
A GENERALIZATION OF EXPANSIVITY

C. MORALES

Instituto de Matemática
Universidade Federal do Rio de Janeiro

P. O. Box 68530, 21945-970 Rio de Janeiro
Brazil

Abstract. We study dynamical systems for which at most n orbits can ac-
company a given arbitrary orbit. For simplicity we call them n-expansive (or
positively n-expansive if positive orbits are considered instead). We prove that
these systems can satisfy properties of expansive systems or not. For instance,
unlike positively expansive maps [3], positively n-expansive homeomorphisms
may exist on certain infinite compact metric spaces. We also prove that a map
(resp. bijective map) is positively n-expansive (resp. n-expansive) if and only
if it is so outside finitely many points. Finally, we prove that a homeomorphism
on a compact metric space is n-expansive if and only if it is so outside finitely
many orbits. These last results extends previous ones about expansive systems
[2],[11],[12].

1. Introduction. In classical terms, a discrete dynamical system on a metric space
is expansive if every orbit can be accompanied by just one orbit up to some prefixed
radius. This concept originally introduced for bijective maps [10] has been gen-
eralized to positively expansiveness in which positive orbits are considered instead
[5]. Further generalizations are the pointwise expansiveness (with the above radius
depending on the point [9]), the entropy-expansiveness [1], the continuum-wise ex-
pansiveness [7], the measure-expansiveness (involving Borel probability measures
[8]) and their corresponding positive counterparts. However, as far as we know, no
one have considered the generalization in which at most n companion orbits are
allowed for a certain prefixed positive integer n. For simplicity we call these sys-
tems n-expansive (or positively n-expansive if positive orbits are considered instead).
The natural question is whether these systems can satisfy properties of expansive
systems or not.

In this paper we shall provide both positive and negative answers for this ques-
tion. For instance, unlike positively expansive maps [3], we shall exhibit arbitrarily
large values of n for which there are infinite compact metric spaces carrying pos-
itively n-expansive homeomorphisms. Next, we prove that a map (resp. bijective
map) is positively n-expansive (resp. n-expansive) if and only if it is so outside
finitely many points. Finally, we prove that a homeomorphism on a compact metric
space is n-expansive if and only if it is so outside finitely many orbits. These last
two results extend previous ones for expansive dynamical systems in [2],[11],[12].
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2 C. MORALES

This paper is organized as follows. In Section 2 we present some topological
preliminaires. In Section 3 we give the precise definition of n-expansive systems
and study their basic properties. In Section 4 we prove our main results using those
in sections 2 and 3.

2. Preliminaries. In this section we establish some topological preliminaries. Let
X a set and n be a nonnegative integer. Denote by #A the cardinality of A. The
set of metrics of X (including ∞-metrics [4]) will be denoted by M(X). Sometimes
we say that ρ ∈M(X) has a certain property whenever its underlying metric space
(X, ρ) does. For example, ρ is compact whenever (X, ρ) is, a point a is ρ-isolated
in A ⊂ X if it is isolated in A with respect to the metric space (X, ρ), etc.. The
closure operation in (X, ρ) will be denoted by Clρ(·). A map f : X → X is a
ρ-homeomorphism if it is a homeomorphism of the metric space (X, ρ). If x ∈ X
and δ > 0 we denote by Bρ[x, δ] the closed δ-ball around x (or B[x, δ] if there is no
confusion).

Given ρ ∈ M(X) and A ⊂ X we say that ρ is n-discrete on A if there is δ > 0
such that #(B[x, δ]∩A) ≤ n for all x ∈ A. Equivalently, if there is δ > 0 such that
#(B[x, δ] ∩ A) ≤ n for all x ∈ X. When necessary we emphasize δ by saying that
ρ is n-discrete on A with constant δ. We say that ρ is n-discrete if it is n-discrete
on X. Clearly ρ is n-discrete on A if and only if the restricted metric ρ/A ∈ M(A)
defined by ρ/A(a, b) = ρ(a, b) for a, b ∈ A is n-discrete.

Evidently, there are no 0-discrete metrics and the 1-discrete metrics are precisely
the discrete ones. Since every n-discrete metric is m-discrete for n ≤ m one has
that every discrete metric is n-discrete. There are however n-discrete metrics which
are not discrete. Moreover, we have the following example (1).

Example 2.1. Every infinite set X carries an n-discrete metric which is not (n−1)-
discrete.

Indeed, if n = 1 we simply choose ρ as the standard discrete metric δ(x, y)
defined by δ(x, y) = 1 whenever x 6= y. Otherwise, we can arrange n disjoint
sequences x1

k, x2
k · · · , xn

k in X and define ρ by

ρ(x, y) =





1
4+k if ∃k ∈ N, ∃1 ≤ i 6= j ≤ n : (x, y) = (xi

k, xj
k),

δ(x, y) otherwise.

On the one hand, ρ is n-discrete with constant δ = 1/4 since

B

[
x,

1
4

]
=




{x1

k, · · · , xn
k} if ∃k ∈ N,∃1 ≤ i ≤ n : x = xi

k,

{x} otherwise

and, on the other, ρ is not (n− 1)-discrete since for all δ > 0 the set of points x for
which #B[x, δ] = n is infinite (e.g. take x = x1

k with k large).

Remark 2.2. None of the metrics in Example 2.1 can be compact for, otherwise,
we could cover X with finitely many balls of radius δ = 1/4 which would imply that
X is finite.

In the sequel we present some basic properties of n-discrete metrics. Clearly if
ρ is n-discrete on A, then it is also n-discrete on B for all B ⊂ A. Moreover, if ρ

1communicated by professors L. Florit and A. Iusem.
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is n-discrete on A and m-discrete on B, then it is (n + m)-discrete on A ∪ B. A
better conclusion is obtained when the distance between A and B is positive.

Lemma 2.3. If ρ is n-discrete on A, m-discrete on B and ρ(A,B) > 0, then ρ is
max{n, m}-discrete on A ∪B.

Proof. Choose 0 < δ < ρ(A,B)
2 such that #(B[x, δ] ∩ A) ≤ n (for x ∈ A) and

#(B[x, δ]∩B) ≤ m (for x ∈ B). If x ∈ A then B[x, δ]∩B = ∅ because δ < ρ(A,B)
2 so

#(B[x, δ]∩(A∪B)) = #(B[x, δ]∩A) ≤ n ≤ max{n,m}. If x ∈ B then B[x, δ]∩A = ∅
because δ < ρ(A,B)

2 so #(B[x, δ] ∩ (A ∪ B)) = #(B[x, δ] ∩ B) ≤ m ≤ max{n,m}.
Then, ρ is max{n,m}-discrete on A ∪B with constant δ.

Lemma 2.4. If ρ is n-discrete on A, then A is ρ-closed and so ρ(A, B) > 0 for
every ρ-compact subset B with A ∩B = ∅.
Proof. We only have to prove the first part of the lemma. By hypothesis there is
δ > 0 such that #(B[x, δ] ∩ A) ≤ n for all x ∈ A. Let xk be a sequence in A
converging to some y ∈ X. It follows that there is k0 ∈ N+ such that xk ∈ B[y, δ/2]
for all k ≥ k0. Triangle inequality implies {xk : k ≥ k0} ⊆ B[xk0 , δ] ∩ A and so
{xk : k ≥ k0} is a finite set. As xk → y we conclude that y ∈ A hence A is
closed.

Now we prove that n-discreteness is preserved under addition of finite subsets.

Proposition 2.5. If ρ is n-discrete on A, then ρ is n-discrete on A ∪ F for all
finite F ⊂ X.

Proof. We can assume that A∩F = ∅. As F is finite (hence compact) we can apply
Lemma 2.4 to obtain ρ(A,F ) > 0. As F is finite one has that ρ is 1-discrete on F
so ρ is n-discrete on A ∪ F by Lemma 2.3.

For the next result we introduce some basic definitions. Let f : X → X be a
map. We say that A ⊂ X is invariant if f(A) = A. If f is bijective and x ∈ X we
denote by Of (x) = {fn(x) : n ∈ Z} the orbit of x. An isometry (or ρ-isometry to
emphasize ρ) is a bijective map f satisfying ρ(f(x), f(y)) = ρ(x, y) for all x, y ∈ X.

The following elementary fact will be useful later one: If f is a ρ-isometry and
a ∈ X satisfies that a is ρ-isolated in Of (a), then ρ is discrete on Of (a). In-
deed, if ρ were not discrete on Of (a), then there are integer sequences nk 6= mk

such that ρ(fnk(a), fmk) → 0 as k → ∞. As f is an isometry one has that
ρ(fnk(a), fmk(a)) = ρ(a, f lk(a)), where lk = mk − mk, so ρ(a, f lk(a)) → 0 for
some sequence lk ∈ Z \ {0} thus a is not ρ-isolated in Of (a).

Given d, ρ ∈ M(X) we write d ≤ ρ whenever d(x, y) ≤ ρ(x, y) for all x, y ∈ X.
We write ρ ¹ d to indicate lower semicontinuity of the map ρ : X × X → [0,∞]
with respect to the product metric d × d in X × X. Equivalently, the following
property holds for all sequences xk, yk in X and all δ > 0, where xk

d→ x indicates
convergence in (X, d):

xk
d→ x, yk

d→ y and yk ∈ Bρ[xk, δ] =⇒ y ∈ Bρ[x, δ]. (1)

Hereafter we denote by Fix(f) = {x ∈ X : f(x) = x} the set of fixed points of
f , and by Per(f) =

⋃
m∈N+ Fix(fm) the set of periodic points of f .

The following proposition is inspired on Lemma 2 p. 176 of [12].
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Proposition 2.6. Let d, ρ ∈ M(X) be such that d is compact and d ≤ ρ ¹ d. Let
f : X → X be a map which is simultaneously a d-homeomorphism and a ρ-isometry.
If A is an invariant set with countable complement which is n-discrete with respect
to ρ and Per(f) ∩A is countable, then ρ is n-discrete on A ∪Of (a) for all a ∈ X.

Proof. We can assume a 6∈ A (otherwise A ∪Of (a) = A) so ρ(A, a) > 0 by Lemma
2.4. Since f is a ρ-isometry and A is invariant one has ρ(A, f i(a)) = ρ(A, a) so
ρ(A,Of (a)) > 0. Then, by Lemma 2.3, it suffices to prove that ρ is n-discrete on
Of (a).

Suppose that it is not so. Then, as previously remarked, a is non ρ-isolated
in Of (a). Since d ≤ ρ we have that a is also non ρ-isolated in Of (a). As f is
a d-homeomorphism we conclude that Of (a) is a nonempty ρ-perfect set. As d
is compact (and so FII) we obtain that Cld(Of (a)) is uncountable. As X \ A is
countable we conclude that Cld(Of (a)) ∩A is uncountable.

Choose x ∈ Cld(Of (a)) ∩A. Then, there is a sequence lk ∈ Z such that

f lk(a) d→ x. (2)

Let δ > 0 be such that ρ is n-discrete on A with constant δ. Since ρ is not n-discrete
on Of (a) we can arrange different integers N1, · · · , Nn+1 satisfying

fNj (a) ∈ Bρ[fN1(a), δ], ∀j ∈ {1, · · · , n + 1}.
On the other hand, f is a ρ-isometry so the above inclusions yield

fNj (f lk(a)) ∈ Bρ[fN1(f lk(a)), δ], ∀j ∈ {1, · · · , n + 1}, ∀k ∈ N.

By taking limit as k →∞ in the above inclusion, keeping j fixed and applying (1)
and (2) to obtain

fNj (x) ∈ Bρ[fN1(x), δ], ∀j ∈ {1, · · · , n + 1}.
Now observe that fNj (x) ∈ A for all j ∈ {1, · · · , n + 1} because A is invariant.
Therefore,

{fN1(x), · · · , fNn+1(x)} ⊂ Bρ[fN1(x), δ] ∩A.

But #(Bρ[fN1(x), δ] ∩ A) ≤ n by the choice of δ so the above inclusion implies
fNj (x) = fNr (x) for some different indexes j, r ∈ {1, · · · , n + 1}. As the integers
N1, · · · , Nn+1 are different we conclute that x ∈ Per(f) and so x ∈ Per(f) ∩ A.
Therefore,

Cld(Of (a)) ∩A ⊂ Per(f) ∩A.

As Cld(Of (a)) ∩A is uncountable we conclude that Per(f) ∩A also is thus we get
a contradiction. This proves the result.

Corollary 2.7. Let d, ρ ∈ M(X) be such that d is compact and d ≤ ρ ¹ d. Let
f : X → X be a map which is simultaneously a d-homeomorphism and a ρ-isometry.
If Per(f) is countable and there are a1, · · · , al ∈ X such that ρ is n-discrete on
X \⋃l

i=1 Of (ai), then ρ is n-discrete.

Proof. Define the invariant sets Aj = X \⋃l
i=j Of (ai) for 1 ≤ j ≤ l. As X \ Aj =⋃l

i=j Of (ai) one has that Aj has countable complement for all 1 ≤ j ≤ l. On the
other hand, ρ is n-discrete on A1 by hypothesis and Per(f)∩A1 is countable (since
Per(f) is) so ρ is n-discrete on A2 = A1 ∪Of (a1) by Proposition 2.6. By the same
reasons if ρ is n-discrete on Aj , then ρ also is on Aj+1 = Aj ∪ Of (ai). Then, the
result follows by induccion.
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3. n-expansive systems. In this section we define and study the class of n-
expansive systems briefly mentioned in the Introduction. To motivate the definition
we recall the classical concepts of expansive and positively expansive systems [5],
[10]. Let (X, d) be a metric space and A ⊂ X. A map f : X → X is positively ex-
pansive on A if there is δ > 0 such that for every x, y ∈ A with x 6= y there is i ∈ N
such that d(f i(x), f i(y)) > δ, or, equivalently, if {y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈
N} = {x} for all x ∈ A. On the other hand, a bijective map f : X → X is expansive
on A if there is δ > 0 such that {y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ Z} = {x} for all
x ∈ A. If A = X we say that f is positively expansive or expansive respectively.
These definitions suggest the following ones implicitely mentioned in [8].

Definition 3.1. Given n ∈ N+ a bijective map (resp. map) f is n-expansive (resp.
positively n-expansive) on A if there is δ > 0 such that

{y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ Z} (resp. {y ∈ A : d(f i(x), f i(y)) ≤ δ,∀i ∈ N})
has at most n elements, ∀x ∈ A. If case A = X we say that f is n-expansive (resp.
positively n-expansive).

Clearly the 1-expansive bijective maps are precisely the expansive ones (which
in turn are n-expansive for all n ∈ N+). It is also clear that every n-expansive
bijective map is pointwise expansive in the sense of [9].

In the sequel we introduce two useful operators. For every f : X → X and
d ∈M(X) we define the pull-back f∗(d)(x, y) = d(f(x), f(y)) (clearly f∗(d) ∈M(X)
if and only if f is 1-1). Using it we can define the operator L+

f : M(X) →M(X) by

L+
f (d) = sup

i∈N
f i
∗(d), ∀d ∈M(X).

If f is bijective we can define Lf :M(X) →M(X) by

Lf (d) = sup
i∈Z

f i
∗(d), ∀d ∈M(X).

Lemma 3.2. If f is bijective, then d ≤ Lf (d) and f is a Lf (d)-isometry. If, in
addition, f is a d-homeomorphism, then Lf (d) ¹ d.

Proof. The first inequality is evident. As

f∗(Lf (d))(x, y) = sup
i∈Z

d(f i+1(x), f i+1(y)) = sup
i∈Z

d(f i(x), f i(y)) = Lf (d)(x, y)

for all x, y ∈ X one has f∗(Lf (d)) = Lf (d) hence f is an Lf (d)-isometry. Now we

prove Lf (d) ¹ d whenever f is a d-homeomorphism. Suppose that xk
d→ x, yk

d→ y
and Lf (d)(xk, yk) ≤ δ for all k ∈ N. Fixing i ∈ Z the latter inequality implies
d(f i(xk), f i(yk)) ≤ δ for all k. As f is a d-homeomorphism one can take the limit
as k →∞ in the last inequality to obtain d(f i(x), f i(y)) ≤ δ. As i ∈ Z is arbitrary
we obtain Lf (d)(x, y) ≤ δ which together with (2) implies the result.

These operators give the link between discreteness and expansiveness by the
following result. Hereafter we shall write f is (positively) n-expansive (on A) with
respect to d in order to emphazise the metric d in Definition 3.1.

Lemma 3.3. The following properties hold for all f : X → X, A ⊂ X and d ∈
M(X):

1. f is positively n-expansive on A with respect to d if and only if L+
f (d) is

n-discrete on A.
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2. If f is bijective, f is n-expansive on A with respect to d if and only if Lf (d)
is n-discrete on A.

Proof. Clearly for all x ∈ X and δ > 0 one has

BL+
f (d)[x, δ] ∩A = {y ∈ A : d(f i(x), f i(y)) ≤ δ, ∀i ∈ N},

so

#(BL+
f (d)[x, δ] ∩A) ≤ n ⇐⇒ #({y ∈ A : d(f i(x), f i(y)) ≤ δ, ∀i ∈ N}) ≤ n

which proves the equivalence (1). The proof of the equivalence (2) is analogous.

As a first application of the above equivalence we shall exhibit non-trivial exam-
ples of positively n-expansive maps. More precisely, we prove that every bijective
map f : X → X with at least n non-periodic points (n ≥ 2) carries a metric ρ
making it continuous positively n-expansive but not positively (n − 1)-expansive.
Indeed, by hypothesis there are x1, · · · , xn ∈ X such that f i(xj) 6= fk(xj), for all
1 ≤ j ≤ n and i 6= k ∈ N, and f i(xj) 6= f i(xk) for all i ∈ N and 1 ≤ j 6= k ≤ n. De-
fine the sequences x1

k, · · · , xn
k in X by xi

k = fk(xi) for 1 ≤ i ≤ n and k ∈ N. Clearly
these sequences are disjoint thus they induce a metric ρ in X which is n-discrete
but not (n − 1)-discrete as in Example 2.1. On the other hand, a straightforward
computation yields L+

f (ρ) = ρ thus f is continuous (in fact Lipschitz) for ρ. Since
ρ is n-discrete and ρ = L+

f (ρ) one has that L+
f (ρ) is n-discrete so f is positively

n-expansive by Lemma 3.3. Since ρ is not (n− 1)-discrete and ρ = L+
f (ρ) the same

lemma implies that f is not positively (n− 1)-expansive.
Notice however that none of the above metrics is compact (see for instance Re-

mark 2.2). This fact leads the question as to whether a bijective map can carry
a compact metric making it positively n-expansive but not positively (n − 1)-
expansive. Indeed, the following result gives a partial positive answer for this
question.

Proposition 3.4. For every k ∈ N+ there is a homeomorphism fk of a compact
metric space (Xk, ρk) which is positively 2k-expansive but not positively (2k − 1)-
expansive.

Proof. To start with we recall that a Denjoy map of the circle S1 is a nontransitive
homeomorphism of S1 with irrational rotation number. As is well known [6] every
Denjoy map h exhibits a unique minimal set Eh which is also a Cantor set.

Hereafter we fix the standard Riemannian metric l of S1. We shall prove that
h/Eh is positively 2-expansive with respect to l/Eh. Let α be half of the length of
the largest interval I in the complement S1 \ Eh and 0 < δ < α.

We claim that Int(BL+
h (l)[x, δ]) ∩ Eh = ∅ for all x ∈ Eh. Otherwise, there

is some z ∈ Int(BL+
h (l)[x, δ]) ∩ Eh. Pick w ∈ ∂I (thus w ∈ Eh). Since Eh is

minimal there is a sequence nk → ∞ such that h−nk(w) → z. Now, the interval
sequence {h−n(I) : n ∈ N} is disjoint so we have that the length of the intervals
h−nk(I) → 0 as k → ∞. It turns out that there is some integer k such that
h−nk(I) ⊂ BL+

h (l)[x, δ]. From this and the fact that h(BL+
h (l)[x, δ]) ⊂ BL+

h (l)[h(x), δ]
one sees that I ⊂ BL+

h (l)[hnk(x), δ] which is clearly absurd because the length of I
is greather than α > 2δ. This contradiction proves the claim.

Since BL+
h (l)[x, δ] reduces to closed interval (possibly trivial) the claim implies

that BL+
h (l)[x, δ] ∩ Eh consists of at most two points. It follows that L+

h (l) is 2-
discrete on Eh (with constant δ), so, h/Eh is positively 2-expansive with respect to
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l/Eh by Lemma 3.3. Since there are no positively expansive homeomorphisms on
infinite compact metric spaces (e.g. [3]) one sees that h/Eh cannot be positively
expansive with respect to l/Eh. Taking X1 = Eh, ρ1 = l/Eh and f1 = h/Eh we
obtain the result for k = 1. To obtain the result for k ≥ 2 we shall proceed according
to the following straightforward construction.

Take copies E1, E2 of Eh and recall the map

max{·, ·} : M(E1)×M(E2) →M(E1 × E2)

defined by
max{d1, d2}(x, y) = max{d1(x1, y1), d2(x2, y2)}

for all x = (x1, x2) and y = (y1, y2) in E1 × E2. One clearly sees that

Bmax{d1,d2}[x, δ] = Bd1 [x1, δ]×Bd2 [x2, δ], ∀x ∈ E1 × E2,∀δ > 0.

Afterward, take copies h1, h2 of h/Eh and define the product h1×h2 : E1×E2 →
E1 × E2, (h1 × h2)(x) = (h1(x1), h2(x2)). It turns out that

(h1 × h2)∗(max{d1, d2}) = max{h1∗(d1), h2∗(d2)}
so

L+
h1×h2

(max{d1, d2}) = max{L+
h1

(d1),L+
h2

(d2)}
thus

B
L+

h1×h2
(max{d1,d2})[x, δ] = B

L+
h1

(d1)[x1, δ]×B
L+

h2
(d2)[x2, δ].

Finally, take copies d1, d2 of the metric l/Eh each one in E1, E2 respectively. As
hi is positively 2-expansive with respect to di one has that L+

hi
(di) is 2-discrete for

i = 1, 2. We can choose the same constant for i = 1, 2 (δ say) thus,

#(BL+
h1×h2

(max{d1,d2})[x, δ]) = #(BL+
h1

(d1)[x1, δ]) ·#(BL+
h2

(d2)[x2, δ]) ≤ 22 (3)

for all x ∈ E1 × E2.
Now, consider the compact metric space (E1 ×E2, max{d1, d2}). It follows from

(3) and Lemma 3.3 that h1 × h2 (which is clearly a homeomorphism) is positively
22-expansive map with respect to max{d1, d2}. On the other hand, one can see
that #(BL+

h1×h2
(max{d1,d2})[x, δ]) = 22 for infinitely many x’s and arbitrarily small

δ thus h1 × h2 cannot be positively 22 − 1-expansive. Taking X2 = E1 × E2,
ρ2 = max{d1, d2} and f2 = h1 × h2 we obtain the result for k = 2.

By repeating this argument we obtain the result for arbitrary k ∈ N+ taking
X2 = E1 × · · · × Ek, ρk = max{d1, · · · , dk} and fk = h1 × · · · × hk.

As a second application of the equivalence in Lemma 3.3 we establish the fol-
lowing lemma which is well-known among expansive systems (e.g. Lemma 1 in
[12]).

Lemma 3.5. If a homeomorphism f of a metric space (X, d) is n-expansive on A,
then Per(f) ∩A is countable.

Proof. It follows from the hypothesis and Lemma 3.3 that there is δ > 0 such that
#(BLf (d)[x, δ] ∩A) ≤ n for all x ∈ X.

First we prove that fm is n-expansive on A, ∀m ∈ N+. Observe that f is
continuous since d is compact so there is ε > 0 such that d(x, y) ≤ ε implies
d(f i(x), f i(y)) ≤ δ for all integer −m ≤ i ≤ m. Then, BLfm (d)[x, ε] ⊂ BLf (d)[x, δ]
for all x ∈ X, so, #(BLfm (d)[x, ε] ∩ A) ≤ #(BLf (d)[x, δ] ∩ A) ≤ n for all x ∈ A.
Therefore, Lfm(d) is n-discrete on A (with constant ε) which implies that fm is
n-expansive on A by Lemma 3.3. This proves the assertion.
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Since Per(f) =
⋃

m∈N+ Fix(fm) by the previous assertion we only have to prove
that Fix(f) ∩ A is finite whenever f is n-expansive on A. To prove it suppose
that there is an infinite sequence of fixed points xk ∈ A. Since d is compact one
can assume that xn

d→ x for some x ∈ X. On the other hand, one clearly has
Lf (d) = d in Fix(f) thus, by the triangle inequality on x, there is n0 ∈ N such
that xn ∈ BLf (d)[xn0 , δ] for all n ≥ n0. Thus, #(BLf (d)[xn0 , δ] ∩ A) = ∞ which
contradicts the choice of δ above. This ends the proof.

4. The results. In this section we state and prove our main results. The first one
establishes that there are arbitrarily large values of n for which there are infinite
compact metric spaces carrying positively n-expansive homeomorphisms. As is well
known, this is not true in the positively expansive case (see for instance [3]).

Theorem 4.1. For every k ∈ N+ there is an infinite metric space (Xk, ρk) carrying
positively 2k-expansive homeomorphisms.

Proof. Take Xk, ρk and fk as in Proposition 3.4. As fk is not positively (2k − 1)-
expansive one has that Xk is infinite.

Our second result generalizes the one in [2].

Theorem 4.2. A map (resp. bijective map) of a metric space (X, d) is positively
n-expansive (resp. n-expansive) if and only if it is positively n-expansive (resp.
n-expansive) on X \ F for some finite subset F .

Proof. Obviously we only have to prove the if part. We do it in the positively n-
expansive case as the n-expansive case follows analogously. Suppose that a map f
of X is positively n-expansive on X \ F for some finite subset F . Then, L+

f (d) is
n-discrete on A = X \ F by Lemma 3.3. Since F is finite Proposition 2.5 implies
that L+

f (d) is n-discrete so f is positively n-expansive by Lemma 3.3.

Finally we state our last result which extends a well-known property of expansive
homeomorphisms (c.f. [11],[12]).

Theorem 4.3. A homemomorphism f of a compact metric space (X, d) is n-
expansive if and only if it is n-expansive on X\⋃l

i=1 Of (ai) for some a1, · · · , al ∈ X.

Proof. We only have to prove the if part. By hypothesis f is a d-homeomorphism
so f is an Lf (d)-isometry and d ≤ Lf (d) ¹ d by Lemma 3.2. Since f is n-expansive
on A = X \⋃l

i=1 Of (ai) one has that Per(f) ∩ A is countable by Lemma 3.5. As
X \ A =

⋃l
i=1 Of (ai) is clearly countable we conclude that Per(f) is countable.

On the other hand, f is n-expansive on X \⋃l
i=1 Of (ai) so Lf (d) is n-discrete on

X \⋃l
i=1 Of (ai) by Lemma 3.3. Then, Lf (d) is n-discrete by Corollary 2.7 and so

f is n-expansive by Lemma 3.3.
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