Preprint A519/2007
Q-algebroids and their cohomology

Rajan Mehta

**Keywords: **
Lie algebroids | equivariant cohomology | BRST | Cartan Model | Weil model | supermanifolds

A Q-algebroid is a Lie superalgebroid equipped with a compatible homological vector field and is the infinitesimal object corresponding to a Q-groupoid. We associate to every Q-algebroid a double complex. As a special case, we define the BRST model of a Lie algebroid, which generalizes the BRST model for equivariant cohomology. We extend to this setting the Mathai-Quillen-Kalkman isomorphism of the BRST and Weil models, and we suggest a definition of a basic subcomplex which, however, requires a choice of a connection. Other examples include Roytenberg's homological double of a Lie bialgebroid, Ginzburg's model of equivariant Lie algebroid cohomology, the double of a Lie algebroid matched pair, and Q-algebroids arising from lifted actions on Courant algebroids.