· ‖ v ‖,
for all v ∈ Cγ(p).

Finally take L = L(f, C) with C · λL
3 > 1. Shrinking δ̂ in such a

way L(δ̂) > L. This implies that for all p ∈ [0, 1] × [1 − δ, 1) and for
all R ∈ Vη, l = l(R, p) > L.

The lemma works with V3 = Vη, λ3, L and δ3 = δ̂ as before. This
ends the proof. ¤

Proposition 3.11. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic
map (i,e., R0 ∈ T̃ ) satisfying (H). Then there are C1-neighborhood
V4 = V4(R0) of R0 in T̃ and constants C4 = C4(R0) > 0, δ4 =
δ4(R0) > 0 and λ4 = λ4(R0) > 1 satisfying the following properties: If
k ∈ N, R ∈ V4, p ∈ dom(Rk) are such that Rk(p) ∈ [0, 1]× (1− δ4, 1]
and v ∈ Cγ(p) then

‖ DRk(p) · v ‖≥ C4 · λk
4· ‖ v ‖ .(3.42)

Moreover, if p ∈ [0, 1]× (1− δ4, 1) then

‖ DRk(p) · v ‖≥ λk
4· ‖ v ‖ .(3.43)

Proof. Fix R0 as in lemma. Let us consider C2 > 0 and δ2 given in
Lemma 3.9 applied for R0.

Take C4 = min{1, C2}. Applying Lemma 3.10 for R0 and C = C4
we obtain a C1-neighborhood V3 and the real numbers δ3 and λ3 and
an integer L. Choose δ4 such that 0 < δ4 = 1

2 ·min{δ2, δ3}. Take λ2 and
V2 given by Lemma 3.9 applied to δ = δ4. Let us consider V4 = V2∩V3
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and choose λ4 in a such way that 1 < λ4 < min{C
1
L
2 · λ3, λ2}. Note

that C
1
L
2 · λ3 > 1 because C2 > C = C4.

Now we prove that the proposition works with V4, C4, δ4 and λ4
chosen above.

Fix R ∈ V4, k ∈ N, p ∈ dom(Rk) such that Rk(p) ∈ [0, 1]×(1−δ4, 1]
and v ∈ Cγ(p).

We decompose the orbit {Ri(p)}k
i=0 in several blocks as follows:

{p = p1, R(p1), ..., R
k1−1(p1)}, {q1 = Rk1(p1), R(q1), ..., R

l1−1(q1)},
{p2 = Rl1(q1), R(p2), ..., R

k2−1(p2)}, {q2 = Rk2(p2), R(y2), ..., R
l2−1(q2)},

. . . , {pm = Rlm−1(qm−1), R(pm), ..., Rkm(pm) = qm = Rk(p)}, where k1
is the first integer such that Rk1(p1) ∈ (1 − δ4, 1), l1 ≥ L is given by
the conclusion of Lemma 3.10 applied to q1, k2 is the first integer that
Rk2(p2) ∈ (1− δ4, 1) and so on.

Notice that k1 + l1 + · · ·+ km−1 + lm−1 + km = k.

Using the Chain Rule Theorem, (3.24) of Lemma 3.9, (3.30) of
Lemma 3.10, and considering the definitions of C4 and λ4 we obtain

‖ DRk(p)v ‖ = ‖ DRkm(pm) ·DRlm−1(qm−1) . . . DRk3(p3) ·
DRl2(q2) ·DRk2(p2) ·DRl1(q1) ·Dgk1(p1)v ‖

≥
(
(C2 · λkm

2 ) · λlm−1

3

)
. . .

(
(C2 · λk3

2 ) · λl2
3

)
·

(
(C2 · λk2

2 ) · λl1
3

)
· (C2 · λk1

2 )· ‖ v ‖
≥ (λkm

2 · λlm−1

4 ) · · · (λk3

2 · λl2
4 ) · (λk2

2 · λl1
4 ) ·

(C2 · λk1

2 )· ‖ v ‖
= λk2+···+km

2 · · ·λl1+···+lm−1

4 · (C2 · λk1
2 )· ‖ v ‖(3.44)

≥ C4 · λk
4· ‖ v ‖,

this proves (3.42) of Proposition 3.11.
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For finish the proof note that if p ∈ [0, 1]× (1− δ4, 1) then in the
decomposition of the orbit {Ri(p)}k

i=0 given above, k1 does not exist,

so in (3.44), the expression C2 ·λk1
2 does not appears. Therefore, (3.43)

of Proposition 3.11 follows. This concludes the proof. ¤

Corollary 3.12. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map
(i,e., R0 ∈ T̃ ) satisfying (H). Then there exists a C1-neighborhood
V5 of R0 en T̃ such that for each R ∈ V5 and for each δ > 0, R is
vertically expansive on [0, 1]× ([0, a] ∪ [b, 1− δ]).

Proof. Fix R0 as in the statement of the lemma. Let us consider
δ4 and the C1-neighborhood V4 given by Proposition 3.11. Because
R0 ∈ T̃ which satisfies (H) implies that R0 is vertically expansive on
[0, 1] × ([0, a] ∪ [b, 1 − δ4]) (see Lemma 3.6). From Remark 3.8, we

can find a C1-neighborhood Ṽ4 = Ṽ4(R0) of R0 in T̃ such that all

R ∈ Ṽ4 is vertically expansive on [0, 1] × ([0, a] ∪ [b, 1 − δ4]). Define

V5 = V4 ∩ Ṽ4. Now take R ∈ V5 and δ with 0 < δ < δ4. We will prove
that R is vertical expansive on [0, 1]× [b, 1−δ]. In order to do this, let
consider p in the maximal R-invariant set in [0, 1]×([0, a]∪[b, 1−δ]) and
v ∈ Cγ(p). Then, we have that either ∀k > 1, Rk(p) /∈ [0, 1]×(1−δ4, 1]
or for some k1 > 1, Rk1(p) ∈ [0, 1]× (1− δ4, 1]. In the first case, taking

k big enough we have that ‖ DRk(p)·v ‖>‖ v ‖ because R ∈ Ṽ4. In the
other case, by (3.42) of Proposition 3.11, ‖ DRk1(p)·v ‖≥ C4·λk1

4 · ‖ v ‖.
Now applying the same argument to Rk1(p), we have two alterna-

tives: there is k big enough such that ‖ DRk1+k(p) · v ‖>‖ v ‖ or there
is k2 such that Rk2(Rk1(p)) ∈ [0, 1]× (1−δ4, 1) in a such case by (3.43)
of Proposition 3.11 we have that

‖ DRk2+k1(p) · v ‖≥ C4 · λk1
4 · λk2

4 · ‖ v ‖ .

Inductively, we obtain that for some k = k(R, δ, n, p, v) ∈ N big enough
such that ‖ DRk(p)v ‖>‖ v ‖.

Therefore, from Proposition 3.7 the proof follows. ¤
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4. Proof of the Main Theorem

In this section we prove the Main Theorem (Theorem 2.10).

Let R : H0,a∪Hb,1 ⊂ Σ → U . A point p ∈ H0,a∪Hb,1 is periodic for
R if there is n ≥ 1 such that Rj(p) ∈ H0,a ∪Hb,1 for all 0 ≤ j ≤ n− 1

and Rn(p) = p. The ω-limit set of a point p ∈
∞⋂
i=0

R−i(Σ) is the set

{q ∈ U : q = lim
k→∞

Rnk(p) for some sequence nk →∞}.

The basin of a periodic point p is the set of points whose ω−limit set
contains p. We say that a periodic point p of period n is sink if its
basin contain an open set.

Given a curve ζ in Σ we denote by length(ζ) the length of a curve
ζ. We say that γ is tangent to the cone field Cγ if Tpζ is contained in
Cγ(p) for all p ∈ ζ.

If F is a continuous foliation on U and A ⊂ U then the saturated
of A for F it is union of leaves of F which pass through points of A
and will denoted by [A].

Theorem 4.1. Let R0 be a (K0, K1, ν, µ, α, α̃)-quasi-hyperbolic map
(i,e., R0 ∈ T̃ ) satisfying (H). Then there exists a C1-neighborhood
V = V (R0) of R0 in T̃ such that for all R ∈ V , the maximal R-

invariant set contained in Σ = [0, 1] × [0, 1], ΛR =
∞⋂
i=0

R−i(Σ), don’t

contain a curve tangent to Cγ.

Proof. Fix R0 as in statement of the theorem. Let us consider V4, δ4
and λ4 given by Proposition 3.7. Let us consider the C1-neighborhood
V4 of R0 in T̃ given by Corollary 3.12. Take V = V4 ∩ V5. Now fix
R ∈ V .

Suppose, by contradiction, ΛR =
∞⋂
i=0

R−i(Σ), has a curve ζ tangent

to Cγ.
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We split the proof in some steps. Let consider the invariant folia-
tion F associated to the triangular map R. Also, we denote by g the
quotient map induced by F .

Step 1. R has no sinks. Indeed, Corollary 3.12 and the fact that
the foliation F is contracting imply that all the periodic points p are
saddle like hyperbolic point(see Remark 3.8). Therefore, R has no
sinks.

Step 2. For all m 6= n, [Rm(ζ)] ∩ [Rn(ζ)] has no interior. Indeed,
if there are integers m 6= n such that [Rm(ζ)]∩ [Rn(ζ)] has non empty
interior. Now we denote by J = ΠF (ζ) and it is clear that J is
a homterval for g (i.e., gn|J is a homeomorphism for all n ∈ N).
Therefore gm(J) ∩ gn(J) has non empty interior, then by standard
arguments (see [G], Lemma A, pag. 142) we obtain that g has a sink.
Furthermore as the foliation F is contracting we obtain that R has a
sink. This is a contradiction with step 1.

Therefore, the sequence of horizontal bands {[Rn(ζ)]}∞n=0 are pair-
wise disjoint and can not accumulate a sink, i.e. ζ is a “wandering
curve”. From this it follows that

Step 3.

lengh(Rn(ζ)) → 0 as n → +∞.(4.1)

Indeed, suppose that (4.1) is not valid , then there exists a real number
β > 0 such that

lenght(Rn(ζ)) > β.

for infinitely n.

Let Σ2 = Σ× Σ. Consider the compact K ⊂ Σ2 defined by

K =
{

(p, q) ∈ Σ2 : p ∈ Σ, q ∈ Cγ(p) ∩ Σ and | yp − yq |≥ γ · β
}

.

If β is small then K is a non empty compact set.

Define H : Σ2 → [0, +∞) by

H(p, q) =| ΠF (p)− ΠF (q) | .
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As H(p, q) = 0 if only if ΠF (p) = ΠF (q), then H(p, q) > 0 for all
(p, q) ∈ K because | yp − yq |≥ β

γ . The continuity of H(·, ·) and the
compactness of K imply that there exists a real number θ > 0 such
that

H(p, q) ≥ θ(4.2)

for all (p, q) ∈ K.

From step 2 we obtain that lenght(ΠF (Rn(ζ))) → 0 as n →∞.

Now, let us consider n be the natural number which satisfies

lenght(ΠF (Rn(ζ))) <
θ

2
(4.3)

and

lenght(Rn(ζ)) > β.(4.4)

Moreover we claim that there exists p, q ∈ Rn(ζ) such that (p, q) ∈
K. Indeed, let p, q ∈ Rn(ζ) such that the length of the curve ζ,
parameterized in a such way that Dζ(y) = (v(y), 1), is contained in
Rn(ζ) between p and q is equal to β (see (4.4) given above).

In other hand as γ < 1 we have

lenght(ζ) =

∫ yp

yq

‖Dζ(y)‖dy

≤ γ· | yp − yq |,
and this implies that | yp − yq |≥ γ · β, i,e., (p, q) ∈ K.

So using (4.2) we obtain that

H(p, q) ≥ θ.(4.5)

Also notice that

H(p, q) ≤ lenght(ΠF (Rn(ζ))).(4.6)

Therefore using (4.3), (4.5) and (4.6) we obtain

θ ≤ H(p, q) ≤ lenght(ΠF (Rn(ζ))) <
θ

2



ROBUST TRANSITIVE SETS OF TRIANGULAR MAPS 33

and this is a contradiction. The proof of (4.1) of the step 3 follows.

Step 4. ΠF (Rn(ζ)) accumulate to 1 . Indeed, suppose that
ΠF (Rn(ζ)) not accumulate to 1, then there exists θ̃ > 0 such that
ΠF (Rn(ζ)) ⊂ [0, 1 − θ̃] for all n ∈ N. Therefore as the foliation F
is C0 we can choose θ > 0 such that Rn(ζ) ∩ [0, 1] × (1 − θ, 1] = ∅.
Applying Corollary 3.12 after a reparametrization of the curve ζ we
obtain that there are C > 0 and λ > 1 such that for all t ∈ [0, 1], we
have

lengh(Rn(ζ)) =

∫ 1

0
‖ dRn(ζ(t))

dt
‖ dt

=

∫ 1

0
‖ DRn(ζ(t)) · dζ(t)

dt
‖ dt

≥ C · λn ·
∫ 1

0
‖ dζ(t)

dt
‖ dt

= C · λn.lenght(ζ).

Then lengh(Rn(ζ)) →∞ as n →∞ in contradiction with (4.1) of the
step 3. Therefore, ΠF (Rn(ζ)) accumulate to 1.

Next, we argue in order to arrive a contradiction. Let us con-
sider 0 < η < δ4 and an integer n0 in a such way that ∀n ≥ n0
lengh(Rn(ζ)) < δ4−η. So, if for n ≥ n0 and Rn(ζ)∩[0, 1]×(1−η, 1) 6= ∅
then Rn(ζ) ⊂ [0, 1]× (1− δ4, 1).

As ΠF ([Rn(ζ)]) accumulate to 1, there is a sequence nk such that
Rn

k(ζ) ⊂ [0, 1] × (1 − δ4, 1). We can apply (3.43) of Proposition 3.11,
after a reparametrization, to obtain that

lengh(Rnk(ζ)) ≥ λnk−n0
2 · lengh(Rn0(ζ)).

As nk →∞ we have that

lengh(Rnk(ζ)) →∞
and so we get a contradiction with (4.1) of the step 3. The proof
follows. ¤
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Corollary 4.2. Let us consider V the C1-neighborhood given by The-
orem 4.1. Then for all R ∈ V and for all curve ζ tangent to Cγ

such that ζ ∩ (
∞⋂
i=0

R−i(Σ)) 6= ∅, there exists n = n(R, ζ) such that

ΠF (Rn(ζ)) ⊇ [0, 1], where ΠF is the projection along the invariant
foliation F .

Proof. We fix R ∈ V and a curve ζ tangent to Cγ such that ζ ∩
(
∞⋂
i=0

R−i(Σ)) 6= ∅. Then Theorem 4.1 implies that
∞⋂
i=0

R−i(Σ) don’t

contain the curve ζ. Therefore there are a curve ζ̄ ⊆ ζ with ζ̄(0) = p

and ζ̄(1) = q for some p, q ∈ Σ with p ∈ ζ ∩ (
∞⋂
i=0

R−i(Σ)) 6= ∅ and a

integer n0 = n0(ζ̄) such that Rn0(q) ∈ [0, 1]× {0, a, b, 1}. But R({y =
1}) ⊂ {y = 0} and {y = 0} is preserved by R so there is n > n0 such
that ΠF (Rn(ζ)) ⊇ [0, 1]. Therefore, from this the proof follows. ¤

Finally, we prove the main result using some facts proved in [CMS1].

Proof. (Theorem 2.10). Fix R0 as in Theorem 2.10. Take the neigh-
borhoods V5 and V given by Corollary 3.12 and Theorem 4.1, re-
spectively. Define U = V5 ∩ V . Now, fix R ∈ U and also fix the
invariant foliation F given by hypothesis (because R is in particular
a triangular map).

Claim A: For all p ∈ ⋂
n≥0 R−n(Σ) the stable leaf L = F (p) ∈ F

is accumulate by hyperbolic periodic points of saddle type, i.e. every
neighborhood of L contains a hyperbolic periodic point of saddle type.

Indeed, let U a neighborhood of L. We can take U in a such way
that U = (ΠF )−1(ΠF (U)). Take a small curve ζ ⊂ U through p and
tangent to Cγ

V . From Corollary 4.2 the existence of a curve ζ ⊆ ζ and
n ∈ N such that Ri(γ) ⊆ H0,a ∪Hb,1 ∀0 ≤ i ≤ n− 1 and Rn(γ̄) meets
all leaf in F .
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Let H(ζ) be the horizontal band in Σ consisting of saturating ζ by
the foliation F . By the property of ζ and n = n(ζ) above we have that
Rn(H(ζ)) crosses H(ζ) in a hyperbolic way. Then, by standard index
arguments (see [N]) there is a periodic point of R on Rn(H(ζ))∩H(ζ).
By taking ζ close to L, the band H(ζ) remain close to L and then
we have that such a point belongs to U . Such a periodic point is
hyperbolic saddle by Corollary 3.12 and the fact that the foliation F
is R-contracting (see Remark 3.8). This proves our Claim A.

Claim B: The hyperbolic periodic points of saddle type of R are
dense in

⋂
n∈ZRn(Σ).

Indeed, take a point z ∈ ⋂
n∈ZRn(Σ) and take a neighborhood V

of z. Take an integer n large enough such that L = F (R−n(z)) the
leaf that contains R−n(z) is applied by Rn into V . So the same applies
to a small horizontal band U around the leaf L. By Claim A there
exists a periodic point of saddle type in U . Therefore the orbit of this
periodic point visits the neighborhood V . This proves our Claim B.

To finish the proof of the transitivity of R (i.e., the invariant max-
imal set given by (2.3) is transitive) we will use the classical Birkhoff’s
criterium to prove transitivity: for all p, q ∈ ⋂

n∈ZRn(Σ) and ε > 0
there are z ∈ ⋂

n∈ZRn(Σ) and nz ∈ N such that d(z, p) < ε and
d(Rnz(z), q) < ε. Indeed, fix p, q and ε. By the above claim B we can
assume that p and q are hyperbolic periodic points of saddle type. Fix
a curve γ in W u(p) contained in Σ. We can assume that γ intersects
to the leaf F (q) transversely in some point z∗ by Corollary 4.2. Since
the positive (resp. negative) orbit of z∗ is asymptotic to q (resp. p)
we have z∗ ∈ ⋂

n∈ZRn(Σ). By taking the negative orbit of z∗ we have
some n∗1 ∈ N such that

d(R−n∗1(z∗), p) < ε.

By taking the positive orbit of z∗ we have some n∗2 ∈ N such that

d(Rn∗2(z∗), q) < ε.
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Then z = R−n∗1(z∗) and nz = n∗1 + n∗2 works

This finish the proof of the Theorem 2.10. ¤
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Universidad del B́ıo B́ıo
Casilla 5-C, Región del B́ıo B́ıo, Concepción, Chile
e-mail: clvidal@ubiobio.cl


	1. Introduction
	2. Triangular maps and Statement of the Main Theorem.
	2.1. Triangular maps
	2.2. Quasi-hyperbolic triangular maps
	2.3. Schwarzian derivative 
	2.4. Hypothesis (H)
	2.5. Definition of the C1-topology in 

	3. Elementary Results
	4. Proof of the Main Theorem
	References

