
A Splitting Strategy for the Calibration of

Jump-Diffusion Models

Vinicius Albani∗and Jorge P. Zubelli†

November 4, 2018

Abstract

We present a detailed analysis and implementation of a splitting strategy to identify
simultaneously the local-volatility surface and the jump-size distribution from quoted
European prices. The underlying model consists of a jump-diffusion driven asset with time
and price dependent volatility. Our approach uses a forward Dupire-type partial-integro-
differential equations for the option prices to produce a parameter-to-solution map. The
ill-posed inverse problem for such map is then solved by means of a Tikhonov-type convex
regularization. The proofs of convergence and stability of the algorithm are provided
together with numerical examples that substantiate the robustness of the method both
for synthetic and real data.

keywords: Jump-Diffusion Simulation, Partial Integro-Differential Equations, Finite Differ-
ence Schemes, Inverse Problems, Tikhonov-type regularization.

1 Introduction

Model selection and calibration is still one of the crucial problems in derivative trading and
hedging. From a mathematical view-point it should be treated as an ill-posed inverse problem
by suitable regularization as in the work of Engl et al. (1996) and Scherzer et al. (2008). The
subject is deeply connected to nonparametric statistics as described by Somersalo and Kapio
(2004). The problem of model selection and calibration has thus attracted the attention of
number of authors as can be seen in the book of Cont and Tankov (2003) and references
therein.

Amongst the most successful nonparametric approaches, the local volatility model of
Dupire (1994) has become one of the market’s standards. It consists in assuming that the
underlying price St satisfies a stochastic dynamics of the form

dSt = rStdt+ σ(t, St)dWt,

where Wt is the Wiener process under the risk-neutral measure and σ is the so-called local
volatility. Besides its intrinsic elegance and simplicity, Dupire’s model success is due to at least
two factors: Firstly, the existence of a forward partial differential equation (PDE) satisfied
by the price of call (or put) options when considered as functions of the strike price K and
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the time to expiration τ . Secondly, to the importance of having a backwards pricing PDE to
compute other (perhaps exotic) derivatives.

Yet, one of the main shortcomings of local volatility models is the fact that such models
are still diffusive ones. Thus, well-known stylized facts such as fat tails and jumps in the
log-returns become awkward to fit and justify (Cont and Tankov (2003)).

The present article is concerned with the calibration of jump-diffusion models with local
volatility. We make use of a fairly recent contribution to the literature, namely the existence
of a forward equation of Dupire’s type for such models present in Bentata and Cont (2015).
The availability of a forward equation, allows us, for each fixed time and underlying price,
to look at the option prices as a function of the time to expiration and the strike price.
Furthermore, by considering collected data from past underlying and derivative prices, we
can enrich our observed data and strive for better calibration prices.

Efforts to calibrate jump-diffusion models from option prices have been undertaken by a
number of authors either from a parametric and a nonparametric perspective. See Andersen
and Andreasen (2000), Cont and Tankov (2003) and Gatheral (2006). In this work, differently
from previous efforts, we focus on using Dupire’s forward equation, as generalized in the
work of Bentata and Cont (2015) and propose a splitting calibration methodology to recover
simultaneously the local volatility surface and the jump-size distribution. For a fixed dataset
of European vanilla option prices we calibrate, for example, the volatility surface for some
fixed jump-size distribution. Then, we find a new reconstruction of the jump-size distribution
for the volatility surface previously calibrated. We repeat these steps until a stopping criteria
for convergence is satisfied. The resulting pair of functional parameters is indeed a stable
approximation of the true local volatility surface and the jump-size distribution, whenever
they exist. It is important to mention that, the dataset used to identify this pair of functional
parameters is the same one used in Dupire’s local volatility calibration problem. No additional
data is required as it would be necessary if we wanted to calibrate both parameters at the same
time using standard regularization techniques (Engl et al. (1996)). The resulting methodology
is amenable to regularization techniques as those studied in Albani and Zubelli (2014) and
Albani et al. (2018). In particular, different a priori distributions could be used. As a
byproduct, we prove convergence estimates for the calibration of the jump-diffusion models
as the data noise decreases. We also obtain stable and robust calibration algorithms which
perform well either under real or synthetic data.

The plan for this work is the following: In Section 2 we set the notation and review
some basic facts, including the fundamental forward equation for jump-diffusion processes.
In Section 3 we discuss the main functional-analytic properties of the parameter to solution
map. Section 4 is concerned with the splitting strategy and the regularization of inverse
problems. In particular, we review the tangential cone condition and prove its validity under
certain assumptions in our context. This condition, in turn, ensures the convergence of
Landweber type methods. The results in this section are not specific to the jump-diffusion
model under consideration. Indeed, they apply to more general inverse problems, although,
to the best of our knowledge we have not seen presented in this form. In Section 5 we
compute the gradient of the nonlinear parameter-to-solution map, which is crucial for the
iterative methods. Section 6 is concerned with the numerical methods for the solution of
the calibration problem and its validation. Differently from Cont and Voltchkova (2005a;b),
we consider also the case where the jumps may be infinite. Section 7 presents a number of
numerical examples that validate the theoretical results and display the effectiveness of our
methodology. We close in Section 8 with some final remarks and suggestions for further work.
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2 Preliminaries

Let us consider the probability space (Ω,G,P) with a filtration {Ft}t≥0. Denote by St the
price at time t ≥ 0 of our underlying asset and assume that it satisfies

St = S0 +

∫ t

0
rSt′−dt

′ +

∫ t

0
σ(t′, St′−)St′dWt′+∫ t

0

∫
R
St′−(ey − 1)Ñ(dt′dy), 0 ≤ t ≤ T, (1)

where W is a Brownian motion, and Ñ is the compensated version of the Poisson probability
measure on [0, T ]×R, denoted by N , with compensator ν(dy)dt. See Cont and Tankov (2003).

Assume also that σ is positive and bounded from below and above by positive constants,
and the compensator ν satisfies ∫

|y|>1
e2yν(dy) <∞. (2)

Since σ is uniformly bounded and nonnegative, then, by setting t = 0 and denoting τ the
time to maturity and K the strike price, the seminal work of Bentata and Cont (2015) shows
that the price of an European call option on the asset in (1), defined by

C(τ,K) = e−rτE[max{0, Sτ −K}|F0],

is the unique solution in the sense of distributions of the partial integro-differential equation
(PIDE):

Cτ (τ,K)− 1

2
K2σ(τ,K)2CKK(τ,K) + rKCK(τ,K) =∫

R
ν(dz)ez

(
C(τ,Ke−z)− C(τ,K)− (e−z − 1)KCK(τ,K)

)
, (3)

with τ ≥ 0, K > 0, and the initial condition

C(0,K) = max{0, S0 −K}, K > 0. (4)

Since the diffusion coefficient in Equation (3) is unbounded and goes to zero as K → 0,
let us perform the change of variable y = log(K/S0) and define

a(τ, y) =
1

2
σ(τ, S0ey)2 and u(τ, y) = C(τ, S0ey)/S0.

So, denoting D = [0, T ]× R, the PIDE problem (3)-(4) becomes

uτ (τ, y)− a(τ, y) (uyy(τ, y)− uy(τ, y)) + ruy(τ, y) =∫
R
ν(dz)ez

(
u(τ, y − z)− u(τ, y)− (e−z − 1)uy(τ, y)

)
, (5)

with (τ, y) ∈ D, and the initial condition

u(0, y) = max{0, 1− ey}, y ∈ R. (6)
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Instead of using ν directly in the PIDE problem (5)-(6), we consider, as in Kindermann
and Mayer (2011), the double-exponential tail of ν

ϕ(y) = ϕ(ν; y) =

{ ∫ y
−∞(ey − ex)ν(dx), y < 0∫∞
y (ex − ey)ν(dx), y > 0,

(7)

and the convolution operator

Iϕf(y) := ϕ ∗ f(y) =

∫
R
ϕ(y − x)f(x)dx.

Applying Lemma 2.6 in Bentata and Cont (2015) to the integral part of the PIDE (5),∫
R
ν(dz)ez

(
u(τ, y − z)− u(τ, y)− (e−z − 1)uy(τ, y)

)
=

∫
R
ϕ(y − z)(uyy(τ, z)− uy(τ, z))dz. (8)

In what follows, we replace the integral part of the PIDE (5) by the right-hand side of (8).

Remark 1. Define g(τ, y) := max{0, 1 − ey}, so, by the definition of u, it follows that
u(τ, y) = ṽ(τ, y) + g(τ, y), where ṽ is the solution of the PIDE:

ṽτ = a (ṽyy − ṽy)− rṽy + Iϕ (b(ṽyy − ṽy)) +G (9)

with homogeneous boundary and initial conditions, where

G = a (gyy − gy)− rgy + Iϕ (b(gyy − gy)) ,

with gyy and gy weak derivatives of g.

By assuming that a ∈ CB(D) with ay ∈ L∞
(
[0, T ], L2(R)

)
and a(τ, y) ≥ c > 0, for

every (τ, y) ∈ D, and ν is a Lévy measure satisfying

∫
x≥1

xexν(dx) < ∞, Theorem 3.9 in

Kindermann and Mayer (2011) states the existence and uniqueness of ṽ. The proof that u is
a weak solution of the PIDE problem (5)-(6) is an easy adaptation of the proof of Theorem 3.9
in Kindermann and Mayer (2011). To see that, just replace the test functions in H1(R), by
test functions with compact support in C∞0 (D), as in Bentata and Cont (2015), and replace
ṽ by u− g.

Uniqueness of solution can also be proved by analytical methods as in Barles and Imbert
(2008); Garroni and Menaldi (2002) or by probabilistic arguments as in Theorem 2.8 in
Bentata and Cont (2015). An alternative proof is to consider the difference between two
different solutions of the PIDE problem (5)-(6). The resulting function is the solution of the
PIDE (9) with G ≡ 0. By Theorem 3.7 in Kindermann and Mayer (2011), the norm of the
solution of the PIDE (9) is dominated by the norm of G, which is zero. So, the difference is
also zero and uniqueness holds. Since v and g are continuous in D, it follows that u is also a
continuous function.

In Section 3 we give an alternative proof for the existence and uniqueness of a solution
of the PIDE problem (5)-(6) based on the classical theory of parabolic partial differential
equations. See Ladyzenskaja et al. (1968).
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3 The Parameter to Solution Map and its Properties

The goal of the present section is to show the well-posedness of the PIDE problem (5)-(6)
and some regularity properties of the parameter-to-solution map.

We make the following additional assumption:

Assumption 1. The restrictions of the double-exponential tail ϕ to the sets (−∞, 0) and
(0,+∞) are in the Sobolev spaces W 2,1(−∞, 0) and W 2,1(0,+∞), respectively.

W 2,1(−∞, 0) (respectively W 2,1(0,+∞)) is the Sobolev space of L1(−∞, 0) (respectively
L1(0,+∞)) functions such that its first and second weak derivatives are in L1(−∞, 0) (re-
spectively L1(0,+∞)).

The above assumption holds, for example, if we assume that the measure ν is such that
the functions x ∈ (−∞, 0) 7→ ν((−∞, x]) and x ∈ (0,+∞) 7→ ν([x,+∞)) are continuous.

We recall, that the set of non-negative non-increasing functions has a nonempty interior
in W 2,1(0,+∞) as well as the set of non-negative non-decreasing functions in W 2,1(−∞, 0).
This is of particular importance since we need to show that the direct operator has a Frechét
derivative.

In order to define the domain of the direct operator in the Banach space

X = H1+ε(D)×W 2,1(−∞, 0)×W 2,1(0,+∞),

let 0 < a ≤ a <∞ be fixed constants and a0 : D → (a, a) be a fixed continuous function such
that its weak derivatives with respect to τ and y are in L2(D).

D(F ) = {(ã, ϕ−, ϕ+) ∈ X : let a = ã+ a0, be s.t. a ≤ a ≤ a,
let ϕ be s.t., ϕ = ϕ− in (−∞, 0) and ϕ = ϕ+ in (0,+∞)}

It is easy to see that ϕ ∈ L1(R).
For simplicity, in what follows we shall write (a, ϕ) ∈ D(F ), meaning that a and ϕ are

given as in the definition of D(F ).

Proposition 1. Let (a, ϕ) be in D(F ), in addition, assume that ‖ϕ‖L1(R) < C−1, where the
constant C depends on a, a and r. Then, there exists a unique solution of the PIDE problem
(5)-(6) in W 1,2

2,loc(D).

Proof. The existence and uniqueness proof follows by a fixed point argument. Given (a, ϕ) in
D(F ) and f ∈ L2(D), define the operatorG that associates each v ∈W 1,2

2 (D) to w ∈W 1,2
2 (D),

solution of
wτ = a(wyy − wy)− rwy + Iϕ(vyy − vy) + f (10)

with homogeneous boundary conditions. By Young’s inequality, Iϕ(vyy − vy) ∈ L2(D). So,
by Proposition A.1 in Egger and Engl (2005), it follows that the PDE problem (10) has a
unique solution and ‖w‖

W 1,2
2 (D)

≤ C‖Iϕ(vyy − vy) + f‖L2(D). Again, by Young’s inequality,

‖Iϕ(vyy − vy)‖L2(D) ≤ ‖ϕ‖L1(R)‖vyy − vy‖L2(D) ≤ ‖ϕ‖L1(R)‖v‖W 1,2
2 (D)

. Since ‖ϕ‖L1(R) < C−1,

it follows that, for any v ∈ W 1,2
2 (D) with v 6= 0, ‖w‖

W 1,2
2 (D)

< ‖v‖
W 1,2

2 (D)
+ C‖f‖L2(D). Let

us see that G is a contraction. For any v1, v2 ∈ W 1,2
2 (D), set w1 = G(v1), w2 = G(v2) and

w = w1 − w2. It follows that w is the solution of (10) with f = 0 and ‖w1 − w2‖W 1,2
2 (D)

<

5



‖v1 − v2‖W 1,2
2 (D)

. So, G is indeed a contraction in W 1,2
2 (D) and has a unique fixed point w̃,

which is the unique solution of

w̃τ = a(w̃yy − w̃y)− rw̃y + Iϕ(w̃yy − w̃y) + f, (11)

with homogeneous boundary conditions.
Any solution u of the PIDE problem (5)-(6) can be written as u = w̃ + ũ, where w̃ is the

solution of the PIDE problem (11) with f = −Iϕ(ũyy − ũy) and ũ the solution of (10) with
ϕ = 0, f = 0 and the same boundary and initial conditions as the PIDE problem (5)-(6).
The existence and uniqueness of ũ ∈ W 1,2

2,loc(D) is guaranteed by Corollary A.1 in Egger and
Engl (2005). Therefore, the assertion follows.

Remark 2. Since w̃ in the above proof is a fixed point of G, it satisfies the inequality

‖w̃‖
W 1,2
p (D)

≤ C
(
‖ϕ‖L1(R)‖w̃‖W 1,2

p (D)
+ ‖f‖L2(D)

)
.

Assuming further that ‖ϕ‖L1(R) ≤ K/C with the constant 0 < K < 1, we have that

‖w̃‖
W 1,2
p (D)

≤ C

1−K
‖f‖L2(D). (12)

Definition 1. The direct operator F : D(F ) → W 1,2
2 (D) associates (ã, ϕ−, ϕ+) to u(a, ϕ) −

u(a0, 0), where u(a, ϕ) is the solution of the PIDE problem (5)-(6), with (a, ϕ) in D(F ).
In other words, F (ã, ϕ−, ϕ+) is the solution of the PIDE problem (11) with homogeneous
boundary condition and f = −Iϕ(u(a0, 0)yy − u(a0, 0)y).

Lemma 1. For any (a, ϕ) given by D(F ), u(a, ϕ) solution of the PIDE problem (5)-(6)
satisfies

‖u(a, ϕ)yy − u(a, ϕ)y‖L2(D) ≤
C

1−K
, (13)

with C and K depending on the bounds of the coefficients a and ϕ.

Proof. By Corollary A.1 in Egger and Engl (2005), ‖u(a0, 0)yy−u(a0, 0)y‖L2(D) < C for some

constant C, and since u(a, ϕ)− u(a0, 0) ∈W 1,2
2 (D) for any (a, ϕ) ∈ D(F ), it follows that

‖u(a, ϕ)yy − u(a, ϕ)y‖L2(D) = ‖u(a, ϕ)yy − u(a, ϕ)y ± (u(a0, 0)yy − u(a0, 0)y)‖L2(D)

≤ ‖(u(a, ϕ)− u(a0, 0))yy − (u(a, ϕ)− u(a0, 0))y‖L2(D) + ‖u(a0, 0)yy − u(a0, 0)y‖L2(D).

By Equation (12) and Corollary A.1 in Egger and Engl (2005),

‖(u(a, ϕ)− u(a0, 0))yy − (u(a, ϕ)− u(a0, 0))y‖L2(D) ≤ ‖u(a0, ϕ)− u(a0, 0)‖
W 1,2

2 (D)

≤ C

1−K
‖ϕ‖L1(R)‖u(a0, 0)yy − u(a0, 0)y‖L2(D).

Since ‖ϕ‖L1(R) ≤ K/C, it follows that

‖u(a, ϕ)yy − u(a, ϕ)y‖L2(D) ≤
C

1−K
,

for any (a, ϕ) given by D(F ).
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We can now state the following:

Proposition 2. The map F : D(F )→W 1,2
2 (D) is continuous.

Proof. Let the sequence {(ã, ϕ−,n, ϕ+,n)}n∈N in D(F ) converge to (ã, ϕ−, ϕ+). We must show
that ‖F (ã, ϕ−,n, ϕ+,n)− F (ã, ϕ−, ϕ+)‖ → 0. Define

wn := F (ã, ϕ−,n, ϕ+,n)− F (ã, ϕ−, ϕ+) = u(an, ϕn)− u(a, ϕ).

By the linearity of the PIDE problem (5)-(6), wn is the solution of the PIDE problem (11)
with a and ϕ replaced by an and ϕn, respectively, homogeneous boundary conditions and

fn = (an − a)(u(a, ϕ)yy − u(a, ϕ)y)− Iϕn−ϕ(u(a, ϕ)yy − u(a, ϕ)y).

So, by the estimate (12) and Young’s inequality for convolutions,

‖wn‖W 1,2
2 (D)

≤ C

1−K
‖(an − a)(u(a, ϕ)yy − u(a, ϕ)y)− Iϕn−ϕ(u(a, ϕ)yy − u(a, ϕ)y)‖L2(D)

≤ C

1−K
(
‖(an − a)(u(a, ϕ)yy − u(a, ϕ)y)‖L2(D)+

‖ϕn − ϕ‖L1(R)‖u(a, ϕ)yy − u(a, ϕ)y)‖L2(D)

)
By the Sobolev embedding (see Theorem 7.75 in Iorio and Iorio (2001)), it follows that

‖(an − a)(u(a, ϕ)yy − u(a, ϕ)y)‖L2(D) ≤ ‖an − a‖L∞(D)‖u(a, ϕ)yy − u(a, ϕ)y‖L2(D)

≤ c‖an − a‖H1+ε(D)‖u(a, ϕ)yy − u(a, ϕ)y‖L2(D)

The above estimate and Equation (13) imply that

‖(an − a)(uyy − uy)‖L2(D) + ‖ϕn − ϕ‖L1(R)‖uyy − uy‖L2(D)

≤ C̃

1−K
(
‖an − a‖H1+ε(D) + ‖ϕn − ϕ‖L1(R)

)
Summarizing,

‖wn‖W 1,2
2 (D)

≤

(
C̃

1−K

)2 (
‖an − a‖H1+ε(D) + ‖ϕn − ϕ‖L1(R)

)
,

and the assertion follows.

Proposition 3. The map F : D(F )→W 1,2
2 (D) is weakly continuous and compact.

Proof. Let the sequence {(ãn, ϕ−,n, ϕ+,n)}n∈N in D(F ) converge weakly to (ã, ϕ−, ϕ+). Pro-
ceeding as in the proof of Proposition 2 define

wn := F (ãn, ϕ−,n, ϕ+,n)− F (ã, ϕ−, ϕ+) = u(an, ϕn)− u(a, ϕ).

So it satisfies the PIDE (11) with a and ϕ replaced by an and ϕn, respectively, and homoge-
neous boundary condition. Furthermore, it satisfies

‖wn‖W 1,2
2 (D)

≤ C

1−K
(
‖(an − a)(u(a, ϕ)yy − u(a, ϕ)y)‖L2(D)

+ ‖Iϕn−ϕ(u(a, ϕ)yy − u(a, ϕ)y)‖L2(D)

)
. (14)
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We shall prove that each of the two terms on the RHS of Equation (14) goes to zero as n→∞.
In either case, we decompose the set D as the disjoint union D = DM ∪Dc

M , where

DM = [0, T ]× [−M,M ],

with M > 0. Concerning the first term on the RHS of Equation (14), we have by Sobolev’s
embedding that

‖(an − a)(uyy − uy)‖L2(D) = ‖(an − a)(uyy − uy)‖L2(DM ) + ‖(an − a)(uyy − uy)‖L2(DcM )

≤ ‖an − a‖H1+ε/2(DM )‖uyy − uy‖L2(DM ) + ‖an − a‖H1+ε/2(DcM )‖uyy − uy‖L2(DcM ) (15)

By the compact immersion ofH1+ε(DM ) into H1+ε/2(DM ) we have that weakly convergent se-
quences of H1+ε(DM ) are sent into norm convergent ones in H1+ε/2(DM ) (Proposition IV.4.4
in Taylor (2011)). Thus, ‖an− a‖H1+ε/2(DM ) → 0. Now, we recall that ‖uyy − uy‖L2(DcM ) → 0
as M → +∞. To see that the RHS of Inequality (15) goes to zero, note that, given η > 0, for
a sufficiently large M , ‖an−a‖H1+ε/2(DcM )‖uyy−uy‖L2(DcM ) < η/2, since ‖an−a‖H1+ε/2(DcM ) is

dominated by ‖an − a‖H1+ε/2(D), which is uniformly bounded. In addition, ‖uyy − uy‖L2(DM )

is bounded by ‖uyy−uy‖L2(D), which is finite. Thus, for all sufficiently large n ∈ N, and with
the same M of the previous estimate, ‖an − a‖H1+ε/2(DM )‖uyy − uy‖L2(DM ) < η/2.

Concerning the convergence of the second term in Equation (14), by Jensen’s inequality,
we have that

‖Iϕn−ϕ(u(a, ϕ)yy − u(a, ϕ)y)‖2L2(D)

≤ ‖ϕn − ϕ‖L1(R)

∫
D

∫
R
|ϕn(x− y)− ϕ(x− y)|(uyy(τ, y)− uy(τ, y))2dydτdx.

So, breaking it into the following two integrals we get∫
D

∫
R
|ϕn(x− y)− ϕ(x− y)|(uyy(τ, y)− uy(τ, y))2dydτdx

=

∫
DcM

∫
R
|ϕn(y)− ϕ(y)|(uyy(τ, x− y)− uy(τ, x− y))2dydτdx

+

∫
DM

∫
R
|ϕn(x− y)− ϕ(x− y)|(uyy(τ, y)− uy(τ, y))2dydτdx =: I1 + I2.

The integral I1 goes to zero by the dominated convergence theorem as M →∞ (Theorem 1.50
in Adams and Fournier (2003)). By Fubini’s Theorem, it follows that

I2 =

∫
D

(uyy(τ, y)− uy(τ, y))2

∫
|x|≤M

|ϕn(x− y)− ϕ(x− y)|dxdτdy

For almost every y ∈ R, the Rellich-Kondrachov theorem (Part II of Theorem 6.3 in Adams
and Fournier (2003)) implies that

∫
|x|≤M |ϕn(x − y) − ϕ(x − y)|dx goes to zero. Just recall

that ϕ|(−∞,0) ∈W 2,1(−∞, 0) and ϕ|(0,+∞) ∈W 2,1(0,+∞). By the estimate

I2 ≤ ‖ϕn − ϕ‖L1(R)‖uyy − uy‖2L2(D) ≤
2KC

(1−K)2
,

we can apply the dominated convergence theorem to get that I2 goes to zero as n → ∞, for
each fixed M . Therefore, ‖wn‖W 1,2

2 (D)
→ 0 and the assertion follows.
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We formally define the derivative of F and then we show that it is in fact the Frechét
derivative of F .

Definition 2. The derivative of F at (a, ϕ) in the direction h = (h1, h2) ∈ X, such that
(a+h1, ϕ+h2) ∈ D(F ), is the solution of the PIDE problem (11) with homogeneous boundary
condition and

f = h1(u(a, ϕ)yy − u(a, ϕ)y)− Ih2(u(a, ϕ)yy − u(a, ϕ)y),

where u(a, ϕ) denotes the solution of the PIDE problem (5)-(6). Such derivative is denoted
by F ′(a, ϕ)h or u′(a, ϕ)h, and is in W 1,2

2 (D).

Remark 3. By the proof of Proposition 1, for any h1 ∈ H1+ε(D) and any h2 ∈ L1(R) the
PIDE problem of the definition above still has a solution in W 1,2

2 (D). In addition, such PIDE
problem is linear with respect to h = (h1, h2) ∈ X. So, for every (a, ϕ) ∈ D(F ), h 7→ F ′(a, ϕ)h
is a linear and bounded map from X to W 1,2

2 (D), satisfying

‖F ′(a, ϕ)h‖ ≤
(

C

1−K

)2

‖h‖X . (16)

Proposition 4. The map F : D(F )→W 1,2
2 (D) is Frechét differentiable and satisfies

‖F (a+ h1, ϕ+ h2)− F (a, ϕ)− F ′(a, ϕ)h‖
W 1,2

2 (D)

≤ C

1−K
‖h‖X‖F (a+ h1, ϕ+ h2)− F (a, ϕ)‖

W 1,2
2 (D)

, (17)

for any (a, ϕ) ∈ D(F ) and any h = (h1, h2) ∈ X, such that (a+ h1, ϕ+ h2) ∈ D(F ).

Proof. Let (a, ϕ) ∈ D(F ) be fixed and h = (h1, h2) ∈ X be such that (a+h1, ϕ+h2) ∈ D(F ).
Define

w = F (a+ h1, ϕ+ h2)− F (a, ϕ)− F ′(a, ϕ)h.

and v = F (a+h1, ϕ+h2)−F (a, ϕ). By the linearity of the PIDE problems (5)-(6) and (11),
w is the solution of the PIDE problem (11), with homogeneous boundary conditions and

f = −h1(vyy − vy) + Ih2(vyy − vy).

So, w satisfies the estimate

‖w‖
W 1,2

2 (D)
≤ C

1−K
‖ − h1(vyy − vy) + Ih2(vyy − vy)‖L2(D) .

By the triangle inequality, Young’s inequality for the convolution and Sobolev’s embedding’s
theorem, it follows that

‖ − h1(vyy − vy) + Ih2(vyy − vy)‖L2(D) ≤ ‖vyy − vy‖L2(D)

(
‖h1‖H1+ε(D) + ‖h2‖L1(R)

)
≤ ‖v‖

W 1,2
2 (D)

‖h‖X ,

and the asserted estimate holds.
The set D(F ) has a nonempty interior, h 7→ F ′(a, ϕ)h is a bounded linear map from X to

W 1,2
2 (D), and the estimate (17) implies that

lim
‖h‖X→0

‖F (a+ h1, ϕ+ h2)− F (a, ϕ)− F ′(a, ϕ)h‖
W 1,2

2 (D)

‖h‖X
= 0 .

Thus, F is Frechét differentiable.
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4 Splitting Strategy and Regularization

In this section, under an abstract setting, we consider a Tikhonov-type regularization of the
simultaneous calibration of two parameters from a set of observations. A splitting strategy
is used to solve the resulting minimization problem. Results concerning the convergence of
this approach to an approximate solution of the inverse problem are provided. They rely
on certain assumptions which will be shown to hold for the calibration problem at hand of
jump-diffusion local volatility models.

4.1 Tikhonov-type Regularization

Firstly, let us introduce some basic notions of Tikhonov-type regularization. This method-
ology has been used extensively for the solution of ill-posed inverse problems. See Scherzer
et al. (2008) and Engl et al. (1996) for more details.

Consider the map F : D(F ) ⊂ X → Y between two Banach spaces X and Y . Given ỹ in
the range of F , R(F ), find some x ∈ D(F ) solution of the equation:

ỹ = F (x). (18)

Since there may be more than one element in D(F ) solving (18), it is common to search for a
solution x† that minimizes some convex functional fx0 : D(fx0) ⊂ X → R+, which is related
to some a priori information. So,

x† ∈ argmin {fx0(x) : x ∈ D(F ) and F (x) = ỹ} ,

and is so-called a fx0-minimizing solution.
In general, it is not possible to have access to the data ỹ in R(F ), but only some imperfect

approximation yδ ∈ Y satisfying
‖P ỹ − yδ‖Y ≤ δ, (19)

where δ > 0 is the noise level and P : Y → Y is a projection onto some subspace of Y , where
yδ is defined. For example, P can define the observation of y in some discrete mesh.

Since the inverse problem (18) can be ill-posed, Tikhonov-type regularization is applied,
i.e., we must find an element of D(F ) that minimizes the (Tikhonov-type) functional:

F(x) = φ(x) + αfx0(x), (20)

where
φ(x) = ‖F (x)− yδ‖pY (21)

is the data misfit or merit function, and α > 0 is a constant so-called regularization parameter.
The penalization fx0 is called the regularization functional. The minimizers of (20) in D :=
D(F ) ∩ D(fx0) are called Tikhonov minimizers or reconstructions, and are denoted by xδα.

The framework of convex regularization will now be used. See Scherzer et al. (2008) for
more information. In what follows, we shall need:

Assumption 2 (Assumption 3.13 in Scherzer et al. (2008)). Let us assume that

1. The topologies TX and TY associated to X and Y , respectively, are weaker than the
corresponding norm topologies.
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2. The exponent in Equation (21) satisfies p ≥ 1.

3. The norm of Y is sequentially lower semi-continuous with respect to TY .

4. fx0 is convex and continuous with respect to TX .

5. The objective set satisfies D 6= ∅, and D has a nonempty interior.

6. For every α > 0 and M > 0 the level set

Mα(M) := {x ∈ D : F(x) ≤M}

is sequentially pre-compact with respect to TX .

7. For every α > 0 and M > 0 the level set Mα(M) is sequentially closed w.r.t. TX and
the restriction of F to Mα(M) is sequentially continuous w.r.t. TX and TY .

By Assumption 2, the existence of stable Tikhonov minimizers is guaranteed by Theo-
rems 3.22 and 3.23 in Scherzer et al. (2008). If the inverse problem in (18) has a solution, then,
also based on Assumption 2, Theorem 3.25 in Scherzer et al. (2008) says that there exists
an fx0-minimizing solution of (18) and Theorem 3.26 states the convergence of a sequence of
Tikhonov minimizers to an fx0-minimizing solution whenever δ → 0 and α = α(δ) satisfies
the limits:

lim
δ→0

α(δ) = 0 and lim
δ→0

δp

α(δ)
= 0. (22)

4.2 A Splitting Strategy Algorithm

The presence of jumps together with the diffusive parts motivates separating the regularization
into two parts. In this section we shall now describe such approach in the general framework
of convex regularization.

Let X be given by X := W × Z, where W and Z are Banach spaces. Consider TW and
TZ two topologies of W and Z, respectively, which are assumed to be weaker than the norm
topologies of each of the corresponding spaces. So, X will be endowed with two natural
topologies: The norm ‖(w, z)‖X = ‖w‖W + ‖z‖Z and the product topology TX := TW × TZ
which is weaker than the norm topology. Consider again the operator F : D(F ) ⊂ X → Y ,
where F (x) = F (w, z).

The penalty term in (20) can be rewritten as

αfx0(x) = αfx0(w, z) = αβ1gw0(w) + αβ2hz0(z) = α1gw0(w) + α2hz0(z), (23)

where αj = α · βj with βj ≥ 0, j = 1, 2, and the functionals gw0 and hz0 are convex and
continuous w.r.t. TW and TZ , respectively. So, the Tikhonov-type functional now reads:

F(w, z) = φ(w, z) + α1gw0(w) + α2hz0(z). (24)

Let us assume that Assumption 2 holds. Thus, if α1, α2 > 0, F(w, z) has minimizers in
D. Since the norm topology of X and TX are defined by the products of the norm topologies
of W and Z, and TW and TZ , respectively, the projection operators PW : (w, z) 7→ w and
PZ : (w, z) 7→ z are continuous with respect to the norm topologies of X, W and Z and to
TX , TW and TZ .

11



For each z ∈ Z, define the operator Fz : PW (D) ⊂ W → Y as Fz(w) = F (w, z), the
Tikhonov-type functional Fz(w) = F(w, z), and the set Dz = PW (D) × {z}. Similarly Fw,
Fw and Dw are defined.

Assume also that Items 5, 6 and 7 in Assumption 2 remain valid whenever D is replaced
by PW (D) or PZ(D), F by Fw or Fz and F by Fw or Fz. In this case, Theorems 3.22 and
3.23 in Scherzer et al. (2008) guarantee the existence of stable Tikhonov minimizers of Fw
and Fz, for each w ∈ PW (D) and z ∈ PZ(D).

Our approach is to split the iteration so that at each step the jump and the diffusive
component are updated successively. More precisely, For any w ∈ PW (D) (or z ∈ PZ(D)), set
w0 = w (z0 = z) and consider the iterations with n ∈ N:

zn ∈ argmin {Fwn−1(z) : z ∈ PZ(D)}
wn ∈ argmin {Fzn(w) : w ∈ PW (D)} . (25)

Repeat the iterations until some termination criteria.
If the algorithm starts with z instead of w, the order of the two iterations must be reversed.

Definition 3. A stationary point of the functional F is some point x̂ = (ŵ, ẑ) ∈ D, such that

ŵ ∈ argmin{Fẑ(w) : w ∈ PW (D)} and ẑ ∈ argmin{Fŵ(z) : z ∈ PZ(D)}.

In what follows we shall assume the continuity of F with respect to TX . This holds, for
example, if F and fx0 are TX -continuous. This hypothesis is necessary in the proof of the
following proposition.

Proposition 5. For every initializing pair (w, z) ∈ D, any convergent subsequence produced
by the algorithm of Equation (25) converges to some stationary point of F .

Proof. Consider the sequence {(wn, zn)}n∈N defined by the iterations in (25). By construc-
tion, the sequence {F(wn, zn)}n∈N is non-increasing and bounded, and thus it converges. In
addition, {(wn, zn)}n∈N is a subset of some level set Mα(M), which is TX -pre-compact by
Item 6 in Assumption 2. For every cluster point (w, z) of {(wn, zn)}n∈N, F(w, z) ≤ F(wn, zn)
for all n ∈ N.

Given w ∈ PW (D), it follows that F(w, z) = limk→∞F(w, znk) by the TX -continuity of
F , since the subsequence {(wnk , znk)}k∈N converges to (w, z) w.r.t TX . So, for each k ∈ N,

F(w, znk) ≥ F(wnk+1, znk),

because wnk+1 is a minimizer of Fznk . Applying more steps of the algorithm of Equation (25),
it follows that

F(wnk+1, znk) ≥ F(wnk+1, znk+1) ≥ · · · ≥ F(wnk+1 , znk+1).

So, F(w, znk) ≥ F(wnk+1 , znk+1). In addition, for every k ∈ N,

F(wnk , znk) ≥ F(w, z).

Hence, w is a minimizer of Fz. To see that z is a minimizer of Fw, note that, for any
z ∈ PZ(D, F(w, z) = limk→∞F(wnk , z). Since znk is a minimizer of Fwnk , it follows that,
F(wnk , z) ≥ F(wnk , znk). By the fact that F(wnk , znk) ≥ F (w, z), for every k ∈ N, the
assertion follows.
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Denote the stationary point obtained with Algorithm (25) by (wδα, z
δ
α). Note that a sta-

tionary point need not to be a Tikhonov minimizer, since, in principle, it can be a saddle point.
However, we shall see in Proposition 8 that such stationary point is indeed an approximation
of the inverse problem solution.

Remark 4. Recall the definition of the sub-differential of a convex function f : D(f) ⊂ X →
R at the point x ∈ D(f), with X a Banach space, which is the set ∂f(x) of elements x∗ in
the dual space X∗ satisfying

f(x)− f(x)− 〈x∗, x− x〉 ≥ 0 ∀x ∈ D(f).

If w 7→ φ(w, z) and z 7→ φ(w, z) are Frechét differentiable, it follows that, for each w and z,

∂Fz(w) =

{
∂

∂w
φ(w, z)

}
+ α1∂gw0(w) and ∂Fw(z) =

{
∂

∂z
φ(w, z)

}
+ α2∂hz0(z).

Moreover, φ is also Frechét differentiable and

∂F(w, z) =

{(
∂

∂w
φ(w, z),

∂

∂z
φ(w, z)

)}
+ {α1∂gw0(w)} × {α2∂hz0(z)}.

For a proof of Remark 4, see Item (c) of Exercise 8.8 and Proposition 10.5 in Rockafellar
and Wets (2009). So, if 0 ∈ ∂Fw(z) and 0 ∈ ∂Fz(w), then 0 ∈ ∂F(w, z).

Let (w, z) denote the stationary point obtained with the algorithm of Equation (25), this
means that w is a local minimum of Fz and z is a local minimum of Fw. By Theorem 10.1 in
Rockafellar and Wets (2009), 0 ∈ ∂Fw(z) and 0 ∈ ∂Fz(w). So, 0 ∈ ∂F(w, z). If, in addition,
F is convex, then, (w, z) is a Tikhonov minimizer.

Definition 4. A stationary point (w, z) with data yδ is stable, if for every sequence {yk}k∈N ⊂
Y such that yk → yδ in norm, then, {(wk, zk)} ⊂ D, the sequence of solutions obtained with
the algorithm of Equation (25) considering the data yk for each k ∈ N has a TX-convergent
subsequence. In addition, the limit of every TX-convergent subsequence {(wkl , zkl)} is a sta-
tionary point of the Tikhonov functional F with data yδ.

Proposition 6. The stationary point obtained by the algorithm of Equation (25) is stable.

Proof. Consider the sequences {yk}k∈N ⊂ Y and {(wk, zk)} ⊂ D as in Definition 4. Firstly,
it is necessary to prove that {(wk, zk)} ⊂ D has a convergent subsequence. By Lemma 3.21
in Scherzer et al. (2008),

F(wk, zk; yδ) ≤ 2p−1F(wk, zk; yk) + 2p−1‖yk − yδ‖p.

The sequence {yk}k∈N converges to yδ, so ‖yk − yδ‖p is uniformly bounded in k. In addition,
if we assume further that, for each yk, the algorithm of Equation (25) is initialized with the
same (w0, z0), it follows that

F(wk, zk; yk) ≤ F(w0, z0; yk),

and applying Lemma 3.21 in Scherzer et al. (2008) again,

F(w0, z0; yk) ≤ 2p−1F(w0, z0; yδ) + 2p−1‖yk − yδ‖p.
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By the estimates above,

F(wk, zk; yδ) ≤ 4p−1F(w0, z0; yδ) + (4p−1 + 2p−1)‖yk − yδ‖p,

which implies that {(wk, zk)}k∈N is a subset of some level set of F(·, ··; yδ). Item 6 in As-
sumption 2 implies that such level set is TX -pre-compact, and the assertion follows.

Suppose with no loss of generality that {(wk, zk)} converges to (w̃, z̃), w.r.t. TX . For
every w ∈ PW (D), since wk is in argminFzk;yk

(w),

F(w̃, z̃; yδ) ≤ lim inf
k→∞

F(wk, zk; yk) ≤ lim
k→∞

F(w, zk, yk) = F(w, z̃; yδ).

So, w̃ is in argminFz̃;yδ(w). Similarly, it follows that z̃ is in argminFw̃;yδ(z) and the assertion
follows.

Since the stationary point obtained by the algorithm in Equation (25) is determined w.r.t
yδ and the regularization parameters α1 and α2, let us denote it by (wδα1,α2

, zδα1,α2
). Let us

also denote by x† = (w†, z†) an fx0-minimizing solution of the inverse problem in (18), and
by ỹ the noiseless data in (18).

Tangential Cone Condition Now, we show that the tangential cone condition is a suf-
ficient condition for the splitting strategy algorithm of Equation (25) to converge to some
approximation of an f0-minimizing solution of the inverse problem (18).

Assumption 3. Let the operator F be Fréchet differentiable on each variable w and z, so it
is Fréchet differentiable and its Fréchet derivative satisfies

F ′(x) = (∂wF (w, z), ∂zF (w, z)).

In addition, there exist positive constants r > 0 and 0 ≤ η < 1/2 such that, if x, x̃ are in the
ball B(x∗; r), centered at x∗ with radius r, then the tangential cone condition is satisfied:

‖F (x̃)− F (x)− F ′(x)(x̃− x)‖ ≤ η‖F (x̃)− F (x)‖.

So, we can state the following result:

Proposition 7. Let Assumptions 2 and 3 hold. If the initializing pair and x† are inside the
ball B(x∗; r) and λ > (1 + η)/(1− η) is fixed, then, for any pair of regularization parameters
(α1, α2) with sufficiently small entries, there exists some finite n = n(α1, α2) such that the
iterates of the splitting algorithm satisfy

‖F (wn, zn)− yδ‖Y ≥ λδ > ‖F (wn+1, zn+1)− yδ‖Y . (26)

Proof. By Proposition 5, the splitting algorithm converges to (wδα1,α2
, zδα1,α2

), a stationary
point of the functional in (24). Since the operator F is Fréchet differentiable, by Remark 4,
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zero is in the sub-differential of F at (wδα1,α2
, zδα1,α2

). In other words, there exists γ ∈ ∂gw0(w)
and β ∈ ∂hz0(z), such that

0 =

(
∂

∂w
φ(wδα1,α2

, zδα1,α2
),
∂

∂z
φ(wδα1,α2

, zδα1,α2
)

)
+ (α1γ, α2β) =

F ′(xδα1,α2
)∗J(F (xδα1,α2

)− yδ) + (α1γ, α2β),

where J : Y → Y ∗ is the duality map, and xδα1,α2
= (wδα1,α2

, zδα1,α2
). See Margotti and Rieder

(2014) and Chapter II in Cioranescu (1990) for more details on duality maps. Applying
xδα1,α2

− x† on both sides of the above equality, we have:

α1〈γ,w† − wδα1,α2
〉+ α2〈β, z† − zδα1,α2

〉 = 〈J(F (xδα1,α2
)− yδ), F ′(xδα1,α2

)(xδα1,α2
− x†)〉.

Note that,

〈J(F (xδα1,α2
)− yδ), F ′(xδα1,α2

)(xδα1,α2
− x†)〉 =

‖F (xδα1,α2
)− yδ‖p − 〈J(yδ − F (xδα1,α2

)), yδ − F (xδα1,α2
)− F ′(xδα1,α2

)(x† − xδα1,α2
)〉 ≥

‖F (xδα1,α2
)− yδ‖p − ‖F (xδα1,α2

)− yδ‖p−1‖yδ − F (xδα1,α2
)− F ′(xδα1,α2

)(x† − xδα1,α2
)‖ ≥

‖F (xδα1,α2
)− yδ‖p+

− ‖F (xδα1,α2
)− yδ)‖p−1

(
δ + ‖F (x†)− F (xδα1,α2

)− F ′(xδα1,α2
)(x† − xδα1,α2

)‖
)
≥

‖F (xδα1,α2
)− yδ‖p − ‖F (xδα1,α2

)− yδ‖p−1
(
δ + η‖F (x†)− F (xδα1,α2

)‖
)
≥

‖F (xδα1,α2
)− yδ‖p − ‖F (xδα1,α2

)− yδ‖p−1
(

(1 + η)δ + η‖yδ − F (xδα1,α2
)‖
)
.

Let us assume, by contradiction, that there is no α1, α2 > 0 such that φ(wδα1,α2
, zδα1,α2

) < λpδp.
So, by the above estimates and assuming that λ > (1 + η)/(1− η), it follows

α1〈γ,w† − wδα1,α2
〉+ α2〈β, z† − zδα1,α2

〉 ≥

‖F (xδα1,α2
)− yδ‖p − ‖F (xδα1,α2

)− yδ)‖p−1
(

(1 + η)δ + η‖yδ − F (xδα1,α2
)‖
)
≥

‖F (xδα1,α2
)− yδ‖p

(
1− η − 1 + η

λ

)
≥ (λδ)p

(
1− η − 1 + η

λ

)
.

Since gw0 and hz0 are convex,

α1(gw0(w†)−gw0(wδα1,α2
))+α2(hz0(z†)−hz0(zδα1,α2

)) ≥ α1〈γ,w†−wδα1,α2
〉+α2〈β, z†−zδα1,α2

〉.

Summarizing,

α1(gw0(w†)− gw0(wδα1,α2
)) + α2(hz0(z†)− hz0(zδα1,α2

)) ≥ (λδ)p
(

1− η − 1 + η

λ

)
, (27)

and the right-hand side of the inequality (27) is positive. Since α1, α2 > 0, by the estimate
above, gw0(w†)−gw0(wδα1,α2

) ≥ 0 and hz0(z†)−hz0(zδα1,α2
) ≥ 0. If K = max{gw0(w†), hz0(z†)},

then,
2(α1 + α2)K ≥ α1(gw0(w†)− gw0(wδα1,α2

)) + α2(hz0(z†)− hz0(zδα1,α2
)).
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Hence, we can find α1, α2 > 0 such that the left-hand side of (27) becomes smaller than the
right-hand side, which is a contradiction. Therefore, there must exist α+

1 , α
+
2 > 0 such that

φ(wδ
α+

1 ,α
+
2
, zδ
α+

1 ,α
+
2

) < (λδ)p ,

for each fixed λ > (1 + η)/(1 − η). By the continuity of φ(·, ··) with respect to the norm
topology of X and to the topology TX the existence of some finite iterate number n holds.
To see that this also holds for any sufficiently small regularization parameters α1, α2, just
note that, by the same arguments above, there is no sequence {αn1 , αn2}n∈N, of regularization
parameters with αn1 , α

n
2 ↘ 0, such that φ(wδαn1 ,αn2

, zδαn1 ,αn2
) ≥ λpδp for every n ∈ N. So, there

must be α+
1 , α

+
2 > 0, such that, for any α1 ∈ (0, α+

1 ) and α2 ∈ (0, α+
2 ). It follows that

φ(wδα1,α2
, zδα1,α2

) < λpδp.

As a corollary of the proof above, we have the following estimate:

(1− η)‖F (wδα1,α2
, zδα1,α2

)− yδ‖p − (1 + η)δ‖F (wδα1,α2
, zδα1,α2

)− yδ‖p−1

≤ α1

[
gw0(w†)− gw0(wδα1,α2

)
]

+ α2

[
hz0(z†)− hz0(wδα1,α2

)
]
. (28)

The following proposition states that the algorithm of Equation (25) produces a stable
approximation of the solution of the inverse problem in (18).

Proposition 8. If Assumptions 2 and 3 hold and the regularization parameters satisfy

lim
δ→0

αj(δ) = δ and lim
δ→0

δp

αj(δ)
= 0, j = 1, 2, (29)

then, every sequence of solutions obtained by the algorithm of Equation (25), satisfying the
discrepancy (26), when δ ↘ 0, has a TX-convergent subsequence converging to some fx0-
minimizing solution of the Inverse Problem (18), with fx0 as in Equation (23).

Proof. Consider {δk}k∈N, such that δk ↘ 0, for each k ∈ N, choose α1 = α1(δk) and α2 =
α2(δk) > 0 such that the discrepancy principle in Equation (26) and the estimates in Equa-
tion (29) hold with data yδk and noise level δk. Consider also the sequence {(wδkα1,α2

, zδkα1,α2
)}k∈N

of the corresponding stationary points generated by the algorithm of Equation (25).
We need to show that this sequence has a TX -convergent subsequence. Assume that the

algorithm in Equation (25) initializes always with the same pair (w0, z0). So, for every k,

F(wδkα1,α2
, zδkα1,α2

; yδk) ≤ λpδp.

In addition, by the relation in Equation (23) and the estimate in (28),

lim sup
k→∞

[
β1gw0(wδkα1,α2

) + β2hw0(zδkα1,α2
)
]
≤ β1gw0(w†) + β2hz0(z†). (30)

So, taking α+ = maxk∈N max{α1(δk), α2(δk)}, and since

‖F (wδkα1,α2
, zδkα1,α2

)− ỹ‖ ≤ ‖F (wδkα1,α2
, zδkα1,α2

)− yδk‖+ δk ≤ (λ+ 1)δk,

it follows that,

lim sup
k→∞

[
‖F (wδkα1,α2

, zδkα1,α2
)− ỹ‖p + α+gw0(wδkα1,α2

) + α+hz0(zδkα1,α2
)
]

≤ α+gw0(w†) + α+hz0(z†),
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i.e., there exists a constant K > 0 such that the sequence {(wδkα1,α2
, zδkα1,α2

)}k∈N is in the level
set Mα+(K), which is pre-compact w.r.t. TX . Hence, it has a TX -convergent subsequence,
which is denoted again by {(wδkα1,α2

, zδkα1,α2
)}k∈N, and converging to (w̃, z̃), w.r.t. TX . Since,

for each k ∈ N, ‖F (wδkα1,α2
, zδkα1,α2

)− yδk‖Y ≤ λδk, by the weakly lower semi-continuity of φ,

‖F (w̃, z̃)− ỹ‖p ≤ lim inf
k→0

‖F (wδkα1,α2
, zδkα1,α2

)− yδk‖p ≤ lim
k→0

λδk = 0.

This means that (w̃, z̃) is a solution of the Inverse Problem (18). Note that, by the estimate
in Equation (30),

β1gw0(w̃) + β2hz0(z̃) ≤ β1gw0(w†) + β2hz0(z†).

So, (w̃, z̃) is an fx0-minimizing solution.

The following proposition states the convergence of inexact solutions to some solution of
the inverse problem in Equation (18). By inexact solution we mean the iterate (wn+1, zn+1)
satisfying the discrepancy in Equation (26).

Proposition 9. Let the hypotheses of Proposition 7 be satisfied. Assume further that the
functionals gw0(w) and hz0(z) are uniformly bounded for (w, z) ∈ D. Then, when δ ↘ 0,
every sequence of inexact solutions satisfying the discrepancy in Equation (26) has a TX-
convergent subsequence converging to a solution of the inverse problem in Equation (18).

Proof. As in the proof of Proposition (8), let us consider {δk}k∈N, such that δk ↘ 0, for
each k ∈ N, choose α1 = α1(δk) and α2 = α2(δk) > 0 such that the discrepancy principle in
Equation (26) is satisfied and assume that max{α1(δk), α2(δk)} ≤ α+ for some finite constant
α+. Consider also the iterates (wn+1,δk , zn+1,δk) corresponding to α1, α2 and satisfying the
discrepancy in Equation (26).

Since ‖F (wn+1,δk , zn+1,δk)− yδk‖ ≤ λδk and by Lemma 3.21 in Scherzer et al. (2008),

F(wn+1,δk , zn+1,δk ; ỹ, α+) ≤ 2p−1F(wn+1,δk , zn+1,δk ; yδk , α+) + 2p−1δpk

≤ 2p−1(λp + 1)δpk + α+gw0(wn+1,δk) + α+hz0(zn+1,δk).

Since gw0(w) and hz0(z) are uniformly bounded for (w, z) ∈ D, there exists some con-
stant K > 0 such that (wn+1,δk , zn+1,δk) ∈ Mα+(K), where yδ is replaced by ỹ in the
Tikhonov-type functional. Since Mα+(K) is pre-compact w.r.t. TX , the sequence of it-
erates {(wn+1,δk , zn+1,δk)}k∈N has a TX -convergent subsequence, which is also denoted by
{(wn+1,δk , zn+1,δk)}k∈N and converges to (w̃, z̃) w.r.t. TX . So, by the TX - continuity of F and
the norm of Y , it follows that

‖F (w̃, z̃)− ỹ‖ ≤ lim inf
k→∞

‖F (wn+1,δk , zn+1,δk)− yδk‖ ≤ lim
k→∞

λδk = 0,

and the assertion follows.

Remark 5. It is not difficult to prove that, under the hypotheses of Proposition 8 there
exists a sequence of finite iterates or inexact solutions that converges w.r.t. TX to some fx0-
minimizing solution of the inverse problem in Equation (18), when δ ↘ 0. Let us consider
{δk}k∈N, such that δk ↘ 0 and assume that for each k ∈ N, the solution (wδkα1,α2

, zδkα1,α2
) pro-

vided by Algorithm 25 satisfies the discrepancy in Equation (26). Also, for each k ∈ N, find
a subsequence of iterates converging w.r.t. TX to (wδkα1,α2

, zδkα1,α2
) and select one iterate that
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also satisfies the discrepancy and is close to (wδkα1,α2
, zδkα1,α2

) w.r.t. TX , and gets arbitrarily

closer as k increases. By Proposition 8, the sequence {(wδkα1,α2
, zδkα1,α2

)} has a TX-convergent
subsequence, converging to (w̃, z̃), a fx0-minimizing solution of the inverse problem in Equa-
tion (18). It is easy to see that the corresponding subsequence of iterates also converges to
(w̃, z̃) w.r.t. TX .

5 The Calibration

This section is devoted to the solution of the calibration from quoted European vanilla option
prices of the local volatility surface {a(τ, y)|(τ, y) ∈ D} and the double exponential tail ϕ, by
the splitting technique presented in Section 4. From the double-exponential tail, we estimate
the jump-size distribution ν.

5.1 Calibration of Local Volatility Surface and Double Exponential Tail

The inverse problem can be stated as: Given a set of European call option prices ũ, such that,
ũ− u(a0, 0) is in the range of F , R(F ), find (a†, ϕ†) in D(F ) satisfying the equation

ũ = u(a†, ϕ†), (31)

where u is the solution of the PIDE problem in (5)-(6), using the integral representation (8).
In practice, it is only possible to observe noisy option data given in a sparse mesh of

strikes. Such data is denoted by uδ, where

‖ũ− uδ‖ ≤ δ, (32)

and δ > 0 is the noise level.
To use the results from Section 4 in this context, we introduce the following notation:

w := ã = a− a0, z := (ϕ−, ϕ+), w0 := a0, z0 := 0,

ỹ := ũ− u(a0, 0), and yδ := uδ − Pu(a0, 0),

where P projects the solution of (5)-(6) onto the sparse mesh where uδ is given. Since
X = W × Z,

W := H1+ε(D), and Z := W 2,1(−∞, 0)×W 2,1(0,+∞).

Let TX and TY be the weak topologies of X and Y = W 1,2
2 (D), respectively. By assuming

that ga0 = gw0 and hϕ0 = hz0 are convex, proper and weakly lower semi-continuous function-
als, Propositions 2-4 imply that Assumptions 2-3 hold true. Note that, the tangential cone
condition in Assumption 3 is an easy consequence of the Inequality (17) in Proposition 4.
Hence, given the data uδ, the splitting algorithm applied to the simultaneous calibration of
a and ϕ converges to some approximation of the true solution of the inverse problem (31), if
the latter exists.

Since the inclusion of W 1,2
2 (D) into L2(D) is continuous, the existence and stability of

solutions given by the splitting algorithm as well as its convergence to the true solution also
hold whenever Y = W 1,2

2 (D) is replaced Y = L2(D) in the Tikhonov regularization functional
in (24) and (21).
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A possible choice of the penalization term to fulfill the weak pre-compactness of the level
sets of the Tikhonov functional (24) is ga0(a) = ‖a−a0‖2H1+ε(D) for the variable a and for the

variable ϕ, hϕ0(ϕ) is

hϕ0(ϕ) = KL(ϕ+|ϕ+,0) +KL(ϕ′+|ϕ′+,0) +KL(ϕ′′+|ϕ′′+,0)

+KL(ϕ−|ϕ−,0) +KL(ϕ′−|ϕ′−,0) +KL(ϕ′′−|ϕ′′−,0)

where the KL stands for the Kullback-Leibler divergence

KL(ϕ+|ϕ+,0) =

∫ +∞

0

[
ϕ+ ln

(
ϕ+

ϕ+,0

)
+ (ϕ+,0 − ϕ+)

]
dx,

with ϕ0 > 0 given. In this case, ga0 and hϕ0 are convex, weakly continuous and coercive. In
addition, the level sets of the Kullback-Leibler divergence

{ϕ ∈ L1(R) : KL(ϕ|ϕ0) ≤ C}

are weakly pre-compact in L1(R). See Lemma 3.4 in Resmerita and Anderssen (2007).

5.2 Calibration of Jump-Size Distribution from Double Exponential Tail

One possible way, but not recommended, to obtain the jump-size distribution ν is by differen-
tiating once the double exponential tail ϕ, since, ν is such that ϕ+ := ϕ|(0,+∞) ∈W 2,1(0,+∞)
and ϕ− := ϕ|(−∞,0) ∈ W 2,1(−∞, 0). By Sobolev’s embedding (see Theorem 4.12 in Adams
and Fournier (2003)), ϕ′± are continuous functions and

ϕ′(z) =


ez
∫ z

−∞
ν(dx) = ezν((−∞, z]), z < 0

−ez
∫ +∞

z
ν(dx) = −ezν([z,+∞)), z > 0.

So, z 7→ ν((−∞, z]) and z 7→ ν([z,+∞)) are continuous functions.
By Proposition 5.2 in Kindermann and Mayer (2011), ν can be represented as

ν(dx) =


1 + x2

x2
µ−(dx), x < 0

1 + x2

x2(1 + xex)
µ+(dx), x > 0,

where µ+ and µ− are finite measures, defined in (0,+∞) and (−∞, 0), respectively. This
implies that, z 7→ µ−((−∞, z]) and z 7→ µ+([z,+∞)) are continuous functions, which implies
that they are absolutely continuous with respect to the Lebesgue measure. See Lemma III.4.13
in Dunford and Schwartz (1958). So, there exist integrable functions h±, such that

h−(x)dx = µ−(dx) and h+(x)dx = µ+(dx).

Define h ∈ L1(R), such that h|(−∞,0) = h− and h|(0,+∞) = h+.

Lemma 2. The map h ∈ L1(R) 7−→ ϕ ∈ L2(R) is compact.
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Proof. Let the sequence {(h−,n, h+,n)}n∈N converge weakly to some (h−, h+) in L1(−∞, 0)×
L1(0,+∞). Define

ϕn(z) =



∫ z

−∞
(ez − ex)

1 + x2

x2
h−,n(x)dx, z < 0

∫ +∞

z
(ex − ez)

1 + x2

x2(1 + xex)
h+,n(x)dx, z > 0,

for each n ∈ N and ϕ = ϕ(µ−, µ+) in the same way. It is easy to see that ϕ+ = ϕ|(0,+∞) ∈
W 1,1(0,+∞) and ϕ− = ϕ|(−∞,0) ∈ W 1,1(−∞, 0). Note also that, by hypothesis, ϕ+,n ∈
W 2,1(0,+∞) and ϕ−,n ∈ W 2,1(−∞, 0). So, by Sobolev’s embedding (see Theorem 4.12 in
Adams and Fournier (2003)), ϕ+,n, ϕ+ ∈ L2(0,+∞) and ϕ−,n, ϕ− ∈ L2(−∞, 0).

The estimate

|ϕ−,n(z)− ϕ−(z)|2 =

∣∣∣∣∫ z

−∞
(ez − ex)

1 + x2

x2
(h−,n − h−)(x)dx

∣∣∣∣2 → 0,

holds almost everywhere in (−∞, 0), since (ez−ex)1+x2

x2 is in L∞(0,+∞). Similarly, |ϕ+,n(z)−
ϕ+(z)| → 0 almost everywhere. By the monotone convergence theorem the assertion follows.

Since the map that associates h to ϕ is compact, it follows that the corresponding inverse
problem is ill-posed. So, the procedure of obtaining h by differentiating ϕ is not stable.

The inverse problem of finding the jump-size distribution from the double exponential tail
is: Given the output of the splitting algorithm ϕ̃ ∈ L2(R), find (h−, h+) ∈ V− × V+ satisfying

ϕ(h−, h+) = ϕ̃, (33)

where V− × V+ is some subset of L1(−∞, 0)× L1(0,+∞).
If we apply Tikhonov-type regularization to such inverse problem, it can be rewritten as:

find (h−, h+) ∈ V− × V+ minimizing

G(h−, h+) = ‖ϕ(h−, h+)− ϕ̃‖2L2(R) + αfh−,0,h+,0(h−, h+),

with (h−,0, h+,0) in L1(−∞, 0)× L1(0,+∞) given.
Let us assume that fν−,0,ν+,0 is weakly lower-semi-continuous and convex. If the level sets

of G(h−, h+) are weakly compact in V− × V+ (or V− × V+ is weakly compact), then, as in
Section 4.1, there exists stable minimizers of G(h−, h+) in V− × V+.

Summing up, the Tikhonov-type regularization provides a stable approximation for the
jump-size distribution ν.

5.3 Gradient Evaluation

To implement a numerical gradient descent algorithm to minimize the Tikhonov-type func-
tional with respect to each variable, as in Albani et al. (2018), it is necessary to evaluate the
directional derivatives of a numerical approximation of the data misfit function φ = φ(a, ϕ).
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If ak and ϕk denote the iterates of a and ϕ respectively in the gradient descent algorithm,
evaluate

ak = ak−1 + θk
∂

∂a
F(ak−1, ϕ̃) (34)

ϕk = ϕk−1 + βk
∂

∂ϕ
F(ã, ϕk−1), (35)

until some tolerance is reached, with ã and ϕ̃ fixed. To perform this task, we shall present
the evaluation of such derivatives in the continuous setting.

Since

∂

∂a
F(a, ϕ) =

∂

∂a
φ(a, ϕ) + α1∂ga0(a) and

∂

∂ϕ
F(a, ϕ) =

∂

∂ϕ
φ(a, ϕ) + α2∂hϕ0(ϕ),

to evaluate ∂
∂aφ and ∂

∂ϕφ, recall that the directional derivative of F at (a, ϕ) in the direction
(h, γ), with (a+ h, ϕ+ γ) ∈ D(F ), is denoted by v and is the unique solution of the PIDE

vτ (τ, y)− a(τ, y) (vyy(τ, y)− vy(τ, y)) + rvy(τ, y)− Iϕ(vyy − vy)(τ, y)

= h (uyy(τ, y)− uy(τ, y)) + Iγ (uyy − uy) (τ, y), (36)

with homogeneous boundary and initial conditions, where u is the solution of the PIDE
problem (5)-(6).

Note that, ∂
∂aF (a, ϕ)h = v(h, ϕ + 0), and ∂

∂aφ(a, ϕ) = ∂
∂aF (a, ϕ)∗P ∗(Pu(a, ϕ) − uδ), so,

for every h ∈ Z,〈
∂

∂a
φ, h

〉
=

〈
∂

∂a
F (a, ϕ)∗P ∗(Pu(a, ϕ)− uδ), h

〉
=

〈
Pu(a, ϕ)− uδ, P ∂

∂a
F (a, ϕ)h

〉
.

Since P ∂
∂aF (a, ϕ)h = PLMuyy−uyh, where Muyy−uy is the multiplication by uyy−uy operator

and L is the operator that maps the source h(uyy − uy) onto the solution of the PIDE (36)
with homogeneous boundary and initial conditions (with γ = 0), it follows that〈

Pu(a, ϕ)− uδ, P ∂

∂a
F (a, ϕ)h

〉
= 〈Muyy−uyL∗P ∗(Pu(a, ϕ)− uδ), h〉 = 〈(uyy − uy)w, h〉,

where w is the solution of the adjoint PIDE:

wτ (τ, y) + (aw)yy (τ, y) + (aw)y(τ, y)− rwy(τ, y) =∫
R
ϕ(x) (wyy(τ, x+ y) + wy(τ, x+ y)) dx+ P ∗Pu(a, ν)− P ∗uδ, (37)

with homogeneous boundary and terminal conditions.
In a similar way, we evaluate ∂

∂ϕφ and find

∂

∂ϕ
φ(z) = [H∗uw](z) :=

∫ T

0

∫
R

(uyy(τ, y − z)− uy(τ, y − z))w(τ, y)dydτ,

where u is the solution of the PIDE problem (5)-(6).
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6 A Numerical Scheme

Differently from Cont and Voltchkova (2005a), we consider directly the case where the activity
of jumps can be infinite. This is because we use the representation (8) for the integral term
in the PIDE problem (5)-(6).

Firstly, let us restrict the log-moneyness range where the PIDE problem (5)-(6) is de-
fined to [ymin, ymax], with ymin < 0 < ymax, and then, D = [0, τmax] × [ymin, ymax]. Outside
[ymin, ymax], the numerical solution assumes the value of the payoff function at these points.

Let I, J ∈ N be fixed. We consider the discretization τi = i∆τ , with i = 0, 1, 2, ..., I,
and yj = j∆y, with j = −J,−J + 1, ..., 0, 1, ..., J . Denote by uij := u(τi, yj), a

i
j := a(τi, yj),

β := ∆τ/∆y and η = ∆τ/∆y2. Define also:

ϕj =



∫ yj

ymin−∆y
2

(eyj − ex)ν(dx), yj < 0

∫ ymax+ ∆y
2

yj

(ex − eyj )ν(dx), yj > 0,

where these integrals are approximated by the trapezoidal rule.
The differential part of the PIDE problem (5)-(6) is approximated by the Crank-Nicolson

scheme and the integral operator by the trapezoidal rule, leading to:

uij −
1

2
ηaij(u

i
j+1 − 2uij + uij−1) +

1

4
βaij(u

i
j+1 − uij−1) =

ui−1
j +

1

2
ηai−1

j (ui−1
j+1 − 2ui−1

j + ui−1
j−1)− 1

4
βai−1

j (ui−1
j+1 − u

i−1
j−1) +M i−1

j , (38)

where

M i−1
j =

J∑
k=−J

ϕke
yk

[
β(ui−1

j+1−k − 2ui−1
j−k + ui−1

j−1−k)−
1

2
∆τ(ui−1

j+1−k − u
i−1
j−1−k)

]
.

In Kindermann et al. (2008) a Crank-Nicholson-type algorithm was also used to solve the
so-called direct problem. There, the authors were interested in the calibration of the local
speed function, which here is set constant and equal to 1.

The numerical scheme for solving the adjoint PIDE (37) with homogeneous boundary
and terminal conditions is quite similar to the one in Equation (38). Following the same
ideas presented in Section 5.3 we find the discrete version of the gradients of the data misfit
function φ.

6.1 Numerical Validation

The purpose of this example is to illustrate the accuracy of the scheme in (38) by comparing
it with other techniques.

Assume that S0 = 1, ymax = 5, ymin = −5, τmax = 1, ∆τ = 0.005, ∆y = 0.025, r = 0
and the local volatility surface is constant with a ≡ 0.0113. Then, we evaluate European
call prices in three different ways, the scheme of Section 6, the implicit-explicit scheme from
Cont and Voltchkova (2005a), and the Fourier transform method from Tankov and Voltchkova
(2009), which is based on the pricing formula presented in Carr and Madan (1999).
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In the following synthetic examples the measure ν is assumed to be absolutely continuous
w.r.t. the Lebesgue measure and given by

ν(dx) =
0.1√
2π

e−
x2

2 dx. (39)

We also consider a functional local volatility surface, given by

σ(τ, y) =


2

5
− 4

25
e−τ/2 cos

(
4πy

5

)
, if − 2/5 ≤ y ≤ 2/5

2/5, otherwise.

(40)

and compare the results given by the scheme (38) with the one presented in Cont and
Voltchkova (2005a).

To measure the accuracy, we consider implied volatilities instead of prices. Let us denote
by:

• ΣCN the set of implied volatilities corresponding to the prices evaluated with the
schemes from Equation (38).

• ΣCV the set of implied volatilities corresponding to the prices evaluated with the schemes
from Cont and Voltchkova (2005a).

• ΣFourier the set of implied volatilities corresponding to the prices evaluated with the
schemes from Tankov and Voltchkova (2009).

We estimate the normalized `2−distance between them as follows:

‖ΣCN − ΣCV ‖/‖ΣCV ‖ or ‖ΣCN − ΣFourier‖/‖ΣFourier‖,

We also estimate the mean and standard deviation of the absolute relative error (abs. rel.
error), which is evaluated at each node as follows:

|ΣCN (τi, yj)−ΣCV (τi, yj)|/|ΣCV (τi, yj)| or |ΣCN (τi, yj)−ΣFourier(τi, yj)|/|ΣFourier(τi, yj)|.

Such results can be seen in Table 1. A comparison between implied volatilities with constant
and non-constant local volatility surface can be found in Figures 1 and 2, respectively.

N.distance
Abs. Rel. Error

Mean Std. Dev.

a ≡ 0.0113
CV 0.0064 0.0070 0.0072

Fourier 0.0862 0.0923 0.0699

Non-constant a CV 0.0064 0.0064 0.0038

Table 1: Normalized distance and absolute relative error.

As we can see, CN implied volatilities matched the CV ones with constant and a non-
constant local volatility surface. When comparing with implied volatilities corresponding
to the Fourier prices, the adherence of CN volatilities was not exact, but the result was
satisfactory, since the relative error and the normalized distance are below 10% of the norm
of ΣFourier. These results illustrate the accuracy of the present scheme.
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Figure 1: Implied volatility when local volatility surface is constant.

Figure 2: Implied volatility when local volatility surface is not constant.

7 Numerical Examples

We shall now perform a set of illustrative numerical examples.
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7.1 Local Volatility Calibration

This example is aimed to illustrate that, if ν is known, it is possible to calibrate the local
volatility surface, as in Andersen and Andreasen (2000). The European call prices are gen-
erated by the difference scheme (38), with local volatility surface (40) and jump-size density
(39), at the nodes (τi, yj) = (i · 0.1, j · 0.05), with i = 1, .., 10 and j = −10,−9, ..., 0, 1, ..., 10.
This is a sparse grid in comparison with the one where the direct problem is solved, see the
beginning of Section 6.1.

Under a discrete setting, set in the functional (24) the parameters as α2 = 0, α1 = 10−4,
and define the penalty functional

fa0(a) = ‖a− a0‖2 + ‖∂τ,∆a‖2 + 100‖∂y,∆a‖2, (41)

where ‖ · ‖ denotes the `2-norm and the operators ∂τ,∆ and ∂y,∆ denote the forward finite
difference approximation of the first derivatives w.r.t. τ and y, respectively. The choice of
the weights in the penalty functional is made heuristically and some hints about this choice
can be found in Albani et al. (2018).

The minimization problem is solved by a gradient-descent method, the step sizes are
chosen by a rule inspired by the steepest decent method and the iterations cease whenever
the normalized `2-residual

‖F (a)− uδ‖/‖uδ‖,

is less than 0.01. For more details, see Albani et al. (2018).
The mesh step sizes used to evaluate the local volatility a are the same as those used to

generate the data. So, we use the following rule to evaluate the local volatility surface in the
whole domain

a(τ, y) =


a(τ,−0.5) if τ > 0.1, y ≤ −0.5, (deep in the money)

a(τ, 0.5) if τ > 0.1, y ≥ 0.5, (deep out of the money)

a(0.1, y) if τ ≤ 0.1,

combined with bilinear interpolation.
The normalized `2-distance between the implied volatility of the data and the prices

obtained with the calibrated local volatility was 0.0065, the mean and standard deviation of
the associated absolute relative error at each node were 0.0043 and 0.0036, respectively. With
respect to the original and the calibrated local volatility surfaces, the normalized `2-distance
was 0.0701. The mean and the standard deviation of the corresponding absolute relative
error at each node were 0.0583 and 0.0399, respectively. The accuracy of our methodology
can be also observed in Figures 3-4 where the implied volatilities of the model matched the
data ones, and the reconstructed local volatility was quite similar to the original one. In both
figures, “Calib.” stands for the calibrated local volatility and “Data” stands for the original
one. Note that, the calibration was not perfect, since the data is collected in a sparse grid.

7.2 Calibration of jump-size distribution

Assuming that the local volatility surface is given, the double-exponential tail and the jump-
size distribution are calibrated form observed prices. For this example, the same synthetic
data and parameters presented in Section 7.1 are used.
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Figure 3: Implied volatilities of data and the calibrated local volatility.

Figure 4: Original and Calibrated Local volatility surfaces.

Define

νj =

∫ yj+
∆y
2

yj−∆y
2

ν(dy).
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Firstly, we calibrate ϕ, and then, ν is reconstructed from ϕ, by minimizing the functional:

M∑
j=−M

(ϕj − ϕ(ν)j)
2 + α

M∑
j=−M

[νj log(νj/νj,0)− (νj,0 − νj)] , (42)

where ϕ(ν)j is given by

ϕ(ν)j =



j∑
l=−M

(eyj − eyl)νl, yj < 0

M∑
l=j

(eyl − eyj )νl, yj > 0.

The regularization parameter is set as α = 1× 10−5.

Figure 5: Left: true (line with crosses) and reconstructed (line with squares) double-
exponential tail functions. Right: true (line with crosses) and reconstructed (line with
squares) jump-size distributions.

As we can see in Figure 5, the reconstructed double-exponential tail ϕ matched the true
one. The calibrated jump-size distribution ν is also adherent to the original one except around
zero, probably due to the discontinuity of ϕ at zero. The normalized distance between the
true and reconstructed double-exponential tail functions was 2.14× 10−4, and the mean and
standard deviation of the associated absolute relative error at each node were 0.002 and
0.0059, respectively. The normalized `2-distance between the true and the calibrated jump-
size distributions was 0.59, and the mean and standard deviation of the associated absolute
relative error at each node were 0.0946 and 0.2369, respectively. If we exclude the points
y = 0, 0.05, the values of the normalized distance, the mean and standard deviation become
2.73×10−5, 0.0022 and 0.0061, respectively. So, excluding these two points, the calibration was
perfect. The normalized residual was 1.34× 10−10. This is probably due to the discontinuity
of ϕ at zero, which introduces some noise into the reconstruction.

So, if the local volatility surface is given, the calibration of ϕ and ν are quite satisfactory
even with scarce data. These results are comparable to the ones obtained in Cont and Tankov
(2004; 2006).

7.3 Testing the Splitting Algorithm

The goal of the present example is to illustrate that the splitting algorithm is able to calibrate
simultaneously the local volatility function and the double exponential tail.
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The call prices are given at the nodes (τi, yj) = (i · 0.1, j · 0.05), with i = 1, ..., 10 and
j = −90,−89, ..., 0, ..., 10. This represents 2.5% of the mesh where the direct problem is solved.
The algorithm was initialized with the minimization of the Tikhonov functional w.r.t. the
volatility parameter. The initial states of the local volatility surface and double exponential
tail, as well as a0 and ϕ0 in the penalty functional, were set as a0(τ, x) = 0.08 and

ν0(dx) =
(
0.5 exp(−0.5x2 − 0.5x)X[0,5] + 0.5 exp(−0.5x2 − 0.5|x|)X[−5,0)

)
dx,

respectively. Here, X[0,5] is the characteristic or indicator function of the set [0, 5].
The minimization w.r.t. the local volatility surface was performed as in Section 7.1.

However, to proceed with the minimization w.r.t. the double exponential tail, firstly, we made
the change of variable Γ = log(φ) and considered the decomposition Γ(y) = Γ(y)X(−5,0) +
Γ(y)X(0,5). Since the y-domain now is bounded, Γ−(y) = Γ(y)X(−5,0) and Γ+(y) = Γ(y)X(0,+5)

can be expressed in terms of Fourier series. So, we truncate its series at the third term and
minimize the Tikhonov functional w.r.t. the Fourier coefficients.

In this example the Kullback-Leibler divergence in the definition of the penalty functional
in Section 5.1 was replaced by the square of `2-norm.

After two steps of the splitting algorithm, the normalized `2-residual was 0.0017, below
the tolerance which was set as 0.002. The normalized `2-distances between the reconstructed
and true parameters were, 0.165 for the local volatility surface and 0.641 for the double
exponential tail.

Figure 6 presents the true and the reconstructed local volatility surfaces at the first and
second steps of the splitting algorithm. The comparison between the double-exponential tails
is done in Figure 7.

Figure 6: Reconstruction of the local volatility surface: original (left), after one step (center)
and after two steps (right).

If the reconstructions of each parameter are analyzed separately, it seems that the results
were not as accurate as in the previous examples. However, this was expected since the
amount of unknowns in this test is much larger than before. In addition, it is well known that
the distribution of small jump-sizes and volatility are closely related. See Cont and Tankov
(2003). This means that in simultaneous reconstructions, it is difficult to separate one from
another. So, based on such observations, the results were satisfactorily accurate, since the
main features of both parameters were incorporated by the reconstructions, as illustrated in
Figures 6-7.
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Figure 7: Reconstruction of the double exponential tail: after one step (left) and after two
steps (right). Continuous line: true. Dashed line: reconstruction.

7.4 Pricing Exotic Options

To provide another illustration of the accuracy of the splitting algorithm, we evaluate the
so-called Lookback call and put options, which have the following payoff functions:

LBcall(τi) = max

{
0, Sτi − min

0≤k≤N
Stk

}
and LBput(τi) = max

{
0, max

0≤k≤N
Stk

}
,

respectively, where the time-to-maturity of the options are τi = 0.1, 0.2, 0.3, 0.5, the current
time is given by tk = k · ∆t, with k = 0, 1, ..., N , ∆t = τi/N , and N is the number of time
steps, set to N = 100.

The price of the options are approximated by a Monte Carlo integration as in

LBcall(0) = e−rτiE
[
LBcall(τi)

]
≈ e−rτi

1

Nr

Nr∑
l=1

LBcall(τi)
(l),

where LBcall(τi)
(l) is the l-th realization of the random variable LBcall(τi), and Nr is the

total amount of realizations, which is set to Nr = 10 000. The realizations of LBcall(τi) and
LBput(τi) are generated by Dupire model and the jump-diffusion model in (1).

The Dupire model is solved by Euler-Naruyama method with local volatility calibrated
from the European call price dataset of Section 7.3. The normalized residual in local volatil-
ity calibration is approximately the same achieved by the jump-diffusion calibration in Sec-
tion 7.3. The jump-diffusion model is solved by the method in Giesecke et al. (2017) with
the local volatility and the jump-size distribution calibrated in Section 7.3. The samples of
the jump-sizes are given by inverse transform sampling, where the inverse of the cumula-
tive distribution of jump-sizes was evaluated by least-squares. The ground truth prices are
given by jump-diffusion model with the true local volatility and true jump-size distribution
of Section 7.3.

Tables 2 and 3 present the prices of the lookback call and put options, respectively. The
error in the prices can be found in Tables 4 and 5. In these tables, the word Jumps stands
for jump-diffusion model, whereas the word Dupire stands for Dupire model and True stands
for the ground truth prices. Based on these results, we can see that the jump-diffusion model
with parameters calibrated by the splitting algorithm is more precise than the Dupire model
with calibrated local volatility.
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τ 0.1 0.2 0.3 0.4

Jumps 0.0509 0.0692 0.0855 0.1059
Dupire 0.0728 0.1019 0.1270 0.1620
True 0.0577 0.0828 0.1040 0.1363

Table 2: Lookback call prices

τ 0.1 0.2 0.3 0.4

Jumps 0.0690 0.1060 0.1357 0.1907
Dupire 0.0776 0.1112 0.1368 0.1821
True 0.0662 0.0993 0.1269 0.1780

Table 3: Lookback put prices

7.5 The Splitting Algorithm with DAX Options

This experiment is aimed to illustrate that the splitting algorithm can be used with market
data. The tests are performed with end-of-the-day DAX European call prices traded on
20-Jun-2017, and maturing on 21-Jun-2017, 18-Aug-2017, 15-Sep-2017, 15-Dec-2017, and 16-
Mar-2018.

The mesh step lengths used here were ∆y = 0.05 and ∆τ ≈ 0.003. The penalty term of
the Tikhonov functional was the same used in Section 7.3, with α = 10−5. We used the same
initial states for the local volatility surface and double exponential, as well as, the a priori
parameters of Section 7.3. The interest rate was taken as 0, and S0 = 12814.79 USD. The data
was given in the sparse mesh defined by transforming the market strikes into log-moneyness,
and considering the time to maturity in years. Only three iterations of the splitting algorithm
were needed until the data misfit function was below the tolerance, set as tol = 0.0069.

To reconstruct the jump-size distribution and the local volatility surface, we used the
same parameters of Section 7.3.

Figure 8: Reconstructions from Dax options of local volatility surface (left), double exponen-
tial tail (center) and jump-size density function (right).

τ 0.1 0.2 0.3 0.4

Jumps 0.1185 0.1494 0.1640 0.1919
Dupire 0.2618 0.2409 0.2309 0.2112

Table 4: Normalized error in lookback call prices
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τ 0.1 0.2 0.3 0.4

Jumps 0.0425 0.0596 0.0648 0.0680
Dupire 0.1725 0.1360 0.1053 0.0630

Table 5: Normalized error for the lookback put prices

Figure 9: Market (squares) and model (continuous line) implied volatility for DAX European
call prices traded on 20-Jun-2017, and maturing on 21-Jun-2017, 18-Aug-2017, 15-Sep-2017,
15-Dec-2017, and 16-Mar-2018 (from left to right).

Figure 8 presents the calibrated local volatility surface, double exponential tail and jump-
size density function. The corresponding implied volatilities of market data and of the model
can be found in Figure 9. As can be observed from these figures, the local volatility surfaces
have a nice smile adherence, especially close to the at-the-money strikes (y = 0).

8 Conclusion

In the present paper, we have explored the inverse problem of simultaneous calibration of the
local volatility surface and the jump-size distribution from quoted European vanilla options
when stock prices are modeled as jump-diffusion processes. This is a difficult task, since the
complexity is higher than that of the calibration problem involving purely diffusive prices, as
in the local volatility calibration studied by Crépey (2003a), Crépey (2003b), Egger and Engl
(2005), Albani et al. (2017), and others.

Tikhonov-type regularization combined with a splitting strategy was applied to solve
this inverse problem. We provided theoretical results showing that this methodology works
for theoretical problem and it could be used with the specific problem under consideration.
Numerical examples illustrated the effectiveness of this technique and provided stable ap-
proximations to the true local volatility and jump-size distribution with synthetic and real
data.
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doi: 10.1016/j.anihpc.2007.02.007. URL http://archive.numdam.org/ARCHIVE/AIHPC/

AIHPC_2008__25_3/AIHPC_2008__25_3_567_0/AIHPC_2008__25_3_567_0.pdf.

A. Bentata and R. Cont. Forward equations for option prices in semimartingale models.
Finance Stoch, 19:617–651, 2015. doi: 10.1007/s00780-015-0265-z. URL http://link.

springer.com/article/10.1007/s00780-015-0265-z.

P. Carr and D. Madan. Option valuation using the fast Fourier transform. Journal of
computational finance, 2(4):61–73, 1999. URL http://portal.tugraz.at/portal/

page/portal/Files/i5060/files/staff/mueller/FinanzSeminar2012/CarrMadan_

OptionValuationUsingtheFastFourierTransform_1999.pdf.

I. Cioranescu. Geometry of Banach spaces, duality mappings and nonlinear problems, vol-
ume 62 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dor-
drecht, 1990.

R. Cont and P. Tankov. Financial Modelling with Jump Processes. CRC Financial Mathe-
matics Series. Chapman and Hall, 2003.

R. Cont and P. Tankov. Nonparametric calibration of jump-diffusion processes. J. Comput.
Finance, 7(3):1–49, 2004. URL https://hal.archives-ouvertes.fr/hal-00002694/.
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