Preprint A555/2007
An optimal Boussinesq model for shallow water wave-microstructure interaction
André Nachbin | Garnier, Josselin | Kraenkel, Roberto
Keywords: Korteweg-de Vries equation | effective media | water waves
In this paper we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parameterized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective KdV equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case.

Anexos: