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Abstract

This thesis is concerned with problems about discrete structures that change with time.
We study two problems in discrete models: random trees with uniform attachment and con-
centration in random partitions.

The �rst problem is about Archaeology of Random Tree with Uniform Attachment. Given
a initial tree (seed tree) let us attach at each time a new vertex to a randomly chosen vertex of
the current tree. If we let time grow until a big value n, and look the tree after this process, can
we decide which vertices were in the seed tree? This is analysed for three possible seed trees:
a path, a star and a random tree. Techniques of Polya Urns and concentration inequalities
were the main ingredients of the solution of these problems.

The second problem is about Generalized Chinese Restaurant Process: suppose we have a
restaurant with in�nitely many tables. At each time a new costumer enters in the restaurant
and sits a table. The probability of choosing some previously occupied table depends on the
number of costumers at the table and of some parameters α and θ, and the probability of
choose a new table is the complementary probability. We study (in terms of the parameters
α and θ), the growth of the number of occupied tables and the number of tables with k
costumers.We showed that the the normalized number of occupied tables and the number of
table with a �xed number of costumers concentrates near a convenient random variable.
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Chapter 1

Introduction

Dynamically growing discrete processes represent complex relationships in numerous areas of sci-
ence. In many interesting applications, one does not observe the entire dynamical growth procedure
but merely a present-day snapshot of the discrete process is available for observation. Based on
this snapshot, one wishes to infer various properties of the past and future of the process. We will
consider two problems here, the �rst about the past of a process and the second about the future
of another process.

Chapter 2:

In this chapter we investigate a problem in network archaeology. The simplest dynamically
grown networks are trees that are grown by attaching vertices sequentially to the existing tree at
random, according to a certain rule. In the uniform attachment model, at each step, an existing
vertex is selected uniformly ar random, and a new vertex is attached to it by an edge. When the
process is initialized from a single vertex, this procedure gives rise to the well-studied uniform
random recursive tree, see Drmota [13]. In preferential attachment models (such as plane-oriented
recursive trees) existing vertices with higher degrees are more likely to be chosen to be attached
to. In this text we consider randomly growing uniform attachment trees that are grown from a
�xed seed. Thus, initially, the tree is a given �xed (small) tree and further vertices are attached
according to the uniform attachment process.

�Archeology� of randomly growing trees has received increasing attention recently, see Brautbar
and Kearns [3], Borgs, Brautbar, Chayes, Khanna, and Lucier [2], Bubeck, Devroye, and Lugosi [5],
Bubeck, Mossel, and Rácz [7], Bubeck, Eldan Mossel, and Rácz [6], Curien, Duquesne, Kortchem-
ski, and Manolescu [11], Frieze and Pegden [18], Jog and Loh [22,23], Shah and Zaman [28,29] for
a sample of the growing literature.

Several papers consider the problem of �nding the initial vertex (or root) in a randomly growing
tree started from a single vertex, see Brautbar and Kearns [3], Borgs, Brautbar, Chayes, Khanna,
and Lucier [2], Frieze and Pegden [18], Shah and Zaman [28,29], Bubeck, Devroye, and Lugosi [5],
Jog and Loh [22,23] for various models. Randomly growing trees started from an initial seed tree
were considered by Bubeck, Mossel, and Rácz [7], Bubeck, Eldan Mossel, and Rácz [6], and Curien,
Duquesne, Kortchemski, and Manolescu [11]. These papers prove that in uniform and preferential
attachment models, for any pair of possible seed trees, one may construct a hypothesis test that
decides which of the two seeds generated the observed tree, with a probability of error strictly
smaller than 1/2, regardless of the size of the observed tree.

In this text we consider the problem of �nding the seed tree (of known structure) in a large
observed tree. This work was made joint with Gábor Lugosi, and the paper can be found in
https://arxiv.org/pdf/1801.01816.pdf.

The questions we seek to answer are: (1) to what extent is it possible to identify the seed
tree? (2) what is the role of the structure of the seed in the di�culty of the reconstruction prob-
lem? While we are far from completely answering these questions, this text contributes to the
understanding of these problems. In particular, we consider three types of possible seed trees,
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namely paths, stars, and random uniform recursive trees. For each of these examples, we present
algorithms to recover, at least partially, the seed tree. In all cases, partial recovery is possible,
with any prescribed probability of error, regardless of the size of the observed tree. However,
the di�culty of the recovery depends heavily on the structure of the tree. Paths and stars are
considerably easier to �nd than uniform random recursive trees.

Chapter 3:

In this chapter we talk about a model of random partitions. This type of model have attracted
much attention in Probability and Statistics. Here we study the speci�c family of models of
random partitions called generalized Chinese Restaurant processes (GCRP). These models were
introduced by Pitman [25], [26] as two-parameter generaliation of Ewens' sampling formula [14].
They are also important building blocks in topic models [19] and other Bayesian nonparametric
methods [9].

The GRCP generates a sequence of random partitions Pn of [n] := {1, . . . , n} for n = 1, 2, 3, . . . .
We focus on a speci�c setting for the model where the number of parts in Pn grows like nα for a
parameter α ∈ (0, 1). Our main goal is to prove concentration for the total number of the number
of parts with size k in each Pn, that is:

Nn(k) := |{A ∈ Pn : |A| = k}|.

As we explain below, the Pn are mixtures of i.i.d. models, and the above random variables do
not concentrate around any �xed value. Nevertheless, we show that they do concentrate around
random values. Our main result � Theorem 3.2.2 below � shows that, for large n, with high
probability,

Nn(k) = c V∗
Γ(k − α)

Γ(k + 1)
nα + o

(
Γ(k − α)

Γ(k + 1)
nα
)

where V∗ is a random variable with V∗ > 0 a.s. and and c > 0 is a constant depending on model
parameters. This result holds simultaneously for all k in a range that grows polynomially in k.
Since

Γ(k − α)/Γ(k + 1) = Θ(k−(1+α)) for large k,

we verify that the power-law-type behavior in k that is known to hold asymptotically for the Nn(k)
is already visible for �nite n. Moreover, in our proof we also obtain �nite-n bounds on the number
of parts in Pn (cf. Theorem 3.2.1 below).

Our proof method is based on martingale inequalities and is inspired by the analysis of
preferential-attachment-type models [8]. However, there are some important technical di�erences,
which we discuss in subsection 3.2.2. A salient feature of our approach is that the concentration-
of-measure arguments we employ are fairly delicate, and rely on Freedman's concentration in-
equality [17].

Chapter 4

The main technical tools in this text are concentration inequalities for martingales and in-
equalities on gamma functios. We recall the inequalities by Mc Diarmid and by Freedman in this
chapter. We also provide several technical estimates on Γ functions we use in chapter 3.
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Chapter 2

Archaeology in Random Growing Trees

The results in this chapter are from a paper made jointly with Gábor Lugosi, which can be found
in https://arxiv.org/pdf/1801.01816.pdf.

In Section 2.1 we introduce the mathematical model and state the main results. The proofs of
all results are presented in Section 2.2.

2.1 Setup and results

Let ` ≥ 1 be a positive integer and let S` be a tree (i.e., a connected acyclic graph) on the vertex
set {1, . . . , `}. Let n > ` be another positive integer. We say that a random tree Tn on the vertex
set {1, . . . , n} is a uniform attachment tree with seed S` if it is generated as follows:

1. T` = S` ;

2. For ` < i ≤ n, Ti is obtained from Ti−1 by joining vertex i to a vertex of Ti−1 chosen
uniformly at random, independently of all previous choices.

The problem we study in this chapter is the following. Suppose one observes a tree Tn generated
by the uniform attachment process with seed S` but with the vertex labels hidden. The goal is
to �nd the seed tree S` in the observed unlabeled tree. More precisely, given a target accuracy
ε ∈ (0, 1) a seed-�nding algorithm of �rst kind outputs a set H1(Tn, ε) of vertices of size k` ≤ `,
such that, with probability at least 1 − ε, H1(Tn, ε) ⊂ S`, that is, all elements of H1(Tn, ε) are
vertices of the seed tree S`. (Here, with a slight abuse of notation, we identify the seed S` with
its vertex set {1, . . . , `}.)

Similarly, a seed-�nding algorithm of second kind outputs a set H2(Tn, ε) of vertices of size
k` ≥ `, such that, with probability at least 1 − ε, S` ⊂ H2(Tn, ε), that is, H2(Tn, ε) contains all
vertices of the seed tree S`.

In both cases, one would like to have k` as close to ` as possible, even for small values of ε.
Bubeck, Devroye, and Lugosi [5] considered the case ` = 1, that is, when the seed tree is a

single vertex and seed-�nding algorithms of the second kind. Thus, the aim of the seed-�nding
algorithm is to �nd the root of the observed tree. Their main �nding is that, for all ε, the optimal
value of k1 stays bounded as the size n of the observed tree goes to in�nity. They also show that
there exist seed-�nding algorithms of the second kind such that k1 = o(ε−a) for all a > 0.

In this text we show that, if ` is su�ciently large (depending on ε), then k` may be made
proportional to ` for seed-�nding algorithms of second kind, and we make similar statements for
k` for certain seed-�nding algorithms of �rst kind. How the required value of ` depends on ε and
what the achievable proportions are depend heavily on the structure of the seed. We consider
three prototypical examples of seeds:
• A path P` on ` vertices is a tree that has exactly two vertices of degree one and `− 2 vertices

of degree two.
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• A star E` on ` vertices is a tree that has `−1 vertices of degree one and one vertex of degree
`− 1.
• The third example we consider is when the seed S` is a uniform random recursive tree on `

vertices. In this case the proposed seed �nding algorithm does not need to know the structure of
the tree. Thus, this example may be considered as a generalization of the root-�nding problem
studied in [5]. Here, instead of trying to locate the root of the tree, the goal is to �nd the �rst `
generations of the observed uniform random recursive tree Tn.

In what follows we present the main �ndings of the thesis that establish the existence of seed-
�nding algorithms that are able to recover a constant fraction of the seed if it is a uniform random
recursive tree. If the seed is either a path or a star, then the situation is even better as one can
recover almost the entire seed.

Importantly, all bounds established below are independent of the size n of the observed tree,
meaning that (partial) reconstruction of the seed is possible regardless of how large the observed
tree Tn is.

2.1.1 Finding the seed when it is a path

We begin with the case when the seed is a path:

Theorem 2.1.1. Let ε ∈ (0, 1) and γ ∈ (0, 1) and let ` ≥ max

{
2e2

γ
log

1

ε
,

2e2

γ
log(4e2)

}
be a

positive integer. Then for all n ≥ ` su�ciently large, if Tn is a uniform attachment tree with seed
S` = P` (a path of ` vertices), then there exists a seed-�nding algorithm that outputs a vertex set
Hn ⊂ {1, . . . , n} with |Hn| ≥ (1− γ)` such that

P {Hn ⊂ P`} ≥ 1− ε .

The theorem states that, for any �xed γ > 0, if the size of the seed path ` is at least of the
order of log(1/ε), then there exists an algorithm that �nds all but a γ-fraction of the seed path,
regardless of how large the observed tree Tn is. Note that the required length of the path is merely
logarithmic in 1/ε. In fact, this dependence is essentially best possible. The following result shows

that if the seed path has less than log(1/ε)
log log(1/ε) vertices, then any seed �nding algorithm must miss

at least half of the seed, with probability greater than ε.

Theorem 2.1.2. Let ε ∈ (0, e−e
2

). Suppose that Tn is a uniform attachment tree with seed S` = P`
for ` ≤ log(1/ε)

log log(1/ε) . Then, for all n ≥ 2`, any seed-�nding algorithm that outputs a vertex set Hn

of size ` has

P
{
|Hn ∩ P`| ≤

`

2

}
≥ ε .

2.1.2 Finding the seed when it is a star

Next we state our results for the case when the seed tree is a star E` on ` vertices.

Theorem 2.1.3. There exists a numerical positive constant C such that the following holds. Let
ε ∈ (0, 1) and γ ∈ (0, 1) and let ` ≥ max(C, 8/γ) log(1/ε) be a positive integer. Then for all n ≥ `
su�ciently large, if Tn is a uniform attachment tree with seed S` = E` (a star of ` vertices), then
there exists a seed-�nding algorithm that outputs a vertex set Hn ⊂ {1, . . . , n} with |Hn| ≤ (1+γ)`
such that

P {E` ⊂ Hn} ≥ 1− ε .

Once again, the order of magnitude for the required size of the seed star is essentially optimal
as a function of ε. The proof of the next theorem is similar to that of Theorem 2.1.2 and thus it
is omitted.
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Theorem 2.1.4. Let ε ∈ (0, e−e
2

). Suppose that Tn is a uniform attachment tree with seed
S` = E` for ` ≤ log(1/ε)

log log(1/ε) . Then, for all n ≥ 2`, any seed-�nding algorithm that outputs a vertex
set Hn of size ` has

P
{
|Hn ∩ E`| ≤

`

2

}
≥ ε .

2.1.3 Finding the �rst generations

Finally, we consider the case when the seed tree is a uniform random recursive tree in ` vertices.
Unlike in the previous two examples, here the seed �nding algorithm does now �know� the exact
structure of the seed. This model may be equivalently formulated as follows: starting from a
single vertex, one grows a uniform random recursive tree Tn of n vertices. Upon observing Tn
(without vertex labels), one's aim is to recover as much of the tree T` (containing vertices attached
in the �rst ` generations) as possible. The next theorem establishes the existence of a seed-�nding
algorithm of the �rst kind that identi�es an Ω(1/ log(1/ε)) fraction of the vertices of the seed T`
with probability at least 1− ε, whenever ` is at least proportional to log3(1/ε). One should note
that this result is weaker than the one obtained for seed paths and seed stars above in various
ways. First, unlike in the cases of Theorems 2.1.1 and 2.1.3, here we cannot guarantee that almost
all of the seed tree is identi�ed, but only a fraction of it whose size depends on ε�although in a
mild manner. Second, the size of the seed tree needs to be somewhat larger as a function of ε as
before. While in the previous cases ` needed to be logarithmic in 1/ε, now it needs to scale as
log3(1/ε). Below we show that to some extent these weaker results are inevitable and that �nding
the seed tree T` is inherently harder than �nding more structured seed trees such as stars and
paths.

Our main positive result is as follows.

Theorem 2.1.5. Let Tn be a uniform random recursive tree on n vertices and let ε > 0 and ` ≥ 1.
Let a = 2 log(4`2/ε) + 1. If ` is so large that

` ≥ 64a2 log(22a`2/ε) ,

then there exists a seed-�nding algorithm that outputs a vertex set Hn ⊂ {1, . . . , n} with |Hn| ≥
`/(3a) such that

lim inf
n→∞

P {Hn ⊂ T`} ≥ 1− ε .

Note that the condition for ` is satis�ed for ` ≥ C log2(1/ε) for a constant C.
Next we show that, regardless how large ` is, for n su�ciently large any seed-�nding algorithm

of �rst kind needs to output a set of vertices whose size is at most c` where c is strictly smaller
than 1. Similarly, any seed-�nding algorithm of second kind needs to output a set of vertices
whose size is at least C` where C > 1.

In other words, when the seed tree is a uniform random recursive tree, the problem of �nding it
is strictly harder than �nding a seed path or a seed star in the sense that no algorithm can have a
performance as the one established in Theorem 2.1.1 or Theorem 2.1.3. Note however, that there
remains a gap between the performance bound of Theorem 2.1.5 and the impossibility bound of
Theorem 2.1.6 below, as the size of the vertex set in the seed found by the algorithm of Theorem
2.1.5 is only guaranteed to be of the order of `/ log(1/ε), a linear fraction but depending on ε.

The impossibility results mentioned above follow from the fact that, at time 2`, a linear fraction
of the vertices of the seed T` become indistinguishable from vertices that arrive between time `+1
and 2`. To make the statement precise, we need a few de�nitions.

In a uniform random recursive tree T`, we call a vertex a singleton if it is a leaf and it is the
only descendant of its parent vertex.

Now consider a vertex v in T` and its position in the tree T2`. We say that v is a camou�aging
vertex if

1. In T`, v is a parent of a singleton d;
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2. Between time `+ 1 and 2` a vertex w is attached to v such that w is a leaf of T2`

3. d is a leaf of T2`.

Clearly, at time 2`, and therefore at any time n ≥ 2`, the two descendants d and w of any
camou�aging vertex v are indistinguishable. Let G` denote the number of camou�aging vertices.
Then if a seed-�nding algorithm outputs a vertex set that contains an (1−γ)` vertices of the seed,
then one must have G` < γ`. The next proposition shows that γ ≥ 1/384 with high probability.

Theorem 2.1.6. For any ` ≥ 1,

EG` ≥
`

384

and for any t ≥ 0,

P
{
G` ≤

`

384
− t
}
≤ e

−t2
2` .

2.2 Proofs

In this section we present the proofs of all theorems. The construction of all seed-�nding algorithms
uses a simple notion of centrality that we recall �rst.

2.2.1 Centrality

Let T be a tree with vertex set V (T ). A rooted tree (T, v) is the tree T with a distinguished vertex
v ∈ V (T ). For a vertex u ∈ V (T ), denote by (T, v)u↓ the rooted subtree of T whose root is u and
whose vertex set contains all vertices w of V (T ) such that the (unique) path connecting w and v
in T contains u.

Given tree T , the anti-centrality of a vertex v ∈ V (T ) is de�ned by

ψ(v) = max
u∈V (T )\{v}

|(T, v)u↓| .

Thus, ψ(v) is the size of the largest subtree of the tree T rooted at v. Note that leaves of a tree
T have the largest anti-centrality with ψ(v) = |V (T )| − 1. We say that v is at least as central as
w if ψ(v) ≤ ψ(w).

For a positive integer k, we denote byHψ(k) the set of k vertices of with smallest anti-centrality,
where ties may be broken arbitrarily.

This notion of centrality played a crucial role in some of the root-�nding algorithms of [5]. We
refer to Jog and Loh [22, 23] for a study of this notion in various random tree models, including
uniform random recursive trees.

2.2.2 Proof of Theorem 2.1.1

Let ε, γ, and ` be as in the assumptions of the theorem. We may assume, without loss of generality,
that γ`/2 is an integer. We analyze a simple seed-�nding algorithm that achieves the performance
stated in the theorem. The proposed algorithm simply takes the (1− γ)` most central vertices, as
measured by the function ψ de�ned in Section 2.2.1.

Formally, let k` = (1 − γ)` and de�ne Hn = Hψ(k`) be the set of k` most central vertices of
the observed tree Tn.

It su�ces to prove that, for all su�ciently large n, with probability at least 1− ε, all vertices
of Tn not in the seed P` are less central than any vertex in P` whose distance to the leaves of P`
is at least γ`/2, that is,

P
{

min
`<i≤n

ψ(i) > max
`γ/2≤j≤`(1−γ/2)

ψ(j)

}
≥ 1− ε . (2.2.1)
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(Recall that the vertex set of the seed P` is {1, . . . , `}.)
Let C1, . . . , C` denote the components of the forest obtained by removing the edges of P` from

Tn such that k ∈ Ck for k = 1, . . . , `. Then

P
{

min
`<i≤n

ψ(i) ≤ max
`γ/2≤j≤`(1−γ/2)

ψ(j)

}
≤

(1−γ/2)`∑
j=γ`/2

P
{

min
`<i≤n

ψ(i) ≤ ψ(j)

}

≤
(1−γ/2)`∑
j=γ`/2

∑̀
k=1

P {∃v ∈ Ck \ {k} : ψ(v) ≤ ψ(j)} .

To bound the probabilities on the right-hand side, suppose, without loss of generality, that k ≤ j.
(The case k > j is analogous.) If v ∈ Ck\{k} is such that ψ(v) ≤ ψ(j). Let u be a vertex connected
to v such that |(T, v)u↓| is maximal (i.e., ψ(v) = |(T, v)u↓|). Then there are two possibilities:

(a) (T, v)u↓ is contained in Ck. In this case |Ck| ≥
∑
i6=k |Ci|;

(b) (T, v)u↓ =
(⋃`

i=1,i6=k Ci

)
∪ C ′k for some C ′k ⊂ Ck. In this case∣∣∣∣∣∣

⋃
i 6=k

Ci

∣∣∣∣∣∣ ≤ ψ(v) ≤ ψ(j) ≤

∣∣∣∣∣
j⋃
i=1

Ci

∣∣∣∣∣
which implies

∑`
i=j+1 |Ci| ≤ |Ck|.

By this observation, we have

P {∃v ∈ Ck \ {k} : ψ(v) ≤ ψ(j)} ≤ P

|Ck| ≥∑
i 6=k

|Ci|

+ P

 ∑̀
i=j+1

|Ci| ≤ |Ck|


≤ P

|Ck| ≥∑
i 6=k

|Ci|

+ P

 ∑̀
i=(1−γ/2)`

|Ci| ≤ |Ck|


Now let t = γ/e2. Then the right-hand side of the inequality above may be bounded further by

P

 ∑̀
i=1,i6=k

|Ci| ≤ nt

+ P

{
γ∑̀
i=1

|Ci| ≤ nt

}
+ 2P {|Ck| ≥ nt}

Thus, we have

P
{

min
`<i≤n

ψ(i) ≤ max
`γ/2≤j≤`(1−γ/2)

ψ(j)

}

≤ (1− γ)`2

P

 ∑̀
i=1,i6=k

|Ci| ≤ nt

+ P

{
γ∑̀
i=1

|Ci| ≤ nt

}
+ 2P {|Ck| ≥ nt}


To understand the behavior of the probabilities on the right-hand side, note that, for any k =
1, . . . , `−1,

∑k
i=1 |Ci| is just the number of red balls after taking n samples in a standard Pólya urn

initialized with k red and `−k blue balls. This implies that
∑k
i=1 |Ci|/n converges, in distribution,

to a Beta(k, `− k) random variable. Hence,

lim
n→∞

P {|Ck|/n ≥ t} = (1− t)`−1 ≤ e−t(`−1)
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and

lim
n→∞

P

 ∑̀
i=1,i6=k

|Ci|/n ≤ t

 ≤ lim
n→∞

P

{
γ∑̀
i=1

|Ci|/n ≤ t

}

= (`− 1)

(
`− 1

γ`− 1

)∫ t

0

xγ`−1(1− x)`−γ`−1dx .

We may bound the expression on the right-hand side by

`γ`

(γ`− 1)!

∫ t

0

xγ`−1dx =
(t`)γ`

(γ`)!
≤
(
e`t

γ`

)γ`
≤ e−γ` ,

where we used Stirling's formula and the choice t = γ/e2. Putting everything together, we have
that

lim sup
n→∞

P
{

min
`<i≤n

ψ(i) ≤ max
`γ/2≤j≤`(1−γ/2)

ψ(j)

}
≤ 2`2

(
e−γ` + e−γ(`−1)/e2

)
≤ ε

under our conditions for `, as desired. �

2.2.3 Proof of Theorem 2.1.2

Let E be the event that either (1) vertex i attaches to vertex i− 1 for all i = `+ 1, . . . , 2` or (2)
vertex `+ 1 attaches to vertex 1 and for all i = `+ 2, . . . , 2`, vertex i attaches to vertex i− 1. On
this event, T2` is a path of 2` vertices such that the seed P` is on one of the two extremes of T2`.
The probability of this event is

2

`
· 1

`+ 1
· · · · · 1

2`− 1
≥ 2

`!

(2`)!
≥ 2(2`)−` .

On this event, for n ≥ 2`, for any seed-�nding algorithm, the �rst and second halves of the path
T2` are indistinguishable. At least one of the two halves of T2` is such that Hn intersects that half
in at most `/2 vertices. Thus, (conditionally on E), the algorithm misses at least half of the seed
path, with probability 1/2. Hence

P
{
|Hn ∩ P`| ≤

`

2

}
≥ P{E}

2
≥ (2`)−` ≥ ε

whenever ` ≤ log(1/ε)
log log(1/ε) and ε ≤ e−e2 .

2.2.4 Proof of Theorem 2.1.3

Let k` = (1 + γ)`. Again, we may assume that k` is an integer. The seed �nding algorithm we
propose is slightly di�erent. It is speci�cally tailored to the case when the seed tree to be found
is a star. Let v∗n = argmini=1,...,n ψ(i) be the most central vertex of Tn. We de�ne Hn as the set
of vertices that includes v∗n and k`− 1 other vertices j with largest value of |(Tn, v∗n)j↓| among the
neighbors of v∗n in Tn. In other words, the algorithm outputs the most central vertex v∗n and those
neighbors whose subtree away from v∗n is largest.

First we recall that by Jog and Loh [23, Theorem 4], there exists a numerical constant C such
that, if ` ≥ C log(1/ε) and the uniform attachment tree is initialized with a star E` as seed of `
vertices and central vertex 1, then

P {v∗n = 1 for all n = `+ 1, `+ 2, . . . } ≥ 1− ε

2
,

that is, with probability at least 1−ε/2, the center of the seed star remains the most central vertex
of Tn for all n.
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Let v1 ≤ v2 ≤ · · · be the vertices that are attached to vertex 1 (i.e., to the center of the seed
star E`) in the uniform attachment process. (Thus, v1 > `.) In view of the above-mentioned result
of Jog and Loh, it su�ces to show that for all n su�ciently large, all vertices vj with j > γ` have∣∣(Tn, 1)vj↓

∣∣ smaller than |(Tn, 1)i↓| for all vertices i in the seed star E`, with probability at least
1− ε/2. Thus, writing g(i) = |(Tn, 1)i↓|, we need to prove that

lim sup
n→∞

P
{

max
j>γ`

g(vj) < min
i=2,...,`

g(i)

}
> 1− ε

2
. (2.2.2)

To prove (2.2.2), �rst we write

P
{

max
j>γ`

g(vj) ≥ min
i=2,...,`

g(i)

}
≤ P {vγ`+1 ≤ m}+ P

{
max
vj>m

g(vj) ≥ min
i=2,...,`

g(i)

}
, (2.2.3)

where we take m = beγ`/4c. The �rst term on the right-hand side is the probability that more
than γ` vertices are attached to vertex 1 up to time m. In order to bound this probability, denote
by Xt, for t ≥ `, the number of vertices attached to vertex 1 between time ` + 1 and t. Thus,
X` = 0 and

P {vγ`+1 ≤ m} = P {Xm > γ`} .

Since

E[Xt|Xt−1] = Xt−1 +
1

t
,

Yt = Xt −
t∑

k=`+1

1

k
, t ≥ `+ 1

is a martingale with respect to the �ltration generated by X`, X`+1, . . .. Denote the corresponding
martingale di�erence sequence by Zt = Yt − Yt−1 = Xt −Xt−1 − 1/t. By Markov's inequality,

P {Xm > γ`} = P


m∑

j=`+1

Zj +

m∑
j=`+1

1

j
> γ`

 ≤ e
∑m
j=`+1

1
j · E

[
e
∑m
j=`+1 Zj

]
eγ`

. (2.2.4)

In order to bound the right-hand side, observe that

E
[
eZm |X`, . . . , Xm−1

]
= E

[
eXm−Xm−1− 1

m | X`, . . . , Xm−1

]
= e−Xm−1− 1

mE
[
eXm | X`, . . . , Xm−1

]
= e−Xm−1− 1

m

(
1

m
eXm−1+1 +

(m− 1)

m
eXm−1

)
=

e−
1
m

m
(e+m− 1)

≤ (m+ 2)e−
1
m

m
,

and therefore

E
[
e
∑m
j=`+1 Zj

]
= E

[
E
[
e
∑m
j=`+1 Zj |X`, . . . , Xm−1

]]
= E

[
e
∑m−1
j=`+1 ZjE

[
eZm |X`, . . . , Xm−1

]]
≤ (m+ 2)e−

1
m

m
E
[
e
∑m−1
j=`+1 Zj

]
.

Thus, by induction we obtain

E
[
e
∑m
j=`+1 Zj

]
≤ (m+ 2)2

`2
e−

∑m
j=`+1

1
j .
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Substituting into (2.2.4), we get

P {vγ`+1 ≤ m} = P {Xm > γ`} ≤ (m+ 2)2

`2eγ`
≤ ε

4

by our choice of m and by the condition on the value of `. Hence, by (2.2.3), it su�ces to show
that

P
{

max
vj>m

g(vj) ≥ min
i=2,...,`

g(i)

}
≤ ε

4
.

We proceed by writing

P
{

max
vj>m

g(vj) ≥ min
i=2,...,`

g(i)

}
≤
∑̀
i=2

P
{

max
vj>m

g(vj) ≥ g(i)

}
.

Now �x i ∈ {2, . . . , `} and notice that maxvj>m g(j) is bounded by the number of vertices A
attached to the tree formed by vertex 1 and all vertices in the subtrees (Tn, 1)j↓ for j > m such
that vertex j is attached to vertex 1.

Denoting B = g(i) and C = n − A − B, note that, conditioned on the tree Tm, the triple
(A,B,C) behaves as the number of red, blue, and white balls in a Pólya urn in which initially
(i.e., at time m) there is one red ball, Bm = |(Tm, 1)i↓| blue balls, and m − 1 − |(Tm, 1)i↓| white
balls. Hence, for each i = 2, . . . , `, we have

P
{

max
vj>m

g(vj) ≥ g(i)

}
≤ P {A > B}

≤ P
{
A > B|Bm ≥

mε

32`2

}
+ P

{
Bm <

mε

32`2

}
.

In order to bound the second term on the right-hand side, note that by the standard theory
of Pólya urns, Bm has a beta-binomial distribution with parameters (m, 1, ` − 1). Thus, Bm is
distributed as a binomial random variable Bin(m,π) where the parameter π is an independent
Beta(1, `− 1) random variable. Thus,

P
{
Bm <

mε

32`2

}
≤ P

{
Bin(m, ε/16`2) <

mε

32`2

}
+ P

{
π <

ε

16`2

}
≤ e−mε/(128`2) + 1−

(
1− ε

16`2

)`−1

(by a standard binomial estimate and expressing the beta distribution)

≤ e−mε/(128`2) +
ε

16`
(by the Bernoulli inequality)

≤ ε

8`

whenever ` > (4γ)
(
log(1/ε) + log log(8`/ε) + log(128`2)

)
. To �nish the proof it remains to show

that
lim sup
n→∞

P
{
A > B|Bm ≥

mε

32`2

}
≤ ε

8`
.

But this follows from the fact that this limiting probability is bounded by the the probability
that a Beta(1,mε/32`2) random variable is greater than 1/2 which is at most 2−mε/32`2 . Since
m = beγ`/4c, this is bounded by ε/(8`) for ` > (8/γ ∨ C) log(1/ε), as desired. �

2.2.5 Proof of Theorem 2.1.5

Fix ε ∈ (0, 1) and de�ne a = 2 log(`2/ε)+1 and k` = `
3a . A seed-�nding algorithm with the desired

property simply selects the k` most central vertices. (Again, for simplicity of the presentation,
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we assume that k` is an integer.) With the notation introduced at the beginning of this section,
we de�ne Hn = Hψ(k`). We need to show that the k` most central vertices of Tn are in T` with
probability at least 1− ε for all su�ciently large n.

The strategy of our proof is as follows. First we show that, with probability at least 1 − ε/2,
the seed T` contains at least k` �deep� vertices. Then we prove that for all n su�ciently large, all
deep vertices of T` are more central in Tn than any vertex outside of the seed T`.

We call a vertex v ∈ T` deep if it has at least a descendants, that is, if

|(T`, 1)v↓| ≥ a+ 1 .

Denote by A` the set of all deep vertices of T`. Noticing that

P {Hn 6⊂ T`} ≤ P {|A`| ≤ k`}+ P {∃v ∈ V (Tn)\V (T`),∃u ∈ A` : ψn(v) ≤ ψn(u)} ,

it su�ces to show that

P {|A`| ≤ k`} ≤
ε

2
. (2.2.5)

and

lim sup
n→∞

P {∃v ∈ V (Tn)\V (T`),∃u ∈ A` : ψn(v) ≤ ψn(u)} ≤ ε

2
. (2.2.6)

(2.2.5) follows from inequality (4.2.1) in the Appendix under the condition ` ≥ 64a2 log(22a/ε).
It remains to prove (2.2.6). To this end, for i ∈ {1, . . . , `}, denote by Ci the component of

vertex i in the forest obtained by removing the edges of T` from Tn. Then

P {∃v ∈ V (Tn)\V (T`),∃u ∈ A` : ψ(v) ≤ ψ(u)|T`}

≤
∑
u∈A`

∑̀
k=1

P {∃v ∈ Ck\{k} : ψ(v) ≤ ψ(u)|T`} .

Now �x T` and vertices k ∈ {1, . . . , `} and u ∈ A`. For any vertex v ∈ Ck\{k} such that
ψ(v) ≤ ψ(u), there are two possibilities:
(1) either the largest subtree of Tn rooted at v is inside Ck, in which case |Ck| ≥

∑
i 6=k |Ci|;

(2) or the largest subtree of Tn rooted at v is
(⋃`

i=1,i6=k Ci

)
∪C ′k for some C ′k ⊂ Ck. In this case,

ψ(v) ≤ ψ(u) implies that ∑
i∈Tn\(T`,v)u↓

|Ci| ≤ |Ck| .

Since u ∈ A`, this means that the left-hand side is dominated by the number of red balls in a
standard Pólya urn with after n−` draws initialized with at least a red, one blue, and n−a−`−1
white balls; while |Ck| behaves like the number of blue balls in the same urn.

By the same calculations as in the proof of Theorem 2.1.1, the probability of case (1) may be
bounded by

lim sup
n→∞

P

 |Ck| ≥∑
i 6=k

|Ci|

∣∣∣∣∣∣T`
 = lim sup

n→∞
P {|Ck| ≥ (n− `)/2|T`} ≤ e−(`−1)/2 ≤ ε

4`2
.

Similarly, the probability of case (2) satis�es

lim sup
n→∞

P

 ∑
i∈Tn\(T`,v)u↓

|Ci| ≤ |Ck|

∣∣∣∣∣∣T`
 ≤ e−(a−1)/2 ≤ ε

4`2

by our choice a = 2 log(`2/ε) + 1. This concludes the proof of (2.2.6) and hence that of Theorem
2.1.5.
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2.2.6 Proof of Theorem 2.1.6

We prove the lower bound for the expected number of camou�aging vertices by induction. To this
end, �x a singleton d and its parent v in T`. For j ≥ `, let

E
(v)
j = {∃d′ ∈ V (Tj)\{d} : d′ ∼ v and d′, d are leaves in Tj} .

Observe that E
(v)
2` is the event that v is a camou�aging vertex. Consider the sequences

aj = P
{
E

(v)
j |T`

}
cj = P {d is a singleton in Tj |T`} .

Now, observe that the event E
(v)
j+1 occurs if E

(v)
j occurs and the vertex j + 1 is neither attached

to d nor to d′, or if d is a singleton of Tj and the j + 1 is attached to v. Thus

aj+1 = aj ·
(

1− 2

j

)
+ cj ·

1

j
.

Multiplying both sides by j(j − 1), we get

j(j − 1)aj+1 = (j − 1)(j − 2)aj + (j − 1)cj .

Summing over j = `+ 1, . . . , 2`− 1,

(2`− 1)(2`− 2)a2` = `(`− 1)a`+1 +

2`−1∑
j=`+1

(j − 1)cj ,

which implies that

a2` ≥
1

(2`− 1)(2`− 2)

2`−1∑
j=`+1

(j − 1)cj ≥
1

4(`− 1)

2`−1∑
j=`+1

cj .

Note that, for j ∈ {`+ 1, . . . , 2`− 1},

cj =

j−1∏
k=`

(
1− 2

k

)

≥ exp

(
−4

j−1∑
k=`

1

k

)
(since 1− x ≥ e−2x for x < 3/4)

≥ exp (4 log `− 4 log j)

>
`4

(2`)4
=

1

16
,

and therefore

a2` ≥
1

4(`− 1)

2`−1∑
j=`+1

cj ≥
1

64
.

Let P` be the set of vertices in T` that are parents of a singleton. Then

E[G`|T`] = E

[∑
v∈P`

1
E

(v)
2`

|T`

]
=
∑
v∈P`

P
{
E

(v)
2` |T`

}
≥ 1

64
|P`| ,
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which implies that EG` ≥ 1
64E|P`|.

It remains to bound the expected number of singletons E|P`| in the uniform random recursive
tree T`. Write Sk = |Pk| and note that Sk equals the number of parents of singletons in Tk.

When a new vertex is attached to the tree Tk, we lose one singleton if the new vertex is
attached to the parent of a singleton. This happens with probability Sk/k. If a the new vertex is
attached to a singleton, then the number remains the same. If the new vertex is attached to some
vertex that is not a leaf nor a parent of a singleton, then, the number of singletons also remains
unchanged. Finally, if the new vertex is attached to a leaf that is not a singleton, the number of
singletons increases by 1. Thus, denoting the number of leaves of Tk by Lk,

E[Sk+1|Tk] = (Sk − 1)
Sk
k

+ Sk

(
Sk
k

+ 1− Sk
k
− Lk

k

)
+ (Sk + 1)

(
Lk
k
− Sk

k

)
=

(
1− 2

k

)
Sk +

Lk
k

.

Taking expectations and using the fact that ELk = k/2, we have that ES` = `/6. Summarizing,
the expected number of camou�aging vertices satis�es

EG` ≥
1

64
· `

6
=

`

384
.

We prove the second inequality of Theorem 2.1.6 using the bounded di�erences inequality of Mc-
Diarmid, Theorem 4.1.1.

Observe that given T`, there is a bijection between the set of recursive trees of size 2` containing
T` as subgraph and the set S = [`]×· · ·× [2`−1]. The bijection is simply given by associating the
vector κ = (a`+1, · · · , a2`) to the recursive tree T (κ) where the vertex k ∈ [` + 1, 2`] is attached
to the vertex ak, starting by T` until obtaining T2`. Then we may consider the set S as the set of
recursive trees with 2` vertices that contain T` as subtree.

Importantly, the components of κ that represent the uniform random recursive tree T2` are
independent random variables.

Given T`, consider the function g : S → R such that g(T2`) is the number of camou�aging
vertices.

By the bounded di�erences inequality, it su�ces to show that, given T, T ′ ∈ S, if T and T ′

di�er by exactly one coordinate, then |g(T )− g(T ′)| ≤ 2.
To this end, let v ∈ V (Tn) be a parent of a singleton d. v is a camou�aging vertex of a tree

T = (a`+1, · · · , a2`) if and only if

1. d /∈ {a`+1, · · · , a2`};

2. ∃k ∈ {`+ 1, · · · , 2`}\{ak+1, · · · , a2`} such that ak = v.

Now, consider T = (a`+1, · · · , a2`), T
′ = (b`+1, · · · , b2`) two trees with ar 6= br for some r and

aj = bj for j 6= r. For a camou�aging vertex v in T (with corresponding singleton d in T`) not to
be a camou�aging vertex in T ′, it is necessary (but not su�cient) that either

1. br is a child of v,

2. or ar = v .

Similarly, for a not camou�aging vertex v in T (with corresponding singleton d in T`), to be a
camou�aging vertex in T ′ it is necessary that either

1. ar is a descendant of v,

2. or br = v .

Thus, |g(T ) − g(T ′)| ≤ 2, and the bounded di�erences condition is satis�ed, proving the second
inequality of Theorem 2.1.6.
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Chapter 3

Generalized Chinese Restaurant Process

In this chapter we decribe joint work with Roberto Oliveira and Rodrigo Ribeiro.
The chapter is organized as follows. We �x some notation in the next paragraph. In section

3.1, we introduce the model, discuss its regimes, and give some background on its theory and
applications. Section 3.2 states our main theorems. We will also outline their proofs and compare
them with previous results. Section 4.1 contains the main concentration-of-meausre results we
will need, including Freedman's inequality. Actual proofs start in Section 3.3 with the analysis of
the number of parts in Pn. The arguments for Nn(k) is slightly more convoluted and takes three
sections. Section 3.4 gives some preliminary results, including a recursive formula. Section 3.5
obtains high-probability upper and lower bounds for Nn(k). The proof of our main Theorem is
wrapped up in Section 3.6. The �nal section contains some concluding remarks. The appendix
collects several technical estimates

Notation: In this chapter N = {1, 2, 3 . . . } is the set of positive integers. Given n ∈ N, we let
[n] := {1, . . . , n} denote the set of all numbers from 1 to n. Given a nonempty set S, a partition
P of S is a collection of pairwise disjoint and nonempty subsets of S whose union is all of S.
The elements of P are called the parts. We denote the cardinality of a �nite set S by |S|. In
particular, for a �nite partition P, |P| denotes the number of parts in S. Finally, when we talk
about sequences {xn}+∞n=0 of random or deterministic values, we will write ∆xn := xn − xn−1.

3.1 The model

3.1.1 De�nitions

Fix two parameters θ, α ∈ R; extra conditions will be imposed later. GCRP(α, θ) � shorthand for
the Generalized Chinese Restaurant Process with parameters (α, θ) � is a Markov chain

P1,P2,P3,P4, . . .

where, for each n ∈ N, Pn is a partition of [n] := {1, . . . , n}. We let

Vn := |Pn| (3.1.1)

denote the number of parts in Pn and write

Pn = {Ai,n : i = 1, . . . , Vn}, (3.1.2)

where the Ai,n are the parts of Pn. In the colorful metaphor of the �Chinese restaurant", the Ai,n
are the tables occupied by customers 1, . . . , n, who arrive sequentially, with Vn being the number
of occupied tables. So Pn describes the table arrangements of the �rst n customers.

The evolution of the process is as follows.

� Initial state: customer 1 sits by herself i.e. P1 = {{1}}.

15



� Evolution: Given P1, . . . ,Pn, with Pn as in (3.1.2), we de�ne Pn+1 via a random choice:

� For each i = 1, . . . , Vn−1, with probability

|Ai,n| − α
n+ θ

,

customer n+ 1 sits at the ith table. That is,

Pn+1 = {Aj,n : j ∈ [Vn]\{i}} ∪ {Ai,n ∪ {n+ 1}}.

Notice that Vn+1 = Vn in this case.

� With probability

αVn + θ

n+ θ
,

customer n+ 1 sits by herself at a new table. That is, we set

Pn = {Ai,n : i = 1, . . . , Vn} ∪ {{n+ 1}}.

In this case Vn+1 = Vn + 1.

Our focus in this chapter is on Vn and the random variables

Nn(k) := |{A ∈ Pn : |A| = k}| = |{i ∈ [Vn] : |Ai,n| = k}| (k ∈ [n]) (3.1.3)

that count how many of the parts in Pn have size k.

3.1.2 Choices of parameters and di�erent regimes

The attentive reader will have noticed that the above process only makes sense for certain values
of θ and α. Speci�cally, there are di�erent assumptions one can make, which lead to di�erent
behavior [25,26].

� Bounded number of parts: if α < 0 and θ = −mα for some m ∈ N, then Vn → m almost
surely. After Vn reaches value m, the process behaves like an urn model with m urns.

� Logarithmically growing number of parts: if θ > 0, α = 0, then

Vn
log n

→ θ almost surely

and Vn has Gaussian �uctuations at the scale of
√

log n.

� Polynomially growing number of parts: if α > 0 and θ > −α,

Vn
nα
→ V o almost surely (3.1.4)

where V o is a nondegenerate random variable with a density over (0,+∞). In particular,
0 < V o < +∞ almost surely.

This last regime is the focus of the present chapter.
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3.1.3 Some background

We discuss here a bit of the history and applications of the GCRP. Those interested only in results
may skip to the next section.

The GCRP is an exchangeable model in the sense that the law of Pn is invariant under
permutations of [n]. One consequence of this is that the natural in�nite limit P∞ of Pn is an
exchangeable random partition of the natural numbers N. That is, the law of P∞ is invariant
under any �nite permutation of N.

A well-known result of Kingman [24] says that exchangeable random partitions of N can always
be built from mixtures of paintbox partitions. Suppose P is a random probability distribution over
N∪{?} where ? 6∈ N. Conditionally on P , let {Xi}i∈N be an i.i.d.-P sequence. Form a partition of
N by placing each i ∈ N with Xi = ? in a singleton, and (for each k ∈ N) putting all j with Xj = k
in the same part. Clearly, such a construction always leads to an exchangeable random partition,
and Kingman's theorem says that this is the only way to build such partitions. In the speci�c
case of the in�nite GCRP(α, θ), the law of P is the two-parameter Poisson-Dirichlet distribution
PD(α, θ). This can be used to derive explicit formulae for the distribution of Pn for each n.

The GCRP was �rst mentioned in print by Aldous [1]. It was studied by Pitman [25], [26]
as an example of a partially exchangeable model where many explicit calculations are possible.
In particular, the exact distribution of the random variables Nn(k) we consider can be computed
explicitly. Based on these formulae, [15], [16] obtained large and moderate deviation results for
these variables. These results are brie�y described in subsection 3.2.1 below.

The class of models we consider is also important in many applications. On the one hand, it
is a generalization of Ewens' neutral allele sampling model in population Genetics [14]. On the
other hand, the GCRP and its variants are important building blocks for topic models [19] and
many other Bayesian nonparametric methods. We refer to Crane's recent survey [9] for much more
information on our model, its extensions and the many contexts where it has appeared.

3.2 Results

Let n ∈ N and recall the de�nitions of Vn and Nn(k) in (3.1.1) and (3.1.3), respectively. Our
theorem describes these random variables in the setting where α ∈ (0, 1) and θ + α > 0. Recall
from Section 3.1.2 that in this setting the random variables n−αVn have a nontrivial limit V o > 0
(cf. (3.1.4)) . For our purposes, it is more convenient to work with the random variables Vn/φn,
where

φn :=
Γ(1 + θ)

Γ(1 + θ + α)

Γ(n+ α+ θ)

Γ(n+ θ)
.

Note that φn/n
α converges to a constant c > 0 when n→ +∞. In particular, the limit

V ∗ := lim
n→+∞

Vn
φn

almost surely (3.2.1)

exists and is a.s. positive (it is a rescaling of V o). Our �rst result quanti�es the convergence in
this statement.

Theorem 3.2.1 (Proven in subsection 3.3.3). Consider a realization {Pn}n∈N of the Generalized
Chinese Restaurant Process GCRP(α, θ) with parameters α ∈ (0, 1) and θ > −α. Then there exist
constants K = K(α, θ) > 0 and c∗ = c∗(α, θ) > 0 such that for δ < e−K the following holds with
probability ≥ 1− δ:

∀m ∈ N :

∣∣∣∣Vmφm − V∗
∣∣∣∣ ≤ c∗ [log log(m+ 2) + log

(
1
δ

)
]

(m+ θ)α/2
.

Our second and main result gives concentration of the random variables Nn(k) simultaneously
for all k = o(nα/(2α+4)/(log n)1/(α+2)).
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Theorem 3.2.2 (Main; proven in section 3.6). Consider a realization {Pn}n∈N of the Generalized
Chinese Restaurant Process GCRP(α, θ) with parameters α ∈ (0, 1) and θ > −α. Then there exist
constants n0 = n0(α, θ), C = C(α, θ) such that the following holds. Assume n ∈ N with n ≥ n0.
Take A ≥ 0, ε ∈ (0, 1/2) and de�ne kε,n := dε nα/(2α+4)/(log n)1/(α+2)e. Then the following holds
with probability 1− e−A:

∀k ∈ [kε,n] :

∣∣∣∣Nn(k)− c(α, θ) Γ(k − α)

Γ(k + 1)
V∗ n

α

∣∣∣∣ ≤ C Γ(k − α)

Γ(k + 1)
nαεα+2

(
1 +

A

log n

)
where

c(α, θ) :=
αΓ(1 + θ)

Γ(1− α) Γ(1 + α+ θ)
> 0.

The following immediate corollary is perhaps somewhat easier to parse.

Corollary 3.2.1. In the setting of Theorem 3.2.2, let ε = εn → 0 with n. Then there exist
sequences Cn → +∞, ξn → 0 such that the the probability that for some we have

P

∀k ∈ [kε,n] : V∗ − ξn <
Nn(k)

c(α, θ) Γ(k−α)
Γ(k+1) n

α
< V∗ + ξn

 ≥ 1− n−Cn ,

for large enough n ∈ N.

Proof. [Proof sketch] Apply Theorem 3.2.2 with A = Cn log n, where Cn → +∞ but εα+2
n Cn →

0. Then take:

ξn =
C

c(α, θ)
εα+2
n (1 + Cn).

3.2.1 Related work

One consequence of our results is the a.s. asymptotics for Nn(k)/Vn:

Nn(k)

Vn
→ c(α, θ)

Γ(k − α)

Γ(k + 1)
.

This kind of Law of Large Numbers was �rst obtained by Pitman [26, Chapter 3] with no explicit
convergence rates.

Much more recently, Favaro, Feng and Gao [15, 16] have used Pitman's explicit formulae to
obtain large and moderate deviation results for the Nn(k). Reference [16], which is the closest to
our work, focuses on precise estimates for probabilities like

P
(
Nn(k)

nα βn
> c

)
when βn � (log n)1−α. (3.2.2)

The paper [15] considers even larger sequences βn. By contrast, we obtain �nite-n estimates for
deviations at smaller scales, which (as expected) are not as precise. There is also a di�erence in
proof methods: whereas they rely on explicit formulae, our argument is based on recursions and
martingales.

Another important conceptual di�erence between our work and that of Favaro et al. is that,
for their purposes, the lack of concentration in Vn/φn is not an issue. Indeed, if one goes �deep
enough" into the tail of the Nn(k), as in (3.2.2), the nontrivial distribution of V∗ = limVn/φn
becomes irrelevant. Our theorems operate at a �ner scale and complement these previous papers
by giving tail bounds for V∗ and supn Vn/φn matter (cf. Theorem 3.3.1). As a result, we �nd in
Theorem 3.2.2 that the sequence {Nn(k)}k is essentially a deterministic function of V∗.
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3.2.2 Proof outline

The general methodology in our proof is based in the study of degree distributions in preferential
attachment random graphs, as in the book by Chung and Lu [8, Chapter 3]. However, a new
phenomenon arises. In the graph setting, the total number of vertices at time n is usually linear
n (at least with high probability). By contrast, the analogue of the total number of vertices is Vn
� the number of parts �, which is sublinear and not concentrated.

One consequence of this point in our analysis is that the martingale arguments are much more
delicate, and rely on Friedman's martingale inequality (cf. section 4.1), instead of the more usual
(and less precise) Azuma-Hö�ding bound. Another point is that we must �rst obtain results on
the number of parts Vn, which we do in section 3.3.

We then consider the random variables Nn(k). The general strategy is to write these variables
in terms of "recursions + martingales" depending on Nn−1(i) for i = k − 1, k, and then observe
how the "martingale" part concentrates. These �rst steps, which are taken in section 3.4, are
similar to the analysis in [8, Chapter 3]. However, the results obtained are not directly employable
to prove the main theorem. Section 3.5 then turns these arguments into actionable bounds. This
leads to the proof of the main result in section 3.6.

3.3 Estimates on the number of parts

In this section we obtain results on the number of parts Vn of Pn. In particular, we prove Theorem
3.2.1 above.

In subsection 3.3.1 we prove a recurrence relation for Vn. We use this in subsection 3.3.2 to
derive concentration for the whole sequence. Finally subsection 3.3.3 proves Theorem 3.2.2.

The following normalizing factor will appear in our proofs:

φn :=

n−1∏
j=1

(
1 +

α

j + θ

)
=

Γ(1 + θ)

Γ(1 + θ + α)

Γ(n+ α+ θ)

Γ(n+ θ)
. (3.3.1)

Note that by Lemma 4.3.6 we have φn = Θ(nα).

3.3.1 A recurrence relation

The �rst result in this section is the following Lemma.

Lemma 3.3.1 (Recurrence relation for Vn). For all n,m ∈ N the recurrence relation holds

Vn
φn

=
Vm
φm

+ (Mn −Mm) +
O(1)

(m+ θ)α
, (3.3.2)

where (Mn,Fn) is a martingale satisfying M0 = 0,

1. |∆Mj | ≤ 2Γ(1+θ+α)
Γ(1+θ)·(1+θ)α ;

2. E[(∆Mj)
2|Fj−1] ≤ 2Γ(1 + θ + α)α

Γ(1 + θ)
· (j + θ)−α−1

(
Vj−1 + θ

α

φj−1

)
,

for all j ∈ N.

Proof. Recall ∆Vn = Vn − Vn−1. On the other hand, we also know that

P (∆Vn = 1|Fn−1) = E [∆Vn|Fn−1] =
αVn−1 + θ

n− 1 + θ
. (3.3.3)
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In other words, conditioned on Fn−1, the random variable ∆Vn is distributed as Be
(
αVn−1+θ
n−1+θ

)
.

In order to obtain mean zero martingale, it will be useful to centralize the random variable ∆Vn.
Thus we may write Vn as

Vn = Vn−1 + ∆Vn

Vn =

(
1 +

α

n− 1 + θ

)
Vn−1 +

(
∆Vn −

αVn−1 + θ

n− 1 + θ

)
+

θ

n− 1 + θ
.

(3.3.4)

Thus, dividing the above identity by φn, we obtain

Vn
φn

=
Vn−1

φn−1
+ ζn +

θ

(n− 1 + θ)φn
, (3.3.5)

where

ζn :=
∆Vn − αVn−1+θ

n−1+θ

φn
. (3.3.6)

Observe that
E[ζn|Fn] = 0. (3.3.7)

Iterating this argument n−m steps leads to

Vn
φn

=
Vm
φm

+ (Mn −Mm) + (θn − θm), (3.3.8)

where

Mn :=

n∑
j=2

ζj and θn = 1 +

n−1∑
j=1

θ

(j + θ)φj+1
. (3.3.9)

Notice that identity (3.3.7) implies that Mn is a zero mean martingale.
Now we estimate the order of the deterministic contribution of θn− θm on identity (3.3.8). By

Lemma 4.3.6, the following upper bound holds

1

(j + θ)φj+1
<

2Γ(1 + θ + α)

Γ(1 + θ) · (j + θ)1+α
. (3.3.10)

Thus, bounding the sum by the integral, we obtain

θn − θm =

n−1∑
j=m

θ

φj+1(j + θ)
≤ 4Γ(1 + θ + α)θ

αΓ(1 + θ)

1

(m+ θ)α
. (3.3.11)

which proves the �rst statement of the lemma.
In the remainder of the proof we estimate the increments of the martingale Mn as well as its

conditioned quadratic variation. By the de�nition of Mj and recalling that ∆Vj is at most one
and the bound on (3.3.11) we obtain that

|∆Mj | ≤
1

φj
≤ 2Γ(1 + θ + α)

Γ(1 + θ) · (j + θ)α
(3.3.12)

and also

E[(∆Mj)
2|Fj−1] ≤ α

(j − 1 + θ)φj

φj−1

φj

Vj−1 + θ
α

φj−1

≤ 2Γ(1 + θ + α)α

Γ(1 + θ)
· (j + θ)−α−1Vj−1 + θ

α

φj−1
,

(3.3.13)

which proves the lemma.
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3.3.2 Concentration and tail bounds

We combine the recurrence relation we have proven with Freedman's inequality to obtain the
following theorem

Theorem 3.3.1. In the (α, θ)-GCRP there are constants K = K(α, θ) > 0 and cV = cV (α, θ) > 0
such that for all m ≥ 0 integer and A ≥ K we have

P
(

sup
j≥m

(
Vj
φj
− Vm
φm

)
≥ A

(m+ θ)α/2

)
≤ exp(−cVA).

In particular, for m = 0, considering V0 = 0 and φ0 = 1 we have

P
[
sup
j∈N

(
Vj
φj

)
≥ A

]
≤ exp(−cVA).

Proof. We start with the particular case m = 0 and then use it to prove the general result.
Case m = 0. From Lemma 3.3.1 we know that the Vn may be written as a mean zero martingale
Mn plus a deterministic factor θn, where {θn}n∈N is a increasing positive and bounded sequence of
real numbers. Thus, {θn}n∈N converges to some positive number θ∞. For a positive real number
A, consider the following stopping time

TA : = inf

{
i ∈ N :

Vi
φi
≥ A+ θi

}
. (3.3.14)

Observe that

P
(

sup
j∈N

(
Vj
φj

)
≥ A+ θ∞

)
≤ P

(
∃j ∈ N :

Vj
φj
≥ A+ θj

)
= lim

n
P
(
VTA∧n
φTA∧n

≥ A+ θTA∧n

)
= lim

n
P (MTA∧n ≥ A) .

(3.3.15)

By the above inequality, the �rst case is proven if we obtain a proper upper bound for the tail of
the stopped martingale {MTA∧n}n∈N. We will do this via Lemma 4.1.1, which requires bounds on
the increment and quadratic variation of {MTA∧n}n∈N. We obtain these bounds on the next lines.
For the increment a direct application of Lemma 3.3.1 gives us

|MTA∧(j+1) −MTA∧j | ≤ R,

where R =
2Γ(1 + θ + α)

Γ(1 + θ)
(1 + θ)−α. For the quadratic variation Wn∧TA we have that, also by

Lemma 3.3.1,

Wn∧TA =

n∧TA∑
j=2

E[(∆Mj)
2|Fj−1]

≤ R2 +

n∧TA−1∑
j=2

2Γ(1 + θ + α)α

Γ(1 + θ)
· (j + θ)−α−1Vj−1 + θ

α

φj−1

≤ R2 +

n∧TA∑
j=2

2Γ(1 + θ + α)α

Γ(1 + θ)
· (j + θ)−α−1

(
A+ θj +

θ

αφj−1

)
. (3.3.16)

Choosing A ≥ K(α, θ), which is de�ned below:

K(α, θ) := max

{
θ

α
+ sup
j∈N
{θj}, R

}
; (3.3.17)
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on (3.3.16), we obtain

Wn∧TA ≤ R2 +
4Γ(1 + θ + α)

Γ(1 + θ)
(1 + θ)−α ·A =

3

R
· (R2A).

Finally, applying Lemma 4.1.1, with

c1 :=
3

R
=

3Γ(1 + θ)

2Γ(1 + θ + α)
(1 + θ)α

we obtain

P (MTA∧n ≥ A) ≤ exp

 −A
3Γ(1 + θ)

2Γ(1 + θ + α)
(1 + θ)α + 2

3

 , (3.3.18)

and

P (MTA∧n ≥ A) ≤ exp (−c2A) , (3.3.19)

for

c2 =

(
3Γ(1 + θ)

2Γ(1 + θ + α)
(1 + θ)α +

2

3

)−1

. (3.3.20)

The above inequality combined with (3.3.15) gives us

P
(

sup
m∈N

(
Vm
φm

)
≥ A

)
≤ exp(−c2A),

proving the result for m = 0.

Case m > 0. The proof of the case m > 0 is similar to the �rst case, but it requires another
stopping time and the case m = 0 itself. So, consider the following stopping time:

T̂B : = inf

{
j ≥ m :

Vj
φj
− Vm
φm
≥ B

}
= inf {j ∈ N : (Mj −Mm) + (θj − θm) ≥ B} .

Observe that, as showed in the proof of Lemma 3.3.1,

θn − θm ≤
4Γ(1 + θ + α)θ

αΓ(1 + θ)

1

(m+ θ)α
. (3.3.21)

Now, let B =
A

(m+ θ)α/2
and suppose A ≥ 2θ∞. Thus,

P
(

sup
j≥m

(
Vj
φj
− Vm
φm

)
≥ A

(m+ θ)α/2

)
≤ P

(
∃j ≤ n : (Mj −Mm) + (θj − θm) ≥ A

(m+ θ)α/2

)
= P

(
(MT̂B∧n −Mm) + (θT̂B∧n − θm) ≥ B

)
(use that θT̂B∧n ≥ θm) ≤ lim

n
P
(
MT̂B∧n −Mm ≥

A

2(m+ θ)α/2

)
.
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Let TA be the same as de�ned in (3.3.14). Then:

P
(
MT̂B∧n −Mm ≥

A

2(m+ θ)α/2

)
≤ P

(
MT̂B∧n −Mm ≥

A

2(m+ θ)α/2
, TA ≥ n

)
+ P(TA < n)

≤ P
(
MT̂B∧TA∧n −Mm ≥

A

2(m+ θ)α/2
, TA ≥ n

)
+ P

(
sup
j∈N

Vj
φj
≥ A

)
≤ P

(
MT̂B∧TA∧n −Mm ≥

A

2(m+ θ)α/2

)
+ P

(
sup
j∈N

Vj
φj
≥ A

)
.

As in the case m = 0, by Lemma 3.3.1, the increment of {Mj∧T̂b∧Ta} satis�es the following upper
bound

|(M(j+1)∧T̂B∧TA −Mm)− (Mj∧T̂B∧TA −Mm)| ≤ 2Γ(1 + θ + α)

Γ(1 + θ)
(m+ θ)−

α
2 ,

whereas its quadratic variation satis�es

Wn∧TA ≤
4Γ(1 + θ + α)

Γ(1 + θ)
(m+ θ)−α ·A.

Thus, again by Lemma 4.1.1 it follows that

P
(
MT̂B∧TA∧n −Mm ≥

A

2(m+ θ)α/2

)
≤ exp(−c3A),

for some constant c3, which implies

P
(

sup
j≥m

(
Vj
φj
− Vm
φm

)
≥ A

(m+ θ)α/2

)
≤ exp(−c2A) + exp(−c3A) ≤ exp(−cVA),

for cV = log 2 ·min{c2, c3}.

3.3.3 Proof of Theorem 3.2.1

A consequence of Theorem 3.3.1 is to give estimates of how large the deviation of Vj/φj from its
limit V∗ can be uniformly in time.
Proof. [Proof of theorem 3.2.1]

Given δ de�ne

δj =
δ

(j + 1)(j + 2)
. (3.3.22)

Let Ej denote the following event

Ej :=

{
∀m ≥ 2j :

∣∣∣∣Vmφm − V2j

φ2j

∣∣∣∣ ≤ log 1
δj

cV (2j + θ)
α
2

}
. (3.3.23)

Assuming log 2
δ ≥ K1 we have by Theorem 3.3.1

P(Ecj ) ≤ exp

(
− log

1

δj

)
≤ δ

(j + 1)(j + 2)
,
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which implies, by union bound,

P

⋂
j≥0

Ej

 ≥ 1−
∑
j≥0

P(Ecj )

≥ 1−
∑
j≥0

δj

≥ 1− δ.

Now, observe that, when Ej occurs, we have for all m ∈ [2j , 2j+1]∣∣∣∣Vmφm − V∗
∣∣∣∣ ≤ ∣∣∣∣Vmφm − V2j

φ2j

∣∣∣∣+

∣∣∣∣V2j

φ2j
− V∗

∣∣∣∣
≤ 2 sup

m≥2j

∣∣∣∣Vmφm − V2j

φ2j

∣∣∣∣
≤

2 log 1
δj

(2j + θ)
α
2

≤ 1

cV (2j + θ)
α
2

[
4 log(j + 2) + 2 log

(
1

δ

)]
,

and once m ∈ [2j , 2j+1] it follows that∣∣∣∣Vmφm − V∗
∣∣∣∣ ≤ 32

cV (m+ θ)
α
2

[
log log(m+ 2) + log

(
1

δ

)]
,

for any j ∈ {0, 1, 2, · · · }. To �nish take c∗ = 32
cV

.

3.4 Preliminary estimates for the number of parts of size k

This section is devoted to give estimates for the number of classes with �xed number of elements at
time n, Nn(k). As in the case for Vn, we investigate the behaviour of Nn(k) properly normalized.
In this sense, we let ψn(k) be the normalization factor for Nn(k) given by the expression below

ψn(k) : =

n−1∏
j=1

(
1− k − α

j + θ

)
=

Γ(k + θ)Γ(n− k + α+ θ)

Γ(α+ θ)Γ(n+ θ)
. (3.4.1)

We note that, for each k �xed, ψn(k) = Θ(nα−k). The proof of this result may be done similarly
to that one given to φn. We also let Xn(k) be

Xn(k) :=
Nn(k)

ψn(k)
. (3.4.2)

The �rst step in the analysis of the non-asymptotic behavior of Nn(k) is to prove that Xn(k)
also satis�es a recurrence relation (Subsection 3.4.1). We then present a martingale concentration
argument that will be useful in analyzing the recurrence (Subsection 3.4.2). Subsequent sections
will use these results to give upper and lower bounds on Nn(k).

3.4.1 Recurrence relation for Xn(k)

The goal of this part is to derive a recurrence relation for Xn(k). The proof is essentially the same
we have given for Vn.
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Lemma 3.4.1. For all n, k ∈ N the sequence {Xn(k)}n∈N satis�es

Xn(1) = Mn(1) +

n−1∑
j=1

αVj
(j + θ)ψj+1(1)

+ θn; (3.4.3)

Xn(k) = Mn(k) +Xk(k) +
k − 1− α
k − 1 + θ

n−1∑
j=k

Xj(k − 1),∀k > 1, (3.4.4)

where {Mn(k)}n∈N are zero mean martingales de�ned in (3.4.8) and (3.4.11) for all k ∈ N and

θn(1) := N1(1) +

n−1∑
j=1

θ

(j + θ)ψj+1(1)
. (3.4.5)

Proof. We treat the case k = 1 separately since Xn(1) satis�es a recurrence relation slight
di�erent from the other cases. However, the proof for both cases follow the recipe given by the
proof of Lemma 3.3.1, so we do not �ll all the details here.
Case k = 1. Note that ∆Nn(1) ∈ {−1, 0, 1}. Thus, conditioned to Fn−1 we know its distribution,
which is given by

P (∆Nn(1) = −1|Fn−1) =
(1− α)Nn−1(1)

n− 1 + θ
;

P (∆Nn(1) = 1|Fn−1) =
αVn−1 + θ

n− 1 + θ
;

P (∆Nn(1) = 0|Fn−1)) = 1− P (∆Nn(1) = −1|Fn−1)− P (∆Nn(1) = 1|Fn−1)

(3.4.6)

Again, as in Lemma 3.3.1 but normalizing properly, de�ne

ζn(1) : =
1

ψn(1)

(
∆Nn(1)− αVn−1 + θ − (1− α)Nn−1(1)

n− 1 + θ

)
, (3.4.7)

Mn(1) :=

n∑
j=2

ζj(1), (3.4.8)

and observe that the identities (3.4.6) imply that the sequence {Mn(1)}n ∈ N is a zero mean
martingale. Thus

Nn(1) = Nn−1(1) + ∆Nn(1)

⇒ Nn(1) =

(
1− 1− α

n− 1 + θ

)
Nn−1(1) +

(
∆Nn(1)− αVn−1 + θ − (1− α)Nn−1

n− 1 + θ

)
+
αVn−1 + θ

n− 1 + θ

⇒ Nn(1)

ψn(1)
=
Nn−1(1)

ψn−1(1)
+ ζn(k) +

αVn−1 + θ

(n− 1 + θ)ψn(1)
.

We recognize above the terms Xm(1) = Nm(1)/ψm(1) for m = n− 1, n. We conclude

Xn(1) = Mn(1) +

n−1∑
j=1

αVj
(j + θ)ψj+1(1)

+ θn,

where

θn(1) := N1(1) +

n−1∑
j=1

θ

(j + θ)ψj+1(1)
. (3.4.9)

Case k > 1. As before we calculate the conditional distribution of ∆Nn(k), which is given below.

P (∆Nn(k) = −1|Fn−1) =
(k − α)Nn−1(k)

n− 1 + θ
;

P (∆Nn(k) = 1|Fn−1) =
(k − 1− α)Nn−1(k − 1)

n− 1 + θ
;

P (∆Nn(k) = 0|Fn−1) = 1− P (∆Nn(k) = −1|Fn−1)− P (∆Nn(k) = 1|Fn−1) ;
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Again we centralize and normalize it and de�ne our martingale from its sum:

ζn(k) :=
∆Nn(k)− (k−1−α)Nn−1(k−1)−(k−α)Nn−1(k)

n−1+θ

ψn(k)
; (3.4.10)

Mn(k) :=

n∑
j=k+1

ζj(k). (3.4.11)

The relation below between ψn(k − 1) and ψn+1(k) will be useful to our purposes:

ψn(k − 1)

ψn+1(k)
=

n+ θ

k − 1 + θ
. (3.4.12)

This follows from the de�nition of ψn(k) given at (3.4.1). This relation allows us to derive the
desired recurrence relation as follows

Nn(k) =

(
1− k − α

n+ θ

)
Nn−1(k)

+

(
∆Nn(k)− (k − 1− α)Nn−1(k − 1)− (k − α)Nn−1(k)

n− 1 + θ

)
+

(k − 1− α)Nn−1(k − 1)

n− 1 + θ

⇒ Nn(k)

ψn(k)
=

Nn−1(k)

ψn−1(k)
+ ζn(k) +

(k − 1− α)Nn−1(k − 1)

(n− 1 + θ)ψn(k)
.

We have above the terms Xm(k) = Nm(k)/ψm(k) form = n, n+1. The last term in the right-hand
side is:

Nn−1(k − 1)

ψn(k)
=
ψn−1(k − 1)

ψn(k)
Xn−1(k − 1) =

n− 1 + θ

k − 1 + θ
Xn−1(k − 1) by (3.4.12).

We deduce:

Xn(k) = Xn−1(k) + ζn(k) +
k − 1− α
k − 1 + θ

Xn−1(k − 1),

from which the recursion follows.

We may obtain an upper bound for θn(1) using the bounds for ratios of gamma functions in
the Appendix:

θn(1) = 1 +

n−1∑
j=1

θ

(j + θ)ψj+1(1)

= 1 +
θΓ(α+ θ)

Γ(1 + θ)

n−1∑
j=1

Γ(j + θ)

Γ(j + θ + α)

θn(1) ≤ 1 +
2θΓ(α+ θ)

(1− α)Γ(1 + θ)
(n+ θ)1−α.

(3.4.13)

This upper bound will be useful latter.

3.4.2 The martingale component of Xn(k)

In this subsection we prove a concentration inequality result for a martingale sequence whose
increment and quadratic variation satisfy certain hypothesis. Then we prove that the martingale
component of {Xn(k)}n satis�es these conditions, for all k, proving then that the martingale
component of the {Xn(k)}n is well behaved.
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Lemma 3.4.2. Let d > 0 and k ∈ N be constants and {Mn}n∈N be a martingale sequence satisfying

1. |∆Mj | ≤
d

Γ(k + θ)
· (j − 1 + θ)k−α,

2. E[(∆Mj)
2|Fj−1] ≤ d2 · (2k − α)

Γ(k + θ)2
· (j − 1 + θ)2k−α−1 ·

(
Vj−1

φj−1
+ bj−1

)
,

then there exists a constant cM such that

P

(
|Mn −Mm| ≥

√
2d

Γ(k + θ)
(n+ θ)k−

α
2 A

)
≤ e−cMA.

for all A ≥ maxj{bj}.

Proof. Let Wn the quadratic variation of the martingale {Mn −Mm}n. By our assumptions:

Wn : =

n∑
j=m+1

E[(∆Mj)
2|Fj ] ≤

d2 · |2k − α|
Γ(k + θ)2

n∑
j=m+1

(j − 1 + θ)2k−α−1

(
Vj−1

φj−1
+ bj−1

)
.

Moreover, in the occurrence of the event
{

supj∈N

(
Vj
φj

)
≤ A

}
, and using that bj ≤ A we have

Wn ≤
2d2 ·A

Γ(k + θ)2
(n+ θ)2k−α,

in symbols, the following inclusion of events holds{
Wn ≥

2d2 ·A
Γ(k + θ)2

(n+ θ)2k−α
}
⊂
{

sup
j∈N

(
Vj
φj

)
≥ A

}
,

which combined with Theorem 3.3.1 yields

P
(
Wn ≥

2d2 ·A
Γ(k + θ)2

(n+ θ)2k−α
)
≤ exp(−cVA).

Finally, applying Lemma 4.1.1 with R = d2·A
Γ(k+θ)2 (n+ θ)2k−α and c1 = 1 we obtain

P

(
|Mn −Mm| ≥

√
2d

Γ(k + θ)
(n+ θ)k−

α
2 A

)
≤ exp

(
−A

2 + 2
3

)
+ exp(−cVA) ≤ exp(−cMA)

for some constant cM .

Lemma 3.4.3. Let {Mn(k)}n, k ≥ 1, be the martingale de�ned in (3.4.8) and (3.4.11) and A ≥ 0
a constant. Then there is a constant hα,θ such that

P
(
|Mn(k)| ≥ hα,θ

Γ(k + θ)
(n+ θ)k−

α
2 (A+ 2 log n)

)
≤ e−A

n2
.

Proof. We will prove that the martingales in (3.4.8) and (3.4.11) satisfy the hypotheses of
Lemma 3.4.2, and the result will follow from that lemma.

Since 1/ψn(k) is increasing, by Lemma 4.3.7 in Appendix, the following bound holds

|∆Mj(1)| ≤ e
1
12 Γ(α+ θ)

Γ(1 + θ)
(n+ θ)1−α.
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And by de�nition of ∆Mj = ζj , we also have that

E[(∆Mj(1))2|Fj−1] =
1

ψj(1)2
·

[
αVj−1 + θ

j − 1 + θ
·
(

1− αVj−1 + θ − (1− α)Nj−1(1)

j − 1 + θ

)2

+
(1− α)Nj−1(1)

j − 1 + θ
·
(
−1− αVj−1 + θ − (1− α)Nj−1(1)

j − 1 + θ

)2
]

≤ 4

ψj(1)2

Vj−1 + θ

j − 1 + θ
.

Multiplying and deviding the above expression by φj−1 and using the bound

φj−1

(ψj(k))2 · (j − 1 + θ)
≤ e1/6Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(k + θ)2
, (j − 1 + θ)1−α,

which may be deduced from see Lemma 4.3.8 in appendix, it follows that

E[(∆Mj(1))2|Fj−1] ≤ 4φj−1

(j − 1 + θ)ψj(1)2

Vj−1 + θ

φj−1

≤ 4e1/6Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(1 + θ)2
(j − 1 + θ)1−αVj−1 + θ

φj−1
,

and since 2− α > 1, it also follows that

E[(∆Mj(1))2|Fj−1] ≤ 4(2− α)e1/6Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(1 + θ)2
(j − 1 + θ)1−αVj−1 + θ

φj−1
.

Analogously, for k > 1, we have

E[(∆Mj(k))2|Fj−1]

=
1

ψ2
j (k)

·

[
Nj−1(k − 1)(k − 1− α)

j − 1 + θ
·
(

1− (k − 1− α)Nj−1(k − 1)− (k − α)Nn(k)

j − 1 + θ

)2

+
Nj−1(k)(k − α)

j − 1 + θ
·
(
−1− (k − 1− α)Nj−1(k − 1)− (k − α)Nj−1(k)

j − 1 + θ

)2
]

≤ 4

ψ2
j (k)(j − 1 + θ)

[Nj−1(k − 1)(k − 1− α) +Nj−1(k)(k − α)].

Since Nj(k) is bounded from above by Vj , for all k and j, we obtain

E[(∆Mj(k))2|Fj−1] ≤ 4φj−1

(ψj(k))2 · (j − 1 + θ)

[
Vj−1

φj−1
· (k − 1− α) +

Vj−1

φj−1
· (k − α)

]
≤ 4(2k − α)Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(k + θ)2
(j − 1 + θ)2k−α−1 Vj−1

φj−1
.

Finally, by Lemma 3.4.2 we have, for

hα,θ =
2
√

2e
1
12

cM
· Γ(α+ θ) ·max

{
1, 2

√
Γ(1 + θ)

Γ(1 + θ + α)

}
,

that

P
(
|Mn(k)| ≥ hα,θ

Γ(k + θ)
(n+ θ)k−

α
2 (A+ log2 n)

)
≤ e−A

n2
,

as we desired.
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3.5 Bounds for the number of parts with size k

Let us go through what we did in Section 3.4. In Subsection 3.4.1 we found recurrence relations
relating the values Xn(k) = Nn(k)/ψn(k) for di�erent k and n. This is the content of Lemma
3.4.1, where we obtained that:

Xn(1) = Mn(1) +

n−1∑
j=1

αVj
(j + θ)ψj+1(1)

+ θn(1);

Xn(k) = Mn(k) +Xk(k) +
k − 1− α
k − 1 + θ

n−1∑
j=k

Xj(k − 1),∀k > 1.

The terms Mn(k) above are martingales. Subsection 3.4.2 proves that the martingale terms are
all small. Since we already know Vj/φj ≈ V∗ for j large, this will lead to bounds of the form:

Xn(1) ≈ a0(1)V∗;

Xn(k) ≈ k − 1− α
k − 1 + θ

n−1∑
j=k

Xj(k − 1),∀k > 1

where
a0(1) :=

α

α+ θ
.

If we treat the above recursions as equalties, we then obtain by induction in k that

Xn(k) ≈ a0(k)V∗ n
k

where

a0(k) =
(k − 1− α) · a0(k − 1)

(k − 1 + θ)k
=

Γ(k − α)Γ(1 + θ)

k! · Γ(1− α)Γ(k + θ)
a0(1).

The purpose of this section is to make the above approximations precise and to show that
Xn(k) does behave as expected up to leading order, in high probability. In particular, we will
prove the following Theorem (recall the de�nition of Xn(k) in (3.4.2)).

Theorem 3.5.1. Given A > K(α, θ), n ∈ N and k ≤ n, there are coe�cients a0(k) (de�ned
above) and a1(k) with a1(k) = O

(
a0(k) · kα+2

)
, such that the following holds. De�ne the event

where Xm(s) is �well-controlled from above".

F (up)
m,s :=

{
Xm(s) ≤ a0(s)V∗(m− 1)s + a1(s)(m+ θ)s−α/2(A+ log n)

}
.

Similarly, de�ne the event that Xm(s) is �well-controlled from below".

F (dn)
m,s :=

{
Xm(s) ≥ a0(s)V∗(m− s)s − a1(s)(m+ θ)s−α/2(A+ log n)

}
.

Finally, de�ne the event where the above inequalities hold for all times m ≤ n and part sizes s ≤ k:

En,k :=
⋂
m≤n

⋂
s≤k

(F (up)
m,s ∩ F (dn)

m,s ).

Then:

P(En,k) ≥ 1− k

n
e−A.

As we will see, this theorem follows directly from the results in the remainder of this section.
Proof. [Proof of Theorem 3.5.1] The bound a1(k) = O

(
a0(k) · kα+2

)
is contained in Lemma 3.5.1

in subsection 3.5.1. The probability of En,k is bounded in Lemmas 3.5.2 and 3.5.3 in subsection
3.5.2.
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3.5.1 The choice of coe�cients

The coe�cients a0(1) and a1(1) will arise from the analysis of the recursion (3.4.3) in the Lemma
3.4.1. As we have seen, a0(k) appears naturally when we work out the leading order terms
for Xn(k). The extra coe�cient a1(k) controls the error, and comes from combining errors in
estinating Xs(k− 1) (induction step); the error in setting Mn(k) ≈ 0; and various other estimates
in the proof (see (3.4.4) and Lemma 3.5.1).

We de�ne:

a0(1) :=
α

α+ θ
, (3.5.1)

a1(1) :=
hα,θ

Γ(1 + θ)
+

α

cV (α+ θ)(1− α
2 )

+ 1 +
2θΓ(α+ θ)

(1− α)Γ(1 + θ)
, (3.5.2)

a0(k) :=
(k − 1− α) · a0(k − 1)

(k − 1 + θ)k
=

Γ(k − α)Γ(1 + θ)

k! · Γ(1− α)Γ(k + θ)
a0(1), (3.5.3)

a1(k) :=
hα,θ

Γ(k + θ)
+

(k − 1− α) · a1(k − 1)

(k − 1 + θ)(k − α
2 )

. (3.5.4)

From the analysis of recursions involving Xn(k), it will arise naturally terms which are polynomials
whose coe�cients are the above coe�cients. Thus, it will be useful to have estimates for such
polynomials as well. We do this in the next lemma.

Lemma 3.5.1. The coe�cients a0(k) and a1(k) de�ned as in (3.5.3) and (3.5.4) satisfy the
following relations:

1.
k − 1− α
k − 1 + θ

m−1∑
j=k

a0(k − 1)jk−1 ≤ a0(k)mk,

2.
k − 1− α
k − 1 + θ

m−1∑
j=k

a0(k − 1)(j − (k − 1))k−1 ≥ a0(k)(m− k)k,

3.
k − 1− α
k − 1 + θ

m−1∑
j=k

a1(k − 1)(j + θ)k−1−α/2 ≤
(
a1(k)− hα,θ

Γ(k + θ)

)
(m+ θ)k−α/2,

4. a1(k) ≤ CUa0(k) · kα+2, for some constant CU .

Proof. Throughout this proof we will make use of the integral bound below

(m− k)k

k
=

∫ m−k

0

xk−1 ≤
m−1∑
j=1

jk−1 ≤
∫ m

0

xk−1 =
mk

k
. (3.5.5)

(1) For the �rst bound, observe that

k − 1− α
k − 1 + θ

m−1∑
j=k

a0(k − 1)jk−1 ≤ k − 1− α
k − 1 + θ

a0(k − 1)

m−1∑
j=1

jk−1.

Using the upper bound given by (3.5.5), yields

k − 1− α
k − 1 + θ

m−1∑
j=`+1

a0(k − 1)jk−1 ≤ (k − 1− α) · a0(k − 1)

(k − 1 + θ)k

which is exactly the de�nition of a0(k) in (3.5.3).
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(2) For the second relation, we have

k − 1− α
k − 1 + θ

m−1∑
j=k

a0(k − 1)(j − (k − 1))k−1 =
k − 1− α
k − 1 + θ

m−k∑
j=1

a0(k − 1)jk−1

≥ k − 1− α
k − 1 + θ

a0(k − 1)

m−k∑
j=1

jk−1.

By the lower bound given by (3.5.5), we obtain

k − 1− α
k − 1 + θ

m−k∑
j=1

a0(k − 1)jk−1 ≥ (k − 1− α) · a0(k − 1)

(k − 1 + θ)k
(m− k)k = a0(k)(m− k)k.

(3) If we proceed exactly as in the item (1) we obtain

k − 1− α
k − 1 + θ

m−1∑
j=k

a1(k − 1)(j + θ)k−1−α/2 ≤ (k − 1− α) · a1(k − 1)

(k − 1 + θ)(k − α
2 )

(m+ θ)k−α/2,

but by de�nition (3.5.4)

(k − 1− α) · a1(k − 1)

(k − 1 + θ)(k − α
2 )

=

(
a1(k)− hα,θ

Γ(k + θ)

)
.

(4) We begin substituting the formulas for a0(k) and a1(0) in an analogous way we did above, to
obtain an a�ne recurrence

a1(k)

a0(k)
= d · k!

Γ(k − α)
+

k · a1(k − 1)

(k − α
2 ) · a0(k − 1)

, (3.5.6)

where d is de�ned as

d := dα,θ ·
Γ(1− α)

a0(1) · Γ(1 + θ)
.

We rearrange (3.5.6) by letting s(k) to be

s(k) :=
a1(k)

a0(k)

Γ(k − α
2 + 1)

Γ(k + 1)

and multiplying both sides by
Γ(k−α2 +1)

Γ(k+1) to obtain the identity below

s(k) = s(k − 1) + d ·
Γ(k − α

2 + 1)

Γ(k − α)
,

so we can �nd the general formula to the recurrence

s(k) = s(1) + d ·
k∑
j=1

Γ(j − α
2 + 1)

Γ(j − α)
.

Using the bound
Γ(j−α2 +1)

Γ(j−α) ≤ e
1/12j1+α

2 we have

s(k) = s(1) + e1/12d ·
k∑
j=1

j
α
2 +1 ≤ s(1) + e1/12d · k α2 +2 ≤ d1k

α
2 +2,

where d1 = 2 max{s(1), e1/12d}. Finally, we obtain
a1(k)

a0(k)
≤ d1

Γ(k + 1)

Γ(k − α
2 + 1)

k
α
2 +2 = CUk

α+2,

for some CU .
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3.5.2 Bound on Xn(k)

We now bound the probability of the events En,k de�ned in the statement of Theorem 3.5.1. Our
approach is induction on k. But before we go to the proof, let us recall the de�nition of the

sequence of events En,k. The event F
(up)
m,s is de�ned as the event where Xm(s) is �well-controlled

from above"

F (up)
m,s =

{
Xm(s) ≤ a0(s)V∗(m− 1)s + a1(s)(m+ θ)s−α/2(A+ log n)

}
.

Analogously, F
(dn)
m,s is the event where Xm(s) is �well-controlled from below"

F (dn)
m,s :=

{
Xm(s) ≥ a0(s)V∗(m− s)s − a1(s)(m+ θ)s−α/2(A+ log n)

}
.

Finally, the event En,k is the event where the above inequalities hold for all times m ≤ n and part
sizes s ≤ k:

En,k :=
⋂
m≤n

⋂
s≤k

(F (up)
m,s ∩ F (dn)

m,s ).

Now, we start by the case k = 1.

Lemma 3.5.2 (Case k = 1). Given A > 0 and n ∈ N, let En,1 be as in the statement of Theorem
3.5.1. Then:

P(En,1) ≥ 1− e−A

n
.

Proof. The equation (3.4.3) says us that

Xn(1) = Mn(1) +

n−1∑
j=1

αVj
(j + θ)ψj+1

+ θn(1).

We will bound each term in the right-hand side to obtain a bound onXn(1). Before, we manipulate
algebraically the above expression for Xn(1) in such way it can be expressed in terms of the
observables we already know how to control. In this direction, we start summing and subtracting
the sum below

n−1∑
j=1

αφj
(j + θ)ψj+1

V∗

in the second member of (3.4.3) to use that the ratio Vj/φj is approximated by V∗. This yields

Xn(1) = Mn(1) +

n−1∑
j=1

αφj
(j + θ)ψj+1

(
Vj
φj
− V∗

)
+

n−1∑
j=1

αφj
(j + θ)ψj+1

V∗ + θn(1). (3.5.7)

Using the relation below
φj

(j + θ)ψj+1(1)
=

1

(θ + α)

on identity (3.5.7) allows us to obtain

Xn(1) = Mn(1) +

n−1∑
j=1

α

(θ + α)

(
Vj
φj
− V∗

)
+

αV∗
(θ + α)

(n− 1) + θn(1).

Taking the absolute value on both sides of the above identity and using the triangle inequality
yields

|Xn(1)| ≤ |Mn(1)|+

∣∣∣∣∣∣
n−1∑
j=1

α

(θ + α)

(
Vj
φj
− V∗

)∣∣∣∣∣∣+
αV∗

(θ + α)
(n− 1) + θn(1). (3.5.8)
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and

|Xn(1)| ≥ αV∗
(θ + α)

(n− 1)− |Mn(1)| −

∣∣∣∣∣∣
n−1∑
j=1

α

(θ + α)

(
Vj
φj
− V∗

)∣∣∣∣∣∣ . (3.5.9)

By Lemma 3.4.3, the probability of the event below{
|Mn(1)| ≥ hα,θ

Γ(1 + θ)
(n+ θ)1−α2 (A+ log n)

}
(3.5.10)

is bounded from above by

P
(
|Mn(1)| ≥ hα,θ

Γ(1 + θ)
(n+ θ)1−α2 (A+ log n)

)
≤ e−A

n2
, (3.5.11)

and by Corollary 3.2.1, with δ = e−A

n2 and observing that logm ≤ log n, for 1 ≤ m ≤ n−1 we have

P
(∣∣∣∣Vjφj − V∗

∣∣∣∣ ≥ A+ log n

cV (j + θ)α/2
, for some 1 ≤ j ≤ n− 1

)
≤ e−A

n2
. (3.5.12)

On the occurrence of the event{∣∣∣∣Vjφj − V∗
∣∣∣∣ ≤ A+ log n

cV (m+ θ)α/2
, for some 1 ≤ j ≤ n− 1

}
(3.5.13)

we have ∣∣∣∣∣∣
n−1∑
j=1

α

(θ + α)

(
Vj
φj
− V∗

)∣∣∣∣∣∣ ≤
n−1∑
j=1

α

(θ + α)

A+ log n

cV (j + θ)α/2
(3.5.14)

≤ (n− 1 + θ)1−α/2

1− α/2
α(A+ log n)

cV (θ + α)
. (3.5.15)

By (3.4.13), the term θn(1) is bounded in the following way

θn(1) ≤ 1 +
2θΓ(α+ θ)

(1− α)Γ(1 + θ)
(n+ θ)1−α

≤
(

1 +
2θΓ(α+ θ)

(1− α)Γ(1 + θ)

)
(n+ θ)1−α2 (A+ log n).

Thus, on the occurrence of both events (3.5.10) and (3.5.13), we have

|Xn(1)| ≤ a0(1)V∗(j − 1) + a1(1)(j + θ)1−α/2(A+ log n)

for a0(1) and a1(1) whose de�nition we recall below

a0(1) =
α

α+ θ
, (3.5.16)

a1(1) =
hα,θ

Γ(1 + θ)
+

α

cV (α+ θ)(1− α
2 )

+ 1 +
2θΓ(α+ θ)

(1− α)Γ(1 + θ)
. (3.5.17)

Therefore

P((En,1)c) ≤
n∑
j=1

P
(
|Mn(j)| ≥ hα,θ

Γ(j + θ)
(n+ θ)j−

α
2 (A+ log n)

)
≤ e−A

n
,

which proves the �rst step of the induction.
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Now we prove on the next lemma the inductive step.

Lemma 3.5.3 (The inductive step). Given A > 0, n ∈ N and k ≤ n, let En,k be as in the
statement of Theorem 3.5.1. Then:

P(En,k) ≥ 1− k

n
e−A.

Proof. The key step of the proof is the following inclusion of events

En,k ⊃ En,k−1 ∩
{
|Mj(k)| ≤ hα,θ

Γ(k + θ)
(j + θ)k−

α
2 (A+ log n), for all 1 ≤ j ≤ n

}
, (3.5.18)

for all k ≥ 2. The result then follows by induction from our previous results and the inequality
below

P(Ecn,k) ≤ P(Ecn,k−1) +

n∑
j=1

P
(
|Mj(k)| ≥ hα,θ

Γ(k + θ)
(j + θ)k−

α
2 (A+ log n)

)

≤ (k − 1)
e−A

n
+ n

e−A

n2
.

Let us then explain why (3.5.18) holds. At a high level, when event En,k−1 occurs,we have that
all Xj(s) are �well-behaved" for all values of s ≤ k − 1 and 1 ≤ j ≤ n. Now we will prove that
combining this with bounds on the martingale component of Xn(k), Xn(k) itself will be �well-
behaved". To do that, we will just bound the recursion for Xn(k) using the bounds given by the
above events and Lemma 3.5.1.

We start by restating the recursion for a �xed m:

Xm(k) = Mm(k) +Xk(k) +
k − 1− α
k − 1 + θ

m−1∑
j=k

Xj(k − 1). (3.5.19)

We let Zm(k − 1) denote the sum in the RHS of the previous display.

Zm(k − 1) :=
k − 1− α
k − 1 + θ

m−1∑
j=k

Xj(k − 1). (3.5.20)

In the event

En,k−1 ∩
{
|Mj(k)| ≤ hα,θ

Γ(k + θ)
(j + θ)k−

α
2 (A+ log n), for all 1 ≤ j ≤ n

}
we have that each Xj(k − 1) is bounded by

Xj(k − 1) ≤ a0(k − 1)V∗j
k−1 + a1(k − 1)(j + θ)k−1−α/2(A+ log n),

which implies the following bound

Zm(k − 1) ≤ k − 1− α
k − 1 + θ

m−1∑
j=k

[
a0(k − 1)V∗j

k−1 + a1(k − 1)(j + θ)k−1−α/2(A+ log n)
]
. (3.5.21)

Now, recall that Lemma 3.5.1 gives us bounds on the polynomials on j whose coe�cients are
ai(k − 1). Thus, combining this with the above bound we obtain

Zm(k − 1) ≤ a0(k)V∗m
k +

(
a1(k)− hα,θ

Γ(k + θ)

)
(m+ θ)k−α/2(A+ log n). (3.5.22)
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Arguing the same way, but applying the lower bound to Xj(k − 1) given by En,k−1 instead we
may obtain that Zm(k − 1) is bounded from below by

k − 1− α
k − 1 + θ

m−1∑
j=k

[
a0(k − 1)V∗(j − (k − 1))k−1 − a1(k − 1)(A+ 2 log n)(j + θ)k−1−α/2

]
.

And again, by Lemma 3.5.1 we have

Zm(k − 1) ≥ a0(k)V∗(j − k)k −
(
a1(k)− hα,θ

Γ(k + θ)

)
(m+ θ)k−α/2(A+ 2 log n). (3.5.23)

On the other hand, since, for all k we also have

Xm(k) ≥Mm(k) +
k − 1− α
k − 1 + θ

m−1∑
j=k

Xj(k − 1),

the result then follows by joining (3.5.22) and (3.5.23) with the martingale bound given by the
other event in the intersection.

3.6 Proof of Theorem 3.2.2

This section is devote to the proof of Theorem 3.2.2 which ensures bounds to the number of parts
of size k itself. Proof. [Proof of Theorem 3.2.2] First observe that in the event En,k we have

Xn(k)− a0(k)V∗n
k ≤ a1(k)(n+ θ)k−α/2(A+ log n).

Consequently, by lemma 3.5.1

Xn(k)− a0(k)V∗n
k ≤ CUa0(k) · kα+2(n+ θ)k−α/2(A+ log n).

By the same argument we also have the lower bound

Xn(k) ≥ a0(k)V∗(n− k)k − CUa0(k)(n+ θ)k−α/2(A+ log n).

Moreover, note that

(n− k)k = nk
(

1− k

n

)k
.

By Bernoulli's inequality,

(1 + x)m ≥ 1 +mx

for all x ≥ −1 and m ∈ N. Then, for x = −k/n ≥ −1 and m = k we have

nk
(

1− k

n

)k
≥ nk

(
1− k2

n

)
= nk − k2nk−1.

Thus

Xn(k) ≥ a0(k)V∗(n
k − k2nk−1)− CUa0(k)(n+ θ)k−α/2(A+ log n),

which implies

Xn(k)− a0(k)V∗n
k ≥ −a0(k)V∗k

2nk−1 − CUa0(k) · kα+2(n+ θ)k−α/2(A+ log n).
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Moreover, on the occurrence of the event

E∗ :=

{
V∗ ≤

2(A+ log n)

cV

}
we also have

Xn(k)− a0(k)V∗n
k ≥ −a0(k)

(
2

cV
k2nk−1 + CU · kα+2(n+ θ)k−α/2

)
(A+ log n)

≥ −a0(k)D · kα+2(n+ θ)k−α/2(A+ log n),

where D := 2c−1
V + CU . Thus, on the intersection of En,k and E∗, we have

|Xn(k)− a0(k)V∗n
k| ≤ Da0(k)kα+2(n+ θ)k−α/2(A+ log n). (3.6.1)

To simplify our writing, de�ne
fn(k) := a0(k) · ψn(k) · nk. (3.6.2)

Multiplying both sides of (3.6.1) by ψn(k) we have

|Nn(k)− fn(k)V∗| ≤ Dfn(k)kα+2 (n+ θ)k−α/2

nk
(A+ log n).

Now, using that 1 + x ≤ ex, we have

(n+ θ)γ ≤ e
θγ
n nγ , (3.6.3)

which implies, for k < n/θ

|Nn(k)− fn(k)V∗| ≤ eDfn(k)
kα+2

nα/2
(A+ log n).

Recalling the de�nition of a0(k)

a0(k) =
Γ(k − α)Γ(1 + θ)

k! · Γ(1− α)Γ(k + θ)
a0(1) (3.6.4)

and replacing it and ψn(k) on fn(k) it may be written as

fn(k) =

[
αΓ(1 + θ)

Γ(1− α)Γ(α+ θ + 1)

Γ(k − α)

Γ(k + 1)

]
·
[

Γ(n− k + α+ θ)

Γ(n+ θ)

]
nk.

By Lemma 4.3.5 in the Appendix, for k of order nα/(2α+4), we have[
Γ(n− k + α+ θ)

Γ(n+ θ)

]
=

1

nk−α

(
1 +O

(
k2

n− k

))
, (3.6.5)

which implies

fn(k) =

[
αΓ(1 + θ)

Γ(1− α)Γ(α+ θ + 1)

Γ(k − α)

Γ(k + 1)

](
1 +O

(
k2

n

))
nα. (3.6.6)

Now, by the above identity, we have that

Nn(kn)− cα,θ
Γ(k − α)

Γ(k + 1)
· nα · V∗ = Nn(kn)− fn(k)V∗ +

Γ(k − α)

Γ(k + 1)
O

(
k2

n

)
· nα · V∗ (3.6.7)

Also, observe that

Γ(k − α)

Γ(k + 1)
≤ e 1

12

(
1 +

1 + α

k − α

)1/2(
1

k − α

)1+α

≤ 4

k1+α
. (3.6.8)
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Applying the triangle inequality on (3.6.7), recalling we are inside E∗ and using the above upper
bound, we obtain that∣∣∣∣Nn(k)− cα,θ

Γ(k − α)

Γ(k + 1)
· nα · V∗

∣∣∣∣ ≤ D2

(
kα+2

nα/2
fn(k) +

(
k

n

)1−α
)

(A+ log n).

for some positive constant D2. Finally, for every k satisfying

k ≤ εn
α

2α+4

(log n)
1

α+2

there is another absolute constant C such that

∣∣∣∣Nn(k)− cα,θ
Γ(k − α)

Γ(k + 1)
· nα · V∗

∣∣∣∣ ≤ C Γ(k − α)

Γ(k + 1)
· nα

(
εn

α
2α+4

(logn)
1

α+2

)α+2

nα/2
(A+ log n)

≤ C Γ(k − α)

Γ(k + 1)
· nα · εα+2 ·

(
A

log n
+ 1

)
,

proving our main theorem.

3.7 Final remarks

The main open problem that could be addressed by our methods is to push the analysis to larger
values of k. We conjecture that a tighter analysis would work for all k = o(nα/(1+α)) or some
similar range. This is in the spirit of the recent paper by Brightwell and Luczak [4]. There the
authors analyze the degree distribution of a preferential attachment tree nearly all the way to the
maximum degree. Proving something similar in our setting would require modi�cations in Lemma
3.4.2, where the quadratic variation of the martingale for Nn(k) is controlled in a wasteful manner
via Vn.

Another kind of question is to study the distribution of the largest part sizes in Pn. We would
like to obtain such results and apply them to the �Hollywood model" of complex networks recently
proposed by Crane and Dempsey [10].
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Chapter 4

Technical tools

In this chapter we recall some basic concentration results used in chapter 2 and some gamma
function properties used in chapter 3.

4.1 Concentration inequalities

Theorem 4.1.1 (Bounded di�erences inequality). Let X = (X1, X2, · · · , Xn) be a family of
independent random variables with Xk taking values in a set Ak for each k. Suppose that the
real-valued function g de�ned on

∏
Ak satis�es

|g(x)− g(x′)| ≤ ck

whenever the vectors x and x′ di�er only in the k-th co-ordinate. Then for any t ≥ 0,

P(|g(X)− E[g(X)]| ≥ t) ≤ e−2t2/
∑
c2k

We recall here Freedman's inequality and a particular corollary that will be important to our
proofs.

Theorem 4.1.2 (Freedman's Inequality [17]). Let (Mn,Fn)n≥1 be a martingale with M0 = 0 and
R > 0 a constant. Write

Wn :=

n∑
k=2

E[(∆Mj)
2|Fj ].

Suppose
|∆Mj | ≤ R, for all j.

Then, for all λ > 0 we have

P(Mn ≥ λ,Wn ≤ σ2) ≤ exp

(
−λ2

2σ + 2Rλ/3

)
.

The lemma below is a straightforward consequence of Freedman's inequality. Since we will deal
with the problem of bounding martingales under some constraints frequently, it will be convenient
to have this precise statement.

Lemma 4.1.1. Let Mj is a martingale and R > 0 a constant such that, M0 = 0, |Mj+1 −Mj | ≤
R ∀j ≤ n and Wn is its quadratic variation, then for any constant c1 > 0 we have

P (|Mn| ≥ Rλ) ≤ 2 exp

(
−λ

2c1 + 2
3

)
+ P

(
Wn ≥ c1R2λ

)
.
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Proof. It follows of the union bound and Freedman's inequality to the martingales Mj and
−Mj :

P (|Mn| ≥ Rλ) ≤ P
(
|Mn| ≥ Rλ,Wn ≤ c1R2λ

)
+ P

(
Wn ≥ R2λ

)
≤ 2 exp

(
−(Rλ)2

2c1R2λ+ 2R
3 (Rλ)

)
+ P

(
Wn ≥ c1R2λ

)
≤ 2 exp

(
−λ

2c1 + 2
3

)
+ P

(
Wn ≥ c1R2λ

)
.

4.2 Number of vertices with k descendants in a URRT

Devroye [12] proved a central limit theorem for the number of vertices with k descendants in a
uniform random recursive tree. In particular, if Lk,n denotes the the number of vertices with k
descendants in a uniform random recursive tree of n > k + 1 vertices, then Devroye shows that

ELk,n =
n− k − 1

(k + 1)(k + 2)
+

1

k + 1
=

n+ 1

(k + 1)(k + 2)

and, for any �xed k, as n→∞,
Lk,n − n

(k+1)(k+2)√
nσ2

k

converges, in distribution, to a standard normal random variable, where

σ2
k =

1

(k + 1)(k + 2)

(
1− 1

(k + 1)(k + 2)

)
− 2

(k + 1)(k + 2)2
+

1

(k + 1)2(2k + 3)
.

Devroye's proof is based on representing Lk,n as a sum of (k + 1)-dependent indicator random
variables and on a central limit theorem of Hoe�ding and Robbins [20] for such sums. In this
text we need a non-asymptotic version of Devroye's theorem. Quantitative, Berry-Esseen-type
versions of the Hoe�ding-Robbins limit theorem are available via Stein's method, see, for example,
Rinott [27, Theorem 2.2]. On the other hand, a simple bound may be proved by combining
Devroye's representation with a concentration inequality of Janson [21, Corollary 2.4] for sums of
dependent random variables, to obtain the following:

Lemma 4.2.1. If Lk,n denotes the the number of vertices with k descendants in a uniform random
recursive tree of n > k + 1, then for all t > 0,

P {Lk,n ≥ ELk,n + t} ≤ exp

(
−8t2(k + 2)

25(n+ (k + 1)(k + 2)t/3

)
and

P {Lk,n ≤ ELk,n − t} ≤ exp

(
−8t2(k + 2)

25n

)
.

Note that the number of vertices with at least k descendants Mk,n =
∑n−1
i=k Li,n = n −∑k−1

i=0 Li,n has expected value

EMk,n = E
n−1∑
i=k

Li,n = n−
k−1∑
i=0

ELi,n =
n+ 1

k + 1
− 1 ,
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and therefore

P
{
Mk,n ≤

n+ 1

k + 1
− 1− t

}
= P

{
k−1∑
i=0

Li,n ≥
k−1∑
i=0

ELi,n + t

}

≤
k−1∑
i=0

P
{
Li,n ≥ ELi,n +

t

k

}
≤ k exp

(
−8t2

25k(n+ (k + 1)t/3

)
.

In particular, by generously bounding constants, we get

P
{
Mk,n ≤

n

3k

}
≤ k exp

(
− 1

32

n

k2

)
. (4.2.1)

4.3 Some estimates on Γ(x)

In this appendix we prove some useful bounds regarding gamma functions and other relations
involving them.

4.3.1 Preliminaries estimates

Lemma 4.3.1 (Stirling formula for Gamma function - see formula 6.1.42 in [?]). For all x > 0
we have

(2π)1/2

ex
xx−

1
2 ≤ Γ(x) ≤ (2π)1/2e1/12x

ex
xx−1/2.

Lemma 4.3.2. For all positive x, it follows that

Γ(x) =
(2π)1/2

ex
xx−

1
2

(
1 +O

(
1

x

))
.

Proof. Observe that by the Lemma 4.3.1

0 ≤ Γ(x)− (2π)1/2

ex
xx−

1
2 ≤ (2π)1/2

ex
xx−

1
2

(
e1/12x − 1

)
,

and the result follows by Taylor approximation.

Lemma 4.3.3. Let β, λ be two positive real numbers with β > λ then

1.
Γ(β − λ)

Γ(β)
≤ e

1
12(β−λ)

(
β

β − λ

)1/2(
1

β − λ

)λ
;

2.
Γ(β)

Γ(β − λ)
≤ e

1
12β

(
β − λ
β

)1/2

βλ.

Proof. For the �rst item, by Lemma 4.3.1 and the bound (1− x
n )n ≤ e−x it follows that

Γ(β − λ)

Γ(β)
≤ e

1
12(β−λ) (β − λ)β−λ−1/2

eβ−λ
eβ

ββ−1/2

≤ e
1

12(β−λ)

e−λ

(
1− λ

β

)β (
1 +

λ

β − λ

)1/2

(β − λ)−λ

≤ e
1

12(β−λ)

(
β

β − λ

)1/2(
1

β − λ

)λ
.

The second item follows analogously.
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Lemma 4.3.4. For 0 < x < 1 and y > 0 we have

(1− x)y = e−xy(1 +O(y2x3)).

Proof.

Observe that (1− x)y = exp(y · log(1− x)). Recalling the Taylor expansion of log

log(1− x) = −x−O(x2)

we have

(1− x)y = exp(−xy −O(yx2)) = (1−O(yx2)) exp(−xy).

Lemma 4.3.5. For k = O(n
α

2α+4 ) we have

Γ(n+ θ − k + α)

Γ(n+ θ)
=

1

nk−α

(
1 +O

(
k2

n− k

))
.

Proof. Using the expression given by Lemma 4.3.2, we obtain

Γ(n+ θ − k + α)

Γ(n+ θ)
=

ek−α

(n+ θ − k + α)k−α

(
1− k − α

n+ θ

)n+θ− 1
2 1 +O( 1

n+θ−k+α )

1 +O( 1
n+θ )

.

Now, multiplying and dividing by nk−α the right-hand side of the above identity becomes

ek−α

nk−α

(
1 +

k − θ − α
n+ θ − k + α

)k−α(
1− k − α

n+ θ

)n+θ− 1
2 1 +O( 1

n+θ−k+α )

1 +O( 1
n+θ )

.

Moreover, by the Lemma 4.3.4 it follows

1 ≤
(

1 +
k − θ − α

n+ θ − k + α

)k−α
≤ exp

(
(k − α)(k − θ − α)

n+ θ − k + α

)
= 1 +O

(
k2

n− k

)
.

Also, by Lemma 4.3.4, for x = k−α
n+θ and y = n+ θ we have(

1− k − α
n+ θ

)n+θ

= exp

(
−(n+ θ)

k − α
n+ θ

)
exp

(
O

(
(k − α)2

n+ θ

))
= e−k+α

(
1 +O

(
k2

n

))
,

and for k = O(n
α

2α+4 )

e−k+α

(
1 +O

(
k2

n

))(
1− k − α

n+ θ

)− 1
2
(

1 +O

(
k2

n− k

))
1 +O( 1

n+θ−k+α )

1 +O( 1
n+θ )

= e−k+α

(
1 +O

(
k2

n

))
.

Thus

Γ(n+ θ − k + α)

Γ(n+ θ)
=
ek−α

nk−α
e−k+α

(
1 +O

(
k2

n

))
=

1

nk−α

(
1 +O

(
k2

n

))
.
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4.3.2 Order of φn and ψn(k)

This part is devoted to prove bounds for the two normalizing factors φn and ψn(k) whose de�nition
we recall latter.

φn =
Γ(1 + θ)

Γ(1 + θ + α)

Γ(n+ α+ θ)

Γ(n+ θ)
,

Lemma 4.3.6. Let φn be as above, then the following bounds hold

1.
1

φj
<

2Γ(1 + θ + α)

Γ(1 + θ) · (j + θ)α
;

2.
1

(j + θ)φj+1
<

2Γ(1 + θ + α)

Γ(1 + θ) · (j + θ)1+α
;

3. There exists a constant Cφ such that

φj ≤ Cφjα;

In particular φn = Θ(nα).

Proof. Let us prove the �rst two items and the third will follow analogously.
(1). By Lemma 4.3.3

Γ(j + θ)

Γ(j + θ + α)
≤ e

1
12(j+θ)

(
1 +

α

j + α+ θ

)1/2

(j + θ)−α ≤ 2(j + θ)−α.

then

1

φj
<

2Γ(1 + θ + α)

Γ(1 + θ) · (j + θ)1+α
.

(2). This part follows using the duplication property Γ(x+ 1) = xΓ(x) and the previous item and
the inequality

Γ(j + 1 + θ)

Γ(j + 1 + θ + α)
=

(j + θ)Γ(j + θ)

(j + θ + α)Γ(j + θ + α)
<

Γ(j + θ)

Γ(j + θ + α)
.

The next lemma provides similar bounds for the normalization factor ψn(k) whose de�nition
is recalled bellow.

ψn(k) =
Γ(k + θ)Γ(n− k + α+ θ)

Γ(α+ θ)Γ(n+ θ)
.

Lemma 4.3.7. For ψn(k) de�ned as above, the following bounds hold

1. ψn(k) ≤ 2Γ(k + θ)

Γ(α+ θ)

1

(n+ θ − k + α)k−α
, for n ≥ 2k;

2.
1

ψn(k)
≤ e

1
12 Γ(α+ θ)

Γ(k + θ)
(n+ θ)k−α

Proof. (1). By Lemma 4.3.3 we have

Γ(n− k + α+ θ)

Γ(n+ θ)
≤ e

1
12(n+θ−k+α)

(
1 +

k − α
n+ θ − k + α

)1/2
1

(n+ θ − k + α)k−α
.
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And for 2k ≤ n it follows that

Γ(n− k + α+ θ)

Γ(n+ θ)
≤ 2

(n+ θ − k + α)k−α
.

Then

ψn(k) ≤ 2Γ(k + θ)

Γ(α+ θ)

1

(n+ θ − k + α)k−α
.

2. Again, by Lemma 4.3.3 we have

Γ(n+ θ)

Γ(n− k + α+ θ)
≤ e

1
12(n+θ)

(
1− k − α

n+ θ

)1/2

(n+ θ)k−α ≤ e 1
12 (n+ θ)k−α

and the result follows from the previous inequality.

Lemma 4.3.8. For the ration of the factors φn and ψn(k) the following upper bound holds

φj
(ψj+1(k))2 · (j + θ)

≤ Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(k + θ)2
(j + θ)2k−α−1.

Proof. Using the de�nition of both factors, we have

φj
(ψj+1(k))2(j + θ)

=
Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(k + θ)2

Γ(j + θ)Γ(j − 1 + α+ θ)

Γ(j + 1− k + α+ θ)2
(j + θ)2(j + α+ θ)

and using the bounds on ratio of gamma functions in Lemma 4.3.3, we have

φj
(ψj+1(k))2 · (j + θ)

≤ e
1
12 Γ(1 + θ)Γ(α+ θ)2

Γ(1 + θ + α)Γ(k + θ)2
(j + θ)2k−α−1.
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