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Chapter 1

Introduction

To any smooth manifold M (and a choice of ω ∈ H3(M, Z)) satisfying some mild
topological properties (the first Pontryagin class vanishes), Malikov, Schechtmann
and Vaintrob [13] and independently Beilinson and Drinfeld [5] attach a sheaf of
vertex algebras Och

M called the sheaf of chiral differential operators. In the simplest
case when ω = 0, locally on a coordinate patch U with coordinates

{
xi}

i=1,...,dim M,
the sections Och

M(U) form an dim M-dimensional βγ-system, i.e., the vertex algebra
generated by fields

{
βi, γi}

i=1,...,dim M satisfying the OPE

βi(z) · γj(w) ∼
δi,j

z− w
, βi(z) · β j(w) ∼ γi(z) · γj(w) ∼ 0.

On intersections of coordinate patches, the fields γi change as coordinates do while
the fields βi change as vector fields.
This construction works in the algebraic, holomorphic, real-analytic or C∞-setting.

In this work we will be mainly concerned with the C∞-setting. Little is known about
the structure of the global sections VM := Γ(M,Och

M) of this sheaf. Only recently in
the context of supermanifolds, Bailin Song proved that, in the holomorphic setting,
the vertex algebra VM coincides with the simple small N = 4 super-vertex algebra at
central charge c = 6 when M = T∗[1]N is the shifted cotangent bundle to a K3 sur-
face N [14]. In this thesis we will describe explicitly VM when M is the Heisenberg
3-dimensional nilmanifold.

The vertex algebra VM (or rather its super-extension) is expected to play a central
role in Mirror-Symmetry. In particular, for M and N a mirror pair of Calabi-Yau
manifolds, one expects a natural isomorphism VM ' VN of vertex algebras. Their
characters are known to be equal by work of Borisov and Libgober [6].
If M is non-simply-connected, a subtle phenomenon arises as one needs to consider

non-trivial windings. Aldi and Heluani showed in [1], based on ideas of C. Hull [11],
that when (M, ω) is the three torus T3 with its generator of H3(T3, Z) ' Z, or if M
is its mirror dual: the Heisenberg 3-dimensional nilmanifold N with vanishing ω,
the vertex algebra VM can be naturally represented in a Hilbert space. This Hilbert
space is associated to a 6-dimensional nilmanifold Y which fibers over both T3 and
N.

For certain M, we can describe explicitly VM in terms of a larger manifold fibering
over M. Suppose that the ω-twisted Courant algebroid TM ⊕ T∗M of M is paral-
lellizable. That is, there exists a global frame of vector fields {βi} and dual basis
of differential forms

{
αi} such that [βi, β j]Lie + ιβi ιβ j ω is a constant combination of

βi’s and αi’s, and Lieβi α
j is a constant linear combination of the αi’s. In other words,

there exists a Lie algebra g, dim g = 2 dim M, with a symmetric invariant bilinear
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pairing of signature (dim M, dim M), and a trivialization TM⊕ T∗M ' g×M. The
Courant-Doffman bracket of the frame

{
βi, αi} is given by the bracket in g.

The approach, following ideas of C. Hull [11] and exploited for example in [7] is
that one may try to find a manifold N with the property that dim N = 2 dim M. It
fibers over M, N � M and its parallelizable, such that TN ' g× N, that is, the Lie
bracket of vectors in a frame is identified with the Lie bracket of g. In this situation
we consider the g-module C∞(N), the Kac-Moody affinization ĝ of g and its induced
module from C∞(N). We have an embedding C∞(M) ↪→ C∞(N) given by pullback,
inducing the sequence of embeddings:

V1(g) ⊂ Indĝ
ĝ+

C∞(M) ⊂ H := Indĝ
ĝ+

C∞(N),

where the first module is induced from the constant function 1, coincides with the
vacuum module for the algebra ĝ and is known to be a vertex algebra. The second
module coincides with the vertex algebra VM and is here represented as a subspace
ofH.

Given the situation above one would expect H to be naturally a module over the
vertex algebra VM. However, as we will see in this thesis, logarithms in the fields
might be unavoidable. It turns out that this situation provides a natural family
of examples of logarithmic modules over vertex algebras, as defined and studied by
Bakalov in [4].
We apply the above remarks to describe VT3 , VN and H as vector spaces as follows.
Let g be the two step nilpotent Lie algebra of rank 3, that is a central extension of R3

by R3. It has a basis
{

βi, αi}
i=1,2,3 with only non-vanishing commutators

[βi, β j] =
1
2 ∑

k
εijkαk.

Where ε is the totally antisymmetric tensor. The Lie algebra g carries a non-degenerate
invariant symmetric bilinear form 〈, 〉 with non-vanishing pairings〈

βi, αj
〉
= δ

j
i .

There arises its Kac-Moody affinization ĝ = g ⊗ C[t, t−1] ⊕ CK, with non-trivial
brackets

[am, bn] = [a, b]m+n + m 〈a, b〉 δm,−nK, a, b ∈ g, m, n ∈ Z,

where an = a⊗ tn for a ∈ g and n ∈ Z.
Let G be the unipotent Lie group with Lie algebra g. It is also an extension of R3 by

R3. Let Γ ⊂ G be the subgroup generated by a basis of the quotient R3 of G. It is a
cocompact subgroup, the quotient Y = G/Γ is a six-dimensional nilmanifold which
is a non-trivial T3-fibration over T3. In fact we have the central extensions:

0→ R3 → G → R3 → 0

0→ Z3 → Γ→ Z3 → 0
(1.1)

Showing Y as a T3 = R3/Z3 fibration over T3.
The Lie group G acts on L2(Y) and its Lie algebra g acts on C∞(Y). We extend the
g = g⊗ t0 ⊂ ĝ action on C∞(Y) into a representation of ĝ+ := g⊗ C[t] ⊕ CK by
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letting K act by 1 and an act by 0 if n ≥ 0. The vector space H is the corresponding
ĝ-induced module

H := Indĝ
ĝ+

C∞(Y).

Properly speakingH is its L2 completion, but we will not care about unitarity prop-
erties in this thesis.
Notice that the constant function 1 defines an embedding V1(g) ↪→ H of the vac-

uum representation of ĝ into H. As it is well known V1(g) is a vertex algebra
and this embedding makes H into a V1(g)-module. Consider now the three Torus
T3 = R3/Z3, the morphism Y � T3 provides an embedding C∞(T3) ↪→ C∞(Y). It
is easy to see that this is an embedding of g-modules. The induced ĝ-module coin-
cides with VT3 , that is

V1(g) ⊂ VT3 ' Indĝ
ĝ+

C∞(T3) ⊂ H.

However a little work is required to check that H is a vertex algebra module over
VT3 . The fields associated to vectors f ∈ C∞(T3) involve explicitly logarithms of the
formal variable z. The situation is very similar to that of the lattice vertex algebra
where the logarithms only appear exponentiated, hence appealing to the identity
exp(log(z)) = z one can get rid of them.
The situation with the Heisenberg nilmanifold is a quite different. Any line L ⊂ R3

determines a central character χL : Z(G) ' R3 → R of G. We can view L as a one
dimensional subgroup of G (in the quotient R3). The subgroup K = ker χL ⊕L ⊂ G
is normal and its cokernel

0→ K → G → Heis(R)→ 0,

is the 3-dimensional real Heisenberg group. If the line L is generated by an element
of Γ, this sequence is compatible with Γ in the sense that there exists an analogous
sequence

0→ KΓ → Γ→ Heis(Z)→ 0,

whose quotient is now the integer Heisenberg group. This construction shows Y as
a fibration over the Heisenberg nilmanifold N = Heis(R)/Heis(Z) (it is not hard
to see that the fiber is also a three torus T3).
We obtain thus an embedding C∞(N) ↪→ C∞(Y). As before it is easy to see that

this is an embedding of g-modules. It turns out that the induced ĝ-module is also
isomorphic to the vertex algebra VN :

V1(g) ⊂ VN ' Indĝ
ĝ+

C∞(N) ⊂ H.

This time however, logarithms are unavoidable. In fact, the fields associated to vec-
tors of VN have explicit logarithms of z on them when acting on H. It is only by re-
stricting to VN ⊂ H that they disappear by use of the same identity exp(log(z)) = z.
However, when analyzing the action of VN on H these logarithms remain, making
H a logarithmic module over VN .

In order to describe explicitly the fields of VN and their action on H, we need to
use certain results from harmonic analysis. In particular, since the representation of
G in L2(Y) is unitary, it decomposes into direct sum of irreducible representations.
These representations turn out to be induced from unitary irreducible representa-
tions of the real Heisenberg group, and by the Stone-von Neumann theorem they
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are unique once we choose a central character. One can choose explicit cyclic vec-
tors for these representations: they are given by appropriate constant (the vacuum
vector), exponential (functions from T3), or Jacobi theta functions. We construct ver-
tex operators associated to these Jacobi theta functions in complete analogy as how
one constructs vertex operators associated to exponential functions. These operators
however, carry an explicit dependency on the logarithm of the formal variable. We
show by explicit computation the locality and translation invariant property as well
as the axioms for a logarithmic module as in [4].
In fact we construct vertex operators associated to any vector in H. One would

expect to have a vertex-algebra-like structure on H with these vertex operators. As
we have already pointed out, logarithms are unavoidable. In latter years there has
been an effort to include logarithmic singularities in the OPE of fields, B. Bakalov has
defined logarithmic vertex algebras to allow for these singularities. However, in our
situation, the singularities are dilogarithmic. If we replace C∞(Y) in the definition of
H by functions on the universal cover G we show that by making use of an analytic
identity satisfied by the dilogarithm (analogous to that of exp(log(z)) = z) we can
prove a version of locality for these vertex operators.

The structure of this thesis is as follows. In the first chapter we provide a brief
summary of the theory of quantum fields, vertex algebras, logarithmic vertex al-
gebras and logarithmic modules; in this chapter are also stated several equivalent
definitions of vertex algebras, logarithmic modules and some classical results on
vertex algebras as well. The second chapter is dedicated completely to study func-
tions on the double twisted torus, initially we only consider the induced module to
the whole Kac-Moody algebra from the the polynomial functions submodule and
we prove that it has the structure of logarithmic module, moreover we also try to
endow it with a more complicated structure (logarithmic vertex algebra) but some
problems arise, finally we managed to prove that the induced module to the whole
Kac-Moody algebra can be endowed with the structure of logarithmic module over
some carefully chosen submodules, specifically we prove the following theorems:

Theorem 1.1 H has the structure of VT3-module.

Theorem 1.2 H has the structure of logarithmic VN-module.



5

Chapter 2

Vertex Algebras and Logarithms

2.1 Vertex Algebras

Let V be a vector space over C, the quantum fields on V are defined as Field (V) =
Hom (V, V((z))) where V((z)) = V[[z]][z−1] = V ⊗ C[[z]][z−1] denotes the space of
Laurent series on V; i.e. a field on V is a formal series a(z) = ∑n∈Z a(n)z−1−n where
a(n) ∈ End (V) and for each v ∈ V, a(n)v = 0 for n large enough.
Two quantum fields a(z1), b(z2) are called local if there is N ∈N such that

(z1 − z2)
N [a(z1), b(z2)] = 0. (2.1)

The n-product of two local fields is defined as(
a(z1)(n)b(z2)

)
(z)v = ∂

(N−1−n)
z1

(
(z1 − z2)

Na(z1)b(z2)v
)∣∣∣

z1=z2=z
(2.2)

for v ∈ V, n < N, and
(

a(z1)(n)b(z2)
)
(z)v = 0 if n ≥ N.

Notation: Given and operator A we will use the notation A(k) = Ak

k! .

It can be proved that the n-product of two local field defined by 2.2 is equivalent to(
a(z1)(n)b(z2)

)
(z)v = resz1 (iz1>z(z1 − z)na(z1)b(z)v− iz>z1(z1 − z)nb(z)a(z1)v) .

Given a field a(z) = ∑n∈Z a(n)z−1−n the annihilation and creation parts of a(z) are
defined respectively as:

a(z)− = ∑
n≥0

a(n)z
−1−n,

a(z)+ = ∑
n≤−1

a(n)z
−1−n;

The normally ordered product of two fields a(z1), b(z2) is defined by

: a(z1)b(z2) : = a(z1)+b(z2) + b(z2)a(z1)−.

Definition 2.1.1 [9] A vertex algebra is the data of a vector space V called space of states,
a distinguished vector 1 ∈ V called vacuum vector, an endomorphism T ∈ End (V) called
translation and a set of fields F ⊆ Field (V) such that:

(vacuum axiom) T1 = 0,

(translation invariance) [T, a(z)] = ∂za(z) for every a(z) ∈ F ,

(locality axiom) All fields in F are pairwise local,
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(completeness axiom) V = Span
{

a1
(n1)

a2
(n2)

. . . ak
(nk)

1
}

.

Following [8] let g be a Lie algebra with a non degenerate symmetric invariant
bilinear form 〈·, ·〉 : g× g → C, for instance, every finite dimensional semisimple
Lie algebra has such bilinear form. The Kac-Moody affine Lie algebra ĝ is defined as
vector space by ĝ = g[t, t−1]⊕CK and the following commutator:

[atm, btn] = [a, b] tm+n + m 〈a, b〉 δm,−nK,

where K is central. Let us introduce the notation an = atn.
Consider the subalgebra of the Kac-Moody affine algebra given by g[t]⊕ CK and

consider the one dimensional representation C1, where K acts by multiplication by
a given scalar k and the elements of g[t] acts by zero.

Proposition 2.1.1 The ĝ module

Vk(g) = Indĝ
g[t]⊕CK1 ' U (ĝ)⊗U (g[t]⊕CK) C1

has a vertex algebra structure.

Proof:
To prove Vk(g) is a vertex algebra we must define a set of fields, a vacuum vector and a trans-
lation endomorphism. Consider the following set of fieldsF =

{
a(z) = ∑n∈Z anz−1−n, a ∈ g

}
,

the module Vk(g) already has a distinguished vector 1⊗ 1, still denoted by 1.
Now because of the Poincare-Birkhoff-Witt theorem (PBW) and because the an for n ≥ 0 act

by zero, the Vk(g) is spanned as vector space by element of the form a1
−nk1
· · · ar

−nkr
1. From

this last observation it is trivial that the completeness axiom is satisfied.
Now define T : Vk(g) → Vk(g) recursively as T1 = 0 and [T, an] = −nan−1, from this

definition is obvious that the translation axiom holds. Finally the last axiom to prove is the
locality but if a(z1) = ∑n∈Z anz−1−n

1 and b(z2) = ∑n∈Z bnz−1−n
2 , then

[a(z1), b(z2)] = ∑
m,n

z−1−m
1 z−1−n

2 [am, bn]

= ∑
m,n

z−1−m
1 z−1−n

2 [a, b]m+n + ∑
m,n

z−1−m
1 z−1−n

2 m 〈a, b〉 δm,−nK

= ∑
m,n

z−1−m
1 zm

2

(
[a, b]m+n z−1−(m+n)

2

)
+ ∑

m
z−1−m

1 w−1+mm 〈a, b〉K

= δ(z1, z2) [a, b] (z2) + 〈a, b〉K∂z2 δ(z1, z2),

where δ(z1, z2) = ∑m∈Z z−1−m
1 zm

2 , and it is straightforward that (z1 − z2)δ(z, w) = 0 and
(z1 − z2)

2∂wδ(z1, z2) = 0, then (z1 − z2)
2 [a(z1), b(z2)] = 0. �

This vertex algebra Vk(g) is called the universal affine vertex algebra of level k or the
Kac-Moody vertex algebra of level k.

Proposition 2.1.2 (Dong’s Lemma ) [12] Let a(z), b(z), c(z) be pairwise local fields on
V then a(z)(n)b(z), ∂za(z), b(z), c(z) n ∈ Z are also pairwise local fields.

The set of fields in the definition of vertex algebra could be enlarged to a minimal
subspace of Field (V) containing idV , closed by ∂z and all n-products, we will still
denote it by F then the main result of vertex algebras [9] is V ' F , known as state
fields correspondence. Then it makes sense to state a more practical definition of vertex
algebra.
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Definition 2.1.2 A vertex algebra is a vector space V, a distinguished vector 1 ∈ V and
linear map

Yz : V → Field (V) , v 7→ Y(v, z),

such that the following axioms are satisfied:

(vacuum axiom) Y(1, z) = id, Y(v, z)1 ∈ V[[z]], Y(v, z)1|z=0 = v;

(translation invariance) [T, Y(v, z)] = ∂zY(v, z);

(locality axiom) For every v1, v2 ∈ V there is N large enough such that

(z1 − z2)
N [Yz1(v1), Yz2(v2)] = 0.

Where the translation endomorphism T ∈ End (V) is defined as Tv = ∂zY(v, z)1|z=0.

For example, in the universal affine vertex algebra the map Yz : Vk(g)→ Field
(
Vk(g)

)
is defined as

Y(a−11, z) = ∑
n∈Z

anz−1−n, a ∈ g,

and in general for the generators of Vk(g)

Y(a1
−nk1
· · · ar

−nkr
1, z) =

: ∂
nk1
−1

z Y(a1
−11, z) · · · ∂nkr−1

z Y(ar
−11, z) :

(nk1 − 1)! · · · (nkr − 1)!
. (2.3)

Definition 2.1.3 A module over a vertex algebra V is a vector space W equipped with a
linear map Yz : V → Field (W) such that:

• Y(1) = id

• Y(a(n)b) = Y(a)(n)Y(b) for all n ∈ Z.

There is yet another useful definition for vertex algebras using Lie Conformal Alge-
bras.

Definition 2.1.4 A Lie conformal algebra is a C[∂]-module R equipped with a C-linear map
(called lambda bracket) [·λ·] : R⊗ R→ C[λ]⊗ R such that:

a. [∂aλb] = −λ [aλb],

b. ∂ [aλb] = [∂aλb] + [aλ∂b],

c. [bλa] = − [a−λ−∂b],

d.
[
[aλb]λ+µ c

]
=
[
aλ

[
bµc
]]
−
[
bλ

[
aµc
]]

.

It is convenient to express [aλb] = ∑n≥0(a(n)b)λn

n! so the expression [a−λ−∂b] is in-

terpreted as ∑n≥0(a(n)b)
(−λ−∂)n

n! , from this it becomes clear that the definition of Lie
conformal algebra can be translated into the language of n-products (n ≥ 0). Then
as proven in [9] the following definition is equivalent to the previous definitions of
vertex algebras:

Definition 2.1.5 A vertex algebra is the data of a vector space V, a distinguished vector
1 ∈ V, an endomorphism ∂ ∈ End (V), a linear map [·λ·] : V ⊗ V → C[λ] ⊗ V and a
linear map :: :V ⊗V → V such that
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a. (V, ∂, [·λ·]) is a Lie conformal algebra,

b. (V, 1, ∂, ::) is a unital differential algebra satisfying

: ab : − : ba :=
∫ 0

∂
[aλb] dλ

and

:: ab : c : − : a : bc ::=: (
∫ ∂

0
dλa) [bλc] : + : (

∫ ∂

0
dλc) [aλc]) :,

c. The non-commutative Wick formula holds

[aλ : bc :] =: [aλb]c : + : b [aλc] : +
∫ λ

0

[
[aλb]µ c

]
dµ.

Remark: The integrals of the form : (
∫ ∂

0 dλa) [bλc] : are interpreted in the following
sense: expand the lambda bracket, such that the powers of λ fall under the integral
sign and then compute the formal integral, in this case would be

: (
∫ ∂

0
dλa) [bλc] :=: (

∫ ∂

0
∑
n≥0

λn

n!
dλa)

(
b(n)c

)
:=: ∑

n≥0
∂(n+1)a

(
b(n)c

)
:=: ∑

n≥0
a(−n−2)

(
b(n)c

)
: .

Trivially every vertex algebra is a Lie conformal algebra, the forgetful functor has
a left adjoint R 7→ V(R) which assigns to every Lie conformal algebra its universal
enveloping vertex algebra [9], i.e.,

HomLCA (R, V) ' HomVA (V(R), V) .

Similarly to the PBW theorem which explicitly describes the structure of the univer-
sal enveloping algebra of a Lie algebra there is an analogous result for the universal
enveloping vertex algebra of a Lie conformal algebra.

Proposition 2.1.3 Any ordered basis of R freely generates V(R).

For a more detailed explanation see [9, section 1.7].

2.2 Logarithmic Fields and Logarithmic Modules

It is convenient to extend the notion of quantum fields defined before to include
logarithms, i.e., it is often needed to have the notion of logarithm in the formal theory
of fields, in this section the basic results of logarithmic vector field will be stated
following the ideas developed by Bojko Bakalov in [4]. Let’s start by introducing the
formal variable log(z) which intuitively can be thought as the logarithm of z. Since
there are now two formal variables we have two possible derivations

Dz = ∂z + z−1∂log(z), Dlog(z) = z∂z + ∂log(z).

Notice that here we are using the derivatives Dz and Dlog(z) instead of ∂z and ∂log(z)
because the former derivations carry formally the data coded in the analytic equa-
tion "∂z log(z) = 1

z " while the latter derivations do not.
Let W be a vector space over C, let α ∈ C/Z and define

LFieldα(W) = Hom
(
W, W[log(z)][[z]]z−α

)
,
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the space of logarithmic quantum fields on W is defined to be

LField (W) =
⊕

α∈C/Z

LFieldα(W).

Notation: The logarithmic fields will be denoted as a(z) instead of a(log(z), z) when
no confusion arise.

Definition 2.2.1 Two logarithmic fields a(z1), b(z2) are local if for N >> 0 holds:

(z1 − z2)
N [a(z1), b(z2)] = 0. (2.4)

Definition 2.2.2 The n-product of two local logarithmic fields a(z1) and b(z2) is defined as(
a(z1)(n)b(z2)

)
(z)w = D(N−n−1)

z1

(
(z1 − z2)

Na(z1)b(z2)w
)∣∣∣

z1=z2=z
(2.5)

for w ∈W and n < N. For n ≥ N the n-product is defined by
(

a(z1)(n)b(z2)
)
= 0.

It is easy to derive the following properties from the Leibniz rule

(Dza)(n)b = −na(n−1)b, (2.6)

Dz

(
a(n)b

)
= (Dza)(n)b + a(n)(Dzb), (2.7)(

∂log(z)a(n)b
)

=
(

∂log(z)a
)
(n)

b + a(n)
(

∂log(z)b
)

. (2.8)

Once again there is a Dong’s Lemma for logarithmic fields:

Proposition 2.2.1 Let a(z), b(z), c(z) be pairwise local logarithmic fields then

a. a(z)(n)b(z) and c(z) are local fields for all n ∈ Z,

b. Dza(z), b(z) and Dlog(z)a(z) are pairwise local.

Proof:
The part a is proven in [4], for the part b just notice that Dza(z) = a(z)(−2)id, Dlog(z) = zDz

then use part a. �

In order to define the normally ordered product for logarithmic fields some extra
step is required, for α ∈ C/Z select a representative α0 such that −1 < Re(α0) ≤ 0
then any element a(z) ∈ LFieldα(W) can be uniquely expressed as

a(z) = ∑
n∈Z

an (log(z)) z−n−α0 ,

where for every w ∈ W holds an (log(z))w = 0 for n >> 0. The annihilation and
creation parts of a(z) are defined:

a(z)− = ∑
n≥1

an (log(z)) z−n−α0 ,

a(z)+ = ∑
n≤0

an (log(z)) z−n−α0 ,
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and this concepts can be extended linearly to LField (W); then the normally ordered
product of logarithmic fields is defined by the usual formula

: a(z1)b(z2) : = a(z1)+b(z2) + b(z2)a(z1)−.

The propagator of two logarithmic fields a(z1), b(z2) is defined as

P(a, b; z1, z2) = [a(z1)−, b(z2)] = a(z1)b(z2)− : a(z1)b(z2) : .

The propagator can be used to compute the n-products [4]:

Proposition 2.2.2 If a(z1), b(z2) are local logarithmic fields then the n-product for n ≥ 0
can be computed by the formula(

a(z1)(n)b(z2)
)
(z)w = D(N−n−1)

z1

(
(z1 − z2)

N P(a, b; z1, z2)w
)∣∣∣

z1=z2=z

where N is large enough such that the equation 2.4 holds and n < N.

Definition 2.2.3 A logarithmic module over a vertex algebra V is a vector space W equipped
with a linear map Yz : V → LField (W) such that:

• Y(1) = id

• Y(a(n)b) = Y(a)(n)Y(b) for all n ∈ Z.

Moreover, if V is a vertex algebra equipped with an automorphism ϕ and W is a
logarithmic module over V such that Y(ϕa) = e2πiDlog(z)Y(a) holds for every a ∈ V,
then W is called a ϕ-twisted logarithmic module [4].
Let W be a vector space and let W ⊆ LField (W) be a collection of logarithmic

fields which are pairwise local, denote by W the smallest C[Dlog(z)] submodule of
LField (W) containing W ∪ {id} and closed under n-products; then, because of
Proposition 2.2.1,W is again a collection of pairwise local logarithmic fields.

Theorem 2.1 (Bakalov) Let W be a vector space and W be defined as above. Then W
with the n-product of logarithmic fields has the structure of vertex algebra where the vacuum
vector is id and the translation operator is Dz.

From this it becomes clear that W is a logarithmic module over W , just take the
map Y : W → LField (W) to be the inclusion map; moreover, it is e2πiDlog(z)-twisted
module.

Corollary 2.2.1 Let V be a vertex algebra and W a vector space, then giving a logarithmic
V-module structure on W is equivalent to give a vertex algebra morphism V → W for a
local collection of logarithmic fieldsW ⊆ LField (W), moreover, if V is equipped with an
automorphism ϕ then the module will be twisted if and only the associated vertex algebra
morphism transforms ϕ into e2πiDlog(z) .

2.3 Logarithmic Vertex Algebras and special functions

It is convenient now to study a new type algebra structure similar to vertex algebras
involving the logarithmic fields, it is indeed the theory of logarithmic vertex algebras
developed by Bojko Bakalov [3].
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Definition 2.3.1 A logarithmic vertex algebra is a vector space V (space of states), a distin-
guished vector 1 ∈ V, linear map

Yz : V → LField (V) , v 7→ Y(v, z),

and a locally nilpotent operator N ∈ End (V ⊗V) such that the following axioms are
satisfied:

(vacuum axiom) Y(1, z) = id, Y(v, z)1 ∈ V[[z]], Y(v, z)1|z=0 = v;

(translation invariance) [T, Y(v, z)] = DzY(v, z);

(locality axiom) For every v1, v2 ∈ V there is N large enough such that

(z1 − z2)Nµ (Yz1 ⊗Yz2) elog(z1−z2)N (v1 ⊗ v2) = (z1 − z2)Nµ (Yz2 ⊗Yz1) elog(z2−z1)N (v2 ⊗ v1) ; (2.9)

where the translation endomorphism T ∈ End (V) is defined as Tv = ∂zY(v, z)1|z=0 and
µ : End (V)⊗ End (V)→ End (V) denotes the composition.

Note that the role of the endomorphism N on the definition is to handle the log-
arithm in the locality axiom. Also note that every vertex algebra is trivially a loga-
rithmic vertex algebra declaring N = 0.
Remark: Even when the expression log(z) is a formal variable we may define for-
mally

log (xy) = log (x) + log (y) , (2.10)

log
(

x
y

)
= log (x)− log (y) , (2.11)

log (1− x) = − ∑
n>0

xn

n
, (2.12)

therefore the expression log (z1 − z2) might be interpreted in the following way:

log (z1 − z2) = log (z1) + log
(

1− z2

z1

)
= log (z1)− ∑

n>0

z−n
1 zn

2
n

.

The polylogarithm function is defined as

Lip(z) = ∑
n>0

zn

np , (2.13)

specifically we will be interested in the dilogarithm

Li2(z) = ∑
n>0

zn

n2 . (2.14)

Now we will proceed for the dilogarithm exactly as we did for the logarithm, were
the logarithm of the product and the quotient was defined such that the usual ana-
lytic identities were satisfied. Finally we formally define

Li2(1− z) =
π2

6
− log(z) log (1− z)− Li2(z). (2.15)
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Chapter 3

Functions on the double twisted
torus

3.1 Kac-Moody Lie algebra and double twisted torus

Let V be a 3-dimensional real vector space and consider G the extension

0 // ∧2V // G // V // 0

with internal law

(v, ζ)
(
v′, ζ ′

)
=
(
v + v′, ζ + ζ ′ + v ∧ v′

)
, v, v′ ∈ V, ζ, ζ ′ ∈ ∧2V

making G into a group. Using a coordinate system
{

xi, x∗i
}

, i = 1, 2, 3, where
{

xi}
are the coordinates on the canonical basis

{
ei} of V and {x∗i } are coordinates on the

basis
{

e∗i = εijkej ∧ ek} of ∧2V, this product translates as(
xi, x∗i

) (
yi, y∗i

)
=

(
xi + yi, x∗i + y∗i +

1
2

εijkxjyk
)

,

where εijk denotes the totally antisymmetric tensor. The double twisted torus Y is
defined as the quotient of G modulo the subgroup Γ generated by ei, i = 1, 2, 3 the
standard basis of V ' R3. The tangent bundle TY is trivialized by the left invariant
vector fields of G:

αi = ∂x∗i , βi = ∂xi −
1
2

εijkxj∂x∗k ,

being
[
βi, β j

]
= εijkαk the only non trivial commutators, therefore they span a Lie

algebra g; moreover this Lie algebra is equipped with a non degenerate symmetric
invariant bilinear form 〈

βi, αj
〉
= δi,j.

Now consider the space of polynomials C[xi, x∗i ] which is a g-module via the re-
striction of the action on C∞(G), let ĝ = g[t, t−1]⊕CK be the affine Kac-Moody Lie
algebra associated to g and extend the action for the elements an = atn, a ∈ g, n ≥ 1
by zero and make K act as the identity, then define the ĝ-module

H = Indĝ
g[t]⊕CKC[xi, x∗i ]. (3.1)

Notice thatH has naturally the structure of V1(g)-module.
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Let’s start by defining some operators on H that will be useful later, particularly
when we try to fitH into an algebraic structure:

Define the operators xi
n := − 1

n αi
n for n 6= 0, note that those operators commute

with each other, define xi
0 acting on an element of C[xi, x∗i ] as f 7→ xi f , impose that[

xj
n, xi

0

]
= 0 and

[
β j,n, xi

0
]
= δi,jδn,0K; therefore xi

0 can be extended toH.

Define the operators W i := αi
0 onH for i = 1, 2, 3 and

Pi := βi,0 + εijkxj
0Wk − 1

2
εijk ∑

m
mxj
−mxk

m,

note that since all the αi
n commute with each other then all the xi

n and W j commute
with each other. Also define the operators

x∗i,n := − 1
n

(
βi,n + εijkxj

nWk − 1
2

εijk ∑
m

mxj
n−mxk

m

)
, n 6= 0,

the operators x∗i,0 will be defined acting on functions as f 7→ x∗i f with the commuta-

tion relations
[

x∗i,0, xj
n

]
=
[

x∗i,0, x∗j,0
]
= 0,

[
x∗i,0, β j,n

]
= 1

2 εijkxk
n,
[
W j, x∗i,0

]
= δi,jK.

Remark: The operators Pi and x∗i,n are well defined because even when the sum ap-
pearing in the last term runs over the integers it is actually finite since xi

m acts by
zero for m big enough.

It would be convenient to compute explicitly for later reuse all the commutators of
the previously defined operators. It is obvious that

[
α

j
m, xi

n

]
= 0, (3.2)[

β j,m, xi
n

]
= δi,jδn,−mK, (3.3)[

αi
m, W j

]
= 0, (3.4)[

β j,m, W i
]

= 0, (3.5)[
α

j
m, x∗i,n

]
= δi,jδn,−mK (3.6)[

α
j
m, Pi

]
= 0 (3.7)[

Pi, W j
]

= 0. (3.8)

For β
j
m and x∗i,n with n 6= 0 it holds
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[
β j,m, x∗i,n

]
= − 1

n
[
β j,m, βi,n

]
−

εipq

n
[
β j,m, xp

nWq]+ εipq

2n ∑
s

s
[
β j,m, xp

n−sxq
s
]

=
εijk

n
αk

n+m −
εipq

n
δj,pδm,−nWq +

εipq

2n ∑
s

s
[
β j,m, xp

n−s
]

xq
s +

εipq

2n ∑
s

sxq
s
[
β j,m, xp

n−s
]

=
εijk

n
αk

n+m −
εijk

n
δm,−nWk +

εipq

2n ∑
s

sδj,pδm,s−nxq
s +

εipq

2n ∑
s

sδj,qδm,−sxp
n−s

=
εijk

n
αk

n+m −
εijk

n
δm,−nWk +

εijk

2n
(m + n)xk

m+n +
εijk

2n
mxk

m+n

= (1− δm,−n)
εijk
n αk

n+m + δm,−n
εijk
n αk

n+m −
εijk
n δm,−nWk + (1− δm,−n)

εijk
2n (m + n)xk

m+n + (1− δm,−n)
εijk
2n mxk

m+n + δm,−n
εijk
2n mxk

m+n

= (1− δm,−n)
(

εijk
n αk

n+m +
εijk
2n (m + n)xk

m+n +
εijk
2n mxk

m+n

)
+ δm,−n

(
εijk
n αk

n+m −
εijk
n Wk +

εijk
2n mxk

m+n

)
= (1− δm,−n)

(
− εijk

n (m + n)xk
n+m +

εijk
2n (m + n)xk

m+n +
εijk
2n mxk

m+n

)
+ δm,−n

(
εijk
n αk

0 −
εijk
n Wk − εijk

2 xk
m+n

)
= −(1− δm,−n)

εijk

2
xk

m+n − δm,−n
εijk

2
xk

m+n

= −
εijk

2
xk

m+n,

notice that x∗i,0 was defined in a way such that the previous formula is also satisfied.

For β
j
m and Pi the bracket is computed as follows

[
β j,m, Pi

]
=

[
β j,m, βi0

]
+ εipq

[
β j,m, xp

0Wq]− εipq

2 ∑
n

n
[
β j,m, xp

−nxq
n
]

= −εijkαk
m + εipq

[
β j,m, xp

0

]
Wq −

εipq

2 ∑
n

n
[
β j,m, xp

−n
]

xq
n −

εipq

2 ∑
n

nxp
−n
[
β j,m, xq

n
]

= −εijkαk
m + εipqδj,pδm,0Wq −

εipq

2 ∑
n

nδj,pδm,nxq
n −

εipq

2 ∑
n

nδj,qδm,−nxp
−n

= −εijkαk
m + εijkδm,0Wk −

εijkm
2

xk
m +

εikjm
2

δm,−nxk
m

= −εijkαk
m + εijkδm,0Wk − εijkmxk

m

= εijk(1− δm,0)(−αk
m −mxk

m) + εipkzδm,0(−αk
0 + Wk)

= εijk(1− δm,0)(mxk
m −mxk

m) + εipkzδm,0(−Wk + Wk)

= 0.

Similarly, the remaining commutators can be computed obtaining:

[
β j,m, x∗i,n

]
= −

εijk

2
xk

m+n, (3.9)[
β j,m, Pi

]
= 0, (3.10)[

Pi, Pj
]

= −εijkWk, (3.11)[
x∗i,n, x∗j,0

]
=

εijk

2n
xk

n, (3.12)[
xi,m, x∗j,n

]
=

m + n
2mn

εijk +
1

m2 εijkWkδm,−n. (3.13)

Let us define the fields
αi(z) = ∑

n
αi

nz−1−n,
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βi(z) = ∑
n

βi,nz−1−n,

and the logarithmic fields

xi(z) = W i log(z) + ∑
n∈Z

xi
nz−n,

x∗i (z) = Pi log(z) + ∑
n∈Z

x∗inz−n +
log(z)

2
εijkW jxk(z),

Note that following differential equation holds

Dzxi(z) = αi(z), (3.14)

it will be useful to find a similar equation for the derivative of x∗i (z):

∂zx∗i (z) = ∂z (Pi log(z)) + ∂z

(
∑
n

x∗i,n(z)z
−n

)
+

εijk

2
∂z

(
log(z)W jxk(z)

)
= Piz−1 −∑

n
nx∗i,n(z)z

−1−n +
εijk

2
xk(z)W jz−1 +

εijk

2
log(z)W j∂zxk(z)

= βi,0z−1 + εijkxj
0Wkz−1 −

εijk

2 ∑
m

xj
−mxk

mz−1

+ ∑
n 6=0

βi
nz−1−n + εijk ∑

n 6=0
xj

nz−1−nWk −
εijk

2 ∑
n 6=0

∑
m

mxj
n−mxk

mz−1−n

+
εijk

2
xk(z)W jz−1 +

εijk

2
log(z)W j∂zxk(z)

= ∑
n

βi
nz−1−n + εijk ∑

n
xj

nz−nWkz−1 −
εijk

2 ∑
n

∑
m

xj
n−mz−(n−m)mxk

mz−1−m

+
εikj

2
xj(z)Wkz−1 +

εijk

2
log(z)W j∂zxk(z)

= βi(z) + εijk x̃j(z)Wkz−1 −
εijk

2

(
∑
n

xj
nz−n

)(
∑
n

nxk
nz−1−n

)
+

εikj

2
xj(z)Wkz−1 +

εijk

2
log(z)W j∂zxk(z)

= βi(z) + εijk x̃j(z)Wkz−1 +
εijk

2
x̃j(z)∂z x̃k(z)−

εijk

2
xj(z)Wkz−1

+
εijk

2
log(z)W j∂zxk(z)

= βi(z) +
εijk

2
x̃j(z)Wkz−1 +

εijk

2
x̃j(z)∂zxk(z)−

εijk

2
xj(z)Wkz−1

+
εijk

2
log(z)W j∂zxk(z)

= βi(z) +
εijk

2
xj(z)∂zxk(z)−

εijk

2
W jWk log(z)z−1

= βi(z) +
εijk

2
xj(z)∂zxk(z).

Here we denote x̃j(z) = xj(z) −W j log(z), and note that εijkW jWk = 0 since W j

commutes with Wk. So finally we obtained a differential equation for x∗i (z):
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Dzx∗i (z) = βi(z) +
1
2

εijkxj(z)Dzxk(z). (3.15)

3.1.1 H as a logarithmic module

The goal now is to endow H with the structure of logarithmic module over a vertex
algebra.
Define R to be the Lie conformal algebra

R =

⊕
i=1,2,3 C[∂]βi

⊕
i=1,2,3 C[∂]xi ⊕C[∂]K
∂K

with lambda bracket defined by[
βiλxj

]
= δi,jK,[

βiλβ j
]

= εijk∂xk.

Define the logarithmic fields

βi(z) = ∑
n∈Z

βi,nz−1−n,

xi(z) = W i log(z) + ∑
n∈Z

xi
nz−n.

The collection of fieldsW =
{

xi(z), βi(z)
}

i=1,2,3 ⊆ LField (H) is local: (xi(z), xj(z))
are local because W i and xi commute with each other, (βi(z), β j(z)) are local because
from the proof of Proposition 2.1.1 it is known that

(z1 − z2)
[
βi(z1), β j(z2)

]
= 0,

and for (β j(z), xi(z))

[
βi(z1), xj(z2)

]
=

[
∑
n

βi,nz−1−n
1 , W j log (z2) + ∑

m
xj

mz−m
2

]
= ∑

n,m

[
βi,n, xj

m

]
z−1−n

1 z−m
2

= ∑
n,m

δi,jδn,−mz−1−n
1 z−m

2

= δi,j ∑
n

z−1−n
1 zn

2

= δi,jδ(z1, z2),

and so (z1 − z2)
[
βi(z1), xj(z2)

]
= 0.

Because of Theorem 2.1 the set W has the structure of vertex algebra. Define the
following map

ϕ : R → W
βi 7→ βi(z)
xi 7→ xi(z)
K 7→ id.
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Let us check that ϕ is a morphism of Lie conformal algebras, i.e., that ϕ is compatible
with all n-products for (n ≥ 0). Trivially, βi(z1)(n)xj(z2) = βi(z1)(n)β j(z2) = 0 for
n ≥ 1, the other cases are(

βi(z1)(0)x
j(z2)

)
(z) =

(
(z1 − z2)P(βi, xj; z1, z2)

)∣∣∣
z1=z2=z

= (z1 − z2) ∑
n≥0,m∈Z

[
βi,n, xj

m

]
z−1−n

1 z−m
2

∣∣∣∣∣
z1=z2=z

= (z1 − z2)δi,j ∑
n≥0

z−1−n
1 zn

2

∣∣∣∣∣
z1=z2=z

= (z1 − z2)δi,j
1

z1 − z2

∣∣∣∣
z1=z2=z

= δi,jid = ϕ
(

βi(0)x
j
)

.

(
βi(z1)(0)β j(z2)

)
(z) =

(
(z1 − z2)P(βi, β j; z1, z2)

)∣∣
z1=z2=z

= εijkαk(z)

= εijkDzxk(z)

= ϕ(εijk∂xk)

= ϕ(βi(0)β j).

Therefore ϕ : R→W is indeed a morphism of Lie conformal algebras and because
of the corollary of Theorem 2.1 there is a vertex algebras morphism that will be de-
noted again by ϕ : V1(R)→W from the universal enveloping algebra of R (modulo
K = 1) intoW ,i.e.,H is a logarithmic module over V1(R).

3.2 An algebraic structure forH
The main goal of this section is trying to equip H with a logarithmic vertex alge-
bra structure according to Bakalov’s definition (see Section 2.3), we define a locally
nilpotent endomorphism and compute the locality condition for logarithmic vertex
algebras (equation 2.9) and we shall see that it does not close to form a logarithmic
vertex algebra.
First we take the vacuum vector as 1 := 1⊗ 1, then we must give a logarithmic field

for each vector in H = Indĝ
g[[z]]⊕CKC[xi, x∗i ]i=1,2,3, the elements on H can be obtained

from the elements: a−nk1
· · · a−nkr

⊗ 1, where a−nkr
∈ ĝ, xi := 1⊗ xi and x∗i := 1⊗ x∗i ,

then the fields associated to elements a−nk1
· · · a−nkr

⊗ 1 would be exactly the same
fields used to define the Kac-Moody vertex algebra in Section 2.3, i.e., they would
be fields without logarithms; for the other two type of elements we use the fields
defined in section 3.1:

Y(xi, z) = xi(z) = W i log(z) + ∑n∈Z xi
nz−n,

Y(x∗i , z) = x∗i (z) = Pi log(z) + ∑n∈Z x∗i,nz−n + log(z)
2 εijkW jxk(z).

Then Yz can be extended to a linear map Yz : H → LField (H) via the normally
ordered product of the above fields.
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It is also required to define a locally nilpotent endomorphism of H. We define
N ∈ End (H⊗H) acting on elements of C[xi, x∗i ]i=1,2,3 as:

N = − ∑
i=1,2,3

(
∂x∗i ⊗

(
∂xi +

1
2

εijkxj∂x∗k

)
+

(
∂xi +

1
2

εijkxj∂x∗k

)
⊗ ∂x∗i

)
. (3.16)

The vacuum axiom is clearly satisfied.
For the translation axiom we define T : H → H on the elements αi

n and βi,n exactly
as we did for the Kac-Moody vertex algebra, i.e., we define T1 = 0 and extend it by
the formulas

[
T, αi

n
]
= −nαi

n−1, [T, βi,n] = −nβi,n−1, for xi
n we define

T(xi) = αi
−11,

and extend it forcing the commutation
[
T, xi

n
]
= αi

n−1. We have just defined T such
that the equation [

T, xi(z)
]
= αi(z) = Dzxi(z)

holds. We would like to continue defining T such that the equation [T, x∗i (z)] =
Dzx∗i (z) be valid, but since Pi, and x∗i,n (for n 6= 0) are defined in terms of xi

k, αi
k, βi,k

and W i there is no need to define
[

T, x∗i,n
]

and [T, Pi], moreover since T is defined so

that the translation invariance is valid for xi(z) we get that the equation

[T, x∗i (z)] = βi(z) +
1
2

εijkxj(z)Dzxk(z) = Dzx∗i (z)

is almost valid possibly failing only on the term
[

T, x∗i,0
]
, because it was not yet

defined, so in order to make the last equation valid it is only needed to define

[
T, x∗i,0

]
= βi,−1 +

1
2

εijk ∑
m

mxj
mxk
−m.

Let us prove the locality condition starting with the fields xi(z1), xj(z2). Note that
in this case the locality condition (2.9) is just the commutator; then

[
xi(z1), xj(z2)

]
=

[
W i log (z1) + ∑

n∈Z

xi
nz−n

1 , W j log (z2) + ∑
m∈Z

xj
mz−m

2

]
= 0

because W i, W j, xi
n, xj

m commute with each other, therefore the fields xi(z1) and xj(z2)
are local.
Let us try to prove that the fields xr(z1), x∗i (z2) are local. Notice that

elog(z1−z2)N (xr ⊗ x∗i ) = id + log (z1 − z2)N (xr ⊗ x∗i ) = id− log (z1 − z2) δr,i,

elog(z2−z1)N (x∗i ⊗ xr) = id + log (z2 − z1)N (x∗i ⊗ xr) = id− log (z2 − z1) δr,i,

therefore the locality condition (2.9) is:

[xr(z1), x∗i (z2)]− δr,i log (z1 − z2) + δr,i log (z2 − z1)

=

[
Wr log (z1) + ∑

n∈Z

xr
nz−n

1 , Pi log (z2) + ∑
m∈Z

x∗imz−m
2 +

1
2

log (z2) εijkW jxk(z2)

]
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−δr,i log (z1 − z2) + δr,i log (z2 − z1) ,

now because Wr, W j, xr
n, xk(z2) commute the last equation is reduced to

=

[
Wr log (z1) + ∑

n∈Z

xr
nz−n

1 , Pi log (z2) + ∑
m∈Z

x∗i,mz−m
2

]

−δr,i log (z1 − z2) + δr,i log (z2 − z1)

= [Wr, Pi] log (z1) log (z2) + log (z2) ∑
n∈Z

[xr
n, Pi] z−n

1 + log (z1) ∑
m∈Z

[
Wr, x∗i,m

]
z−m

2

+ ∑
n,m∈Z

[
xr

n, x∗i,m
]

z−n
1 z−m

2 − δr,i log (z1 − z2) + δr,i log (z2 − z1) ,

because Wr, Pi commute,
[
Wr, x∗i,0

]
= − [xr

0, Pi] = δri,
[

xr
0, x∗i,0

]
= 0 and

[
xr

k, Pi
]
=[

Wr, x∗i,k
]
= 0,

[
xr

s, x∗i,k
]
= 1

k δr,iδs,−k for k 6= 0 it follows:

= −δr,i log (z2) + δr,i log (z1) + δri ∑
m 6=0

zm
1 z−m

2
m

− δr,i log (z1 − z2) + δr,i log (z2 − z1)

= −δr,i

(
log (z2)−∑m≥1

zm
1 z−m

2
m

)
+ δr,i

(
log (z1)−∑m≥1

z−m
1 zm

2
m

)
− δr,i log (z1 − z2) + δr,i log (z2 − z1)

= −δr,i log (z2 − z1) + δr,i log (z1 − z2)− δr,i log (z1 − z2) + δr,i log (z2 − z1) = 0.

Finally it is only left to prove the locality of the fields x∗i (z1), x∗j (z2). Let us start by
analyzing the condition (2.9) in this case N does not act trivially on x∗i ⊗ x∗j so

N (x∗i ⊗ x∗j ) =
1
2

εijk1⊗ xk − 1
2

εijkxk ⊗ 1,

N (x∗j ⊗ x∗i ) = −
1
2

εijk1⊗ xk +
1
2

εijkxk ⊗ 1,

so the condition of locality in this case can be translated as:[
x∗i (z1), x∗j (z2)

]
+

1
2

εijk log (z1 − z2) xk(z2)−
1
2

εijk log (z1 − z2) xk(z1)

+
1
2

εijk log (z2 − z1) xk(z1)−
1
2

εijk log (z2 − z1) xk(z2) = 0.

The commutator
[

x∗i (z1), x∗j (z2)
]

was already computed by M. Aldi and R. Heluani
in [1], they found:

[
x∗i (z1), x∗j (z2)

]
= εijkWk

(
Li2( z2

z1
) + Li2( z1

z2
)
)
+ 1

2 εijkWk(log (z2)− log (z1)) log
(

1− z2
z1

)
+ 1

2 εijkWk(log (z1)− log (z2)) log
(

1− z1
z2

)
+ 1

2 εijk(log (z1 − z2)− log (z2 − z1))(∑m xk
mz−m

1 −∑m xk
mz−m

2 ).

Then the locality condition is

εijkWk
(

Li2( z2
z1
) + Li2( z1

z2
)
)
+ 1

2 εijkWk(log (z2)− log (z1)) log
(

1− z2
z1

)
+ 1

2 εijkWk(log (z1)− log (z2)) log
(

1− z1
z2

)
+ 1

2 εijk(log (z1 − z2)− log (z2 − z1))(∑m xk
mz−m

1 −∑m xk
mz−m

2 ) + 1
2 εijk log (z1 − z2) xk(z2)

− 1
2 εijk log (z1 − z2) xk(z1) +

1
2 εijk log (z2 − z1) xk(z1)− 1

2 εijk log (z2 − z1) xk(z2),



3.3. Functions on the double twisted torus as logarithmic module 21

substituting xk(z) = Wk log(z) + ∑m xk
mz−m

1 and simplifying it is equal to

= εijkWk
(

Li2( z2
z1
) + Li2( z1

z2
)
)
+ 1

2 εijkWk(log (z2)− log (z1)) log
(

1− z2
z1

)
+ 1

2 εijkWk(log (z1)− log (z2)) log
(

1− z1
z2

)
+ 1

2 εijkWk log (z1 − z2) log (z2)− 1
2 εijkWk log (z1 − z2) log (z1) +

1
2 εijkWk log (z2 − z1) log (z1)− 1

2 εijkWk log (z2 − z1) log (z2) ,

writing log (z1 − z2) = log (z1) + log
(

1− z2
z1

)
, rearranging and using 2.15 we get:

εijkWkLi2

(
z2

z1

)
+ εijkWk(log (z2)− log (z1)) log

(
1− z2

z1

)
+ εijkWkLi2

(
z1

z2

)
+

+εijkWk(log (z1)− log (z2)) log
(

1− z1

z2

)
− 1

2
εijkWk (log (z1)− log (z2))

2

= π2

6 εijkWk − εijkWkLi2
(

1− z1
z2

)
+ π2

6 εijkWk − εijkWkLi2
(

1− z2
z1

)
− 1

2 εijkWk (log (z1)− log (z2))
2

=
π2

3
εijkWk− εijkWkLi2

(
1− z1

z2

)
− εijkWkLi2

(
1− z2

z1

)
− εijkWk 1

2
(log (z1)− log (z2))

2

and using the formula Li2(1− z) + Li2(1− z−1) = − 1
2 (log (z))2 we have

εijkWk π2

3
+

1
2

εijkWk (log (z1)− log (z2))
2− 1

2
εijkWk (log (z1)− log (z2))

2 =
π2

3
εijkWk.

It turns out that H is not a logarithmic vertex algebra failing the locality axiom for
the logarithmic fields corresponding to the vectors x∗i , x∗j . The natural way to solve

this is to change the space, because if we have fields of the form ex∗i (z), ex∗j (z) will be
able to get rid of the Wk since it would act diagonally.
There is another deeper problem in this attempt that can not be solve: the formula

Li2(1− z) + Li2(1− z−1) = −1
2
(log (z))2

was never claimed to be true, moreover it looks to be false in the theory of logarith-
mic fields developed by Bojko Bakalov [4]. Right now I do not have a canonical way
to enlarge Bakalov’s theory of logarithmic vertex algebras in a way that this equa-
tion, which is true as an analytic formula would be valid. Now I prefer to attack the
problem of studying functions on the double twisted torus with another algebraic
structure (logarithmic modules).

3.3 Functions on the double twisted torus as logarithmic mod-
ule

Our goal in this section will be proving that Indĝ
g[t]⊕CKC∞(G/Γ) is a module over

the vertex algebra VT3 .
Let us go back to the point we started, i.e., let us focus again on the double twisted

torus G/Γ but generalizing what was done previously in Section 3.1, now for smooth
functions on the double twisted torus instead of polynomials.
As it was noticed at the beginning of the chapter, the group G acts on L2(G/Γ) as

left translations and therefore the Lie algebra g acts on smooth functions on G/Γ as
left invariant vector fields, i.e., g acts on a dense subspace of L2(G/Γ); so similarly
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to the case of polynomials it is possible to obtain a ĝ-module out of it inducing

H = Indĝ
g[t]⊕CKC∞(G/Γ),

where as usual αi
n and βi,n act as zero when n > 0 and K acts as the identity.

The space of smooth functions on G/Γ is much more complex than the space of
polynomials, but every function f ∈ C∞(G/Γ) can be interpreted as a rapidly de-
creasing smooth function in six variables f = f (xi, x∗i ) invariant under the action
of Γ on the right, i.e. for every (γi, γ∗i ) ∈ Γ holds f (xi, x∗i ) = f (xi + γi, x∗i + γ∗i +
1
2 εijkxjγk) Such functions can be decomposed in a Fourier series with respect to the
orthonormal system

{
e2πiωix∗i

}
ω∈Z3 as:

f (xi, x∗i ) = ∑
ω∈Z3

e2πiωix∗i fω(xi),

where fω satisfies fω(xi + γi) = e−πiεijkωixjγk
fω(xi).

Define

Cω =
{

e2πiωix∗i f ; f : R3 → C, f (xi + γi) = e−πiεijkωixjγk
f (xi)

}
,

then
L2(G/Γ) '

⊕
ω∈Z3

Cω,

specifically for ω = 0 we have

C0 =
{

f : f (xi + γi) = f (xi)
}
=
⊕

ρ∈Z3

Ce2πiρixi
.

Define also

VT3 = Indĝ
g[t]⊕CKC0 = Indĝ

g[t]⊕CK

⊕
ρ∈Z3

Ce2πiρixi
=
⊕

ρ∈Z3

Indĝ
g[t]⊕CKCe2πiρixi

.

Theorem 3.1 VT3 is a vertex algebra.

Proof:
Define the vacuum vector 1 as the constant 1 function, and consider the state field corre-
spondence map

Y : VT3 → Field (VT3)

e2πiρixi 7→ : e2πiρixi(z) : = e2πiρixi
0 z2πiρiWi

exp

(
2πiρi ∑

n<0
xi

nz−n

)
exp

(
2πiρi ∑

n>0
xi

nz−n

)
,

αi
−11 7→ αi(z),

βi,−11 7→ βi(z).

Let us quickly check the vertex algebra axioms :

Y(e2πiρixi
, z)1

∣∣∣
z=0

= e2πiρixi
0 z2πiρiWi

exp

(
2πiρi ∑

n<0
xi

nz−n

)
exp

(
2πiρi ∑

n>0
xi

nz−n

)
1

∣∣∣∣∣
z=0

= e2πiρixi
.

The fields of the form Y(e2πiρixi
, z) commute with each other because all the xi

n and Wi com-
mute, therefore they are local. The fields of the form αi(z), βi(z) are pairwise local. Now
because

[
α

j
m, xi(z2)

]
= 0 it is deduced that αj(z1) and Y(e2πiρixi

, z2) commute.
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The locality for the fields βj(z1) and e2πiρixi(z2) is checked as follows:[
β j,n, xi(z2)

]
= δi,jKzn

2 ,

then [
β j,n, e2πiρixi(z2)

]
= δi,j2πiρie2πiρixi(z2)zn

2 ,

from this follows [
β j(z1), e2πiρixi(z2)

]
= ∑

n

[
β j,n, e2πiρixi(z2)

]
z−1−n

1

= δi,j ∑
n

2πiρie2πiρixi(z2)z−1−n
1 zn

2 = δi,j2πiρie2πiρixi(z2)δ(z1, z2),

therefore the fields βj(z) and e2πiρixi(z) are local. The locality for any other pair of fields
follows from Dong’s Lemma 2.1.2.

The last condition remaining to be proved is the translation invariance of the fields, let us
define the translation endomorphism T in VT3 . Initially it is convenient to define T acting on
xi, T(xi) should be a vector such that Y(T(xi), z) = ∂zY(xi, z), but this equation is satisfied
by αi(z) because of the equation (3.14), so it becomes natural to define T(xi) = αi

−11.
Now it easy to define T on any function as

T
(

e2πiρixi
)
= 2πiρie2πiρixi

T(xi) = 2πiρie2πiρixi
αi
−11. (3.17)

We define T(1) = 1 and in the same way as it is done in the Kac-Moody algebra we extend T
recursively by the formula [T, an] = −nan−1 and impose the commutation relation

[
T, xi

0
]
=

α−1, finally T extends to the whole VT3 as a derivation of the normally ordered product.
Note that T was defined in a way so it satisfies translation invariance for the fields αi(z) and
βi(z), and for xi(z) holds[

T, xi(z)
]
=
[

T, Wi
]

log(z) + ∑
n

[
T, xi

n

]
z−n =

[
T, αi

0

]
log(z) + ∑

n
− 1

n

[
T, αi

n

]
z−n

= ∑
n
− 1

n
(−n)αi

n−1z−n = ∑
n

αi
nz−1−n = αi(z) = ∂zxi(z),

so now we can compute[
T, e2πiρixi(z)

]
= 2πiρie2πiρixi(z)

[
T, xi(z)

]
= 2πiρie2πiρixi(z)∂zxi(z) = ∂ze2πiρixi(z).

�

Recall that the operators xi
n and x∗i,m (m 6= 0) are still well defined using the same

formal formulas described in 3.1.
Now it becomes natural to claim

Theorem 3.2 The spaceH has the structure of VT3-module.

Proof:
We must define a field for each vector of VT3 . Set

Y(e2πiρixi
, z) = e2πiρixi(z),

Y(αi
−11, z) = αi(z),

Y(βi,−11, z) = βi(z),

and for the rest of the elements define the associated field by the normally ordered product,
exactly as in the Kac-Moody algebra, for example

Y(αi
−1e2πiρjxj

) = : αi(z)e2πiρjxj(z) : .



24 Chapter 3. Functions on the double twisted torus

Note that we are defining the fields exactly as in the proof of theorem 3.1 and proving
the locality condition for those fields we never used the fact that the logarithmic terms dis-
appeared, i.e., what we actually prove there was that those logarithmic fields are pairwise
local.

Now in this way because of 2.6 and because the normally ordered product of two fields
is the −1-product, the function Y : VT3 → Field (H) commutes with the n-products when
n < 0. For any two pairs of fields of the form αi(z) and βj(z), it is trivial to see that the
n-product condition holds. So it is only left to check it for pair of fields

(
αi(z), e2πiρjxj(z)

)
,(

βi(z), e2πiρjxj(z)
)

,
(

e2πiρixi(z), e2πiρixi(z)
)

and for n ≥ 0.

As e2πiρixi(z) and e2πiρjxj(z) commute we know that e2πiρixi(z)
(n)e

2πiρjxj(z) = 0 for n ≥ 0 but

e2πiρixi
(n)e

2πiρjxj
= 0 as well, the same situation repeats for the fields

(
αi(z), e2πiρjxj(z)

)
.

For the last pair of fields
(

βi(z), e2πiρjxj(z)
)

we only need to compute for n = 0,

βi(z)(0)e
2πiρjxj(z) = (z1 − z2)

[
βi(z1)−, e2πiρjxj(z2)

]∣∣∣
z1=z2=z

= 2πiδi,jρje
2πiρjxj(z)

= Y
(

2πiρjδi,je
2πiρjxj

, z
)

= Y
(

βi,−11(0)e
2πiρjxj

, z
)

.

�

3.4 Functions on the double twisted torus and the Heisen-
berg nilmanifold

The goal of this section is proving that H = Indĝ
g[t]⊕CKC∞(G/Γ) is a logarithmic

module over another vertex algebra, we will do this by carefully restricting to a sub-
space of C∞(G/Γ) such the vector fields identify with the Heisenberg Lie algebra.
In order to achieve that it will be required to use some techniques from harmonic
analysis on the Heisenberg group to deduce the structure of the space and therefore
define the quantum vectors (logarithmic) fields for the algebra and for the module
H. The reader interested in a deeper study of harmonic analysis of the Heisenberg
group may consult [2].

Define the symbol ξijk as ξ123 = ξ231 = ξ312 = 1 and ξijk = 0 for the remaining
cases. Notice that it holds that ξijk − ξikj = εijk.
It is convenient to change the coordinates

xi 7→ xi,

x∗i 7→ x∗i +
1
2

ξijkxjxk,

so that the group law turns into

(xi, x∗i )(y
i, y∗i ) = (xi + yi, x∗i + y∗i + ξijkxjyk),
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and the action of αi and β j in these coordinates looks like

αi = ∂x∗i

βi = ∂xi + ξijkxk∂x∗j .

We still have the Fourier type decomposition L2(G/Γ) ' ⊕
ω∈Z3 Cω but this time

Cω is given by

Cω =
{

e2πiωix∗i f ; f : R3 → C, f (xi + γi) = e−2πiωiξijkxjγk
f (xi)

}
.

Consider vectors ω ∈ Z of the form ω = (0, 0, n)

C(0,0,n) =
{

e2πinx∗3 f0,0,n : f0,0,n(xi + γi) = e−2πinx1γ2
f0,0,n(xi)

}
,

now those functions f0,0,n can be decomposed into Fourier series once again

f0,0,n(x1, x2, x3) = ∑
m∈Z

e2πimx3
f0,0,n,m(x1, x2),

from this it follows the decomposition of C(0,0,n) =
⊕

m∈Z C(0,0,n,m). Let us take m = 0
and consider the elements from C(0,0,n,0) for all n ∈ Z, i.e. the functions fn : R2 → C

such that fn(x1 + γ1, x2 + γ2) = e−2πinx1γ2
fn(x1, x2). Define

C0 =
⊕
n∈Z

C(0,0,n,0) =

{
∑
n

e2πinx∗3 fn(x1, x2)

}
⊂ L2(G/Γ).

Note that restricting to elements of G of the form (x1, x2, 0, 0, 0, x∗3) is the same as
working in Heis(R), the (polarized) Heisenberg group

1 x1 x∗3
0 1 x2

0 0 1

 ,

so Heis(R) acts on C0,0,n,0 by right translations, i.e., looking at the functions on Y
depending only on the variables x1, x2, x∗3 is the same as looking at the Heisenberg
nilmanifold N = Heis(R)/Heis(Z).
Remark: The space C0 constructed above using Fourier analysis can be described
intrinsically as follows: since the Heisenberg group is a central extension

1→ R→ Heis(R)→ R2 → 1,

and if we take a one dimensional complex representation of the center, i.e., a central
character χn : R → C∗, χn(x∗3) = e2πinx∗3 then C(0,0,n,0) = CoIndHeis(R)

R Cχn and C0
can be expressed as

C0 =
⊕
n∈Z

C(0,0,n,0) =
⊕
n∈Z

CoIndHeis(R)
R Cχn .
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Define for n 6= 0 and m ∈ {0, 1, . . . |n| − 1} the k-linear map Θm : L2(R)→ C(0,0,n,0)
as

Θm(g)(x1, x2, 0, 0, 0, x∗3) = e2πinx∗3 ∑
k∈Z

e2πi(nk+m)x1
g(x2 + k), (3.18)

and for γ1, γ2 ∈ Z it holds

Θm(g)(x1 + γ1, x2 + γ2, 0, 0, 0, x∗3) = e2πinx∗3 ∑
k∈Z

e2πi(nk+m)(x1+γ1)g(x2 + γ2 + k)

= e2πinx∗3 ∑
k∈Z

e2πi(nk+m)x1
g(x2 + γ2 + k),

making s = k + γ2

= e−2πinx1γ2
e2πinx∗3 ∑

s∈Z

e2πi(ns+m)x1
g(x2 + s) = e−2πinx1γ2

Θk(g)(x1, x2, 0, 0, 0, x∗3),

then Θm(g) ∈ C0,0,n,0, so Θm is a well defined linear, because of the orthogonality
relations between the exponentials the maps Θm are monomorphisms so then they
define a unique monomorphism

Θ : L2(R)⊗C|n| → C(0,0,n,0).

Let e2πinx∗3 f be an element in C(0,0,n,0) then because f (x1 + 1, x2) = f (x1, x2) it can be
decomposed into Fourier series

e2πinx∗3 f (x1, x2) = e2πinx∗3 ∑
k∈Z

e2πikx1
fk(x2) =

|n|−1

∑
m=0

e2πinx∗3 ∑
k∈Z

e2πi(nk+m)x1
fkn+m(x2),

from the property f (x1, x2 +γ2) = e−2πinx1γ2
f (x1, x2) it follows fnk+m(x2) = fm(x2 +

k) so

e2πinx∗3 f (x1, x2) =
|n|−1

∑
m=0

e2πinx∗3 ∑
k∈Z

e2πi(nk+m)x1
fm(x2 + k),

this means that any function in C0,0,n,0 is uniquely determined by f0, f1, . . . , f|n|−1,
i.e., there is a linear injection

Φ : C(0,0,n,0) → L2(R)⊗C|n|

f 7→
(

f0, . . . , f|n|−1
)

,

moreover Φ and Θm are inverse functions, so we can make L2(R)⊗C|n| a Heis(R)-
module.
Now because of the Stone-von Neumann theorem[10], L2(R) is the only irreducible

unitary representation of Heis(R) with the central character χn(t) = e2πint and there
is a unique decomposition C(0,0,n,0) ' L2(R) ⊗ Cpn being Θ an isomorphism and
|n| = pn. A fully detailed proof of this can be found in [2].

Proposition 3.4.1 If n 6= 0 then C(0,0,n,0) ' L2(R) ⊗ C|n| and for n = 0 it holds that
C(0,0,n,0) ' L2(T2), i.e.,

C0 ' L2(T2)⊕
⊕
n 6=0

L2(R)⊗C|n| '
⊕

ρ∈Z2

Ce2πiρixi ⊕
⊕
n 6=0

L2(R)⊗C|n|.
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Proposition 3.4.1 means that the G-module C0 identifies with the g-module⊕
ρ∈Z2

Ce2πiρixi ⊕
⊕
n 6=0

S(R)⊗C|n|,

where S(R) denotes the Schwartz space of rapidly decreasing smooth functions in
R. We will also denote this space by C0. Since one space is the completion of the
other one and it will always be clear to distinguish which one we are using.
Define the action of elements of atn ∈ tg[t] on C0 by zero and the action of K as the

identity so it is possible now to induce

VN = Indĝ
g[t]⊕CKC0 = Indĝ

g[t]⊕CK

⊕
ρ∈Z2

Ce2πiρixi ⊕
⊕
n 6=0

S(R)⊗C|n|


=
⊕

ρ∈Z2

Indĝ
g[t]⊕CKCe2πiρixi ⊕

⊕
n 6=0

Indĝ
g[t]⊕CKS(R)⊗C|n|

Theorem 3.3 The space VN has a vertex algebra structure.

Remark. Notice that after the change of coordinates previously done the fields xi(z)
remain invariant but the fields x∗i (z) don not, specifically x∗3(z) transforms into

x∗3(z) = P3 log(z)+ ∑
i∈Z

x∗3,iz
−i + log(z)W1 ∑

i∈Z

x2
i z−i +

1
2 ∑

i,j∈Z

x1
i x2

j z−i−j +
1
2

W1W2 (log(z))2 ,

Moreover P3 and W i act trivially on VN so all the terms with logarithms in x∗3(z) and
xi(z) are zero.
Proof:
The vacuum vector 1 ∈ VN will be the 1 constant function, let us start defining fields for the
basis elements: once again the fields associated to elements of the form a−nk1

· · · a−nkr
⊗ 1

with a−nk1
∈ ĝ will be the same as for the Kac-Moody vertex algebra, for elements e2πiρixi

we
define

Y(e2πiρixi
) =: e(2πiρixi(z)) := exp

(
2πiρixi(z)+

)
exp

(
2πiρixi(z)−

)
,

which can also be written as

Y(e2πiρixi
) = e2πiρixi

0 exp

(
2πiρi ∑

n<0
xi

nz−n

)
exp

(
2πiρi ∑

n>0
xi

nz−n

)
.

Denote Fm ∈ C0 the image of e−(x2)2
by Θm, i.e.

Fm = Θm(e−(x2)2
) = ∑

k∈Z

e2πi(nk+m)x1
e2πinx∗3 e−(x2+k)2

,

and define

Y(Fm, z) = ∑
k∈Z

: exp (2πinx∗3(z)) exp
(

2πi(nk + m)x1(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2

)
:,

since
[
x∗3(z)±, xi(z)∓

]
=
[

x∗3(z)±,
(

x2(z)
)
∓

]
=
[

xi(z)±,
(
x2(z)

)
∓

]
= 0 for i = 1, 2 one can

write

Y(Fm, z) = ∑
k∈Z

exp (2πinx∗3(z)+) exp
(

2πi(nk + m)x1(z)+
)

exp
(
−(x2(z))2

+ − 2kx2(z)+ − k2
)
·
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exp (2πinx∗3(z)−) exp
(

2πi(nk + m)x1(z)−
)

exp
(
−(x2(z))2

− − 2kx2(z)−
)

,

so for every g ∈ C0 it holds Y(Fm)g ∈ VN((z)). Now for a = β1, a = β2 or a = α3 we would
like to define Y( f ) for every f ∈ ⊕n 6=0 S(R)⊗C|n| imposing the following equation

[a(z1), Y( f , z2)] = Y(a f , z2)δ(z1, z2). (3.19)

Define Y(aFm) by the formula

Y(aFm) = a0Y(Fm)−Y(Fm)a0,

clearly if g ∈ C0 then Y(aFm)g ∈ VN((z)), note that since L2(R) is an irreducible heis(R)-
mod then every element f ∈ ⊕n 6=0 S(R)⊗ C|n| is obtained acting successively on Fm with{

β1, β2, α3} and adding, so with the above formula it is proven that Y( f )g ∈ VN((z)) for
every functions f , g. It remains to prove that Y( f )v ∈ VN((z)) for every function f and every
v = ank . . . an1 g ∈ VN , this can be done by induction on k, the base case (k = 0) is already
proven, for the recursive case just write v = aqw where Y( f )w ∈ VN((z)), so expanding the
equation 3.19 we get

Y( f , z2)a(z1)w = a(z1)Y( f , z2)w−Y(a0 f , z2)δ(z1, z2)w,

multiplying by zq
1 and taking residues we get

resz1 zq
1Y( f , z2)a(z1)w = resz1 zq

1a(z1)Y( f , z2)w− resz1 zq
1Y(a0 f , z2)δ(z1, z2)w,

Y( f , z2)aqw = aqY( f , z2)w− zq
2Y(a0 f , z2)δ(z1, z2)w,

Y( f , z2)x = aqY( f , z2)w− zq
2Y(a0 f , z2)δ(z1, z2)w.

but aqY( f , z2)w ∈ VN((z)) and zq
2Y(a0 f , z2)δ(z1, z2)w ∈ VN((z)) because the induction hy-

pothesis and then follows the desired result.
From this Y : VN → Field (VN) is fully determined since the field for the remaining vectors

is determined by taking the normally ordered product of the above fields and by linearity.

From the previous analysis it is also deduced that Y(Fm)1 ∈ VN [[z]] and from this it follows
that Y(v, x)1 ∈ VN [[z]] for all v ∈ VN , and it is clear that Y(Fm, z)1|z=0 = Fm so it holds for
every element in VN .

The computations to check the locality condition for the fields αi(z), βi(z), Y(e2πiρixi
, z) are

analogous to the ones done for the Kac-Moody vertex algebra and the Theorem 3.1. Since
the field x3(z) commute with itself, the fields Y(Fm1 , z1) and Y(Fm2 , z2) commute, therefore
the only remaining pairs to check are

{
αi(z1), Y(Fm, z2)

}
and

{
βi(z1), Y(Fm, z2)

}
.

From
[
αi

r, x∗3(z2)
]
= δi,3zr

2 it follows that[
αi

r, e2πinx∗3 (z2)
]
= 2πinzr

2e2πinx∗3 (z2)δi,3,

and so[
αi

r, Y(Fm, z2)
]

=
[
αi

r, ∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)]
= ∑k∈Z

[
αi

r, exp (2πinx∗3(z2))
]

exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ ∑k∈Z exp (2πinx∗3(z2))
[
αi

r, exp
(
2πi(nk + m)x1(z2)

)]
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)
+ ∑k∈Z exp (2πinx∗3(z2)) exp

(
2πi(nk + m)x1(z2)

) [
αi

r, exp
(
−(x2(z2))

2 − 2kx2(z2)− k2)]
= ∑k∈Z

[
αi

r, exp (2πinx∗3(z2))
]

exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2 − 2kx2(z)− k2)
= 2πinzr

2δi,3 ∑k∈Z e2πinx∗3 (z2) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)
= 2πinzr

2δi,3Y(Fm, z2),
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so finally this leads to[
αi(z1), Y(Fm, z2)

]
= ∑

r∈Z

[
αi

r, Y(Fm, z2)
]

z−1−r
1

= 2πinδi,3Y(Fm, z2) ∑
r∈Z

zr
2z−1−r

1 = 2πinδi,3Y(Fm, z2)δ(z1, z2).

So the fields αi(z1), Y(Fm, z2) are a local pair.
From 3.2 and 3.9 follows that β3(z1) and Y(Fm, z2) are a local pair.
Let’s prove that β2(z1) and Y(Fm, z2) are local, from the relations proven in section 3.1 we

deduce

[β2,r, x∗3(z2)] = W1zr
2 log (z2) ,[

β2,r, x1(z2)
]

= 0,[
β2,r, x2(z2)

]
= zr

2K,[
β2,r,

(
x2(z2)

)2
]

= zr
2x2(z2),

from this follows [
β2,r, e2πinx∗3 (z2)

]
= 2πinW1e2πinx∗3 (z2)zr

2 log (z2) ,[
β2,r, e2πi(nk+m)x1(z2)

]
= 0,[

β2,r, e−2kx2(z2)
]

= −2kzr
2e−2kx2(z2),[

β2,r, e−(x2(z2))
2
]

= −2zr
2x2(z2)e−(x2(z2))

2
,

which finally leads to[
β2(z1), e2πinx∗3 (z2)

]
= 2πinW1e2πinx∗3 (z2) log (z2) δ(z1, z2),[

β2(z1), e2πi(nk+m)x1(z2)
]

= 0,[
β2(z1), e−2kx2(z2)

]
= −2ke−2kx2(z2)δ(z1, z2),[

β2(z1), e−(x2(z2))
2
]

= −2x2(z2)e−(x2(z2))
2
δ(z1, z2).

Now we can compute the brackets

[β2(z1), Y(Fm, z2)] =
[
β2(z1), ∑k∈Z exp (2πinx∗3(z2)) exp

(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)]
= ∑k∈Z [β2(z1), exp (2πinx∗3(z2))] exp

(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ ∑k∈Z exp (2πinx∗3(z2))
[
β2(z1), exp

(
2πi(nk + m)x1(z2)

)]
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)
+ ∑k∈Z exp (2πinx∗3(z2)) exp

(
2πi(nk + m)x1(z2)

) [
β2(z1), exp

(
−(x2(z2))

2)] exp
(
−2kx2(z2)− k2)

+ ∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2) [β2(z1), exp
(
−2kx2(z2)

)]
exp(−k2)

= 2πinW1 log (z2) δ(z1, z2)∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ −2δ(z1, z2)x2(z2)∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ −2δ(z1, z2)∑k∈Z k exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

= 2πinW1Y(Fm, z2) log (z2) δ(z1, z2)− 2Y
(

Θm(xe−x2
), z2

)
δ(z1, z2),

therefore (z1 − z2) [β2(z1), Y(Fm, z2)] = 0, so they are local.
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Let’s prove that β1(z1) and Y(Fm, z2) are local, once again from the relations proven in
section 3.1 we get

[β1,r, x∗3(z2)] = zr
2(x2(z2)−W2 log (z2)) = zr

2 x̃2(z2),

here we use the notation x̃i(z) = xi(z)−Wi log (z) = ∑n xi
nz−n, it holds[

β1,r, x1(z2)
]

= zr
2K,[

β1,r, x2(z2)
]

= 0,[
β1,r,

(
x2(z2)

)2
]

= 0,

which means [
β1,r, e2πinx∗3 (z2)

]
= 2πinzr

2 x̃2(z2)e2πinx∗3 (z2),[
β1,r, e2πi(nk+m)x1(z2)

]
= 2πi(nk + m)zr

2e2πi(nk+m)x1(z2),[
β1,r, e−2kx2(z2)

]
= 0,[

β1,r, e−(x2(z2))
2
]

= 0,

and this translates into[
β1(z1), e2πinx∗3 (z2)

]
= 2πinx̃2(z2)δ(z1, z2),[

β1(z1), e2πi(nk+m)x1(z2)
]

= 2πi(nk + m)e2πi(nk+m)x1(z2)δ(z1, z2),[
β1(z1), e−2kx2(z2)

]
= 0,[

β1(z1), e−(x2(z2))
2
]

= 0.

Now the commutator of the fields is computed

[β1(z1), Y(Fm, z2)] =
[
β1(z1), ∑k∈Z exp (2πinx∗3(z2)) exp

(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)]
= ∑k∈Z [β1(z1), exp (2πinx∗3(z2))] exp

(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ ∑k∈Z exp (2πinx∗3(z2))
[
β1(z1), exp

(
2πi(nk + m)x1(z2)

)]
exp

(
−(x2(z2))

2 − 2kx2(z2)− k2)
+ ∑k∈Z exp (2πinx∗3(z2)) exp

(
2πi(nk + m)x1(z2)

) [
β1(z1), exp

(
−(x2(z2))

2)] exp
(
−2kx2(z2)− k2)

+ ∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z2))

2) [β1(z1), exp
(
−2kx2(z2)

)]
exp(−k2)

= 2πix̃2(z2)δ(z1, z2)∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

+ 2πi(nk + m)δ(z1, z2)∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

= 2πinx̃2(z2)Y(Fm, z2)δ(z1, z2) + 2πimY(Fm, z2)δ(z1, z2)− nx2(z2)Y(Fm, z2)δ(z1, z2)

+ n2πi(x2(z2) + k)δ(z1, z2)∑k∈Z exp (2πinx∗3(z2)) exp
(
2πi(nk + m)x1(z2)

)
exp

(
−(x2(z))2 − 2kx2(z2)− k2)

= −2πinW2Y(Fm, z2) log (z2) δ(z1, z2) + 2πimY(Fm, z2)δ(z1, z2) + 2πinY(Θm(xe−x2
), z2)δ(z1, z2).

The locality condition for the remaining fields follows from Dong’s Lemma.

Now it is only left to prove the translation invariance of the fields, we will proceed similarly
to the proof of Theorem 3.1, let us define the translation endomorphism T in VN . We already
know how to define T(xi) and proceeding exactly as in the proof of 3.1 we get that the fields
e2πiρixi(z) satisfy the translation invariance condition.
For T(x∗3) the situation is similar but slightly more complicated, once again a vector such

that Y(T(x∗3), z) = ∂zY(x∗3 , z) is needed, but unfortunately the equation 3.15 is a little bit
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more complicated. We start noticing that after the change of coordinates we made the equa-
tion 3.15 was transformed into

∂zx∗i (z) = βi(z)− ξijkxk(z)∂zxj(z),

so taking i = 3, acting on the vacuum vector and evaluating z = 0 it becomes clear that
T(x∗3) should be defined as

T(x∗3) = β3,−11− α1
−1x2

01,

and force the commutation relation[
T, x∗3,0

]
= β3,−1 −

ε3jk

2 ∑
m

mxj
−1−mxk

m.

Now it is easy to define T on any function as

T( f ) = ∂x1 f T(x1) + ∂x2 f T(x2) + ∂x∗3
f T(x∗3).

To make computations easier here we will actually use the fact that W1, W2 and P3 act by
zero so we have no logarithms in the fields.

Consider the field x̃∗3(z) = ∑n x∗3z−n, it is convenient to prove that translation invariance
holds for the field x̃∗3(z), for n 6= 0 we have

[T, x∗3.n] =

[
T,
−β3,n

n
+

ε3jk

2n ∑
m

mxj
n−mxk

m

]

= − 1
n
[T, β3,n] +

ε3jk

2n ∑
m

m
[

T, xj
n−mxk

m

]
= β3,n−1 +

ε3jk

2n ∑
m

m
[

T, xj
n−m

]
xk

m +
ε3jk

2n ∑
m

mxj
n−m

[
T, xk

m

]
= β3,n−1 +

ε3jk

2n ∑
m

mα
j
n−m−1xk

m +
ε3jk

2n ∑
m

mxj
n−mαk

m−1

= β3,n−1 −
ε3jk

2n ∑
m

m(n−m− 1)xj
n−m−1xk

m −
ε3jk

2n ∑
m

m(m− 1)xj
n−mxk

m−1

= β3,n−1 −
ε3jk

2n ∑
m

m(n−m− 1)xj
n−m−1xk

m −
ε3jk

2n ∑
m
(m + 1)mxj

n−m−1xk
m

= β3,n−1 −
ε3jk

2 ∑
m

mxj
n−m−1xk

m,

then [T, x̃∗3(z)] expands as

[T, x̃∗3(z)] = ∑
n

[
T, x∗3,n

]
z−n

= ∑
n

β3,n−1z−n −
ε3jk

2 ∑
n

∑
m

mxj
n−m−1xk

mz−n

= ∑
n

β3,nz−n−1 −
ε3jk

2 ∑
n

∑
m

mxj
n−mxk

mz−n−1

= β3(z)−
ε3jk

2 ∑
n

∑
m

xj
n−mz−n+mmxk

mz−m−1

= β3(z) +
ε3jk

2

(
∑
n

xj
nz−n

)(
∑
n
−nxk

nz−n−1

)
= β3(z) +

ε3jk

2
xj(z)∂zxk(z)

= ∂z x̃∗3(z),

here the last equality hold because 3.15 and x̃∗3(z) coincides with the x∗3(z) as defined in
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section 3.1 when setting the formal variable log(z) = 0, i.e., when deleting all terms with P3,
W1 and W2. Now the field x∗3(z) after the change of coordinates (without the logarithmic
terms) can be written as:

x∗3(z) = x̃∗3(z) +
1
2

x1(z)x2(z),

but now it becomes easy to prove translation invariance for x∗3(z) as we already know it
holds for x1(z) and x2(z)

[T, x∗3(z)] = [T, x̃∗3(z)] +
1
2

[
T, x1(z)x2(z)

]
= ∂z x̃∗3(z) +

1
2

[
T, x1(z)

]
x2(z) +

1
2

x1(z)
[

T, x2(z)
]

= ∂z x̃∗3(z) +
1
2

∂zx1(z)x2(z) +
1
2

x1(z)∂zx2(z)

= ∂z

(
x̃∗3(z) +

1
2

x1(z)x2(z)
)

= ∂zx∗3(z).

Finally we have the tools for proving the translation invariance condition for the fields
Y(Fm, z)

[T, Y(Fm, z)] =

[
T, ∑

k∈Z

exp (2πinx∗3(z)) exp
(

2πi(nk + m)x1(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2

)]
= ∑

k∈Z

[T, exp (2πinx∗3(z))] exp
(

2πi(nk + m)x1(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2

)
+ ∑

k∈Z

exp (2πinx∗3(z))
[

T, exp
(

2πi(nk + m)x1(z)
)]

exp
(
−(x2(z))2 − 2kx2(z)− k2

)
+ ∑

k∈Z

exp (2πinx∗3(z)) exp
(

2πi(nk + m)x1(z)
) [

T, exp
(
−(x2(z))2 − 2kx2(z)− k2

)]
= ∑k∈Z 2πin [T, x∗3(z)] exp (2πinx∗3(z)) exp

(
2πi(nk + m)x1(z)

)
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z 2πi(nk + m) exp (2πinx∗3(z))
[
T, x1(z)

]
exp

(
2πi(nk + m)x1(z)

)
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z−2(x2(z) + k) exp (2πinx∗3(z)) exp
(
2πi(nk + m)x1(z)

) [
T, x2(z)

]
exp

(
−(x2(z))2 − 2kx2(z)− k2)

= ∑k∈Z 2πin∂z (x∗3(z)) exp (2πinx∗3(z)) exp
(
2πi(nk + m)x1(z)

)
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z 2πi(nk + m) exp (2πinx∗3(z)) ∂z
(

x1(z)
)

exp
(
2πi(nk + m)x1(z)

)
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z−2(x2(z) + k) exp (2πinx∗3(z)) exp
(
2πi(nk + m)x1(z)

)
∂z
(

x2(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2)

= ∑k∈Z ∂z (exp (2πinx∗3(z))) exp
(
2πi(nk + m)x1(z)

)
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z exp (2πinx∗3(z)) ∂z
(
exp

(
2πi(nk + m)x1(z)

))
exp

(
−(x2(z))2 − 2kx2(z)− k2)

+ ∑k∈Z exp (2πinx∗3(z)) exp
(
2πi(nk + m)x1(z)

)
∂z
(
exp

(
−(x2(z))2 − 2kx2(z)− k2))

= ∂z

(
∑

k∈Z

exp (2πinx∗3(z)) exp
(

2πi(nk + m)x1(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2

))
= ∂zY(Fm, z).

�

Knowing that VN is a vertex algebra it is natural to endow H with the structure of
logarithmic module

Theorem 3.4 The spaceH has the structure of logarithmic VN-module.
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Proof:
We must define a logarithmic module for each vector of VN , set

Y(e2πiρixi
, z) = e2πiρixi(z),

Y(αi
−11, z) = αi(z),

Y(βi,−11, z) = βi(z),

Y(Fm, z) = ∑
k∈Z

exp (2πinx∗3(z)) exp
(

2πi(nk + m)x1(z)
)

exp
(
−(x2(z))2 − 2kx2(z)− k2

)
,

Now we extend Y to any function f ∈ ⊕n 6=0 S(R)⊗ C|n| exactly as we did in the previous
theorem 3.3, i.e., through the formula 3.19, in particular for every a ∈ g the logarithmic field
Y(aFm, z) is defined by the formula Y(aFm, z) = [a0, Fm] and finally we extend Y to the rest
of the vectors via the normally ordered product.

Notice that during all the analysis made in the proof of 3.3 to show that Y( f ) was actually
a field was never used the fact that the logarithmic terms acted by zero, so what we actually
prove back there was that the Y( f ) for any function was actually a logarithmic field. Simi-
larly we proceeded, on propose, when proving that the fields were pairwise local, so what
we actually prove was that those are pairwise local logarithmic fields.

Let’s prove that the function Y : VN → LField (H) preserves the n-products, because
of the way we defined the fields and equation 2.6 it is clear that Y preserves all negative
n-products. For positive n-products involving only the fields e2πiρixi(z), αi(z), βi(z) the n-
product condition holds, the analysis is complete analogous to the one made in the proof of
theorem 3.2. It is also clear that for n ≥ 0

Y(Fm1 (n)Fm2 , z) = 0 = Y(Fm1 , z)(n)Y(Fm2 , z)

because Y(Fm1 , z) and Y(Fm2 , z) commute.
For αi(z) and Y(Fm, z) we have

αi(z)(0)Y(Fm, z) = (z1 − z2)
[
αi(z1)−, Y(Fm, z2)

]∣∣∣
z1=z2=z

= 2πinδi,3Y(Fm, z)

= Y(αi
(o)Fm, z).

For the fields β3(z) and Y(Fm, z) there is nothing to prove since they commute.
For the fields β2(z) and Y(Fm, z) holds

β2(z)(0)Y(Fm, z) = (z1 − z2) [β2(z1)−, Y(Fm, z2)]|z1=z2=z

= 2πinW1Y(Fm, z2) log (z2)− 2Y
(

Θm(xe−x2
), z2

)
= [β2,0, Y(Fm, z)]
= Y(β2(0)Fm, z).

Finally for β1(z) and Y(Fm, z) holds

β1(z)(0)Y(Fm, z) = (z1 − z2) [β1(z1)−, Y(Fm, z2)]|z1=z2=z

= −2πinW2Y(Fm, z2) log (z2) + 2πimY(Fm, z2) + 2πinY(Θm(xe−x2
), z2).

= [β1,0, Y(Fm, z)]
= Y(β1(0)Fm, z).

ThereforeH is a logarithmic VN-module.
�
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Chapter 4

Conclusions and Future work

In this thesis we computed explicitly the vertex algebra of (twisted) chiral differ-
ential operator on a nilmanifold and we found its logarithmic module which is a
highly non-trivial example of logarithmic vertex algebra modules. However from
the analysis we made two new problems for future research appear:

1. In section 3.2 we were unable to prove that the induced space of C[xi, x∗i ] was
a logarithmic vertex algebra, essentially because we could not prove that the
identity

Li2(1− z) + Li2(1− z−1) = −1
2
(log (z))2

is valid in the theory of logarithmic quantum fields. Any attempt of forcing the
equation by brute force (i.e. taking a quotient) looks unclean, would rise many
other problems but above all it would be desirable to enlarge Bojko Bakalov’s
theory in a canonical way such that all analytics equations mixing logarithms
and polylogarithms would be true. It is a fantastic and non trivial problem for
future work.

2. In this thesis we considered only a degree one fibration S1 → N1 → T2 so the nat-
ural generalization of this work is analyzing the structure for degree k fibration
and a general ω ∈ Z = H3(N, Z).
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