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Mathematics is really very small, not big, it is small. There are not

that many great ideas and people use the same ideas over and over again in

di�erent contexts.

Peter Sarnak
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ABSTRACT

In this thesis we study the growth of systoles along sequences of coverings

of a �xed closed hyperbolic surface. We also study the distribution of the

set of arithmetic closed hyperbolic surfaces in the moduli space of closed

hyperbolic surfaces and a quantitative form of the Ehrenpreis conjecture.

The main results of the thesis include the following theorems.

We show that the set of arithmetic closed hyperbolic surface of genus g is

not well distributed in the moduli space of closed hyperbolic surfaces of genus

g, i.e. by using an auxiliary metric in the moduli space we show that for any

compact set we can �nd surfaces arbitrarily far away from any arithmetic

surface if the genus is su�ciently large.

In contrast, we show that for any sequence of closed hyperbolic surfaces

with di�erent genera we can �nd a sequence of arithmetic surfaces in the

corresponding genera such that the logarithms of their systoles have the

same growth.

For any �xed arithmetic closed hyperbolic surface Buser�Sarnak and

Katz�Schaps�Vishne constructed a sequence of coverings of such surface with

logarithmic growth of the systoles with an explicit constant. We generalize

these constructions for semi-arithmetic surfaces admitting a modular embed-

ding.

Keywords: Arithmetic surfaces, moduli spaces, systoles, Weil-

Petersson metric.
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RESUMO

Nesta tese estudamos o crescimento de sístoles ao longo de sequencias de

recobrimentos de uma superfície hiperbólica fechada �xada. Estudamos tam-

bém a distribuição do conjunto das superfícies aritméticas no espaço moduli

de superfícies hiperbólicas fechadas e uma forma quantitativa da conjectura

de Ehrenpreis. Os principais resultados desta tese incluem os seguintes teo-

remas.

Mostramos que o conjunto de superfícies aritméticas fechadas de gênero g

não é bem distribuído no espaço moduli de superfícies hiperbólicas fechadas

de gênero g, i.e. , usando uma métrica auxiliar no espaço moduli mostramos

que para qualquer conjunto compacto podemos encontrar superfícies arbi-

trariamente distante de qualquer superfície aritmética se o gênero é su�cien-

temente grande.

Em constraste, mostramos que para qualquer sequencia de supefícies

hiperbólicas com gêneros diferentes, podemos achar uma sequencia de su-

perfícies aritméticas com o mesmos gêneros correspondentes tal que os loga-

ritmos de suas sístoles tem o mesmo crescimento.

Para cada superfície aritmética fechada Buser�Sarnak e Katz�Schaps�

Vishne construíram uma sequencia de recobrimentos de tal superfície com

crescimento logaritmico da sístole com uma constante explícita. General-

izamos essas construções para superfícies semi-aritméticas que admitem mer-

gulho modular.

Palavras-chave: Superfícies aritméticas, espaços moduli, sís-

toles, métrica de Weil-Petersson.
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CHAPTER 1

INTRODUCTION

This thesis is about the growth of systoles along sequences of coverings of

a �xed closed hyperbolic surface. A hyperbolic surface is a two-dimensional

manifold with a complete Riemannian metric of constant curvature −1. The

systole of a non simply connected Riemannian manifold is the shortest length

of closed curves that are not homotopic to a point.

After the publication of the seminal paper Filling Riemannian Manifolds

[17] of Gromov, the study of systoles of Riemannian manifolds has been

rapidly increasing because of its connection with many others branches of

mathematics.

In this work we focus in the interaction of systoles with the study of

moduli spaces of closed hyperbolic surfaces. Recall that the moduli spaceMg

is the space of all closed hyperbolic surfaces of genus g up to isometries.

The spaceMg has a natural topology where any suitable metric invariant

is a continuous function with respect to such topology. In particular, the

systole, the diameter and the �rst positive eigenvalue of the Laplace-Beltrami

operator are continuous.

OnMg we de�ne the function Ψ = log(sys) :Mg → R which associates

for each closed hyperbolic surface S the logarithm of its systole. The remark-

able Mahler compactness theorem due to Mumford implies that Ψ is a proper

function. Moreover, by considering the Teichmuller space Tg as the universal

covering of Mg with the covering map π : Tg → Mg, Akrout proved in [1]
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that the map Ψ ◦ π : Tg → R is a topological Morse function (see Chapter 4

for more details).

The facts that Ψ is proper and Ψ ◦ π is a Morse function tell us that the

systoles have great importance for understanding the topology ofMg. The

study of the structure ofMg has intrigued a lot of mathematics in di�erent

areas.

Given a closed hyperbolic surface, there is a relationship between its sys-

tole and its topology. In fact, if we �x a genus, there exists a natural upper

bound for the systole of any closed hyperbolic surface of genus g which de-

pends on g in the following way:

sys(S) . 2 log(g), when g goes to in�nity.

The critical points of Ψ are precisely the surfaces with maximal sys-

tole. Few examples of such critical points are known. In [44], Schmutz gave

some characterizations of surfaces with maximal systole and some examples.

Moreover, some examples of Schmutz of surfaces with maximal systoles in

low genus are arithmetic surfaces.

For high genus, the best estimates for the values of maximal systoles

known so far come from congruence coverings of closed arithmetic surfaces.

Such surfaces were used �rstly by Buser and Sarnak in [11] in order to study

the Schottky problem. The construction of Buser and Sarnak was generalized

by Katz, Schaps and Vishne in [29].

The constructions in [11] and [29] give for each closed arithmetic surface

S a sequence of coverings Si with arbitrarily large genus gi, such that

sys(Si) &
4

3
log(gi), when i goes to in�nity.

This constant 4
3
is the best obtained so far. It is expected that, for high

genus, there exist arithmetic closed hyperbolic surfaces which are criticial

points for the function Ψ.

More generally, in other geometric problems about closed hyperbolic sur-

faces, the arithmetic ones usually appear as examples of extremal solutions.

For example, the Hurwitz upper bound for the cardinality of the isometry

group of a compact hyperbolic surface is attained only by arithmetic surfaces

(see [4]). See [40] for more related problems.
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Examples like these motivated Schmutz to consider in [45] the following

Hypothesis in the context of closed hyperbolic surfaces: �The de�nition of

the best metric should be chosen such that (some) arithmetic surfaces are

among the surfaces with the best metric".

With these considerations in mind it is natural to try to understand the

behaviour of the arithmetic closed hyperbolic surfaces and their systoles in

Mg.

We can now state the �rst problem of this thesis.

Problem 1. How are the arithmetic closed hyperbolic surfaces of genus g

distributed inMg?

For any g ≥ 2 we can de�ne ASg to be the set of arithmetic closed

hyperbolic surfaces of genus g. In [8], Borel showed that for any g the set

ASg is �nite.
Let | ASg | be the cardinality ofASg. The asymptotic growth of log | ASg |

was investigated in [5]. Belolipetsky, Gelander, Lubotzky and Shalev showed

that

lim
g→∞

log | ASg |
g log g

= 2.

On the other hand, the spaceMg carries a Riemannian metric with �nite

volume. Indeed, we can take the Weil-Petersson metric onMg (see Chapter

4) with distance function dwp and volume measure volwp. In [48] Schumacher

and Trapani described the asymptotic growth of log volwp(Mg) with respect

to this metric. In fact, they proved that

lim
g→∞

log volwp(Mg)

g log g
= 2.

When I �rst found this equation, I thought that the arithmetic closed

hyperbolic surfaces should be uniformly coarsely dense inMg, i.e. I thought

that there should exist constants ε, µ > 0 such that for any closed hyperbolic

surface S of genus g ≥ 2 and systole at least µ, it could be possible to

�nd an arithmetic closed hyperbolic surface S ′ of the same genus such that

dwp(S, S
′) ≤ ε.

It turns out, though, that this result is far from being true.
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Theorem A. For any L, µ > 0 �xed, there exists g0 = g0(L, µ) ≥ 2 such

that for any g ≥ g0 there exists a closed hyperbolic surface S of genus g and

systole at least µ with dwp(S, S
′) ≥ L for any arithmetic closed hyperbolic

surface S ′ ∈ ASg .

The proof of Theorem A is based on volume estimates of metric balls in

Mg using comparison with spaces of constant negative curvature and lower

bound for the sectional curvature Mg with respect to the Weil-Petersson

metric. We combine an upper bound for the volume of such balls with the

upper bound for the number of arithmetic closed hyperbolic surfaces of genus

g in order to give an upper bound for the volume of the thick part of Mg

and to get a contradiction when assuming that the theorem is false.

Although the arithmetic points are not coarsely dense, we are mainly

interested in the maximal points of the function Ψ. Thus we can be more

speci�c in our question.

Problem 2. Fix a constant ε > 0. Is there an absolute constant δ > 0

such that for any closed hyperbolic surface of genus g and systole at least ε,

we can �nd an arithmetic closed hyperbolic surface S ′ of genus g such that

|Ψ(S)−Ψ(S ′)| ≤ δ?

The main di�culty of this problem is that we have little information

about the geometry of a generic arithmetic closed hyperbolic surface, despite

the de�nition of an arithmetic closed surface being very simple.

Let S be a closed hyperbolic surface, let L(S) be the set of lengths of all

closed geodesics on S and let L∗(S) = {cosh2
(
l
2

)
| l ∈ L(S)}. We de�ne the

invariant trace �eld of S by k(S) = Q(L∗(S)). We say that S is arithmetic

if k(S) is a totally real �nite extension of Q with L∗(S) contained in the ring

of integers of k(S) and if for any embedding σ : k(S) → R with σ 6= id, we

have σ(L∗(S)) ⊂ [−2, 2].

Let S1 and S2 be closed hyperbolic surfaces. We say that S1 and S2

are commensurable if there exists another closed hyperbolic surface S which

covers S1 and S2. It is not di�cult to see that if S1 and S2 are commensu-

rable, then k(S1) = k(S2). Consequently, it is not so clear how to determine

the systole of an arithmetic closed hyperbolic surface using only this de�ni-

tion. In particular, a surface which is commensurable to an arithmetic closed
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hyperbolic surface is also arithmetic. Thus a natural way of constructing

arithmetic surfaces is by �xing one and taking coverings with arbitrary large

degree. In fact, the set of arithmetic surfaces which cannot cover any other

arithmetic surface is very small in the set of all arithmetic surfaces (see [5,

Theorem 1.1]).

When analyzing a covering of a closed hyperbolic surface we can use tools

of geometric group theory in order to study the geometry of the correponding

covering and a natural graph which appears in this context.

Indeed, let S → S ′ be a covering of closed hyperbolic surfaces. Consider

a generator set A for π1(S ′).We can de�ne the Schreier graph of the covering

as the graph where the vertices are the cosets π1(S)γ with γ ∈ π1(S ′) and

we have an edge {π1(S)γ, π1(S)η} if η = γτ for some τ ∈ A.
If the degree of the covering is d then the Schreier graph has d vertices

and is k-regular, where k = |A|. Geometric group theory tells us that we can

compare the geometry of S with the geometry of the Schreier graph of the

covering. In particular, the systole of S is comparable to the girth of this

graph, where the girth of a graph is the shortest length of a circuit.

The strategy of comparing the geometry of Riemannian coverings and

Cayley graphs (the particular case where the covering is regular) was very

fruitful in the study of spectral problems. The work of Robert Brooks moti-

vated me to try to use the same ideas in systolic problems. Although Brooks

has proved some theorems about systoles of coverings using Cayley graphs,

his main motivation was to compare the �rst eigenvalue of the Laplace-

Beltrami operator on the surface and the �rst eigenvalue of the Laplace

operator on the corresponding Cayley graph.

With these tools I was able to give the following asymptotic answer to

Problem 2.

Theorem B. There exists a universal constant g0 ≥ 2 such that for any

ε > 0 we can �nd a constant L > 0 which depends on ε with the following

property: For any closed hyperbolic surface S of genus g ≥ g0 and systole at

least ε there exists an arithmetic closed hyperbolic surface S ′ of genus g such

that
1

L
≤ Ψ(S)

Ψ(S ′)
≤ L.
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In fact this theorem is a corollary of Theorem 7.2.2 in Chapter 7. There

I will prove a more general theorem which does not use arithmeticity.

The idea behind the proof of Theorem B is to construct graphs with any

possible girth and then to consider coverings of a �xed hyperbolic surface

with systole comparable to the girth of these graphs.

The construction of such graphs is based on special graphs such as cages

and Ramanujan graphs, which have remarkable geometric properties. More-

over, the construction of coverings is based on constructing subgroups of the

fundamental group of a closed surface of genus 2 via surjectives maps to the

free group of rank 2 with some suitable properties.

Recall that a group G is fully residually free if for any �nite set X ⊂ G

which does not contain the identity there exists a normal subgroup N C G

such that N ∩X = ∅ and G/N is a free group.

Benjamim Baumslag showed that the fundamental group of a closed sur-

face of genus g ≥ 2 is fully residually free. The crucial part in the proof

of Theorem B is to give a new proof of the result of Baumslag for the case

g = 2 using the geometry of the groups involved and not only the algebraic

aspects.

The same ideas can be used in order to obtain some interesting results

about growth of systoles along coverings. For example, in Chapter 7 we prove

the following theorem.

Theorem C. LetM be the Bolza surface, i.e. the arithmetic surface of genus

2 of maximal systole in M2 and let s = sys(M) = 2 cosh−1(1 +
√

2). Then

for any k ∈ N there exists a �nite covering Mk →M with sys(Mk) = ks and

degree ≤ (uk)vk
2
for some positive constants u, v.

Returning to the study of systoles of arithmetic closed hyperbolic surfaces,

we already mentioned that asymptotically we have sys(S) . 2 log(g). On the

other hand, Katz, Schaps and Vishne constructed for each closed arithmetic

surface S a sequence of coverings Si with arbitrarily large genus gi, such that

sys(Si) & 4
3

log(gi). Therefore, we can consider the following problem (see

[35, Problem 1.4]).

Problem 3. Determine the supremum of γ such that there exists a family

14



of closed hyperbolic surfaces Xi with

sys(Xi) & γ log(genus of Xi), where genus of Xi goes to in�nity.

In [35], Makisumi showed that in the construction of Katz, Schaps and

Vishne, the constant 4
3
cannot be improved. Moreover, if we apply Theorem

B we have a growth worse than logarithmic (see Corollary 7.2.3).

In [41], Petri constructed a sequence {Sk} of closed hyperbolic surfaces not
necessarily arithmetic with genus gk arbitrary large and sys(Sk) & γ log(gk)

for some explicit constant γ. In fact, he uses some special graphs and pairs

of pants in order to construct such sequences with γ = 4
7
.

In this thesis we will give a new family of constructions of sequences of

closed hyperbolic surfaces which are not arithmetic and have logarithmic

growth of the systole with explicit constants.

We say that a closed hyperbolic surface is a Bely�� surface if it is a rami�ed

covering of the Riemann sphere rami�ed over at most three points. It follows

from Bely��'s theorem [6] that the set of all Belyi surfaces of genus g is dense

inMg.

Furthermore, any Bely�� surface has a rami�ed covering of �nite degree

which is a semi-arithmetic closed hyperbolic surface admitting a modular em-

bedding (see Chapter 6 for the de�nition). Although such surfaces are not

arithmetic in general, they share a lot of properties with the arithmetic ones.

In this spirit we state now the following generalization of the construction

of non arithmetic closed hyperbolic surfaces with large systole.

Theorem D. Let S be a closed semi-arithmetic hyperbolic surface admitting

a modular embedding. Then there exists an integer r > 0 which depends on

S, and a sequence of coverings Si → S with area(Si)→∞ such that

sys(Si) ≥
4

3r
log(area(Si))− c,

where c > 0 is a constant which does not depend on i.

It is worth noting that any arithmetic closed hyperbolic surface admits a

modular embedding and the constant r in this case is equal to 1. Hence we

recover the constructions that are already known in the arithmetic context.
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The proof of Theorem D use the same ideas of the paper of Buser and

Sarnak: the sequence of coverings is constructed from the arithmetic input

in the de�nition of closed hyperbolic surfaces admitting modular embedding

and the estimate of the systole becomes an estimate for traces of matrices

with suitable properties.

Problem 2 has a �virtual� solution in the following sense. For any ε > 0

and any closed hyperbolic surface S of genus g ≥ 2, there exists a covering S̃

of S of genus h ≥ g and an arithmetic closed hyperbolic surface S ′ of genus

h with |Ψ(S̃)−Ψ(S ′)| ≤ ε.

Indeed, for any g ≥ 2, we have in the spaceMg the Teichmuller distance

dT (·, ·). The importance of this distance in the study of systoles of closed

hyperbolic surfaces is the fact that for any g ≥ 2, the Morse function Ψ is

1-Lipschitz with respect to dT . The recent proof of the Ehrenpreis conjecture

due to Kahn and Markovic tells us that for any ε > 0 and any two closed

hyperbolic surfaces S1 and S2 we can take coverings S ′1 → S1 and S ′2 → S2

with S ′1, S
′
2 ∈Mg for some g and dT (S1, S2) ≤ ε. Thus if we �x an arithmetic

surface M of genus 2 and apply this theorem for the pair (S,M) we obtain

the �virtual� solution of Problem 2.

When I tried to use the theorem of Kahn and Markovic in order to solve

Problem 2 the following new question arose:

Problem 4. Fix two closed hyperbolic surfaces S1 and S2 and ε > 0. What

is the minimal g ≥ 2 such that we can �nd coverings S ′1 → S1 and S ′2 → S2

with S ′1, S
′
2 ∈Mg for some g ≥ 2 with dT (S ′1, S

′
2) ≤ ε?

We can give a lower bound for such minimal g when S1 and S2 are not

commensurable and share the same invariant trace �eld. In fact, using ge-

ometric properties of the Weil-Petersson metric with respect to the special

coordinates ofMg and also a comparison between dwp and dT we can prove

the following theorem.

Theorem E. Let S1, S2 be non commensurable arithmetic closed hyperbolic

surfaces derived from quaternion algebras over a �eld k. Then there exists

a constant C > 0 which depends only on k such that for any ε > 0 and

any coverings S ′1 → S, S ′2 → S2 with S ′1, S
′
2 of genus g < −C log(ε) we have

dT (S ′1, S
′
2) > ε.
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This thesis is organized as follows. In Chapter 2 we begin with a gen-

eral picture introducing the locally symmetric spaces. The symmetric spaces

are Riemannian manifolds constructed via algebraic objects and they have

remarkable geometric properties due this interplay between algebra and ge-

ometry. The closed hyperbolic surfaces are very special examples of locally

symmetric spaces and in Chapter 2 we recall the main geometric/algebraic

facts about them.

In Chapter 3 we review the algebraic/arithmetic properties of quaternion

algebras and algebraic number theory which is used in the constructions of

arithmetic closed hyperbolic surfaces and semi-arithmetic closed hyperbolic

surfaces admitting modular embbeding. These facts will be necessary in

order to prove Theorem D.

In Chapter 4 we will use the geometry of closed hyperbolic surfaces in

order to construct a parametrization of Mg. In fact, by decomposing any

surface in pairs of pants we can construct the Teichmuller space Tg, a simply

connected manifold which coversMg with rami�cations with the deck group

isomorphic to the mapping class group of the correponding closed surface. In

Tg we will introduce some properties of the Weil-Petersson and Teichmuller

metrics which will be useful in the proofs of Theorem A and Theorem E.

In Chapter 5 we will review some facts about graphs and groups. The

geometric approach to these objects will be used in order to construct regular

graphs and subgroups of the fundamental group of a closed surface of genus

2 with desirable properties which will be used in the proofs of Theorems B

and C.

In Chapter 6 we will present the development of mathematical ideas in the

construction of closed hyperbolic surfaces with large systole from the search

of the small eigenvalues of the Laplace-Beltrami operator up to Problem 3.

In the last part of Chapter 6 we will give the proof of Theorem D.

We begin Chapter 7 by proving Theorem A. Next we present the proof

of the main Theorem B and some other results about systoles of coverings.

We will �nish the chapter with the proof of Theorem E.

For the sake of completeness we give in Appendix A some basic de�nitions

which are assumed along this thesis.
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CHAPTER 2

HYPERBOLIC SURFACES

2.1 Locally symmetric spaces

Let X be a Riemannian manifold and G be its isometry group. We say

that X is homogeneous if G acts transitively on X.

Example 1. 1. The Euclidean space Rn with the standard metric is ho-

mogeneous since translations preserve the metric, and any point x ∈ Rn

is the image of the origin by the translation Tx(v) = v + x.

2. More generally, any Lie group G with a left-invariant metric is ho-

mogeneous since any element g ∈ G is contained in the orbit of the

identity.

3. The sphere Sn = {x ∈ Rn+1 | |x| = 1} with the metric induced by

the metric on Rn+1 is homogeneous since the rotations preserve the

sphere and for any x ∈ Sn we can complete an orthonormal basis

{x, x2, · · · , xn} of Rn+1. The rotation Θ(e1) = x, Θ(ei+1) = xi, is

an isometry of the sphere which sends e1 to x.

4. For each n ≥ 2 consider the bilinear form B on Rn+1 given by

B((x1, · · · , xn+1), (y1, · · · , yn+1)) = x1y1 + · · ·+ xnyn − xn+1yn+1.
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We de�ne the hyperbolic n-space (also called the Lobachevsky n-space)

Ln = {x = (x1, · · · , xn+1) ∈ Rn+1 |B(x, x) = −1 and xn+1 > 0}.

It is easy to check that for each x ∈ Ln the bilinear form B is positive

de�ned on the tangent space TxLn. Thus, we de�ne the hyperbolic

metric on Ln as the Riemannian metric induced by B. The group

O(n, 1) = {T ∈ GL(n+ 1,R) |B(Tv, Tv) = B(v, v) for any v ∈ Rn+1}

is a Lie group which leaves Ln invariant, and by de�nition it acts by

isometries on the hyperbolic n-space. Moreover, analogously with the

sphere we can see that Ln is homogeneous.

5. Any �nite product of homogeneous Riemannian manifolds is homoge-

neous with respect to the product metric.

The examples above are called space forms. Any n-dimensional Rieman-

nian manifold of constant curvature c is locally isometric to Rn (if c = 0) or

Sn (if c = 1) or Ln (if c = −1).

A Riemannian manifold X is a symmetric space if it is homogeneous and

in its isometry group contains an involution with at least one isolated �xed

point, i.e. there exists an isometry φ : X → X such that φ2 = id and there

exist a point x ∈ X and a neighborhood U of x, such that φ(x) = x and

φ(y) 6= y for all y ∈ U − {x}.

Example 2. 1. Consider the isometry I : Rn → Rn given by I(x) = −x.
Note that 0 is the unique �xed point of I. Thus Rn is a symmetric

space.

2. In the sphere Sn, let p = (0, 0, · · · , 1) and consider the orthogonal map

R : Sn → Sn given by R(x1, · · · , xn+1) = (−x1, · · · ,−xn, xn+1). Note

that p is the unique �xed point of R. Thus Sn is a compact symmetric

space.

3. The hyperbolic n-space Ln is a symmetric space since the same map

R ∈ O(n, 1) and the point p ∈ Ln is the unique �xed point of R in Ln.

4. Any �nite product of symmetric spaces is a symmetric space.
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Let G be a connected, noncompact, simple Lie group with �nite center

and let K be a maximal compact subgroup of G. The quotient space G/K

is noncompact and simply connected. Moreover, G/K admits a G-invariant

Riemannian metric (de�ned by the Killing-Cartan form) such that with this

metric G/K is a symmetric space.

Consider the structure of symmetric space in G/K. With such metric

G/K has non-positive curvature and is non�at. Conversely, this is the only

way to build noncompact, non�at, irreducible symmetric spaces, where a

symmetric space is irreducible if its universal covering is not isometric to any

nontrivial product ([21]).

By the work of Cartan, the space of all noncompact, non�at, irreducible

symmetric spaces is classi�ed since he gave the list of all simple Lie groups

and determined which compact groups can arise in this construction.

Example 3. For any n-dimensional �at torus T of volume 1 we can associate

a monomorphism ι : Zn → Rn such that Rn/ι(Zn) is isometric to T . Note

that ι is not unique.

We say that ι1 and ι2 are equivalent if there exists a linear isometry Θ

of Rn such that ι2 = Θ ◦ ι1. Any equivalence class of this relation is called

a marked unit �at torus. The space of all marked unit �at tori of a �xed

dimension has a structure of symmetric space.

Indeed, it is not so di�cult to see that SO(n,R) is a maximal compact

subgroup of SL(n,R). Thus the quotient space SL(n,R)/ SO(n,R) has a

structure of symmetric space.

We can give a natural bijection betweeen the space of marked unit �at

tori and the symmetric space SL(n,R)/ SO(n,R). For any ι we can associate

the matrix Aι ∈ SL(n,R) whose rows are the vectors ι(e1), · · · , ι(en). Note

that if ι′ = Θι, then Aι′ = AιΘ
−1. Thus Aι and Aι′ are equivalent modulo

SO(n,R).

Conversely, any class A SO(n,R) gives naturally a monomorphism ιA :

Zn → Rn de�ned by ιA(ei) = At(ei), where At denotes the transpose of A.

Note that if A′ = AΘ, then ιA′ = Θ−1ιA.

The bijection A SO(n,R) 7→ [ιA] tells us that the space of marked unit

�at tori has a homogeneous non�at geometry.
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A Riemannian manifold is locally symmetric if its universal covering is a

symmetric space, so any Riemannian manifold of constant curvature (0 or 1

or −1) is locally symmetric by Example 2.

Therefore, we can factorize any locally symmetric space into a Lie group

G (with a corresponding maximal compact groupK) and a discrete subgroup

Γ < G such that the locally symmetric space is isometric to Γ\G/K.

The hyperbolic 2-space L2 is one of the simplest examples of such spaces.

But at the same time L2 does not satisfy the rigidity theorems, i.e. there are

nontrivial deformations of locally symmetric spaces covered by L2 ,and this

is one of the reasons for the study of this particular manifold.

2.2 The geometry of hyperbolic surfaces

There are at least three important models for the hyperbolic plane.

Proposition 2.2.1. The following Riemannian manifolds are all mutually

isometric.

(a) The hyperboloid model L2 de�ned in Example 1.

(b) The disc model D = {x ∈ C | |x| < 1} with the metric h de�ned by

h(x)(v, v) = 4
|v|2

(1− |x|2)2
for any x ∈ D, v ∈ TxD.

(c) The upper half-space model H = {z ∈ C | =(z) > 0}, where =(z) de-

notes the imaginary part of z. We consider on H the Riemannian

metric ω de�ned by

ω(z)(v) =
|v|2

=(z)2
for any z ∈ H, v ∈ TzH.

For a proof of this proposition see [31, Proposition 3.5]. From now on we

will call any of such metrics by the hyperbolic metric. In this work we will

mainly use the upper half-space model.

The group SL(2,R) = {A ∈ GL(2,R) | det(A) = 1} acts on H by linear-

fractional transformations

z 7→ az + b

cz + d
if A =

(
a b

c d

)
.
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It is straightforward to check that the action of SL(2,R) preserves the hy-

perbolic metric. Moreover, any isometry of H which preserves the orientation

of H coincides with a linear-fractional tranformation in SL(2,R).

Note that if A ∈ SL(2,R), then −A has the same action. Thus we can

consider the action of the group PSL(2,R) = SL(2,R)/{±I} on H. The

group PSL(2,R) is isomorphic to the group of orientation-preserving isome-

tries of H.

Let α : I → H be a smooth path. We de�ne the length of α with respect

to the hyperbolic metric by the integral∫
I

|α′(t)|
=(α(t))

dt.

Recall that a geodesic on a Riemannian manifold is a path which locally

minimizes the distance between its endpoints. By the de�nition of geodesics

and applying the homogeneity of H, we can check that any vertical line and

any intersection of H with a Euclidean circle with the center on the real axis

are geodesics for the hyperbolic metric. In fact, the following theorem says

that they are the only geodesics on H.

Theorem 2.2.2. In H there is a unique geodesic through any two distinct

points.

In Euclidean geometry, probably the main geometric �gure is a triangle,

it is common to decompose any object into triangles. On the other hand, in

hyperbolic geometry there is another polygon which plays similar role.

x

y
z

Figure 2.1: Right-angled hyperbolic hexagon

Indeed, in H there exist right-angled geodesic hexagons and they consti-

tute the fundamental stones for the construction of any hyperbolic surface.
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We can parametrize the space of all right-angled hexagons up to isometries.

Indeed, we have the following important fact ([10, pag. 40]).

Theorem 2.2.3. Let x, y, z be any positive real numbers. Then there exists a

unique up to isometry right-angled geodesic hexagon with non-adjacents sides

of length x, y, z respectively.

The sides of righ-angled geodesic hexagons are related by the following

formulaes (see [10, Theorem 2.4.1]).

Proposition 2.2.4. For any convex right-angled geodesic hexagon with con-

secutive sides a, γ, b, α, c, β the following formulaes hold:

(i) cosh(c) = sinh(a) sinh(b) cosh(γ)− cosh(a) cosh(b);

(ii) sinh(a) : sinh(α) = sinh(b) : sinh(β) = sinh(c) : sinh(γ);

(iii) coth(α) sinh(γ) = cosh(γ) cosh(b)− coth(a) sinh(b).

We introduce now the main object of this work.

De�nition 1. Let M be a closed surface. An atlas A on M is called hyper-

bolic if it has the following properties:

(i) φ(U) ⊂ H, for all (U, φ) ∈ A.

(ii) If (U, φ), (V, ψ) ∈ A, with U ∩ V 6= ∅, then for each connected compo-

nent W of U ∩ V there exists TW ∈ PSL(2,R) such that TW = ψ ◦ φ−1

on φ(W ).

De�nition 2. Let M be a closed surface equipped with a hyperbolic atlas

A. We de�ne a closed hyperbolic surface by the pair S = (M,A).

It follows from the de�nition of hyperbolic surface that such surfaces carry

a natural Riemannian metric which is locally isometric to the hyperbolic

plane. Thus, any hyperbolic surface has constant curvature −1 and is a

locally symmetric space.

A nice property of negative curvature is the natural relation between

homotopy classes of curves on the surface and geodesics. The next theorem

is a special property of hyperbolic metrics, and its proof can be found in [10,

Theorem 1.5.3].
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Theorem 2.2.5. Let S be a hyperbolic surface. Let a, b ∈ S and c : [0, 1]→ S

a curve with c(0) = a and c(1) = b (if a = b we require that c is homotopically

non-trivial). Then the following hold;

• In the homotopy class of c �xing the poins a, b there exists a unique

shortest curve γ. This curve is a geodesic.

• If a = b, then c is freely homotopic to a unique closed geodesic γ.

• If c is simple, then the geodesics in the items above are simple.

The topology and geometry of the hyperbolic surface are related by the

bijection given by the theorem above:

{free homotopy classes of π1(S)} ↔ {closed geodesics on S}. (2.1)

Since the set of free homotopy classes of the fundamental group is equal to

the conjugacy classes of this group, and for any closed surface its fundamental

group is �nitely generated, we conclude that the set of conjugacy classes

is countable. Therefore, the set of closed geodesics on a closed hyperbolic

surface is countable.

Although in our de�nition of hyperbolic surface the atlas can be very

large, we can uniformize the atlas by a unique map. In fact, we have the well

known Uniformization Theorem.

Theorem 2.2.6. For any closed hyperbolic surface S there exists a local

isometry π : H→ S which is a covering map.

This theorem tell us that any hyperbolic surface has a subatlas where any

pair (U, φ) is of the form (U, (π �Ũ)−1), where Ũ is a component of π−1(U)

for a �xed covering map π : H→ S.

Let S be a hyperbolic surface and π : H → S be a covering. If we take

the deck group Γ = {T ∈ PSL(2,R) | π ◦ T = π}, then T acts discontinuosly

and freely on H. Moreover, the quotient space Γ\H is isometric to S by the

natural map Γz 7→ π(z).

Thus we can see any closed hyperbolic surface as a quotient space Γ\H
where Γ < PSL(2,R) is a group which acts discontinuosly and freely on H.
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Let Γ < PSL(2,R) be the deck transformations group of a covering map

from H to a closed surface S of genus g. Since Γ acts discontinuosly on H it

is a discrete subgroup of the Lie group PSL(2,R) ([26, Theorem 2.2.6]).

More generally, a discrete subgroup of PSL(2,R) is called a Fuchsian

group. The nontrivial elements of a Fuchsian group are classi�ed in three

types depending on their trace.

De�nition 3. Let Γ be a Fuchsian group and γ ∈ Γ with γ 6= 1.

1. We say that γ is elliptic if | tr(γ)| < 2. If γ is elliptic, then γ has a

unique �xed point on H.

2. We say that γ is parabolic if | tr(γ)| = 2. If γ is parabolic, then γ �xes

a unique point on the boundary ∂H = R ∪ {∞}.

3. We say that γ is hyperbolic if | tr(γ)| > 2. If γ is hyperbolic, then the

set of �xed points of γ consists of a set of two points on the boundary

∂H = R ∪ {∞}.

These names come from the geometry of the action of the group 〈γ〉 in R2

by linear transformations. From the point of view of hyperbolic geometry,

the action of each elliptic, parabolic or hyperbolic element has the following

caracterization.

Consider p ∈ ∂H = R∪ {∞}. We de�ne a horocycle centered in p as any

Euclidean circle contained in H tangent to p if p ∈ R, or any horizontal line

{x+ iy0 |x ∈ R} if p =∞.

Now let p, q ∈ ∂H be distinct points and consider the unique geodesic

Lpq ⊂ H whose ends are p, q. We have the following proposition.

Proposition 2.2.7. Let Γ be a Fuchsian group and γ ∈ Γ. Then we have:

1. If γ is elliptc, then γ is a rotation around its �xed point.

2. If γ is parabolic, then γ leaves invariant any horocycle centered in its

�xed point in ∂H.

3. If γ is hyperbolic, then γ leaves invariant the geodesic Lpq, where {p, q}
is the set of �xed points of γ on ∂H.
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4. If the quotient space Γ\H is compact, then Γ does not contain parabolic

elements.

The proof of these basic facts can be found for example in [26] .

Example 4. Let A =

(
λ 0

0 λ−1

)
for some real λ > 1. Note that A is a

hyperbolic element and �xes the points 0 and∞, therefore A leaves invariant

the imaginary axis.

The action on this geodesic is given by ti 7→ λ2ti and if we calculate the

hyperbolic distance betweeen ti and A(ti) = λ2ti for any t, we conclude that

A acts as a translation of displacement 2 log(λ).

We can rewrite this displacement as

2 log(λ) = 2 cosh−1

(
| tr(A)|

2

)
,

since cosh−1(s) = log(s+
√
s2 − 1) and tr(A) = λ+ λ−1.

More generally, for any hyperbolic element γ ∈ PSL(2,R) there exists an

isometry T ∈ PSL(2,R) such that

γ = T

(
λ 0

0 λ−1

)
T−1,

where λ is the biggest eigenvalue of γ.

Therefore, the displacement disp(γ) of γ on its invariant geodesic L is the

same as the displacement of A =

(
λ 0

0 λ−1

)
on the imaginary axis, i.e.

disp(γ) = 2 log(λ) = 2 cosh−1

(
| tr(A)|

2

)
= 2 cosh−1

(
| tr(γ)|

2

)
,

since A and γ have the same trace.

Let S = Γ\H be a closed hyperbolic surface and let γ ∈ Γ be nontrivial.

Then by item 4 of Proposition 2.2.7 it follows that γ is a hyperbolic element.

Consider a nontrivial conjugacy class C of Γ and take γ ∈ C. The

invariant geodesic Lγ ⊂ H of γ projects on a closed geodesic c ⊂ S. Moreover,

c does not depend on the choice of γ ∈ C.
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Conversely, by (2.1) for any closed geodesic α ⊂ S there exists a unique

conjugacy class Cα of Γ such that α is the projection of Lγ for any γ ∈ Cα.
Furthermore, if we choose arbritary α̃ ∈ Cα for any closed geodesic α ∈ S

of length l(α), then Example 4 gives us the following formula

| tr(α̃)| = 2 cosh

(
l(α)

2

)
. (2.2)

For a closed surface S, let χ(S) be the Euler characteristic of S. We have

χ(S) = 2− 2g, where g is the genus of S.

By the Gauss-Bonnet theorem we have for any hyperbolic surface S of

genus g the following formula

area(S) = 4π(g − 1).

Therefore, a closed surface admits a Riemannian metric of constant cur-

vature −1 only if g ≥ 2. Moreover, the topology of such surface determines

the area. Thus the area of a hyperbolic surface is not a geometric invariant

if we �x a topology.

In order to understand the geometry of a hyperbolic surface we need to

study their geometric invariants. In the following paragraphs we will mention

two invariants, one metric and other analytical which a priori are of a very

di�erent nature but as we will see, in fact, they are two sides of the same

coin.

Let M be a compact nonsimply connected Riemannian manifold. We

de�ne the systole of M as the in�mum of the lengths of homotopically non

trivial closed paths onM, and we denote this geometric invariant by sys(M).

Let S be a closed hyperbolic surface. Since the set of the lengths of the

closed geodesics on S is discrete, we can give the following de�nition.

De�nition 4. The length spectrum of S is the ordered set

L(S) = {l(γ1) ≤ l(γ2) ≤ · · · }

of lengths of the closed geodesics of S.
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In this context we can de�ne the systole of S as the bottom of the length

spectrum of S.

If we �x a genus g ≥ 2, there is no lower bound for the systole of hyperbolic

surfaces of genus g. Indeed, we will see in Chapter 4 ([Theorem 4.1.3)]) that

for any ε > 0, we can �nd a surface Sε of genus g and systole at most ε.

On the other hand, we have the following theorem of Gromov (see [18,

2.C.]).

Theorem 2.2.8. Let M be a closed connected surface of genus g(M) ≥ 2

with a Riemannian metric. Then,

sys(M)2 ≤ C
(log(g(M)))2

g(M)
area(M),

where C is a universal constant.

In Gromov's proof the constant C is very large. Later on, Katz and

Sabourau showed in [28, Theorem 2.2] that C ≤ 1
π
(1 + o(1)) when g goes to

in�nity.

In the particular case where S is a hyperbolic surface, if S has systole

sys(S) it is easy to see that at each point p ∈ S we can embed a hyperbolic

disk of radius sys(S)
2

. Therefore,

area

(
D

(
p,

sys(S)

2

))
= 2π

(
cosh

(
sys(S)

2

)
− 1

)
≤ area(S).

Hence,

sys(S) ≤ 2 log(area(S)) + A (2.3)

for some universal constant A > 0.

Remark 1. The estimate of the constant C given by Katz and Sabourau

shows that for any ε > 0 there exists g0 = g0(ε) ≥ 2 such that for any closed

hyperbolic surface S of genus g ≥ g0,

sys(S)2 ≤ log(g)2(4π(g − 1))

πg
(1 + ε) ≤ (2 log(g))2(1 + ε). (2.4)

Hence inequality (2.3) is stronger than (2.4) in the hyperbolic case.
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Let M be a complete n-dimensional Riemannian manifold. There exists

a generalization of the Laplace operator from the Euclidean space toM . The

Laplace-Beltrami operator is de�ned by

∆u = − 1√
G

n∑
j,k=1

∂j(Gjk
√
G∂ku)

for any smooth function u : M → R, where G = det (Gij) is the determinant

of the metric tensor, Gij are the components of the metric tensor with respect

to local coordinates and
(
Gjk
)

= (Gjk)−1.

If M is closed, we have the following important theorem ([10, Theorem

7.2.6]).

Theorem 2.2.9 (Spectral Theorem). IfM is a closed Riemannian manifold,

then the Hilbert space L2(M) has a complete orthonormal system of C∞-

eigenfunctions φ0, φ1, . . . correponding to the eigenvalues λ0 = 0 < λ1 < · · ·
of the Laplace-Beltrami operator, i.e. ∆φi = λiφi for all i.

The motivation for the de�nition of the length spectrum of a hyperbolic

surfaces comes from the following classical de�nition.

De�nition 5. The spectrum of a closed Riemannian manifold M is the

ordered set

Λ(M) = {0 = λ0 < λ1 ≤ λ2 ≤ · · · }

of the eigenvalues of the Laplace-Beltrami operator on M .

The spectrum of a closed Riemannian manifold encodes a lot of infor-

mation about its geometry. For example, Weyl's asymptotic law says that

for any n there exists a constant a(n) such that for any closed Riemannian

manifold M of dimension n, its spectrum satis�es

λ
n
2
k ∼ k

a(n)

vol(M)
,

where as usual the relation f(x) ∼ g(x) means that lim
x→∞

f(x)

g(x)
= 1.

If n = 2 then a(2) = 4π and this limit shows that the spectrum of M

determines the area of M (see [10, Theorem 9.2.14]).
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To �nish this section we will recall an important theorem due to Huber,

which connects two aparently very di�ent objects, the length spectrum and

the spectrum of a hyperbolic surfaces (see [10, Theorem 9.2.9])

Theorem 2.2.10. Two closed hyperbolic surfaces have the same spectrum if

and only if they have the same length spectrum.
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CHAPTER 3

SEMI-ARITHMETIC AND ARITHMETIC

SURFACES

3.1 Quaternion Algebras.

Let k be a �eld of characteristc other than 2.

De�nition 6. A ring D with unit is a k-algebra if D has the structure of a

k-vector space compatible with the operations on D, i.e.

λ(xy) = (λx)y = x(λy) for all λ ∈ k and x, y ∈ D.

The main example to have in mind is the algebraMn(k) of n×n matrices

with entries in k.

A k-subspace A ⊂ D is a left (respectively, right) ideal if xA ⊂ A (respec-

tively, Ax ⊂ A) for all x ∈ A. We say that D is simple if the only two-side

(i.e. left and right at the same time) ideals of D are the zero ideal and the

whole D.

The algebra D is central if k = Z(D), where

Z(D) = {x ∈ D |xy = yx for all y ∈ D}.

De�nition 7. A k-algebra is a central simple algebra if it is central and

simple.
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Example 5. We say that D is a division algebra if every non-zero element

of D has a multiplicative inverse. In this case if A ⊂ D is a left/right ideal

of D and A 6= 0, then 1 = aa−1 ∈ A. Thus any division algebra is simple.

Example 6. Let k be a number �eld, i.e. k is a �nite extension of Q. Note

that k is a simple Q-algebra but it is not central since Z(k) = k.

A central simple algebra is a very rigid algebraic object. In fact, we have

the following theorems.

Theorem 3.1.1 (Skolem-Noether). Let k be a �eld, D a central simple alge-

bra over k of �nite dimension and D′ a �nite dimensional simple k-algebra.

If f, g : D′ → D are algebra homomorphisms, then there exists an element

x ∈ D∗ such that

f(u) = xg(u)x−1 for all u ∈ D′.

Theorem 3.1.2 (Wedderburn). Let D be a central simple algebra over a �eld

k. Then there exists a central division algebra A over k such that D ∼= Mn(A)

for some n ≥ 1.

A very useful corollary of Theorem 3.1.1 is

Corollary 3.1.3 (Skolem-Noether Theorem). Every automorphism of a cen-

tral simple algebra over a �eld k is an inner automorphism.

De�nition 8. A quaternion algebra over a �eld k is a central simple algebra

over k of dimension 4.

Example 7. Consider the central simple algebra D = M2(k). Since M2(k)

has dimension 4 over k, the algebra D is a quaternion algebra. If we identify

the identity matrix of D and the unit of k, we have a simple presentation for

D as follows: D = {a1 + bI + cJ + dIJ |I2 = J2 = 1, a, b, c, d ∈ k}, where

I =

(
0 1

1 0

)
and J =

(
1 0

0 −1

)
.

More generally, it follows from Theorems 3.1.2 and 3.1.1 that any quater-

nion algebra over a �eld k has a simple presentation.
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Theorem 3.1.4. Let D be a quaternion algebra over a �eld k of characteristc

0. Then there exists a basis {1, I, J,K} of D such that

I2 = a, J2 = b and IJ = −JI = K, where a, b ∈ k∗.

Proof. If D is not a division algebra, then by Theorem 3.1.2 we have that

D ∼= M2(k). In this case we have already given a presentation in Example 7.

If D is a division algebra, let x ∈ D such that x /∈ k. Let k(x) be the

minimal subring of D containing k and x.

Since x is invertible, k(x) is a �eld extension of k generated by 1 and x,

i.e. k(x) is a quadratic extension of a �eld of characteristc 0. Hence, there

exists an element I ∈ k(x) such that I2 ∈ k and k(x) = k(I).

If we take the nontrival isomorphism

σ : k(I)→ k(I) σ(I) = −I,

then if we see σ : k(I) → D as an algebra homomorphism, we can apply

Theorem 3.1.1 in order to �nd J ∈ D∗ such that σ(t) = JtJ−1. In particular,

−I = σ(I) = JIJ−1.

We want to prove that {1, I, J, IJ} is a basis for D and J2 ∈ k∗.
Firstly, we can see that J /∈ k(I), otherwise we can apply σ on J and

σ(J) = J . Hence J ∈ k and σ is the trivial isomorphism.

Since D has dimension 4 over k, we only need to check that {1, I, J, IJ}
is linearly independent. Suppose that there exist α, β, γ ∈ k such that

IJ = α + βI + γJ.

We use now the assumption that D is a division algebra in order to write

J =
α + βI

I − γ
∈ k(I).

This contradiction shows that {1, I, J, IJ} is a basis of D.

The algebra D is central. Thus if we check that J2 commutes with I it

will follow that J2 ∈ Z(D) = k and the proof will �nish. By de�nition of J

we have indeed

J2I = J(JI) = J(−IJ) = (−JI)J = (IJ)J = IJ2.
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We have the following classical corollary.

Corollary 3.1.5. There exist up to isomorphism only two quaternion alge-

bras over R, namely the algebra of matrices M2(R) and the Hamilton algebra

H = {t+ xI + yJ + zK | I2 = J2 = −1 , IJ = −JI = K}.

For an arbitrary D we have a generalization of trace and determinant of

a matrix. Let D be a quaternion algebra over a �eld k with basis {1, I, J,K}
as in Theorem 3.1.4.

De�nition 9. For any x = x0 +x1I+x2J+x3K ∈ D we de�ne its conjugate,

reduced norm and trace, respectively, by:

1. (conjugate): x̄ = x0 − x1I − x2J − x3K.

2. (reduce norm): rn(x) = xx̄ = x2
0 − ax2

1 − bx2
2 + abx2

3.

3. (trace): tr(x) = x+ x̄ = 2x0.

Remark 2. Note that a priori the de�nition of conjugate, reduced norm

and trace depends on the choice of the basis. However, it is a straighfor-

ward manipulation to show that if we have another basis {1, I ′, J ′, I ′J ′} with
I ′2, J ′2 ∈ k∗, then these de�nitions do not depend on the choice.

Example 8. Let us choose in M2(k) the basis {id, I, J, IJ}, where

I =

(
0 1

1 0

)
and J =

(
1 0

0 −1

)
.

Then for any A =

(
a b

c d

)
∈M2(k) we have

A =
a+ d

2
id+

b+ c

2
I +

a− d
2

J +
c− b

2
K,

with a+ d = A+ Ā and ad− bc = (a+d
2

)2 − ( b+c
2

)2 − (a−d
2

)2 + ( c−b
2

)2 = AĀ.
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3.2 Quaternion algebras over number �elds.

Throughout this section, k will denote a totally real number �eld, i.e. k

is a �nite extension of Q such that for any Galois embedding σ : k → C we

have σ(k) ⊂ R. The ring of integers of k will be denoted by Rk. Recall that

k is the �eld of fractions of Rk.

Let D be a quaternion algebra over k, an ideal L in D is a �nitely gen-

erated Rk-module of rank 4 such that any Rk-basis of L is a k-basis of D.

Note that this de�nition of ideal is not related with the de�nition of ideal in

previous section.

An order O in D is an ideal which is also a subring of D containing 1.

An order is maximal if it is not properly contained in any other order.

Example 9. Consider k = Q and D = M2(Q). The subring M2(Z) is a

maximal order.

Indeed, it is easy to check thatM2(Z) is an order of D. Let O be an order

containing M2(Z). If there exists U =

(
a1
b1

a2
b2

a3
b3

a4
b4

)
∈ O with g.c.d(ai, bi) = 1

and |bj| > 1 for some j, then we can suppose that j = 1 since we can multiply

U by

(
0 1

1 0

)
on the left or on the right and in at most two steps any entry

of U transforms to the �rst one. Now we have

U ′ = L2(UL1 −M1)−M2 =

(
a1
b1

0

0 0

)
∈ O,

where

L1 =

(
1 0

0 b2b4

)
, L2 =

(
1 0

0 b3

)
, M1 =

(
0 a2b4

0 a4b2

)
, M2 =

(
0 0

a3 0

)
.

Thus

V = U ′ +

(
0 0

0 1

)
=

(
a1
b1

0

0 1

)
∈ O.

The submodule Z[V ] has �nite dimension because it is contained in the ideal

O, but this implies that the extension Z[a1
b1

] is �nite, which gives a contra-

diction since Z is integrally closed in Q.
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Let n = [k : Q] be the degree of the extension and let φ1, . . . , φn : k → R
be the Galois embeddings. Let D be a quaternion algebra over k.

De�nition 10. For an arbritary embedding σ : k → R we de�ne the ex-

tension of scalars algebra D ⊗σ R as the (k,R)-bimodule with a natural

algebra structure and R considered as a k-vector space via the map σ, i.e.

the product of an element λ ∈ k on t ∈ R is given here by σ(λ)t.

In a more concrete way we have the following proposition.

Proposition 3.2.1. Let D be a quaternion algebra over a totally real number

�eld k and let σ : k → R be a Galois embedding. If D has a basis {1, I, J, IJ}
with IJ = −JI, I2 = a and J2 = b where a, b ∈ k∗, then D ⊗σ R has a basis

{1, I ′, J ′, I ′J ′} with I ′J ′ = −J ′I ′, I ′2 = σ(a) and J ′2 = σ(b).

Proof. Recall that the R-structure ofD⊗σR is given by the product s(x⊗t) =

x⊗ (st). If we take the set

{1 = 1⊗ 1, I ′ = I ⊗ 1, J ′ = J ⊗ 1, I ′J ′ = IJ ⊗ 1},

then clearly it generates D ⊗σ R as an R-vector space.
Let α0, α1, α2, α3 ∈ R be such that α0 + α1I

′ + α2J
′ + α3I

′J ′ = 0. If we

consider a basis {tν}ν∈N of R as a k-vector space (by σ), we can write

αi =
∑
ν

σ(βνi)tν for each i = 0, 1, 2, 3.

Therefore,

0 =
∑
ν

(β0ν + β1νI + β2νJ + β3νIJ)⊗ tν .

Since the set {1 ⊗ tν , I ⊗ tν , J ⊗ tν , IJ ⊗ tν}ν is a k basis of D ⊗σ R, it
follows that βiν = 0 for any pair (i, ν). Hence, αi = 0 for each i = 0, 1, 2, 3.

Note that by properties of tensor product and the de�nition of the struc-

tures on D ⊗σ R, we have

I ′2 = I2 ⊗ 1 = a⊗ 1 = 1⊗ σ(a) = σ(a)(1⊗ 1),

and

J ′2 = J2 ⊗ 1 = b⊗ 1 = 1⊗ σ(b) = σ(b)(1⊗ 1).
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It follows from Corollary 3.1.5 that there are two possibilities for D⊗σR,
either it is isomorphic to M2(R) or it is isomorphic to the Hamilton algebra

H. We say that D is rami�ed at σ if D ⊗σ R ∼= H, and that D splits at σ

otherwise.

Proposition 3.2.2. Let D be a quaternion algebra over a totally real number

�eld k. If D splits at the embedding σ of k in R, then there exists a basis

{1, I, J, IJ} of D such that IJ = −JI , I2 = a, J2 = b with a, b ∈ k∗ and

σ(a) > 0.

Proof. Take a basis {1, I, J, IJ} given by Proposition 3.1.4 with I2 = a′, J2 =

b′ for some a′, b′ ∈ k∗. We need to show that σ(a′) > 0 or σ(b′) > 0. Indeed,

if σ(a′) < 0 and σ(b′) < 0, then by Proposition 3.2.1, D⊗σ R has a real basis

{1, I ′, J ′, I ′J ′} with I ′2 = σ(a′) and J ′2 = σ(b′). Hence, for any

x = x0 + x1I
′ + x2J

′ + x3I
′J ′ 6= 0

we have

rn(x) = x2
0 − σ(a′)x2

1 − σ(b′)x2
2 + σ(a′b′)x2

3 > 0.

Therefore, each nonzero x ∈ D⊗k R has an inverse rn(x)−1x̄, i.e. D rami�es

at the embedding σ. This contradiction implies the proposition since we can

switch I and J if necessary.

Let D be a quaternion algebra over a totally real number �eld k such

that D splits at the trivial embedding. Take in D a basis {1, I, J, IJ} given
by Proposition 3.2.2.

We can embed D in M2(R) by the map

ψ(x0 + x1I + x2J + x3K) =

(
x0 −

√
ax1 b(x2 − x3

√
a)

x2 − x3

√
a x0 +

√
ax1

)
.

Note that

tr(ψ(x)) = tr(x) and det(ψ(x)) = rn(x),

for any x ∈ D. Hence, if we take an order O of D, the set

Γ(D,O) = {x ∈ O | rn(x) = 1}
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is a multiplicative group and it is identi�ed via ψ with a subgroup of SL(2,R).

If we take another embedding ψ′ from D into M2(R), then by Theo-

rem 3.1.1 there exists an invertible matrix A ∈M2(R) (we can suppose that

det(A) = ±1) such that

ψ′(x) = Aψ(x)A−1 for all x ∈ D.

3.3 Semi-arithmetic surfaces admitting modu-

lar embedding.

We say that two groups Γ1,Γ2 < SL(2,R) are commensurable if Γ1 ∩ Γ2

has �nite index in both Γ1 and Γ2. For any group Λ < PSL(2,R) we denote

by Λ̃ the preimage of Λ in SL(2,R) by the natural projection SL(2,R) →
PSL(2,R).

De�nition 11. Let S = Γ\H be a closed hyperbolic surface, we say that S is

a semi-arithmetic surface if Γ̃ is commensurable to a subgroup Σ < Γ(D,O)

for some order O in a quaternion algebra D over a totally real number �eld

k which splits at the trivial embedding of k.

If Γ̃ is contained in Γ(D,O) we say that S is a semi-arithmetic surface

derived from a quaternion algebra.

There is an equivalent de�nition of semi-arithmetic surfaces due to the

work of Takeuchi from which it is often easier to check if a speci�c surface is

semi-arithmetic or not:

Let S = Γ\H be a closed hyperbolic surface. We de�ne the invariant

trace �eld of S (or Γ) as the �eld

L = Q(tr(Γ̃2)) where tr(Γ̃2) = {| tr(γ2)| | γ ∈ Γ̃}.

We say that S is a semi-arithmetic surface if its invariant trace �eld is

a totally real number �eld and the set tr(Γ̃2) is contained in the ring of

integers of this number �eld. For a proof of the equivalence of this de�nition

and De�nition 11 see [47, Proposition 1].
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De�nition 12. A semi-arithmetic closed hyperbolic surface S = Γ\H with

invariant trace �eld k′ is said to be arithmetic if for any nontrivial embedding

σ : k′ → R it holds that

σ(tr(Γ̃2)) ⊂ [−2, 2].

In the class of semi-arithmetic surfaces there exists a special subclass of

surfaces, namely, the surfaces which admit a modular embedding.

Let D be a quaternion algebra over a totally real number �eld k of degree

n with embeddings φ1, . . . , φn : k → R, with φ1 being the identity and such

that D is rami�ed only at φr+1, · · · , φn for some r ≥ 1.

Let O be an order in D and let S = Γ\H be a semi-arithmetic closed

surface with Γ̃ < ψ(Γ(D,O)) for some injective homomorphism of algebras

ψ : D →M2(R).

In this case we can check easily that k′ = Q(tr(Γ̃)2) = k, i.e. the invariant

trace �eld of S coincides with k when S is derived from a quaternion algebra

over k.

For each i = 1, · · · , r, since D ⊗φi R ' M2(R) by the Proposition 3.2.2

we can �nd a basis {1, Ii, Ji, IiJi} of D such that

IiJi = −JiIi, I2
i = ai, J

2
i = bi and φi(ai) > 0.

Hence, for each i = 1, · · · , r we can de�ne the injective homomorphism

of algebras ψi : D →M2(R) given by

ψi(x) =

(
φi(x0)−

√
φi(ai)φi(x1) φi(bi)(φi(x2)− φi(x3)

√
φi(ai))

φi(x2)− φi(x3)
√
φi(ai) φi(x0) +

√
φi(ai)φi(x1)

)
,

where x = x0 + x1Ii + x2Ji + x3IiJi ∈ D. Note that ψi is a homomor-

phism of k-algebras, when we de�ne a k-structure on R via the map φi (see

De�nition 10).

Therefore, if we �x i = 1, · · · , r, then for each γ ∈ Γ̃ we can de�ne

γφi := ψi(x) if γ = ψ1(x).

De�nition 13. We say that a closed hyperbolic surface S = Γ\H admits a

r-modular embedding or simply admits a modular embedding if S is a semi-

arithmetic surface derived from a quaternion algebra over a �eld k, and there
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exist exactly r Galois embeddings φ1, φ2, · · · , φr : k → R with φj(tr(Γ̃)2) *
[−2, 2] such that for each j = 1, · · · , r the functional equation

F (γφj · z) = γφj · F (z) for all z ∈ H, γ ∈ Γ̃.

is solved by a holomorphic map Fj : H→ H.

Remark 3. The name modular embedding comes from the fact that the

group Γ(D,O) acts on Hr properly and discontinuosly via the map Ψ =

(ψ1, · · · , ψr), and up to a �nite index, this action is free. If we consider the

manifold M = Γ(D,O)\Hr, then M is a locally symmetric space and the

map F = (F1, · · · , Fr) : H→ Hr induces an embedding F̄ : S → M . By the

Schwarz-Pick Lemma, Fi is a 1-Lipschitz map for any i with respect to the

hyperbolic metric. Thus F is a
√
r-Lipschitz map.

In the particular case of D = M2(k) and O = M2(Rk), the corresponding

manifold M is known as a Hilbert Modular manifold (see [39]).

Example 10. The simplest example of semi-arithmetic surfaces admitting

modular embeddings are the arithmetic surfaces derived from quaternion

algebras. Indeed, let S = Γ\H with Γ̃ < Γ(D,O) for some quaternion

algebra D de�ned over a �eld k. It follows from the de�nition of arithmetic

surfaces that we need only to solve

F (γ · z) = γ · F (z) for all z ∈ H, γ ∈ Γ̃

for some homolomorphic map. The indentity map of H is a trivial solution.

Example 11. The main source of examples of semi-arithmetic surfaces ad-

mitting modular embedding are the hyperbolic triangle groups ∆(l,m, n),

where l,m, n ∈ Z≥2 such that 1
l

+ 1
m

+ 1
n
< 1.

Geometrically, these groups are orientation-preserving subgroups of the

groups of isometries of H generated by the re�ections in the sides of a hyper-

bolic triangle with angles
π

l
,
π

m
,
π

n
.

Algebraically, these groups are discrete subgroups of PSL(2,R) given by

the presentation

∆(l,m, n) = 〈A,B,C |Al = Bm = Cn = ABC = 1〉.
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Any two discrete subgroups of PSL(2,R) with this presentation are con-

jugate (see [49, Lemma 1]). It follows from the main theorem in [12] that any

torsion free �nite index subgroup of a triangle group gives a closed hyperbolic

surface admitting a modular embedding.

In their proof Cohen and Wolfart construct the holomorphic maps using

the re�ection principle and the geometric fact that such triangles give a

tesselation of the hyperbolic plane.

Remark 4. It is a well known result due to Takeuchi (see [49]) that there exist

only a �nite number of triangle groups which contain a torsion free subgroup

Γ such that the surface S = Γ\H is arithmetic.

Example 11 shows that the class of semi-arithmetic surfaces admitting

modular embedding is larger than the class of arithmetic surfaces. At the

present moment there is no known example of a semi-arithmetic closed sur-

face admitting modular embedding which is not arithmetic or triangular (we

say that S = Γ\H is triangular if Γ is a �nite index subgroup of a triangular

group).

A crucial fact about surfaces which admit a modular embedding is that

the holomorphic maps in the de�nition of the modular embedding in general

are not necessarily isometries. In fact, we have that with the exception of

the identity, which is equivariant to the trivial embedding, the holomorphic

maps which appear in the de�nition of modular embedding are contractions.

We have the following proposition.

Proposition 3.3.1 ([47]). Let S = Γ\H be a closed hyperbolic surface ad-

miting a modular embedding and let k = Q({tr(γ)2}) be its invariant trace

�eld. Then for all nontrivial embeddings φ : k → R we have

|φ(tr(γ))| < | tr(γ)|,

for every nontrivial γ ∈ Γ.

Example 12. Let Q be a hyperbolic quadrilateral such that three of the

interior angles are π
2
while the fourth is π

3
.
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E1

E2 E3

Figure 3.1: Quadrilateral Q.

Let Ei, i = 1, 2, 3, be the three vertices of Q correponding to angles π
2
, in

the natural order. There are a lot of choices for Q. We normalize Q so that

2 cosh(d(E1, E2)) = 7−
√

5. (3.1)

Hence, we have a Fuchsian group Γ0 with the set of generators {U1, U2, U3, V },
where U1, U2, U3 are involutions with �xed points E1, E2, E3, respectively, and

V �xes the other vertex of Q.

The choice of the generators is such that a mirror image of Q obtained

by the re�ection in the side E1E2 is a fundamental domain for the action of

Γ0.

Let Γ′0 the subgroup of Γ0 generated by the set {x = U1U2, y = U2U3, z =

U1U3, V }. We can check using these generators (see [49]) that

tr(Γ′0) ⊂ Z[tr(x), tr(y), tr(z), tr(V )],

Using hyperbolic trigonometry, the construction of Q, and the norma-

lization (3.1), we have that

tr(x)2 = 7−
√

5, tr(y)2 = 7 +
√

5, tr(z)2 = 11, tr(V )2 = 1. (3.2)

Thus Q(tr(Γ′20 )) = Q(
√

5) = k and tr(Γ′20 ) ⊂ Rk = Z[
√

5], which implies

that any torsion-free subgroup of Γ′0 gives a closed semi-arithmetic surface.

Now supppose that S = Γ\H with Γ < Γ′0 admits a modular embedding.

Let σ : k → R be the nontrivial embedding of k which switches
√

5

and −
√

5. Since k is the invariante trace �eld of Γ̃ and σ(tr Γ̃) * [−2.2], by
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de�nition we have a holomorphic map F : H→ H such that F (γ ·z) = γσF (z)

for all z ∈ H and γ ∈ Γ̃.

It follows from Proposition 3.3.1 that

|σ(tr(γ))| < | tr(γ)| for every nontrivial γ.

By (3.2) we have,

tr(x2) = tr(x)2 − 2 = 5−
√

5 and tr(y2) = tr(y)2 − 2 = 5 +
√

5.

On the other hand, if we apply the formula tr(AB) = tr(A) tr(B)−tr(AB−1),

by induction we have

σ(tr(x2l)) = tr(y2l) > tr(x2l) > 0, (3.3)

for any natural l.

Since Γ̃ has �nite index in Γ0, there exists l > 1 such that x2l, y2l ∈ Γ̃

and inequality (3.3) contradicts Proposition 3.3.1. Therefore S is a semi-

arithmetic surface which does not admit a modular embedding.

3.4 Congruence coverings of semi-arithmetic

surfaces.

Let S = Γ\H be a semi-arithmetic closed surface derived from a quater-

nion algebra. Thus there exist a quaternion algebra D over a totally real

number �eld k, a maximal order O ⊂ D and an embedding ψ : D →M2(R)

such that Γ̃ < ψ(Γ(D,O)).

Let a ⊂ Rk be an ideal of the ring Rk. We can suppose that Rk ⊂ O
since by assumption O is maximal. Thus, the product subring aO ⊂ O is an

order of D. Hence, the quotient ring O/aO is �nite.

De�nition 14. The principal congruence covering Sa = Γ(a)\H of S of level

a is given by

Γ̃(a) = Ker

(
Γ̃

ψ−1

−→ Γ(D,O)→ (O/aO)∗
)
,

where the second map is the natural projection.
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Recall that for any ideal a ⊂ Rk its norm is de�ned by the index N(a) :=

[Rk : a] as additive groups.

We want to understand the geometry of Sa when a varies. For this we

need of the following proposition (see [29, Corollary 4.6]).

Proposition 3.4.1. Let D be a quaternion algebra over a totally real number

�eld k and let O be a maximal order of D. There exists a constant λ =

λ(D,O) such that for any group Λ < Γ(D,O) and for any ideal a ⊂ Rk we

have

[Λ : Λ(a)] ≤ λN(a)3,

where

Λ(a) = Ker (Γ(D,O)→ (O/aO)∗) .

We have the following immediate corollary.

Corollary 3.4.2. Let S = Γ\H be a semi-arithmetic closed hyperbolic surface

derived from a quaternion algebra. There exists a constant C > 0 which

depends only on the quaternion algebra and the order in the de�nition of S

such that for any principal congruence covering Sa of S we have

area(Sa) ≤ C N(a)3 area(S).
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CHAPTER 4

GEOMETRY OF TEICHMULLER AND MODULI

SPACES OF CLOSED HYPERBOLIC SURFACES

4.1 The Teichmuller space

Denote by Fg the set of all Fuchsian groups Γ < PSL(2,R) such that

Γ\H is a closed hyperbolic surface of genus g. Evidently, Λ1\H is isometric

to Λ2\H by an orientation-preserving isometry if and only if Λ1 and Λ2 are

conjugate subgroups, Λ1 = TΛ2T
−1, T ∈ PSL(2,R).

We de�neMg as the set of equivalence classes of closed hyperbolic sur-

faces of genus g where two surfaces S1 and S2 are equivalent if there exists an

orientation-preserving isometry between them. Thus Mg can be identi�ed

with the quotient of Fg modulo conjugation by elements of PSL(2,R).

Denote the fundamental group of a closed surface of genus g by Γg and

consider the usual presentation of Γg,

Γg = 〈a1, · · · , a2g | a1a2a
−1
1 a−1

2 · · · a2g−1a2ga
−1
2g−1a

−1
2g 〉.

Each group in Fg is isomorphic to Γg. Let Hom(Γg,Fg) be the set of all

isomorphisms from Γg to elements of Fg. Two such isomorphisms ξ and ζ are

said to be equivalent if they di�er only by a conjugation in PSL(2,R), that is,

if there exists T ∈ PSL(2,R) such that Tξ(aj) = ζ(aj)T , j = 1, · · · , 2g. The
equivalence classes are called Teichmuller points, and the set of equivalence
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classes is the Teichmuller space Tg. For each Teichmuller point we have

naturally associated a closed hyperbolic surface.

In order to give a description of Tg as a manifold we will see a Teichmuller

point as a collage of fundamental blocks called pairs of pants. We recall that

a pair of pants with boundary {γ1, γ2, γ3} is the pasting of two isometric

hyperbolic hexagons H1, H2 along three non adjacent isometric sides. The

boundary of the pair of pants consists of closed geodesics with length twice

the corresponding length of the sides in the pasting.

x

y

z x

y

z 2x

2y

2z

A cubic graph is a �nite 3-regular graph. Let Ω be a a connected cubic

graph with 2g − 2 vertices and 3g − 3 edges. It is useful to view each edge

as the union of two half-edges with each half-edge emanating from one of

the two connected vertices. We use the following notation. The vertices and

edges of Ω are denoted by

v1, . . . , v2g−2 and e1, . . . , e3g−3.

For each vertex vi of Ω the three half-edges emanating from vi are denoted

by eij with j = 1, 2, 3. Thus each edge of Ω will be denoted by ek = (eij, elm)

for some (j,m) if ek is formed by the vertices vi, vl. If we choose for any

k = 1, · · · , 3g − 3 a positive real number xk, then we get a collection of

pairs of pants Y1, · · · , Yi, · · · , Y2g−2 such that Yi has boundary γi1, γi2, γi3

and l(γij) = xk = l(γlm) if ek = (eij, elm).

Let (L,A) = (x1, · · · , x3g−3, y1, · · · , y3g−3) be a sequence of real numbers,

where L = (x1, · · · , x3g−3) ∈ R3g−3
>0 and A = (y1, · · · , y3g−3) ∈ R3g−3. For

each such (L,A) we de�ne the hyperbolic surface S(L,A,Ω) as the quotient

space

S(L,A,Ω) = Y1 t · · · t Y2g−2 mod (P),

where P is the equivalence relation given by

γij(t) = γlm(t− yk), 0 ≤ t ≤ 1, if ek = (eij, elm),
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where each closed geodesic is parametrized with constant speed on the circle

of length one.

Since Ω is connected, S(L,A,Ω) is a closed hyperbolic surface of genus

g. Indeed, any pair of pants has Euler characteristic −1. Thus we can

associate for any (L,A) ∈ R3g−3
+ ×R3g−3 a representating class σΩ(L,A) ∈ Tg.

Conversely, we have the following proposition.

Proposition 4.1.1. Let S be a closed hyperbolic surface of genus g ≥ 2.

There exist simple closed geodesics γ1, · · · , γ3g−3 which decomposes S into

pairs of pants.

Proof. Let γ1 be a systole of S, i.e. a closed geodesic of the smallest length.

Necessarily, γ1 must be simple. Cut S along γ1. Each connected component

S ′ of the surface thus obtained is a hyperbolic surface with boundary and

genus at least one with at most two boundary components. Hence S ′ contains

a homotopically nontrivial simple closed curve, say γ̃2, which is not homotopic

to a boundary component of S ′. We can take the unique closed geodesic γ2

freely homotopic to γ̃2. Now cut S ′ along γ2, and continue whenever each

component is not a pair of pants. After �nitely many steps, S is decomposed

into pairs of pants and using the Euler characteristic we deduce that the

number of pairs of pants is equal to 2g − 2.

In fact, for any closed surface we have a minimal pants decomposition in

the following sense.

Theorem 4.1.2 (Bers' Theorem). Every closed hyperbolic surface of genus

g ≥ 2 has a pants decomposition with simple closed geodesics γ1, · · · , γ3g−3

satisfying

l(γj) ≤ 26(g − 1) for all j = 1, · · · , 3g − 3.

For a proof of this result see [10, Theorem 5.1.2]

In order to de�ne an extra structure on Tg we need of the following the-

orem. The proof can be deduced from Theorem 6.2.7 in [10].

Theorem 4.1.3. Let Ω be a connected 3-regular graph of 2g − 2 vertices.

Then for any Teichmuller point [θ : Γg → Σ] ∈ Tg with Σ ∈ Fg there exists a

unique (Lθ, Aθ) ∈ R3g−3
+ × R3g−3 such that σΩ(Lθ, Aθ) = [θ].
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It follows from Theorem 4.1.3 that there exists a bijection φΩ : R3g−3
+ ×

R3g−3 → Tg associated to any 3-regular connected graph Ω of 2g−2 vertices.

For each conjugacy class C of Γg we have a length function LC : Tg → R
which associates for any closed hyperbolic surface S the length of the unique

closed geodesic on S whose conjugacy class is C. Therefore we can consider

the �rst 3g − 3 components of φ−1
Ω as the length functions of a �xed set of

conjugacy classes.

Indeed, let Ω be as above. Any edge of Ω correspond to a free homotopy

class of a simple closed geodesic on the surfaces constructed in Theorem 4.1.3.

Consider the set of conjugacy classes C1, · · · , C3g−3 of Γg which represent the

set of such simple closed geodesics. We call such classes the partition of Ω.

We say that a conjugacy class in Γg is simple if in the corresponding free

homotopy class on Sg there is a simple closed curve. Now, we will complete

the partition of Ω in order to embed Tg in an analytic variety (see [10, Lemma

6.3.4]).

Proposition 4.1.4. Let Ω be a connected 3-regular graph with 2g−2 vertices

with partition {C1, · · · , C3g−3}. Then there exists a unique canonical system

of classes {C1, · · · , C3g−3, · · · , C9g−9} formed by nontrivial and simple conju-

gacy classes of Γg such that the map

AΩ : R3g−3
+ × R3g−3 → R9g−9,

given by

AΩ(L,A) = (LC1(S), · · · , LC9g−9(S))

has an analytic left inverse (de�ned on a neighborhood of the image of AΩ),

where S = φΩ(L,A).

We want to give an analytic structure on the space Tg. For this we need

the following theorem. For a proof see [10, Theorem 6.3.5].

Theorem 4.1.5. Fix a connected cubic graph Ω with 2g−2 vertices. Then for

any nontrival conjugacy class C of Γg, the function (L,A) 7→ LC(φΩ(L,A))

is real analytic.
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Theorem 4.1.6. If two connected 3-regular graphs Ω,Ω′ are given with maps

φΩ, φΩ′, respectively, then the map

φ−1
Ω ◦ φΩ′ : R3g−3

+ × R3g−3 → R3g−3
+ × R3g−3

is a real analytic di�eomorphism.

Theorem 4.1.6 justi�es the following de�nition.

De�nition 15. On Tg we introduce the unique real analytic structure such

that the maps φΩ are real analytic di�eomorphisms. The associated systems

of coordinates (φΩ,R3g−3
+ ×R3g−3) are called the Fenchel-Nielsen coordinates.

Remark 5. It follows from De�nition 15 that any length function is real

analytic on Tg.

Proof of Theorem 4.1.6. Consider the canonical system of conjugacy classes

{C1, · · · , C3g−3, · · · , C9g−9} of Γg with respect to Ω. The map ÃΩ : Tg →
VΩ ⊂ R9g−9 given by ÃΩ = AΩ ◦ φ−1

Ω has coordinates (LC1 , · · · , LC9g−9),

where VΩ is the neighborhood of the image of AΩ given by Theorem 4.1.4. If

we have φΩ(L,A) = φΩ′(L
′, A′), then

(L,A) = A−1
Ω (LC1(φΩ′(L

′, A′)), · · · , LC9g−9(φΩ′(L
′, A′))).

Since the length functions are analytic in the coordinates (L′, A′) by Theorem

4.1.5 and A−1
Ω is analytic by Proposition 4.1.4, it follows that the bijection

φ−1
Ω ◦ φΩ′ is real analytic.

We will �nish this section with a generalization of the Bers Theorem.

Proposition 4.1.7. Let S = Γ \H be a closed hyperbolic surface of genus

g ≥ 2 and systole sys(S) ≥ s. Then there exist a cubic graph Ω with 2g − 2

vertices, a universal constant a > 0, and a constant b = b(s) such that

S = φΩ(l1, · · · , l3g−3, α1, · · · , α3g−3) with 0 ≤ αj < 1,

and

AΩ(l1, · · · , l3g−3, α1, · · · , α3g−3) = (l1, · · · , l9g−9) with li ≤ ag + b(s)

for all i = 1, · · · , 9g − 9.
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Proof. By Theorem 4.1.2 we can take a pants decomposition of S with a

partition given by conjugacy classes C1, C2, · · · , C3g−3 of simple closed curves.

Moreover, we can reconstruct S from the cubic graph Ω induced by the

corresponding pants decomposition with twist coordinates in the interval

[0, 1). Thus there exists a Teichmuller point [θ : Γg → Γ] with coordinates

(lC1(S), · · · , LC3g−3(S), α1(S), · · · , α3g−3(S)).

The construction of the canonical system of conjugacy classes {C1, · · · ,
C9g−9} gives simple closed geodesics

{γ1, · · · , γ3g−3, δ1, · · · , δ3g−3, η1, · · · , η3g−3}

on S such that

LCj(S) = l(γj), LC3g+j−3
(S) = l(δj), LC6g+j−6

(S) = l(ηj),

for all j = 1, · · · , 3g− 3. These lengths satisfy the following inequalities (see

[10, Proposition 3.3.11]:

cosh
(
l(δj)

2

)
≤ sinh

(
l(γjp )

2

)
sinh

(
l(γjq )

2

)
[sinh(aj) sinh(bj) cosh(αjl(γj)) + cosh(aj) cosh(bj)]

and

cosh
(
l(ηj)

2

)
≤ sinh

(
l(γjp )

2

)
sinh

(
l(γjq )

2

)
[sinh(aj) sinh(bj) cosh((αj + 1)l(γj)) + cosh(aj) cosh(bj)]

where γjp , γjq are closed geodesics in the pants decomposition and aj (resp.

bj) is the distance from γj to γjp (resp. from γj to γjq).

Since 0 ≤ αj < 1 and l(γi) ≤ Cg for some universal constant C by

Theorem 4.1.2, it follows from the inequalities above that

cosh

(
l(δj)

2

)
≤ cosh(Cg) sinh

(
Cg

2

)2

cosh(aj + bj)

and

cosh

(
l(ηj)

2

)
≤ cosh(2Cg) sinh

(
Cg

2

)2

cosh(aj + bj).

Using that sinh(t) < cosh(t) and cosh(t1) cosh(t2) ≤ cosh(t1 + t2) for any

t, t1, t2 ≥ 0 we conclude that

l(δj) ≤ 4Cg + 2aj + 2bj and l(ηj) ≤ 6Cg + aj + bj. (4.1)
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for all j = 1, · · · , 3g − 3.

The main geometric feature of the construction of the geodesics δi, ηi
is that aj, bj are sides of a hyperbolic hexagon with non-adjacents sides of

lengths l(γj)

2
,
l(γjp )

2
,
l(γjq )

2
, respectively.

l(γj)

2

l(γjp )

2

l(γjq )

2

aj bj

If we apply formula (i) from Proposition 2.2.4 twice we have,

cosh(aj) =
cosh

(
l(γjq )

2

)
+ cosh

(
l(γjp )

2

)
cosh

(
l(γj)

2

)
sinh

(
l(γjp )

2

)
sinh

(
l(γj)

2

)
and

cosh(bj) =
cosh

(
l(γjp )

2

)
+ cosh

(
l(γjq )

2

)
cosh

(
l(γj)

2

)
sinh

(
l(γjq )

2

)
sinh

(
l(γj)

2

) .

Since any closed geodesic on S has length at least s there exists a constant

b1(s) such that for any j, k

sinh

(
l(γjk)

2

)
sinh

(
l(γj)

2

)
≥ sech(b1(s)).

Therefore,

cosh(aj) ≤ 2 cosh(b1(s)) cosh(Cg) and cosh(bj) ≤ 2 cosh(b1(s)) cosh(Cg). (4.2)

If we take a := 10C and b(s) := 4(b1(s) + cosh−1(2)) then by (4.1) and (4.2)

we have

l(γj) ≤ ag, l(δj) ≤ ag + b(s), and l(ηj) ≤ ag + b(s)

for all j = 1, · · · , 3g − 3.
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4.2 Mapping Class Groups and Moduli spaces

Let Aut(Γg) be the group of automorphisms of Γg. The inner automor-

phisms of Γg are the isomorphisms of type η 7→ γηγ−1 for some γ ∈ Γg, and

they form a normal subgroup Inn(Γg)E Aut(Γg). The quotient

Out(Γg) = Aut(Γg)/Inn(Γg)

is called the outer automorphisms group of Γg.

Let Mg
± = Diff(Sg)/Diff0(Sg) be the extended mapping class group of

a closed surface of genus g, where Diff(Sg) (respectively, Diff0(Sg)) is the

group of all di�eomorphisms of Sg (respectively, the group of di�eomorphisms

isotopic to the identity).

The mapping class group of a closed surface of genus g is the index two

subgroup Mg of Mg
± given by the kernel of the homomorphism Mg

± →
Z/2Z, which associates 0 for the class of orientation-preserving di�eomor-

phisms and 1 for the class orientation-reversing ones, i.e. we have a short

exact sequence

1→Mg →Mg
± → Z/2Z→ 1.

There is a natural injective homomorphism Mg
± → Out(Γg) . In fact, we

have the following theorem (see [15, Theorem 8.1]).

Theorem 4.2.1 (Dehn-Nielsen-Baer). Let g ≥ 2. The natural homomor-

phism

Mg
± → Out(Γg)

is an isomorphism.

Using the natural inclusion Mg ↪→ Out(Γg) we have an action of the

mapping class group on the Teichmuller space given by [φ] · [ρ] = [ρ ◦ φ−1],

where φ : Γg → Γg is an automorphism and ρ : Γg → Λ is an isomorphism

for some Λ ∈ Fg.
Note that this action is well-de�ned. However, it is not so clear that any

[φ] ∈ Out(Γg) gives an analytic map on Tg. In fact, a stronger result holds.

Theorem 4.2.2. Let g ≥ 2. The action of Mg on Tg is properly discontin-

uous and preserves the analytic structure.
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For a proof of Theorem 4.2.2 see [15, Theorem 12.2]. Note that if a

hyperbolic surface S has a nontrivial isometry φ and [ρS] is a Teichmuller

point giving S, then the action of [φ] on [ρs] is trivial, i.e. [φ] · [ρS] = [ρS].

In fact, we have that for any Teichmuller point its isotropy group by the

action of Mg is equal to the orientation-preserving isometry group of the

corresponding hyperbolic surface.

On the other hand, this isotropy group is �nite since by Hurwitz's theorem

(see [10, Theorem 6.5.9]) the group of orientation-preserving isometries of any

closed hyperbolic surface of genus g has at most 84(g − 1) elements. This

shows that the action of Mg on Tg is not free. However, we have the following

result (see [10, Theorem 6.5.7]).

Theorem 4.2.3. For any g > 2 let Ig ⊂ Tg be the set of all surfaces in

Tg which have a nontrivial isometry group. Then Ig is a proper closed real

analytic subvariety of Tg.

It follows from Theorems 4.2.2 and 4.2.3 that the quotient space Tg /Mg

is an orbifold (see [51, Section 13.2] for a formal de�nition). Note that this

quotient space is equal to the moduli spaceMg of closed hyperbolic surfaces

of genus g. Indeed, if S1 and S2 are isometric by the isometry φ : S1 → S2

then [ρS2 ] = [φ] · [ρS1 ], i.e. two surfaces in Tg are isometric if and only if they

are in the same orbit of the action of Mg.

Recall that PSL(2,R) coincides with the group of conformal equivalences

of H seen as an open subset of the complex plane. Therefore, any hyperbolic

surface naturally has a structure of Riemann surface, i.e. a complex manifold

of dimension 1. This interplay between complex structure and hyperbolic

structure is important in the study of Tg andMg that follows.

Let p, q ∈ Tg be Teichmuller points and choose representatives σ : Γg → Σ

and λ : Γg → Λ with Σ,Λ ∈ Fg. We associate for each such pair σ, λ a space

H(σ, λ) of orientation-preserving Lipschtz homeomorphisms F : H→ H such

that

F (σ(γ) · τ) = λ(γ) · F (τ) for all γ ∈ Γg and τ ∈ H.

If we �x F ∈ H(σ, λ), then F is di�erentiable except for a set of zero

measure. Thus for almost every point τ ∈ H the dilatation of F at τ = x+ iy
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can be de�ned by

KF (τ) =
|Fz(τ)|+ |Fz̄(τ)|
|Fz(τ)| − |Fz̄(τ)|

,

where

Fz =
1

2

(
∂

∂x
F − i ∂

∂y
F

)
and Fz̄ =

1

2

(
∂

∂x
F + i

∂

∂y
F

)
.

The dilatation of the map F is de�ned to be the number

KF = supKF (τ),

where the supremum is taken over all points τ where F is di�erentiable. We

say that F is K-quasiconformal if K = KF <∞.

Note that F ∈ H(σ, λ) if and only if F−1 ∈ H(λ, σ). If T, S ∈ PSL(2,R)

consider the isomorphisms

σT (γ) = T−1σ(γ)T and λS(γ) = S−1λ(γ)S.

We have a bijection

H(σ, λ)→ H(σT , λS), F 7→ S−1 ◦ F ◦ T.

Since T, S are conformal maps it follows from item (c) of the proposition

below (see [15, Proposition 11.3]) that these bijections preserve the dilatation.

Proposition 4.2.4. Let F,G : H → H be Lipschtz quasiconformal homeo-

morphisms and A ∈ PSL(2,R) be a conformal equivalence. Then

(a) The composition G ◦ F is quasiconformal and

KG◦F ≤ KGKF .

(b) The inverse F−1 is quasiconformal and

KF−1 = KF .

(c)

KA◦F = KF = KF◦A.
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We say that F ∈ H(σ, λ) is a Teichmuller mapping if F is K-quasi-con-

formal and Kσ,λ = inf{KG |G ∈ H(σ, λ)}. It is not clear that there exists

a Teichmuller mapping, however we have the Teichmuller theorems (see [15,

Theorems 11.8 and 11.9]):

Theorem 4.2.5. Let σ, λ : Γg → PSL(2,R) be injective homomorphisms with

images Σ,Λ ∈ Fg, respectively. Then, there exists a unique K-quasiconformal

map Fσλ ∈ H(σ, λ) such that

K = inf{KF |F ∈ H(σ, λ)}.

Given two Teichmuller points p, q ∈ Tg we de�ne the Teichmuller distance

dT (p, q) = log(inf{KF |F ∈ H(σ, λ)}),

for an arbitrary choice of representatives σ, λ of p, q, respectively. The dis-

cussion above shows that this in�mum does not depend on the choice of

representatives. Moreover, if F is 1-quasiconformal map, then Fz̄(τ) = 0 for

almost every point in H. Therefore, F is di�erentiable everywhere and it is

conformal, i.e. F is an isometry of H which conjugates σ and λ. Thus by

Theorem 4.2.5,

dT (p, q) = 0 if and only if p = q.

The symmetry and triangular inequality of the distance follow from Propo-

sition 4.2.4. Hence dT de�nes a metric on Tg .

Let p, p′ be Teichmuller points with representatives σ, σ′ and let

S = σ(Γg)\H , S ′ = σ′(Γg)\H,

be the corresponding closed hyperbolic surfaces. Any quasiconformal map

F ∈ H(σ, σ′) induces a homeomorphism f : S → S ′ whose lifting is F . From

now on, a K-quasiconformal map between hyperbolic surfaces will mean a

homeomorphism between the surfaces induced by a K-quasiconformal map

of any of their representatives in Tg.

The Teichmuller distance gives a basis for the topology of Tg and for any

length function we have the following theorem (see [10, Theorem 6.4.3]).
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Theorem 4.2.6. Let S, S ′ be closed hyperbolic surfaces of genus g ≥ 2. If

a homeomorphism h : S → S ′ is K-quasiconformal and if for each conju-

gacy class C of Γg we denote by hC the conjugacy class of the image of the

homomorphism induced by h∗ : Γg → Γg, then

1

K
LC(S) ≤ LhC(S ′) ≤ KLC(S).

We can de�ne the systole of a Teichmuller point as the systole of any

hyperbolic surface corresponding to this point. Assuming the same notation

of Theorem 4.2.6 we have the following corollary.

Corollary 4.2.7. The function log(sys) : Tg → R is 1-Lipschtiz with respect

to Teichmuller distance.

Proof. By abuse of notation, take the surfaces S and S ′ in Tg and h : S → S ′

the K-quasiconformal map which realize the Teichmuller distance between S

and S ′. Consider conjugacy classes CS, CS′ of Γg such that

sys(S) = LCS(S) and sys(S ′) = LCS′ (S
′).

Since h is a homeomorphism, there exists a conjugacy class C ′ such that

CS′ = hC ′. If we apply Theorem 4.2.6 twice we have

1

K
sys(S) ≤ 1

K
LC′(S) ≤ sys(S ′) ≤ LhC(S ′) ≤ K sys(S).

Now taking the log in these inequalities we conclude that

| log(sys(S))− log(sys(S ′))| ≤ log(K) = dT (S, S ′).

The function systole is continuous in Tg and is clearly invariant by the

action of Mg. Therefore, it descends to a continuous function sys :Mg → R.
As the �rst application of the function systole for the topology of Mg, we

show that the spaceMg is not compact.

Indeed, we can construct for each g ≥ 2 a sequence of points Si ∈ Mg

such that sys(Mi)→ 0 using pants with small boundaries, by the continuity

and positivity of the function sys we conclude that this sequence has no

convergent subsequence.
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Let ε > 0 be a �xed lower bound for the systole. The ε−thick part ofMg

is the set

Mg
≥ε = {S ∈Mg | sys(S) ≥ ε}.

AlthoughMg is not compact we have the following theorem due to Mumford

(see [15, Theorem 12.6]).

Theorem 4.2.8. Let g ≥ 2. For each ε > 0, the ε−thick part of Mg is

compact.

Therefore, the function systole is proper inMg. However, note that in Tg

the function systole is not proper, since if we �x a system of Fenchel-Nielsen

coordinates the subset (0, ε] × R3g−4
+ × R3g−3 ⊂ R3g−3

+ × R3g−3 is a closed,

noncompact subset contained in sys−1[0, ε].

Perhaps the main importance of the function systole is the possibility of

using it for obtaining topological information aboutMg. The reason for this

is the theorem of Akrout [1] which proves that sys : Tg → R is a topological

Morse function.

Let M be a topological n-manifold and let f : M → R be a continuous

function. A point p ∈M is said to be regular for f if there is a (topological)

chart around p = 0 on which f(x1, · · · , xn) = x1 + f(p). Otherwise, p is

a critical point of f . A critical point p ∈ M is said to be a nondegenerate

critical point of f if in a local (topological) chart around p = 0 we have

f(x1, · · · , xn) = f(p)− x2
1 − · · · − x2

k + x2
k+1 + · · ·+ x2

n,

for some k.

The integer k does not depend on the choice of such a chart and it is

called the index of the critical point p. The function f is called topologically

Morse if all critical points are nondegenerate. The usual results of Morse

theory, such as Morse inequalities and the construction of a homotopy model

with cells corresponding to critical points, hold in the topological context.

We �nish this section by recalling an application of the Morse theory for

giving topological information about the virtual Euler characteristic of Mg.

Let G <Mg be a subgroup of �nite index NG such that the action of G on Tg

is torsion free. The set of subgroups of Mg with this property is non empty.
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Let MG = Tg /G be the quotient manifold and let χ(MG) be the usual

Euler characteristic of MG. It is a fact of cohomology of groups that the

rational number
χ(MG)

NG

does not depend on G (see [46]), and we de�ne the

virtual Euler characteristic

χ(Mg) =
χ(MG)

NG

,

for any G <Mg of �nite index with free action.

Remark 6. In [20] Harer and Zagier established the remarkable following

formula:

χ(Mg) = ζ(1− 2g),

where ζ(s) is the Riemann zeta function.

Let C ⊂ Tg be the set of critical points of the function systole and consider

the subset C1 ⊂ C of representatives of the orbits by the action of Mg on C.
By [46, Theorem 23] the set C1 is �nite and applying Morse theory Schaller

proved in [46] the following theorem.

Theorem 4.2.9. For any S ∈ C1 let | Isom(S)| be the cardinality of the

isometry group of S and k(S) the index of S. Then

∑
S∈C1

(−1)k(S)

| Isom(S)|
= χ(Mg).

For more information and conjectures about the relation between the

function systole and the topology ofMg, we refer to [7] and [46].

4.3 Geometry of the Weil-Petersson Metric

The Teichmuller space Tg has a structure of a complex manifold of di-

mension 3g−3 compatible with the Fenchel-Nielsen coordinates. If S = Γ\H
represents a Teichmuller point in Tg consider the complex vector space Q(Γ)

formed by holomorphic functions from H to C such that

Q(Γ) = {f : H→ C | f(T (z)) = T ′(z)−2f(z) , for all z ∈ H, T ∈ Γ},
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where T ′ denotes the complex derivative of T . Note that, if we change Γ by

any conjugate ΓA, for some A ∈ PSL(2,R), then the map

Q(Γ)→ Q(ΓA), f 7→ A′2(f ◦ A),

is a complex isomorphism, where A′ denotes the complex derivative of A.

We de�ne the space of holomorphic quadratic di�erential Q(S) of S

as the class of complex isomorphism of the vector spaces Q(ΓA), where

A ∈ PSL(2,R). It follows from the Riemann-Roch Theorem that Q(S) has

complex dimension equal to 3g−3 for any closed hyperbolic surface of genus

g.

It is common to identify the cotangent space T ∗S Tg of any S = Γ\H ∈ Tg

with the space Q(S). In order to unify the complex structure of Tg and the

hyperbolic geometry of the Teichmuller points we de�ne the Weil-Petersson

metric on Tg: it arises from the hermitian product H on Q(S), namely

H(f, g) =

∫
S

fḡy2dxdy,

where S = Γ\H, the integration is over any fundamental domain of Γ and we

are choosing the representativeQ(Γ) forQ(S). This integral does not depend

on the choices of the fundamental domain and the representative class for

Q(S).

We de�ne the Weil-Petersson metric G as the Riemannian metric on the

cotangent bundle of Tg induced by the Weil-Petersson metric H, i.e.

G(ω, η) = 2Re(H(ω, η)),

for any pair of covectors ω, η ∈ T ∗ Tg. The Weil-Petersson metric has negative

sectional curvature ([52]) and the group Mg acts by isometries. Thus, G
descends to a metric (where the tangent space is well-de�ned) onMg.

Let gwp be the corresponding Riemannian metric on the tangent bundle

of Tg. Since T Tg has an involution I given by the complex structure, we can

de�ne the Weil-Petersson form ωwp by

ωwp = gwp(IX, Y ),

for any pair of tangent vectors X, Y .

We say that the a Hermitian metric H is a Kähler metric if dωwp = 0.

We have the following theorem due to Ahlfors (see [23, Theorem 7.15]).
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Theorem 4.3.1. The Weil-Petersson metric is Kählerian.

The Weil-Petersson form gives a sympletic structure on Tg compatible

with the Weil-Petersson metric. If we denote the Fenchel-Nielsen coordinates

for a �xed choice of a cubic graph by (x1, · · · , x3g−3, y1, · · · , y3g−3), then by

the work of Wolpert, the Weil-Petersson form has a simple expression in these

coordinates (see [23, Theorem 8.6]).

Theorem 4.3.2 (Wolpert). The Weil-Petersson form is given by

ωwp =

3g−3∑
i=1

dxi ∧ dyi.

We will need some results about the geometry of the Weil-Petersson met-

ric. For the proof of item (a) of the next proposition see [53, Corollary 4.7]

and for item (b) see [54, Lemma 3.16].

Proposition 4.3.3. Consider the Teichmuller space Tg equipped with the

Weil-Petersson metric. For any nontrivial conjugacy class C of Γg let

LC : Tg → R be the corresponding length function. Then the following hold:

(a) The function LC is convex along Weil-Petersson geodesics.

(b) If C represents a simple closed curve, then

|∇LC(X)| ≤ c′
(
LC(X) + LC(X)2 exp

(
LC(X)

2

))
,

for some universal constant c′. Here ∇LC denotes the gradient of the

function LC with respect to the Weil-Petersson metric.

In the Teichmuller metric we saw that the logarithm of the function sys-

tole is 1-Lipschtiz. The next proposition provides an analogous result for the

Weil-Petersson metric (see [55, Theorem 1.3]).

Theorem 4.3.4. There exists a universal constant K > 0 independent of g,

such that for all S, S ′ ∈ Tg,

|
√

sys(S)−
√

sys(S ′)| ≤ Kdwp(S, S
′).
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Since the mapping class group acts by isometries on Tg with respect to the

Weil-Petersson metric, it makes sense to consider the Ricci curvature Ric(S)

for any point S ∈Mg as the minimum of the Ricci curvature Ric(S̃)(v, v) for

any lifting S̃ of S and v ∈ TS̃ Tg with gwp(v, v) = 1. We have the following

useful theorem due to Teo [50, Proposition 3.2].

Theorem 4.3.5. For each ε > 0 there exists a constant C(ε) > 0 which does

not depend on g, such that

inf
S∈Mg

≥ε
Ric(S) ≥ −C(ε).

AlthoughMg is not compact, if we consider the volume measure volwp in

Tg with respect to the Weil-Petersson metric, then any fundamental domain

D ⊂ Tg for the action of Mg on Tg has �nite measure, i.e. volwp(Mg) is

always �nite. Moreover, Schumacher and Trapani showed in [48] the following

asymptotic growth of log volwp(Mg).

Theorem 4.3.6.

lim
g→∞

log volwp(Mg)

g log g
= 2.

The �nitiness of the volume of Mg means that we obtain a probability

measure Pg onMg by de�ning

Pg(A) =
volwp(A)

volwp(Mg)

for every measurable set A ⊂Mg.

Let ε > 0 be a constant. We de�ne the following random variable

Ng,ε :Mg → Z≥0,

by

Ng,ε(S) = number of primitive closed geodesics onS with length at most ε,

where a closed geodesic α ⊂ S is primitive if there does not exist a closed

geodesic β ⊂ S such that α = βk for some natural k.

Combining methods of probability theory and Weil-Petersson geometry,

Mirzakhani and Petri showed in [37] the following theorem.
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Theorem 4.3.7. For every ε > 0 the random variables Ng,ε converges in

distribution to a Poisson distributed random variable with mean λε, where

λε =

∫ ε

0

et + e−t − 2

t
dt.

A random variable X :Mg → Z≥0 is said to be Poisson distributed with

mean λ ∈ (0,∞) if

Pg(X = k) =
λke−λ

k!
for all k ≥ 0,

see De�nition 17 in the next chapter.

We conclude this section with the following corollary.

Corollary 4.3.8. For every ε > 0,

lim
g→∞

volwp(Mg
≥ε) =∞.

Proof. By the de�nition,

Mg
≥ε ⊃ {S ∈Mg |Ng,ε(S) = 0}.

Hence by Theorem 4.3.7 there exists g0 such that if g ≥ g0, then

volwp(Mg
≥ε
g )

volwp(Mg)
≥ e−λε

2
.

Now the result follows from Theorem 4.3.6 since limg→∞ volwp(Mg) =∞.
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CHAPTER 5

GROUPS AND GRAPHS

5.1 Schreier graphs and Free groups

Let G be a �nitely generated group, let H be a subgroup of G, and let

Σ = {g±1
1 , · · · , g±1

r } be a symmetric set of generators of G.

De�nition 16. The (right) Schreier coset graph Σ(G,H) is de�ned as fol-

lows. Its vertex set is the set of right cosets of H in G. For each right coset

Hi and each generator gj there is an edge from Hi to the right coset Higj.

If H = {e}, then the Schreier graph Σ(G, {e}) is called the Cayley graph

of G with respect to the generating set Σ, and it is denoted by Cay(G,Σ).

Remark 7. If H is a normal subgroup then the Schreier graph Σ(G,H) is

canonically isomorphic to the Cayley graph Cay(G/H, Σ̄), where Σ̄ is the

image of Σ in G/H.

Let Ω be a graph and k > 1 a natural number. The graph Ω is called

k−regular if every vertex of Ω has degree k. For example, any Schreier graph

is regular of even degree. We will denote by E(Ω) the set of edges of Ω and

by V (Ω) the set of vertices. An s-factor of Ω is a subgraph K of Ω which is

regular of degree s and which contains every vertex of Ω. When the edges of

Ω can be partitioned into s-factors, we say that Ω is s-factorable.

Theorem 5.1.1 (Petersen, 1891). Every regular graph (connected or not) of

even degree is 2-factorable.
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For a short proof of this classical theorem see [14, Corollary 2.1.5].

Remark 8. Note that if Ω is 2k-regular, then necessarily Ω is partitioned by

k distinct 2-factors.

Recall that a circuit on a �nite graph Ω is a closed path without repeti-

tions of edges. The girth of Ω, denoted by girth(Ω) is the length of a minimal

circuit. If we consider the set C(Ω) of circuits on Ω, we can de�ne

L : C(Ω)→ Z≥2, L(K) = length ofK.

The set L(C(Ω)) = {l1 < l2 < · · · < lω} is called the length spectrum of Ω

and the j-girth of Ω, if exists, is the number lj. In particular, girth(Ω) is the

1-girth of Ω.

Denote by F2 the free group of rank 2 with a �xed set of generators

A = {x±1, y±1}. Any element ω ∈ F2 is a unique word in the alphabet

{x, y, x−1, y−1} such that it does not contain a sequence of the form

xx−1, x−1x, yy−1, yy−1.

The number of letters in such word is the length of ω and is denoted by lA(ω).

By convention, lA(1) = 0.

Proposition 5.1.2. For any connected 4-regular graph Ω on n vertices, there

exists a subgroup Γ < F2 of index n with the following properties:

1. The Schreier graph of cosets of Γ on the symmetric set A is isomorphic

to Ω;

2. If l = girth(Ω) then l = min{lA(γ) | γ ∈ Γ \ {1}}.

Proof. Take a minimal circuit C on Ω and a vertex v of C. Consider a

bijection between V (Ω) and {1, · · · , n} such that v corresponds to 1. By

Theorem 5.1.1, E(Ω) = K1 tK2 where Ki is a 2-factor.

Each Ki can be written as a disjoint union of circuits C1
i , · · · , C

ti
i . For

each Cj
i assign an arbitrary orientation and consider the cyclic permutation

πij ∈ Sn, which corresponds to the cyclic order in which the oriented circuit

Cj
i passes through the vertices of Ω. Then, for each i = 1, 2 consider the
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permutation πi = πi1 · · · πiti and the homomorphism φ : F2 → Sn given by

φ(x) = π1 and φ(y) = π2.

The subgroup Γ = {t ∈ F2 |φ(t) · 1 = 1} has index n because φ is

transitive. Indeed, since Ω is connected, for each i there exists a path joining

the vertices 1 and i, but each edge of this path is contained in K1 or K2,

and in any case we can always go from a vertex to its adjacent vertex in

the path by the action of φ(x)±1 or φ(y)±1. Hence, the path induces a word

w in {x±1, y±1} such that i = φ(w)(1). In particular, the minimal circuit

C is represented by a reduced word W ∈ F2 such that lA(W ) = l(C) = l.

Moreover, if φ(W )(1) = 1, then W ∈ Γ.

To see the isomorphism in part 1, take αj ∈ F2 such that φ(αj) · 1 = j

for any j = 1, · · · , n and choose α1 = 1. The Schreier graph of cosets of Γ

on A has the vertices {Γ,Γα2, · · · ,Γαn} and the bijection Γαj ←→ j is an

isomorphism of graphs. In fact, j is adjacent to k if and only if k = π±1
i (j)

and this is equivalent to φ(αk)(1) = φ(aαj)(1) for some a ∈ A. But this

means that Γαj = Γαka
−1, i.e, Γαj and Γαk are adjacent.

To complete the proof it remains to show that any non-trivial element

γ ∈ Γ satis�es lA(γ) ≥ l. In fact, any non-empty reduced word ω ∈ Γ

corresponds to a closed path of length lA(ω) in the Schreier graph of cosets

of Γ. But any closed path in Ω has length at least l, hence by the isomorphism

we have lA(ω) ≥ l.

5.2 The space of 4-regular graphs

For each n ≥ 2, let Fn be the set of 4−regular graphs on n vertices. We

will de�ne on Fn a probability measure introduced by Bollobás.

We consider a set with 4n points, each point labeled with an integer

between 1 and n, each integer occurring four times. We then build a graph

at random by selecting pairs of points from the set, without replacement. If

at step i the numbers li and mi are selected, we add to the graph an edge

joining li and mi.

Now we recall the notion of the asymptotic Poisson distribution in a more

general situation.
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De�nition 17. (a) A random variable Z which takes values in the non

negative integers is a Poisson distribution with mean λ if

P(Z = k) =
λke−k

k!
,

where λ is the expected value of X.

(b) Let {Zn} be a family of random variables on the probability spaces

Pn. The {Zn} are asymptotic Poisson distributions as n→∞ if there

exists λ such that

lim
n→∞

P(Zn = k) =
λke−k

k!
,

for all k.

(c) The vectors (Zn,1, · · · , Zn,l) of random variables on the probability

spaces Pn are asymptotically independent Poisson distributions if, for

each i = 1, · · · , l, the random variables {Zn,i} tend to Poission distri-

bution Zi as n→∞, and if the variables Zi are independent, i.e.

P(Z1 = a1, Z2 = a2, · · · , Zl = al) = P(Z1 = a1) · · ·P(Zl = al).

We will need two results concerning this model. See [24, Chapter 9] for

the proofs.

Theorem 5.2.1. Consider for each i the random variable Xn,i on Fn given

by

Xn,i(G) = number of closed paths in G of length i.

Then for each l the vectors (Xn,1, · · · , Xn,l) are asymptotically independent

Poisson distributions with means

λi =
3i

2i
.

A Hamiltonian cycle is a circuit on a graph that visits each vertex exactly

once.

Theorem 5.2.2. Let Hn ⊂ Fn be the subset of 4-regular graphs on n vertices

containing a Hamiltonian cycle. Then

lim
n→∞

Pn(Hn) = 1,
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where Pn denotes the probability measure on Fn with respect to the Bollobás

model. Therefore, asymptotically almost surely the graphs on Fn are con-

nected.

Now we will introduce an operation on the space of all 4-regular graphs.

De�nition 18. Let G1, G2 be connected 4-regular graphs and let ei ∈ E(Gi)

be edges. We de�ne G1 ∗e1,e2 G2 as the graph obtained by cutting the edges

e1, e2 and adding a vertex v that attaches to the free ends of e1 and e2.

Remark 9. Note that G1 ∗e1,e2 G2 is a connected 4-regular graph on |G1| +
|G2|+ 1 vertices.

Proposition 5.2.3. Let G1, G2 be connected 4-regular graphs. Let gi be the

girth of Gi. There exist edges ei ∈ E(Gi) such that

girth(G1 ∗e1,e2 G2) = min{g1, g2}.

Proof. We can choose a minimal circuit Ci in each Gi and take an edge ei in

the complement of Ci for i = 1, 2. Consider now a circuit C ⊂ G1 ∗e1,e2 G2.

If C ⊂ Gi\ei for some i = 1, 2, then l(C) ≥ min{g1, g2}.
Otherwise assume that C passes through v. We can suppose that C passes

through v once. In this case we can decompose C = (v, x)∪L∪ (y, v) where

x, y are the vertices of some ei and L is a path in the corresponding Gi\ei
joining x and y. Note that the length of L is at least min{g1 − 1, g2 − 1},
since otherwise L ∪ ei would contain a circuit of length at most gi − 1 in Gi.

Hence we have l(C) ≥ min{g1 − 1, g2 − 1}+ 2 ≥ min{g1, g2}.

Remark 10. In view of Proposition 5.2.3, from now on we will write

G1 ∗G2 := G1 ∗e1,e2 G2

for a suitable choice of edges such that girth(G1 ∗G2) = min{g1, g2}.

Let k ≥ 2 and g ≥ 3 be integers. A (k, g)-graph is a k-regular graph with

girth g. A (k, g)-cage is a (k, g)-graph of minimum number of vertices. We

denote by ν(k, g) the number of vertices of a (k, g)-cage.

We will need the following theorem, see [30, Thm. A] for the proof.
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Figure 5.1: Example of a (3, 5)-cage.

Theorem 5.2.4. Let k ≥ 2 and g ≥ 5 be integers, and let q denote the

smallest odd prime power for which k ≤ q. Then

ν(k, g) ≤ 2kq
3g
4
−a,

where a = 4, 11
4
, 7

2
, 13

4
for g ≡ 0, 1, 2, 3(mod 4), respectively.

Note that any 4-regular graph on n-vertices has girth at most C log(n) for

some constant C > 0 which does not depend on n. Conversely, the following

proposition is a coarse inverse of this upper bound.

Proposition 5.2.5. There exist a constant c > 0 and an index n0 ∈ N
such that for all n ≥ n0 and any 5 ≤ s ≤ c log(n) there exists a 4-regular,

connected graph Gn,s on n vertices with girth s.

Proof. By Theorem 5.2.4, for any s ≥ 5, there exists a 4-regular connected

graph Hs on ns vertices with girth s such that ns ≤ a5
3
4
s for some a > 0

which does not depend on s.

On the other hand, for any odd prime p there exists a 4-regular connected

graph Xp on p(p−1)(p+1) vertices with girth(Xp) ≥ b log(|Xp|+1) for some

b > 0 which does not depend on p (See [13, Appendix 4]).

Arguing as in [11, p.47], there exist positive integers K and n0 such that

every m ≥ n0 can be written as

m = m1 + · · ·+mk,

for some k ≤ K, mj being of the form p(p− 1)(p+ 1) + 1 and mj ≥ m
1
2k .
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Whenever s ≥ 5 satis�es a5
3
4
s < min{n

2
, n−n0} it follows that n−ns > n0

and n− ns > n
2
. Therefore, there are odd primes p1, · · · , pk such that

n− ns = m1 + · · ·+mk,

where mj = pj(pj − 1)(pj + 1) + 1, k ≤ K and mj ≥ (n− ns)
1
2k ≥

(n
2

) 1
2K
.

For any j = 1, · · · , k consider the corresponding graph Xpj and de�ne

Gn,s = Hs ∗ (Xp1 ∗ · · · ∗Xpk) .

Note that by induction |Gn,s| = |Hs|+
∑k

j=1 |Xpj |+ k = ns +
∑k

j=1mj = n.

Moreover, by Proposition 5.2.3 we have

girth(Gn,s) = min{s, girth(Xp1), · · · , girth(Xpk)}.

If we take c > 0 such that s ≤ c log(n) implies s ≤ b
2K

log(n
2
) and a5

3
4
s <

min{n
2
, n−n0}, then s ≤ b log(mj) ≤ girth(Xpj) for any 1 ≤ j ≤ k and hence

girth(Gn,s) = s.

Lemma 5.2.6. Let k, l be positive integers such that 3 ≤ k < l. Then for

all n su�ciently large, there exists a connected 4-regular graph on n vertices

with girth = k and 2-girth > l.

Proof. By Theorem 5.2.1, for a �xed p ≥ 3 the random variables {Xn,i}pi=3

are asymptotically independent Poisson random variables converging to the

vector (X1, · · · , Xp) with Xi having mean µi = 3i

2i
. This means that for any

list (m3, · · · ,mp) with mi ∈ Z≥0 we have

lim
n

Pn(Xn,3 = m3, · · · , Xn,p = mp) = e−(µ3+···+µp)

p∏
i=3

µmii
mi!

. (5.1)

Now if we �x k ≥ 3, let

Θn
k = {G ∈ Fn |Xn,k(G) > 0 andXn,j(G) = 0 if 3 ≤ j ≤ l, j 6= k}

be the set of 4-regular graphs on n vertices of girth k and 2−girth at least

l + 1. The measure of Θn
k satis�es:

Pn(Xn,3 = 0, · · · , Xn,k−1 = 0, Xn,k > 0, Xn,k+1 = 0, · · · , Xn,l = 0)
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=
∑
m≥1

Pn(Xn,3 = 0, · · · , Xn,k−1 = 0, Xn,k = m,Xn,k+1 = 0, · · · , Xn,l = 0)

By Fatou's Lemma we have

limn

(∑
m≥1

Pn(Xn,k = m,Xn,j = 0, j 6= k, j ≤ l

)
≥
∑
m≥1

(
lim
n

Pn(Xn,k = m,Xn,j = 0, j 6= k, j ≤ l

)
.

On the other hand, by (5.1)

lim
n

Pn(Xn,k = m,Xn,j = 0, j 6= k, 3 ≤ j ≤ l) = exp

(
−

l∑
i=3

µi

)
µmk
m!

Hence lim
n

Pn(Θn
k) ≥ exp

(
−

l∑
i=3

µi

)∑
m≥1

µmk
m!

> exp

(
−

l∑
i=3,i 6=k

µi

)
.

By Theorem 5.2.2 asymptotically almost surely the graphs in Fn are

connected. If we consider the subset of Θn
k where the graphs are connected,

then given k ≥ 3 for any n su�ciently large this subset has positive measure,

in particular, there exists a connected graph Gk ∈ Fn with girth(Gk) = k

and 2-girth(Gk) > l.

5.3 Quantitative fully residually freedom of Γ2.

A group G is n-residually free, n a �xed positive integer, if for any set

F = {f1, · · · , fn} ⊂ G of nontrivial elements there exists a normal subgroup

NF CG such that

G/NF is free and F ∩NF = ∅.

A group is said to be fully residually free if it is n-residually free for all

positive n.

The algebraic importance of residually freedom is that some algebraic

properties of free groups are still valid for residually free groups (see [3]).

Another application of the residually freedom is the study of counting prob-

lems of hyperbolic manifolds with bounded volume: in any dimension there

are hyperbolic manifolds of �nite volume with fundamental group residually

free (see [5] for more details).
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In this section we will use the notation of B. Baumslag and G. Baumslag

in [3] and [2], respectively. Given two elements h, f ∈ F2 we say that h reacts

with f if lA(hf) < lA(h) + lA(f). If h does not react with f we will write

h ∧ f.

The word u = [x, y] = xyx−1y−1 is reduced and cyclically reduced. Moreover,

if f ∈ F2 commutes with u, then f ∈ 〈u〉. This means that u generates its

own centralizer in F2 .

Lemma 5.3.1. Let m ≥ 3 be an integer and εq ∈ {±1}, q = 1, 2. Then for

any l > 1 and γ ∈ F2 \〈u〉 with lA(γ) ≤ l it holds

uε1ml γ uε2ml = uε1(m−2)l ∧ γ′ ∧ uε2(m−2)l

with γ′ 6= 1.

Proof. If γ contains the subword u±1 at the beginning we can write γ =

u±1 ∧ γ1, with a �nite number of steps we can write γ = ui1 ∧ γ̃ for some

i1 ∈ Z with |i1| ≤ l
4
. Similarly, γ̃ = γ̂ ∧ ui2 for some i2 ∈ Z with |i2| ≤ l

4
.

Hence, we can always write γ = ui1 ∧ γ̂ ∧ ui2 with |i1|+ |i2| ≤ l
4
.

Note that we have the equation

uε1mlγuε2ml = uε1(m−2)l ∧ uε12l+i1 γ̂ uε22l+i2 ∧ uε2(m−2)l.

Indeed, |i1| + |i2| ≤ l
4
and m ≥ 3 imply that εq(m − 2)l and 2εql + iq have

the same sign for q = 1, 2.

Finally, we have that γ′ = uε12l+i1 γ̂ uε22l+i2 6= 1. Otherwise, γ̂ ∈ 〈u〉 and
consequently γ ∈ 〈u〉.

We use the following notation:

sδt(a1)a2 . . . ap−1(ap)

will denote the four expressions obtained from a1a2 · · · ap by deleting or not

deleting a1 and ap independently.

Proposition 5.3.2. Let k be any given positive integer. Suppose that

γ1, γr+1 ∈ F2 , γ2 · · · , γr, η1, · · · , ηr ∈ F2 \〈u〉.
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Furthermore, suppose that
∑r+1

i=1 lA(γi) +
∑r

j=1 lA(ηj) ≤ k.

Then there exists a constant d > 0 which does not depend on k such that

sδt(γ1)udkη1u
−dkγ2u

dkη2u
−dk · · ·udkηru−dk(γr+1) 6= 1.

Proof. Consider the word

w = sδt(γ1)u7kη1u
−7kγ2u

7kη2u
−7k · · ·u7kηru

−7k(γr+1).

By Lemma 5.3.1 we have u7kηiu
−7k = u5k ∧ η′i ∧ u−5k with η′i 6= 1. Hence,

w = sδt(γ1)u5k ∧ η′1 ∧ u−5kγ2u
5k ∧ η′2 ∧ · · · ∧ u−5kγru

5k ∧ η′r ∧ u−5k(γr+1).

We can rewrite this word as

sδt(γ1)u5k ∧ η′1 ∧ u−2k
(
u−3kγ2u

3k
)
u2k ∧ · · · ∧ u−2k

(
u−3kγru

3k
)
u2k ∧ η′r ∧ u−5k(γr+1).

Using Lemma 5.3.1 once again we have u−3kγju
3k = u−k∧γ′j∧uk with γ′j 6= 1

for 2 ≤ j ≤ r. Hence we have

w = sδt(γ1)u5k ∧ η′1 ∧ u−3k ∧ γ′2 ∧ u3k ∧ η′2 ∧ u−3k ∧ · · · ∧ u−3k ∧ γ′r ∧ u3k ∧ η′r ∧ u−5k(γr+1).

If we write

w′ = u5k ∧ η′1 ∧ u−3k ∧ γ′2 ∧ u3k ∧ η′2 ∧ u−3k ∧ · · · ∧ u−3k ∧ γ′r ∧ u3k ∧ η′r ∧ u−5k,

it follows that

lA(w) ≥ lA(w′)− lA(γ1)− lA(γr+1) > 20k − 2k = 18k > 0.

Hence, if we take d = 7, then w is not trivial.

Let Γ2 be the fundamental group of an orientable compact surface of

genus 2. If we consider a new copy F′2 of F2 with the set of generators

A′ = {x′±1, y′±1} and let v = [y′, x′] ∈ F′2 it is well-known that

Γ2 is isomorphic to the quotient F2 ∗F′2 /〈〈u ∗ v−1〉〉,

where F2 ∗F′2 is the free product.
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It is known that Γ2 is residually free (see [2, Theorem 8]). We will need

a re�nement of this theorem, in fact we will give a proof based on the proof

of Baumslag but using geometry of Γ2 and F2.

Considering the natural monomorphisms ι : F2 → Γ2 and ι′ : F′2 → Γ2,

we can identify F2,F
′
2 as subgroups of Γ2. With this identi�cation in mind,

we can take B = A∪A′ as a set of generators of Γ2 and let lB(τ) denote the

length of any element τ ∈ Γ2 with respect to B.

Proposition 5.3.3. There exists a constant ε > 0 such that for every pos-

itive integer k there exists an epimorphism ψk : Γ2 → F2 with the following

properties:

1. ψk(ι(t)) = t for every t ∈ F2;

2. ψk(γ) 6= 1 if 1 < lB(γ) ≤ k;

3. lA(ψk(ω)) ≤ εklB(ω) for all ω ∈ Γ2.

Proof. Fixed a positive integer l we de�ne the map ρl : F′2 → F2 given by

ρl(x
′) = ulyu−l and ρl(y′) = ulxu−l. Since ι(u) = u = ρl(v) it follows that the

map φ̃l : F2 ∗F′2 → F2 given by ι and ρl descends to the quotient and de�nes

a homomorphism φl : Γ2 → F2 . By the construction φl(ι(t)) = ι(t) = t for

any l and any t ∈ F2.

Let γ ∈ Γ2 be a non trivial element with lB(γ) ≤ k. Now let d be the

constant given by Proposition 5.3.2, take l = dk and de�ne ψk = φl = φdk. If

γ /∈ F2, then writing γ as a reduced word we have

γ = γ1 ∗ η′1 ∗ γ2 ∗ · · · ∗ η′r ∗ γr+1,

where γi ∈ F2 and ηj ∈ F′2 are non-trivial with the possible exception of γ1

and γr+1. Since we have u = v in Γ2, we can suppose that η′j /∈ 〈v〉 and
γi /∈ 〈u〉 for 2 ≤ i ≤ r.

Hence

ψk(γ) = γ1u
dkη1u

−dkγ2u
dkη2u

−dk · · ·udkηru−dkγr+1.

where ηj is the word η′j with x
′ replaced by y and y′ replaced by x. Note that

ηj 6= 1 if and only if η′j 6= 1. Furthermore, η′j ∈ 〈v〉 if and only if ηj ∈ 〈u〉.

73



We also have∑
i

lA(γi) +
∑
j

lA(ηj) =
∑
i

lA(γi) +
∑
j

lA′(η
′
j) = lB(γ) ≤ k.

Therefore, we can apply Proposition 5.3.2 to conclude that ψk(γ) 6= 1 if

1 < lB(γ) ≤ k. Now for any b ∈ B we have

lA(φk(b)) ≤ 1 + 8dk ≤ 9dk,

and hence if we take ε = 9d, we have

lA(ψk(ω)) ≤ max
b∈B
{lA(ψk(b))}lB(ω) ≤ εklB(ω).
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CHAPTER 6

CONSTRUCTING NEW SEQUENCES OF CLOSED

HYPERBOLIC SURFACES WITH LOGARITHMIC

GROWTH OF THE SYSTOLE

In this chapter we will generalize a construction of sequences of closed

hyperbolic surfaces with systole growing logarithmically in terms of the area.

While the well known construction applies only for arithmetic surfaces, our

generalization covers a much wider semi-arithmetic class.

Theorem 6.0.1. Let S be a closed semi-arithmetic hyperbolic surface admit-

ting an r-modular embedding. Then S has a sequence of coverings Si → S

with area(Si)→∞ and

sys(Si) ≥
4

3r
log(area(Si))− c,

where c > 0 is a constant which does not depend on i.

Remark 11. When S is arithmetic we have r = 1 and the bound in Theorem

6.0.1 reduces to the previously known results.

6.1 Some history

In the early 70′s, the connection between Number Theory and Hyper-

bolic Geometry developed by Selberg raised a new chapter with the paper
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�Selberg's trace formula as applied to a compact Riemann surface� ([36]) of

McKean, which stated wrongly that the spectral gap of any closed hyperbolic

surface is at least 1
4
.

Two years after this paper, Randol ([42]) gave the �rst counterexample

for this claim. In fact, Randol showed that for any su�ciently large inte-

ger N there exists a hyperbolic surface with N small eigenvalues (counted

with multiplicity) for the Laplace-Beltrami operator on the surface, where a

eigenvalue is called small if it is smaller than 1
4
.

Consider the function

EvS(x) = number of eigenvalues smaller than x for the surface S.

After the work of Randol, the study of EvS on a neighborhood of 1
4
was of

growing interest due to its importance for the Selberg's zeta function of the

surface.

Although Randol had showed that EvS(1
4
) can be large, Huber showed in

[22] that if we �x a genus, the ratio
EvS(1

4
)

EvS(1
4

+ ε)
is very close to 0 whenever

the systole of S is su�ciently large for any ε > 0.

This tells us that although the surface may have small eigenvalues, for

any ε > 0 if the systole of S is su�ciently large in terms of ε, the eigenvalues

in [0, 1
4

+ ε) concentrate in [1
4
, 1

4
+ ε).

At that time there were no known examples of surfaces with su�ciently

large systole. In [22] , Huber constructed cocompact Fuchsian subgroups

of PSL(2,Q(
√
p)), for some prime p, and he showed that such groups give

surfaces with large systole.

In the subsequent search for closed hyperbolic surfaces with large systole,

in [9] Peter Buser constructed hyperbolic surfaces using pairs of pants with

large geodesics in the boundary and the gluing of pants performed by special

cubic graphs. The combinatorics of such graphs give surfaces of large systole.

In fact, the surfaces obtained by Buser in his paper give closed surfaces of

any genus g and systole at least
√

2 log(g).

Recall that sys(S) ≤ 2 log(g) + A for some constant A > 0 independent

of the genus of g. The work of Buser left open a new question about the

geometry of closed surfaces, which became independent of the problem of
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small eigenvalues. The question was the following: Are there hyperbolic

surfaces with arbitrarily large genus and systole of the order of log(g)?

In their study of the Schottky problem of describing the locus of the

Jacobian of Riemann surfaces in the space of principally polarized abelian

varieties, Buser and Sarnak showed in [11] that for all su�ciently large g,

there exists a closed hyperbolic surface with systole at least d log(g) for some

universal constant d > 0. In the proof of this result they constructed arith-

metic hyperbolic surfaces de�ned overQ and took congruence coverings. This

result solved the question above and it gave rise to a new question.

The sequence of coverings that Buser and Sarnak constructed give sur-

faces Si with area(Si)→∞ and

sys(Si) ≥
4

3
log(area(Si))− c,

where the constant c depends only on the arithmetic setup of the construction

and does not depend on i. The constant 4
3
was a novelty in this problem and

raised the question: is 4
3
the sharp constant for the problem of large systole?

In 2007 Katz, Schaps and Vishne generalized in [29] the construction of

Buser and Sarnak for any arithmetic hyperbolic surface, and also for arith-

metic hyperbolic 3-manifolds. A partial answer for this last question was

given by Makisumi in [35]. He showed that for the surfaces constructed by

Buser and Sarnak and by Katz, Schaps and Vishne the biggest constant that

can occur is 4
3
. For surfaces in general this is still an open problem.

Our contribution to this problem is to generalize the construction of a

sequence of closed hyperbolic surfaces with systole growing logarithmically

with an explicit constant to a more general class of surfaces (see Remark 4).

On the other hand, the constant is worse when the surface is not arithmetic,

what was expected (see [45], [43]).

6.2 Proof of the Theorem

We will now construct the new sequences of closed hyperbolic surfaces

with logarithmic growth of sytole. We use the same ideas of the papers

[11] and [29]. More recently, Murillo ([38],[39]) gave generalizations of these
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constructions to high dimensional hyperbolic spaces and other symmetric

spaces.

From now on, S = Γ\H will denote a closed semi-arithmetic surface

admitting modular embedding, i.e there exist a quaternion algebra D over

a totally real number �eld k of degree n with exactly r Galois embeddings

φ1, φ2, · · · , φr : k → R with φj(tr(Γ̃)2) * [−2, 2], a maximal order O of D,

an embedding ψ : Γ(D,O) → SL(2,R) such that Γ̃ < ψ(Γ(D,O)) and r

holomorphic maps Fj : H→ H such that

Fj(γ
φj · z) = γφj · F (z) for all z ∈ H, γ ∈ Γ̃ and j = 1, · · · , r.

Consider the family of congruence coverings {Sa} of S where a runs over

the ideals of Rk.

The relation between closed geodesic on a hyperbolic surface and trace of

hyperbolic elements in the Fuchsian group is given by the formula (2.2):

| tr(α)| = 2 cosh

(
l(α)

2

)
. (6.1)

Here α means at the same time a hyperbolic element of Γ and the corre-

sponding closed geodesic induced on the surface S. Thus, if we want to give

a lower bound for the systole of Sa, it is equivalent to giving a lower bound

for the trace of any nontrivial element of Γ(a). In fact, we have the following

proposition.

Proposition 6.2.1. Let S = Γ\H be a closed semi-arithmetic surface admit-

ting an r-modular embedding. Consider the sequence of congruence subgroups

Γ(a) E Γ. There exists a constant c2 > 0 which does not depend on a such

that for any nontrivial γ ∈ Γ(a) we have the inequality | tr(γ)| > c2 N(a)
2
r .

Proof. Note that for any x ∈ O, the submodule Rk[x] ⊂ O is �nitely gener-

ated. Moreover, by de�nition of tr(x) and rn(x) we have

x2 − tr(x)x+ rn(x) = 0,

which implies that Rk[tr(x), rn(x)] is a �nite extension of Rk. Since Rk is

integrally closed in k, it follows that tr(x), rn(x) ∈ Rk for any x ∈ O. Thus,
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any order is closed with respect to conjugations, since x̄ = tr(x) − x and

Rk ⊂ O.
If γ ∈ Γ̃(a), then up to taking the preimage by ψ we have

γ − 1 =
∑
i

xiwi with xi ∈ a and wi ∈ O.

Therefore,

det(γ − 1) = (
∑
i

xiwi)(
∑
i

xiw̄i) =
∑
i

x2
i det(wi) +

∑
i<j

xixj tr(wiw̄j) ∈ a2.

On the other hand det(γ− 1) = 2− tr(γ) ∈ a2. Since Γ(a) is torsion free, we

have tr(γ)− 2 6= 0 for any γ 6= 1 in Γ(a). Hence,

N((tr(γ)− 2)Rk) ≥ N(a2).

For j = r + 1, . . . , n we have | tr(φj(γ))| ≤ 2 for all γ ∈ Γ. Thus

N(a2) ≤ N((tr(γ)− 2)Rk) =
n∏
i=1

|φi(tr(γ)− 2)|

≤
r∏
i=1

2 max{2, |φ(tr(γ))|)}
n∏

j=r+1

2 max{2, |φj(tr(γ))|)}

≤ 2n
r∏
i=1

|φi(tr(γ))|2n−r

< 22n−r| tr(γ))|r.

Where in the last inequality we are using Proposition 3.3.1. The constant

c2 = 1
22n−r

does not depend on a and the proof �nishes.

Now we conclude the chapter with the proof of Theorem 6.0.1.

Proof of Theorem 6.0.1. Consider the sequence of ideals a of Rk and the

corresponding sequence of coverings Sa. If S has area area(S) and da denotes

the degree of the covering, then area(Sa) = da area(S). By Proposition 6.2.1

and Equation (6.1) we have

sys(Sa) ≥ inf
γ∈Γa\{1}

2 cosh−1

(
c2 N(a)

2
r

2

)
.
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We consider now the in�nite family of ideals a ⊂ Rk such that c2 N(a)
2
r >

2. With this assumption we can use the inequality

cosh−1(t) = log(t+
√
t2 − 1) ≥ log(t) for any t ≥ 1

to show that

sys(Sa) ≥ 2 log

(
c2 N(a)

2
r

2

)
≥ 4

r
log(N(a)) + 2 log

(c2

2

)
. (6.2)

It follows from (6.2) that sys(Sa) goes to in�nity when N(a) goes to in-

�nity. Therefore area(Sa) goes to in�nity when N(a) goes to in�nity. Indeed,

recall that sys(M) . log(area(M)) for any closed hyperbolic surface M .

By Proposition 3.4.2, we have

N(a) ≥ 3

√
da
C

= 3

√
area(Sa)

c1 area(S)
.

Therefore,

sys(Sa) ≥
4

3r
log(area(Sa))−

(
4

3r
log(area(S))−

(c2

2

))
.
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CHAPTER 7

DISTRIBUTION OF ARITHMETIC POINTS AND

ITS SYSTOLES

7.1 Coarse density of arithmetic points

Let ASg ⊂ Mg be the set of arithmetic compact hyperbolic surfaces of

genus g. In [8] Borel showed that for any g ≥ 2 the set ASg is �nite. Denote
| ASg | the cardinality of ASg. In [5] the authors investigated the asymptotic

growth of these cardinalities. In fact, we have the following theorem (see [5,

Corollary 1.4]).

Theorem 7.1.1.

lim
g→∞

log(| ASg |)
g log(g)

= 2.

On the other hand we recall the asymptotic growth of the volume of the

moduli spaces with respect to the Weil-Petersson metric (see Section 4.3) .

Theorem 7.1.2.

lim
g→∞

log volwp(Mg)

g log g
= 2.

If we compare Theorem 7.1.1 with Theorem 7.1.2, then a natural question

arises:

Are there constants ε, δ > 0 such that for any closed hyperbolic surface S

of genus g and systole at least ε we can �nd an arithmetic closed hyperbolic

surface A of genus g with dwp(X,A) ≤ δ?
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An a�rmative answer to this question would imply that the arithmetic

hyperbolic surfaces are uniformly well distributed. In contrast we have the

following theorem.

Theorem 7.1.3. For any δ, ε > 0 there exists g0 = g0(δ, ε) ≥ 2 such that for

every g ≥ g0,

Mg
≥ε *

⋃
A∈ASg

Bwp(A, δ).

Proof. Suppose the contrary. Then there exist δ, ε > 0 and a function π :

M≥ε
g → ASg such that for any X ∈ Mg,ε we have d(X, π(X)) ≤ δ. Thus in

this case we can write for any g,

M≥ε
g ⊂

⋃
A∈π(M≥εg )

Bwp(A, δ).

By Theorem 4.3.4, the function
√

sys is K-Lipschitz for some K > 0

with respect to the Weil-Petersson metric for any g. We can suppose that

ε ≥ (3Kδ)2 since

ε′ > ε⇒M≥ε′
g ⊂M≥ε

g .

Therefore, if A ∈ π(M≥ε
g ), then√

sys(A) ≥
√

sys(X)− |
√

sys(X)−
√

sys(A)| ≥ 2Kδ.

By the same argument we can show that

Bwp(A, δ) ⊂M≥(Kδ)2

g for any A ∈ π(M≥ε
g ).

We can now use the argument applied by Yunhui Wu in the proof of

Theorem 1.5 in [55].

By Teo's curvature bound (Theorem 4.3.5), there exists a constant C =

C(K, δ) > 0 such that the Ricci curvature in Bwp(A, δ) is bounded from

below by −C.
We know that the set M≥(Kδ)2

g is compact. If we apply the Bishop-

Gromov Comparison Theorem [19, 5.3.bis], we can �nd a constant C ′ =

C ′(δ) > 0 such that

volwp(Bwp(A, δ)) ≤ C ′ vol(S6g−7)(
√
r)7−6g

∫ δ

0

sinh(
√
rt)6g−7dt,
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where r = C
6g−6

.

Now we can use the relations

Γ(3g − 3) = (3g − 4)! ∼
√
π(6g − 8)(3g − 4)3g−4e4−3g,

where Γ is the Gamma function, and

vol(S6g−7) =
2π3g−3

Γ(3g − 3)
, sinh(

√
rt) ≤ Dt

√
g

for all 0 ≤ t ≤ δ

for some constant D = D(δ). These facts together give us

volwp(Bwp(A, δ)) ≤
(C ′′)g

g3g
,

for some constant C ′′ independent of g.

It follows from Theorem 7.1.1 that if g is su�ciently large, then

|π(M≥ε
g )| ≤ |ASg | ≤ g

5
2
g.

Hence

volwp(M≥ε
g ) ≤

∑
A∈π(M≥εg )

volwp(Bwp(A, δ)) ≤
g

5
2
g(C ′′)g

g3g
.

Thus volwp(M≥ε
g ) goes to 0 when g goes to in�nity.

We have a contradiction with Corollary 4.3.8 and therefore the theorem

follows.

7.2 Distribution of systoles

Let (X, d) be a metric space. Let A ⊂ X be a compact subset and r > 0.

The r-covering number ηX(A, r) is the minimal number of balls inX of radius

r needed to cover A in X. By Theorem 7.1.3 we cannot coverMg
≥ε by balls

centered on ASg for any radius uniformly with respect to the Weil-Petersson

metric. If we consider the Teichmuller metric onMg, we have the following

theorem [16, Theorem 1.2].

Theorem 7.2.1. If ε > 0 and r > 0, then

lim
g→∞

log(ηMg(Mg
≥ε, r))

g log(g)
= 2.
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We can also ask about the distribution of arithmetic points in the thick-

part of moduli space with respect to Teichmuller metric. Since the Teich-

muller metric is not Riemmanian, this question seems more di�cult.

However, in some sense we can prove that the set of systoles of closed

arithmetic surfaces is well distributed.

We will need to introduce some notation. Let Y be a set and f, g : Y → R
be functions. We say that f � g if there exists a universal positive constant

R > 0 such that f(y) ≤ Rg(y) for all y ∈ Y . If the constant R depends

only on a set of parameters Λ we write f �Λ g. When f � g and g � f

(respectively, f �Λ g and g �Λ f) we write f � g (respectively, f �Λ g).

Recall that for any sequence (Xg) ∈
∏

g≥2Mg
≥ε, the sequence (sys(Xg))

satis�es log(ε) ≤ log(sys(Xg)) ≤ log(log(g)) + d for some d which does not

depend on g (see (2.3)). This motivates the following de�nition.

De�nition 19. A sequence (ag)g≥2 of positive numbers is called systolic

admissible if

A ≤ log(ag) ≤ log(log(g)) + d,

for some constant A.

Now we can state the main result of this thesis.

Theorem 7.2.2 (Main Theorem). Let S be a closed hyperbolic surface of

genus 2. For any systolic admissible sequence (ag)g≥2 with ag ≥ ε > 0, there

exists a sequence of coverings Sg → S with Sg ∈Mg such that

log(sys(Sg)) �S,ε log(ag).

Remark 12. In [44, Theorem 5.2], P. Schaller showed that the hyperbolic

surface of genus 2 which have the maximal systole inM2 is the Bolza surface

M . On the other hand, in [27, Corollary 10.4] it was shown that the Bolza

surface is an arithmetic hyperbolic surface derived from a quaternion algebra.

If we apply the Theorem 7.2.2 for M we conclude that the set of logarithms

of systoles of arithmetic surfaces has any admissible growth function.

Let S be a �xed orientable compact hyperbolic surface of genus 2. There

exists a monomorphism ρ : Γ2 → Isom+(H) such that S ' ρ(Γ2)\H. We will

denote γ · p := ρ(γ)(p) for any γ ∈ Γ2 and p ∈ H.
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By the Milnor-Schwarz Lemma, �xed a point p ∈ H there exist constants

q, β > 0 which depend only on the geometry of S and the set of generators

B of Γ2 such that

1

q
lB(γ)− β ≤ dist(p, γ · p) ≤ qlB(γ) + β (7.1)

for every γ ∈ Γ2, where dist is the hyperbolic distance in H.

Proof of Theorem 7.2.2. Let c, n0 be as in the Proposition 5.2.5 and take

g0 = n0 + 1. If we �x g ≥ g0, then we can take the graph Gng ,h with girth h

and ng = g − 1 vertices for any integer h with 5 ≤ h ≤ c log(g − 1).

We use now the Proposition 5.1.2 in order to get a subgroup Γh,ng < F2

of index ng such that

ah,ng = girth(Gng ,h) = min
γ∈Γh,ng\{1}

{lA(γ)}.

Consider the constant ε from Proposition 5.3.3. De�ne fh = b
√
ε−1hc and

take m′0 minimal such that h ≥ m′0 implies fh ≥ 1 for any h and n.

For each fh we take the homomorphism ψfh from Proposition 5.3.3.

If we �x h, de�ne the subgroup Λh,ng = ψ−1
fh

(Γh,ng) < Γ2. Since ψfh is

surjective, Λh,ng has index ng in Γ2 and therefore the natural projection

Sh,ng = ρ(Λh,ng)\H→ S is a covering of degree ng = g − 1. Hence Sh,ng is a

closed surface of genus g.

We need to estimate the systole of Sh,ng . By Proposition 5.3.3, ψfh(v) = v

for any v ∈ F2. Let γ0 ∈ Γh,ng be the element such that h = lA(γ0). Then

γ0 ∈ Λh,ng and lB(γ0) ≤ lA(γ0) = h, where A is the set of generators of Γ2 as

in Proposition 5.3.3. Hence, if we consider the closed geodesic induced by γ0

on Sh,ng of length l(γ0) we have,

sys(Sh,ng) ≤ l(γ0) = inf
z

dist(z, γ0 · z) ≤ dist(p, γ0 · p) ≤ qh+ β.

Let D(p) be the fundamental domain of Dirichlet centered in p for the

action of ρ(Γ2) on H. Then the length of the systole of Sh,ng can be evaluated

if we take a lifting of closed geodesic which realizes the systole with the initial

point in D(p), because the projection of this geodesic in S is a geodesic of the

same length. This means that there exist a point p0 ∈ D(p) and a non-trivial
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element ω ∈ Λh,ng such that dist(p0, ω · p0) = sys(Sh,ng). If δ is equal to the

diameter of S we have

sys(Sh,ng) ≥ dist(p, ω · p)− 2 dist(p, p0) ≥ 1

q
lB(ω)− β − 2δ.

Suppose that lB(ω) < fh, where B is the basis of F2. Then by Proposition

5.3.3 we have

ψfh(ω) ∈ Γh,ng and ψfh(ω) 6= 1.

It follows from the construction of Γh,ng and Proposition 5.3.3 again that

m′0 ≤ h ≤ lA(ψfh(ω)) ≤ εf 2
h < h.

This contradiction implies that lB(ω) ≥ fh ≥
√
ε−1h − 1. Hence, if we take

δ′ = 1
q

+ β + 2δ and q′ = ε−2q−1 we have

sys(Sh,ng) ≥ q′
√
h− δ′.

Now we can choose m′′0 minimal such that t ≥ m′′0 implies q′ − δ′√
t
> 0. If we

take m0 = max{m′0,m′′0}, then there exists a positive constant L1 such that

for any h ∈ N with m0 ≤ h ≤ c log(g − 1) we have for all g ≥ n0,

1

L1

√
h ≤ q′

√
h− δ′ ≤ sys(Sh,ng) ≤ qh+ β ≤ L1h. (7.2)

Take a systolic admissible sequence (ag)g≥2 with ag ≥ ε. For each g ≥ g0

consider the smallest integer h(g) ∈ [m0, c log(g − 1)].

Since ε ≤ ag ≤ ed log(g) for all g ≥ g0 + 1 and m0 ≤ h(g) ≤ c log(g − 1),

by de�nition of h(g) there exists a constant L2 > 0 such that

1

L2

≤ h(g)

sys(Xg)
≤ L2.

Therefore, by (7.2) the surface Sg := Sh(g),ng satis�es

1

L1L2

√
ag ≤ sys(Sg) ≤ L1L2ag,

whenever g ≥ g0. For g = 2, . . . , g0 − 1 we take a covering Sg of S of degree

g − 1 with sys(Sg) = sys(S) = s. There exists a constant L3 > 0 which

depends only on ε and S such that

1

L3

≤ s

ag
≤ L3, for each g = 2, . . . , g0 − 1.
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To conclude the proof we take logarithms in these inequalities and a positive

constant R su�ciently large in terms of L1, L2, L3 such that

1

R
log(ag) ≤ log(sys(Sg)) ≤ R log(ag),

for all g ≥ 2.

Corollary 7.2.3. Let S be a compact hyperbolic surface of genus 2. Then S

admits a sequence of �nite covering Sg → S, where g = genus of Sg and

sys(Sg) ≥ C
√

log(g).

For some constant C which depends on S.

Of course, better bounds are known for some sequences of surfaces as in

Chapter 6, but our estimate applies to any initial surface S of genus 2 and

does not use arithmeticity or semi-arithmeticity.

The following theorem gives information about the sequence of systoles

which has in�nite multiplicity.

Theorem 7.2.4. Let S be a compact hyperbolic surface of genus 2 and let

L′(S) = {a1 < a2 < · · · } be the pure length spectrum of S, i.e. is the length

spectrum without multiplicities and in ascending order. Then there exists

a subsequence (air)r≥1 such that for any r, there exists a sequence of �nite

coverings Sm,r → S with degree dm →∞ and sys(Sm,r) = air .

Proof. Let pk := dεk2e. We can apply Lemma 5.2.6 for l = pk, thus there

exists a connected graph Gk ∈ Fn with girth(Gk) = k and 2 − girth(Gk) >

pk. Now we use Proposition 5.1.2 to exhibit for any large n a subgroup

Γn < F2 of index n such that Gn is isomorphic to the Schreier graph of Γn,

k = min{lA(w)|w ∈ Γn, w 6= 1} and min{lA(w)|w ∈ Γn, lA(w) > k} > pk.

Now consider the homomorphism ψk given by Proposition 5.3.3 and the

sequence of subgroups Λn = ψ−1
k (Γn). We can suppose that S = ρ(Γ2)\H

satis�es (7.1). We have a sequence of coverings Sn = ρ(Λn)\H→ S of degree

n→∞ with sys(Sn) = l(λn) = ain , since the systole of Sn is the length of a

closed geodesic in S. For any λ ∈ Λn with λ 6= 1 we have lB(λ) ≥ k. Indeed,
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suppose the contrary, i.e. that there exists ω ∈ Λn, ω 6= 1 and lB(ω) < k.

Then ω /∈ F2 and by the proof of Proposition 5.3.3 we have lA(ψk(ω)) > k.

Hence lA(ψk(ω)) > pk ≥ εk2, and by Proposition 5.3.3 again we have

εk2 < lA(ψk(ω)) ≤ εklB(ω)

which gives us the desired contradiction. Hence, for any k if we argue as in

the proof of Theorem 7.2.2, we have

q′k − δ′ = xk ≤ sys(Sn) = ain ≤ yk = qk + β

for any n su�ciently large.

Since the sequence ain is contained in the compact interval [xk, yk] and

the set L(S) is discrete, we have then ain = atk for in�nitely many values

of n for some tk ∈ N. Note that if we vary k then the set {tk} cannot be
bounded, since it is possible to take a sequence of k′js with kj → ∞ and

[xku , yku ] ∩ [xkv , ykv ] = ∅ whenever u 6= v.

To �nish the proof, we take ir := tkr . We showed above that for any r ≥ 1

there exists a subsequence of �nite coverings of S with constant systole air
and unbounded degree.

We will �nish this section by giving a special subset of the real line formed

by systoles of arithmetic hyperbolic surfaces.

Let X be a non-empty set. We denote by Perm(X) the group of permu-

tations of X. Given f ∈ Perm(X), we denote supp(f) = {x ∈ X|f(x) 6= x}.
Let a < b be positive integers, we will use the notation [a, b] for the set

{a, a+ 1, . . . , b}.

Lemma 7.2.5. Let k,m be positive integers, l0 = 0, n0 = k, τ0 = idN and

σ0 = (1, 2, . . . , k) the cyclic permutation in Perm(N). Then for every r ≥ 1

there exist integers nr > lr > nr−1 and permutations σr, τr ∈ Perm(N) such

that supp(σr) = [nr−1 + 1, nr], supp(τr) = [lr−1 + 1, lr], and for any non-zero

integer l with |l| ≤ m we have:

x ∈ supp(σr−1)⇒ τ lr(x) ∈ supp(σr), (7.3)

x ∈ supp(τr)\ supp(σr−1)⇒ σlr(x) ∈ supp(σr)\ supp(τr). (7.4)
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Moreover, we have the following relations for r ≥ 0:

lr+1 =lr + (2m+ 1)(nr − lr), (7.5)

nr+1 =nr + (2m+ 1)(2m)(nr − lr). (7.6)

Proof. We will make induction on r.

For r = 1 we de�ne l1 = (2m + 1)k, n1 = l1 + 4m2k and τ1 ∈ Sl1 as

follows. If we identify

{1, · · · , (2m+ 1)k} ≈ {0, · · · , 2m} × {1, · · · , k}

by (i, j) 7→ ik + j, then we de�ne τ1(0, j) = (1, j), τ1(2m − 1, j) = (2m, j),

τ1(2a − 1, j) = (2a + 1, j) if 1 ≤ a ≤ m − 1, and τ1(2b, j) = (2(b − 1), j)

if 1 ≤ b ≤ m. Note that supp(τ0) = ∅ and by the construction we have

supp(σ0) ⊂ supp(τ1).

Now we de�ne σ1 : [k + 1, n1]→ [k + 1, n1] as follows. Again we make an

identi�cation

{k + 1, · · · , n1} ≈ {0, · · · , 2m} × {1, · · · , 2mk}.

given by (i, j) 7→ k + i(2mk) + j. In this case we de�ne σ1 by the same

formulae of τ1 as above. Note that for any t ∈ [1, k] we have
⋃

1≤|l|≤m τ
l
1(t) ⊂

{k + 1, · · · , (2m + 1)k}. This implies (7.3) for r = 1. On the other hand, if

x ∈ [k + 1, l1], then σl1(x) > l1 for any 1 < |l| ≤ m and therefore σl1(x) ∈
supp(σ1)\ supp(τ1) which prove the lemma for r = 1.

Suppose we have de�ned σ1, τ1, · · · , σr, τr with supp(σi) = [ni−1 + 1, ni],

supp(τi) = [li−1+1, li], satisfying (7.3) and (7.4), and ni > li > ni−1 satisfying

(7.5) and (7.6) for any 1 ≤ i ≤ r. We can take lr+1 = lr + (2m+ 1)(nr − lr)
which also can be rewritten as lr+1 = nr + 2m(nr − lr). In this case we make

the identi�cation

{lr + 1, · · · , lr+1} ≈ {0, · · · , 2m} × {1, · · · , (nr − lr)}

given by (i, j) 7→ lr + i(nr − lr) + j. Now we de�ne τr+1 on this set by the

same formulae as above.

Now we take nr+1 = nr + (2m + 1)(2m)(nr − lr) and we de�ne σr+1 for

{nr + 1, · · · , nr+1} making the identi�cation

[nr + 1, nr+1] ≈ [0, 2m]× [1, (2m)(nr − lr)]
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given by (i, j) 7→ nr + i(2m)(nr − lr) + j, and let σr+1 be given by the same

set of formulae as in the �rst case.

Note that nr+1 > lr+1 > nr and by the construction lr+1 and nr+1

satisfy (7.5) and (7.6). To �nish the proof we need to check (7.3) and

(7.4) for σr+1 and τr+1. We �x a non-zero integer l with |l| ≤ m. If

x ∈ supp(σr), then nr < τ lr+1(x) ≤ lr + (2m + 1)(nr − lr) = lr+1 < nr+1

and therefore τ lr+1(x) ∈ supp(σr+1) which shows (7.3). To show (7.4) we

take x ∈ [nr + 1, lr+1] = supp(τr+1)\ supp(σr) and see that by the de�nition

σlr+1(x) ∈ [lr+1 + 1, nr+1] = supp(σr+1)\ supp(τr+1).

Theorem 7.2.6. Let M be the Bolza surface, i.e. the arithmetic surface

of genus 2 of maximal systole in M2 mentioned in Remark 12, and let s =

sys(M) = 2 cosh−1(1+
√

2). Then for any k ∈ N there exists a �nite covering

Mk →M with sys(Mk) = ks and degree ≤ (uk)vk
2
for some positive constants

u, v.

Proof. Let α ⊂M be a systole ofM . SinceM is maximal, by [44, Propostion

2.6] the curve α is non-separating. We can suppose that the monomorphism

ρ : S2 → Isom+(H) such that M ' ρ(S2)\H satis�es: ρ(x) represents α and

p ∈ H is projected on a point of α.

Now we take a = dq(ks + β + 2δ)e and b = dεa2e, where ε is as in

Proposition 5.3.3, q, β are as in (7.1), and s, δ are the systole and diameter

respectively of M.

By Lemma 7.2.5, if we choose m = r = b, we have two permutations

σ = σ0 · σ1 · · ·σb and τ = τ1 · τ2 · · · τb in SNk where Nk := nb. Note that since

i 6= j implies supp(σi) ∩ supp(σj) = ∅, these permutations commute. The

same holds for τ ′is.

If we take the homomorphism ξ : F2 → SNk given by ξ(x) = σ and

ξ(y) = τ, then the subgroup Hk < F2 de�ned by Hk = {w ∈ F2 |ξ(w) ·1 = 1}
has index ≤ Nk (by the proof of Lemma 7.2.5 we have in fact an equality).

Besides, if w ∈ Hk\ 〈x〉 with lA(w) ≤ b, then w = xi1yj1 · · · yjtxit+1 with

jp, ip′ 6= 0 for any 1 ≤ p ≤ t, 2 ≤ p′ ≤ t and 2t−1 ≤
∑t

p=1(|ip|+|jp|)+|it+1| ≤
b. In particular: t, |ip|, |jp′| ≤ b.

On the other hand, ξ(w)(1) = σi1τ j1 · · · τ jtσit+1(1). If we use (7.3), (7.4),

the commutativity of σ′is and τ
′
is, and the fact that supp(σr−1)\ supp(τr−1) ⊂
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supp(τr) successively for r = 0, 1, · · · , t, we conclude that ξ(w)(1) > k.

Therefore,

min{lA(w)|w ∈ Hk and w /∈ 〈x〉} > b. (7.7)

Now we will apply Proposition 5.3.3. We take the homomorphism ψa : S2 →
F2 and de�ne the group Gk = ψ−1

a (Hk). Let Mk = ρ(Gk)\H be the covering

of M . Since xk ∈ Gk and ρ(x) represents the systole of Mk, we have

sys(Mk) ≤ ks.

Now let γ ⊂Mk be a closed geodesic γ of length l(γ). If we repeat the same

argument of the proof of Theorem 7.2.2, there exists a non-trivial element

γ ∈ Gk representing this geodesic such that

l(γ) ≥ 1

q
lB(γ)− β − 2δ. (7.8)

If γ is not a power of x, then lB(γ) > a. Indeed, if lB(γ) ≤ a, then part 2

of Proposition 5.3.3 and the proof of Proposition 5.3.2 show that ψa(γ) 6= 1

and ψa(γ) /∈ 〈x〉 if γ /∈ 〈x〉. Hence, using the estimate (7.7) and part 3 of

Proposition 5.3.3, we have

εa2 ≤ b < lA(ψk(γ)) ≤ εalB(γ) ≤ εa2,

which gives a contradiction. Since lB(γ) > a ≥ q(ks + β + 2δ) by (7.8) we

have l(γ) > ks. Note that the minimal power of x belonging to Hk is k, the

element xk represents the systole of Mk and sys(Mk) = ks.

To �nish the proof we need to estimate the degree Nk of the covering.

If we subtract (7.5) from (7.6) in Lemma 7.2.5 we have that ni − li is a

geometric progression with ratio t = 4b2 where b = m and the initial term is

n0 − l0 = k. Therefore, ni − li = ti(n0 − l0) = (4b2)ik. This implies by (7.6)

that Nk = nb = nb−1+(2b+1)(2b)(4b2)b−1k = nb−2+((4b2)b−2+(4b2)b−1)(2b+

1)(2b)k = · · · = n0 + (1 + (4b2) + (4b2)2 + · · ·+ (4b2)b−1)(2b+ 1)(2b)k. Hence

Nk =

(
1 +

(4b2)b − 1

4b− 1
(2b+ 1)(2b)

)
k.

Since a ≤ Ak for some constant A > 0 there exists a constant B > 0 such

that b ≤ Bk2 for any k ≥ 1. Therefore, there exist constants u, v > 0 such

that Nk ≤ (uk)vk
2
.
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7.3 Quantitative lower bound for the Ehren-

preis conjecture

Let S1, S2 be closed hyperbolic surfaces. If S1 and S2 are commensurable

then there exists a common covering S for both. Although for a generic

pair of closed hyperbolic surfaces they will not be commensurable, Leon

Ehrenpreis conjectured that for a given δ > 0 one can �nd coverings S ′1 → S1

and S ′2 → S2 with

S ′1, S
′
2 ∈Mg and dT (S ′1, S

′
2) ≤ δ.

This conjecture remained open for 40 years and it was solved by Jeremy

Khan and Vladimir Markovic in [25]. The natural question which arises is

the following: If we �x S1 and S2 how small g can be in terms of δ?

De�nition 20. Let S1, S2 be incommensurable, closed hyperbolic surfaces

and let δ > 0. We de�ne g[S1, S2](δ) as the minimal genus g such that there

exist coverings S ′1 → S1 and S ′2 → S2 with S ′1, S
′
2 ∈Mg and dT (S ′1, S

′
2) ≤ δ.

In this section we will give the �rst lower bounds for g[S1, S2](δ) when S1

and S2 are closed hyperbolic surfaces of a very special type.

Theorem 7.3.1. Let S, S ′ be incommensurable arithmetic closed hyperbolic

surfaces derived from quaternions algebras over a �eld k . Then there exists

a constant C > 0 which depends only on k such that for any δ > 0 we have

g[S, S ′](δ) ≥ −C log(δ).

In order to prove Theorem 7.3.1 we need the following lemma.

Lemma 7.3.2. If Γ is an arithmetic Fuchsian group derived from a quater-

nion algebra over a number �eld k, then there exists a constant c > 0

which depends only on the �eld k, such that for any tr(γ), tr(γ′) ∈ Ok with

tr(γ) 6= tr(γ′) we have

| tr(γ)− tr(γ′)| > c.

Proof. This result is part of Lemma 2.1 in [33]. The idea of the proof is very

simple, we use the fact that if k is the �eld of de�nition of the quaternion
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algebra which gives Γ and φ is any nontrivial embedding of this �eld into C,
then for any trace t ∈ {tr(γ) | γ ∈ Γ} we have |φ(t)| ≤ 2. If tr(γ) 6= tr(γ′),

then

1 ≤ |Nk
Q(tr(γ)− tr(γ′))| ≤ | tr(γ)− tr(γ′)|(4)[k:Q]−1.

Theorem 7.3.1 follows directly from the following theorem.

Theorem 7.3.3. Let S = Γ\H be an arithmetic closed surface of genus g ≥ 2

derived from a quartenion algebra over a �eld k. Then there exists a constant

A > 0 independent of g such that if S ′ ∈ Mg is another arithmetic closed

surface derived from a quartenion algebra over k, we have

dT (S, S ′) ≥ exp(−Ag).

Proof. We �x S ∈ Mg with S = Γ\H and Γ derived from a quaternion

algebra over k. It is easy to see that there is a uniform lower bound s =

s(k) > 0 for the systoles of any arithmetic closed hyperbolic surface with

invariant trace �eld k (see [34, Section 12.2]).

Now we can apply Proposition 4.1.7 in order to get a pants decomposition

P = {γ1, . . . , γ3g−3} of S such that the curve system C = {γj, δj, ηj} with

j ∈ {1, . . . , 3g − 3} determines S completely and

l(γj), l(δj), l(ηj) ≤ Ag for all 1 ≤ j ≤ 3g − 3,

where A is a positive constant which depends on s.

Take X ∈ Mg arbitrarily and let ΓX ∈ Hg be the uniformizing group of

X. For any nontrivial closed curve β (here we are identifying a free homotopy

class with its representative in the fundamental group), let Tβ(X) ∈ ΓX be a

hyperbolic element such that its axis projects on the unique closed geodesic

in X homotopic to β. We know that Lβ(X) and tr(Tβ(X)) are related by

the equality:

tr(Tβ(X)) = 2 cosh

(
Lβ(X)

2

)
. (7.9)

Consider the constant c given by Lemma 7.3.2. We have

| tr(γ)− tr(γ′)| > c, (7.10)
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whenever tr(γ) 6= tr(γ′). De�ne

εg = sup{ε > 0 | ε sinh

(
Ag

2
+
ε

4

)
< c}. (7.11)

It follows from the de�nition of εg that there exist constants a′, ε0 > 0 which

depend only on A and c such that

exp(−a′g) ≤ εg ≤ ε0 for all g ≥ 2. (7.12)

Now we take the following neighborhood of S inMg,

V (S) = {X ∈Mg ; Lω(S)− εg
2
< Lω(X) < Lω(S) +

εg
2

for all ω ∈ C}.

Note that if X ∈ V (S), then for any ω ∈ C the mean value inequality applied

in (7.9) gives

| tr(Tω(X))− tr(Tω(S))| ≤

(
sup

Lω(S)− εg
2
< t < Lω(S) + εg

2

sinh(t/2)

)
εg ≤ c

The last inequality follows from the de�nition of εg, the assumption that

Lω(S) ≤ Ag for all ω ∈ C and the basic fact that sinh(x) is increasing.

We deduce from (7.10) and the fact that the length of curves in C deter-

mines the surface (see 4.1.7) that there does not exist X ∈ V (S)−{S} such
that X is an arithmetic closed hyperbolic surface derived from a quaternion

algebra over k.

Therefore, if we take another S ′ ∈Mg derived from a quaternion algebra

over k we have

dwp(S
′, S) ≥ d(S, ∂V (S)), (7.13)

where dwp means the distance with respect to the Weil-Petersson metric and

∂V (S) is the boundary of the neighborhood V (S) of S inMg.

Now take a point X0 ∈ ∂V (S) such that dwp(S,X0) = d(S, ∂V (S)). Note

that the existence of this point is guaranted by the compactness of the closure

of V (S).

There exists a curve ω0 ∈ C with |Lω0(X0)− Lω0(S)| = εg
2
. From now on

we will denote L := Lω0 .

Consider α : [0, δ]→Mg, a Weil-Petersson geodesic parametrized by the

arc length such that α(0) = X0, α(δ) = S, and δ = dwp(X0, S). The map
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t → L(α(t)) is a convex function since the length function is convex in the

Weil-Petersson metric by part (a) of Proposition 4.3.3.

Therefore,

L(α(t)) ≤ Ag +
εg
2

for all 0 ≤ t ≤ δ.

By part (b) of Proposition 4.3.3 and the upper bound (7.12) for εg we

have following estimate:

εg
2

= |L(S)− L(X0)| ≤
(

sup
0≤t≤δ

|∇L(α(t))|
)
δ ≤

√
c′((Ag + ε0

2
) + (Ag + ε0

2
)2 exp

(
2Ag+ε0

4

)
δ

Therefore,

dwp(X0, S) = δ ≥ εg
√
c′
√

((Ag+
ε0
2

)+(Ag+
ε0
2

)2 exp( 2Ag+ε0
2 )

.

Now if we apply the lower bound for εg in (7.12), we have

dwp(X0, S) ≥ exp(−A1g) (7.14)

for some constant A1 > 0 which depends only on A, a′, c, c′. Recall that c′

does not depend on g.

In our de�nition of the Teichmuller metric, the comparison theorem of

the distances given by the Teichmuller metric and the Weil-Petersson metric

gives (see [32])

dT (X, Y ) ≥ 2dwp(X, Y )√
4π(g − 1)

. (7.15)

for any pair X, Y ∈Mg.

To �nish the proof we apply (7.13), (7.14) and (7.15). We have a constant

B > 0 which depends only on k such that

dT (S, S ′) ≥ 2dwp(S,X0)√
4π(g − 1)

≥ 2 exp(−A1g)√
4π(g − 1)

≥ exp(−Bg)

for all g ≥ 2.
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APPENDIX A

BACKGROUND ASSUMED

In this appendix we will recall the main de�nitions and results which are

assumed in the text.

A.1 Riemannian Manifolds

De�nition 21. Let X be a topological space. An n-chart on X is a pair

{U, φ} where U ⊂ X is an open set and φ : U → φ(U) ⊂ Rn is a homeomor-

phism. An n-atlas on X is a collection A = {(Uα, φα)}α∈Λ of n-charts such

that

(i) X = ∪α∈ΛUα;

(ii) for any α, β ∈ Λ such that Uα∩Uβ 6= ∅ the map φα◦φ−1
β : φβ(Uα∩Uβ)→

φβ(Uα ∩ Uβ) is a di�eomorphism.

A smooth manifold of dimension n is a Hausdor�, second countable topolog-

ical space X, together with an n-atlas.

Let X be a smooth manifold of dimension n. For any x ∈ X and chart

(Uα, φα) with x ∈ Uα we can take a copy Rn
α of Rn. We de�ne the tangent

space TxX as the vector space given by the equivalence relation

vα ≡ wβ if and only if D(φα ◦ φ−1
β )(φβ(x)) · wβ = vα.
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De�nition 22. A Riemannian manifold is a smooth manifold X, equipped

with an inner product G(x) on each tangent space TxX such that for any

chart (U, φα) the map

y 7→ G(φ−1
α (y))(vα, vα)

is smooth.

For any smooth curve c : [a, b]→ X we de�ne the length of c to be

l(c) :=

∫ b

a

√
G(c′(t), c′(t))dt,

where c′(t) is the velocity of the curve c in the time t.

De�nition 23. Let X be a Riemannian manifold. We de�ne the distance of

two points p, q in X with respect to the metric G by

d(p, q) = inf{l(c) | c is a smooth curve from p to q}.

An isometry between Riemannian manifolds X and X ′ with metrics G,G ′,
respectively, is a di�eomorphism f : X → Y such that

G ′(f(x))(Df(x)v,Df(x)w) = G(x)(v, w) for all x ∈ X, v, w ∈ TxX.

Note that any isometry of Riemannian manifolds preserves the respective

distances, i.e. it is an isometry of metric spaces.

A.2 Groups and Actions

De�nition 24. A topological group is a group G equipped with a topology

such that the operations are continuous maps, i.e. the maps

G×G→ G (g, h) 7→ gh,

and

G→ G g 7→ g−1

are continuous. If G is a manifold and the maps above are smooth, then we

call G a Lie group.

Let G be a topological group and Y be a topological space.
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De�nition 25. • An action of G on Y is a continuos map µ : G×Y → Y

such that

� µ(1, y) = y for all y ∈ Y , and

� µ(gh, y) = µ(g, µ(h, y)) for all g, h ∈ G and y ∈ Y .

We denote the image µ(g, y) by g · y.

• An action is proper if the map µ is proper, i.e. the preimage of a

compact subset is always compact.

• The action is free if no nontrivial element of G �xes point, i.e.

µ(g, x) 6= x if g 6= 1.

• The action is properly discontinuous if, for every compact K ⊂ X, the

set

{g ∈ G | g ·K ∩K 6= ∅}

is �nite.

• For any y ∈ Y we de�ne

� Gy = {g ∈ G | g · y = y} is the stabilizer subgroup of y.

� G · y = {g · y | g ∈ G} is the orbit of y.

De�nition 26. Let X and Y be topological spaces. A continous map f :

X → Y is said to be a covering map if for any y ∈ Y there exists a connected

open set Vy ⊂ Y with y ∈ Vy such that for any connected component Uα of

f−1(Vy) the restriction f �Uα : Uα → Vy is a homeomorphism.

Proposition A.2.1. Let Γ be a topological group and M be a manifold. If

Γ acts on M properly discontinuously, then the quotient space Γ\M is a

manifold and the natural projection M → Γ\M is a covering map.
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A.3 Number �elds

De�nition 27. • A complex number z is algebraic if there exists a poly-

nomial P ∈ Z[X] such that P (z) = 0.

• A nonzero polynomial is monic if the leading coe�cient is 1, i.e.

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0.

• A complex number z is an algebraic interger if there exists a monic

polynomial P ∈ Z[X] such that P (z) = 0.

Proposition A.3.1 (Z is integrally closed). If x ∈ Q is an algebraic integer,

then x ∈ Z.

De�nition 28. • A number �eld is a sub�eld k ⊂ C such that k has

�nite dimension as a Q-vector space.

• If k is a number �eld, we de�ne the ring of integers of k by the set

Rk = {x ∈ k |x is an algebraic integer}.

Proposition A.3.2. Let k be a number �eld. Then any element x ∈ k is

algebraic, moreover, Rk is a domain such that k is the �eld of fractions of

Rk.

De�nition 29. • Let k be a number �eld. We de�ne a Galois embedding

as any embedding of �elds σ : k → C. We say that a Galois embedding

σ is real if σ(k) ⊂ R, otherwise we say that σ is complex.

• The degree of k is the dimension of k as a Q-vector space.

Proposition A.3.3. Let k be a number �eld of degree n. Then there exists

an algebraic element α ∈ k with minimal polynomial P ∈ Z[X] of degree n

(i.e. P is the irreducible polynomial with P (α) = 0 of minimal degree) such

that k = Q(α). Furthermore, any Galois embedding of k sends α to β, where

β is a root of P . Conversely, for any root β of P there exists an embedding

σβ : k → C such that σβ(α) = β.
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