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Gil Bernardo, Fábio Giambiagi, Lav́ınia Castro, Felipe Vilhena, Felipe Pinheiro e

Diogo Gobira. Cada um teve um papel importante para a realização deste trabalho.

Agradeço ao CNPq – Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico – pelo apoio dado para a realização do Doutorado Sandúıche no exterior.
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Abstract

In this thesis we study sample complexity issues of a Monte Carlo sampling-based

approach that is used for approximating general stochastic programming problems.

The thesis is divided into two parts.

In the first part of the text, we derive sample complexity estimates for a class of

risk averse stochastic programming problems assuming standard regularity condi-

tions. We consider the class of Optimized Certainty Equivalent (OCE) risk measures.

We derive estimates either for static or two-stage problems as for dynamic or T -stage

problems (T ∈ N). Our results extend the ones obtained previously for risk neutral

stochastic programming problems in the static and dynamic settings. In particular,

we derive exponential rates of convergence of the statistical estimators associated

with the approximate problem to their true counterparts. We note that the con-

stants associated with the exponential rate of convergence deteriorate depending of

how large is the Lipschitz constant of the problem’s risk measure and of the number

of stages T . In this case, our results indicate that in the risk averse setting one

needs to construct a scenario tree using a relatively larger number of samples than

in the risk neutral setting in order to obtain a good approximation for the solution

of the original problem.

In the second part of the thesis, we derive a tight lower bound for the sample

complexity of a class of risk neutral T -stage stochastic programming problems. An

upper bound estimate was derived previously in the literature. Treating the number

of stages T as a varying parameter, our result shows that the number of scenarios

needed for approximating the true problem with a desirable level of confidence grows

more rapidly with respect to T than exponentially. This work was published in [53].

Keywords: Stochastic programming, Monte Carlo sampling, Sample average

method, Sample complexity, Risk averse optimization
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Resumo

Nesta tese estudamos questões de complexidade amostral de métodos de simulação

de Monte Carlo que são usados a fim de aproximar problemas gerais de otimização

estocástica. A tese se divide em duas partes.

Na primeira parte do texto, derivamos estimativas de complexidade amostral

para uma classe de problemas de programação estocástica avessos ao risco assu-

mindo condições de regularidade padrão. Consideramos a classe de medidas de

risco conhecida como Equivalente Certo Otimizado (ECO). Derivamos estimati-

vas de complexidade amostral tanto para problemas estáticos ou de dois estágios

quanto para problemas dinâmicos ou de multiestágios. Nossos resultados se asseme-

lham aos obtidos anteriormente para problemas de otimização estocástica neutros

ao risco estáticos e dinâmicos. Em particular, derivamos taxas exponenciais de

convergência dos estimadores estat́ısticos associados ao problema de aproximao às

suas verdadeiras contrapartes. Observamos que as constantes associadas à taxa

exponencial de convergência deterioram-se dependendo de quão grande é a cons-

tante de Lipschitz da medida de risco do problema e do número de estágios T do

problema. Neste caso, nossos resultados indicam que para problemas risco avessos

deve-se construir uma árvore de cenários usando-se um número relativamente maior

de amostras do que para problemas neutros ao risco a fim de se obter uma solução

aproximada do problema original.

Na segunda parte da tese, derivamos um limite inferior justo para a comple-

xidade amostral de uma classe de problemas multiestgios de programao estocstica

neutros ao risco. Uma estimativa do limite superior foi derivada anteriormente na

literatura. Tratando o nmero de estgios T como um parâmetro variável, nosso re-

sultado mostra que o número de cenários necessários para aproximar o problema

original com um nvel de confiança especificado cresce mais rapidamente em relação

a T do que exponencialmente. Esse trabalho foi publicado em [53].
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Palavras-chave: Programação estocástica, Simulação de Monte Carlo, Método

da média amostral, Complexidade amostral, Otimização avessa ao risco

viii 2017



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1

2 Background material and preliminary results 25

2.1 Risk neutral stochastic programming problems . . . . . . . . . . . . . 25

2.1.1 The static case . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 The dynamic case . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Scenario Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Sub-Gaussian and ψ2-random variables . . . . . . . . . . . . . . . . . 68

2.5 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.6 Set-valued analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.6.1 Continuity of optimal value functions . . . . . . . . . . . . . . 91

2.6.2 Measurability of multifunctions . . . . . . . . . . . . . . . . . 94

2.7 Risk measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.8 Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3 Sample complexity for static problems with OCE risk measures 107

3.1 Optimized certainty equivalent risk measures . . . . . . . . . . . . . . 107

3.2 Static problems with OCE risk measures . . . . . . . . . . . . . . . . 125

3.3 Sample complexity results for static problems . . . . . . . . . . . . . 133

4 Sample complexity for dynamic problems with OCE risk measures155



CONTENTS

5 A lower bound for the sample complexity of a class of risk neutral

dynamic problems 173

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.2 The main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 187

2017



CHAPTER 1

Introduction

Stochastic programming problems are a class of optimization problems involving

uncertainty parameters. In many real-life applications, uncertainty is present in the

decision making process. At the time a decision must be made, like producing a

good, relevant data may not be known by the decision maker, like future demands

of the good. In stochastic programming formulations, the uncertainty quantities

are modeled via the theory of probability. One usually assumes that the (joint)

probability distribution of the random quantities is known or can be estimated from

historical data. Stochastic programming provides useful tools that are used in real-

life applications. These models occur in many areas of science and engineering, like

energy [16, 26, 46, 72, 76], finance [15, 20, 49, 57] and transportation [24, 27], to

mention a few.

There exists a myriad of stochastic programming paradigms for dealing with a

multitude of decision making situations. The models can be classified as two-stage

and multistage models with recourse, linear and nonlinear models, models with

chance constraints and models with deterministic constraints, risk neutral and risk

averse models, etc. We begin our exposition by considering the following general

stochastic programming problem

min
x∈X
{f(x) := EF (x, ξ)} , (1.0.1)

where ξ = (ξ1, . . . , ξd) is a random vector defined on a probability space (Ω,F ,P);

x ∈ Rn represents the decision variables; X ⊆ Rn is the feasible set and F : Rn ×
Rd → R is a measurable function. At the time the decision x must be made,

the optimizer does not know the value assumed by the random vector ξ, only its

probability distribution P. We assume that P does not depend on the decision x, the
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CHAPTER 1. INTRODUCTION

set X is deterministic and the function F is known or we can evaluate F (x, ξ) with

low computational cost1, for each x ∈ Rn and ξ ∈ Rd. Before knowing the realization

of the random vector ξ, F (x, ξ) represents a random cost, for each x ∈ Rn. One way

to summarize the random cost into a real number is by considering the expected

cost function f(x) := EF (x, ξ). This is precisely the case in risk neutral problems

like problem (1.0.1), where the objective function is the expected cost function. Of

course, problem (1.0.1) is well-defined if and only if the expected value of F (x, ξ) is

well-defined2, for each x ∈ X.

Typically the decision maker does not know, a priori, a closed form formula3 of

function f , and so, he must somehow evaluate it. Let us discuss some possibilities

to evaluate f . If the random vector ξ has an absolutely continuous distribution

with respect to the Lebesgue measure on Rd, then f(x) is a d-dimensional integral,

for each x ∈ Rn. In very simple situations, it is possible to obtain a closed form

formula for f(x) using symbolic integration, but this is atypical for stochastic pro-

gramming problems. Another approach for evaluating f(x) would be via numerical

integration techniques, like quadrature methods. It is well-known (see [23, Section

1.2]) that the integration problem suffers from the dimensional effect or the curse

of dimensionality. Numerical integration techniques tends to deteriorate rapidly

in performance when dimension d grows. Many stochastic programming problems

occurring in practice deal with high dimensional random vectors. As argued in

[77, Page 3], classical numerical integration techniques, such as the product-Gauss

quadrature, are only manageable for evaluating integrals of dimension up to 5. Even

more sophisticated techniques, such as lattice methods, cannot evaluate accurately

integrals of dimension greater than 20 (see [77, Page 1]). Another situation that

often occurs in practice is when the support of the random vector ξ is finite, but

has very large cardinality. In this case, f(x) becomes a weighted sum. Even in that

situation it is usually not possible to evaluate f(x) exactly. Indeed, suppose that

{ξi : i = 1, . . . , d} are independent binary random variables. It follows that the total

number of elements of supp ξ is 2d. So, the order of magnitude of the cardinality

of the support is 1030, if d = 100. In that case we need to make 1030 functions

evaluations only to calculate f(x) at a single point! This is an astronomically large

number from the computational point of view. In such cases it is appealing to resort

to sampling techniques.

Here, we consider a standard Monte Carlo approach for replacing problem (1.0.1)

1This is usually the case for linear two-stage models with recourse, although the situation

changes dramatically for (linear) multistage models.
2In principle, the expected value of F (x, ξ) could assume the values ±∞, for some x ∈ X.
3If a closed form formula of function f is known, then there is typically no point in treating

problem (1.0.1) as stochastic programming problem. The challenge in solving this kind of problems

is that f is not known and it is usually not possible to evaluate it accurately even at a single point

x ∈ X.

2 2017



CHAPTER 1. INTRODUCTION

with a manageable approximation. One considers an independent and identically

distributed (i.i.d.) random sample {ξ1, . . . , ξN} of ξ and solves the Stochastic Av-

erage Approximation (SAA) problem

min
x∈X

{
f̂N(x) :=

1

N

N∑
i=1

F (x, ξi)

}
. (1.0.2)

This approach is commonly known in the stochastic programming literature as the

SAA4 or the external sampling approach, but this idea has appeared in the litera-

ture under different denominations. For example, it is called the sample-path opti-

mization method in [52, 56], whereas in [61] it is called the stochastic counterpart

method. Let us point out that there exists a variety of sampling-based approaches

for solving stochastic programming problems. In [30] the authors present a recent

survey on Monte Carlo sampling-based methods for stochastic programming prob-

lems and consider, beyond the standard SAA method, other approaches like the

Stochastic Approximation (SA) method [55] and variations, the Stochastic Decom-

position method of Higle and Sen [28], variance reduction techniques [4, 15, 38, 45],

to mention a few. In [40] the authors make an empirical study of the behavior

of sampling-based methods for solving stochastic programming problems. Here we

focus only on the standard SAA method.

Given a sample realization {ξ1, . . . , ξN} of ξ, problem (1.0.2) can be seen either

as a deterministic optimization problem or as a stochastic programming problem

with the empirical probability distribution

P̂ (B) =
1

N

N∑
i=1

δξi(B),∀B ∈ B(Rd), (1.0.3)

where δy(·) gives total mass at the point y ∈ Rd. Indeed, let ξ̂ be a random variable

having the empirical probability distribution above, it follows that

ÊF (x, ξ̂) =
1

N

N∑
i=1

F (x, ξi),∀x ∈ X. (1.0.4)

So, either suitable algorithms for deterministic optimization problems or also algo-

rithms for stochastic programming problems can be used for solving problem (1.0.2).

However, note that the particular algorithm used to solve problem (1.0.2) goes be-

yond the conceptual framework of the SAA approach and such algorithms are not

discussed here. Many interesting questions already arise regarding, for example, in

what sense problem (1.0.2) approximates the true problem (1.0.1). In order to pose

those questions, let us introduce some basic notation.

4To the best of our knowledge, this term was first coined in [37].
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CHAPTER 1. INTRODUCTION

Denote the optimal values of problems (1.0.1) and (1.0.2), respectively, by f ∗

and f̂ ∗N . Note that f̂ ∗N depends on the random sample {ξ1, . . . , ξN}, and therefore

is a random variable. This quantity can be seen as a statistical estimator of f ∗.

We can also consider an optimal solution x̂N and the set of optimal solutions ŜN of

problem (1.0.2). These random quantities are also statistical estimators of x∗ and S,

respectively, where S is the set of optimal solutions of problem (1.0.1) and x∗ ∈ S.

Many questions involving how well these statistical estimators approximate their

true counterparts were already answered in the literature. In the sequel we present

an extensive overview of these results. In the end of this chapter, we show some

new results for an important class of risk averse stochastic programming problems

that have not been addressed yet. Before presenting our results, let us begin with

the review of the literature.

A natural question that arises is under which conditions the sequences of SAA

estimators are (strongly) consistent with respect to their true counterparts. Consid-

ering different regularity conditions on the problem data, the strong consistency of

sequences of SAA estimators was shown in [21, 36, 56] following the epiconvergence

approach. In [73, Section 5.1.1] the consistency of the SAA estimators is derived in

an accessible way. Let us summarize the main results presented there. Supposing

that w.p.1 f̂N(x) → f(x) uniformly in x ∈ X, as N → ∞, it follows immediately

that f̂ ∗N → f ∗ w.p.1 (see [73, Proposition 5.2]). It is worth mentioning that if we

only assume that f(x) = EF (x, ξ) is finite, for every x ∈ X, and that {ξj : j ∈ N}
are independent copies of ξ, then the strong law of large numbers (see [22, Theorem

2.4.1]) implies the pointwise convergence of f̂N to f , that is: for every x ∈ X w.p.15

f̂N(x)→ f(x), as N →∞. However, it is not possible to obtain the uniform conver-

gence only assuming these two conditions.6. What is needed is an uniform strong

law of large numbers7 for establishing this result. In [73, Theorem 7.55] sufficient

conditions on the problem data are presented for guaranteeing that f̂N(x) converges

to f(x) w.p.1 uniformly on X. A set of sufficient conditions is: (i) the compactness

of the (nonempty) feasible set X, (ii) the convexity of the functions F (·, ξ), for ξ

in a set of probability 1, (iii) the finiteness of f(x), for every x in a neighborhood

of X, and (iv) the strong law of large numbers P
[
f̂N(x)→ f(x), as N →∞

]
= 1

5This means that there exists Ax ∈ F such that P(Ax) = 1 and f̂N (x, ξ1(ω), · · · , ξN (ω))→ f(x),

as N →∞, for all ω ∈ Ax. Of course, we suppose that the sequence of random vectors {ξj : j ∈ N}
is defined on a common probability space (Ω,F ,P).

6For example, let us assume that F (x, ξ) := xξ, ξ
d∼ Gaussian(0, 1), and X = R. Note

that f(x) = EF (x, ξ) = 0, for all x ∈ R, and f̂N (x) = xξ̄N , where ξ̄N := (1/N)
∑N
i=1 ξ

i d∼
Gaussian(0, 1/N). We claim that f̂N (x) does not converge to f(x) = 0 uniformly on x ∈ R.

Indeed, take any ε > 0. Note that P
[
supx∈R

∣∣∣f̂N (x)
∣∣∣ ≥ ε] = P

[
ξ̄N 6= 0

]
= 1, for all N ∈ N.

Nevertheless, we have that w.p.1 f̂N (x)→ 0, for every x ∈ R.
7In that case, there exists A ∈ F (that does not depend on x ∈ X) that has probability 1 such

that f̂N (x, ξ1(ω), · · · , ξN (ω))→ f(x) uniformly on x ∈ X, as N →∞, for every ω ∈ A.
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CHAPTER 1. INTRODUCTION

holds, for every x in a neighborhood of X8. The key result for proving [73, Theorem

7.55] is the characterization of epiconvergence of functions (see [73, Theorem 7.31]).

See also [73, Theorem 7.53] for a different set of assumptions guaranteeing that f̂N
converges uniformly w.p.1 to f on X. In this approach it is not assumed the con-

vexity of F (·, ξ), but its continuity, for ξ in a set of probability 1. This addresses

the strong consistency of the SAA optimal values estimators. In order to establish

consistency of the SAA estimators of optimal solutions, slightly stronger conditions

are assumed (see [73, Theorem 5.3 and 5.4]). In these theorems it was proved that

D(ŜN , S)→ 0 w.p.1. as N →∞, where

D(A,B) := sup
x∈A

dist (x,B)

is the deviation of set A from B.

Given the consistency of the SAA estimators, it makes sense to analyze at which

rate they converge to their true counterparts values. This analysis was carried out

in many publications and can be divided into two types: (a) asymptotic results and

(b) non-asymptotic results. The former is related to large sample theory9, whereas

the later obtains results that are also valid in small samples.

The asymptotic results were derived in [63, 64, 65] and in [35] following two

different approaches. Assuming some regularity conditions, the asymptotics of the

SAA optimal values estimators were derived in [64]. The asymptotics of the SAA

optimal solutions were derived in [65]. In [66] the asymptotics of both the optimal

values and the optimal solutions are presented (see also [73, Sections 5.1.2 and

5.1.3]). Here we mention just some results.

Concerning the SAA optimal values estimators, it was shown under some regu-

larity conditions that

N1/2(f̂ ∗N − f ∗)
d−→ inf

x∈S
Y (x), (1.0.5)

where Y : (Ω,F)→ (C(X),B(C(X))) is a random element taking values on the set

of continuous functions on (the compact set) X equipped with the sup-norm:

‖φ− ψ‖sup := sup
x∈X
|φ(x)− ψ(x)| , ∀φ, ψ ∈ C(X). (1.0.6)

Given any x1, . . . , xk ∈ X, the finite-dimensional distribution of the random element

Y is given by:

(Y (x1), . . . , Y (xk))
d∼ N (0,Σ (x1, . . . , xk)) , (1.0.7)

8This condition is superfluous if the sequence of random vectors {ξi : i ∈ N} is taken i.i.d. with

ξ1 d∼ ξ. Indeed, this condition follows immediately from condition (iii) by the strong law of large

numbers. However, condition (iv) is used as a way for relaxing the i.i.d. assumption of the random

sample. This is particularly useful in order to derive consistency results for nonstandard Monte

Carlo sampling-based methods (see, e.g., [29]).
9In this setting, the results are obtained by letting the sample size N tend to infinity.
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CHAPTER 1. INTRODUCTION

where Σij = cov [F (xi, ξ), F (xj, ξ)], for all 1 ≤ i, j ≤ k10. When S is a singleton, it

follows from (1.0.5) and (1.0.7) that f̂ ∗N has asymptotically normal distribution with

mean f ∗ and variance Var [F (x̄, ξ)] /N , where x̄ is the unique solution of problem

(1.0.1). This addresses the convergence in distribution of the SAA optimal value

estimators. It was also proved that

lim
N→∞

P
[
N1/2

(
inf
x∈S

f̂N(x)− f̂ ∗N
)
≥ ε

]
= 0, (1.0.8)

for any ε > 0. These results are based on the functional central limit theorem ([2,

Corollary 7.17]) and on the delta method in Banach spaces (see [73, Section 7.2.8]).

The delta method was used for obtaining a first order approximation of the optimal

value function defined on (C(X), ‖·‖sup)

V (g) := inf
x∈X

g(x),∀g ∈ C(X). (1.0.9)

The following conditions are assumed for deriving results (1.0.5) and (1.0.8): (a)

X ⊆ Rn is a nonempty compact set, (b) the sequence of random vectors {ξi : i ∈ N}
is i.i.d. with ξ1 d∼ ξ, (c) F (x, ξ) has finite variance, for every x ∈ X and (d) there

exists a measurable function χ : supp ξ → R+ having finite second moment such

that:

|F (x′, ξ)− F (x, ξ)| ≤ χ(ξ) ‖x′ − x‖ (1.0.10)

for every x′, x ∈ X and w.p.1 ξ. We will not discuss here the asymptotics of the

SAA optimal solutions carried out in [65]. Let us just point out that this analysis

was done assuming further regularity conditions on the problem data and by using

a second order expansion (second order delta method) of the optimal value function

(1.0.9). For more details about this topic one should consult [73, Section 5.1.3]

or [66]. Before presenting the non-asymptotic results, let us just mention that the

results obtained in [35] are based on a generalized implicit function theorem.

Now we discuss non-asymptotic results for the SAA estimators. This type of

results is particularly useful since the involved estimates are valid for any sample

size N ∈ N. Before proceeding, let us introduce some notation. Given ε ≥ 0, we

denote the set of ε-optimal solutions of problems (1.0.1) and (1.0.2) by Sε and ŜεN ,

respectively. When ε = 0, we drop the superscripts in Sε and ŜεN and just write S

and ŜN , respectively. Note also that:

Sε = {x ∈ X : f(x) ≤ f ∗ + ε}, and (1.0.11)

ŜεN = {x ∈ X : f̂N(x) ≤ f̂ ∗N + ε}. (1.0.12)

Making use of some results of large deviations theory it is possible to show under

some regularity conditions that

P
([
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

])
≥ 1− C exp {−Nβ} , (1.0.13)

10We drop the dependence of Σ on x1, . . . , xk for notational simplicity.
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CHAPTER 1. INTRODUCTION

where C and β are positive real numbers and ε > 0 and 0 ≤ δ < ε can be taken

arbitrarily. In fact, a bound like (1.0.13) was obtained in [74] for ε = δ = 0 assuming

that the problem data satisfies “nice” regularity conditions. In some sense the

assumed regularity conditions are not very restrictive, since they are satisfied by two-

stage linear stochastic programming problems with a finite number of scenarios11.

In the sequel we will see how C and β depend on the problem data and on the

parameters ε and δ under different regularity conditions. Now, let us point out that

estimate (1.0.13) is valid for any sample size N and it shows that the probability of

the event “ŜδN ⊆ Sε” approaches 1 exponentially fast with the increase of the sample

size N . Note that the event [
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

]
(1.0.14)

means that the set of δ-optimal solutions of the SAA problem is nonempty and is

contained in the set of ε-optimal solution of the “true” problem. If ε = δ = 0, then

every optimal solution of the SAA problem is an (exact) optimal solution of the true

problem whenever the event (1.0.14) occurs.

Although it is quite remarkable to obtain this type of result for the case ε =

δ = 0, in more general situations one is just able to obtain (or is already satisfied in

obtaining) an approximate optimal solution of an optimization problem, instead of

an exact optimal solution. This analysis can be done by taking ε > 0 and 0 ≤ δ ≤ ε.

Let us recall that in the SAA approach the optimizer solves (maybe approximately)

the SAA problem and hopes that its solution is a good approximation of the optimal

solution of the true problem. So, estimate (1.0.13) can be seen as a lower bound of

the likelihood of the success of the SAA approach. Equation (1.0.13) can also be

used for obtaining an estimate of the sample size N in order to guarantee that the

probability of the event (1.0.14) is at least 1−θ, where θ ∈ (0, 1) is a desired value12.

Indeed, making the right-side of (1.0.13) to be greater than or equal to 1 − θ and

solving for N , we obtain the following estimate for the sample size

N ≥ 1

β
log

(
C

θ

)
. (1.0.15)

This is an estimate of the sample complexity of the SAA approach. In Chapter 2 we

define precisely this concept in terms of the parameters δ, ε and θ.

Now, let us give more details about the results obtained in the literature regard-

ing estimates like (1.0.13). To the best of our knowledge, the first reference that

established sufficient conditions for the exponential rate of convergence of the event

(1.0.14) is [74]. In that reference the authors analyzed the case ε = δ = 0. Consider

11In fact, I dare say that this is the most common type of stochastic programming problem

solved in real-life applications.
12Usually, θ << 1, like θ = 0.10 or 0.05 or even 0.01.
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the following assumptions: (a) f(x) is well-defined and finite, for every x ∈ X, (b)

F (·, ξ) is convex, for every ξ ∈ supp ξ, (c) X is closed and convex, (d) {ξi : i ∈ N}
are independent random copies of ξ, and (e) there exists c > 0 and x∗ ∈ X such

that

f(x) ≥ f(x∗) + c ‖x− x∗‖ , ∀x ∈ X. (1.0.16)

Observe that condition (e) implies that S = {x∗} and f ∗ = f(x∗). Assuming

conditions (a)-(e), the authors proved that w.p.1 for N large enough

ŜN = S. (1.0.17)

Note that since S is a singleton, the events
[
ŜN = S

]
and

[
ŜN ⊆ S

]
∩
[
ŜN 6= ∅

]
are

the same. Equivalently, they have shown that the event

lim inf
N→∞

[
ŜN = S

]
:=

⋃
M∈N

⋂
N≥M

[
ŜN = S

]
(1.0.18)

has probability 1. Of course, the index M ∈ N such that
[
ŜN = S

]
, for every

N ≥M depends on the sequence realization {ξi(ω) : i ∈ N}. Assuming additionally

that supp ξ is finite13, they have shown that there exist C > 0 and β > 0 such that

P
([
ŜN ⊆ S

]
∩
[
ŜN 6= ∅

])
≥ 1− C exp{−Nβ},∀N ∈ N. (1.0.19)

In fact, it was proved that there exists β > 0 such that

lim sup
N→∞

1

N
log
(
P
[
ŜN 6= S

])
< −β, (1.0.20)

which is equivalent to (1.0.19), see, for example, Proposition 2.8.7. Note also that

since

P
[
ŜN 6= S

]
≤ C exp{−Nβ} (1.0.21)

we have that ∑
N∈N

P
[
ŜN 6= S

]
≤ C exp{−Nβ}

1− exp{−Nβ}
<∞. (1.0.22)

It follows from the Borel-Cantelli Lemma (see [22, Theorem 2.3.1]) that

lim sup
N→∞

[
ŜN 6= S

]
is a set of null probability, equivalently

lim inf
N→∞

[
ŜN = S

]
=

(
lim sup
N→∞

[
ŜN 6= S

])C
13Indeed, for showing this result the authors assumed an even less restrictive condition than the

finite number of scenarios (see [74, Assumption B] or [73, Page 192, assumption (M4)]).
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is a set of probability14 1.

In the same reference, the authors have shown a similar result without assuming

that S is a singleton. For proving this result, they assumed conditions (a) and (d)

as before, and: (b’) F (·, ξ) is a polyhedral function (see Definition 2.5.19), for every

ξ ∈ supp ξ, (c’) X is a polyhedron (see Definition 2.5.4), (e’) there exists c > 0 and

A ⊆ X nonemepty bounded such that

f(x) ≥ f(x∗) + c dist (x,A) , (1.0.23)

for any x ∈ X and x∗ ∈ A. Condition (e’) implies that S = A. Assuming addition-

ally that supp ξ is finite, the authors proved that S is a compact polyhedron and

that there exists positive real numbers C and β such that

P
([
ŜN is a face of set S

]
∩
[
ŜN 6= ∅

])
≥ 1− C exp{−Nβ}, ∀N ∈ N. (1.0.24)

Note that the event
[
ŜN is a face of set S

]
15 is contained in the event

[
ŜN ⊆ S

]
,

which implies that the lower bound (1.0.24) is also valid for the event (1.0.14).

Moreover, again by the Borel-Cantelli Lemma, we also conclude that w.p.1 for N

large enough the event (1.0.14) occurs. It is worth mentioning that two-stage linear

stochastic programming problems with a finite number of scenarios satisfy all these

conditions (see also [73, Section 5.3.3]) provided that f is proper and S is nonempty

and bounded.

In [37] the authors analyzed how well SAA estimators approximate their true

counterparts for discrete stochastic programming problems, i.e. assuming that the

feasible set X is finite. Assuming additionally that: (a) for any x ∈ X, the random

variable F (x, ξ) has finite expected value f(x), and (b) {ξi : i ∈ N} are independent

copies of ξ, they proved that for any given numbers ε ≥ 0 and 0 ≤ δ ≤ ε, the

following statements hold true:

(i) w.p.1 f̂ ∗N → f ∗, as N →∞.

(ii) w.p.1 for N large enough ŜδN ⊆ Sε.

The key step for proving items (i) and (ii) is to show that w.p.1. f̂N(x) → f(x)

uniformly in x ∈ X. This result follows from the finiteness of X and the fact that

w.p.1 f̂N(x) → f(x), as N → ∞, by the strong law of large numbers. Now, items

(i) and (ii) follow easily16.

14This remark shows the well-known fact that results like (1.0.19) are stronger than just showing

that w.p.1 for N large enough
[
ŜN = S

]
.

15In Definition 2.5.3 we recall the definition of a face of a convex set.
16Let us point out that the finiteness of X also guarantees that S 6= ∅ and that w.p.1 ŜN 6= ∅,

for all N ∈ N. So, we also have that w.p.1 for N large enough
[
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

]
happens.
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Rates of convergence for the SAA estimators were also derived. Here we present

the result for the SAA optimal solutions. Take any ε ≥ 0 and 0 ≤ δ ≤ ε. If

X\Sε = ∅, then ŜδN ⊆ X = Sε immediately. So, take X\Sε 6= ∅. Assuming

that: (c) there exists u : X\Sε → X such for each x ∈ X\Sε the random variable

Zx := F (u(x), ξ)−F (x, ξ) has finite moment generating function (henceforth called

m.g.f.) in a neighborhood of 0; they proved that

P
[
ŜδN ⊆ Sε

]
≥ 1− card (X\Sε) exp {−Nβ} , ∀N ∈ N, (1.0.25)

where u satisfies f(u(x)) < f(x)− ε, for all x ∈ X\Sε, and β = β(ε, δ) > 0 is given

by:

β := min
x∈X\Sε

Ix(−δ). (1.0.26)

The function Ix(·) is known in the large deviation theory as a rate function. This

particular rate function is defined as the convex conjugate of the log-moment gen-

erating function of the random variable Zx, that is:

Ix(s) := (logMx)
∗ (s) = sup

t∈R
{st− logMx(t)},

where

Mx(t) := E exp {tZx} .
Let us give more details about some points related to the derivation of the

exponential rate of convergence (1.0.25). First, note that there exists a function

u : X\Sε → X satisfying f(u(x)) − f(x) < ε, for all x ∈ X\Sε. Indeed, we can

always define u(x) ∈ S, for any x ∈ X\Sε. Then,

f(x) > f ∗ + ε = f(u(x)) + ε,∀x ∈ X\Sε. (1.0.27)

Second, note that the assumption (c) is weaker than the following: ∀x′ ∈ S, ∀x ∈
X\S, the m.g.f. Mx′,x(t) of the random variable Zx′,x := F (x′, ξ)− F (x, ξ) is finite

for t in a neighborhood of 0. Third, observe that

EZx = f(u(x))− f(x) ≤ − min
x∈X\Sε

(f(x)− f(u(x))) =: −ε∗ < −ε, (1.0.28)

since X\Sε is finite. Now, let us obtain a lower bound for β = β(ε, δ) > 0 that is

valid for any ε ≥ 0 sufficiently small and any 0 ≤ δ ≤ ε. We begin by noting that

since Mx(·) is finite in a neighborhood of zero, we have that

Ix(s) =
(s− EZx)2

2σ2
x

+ o
(
|s− EZx|2

)
(1.0.29)

for s in a neighborhood of EZx = f(u(x)) − f(x), where σ2
x := Var[Zx] for all

x ∈ X\Sε. Using again that X\Sε is finite, we obtain that there exists ε0 > 0 such

that

Ix(s) ≥
(s− EZx)2

3σ2
x

, (1.0.30)
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for EZx ≤ s ≤ EZx + ε0 and for all x ∈ X\Sε. Taking ε0 > 0 smaller if necessary,

we can assume without loss of generality that ε0 ≤ minx∈X\S(f(x)− f ∗). We claim

that for any 0 ≤ ε < ε0 and any 0 ≤ δ ≤ ε, the following inequality is satisfied

Ix(−δ) ≥
(ε0 − δ)2

3σ2
max

,∀x ∈ X\Sε, (1.0.31)

where σ2
max := maxx∈X\Sε σ

2
x. Before showing that inequality (1.0.31) is satisfied,

observe that it gives the following lower bound for β ≥ (ε0 − δ)2/3σ2
max > 0. Using

this lower bound in (1.0.25) we obtain:

P
[
ŜδN ⊆ Sε

]
≥ 1− card (X\Sε) exp

{
−N(ε0 − δ)2

3σ2
max

}
(1.0.32)

for any ε ≥ 0 sufficiently small and 0 ≤ δ ≤ ε. For showing that (1.0.31) holds,

let us first observe that EZx ≤ −ε0 < −ε ≤ −δ, for any x ∈ X\Sε. If −δ ∈
[EZx,EZx + ε0], then

Ix(−δ) ≥
(−δ − EZx)2

3σ2
x

≥ (ε0 − δ)2

3σ2
max

, (1.0.33)

since σ2
max ≥ σ2

x and 0 ≤ ε0 − δ ≤ −δ − EZx. If −δ > EZx + ε0, then using the fact

that Ix(·) is monotone in [EZx,∞) we obtain that

Ix(−δ) ≥ Ix(EZx + ε0) ≥ ε20
3σ2

x

≥ (ε0 − δ)2

3σ2
max

. (1.0.34)

For finishing the review of [37] regarding properties of SAA estimators for discrete

problems, let us just say that asymptotic results for the SAA optimal value estimator

were derived using the central limit theorem.

In [75] the authors derived sample complexity estimates for general static or

two-stage stochastic programming problems. There, they do not suppose that X

is finite or that the random data ξ has finite support or even that w.p.1 F (·, ξ)
is convex. Instead, they suppose that X has finite diameter and that the random

costs {F (x, ξ) : x ∈ X} do not present “wild” randomness. The results were derived

using the large deviation theory, in particular the upper bound of Cramer’s large

deviation theorem. For such, one must suppose the finiteness (in a neighborhood of

0) of the m.g.f. of the involved random variables. Moreover, they suppose that the

differences F (x, ξ)−F (x′, ξ), for all x, x′ ∈ X, also do not present “wild” randomness

and that the closer x and x′ are to each other, the higher is the probability that

F (x, ξ) − F (x′, ξ) is close to 0. For the record, let us enumerate precisely these

assumptions: (a) f(x) = EF (x, ξ) is finite, for any x ∈ X, (b) the (nonempty)

feasible set X has finite diameter D, (c) {ξi : i ∈ N} are independent copies of ξ,
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(d) for all x, x′ ∈ X, the random variable (F (x, ξ) − F (x′, ξ)) − (f(x) − f(x′)) has

m.g.f. Mx′,x(t) satisfying17

Mx′,x(t) ≤ exp

{
1

2
σ2t2

}
, ∀t ∈ R, (1.0.35)

where σ > 0 is a finite constant, and (e) there exists a measurable function χ :

supp ξ → R+ that has finite m.g.f. in a neighborhood of 0, and that satisfies18

|F (x, ξ)− F (x′, ξ)| ≤ χ(ξ) ‖x− x′‖ , (1.0.36)

for all x, x′ ∈ X and all ξ ∈ supp ξ. Assuming conditions (a)-(e), in [75, Theorem

1] the authors obtained an estimate of the sample size N that guarantees that with

probability at least 1 − θ every δ-optimal solution of the SAA problem is an ε-

optimal solution of the true problem (see [75, Equation (22)]). A similar derivation

is obtained in [73, Theorem 5.18] that we present below. Take any ε > 0 and

0 ≤ δ < ε. It was shown that

P
[
ŜδN ⊆ Sε

]
≥ 1− exp {−Nβ} −

(
4ρM̃D

ε− δ

)n

exp

{
−N(ε− δ)2

8σ2

}
(1.0.37)

for all N ∈ N. Let us make some remarks about the quantities appearing in equation

(1.0.37). First, M̃ can be taken as any number greater than M := Eχ(ξ) < +∞
that is finite since Mχ(t) is finite in a neighborhood of 0 by hypothesis (e) (see

also Proposition 2.8.6). The constant β is equal to Iχ(M̃) ∈ (0,+∞] that we know

is positive (maybe even equal to +∞), since M̃ > Eχ(ξ) (see also Remark 2.1.7).

Finally, ρ is a universal constant that is related to v-nets in Rn (see Definition

2.8.2). Let us assume that the diameter of X is a positive real number19. It is a

well-known fact that there exists a positive absolute constant ρ20 such that for every

0 < v ≤ D := diamX there exists a v-net X̃ of X such that

card X̃ ≤
(
ρD

v

)n
. (1.0.38)

The proof of [73, Theorem 5.18] (or equivalently [75, Theorem 1]) used the sample

complexity estimate obtained in [37] for discrete stochastic programming problems

for deriving an estimate for general stochastic problems with bounded feasible sets.

17We say that a random variable satisfying (1.0.35) is a σ-sub-Gaussian random variable (see

Section 2.4).
18More precisely, they have supposed that inequality (1.0.36) is satisfied with right-side equal to

χ(ξ) ‖x− x′‖γ , where γ > 0. Here, we just present the case γ = 1.
19If D = 0, then X is a singleton and we always have that ŜδN ⊆ Sε = X.
20In Proposition 2.8.3 we proved that ρ can be taken less than or equal to 5.
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Given any ε > 0 and 0 ≤ δ < ε, take any M̃ > M and consider a v-net X̃ of X,

satisfying

card X̃ ≤

(
4ρDM̃

ε− δ

)n

,

where

v :=
ε− δ
4M̃

> 0.

Now, one can consider the true and the SAA problems restricted to the net X̃,

instead of the original set X. Considering appropriate parameters δ < δ′ < ε′ < ε,

one can derive the following estimate

P
[
S̃δ
′

N ⊂ S̃ε
′
]
≥ 1− card

(
X̃\S̃ε′

)
exp

{
−N(ε′ − δ′)2

2σ2

}
(1.0.39)

≥ 1−

(
4ρM̃D

ε− δ

)n

exp

{
−N(ε′ − δ′)2

2σ2

}
(1.0.40)

using the estimate derived for discrete stochastic programming problems (this gives

the estimate of the last term of the right-side of (1.0.37) by considering ε′ − δ′ =

(ε − δ)/2)). Furthermore, since Iχ(t) is finite for t in a neighborhood of 0 and

M̃ > Eχ(ξ), the upper bound of the Cramer’s large deviation theorem implies that

P

[
1

N

N∑
i=1

χ(ξi) > M̃

]
≤ exp {−Nβ} , (1.0.41)

where β = Iχ(M̃) > 0. It is also readily seen that f̂N is
(

1
N

∑N
i=1 χ(ξi)

)
-Lipschitz

continuous in X. So, whenever the event
[

1
N

∑N
i=1 χ(ξi) ≤ M̃

]
happens, we have

that f̂N is M̃ -Lipschitz continuous in X. Noting also that f is M -Lipschitz in X,

one can show that the event
[
ŜδN ⊂ Sε

]
happens, whenever the event

[
S̃δ
′

N ⊂ S̃ε
′
]⋂[

1

N

N∑
i=1

χ(ξi) ≤ M̃

]
(1.0.42)

occurs. Observe that the right-side of equation (1.0.37) is just a lower estimate

for the probability of the event (1.0.42). It is also possible to prove that, under

the assumed regularity conditions, the event
[
ŜN 6= ∅

]
has probability 1. So, the

probability of the event (1.0.14) is equal to the left-side of (1.0.37). That is the

general idea of the proof. One should consult [73, Theorem 5.18] for more details.

We also derive a similar lower bound in Section 2.1.1 applying directly the uniform

exponential bound theorem (see Theorem 2.1.5).
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From (1.0.37) it is possible to obtain an estimate of the sample size N that

guarantees that with probability at least 1− θ, for θ ∈ (0, 1) given, every δ-optimal

solution of the SAA problem is an ε-optimal solution of the true problem. One

way for achieving this is to derive the minimum value of N ∈ N such that both

inequalities

exp
{
−NIχ(M̃)

}
≤ θ

2
, and (1.0.43)(

4ρM̃D

ε− δ

)n

exp

{
−N(ε− δ)2

8σ2

}
≤ θ

2
(1.0.44)

hold true. This gives us the following estimate for N

N ≥ 8σ2

(ε− δ)2

[
n log

(
4ρM̃D

ε− δ

)
+ log

(
2

θ

)]∨[
1

Iχ(M̃)
log

(
2

θ

)]
, (1.0.45)

where a∨ b := max{a, b}, for all a, b ∈ R. Treating 0 ≤ δ < ε as varying parameters,

we note that the maximum in (1.0.45) is achieved by its first term for sufficiently

small values of ε − δ > 0. Moreover, if assumption (e) is satisfied with χ(ξ) = M

for ξ in a set of probability 1, then Iχ(M̃) = +∞, for any M̃ > M . In that case,

the second term in the maximum (1.0.45) vanishes, and it suffices to take

N ≥ 8σ2

(ε− δ)2

[
n log

(
4ρMD

ε− δ

)
+ log

(
1

θ

)]
. (1.0.46)

Although the authors have pointed out in [75] that sample complexity estimates like

(1.0.45) or (1.0.46) are too conservative to be useful in practice, these type of results

provide a theoretical guarantee that static or two-stage stochastic programming

problems, that are in some sense well-behaved (see assumptions (a)-(e)), can be

efficiently approximated by the Monte Carlo sampling-based approach provided that

we do not ask for too much accuracy, that is, values of ε that are too small. Indeed,

if ε is too small, then estimate (1.0.45) indicates that the SAA approach could be

impractical for obtaining an ε-optimal solution of the true problem. Another point

of concern is if the SAA problem can be efficiently solved. This typically depends

also if it is possible to evaluate efficiently the function values F (x, ξ), for any x ∈ Rn

and ξ ∈ supp ξ, and/or if the functions F (·, ξ) and the feasible set X are convex21.

For closing the review of [75], let us just mention that the authors also commented

about sample complexity estimates for the multistage setting. They reasoned that

although it is possible to write the multistage problem as a static or two-stage prob-

lem using the cost-to-go functions, there is an important difference between both

21In that case, by calling an oracle one can usually also obtain a subgradient s(x, ξ) ∈ ∂xF (x, ξ),

for every x ∈ Rn and ξ ∈ supp ξ. Proceeding in that way, one can obtain a polyhedral function

ĝN (·) that approximates f̂N (·) from below in X.
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settings. Indeed, for multistage problems it is not possible to evaluate F (x, ξ) accu-

rately. For example, for 3-stage problems, the exact evaluation of F (x, ξ) involves

solving exactly a two-stage problem with initial conditions determined by x and ξ.

We are not saying that one needs to evaluate F (x, ξ) exactly in order to obtain

a reasonable approximation of the true problem. What we are trying to convey is

that, differently from two-stage problems, F (x, ξ) cannot be accurately evaluated for

T -stage problems (T ≥ 3) and that this has important consequences in the sample

complexity estimates for multistage problems.

In the multistage setting, the SAA approach consists in building a scenario tree

(see Section 2.2) using a conditional sampling scheme (see Section 2.1.2). Supposing

that for each node of the scenario tree at level t = 1, . . . , T − 1, one generates Nt+1

children nodes, the constructed SAA scenario tree has

N =
T∏
t=2

Nt (1.0.47)

number of scenarios. In [67] it was shown that in order to obtain consistency results

for the SAA estimators in the multistage setting, one has to make Nt → ∞, for

each t = 2, . . . , T . This is a first indicator that in order for the SAA problem

approximates arbitrarily well the true problem, the total number of scenarios in the

multistage setting must grow exponentially fast with respect to the number of stages

T .

The analysis of the exponential rates of convergence of the SAA estimators in the

multistage setting was carried out in [69]. In this paper the author obtained sample

complexity estimates for a 3-stage stochastic programming problem under similar

hypothesis considered in the analysis of two-stage problems (see [69] or Section 2.1.2

for more details). In a nutshell, he proves that if one takes N2 = N3
22 satisfying

N2 ≥
O(1)σ2

ε2

[
(n1 + n2) log

(
DM

ε

)
+ log

(
O(1)

θ

)]
, (1.0.48)

then

P
[
Ŝ
ε/2
N2,N3

⊆ Sε
]
≥ 1− θ (1.0.49)

where ε > 0 and θ ∈ (0, 1) are given. This estimate suggests that the total number

of scenarios
∏T

t=2Nt in the scenario tree grows at least to order of(
σ2(n1 + · · ·+ nT−1)

ε2

)T−1

. (1.0.50)

In Section 2.1.2 we extend this analysis for T -stage stochastic programming problems

with arbitrary T ∈ N obtaining an estimate like (1.0.50).

22This point is not important and it is made here only for simplifying the exposition. In [69]

this assumption was not used to derive the sample complexity estimates.
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Note that all references discussed so far derived results for risk neutral stochas-

tic programming problems. A relevant question that can be posed is: why do we

optimize the expected value of the random cost? If one has to repeat the optimiza-

tion procedure many times under the same initial conditions, then, by the law of

large numbers, optimizing the expected value gives an optimal decision in the long

run. However, this reasoning does not appeal to all decision making situations. A

typical example occurs in the area of portfolio selection where a trade-off between

risk and return is taken into account in the optimization problem. For instance, a

strategy that invests all wealth in just one asset, the one that has the maximum

expected return, appeals to almost nobody, although this is the optimal strategy

for the portfolio selection problem considering as the optimization criterion just the

expected value operator. The drawback of this strategy is clear, one does not give

any importance to deviations of the portfolio return with respect to its expected

return 23. The trade-off between return and risk is the cornerstone of the modern

theory of portfolio selection introduced in the pioneering work of [41] and further

analyzed in [42, 43]. In the mean-variance models introduced by Markowitz, besides

considering the expected portfolio return (or cost) one uses the standard deviation

of the portfolio return as a way to penalize deviations from its expected cost. Many

theoretical advances were made in this area in recent decades [1, 3, 17, 25, 47, 58]

and much attention has been given to risk averse stochastic programming problems

[19, 26, 31, 39, 51, 57, 70, 76], to mention a few. In this type of problems, one uses

a risk averse risk measure µ in order to summarize the random cost that depends

on the decision x ∈ X into a real number. A general risk averse static stochastic

programming problem is formulated as

min
x∈X
{v(x) := µ (F (x, ξ))} , (1.0.51)

where ξ, x, X and F are defined as before (see paragraph after (1.0.1)).

When µ is a (regular)24 law invariant25 risk measure (see Section 2.7), also known

as version independent risk measure, and it is possible to sample from the random

23For example, consider that there are two possible scenarios {1, 2} each with equal probability

of occurring, and assets A and B. An investor wants to allocate all of his wealth on this two assets.

Asset A returns −100% when scenario 1 occurs and +200% when scenario 2 occurs. Asset B returns

50% in both scenarios. Observe that the expected return of these two assets are equal to 50%.

Therefore, the portfolios that invest all wealth in each asset are equally good using the expected

return criterion. However, note that investing in asset A is much more risky than investing in asset

B. Indeed, the investor has 50% of chance of losing all his wealth if he invests only in asset A.
24See [73, Definition 6.45].
25In a nutshell, a (regular) law invariant risk measure µ : Lp (Ω,F ,P) → R, p ∈ [1,∞), can

be seen as defined on the set of all cumulative distributions functions of R. In that case we

can write µ(Z) = µ(FZ), where FZ(z) := P [Z ≤ z], for all z ∈ R, is the cumulative distribution

function of the random variable Z. Given a sample realization {Z1, . . . , ZN} of the random variable

Z, we consider the empirical cumulative distribution function F̂N (z) := 1
N

∑N
i=1 1{Zi≤z} that is,
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vector ξ, one can easily consider Monte Carlo sampling-based approaches to ap-

proximate problem (1.0.51) by its empirical counterpart. Given a random sample

{ξi : i = 1, . . . , N} of ξ, consider the following problem

min
x∈X

{
v̂N(x) := µ̂

(
F (x, ξ̂)

)}
, (1.0.52)

where F (x, ξ̂) has the empirical cumulative distribution function

ĤN(x, z) :=
1

N

N∑
i=1

1{F (x,ξi)≤z}, for every z ∈ R,

and µ̂
(
F (x, ξ̂)

)
:= µ

(
ĤN(x, ·)

)
. Here we also denote problem (1.0.52) as the SAA

problem. Akin to the risk neutral case, we can see the SAA optimal value and the

SAA optimal solutions as statistical estimators of their true counterparts. The same

questions regarding the: (a) (strong) consistency, (b) asymptotic distribution, and

(c) rates of convergence of these statistical estimators can be considered in the risk

averse setting.

Let us make a brief review of the literature addressing these questions. [71] is

the only reference that we are aware of that studies the convergence of empirical

estimates of risk averse stochastic programming problems. Although many other

references like [11, 32, 33, 50, 80] have established either the strong consistency

and/or the asymptotic distribution of the empirical estimates for some risk measures.

However, it is important to differentiate these type of results. In the latter type,

one considers as given a risk measure µ satisfying some regularity conditions and

shows that, for a fixed random variable Z, its statistical estimator µ̂N(Z) converges

in some sense to its true counterpart µ(Z), when N goes to ∞. In [71] this kind of

result was also proved for a broad class of risk measures, but also that the statistical

estimators associated with the risk averse stochastic programming problem, that

is, the optimal value estimator v̂∗N and the set of optimal solutions estimator ŜN
converged in some sense to their true counterparts v∗ and S, respectively. As it

was shown in the risk neutral case, these results follows by proving that µ̂N(F (x, ξ̂))

converges to µ(F (x, ξ)) uniformly on x ∈ X.

Now we make a brief presentation of the main results in [71]. The author begun

by investigating convergence properties of the empirical estimates of law invariant

convex risk measures. In Section 2.7 we recall the definition of this type of risk

in fact, a valid cumulative distribution function of R (see Section 2.3). Therefore, the random

quantity µ
(
F̂N

)
is the empirical estimate of µ (F ). The expected value operator is an example

of law invariant risk measure. We will see many other examples in the sequel. Given a sample

realization {Zi : 1 ≤ i ≤ N} of a random variable Z, note that the sample mean Z̄ = 1
N

∑N
i Zi

is just the expected value of the random variable Ẑ that has cumulative distribution function

F̂N (z) := 1
N

∑N
i=1 1{Zi≤z}, i.e., Z̄ = ÊẐ.
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measures. It is worth mentioning that this is a broad26 class of risk measures. Take

any Z ∈ Lp (Ω,F ,P), p ∈ [1,∞), and consider a sequence {Zi : i ∈ N} of i.i.d.

copies of Z defined also on Lp (Ω,F ,P). Let FZ(z) := P [Z ≤ z] be the cumulative

distribution function of Z. Moreover, for every N ∈ N and ω ∈ Ω, let

F̂N(z, ω) :=
1

N

N∑
i=1

1{Zi(ω)≤z} (1.0.53)

be the empirical cumulative distribution function associated with the sequence of

random variables {Zi : i ∈ N}. In [71, Theorem 2.1] it was proved that if µ :

Lp (Ω,F ,P)→ R, p ∈ [1,∞), is a (finite-valued) law invariant convex risk measure,

then w.p.1

µ
(
F̂N

)
→ µ (FZ) , (1.0.54)

as N goes to ∞. Now consider the risk averse stochastic programming problem

min
x∈X
{v(x) := µ (F (x, ξ))} , (1.0.55)

where ξ : Ω→ Rd is the random data, F : Rn×Rd → R̄ is the random cost function,

µ is a law invariant risk measure and X ⊆ Rn is the feasible set. We also consider

a sequence {ξi : i ∈ N} of i.i.d. copies of ξ defined on (Ω,F ,P). For every x ∈ Rn,

ω ∈ Ω and every N ∈ N consider

ĤN(x, ω, ·) :=
1

N

N∑
i=1

1{F (x,ξi(ω))≤·} (1.0.56)

the empirical distribution function associated with the sequence of random variables

{F (x, ξi) : i ∈ N}. Define

v̂N(x, ω) := µ
(
ĤN(x, ω)

)
, ∀(x, ω) ∈ Rn × Ω. (1.0.57)

Under appropriate regularity conditions it follows that v(·) is a l.s.c. function and v̂N
epiconverges to v w.p.1. In fact, the following conditions are sufficient for deriving

these result (see [71, Theorem 3.1]): (a) µ : Lp (Ω,F ,P) → R is a law invariant

convex risk measure, (b) (x, ω) ∈ Rn × Ω → F (x, ξ(ω)) is a normal integrand (see

Definition 2.6.12), (c) for every x ∈ Rn, the function ω ∈ Ω → F (x, ξ(ω)) belongs

to Lp (Ω,F ,P), and (d) for every x̃ ∈ Rn there exists a neighborhood Vx̃ of x̃ and a

function h ∈ Lp (Ω,F ,P) such that F (x, ξ(·)) ≥ h(·), for every x ∈ Vx̃.
Assuming additionally that F (·, ξ) is a convex function w.p.1 ξ, as a consequence

of the epiconvergence of v̂N(·) to v(·), it follows that v̂N(x, ω)→ v(x) uniformly on

26Every coherent risk measure is also a convex risk measure. It is also true that every Optimized

Certainty Equivalent (OCE) risk measure is also a law invariant and convex risk measure. For

more details see Section 2.7 and Section 3.1.
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x ∈ K, for every (nonempty) compact set K ⊆ Rn. Therefore, assuming that X is

a nonempty compact set, it follows that w.p.1

v̂∗N → v∗, as N →∞, (1.0.58)

D
(
ŜN , S

)
→ 0, as N →∞. (1.0.59)

This completes the presentation of the main results of [71].

Now we present some results concerning exponential rates of convergence for

empirical estimates of some risk measures. It is worth mentioning that we are not

aware of any publication obtaining large deviations bounds results for the empirical

estimates of the optimal value and the optimal solutions of risk averse stochastic

programming problems. Indeed, one of the contributions of our work is precisely

to derive this type of results. There are, however, some large deviations results for

empirical estimates of some important type of risk measures, such as the Average

Value-at-Risk and more broadly the class of Optimized Certainty Equivalent (OCE)

risk measures. In [12] the author derived an exponential rate of convergence for the

empirical estimator of the AV@R1−α(·) risk measure27, for α ∈ [0, 1). He considered

separately the upper and lower deviations of the statistical estimator with respect to

its true counterpart. Different constants in the exponential rate of convergence were

obtained for each side of the deviation, as well as different classes of risk measures

were considered for each side. Let us present more details about these results. Let Z

be a bounded random variable that satisfies, without loss of generality, the following

inequalities

0 ≤ Z ≤ U < +∞ (1.0.60)

w.p.1, where U is a positive real number. Consider N ∈ N i.i.d. copies {Zi : 1 ≤
i ≤ N} of the random variable Z defined on a common probability space. First we

present the exponential bound for the upper deviation. In this setting, he obtained

results for the class of OCE risk measures (see Section 3.1, in particular, Definition

3.1.1 and Remark 3.1.2). The OCE of a random variable Z under φ ∈ Φ (see

Definition 3.1.1) is defined as

µφ(Z) := inf
s∈R
{s+ Eφ (Z − s)} . (1.0.61)

Its empirical estimator is given by

µ̂φ
(
Z1, . . . , ZN

)
:= inf

s∈R

{
s+

1

N

N∑
i=1

φ
(
Zi − s

)}
. (1.0.62)

27As it is common place in the literature the author denoted this risk measure by the term

Conditional Value-at-Risk. We prefer to adopt this other nomenclature here in order to avoid any

possible confusion with conditional risk measures considered in multistage risk averse stochastic

programming problems (see Section 2.7).
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The author proved that the following inequality holds28

P
[
µ̂φ(Z1, . . . , ZN) ≥ µφ(Z) + ε

]
≤ exp

{
− 2ε2N

φ(U)2

}
, (1.0.63)

for every ε > 0 and N ∈ N. The AV@R1−α(·) risk measure, for α ∈ [0, 1), is an

example of OCE risk measure (see also Example 3.1.8). In fact, AV@R1−α(·) =

µφ1−α(·), where φ1−α(z) := 1
1−α max {z, 0}. In that case, equation (1.0.63) becomes

P
[
ÂV@R1−α(Z1, . . . , ZN) ≥ AV@R1−α(Z) + ε

]
≤ exp

{
−2

(1− α)2ε2

U2
N

}
.

(1.0.64)

For the lower deviation bound the author supposed additionally that Z has a con-

tinuous distribution function. The lower deviation bound was obtained for the

AV@R1−α risk measures, for α ∈ [0, 1), rather than for the whole class of OCE risk

measures (satisfying φ(U) < +∞). The author stated that

P
[
ÂV@R1−α(Z1, . . . , ZN) ≤ AV@R1−α(Z)− ε

]
≤ 3 exp

{
−(1/5)(1− α)

ε2

U2
N

}
,

(1.0.65)

for any ε > 0 and N ∈ N. Note that this bound is sharper than the other one for

sufficiently large N for α greater than 0.929. It is worth mentioning that the upper

deviation bound (1.0.63) was derived using: (a) the McDiarmid’s bounded difference

inequality (see [44]) to obtain an exponential bound for

P
[
µ̂φ(Z1, . . . , ZN)− Eµ̂φ(Z1, . . . , ZN) ≥ ε

]
, (1.0.66)

and (b) the fact that Eµ̂φ(Z1, . . . , ZN) ≤ µφ(Z) (see [12, Proposition 3.1]).

In [73, Section 6.6.1] the authors derived statistical properties of the empirical

estimator of the Average Value-at-Risk risk measure. In their analysis it was taken

as given an integrable (not necessarily bounded) random variable Z and a sample

{Z1, . . . , ZN} of i.i.d. random variables defined on the same probability space having

the same distribution as Z. Besides proving the strong consistency of the empirical

estimator and besides deriving asymptotic results for this estimator, the authors also

derived large deviations-type bounds for the convergence of ÂV@R1−α(Z1, . . . , ZN)

to AV@R1−α(Z). They followed a different approach from the one used in [12].

It is worth mentioning that our results were derived following a similar approach,

although there are important differences between their range of applicability and

some involved hypotheses. We consider statistical estimators related to the optimal

28Since φ ∈ Φ and U > 0, we have that 0 < φ(U) ≤ +∞. Note that the inequality (1.0.63) is

trivially satisfied if φ(U) = +∞, however, in that case, we do not obtain an exponential rate of

convergence. When φ(U) < +∞, it follows that β = 2 (ε/φ(U))
2

is positive.
29On risk management applications one usually takes α ∈ {0.95, 0.99, 0.997}.
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value and optimal solutions of a risk averse stochastic programming problem whereas

in [73, Section 6.6.1] the result was obtained for a fixed random variable Z. Indeed,

our results also extend to the multistage setting. Moreover, while in [73, Section

6.6.1] the results are obtained for the Average Value-at-Risk risk measure, our results

are applicable to a broader class of risk measures. In fact, we derive large deviations-

type results for the class of OCE risk measures, where φ ∈ Φ is assumed Lipschitz

continuous. For finishing this brief comparison it is worth mentioning that differently

from [12] and similarly to [73, Section 6.6.1] we do not restrict our analysis to

bounded random variables. Now we give more details about exponential bound

results obtained in [73, Section 6.6.1].

Let us begin by recalling the fact that (see also Proposition 3.1.13):

argmin
s∈R

{
h(s) := s+

1

1− α
E [Z − s]+

}
(1.0.67)

is equal to the set of α-quantiles [q−α (Z), q+
α (Z)] of Z (see Section 2.3). This set is

a nonempty bounded closed interval, whenever α ∈ (0, 1). So, let us suppose that

α ∈ (0, 1)30. Taking any real numbers u < q−α (Z) ≤ q+
α (Z) < U , it follows that

∆ := 1
2

min{h(u)−AV@R1−α(Z), h(U)−AV@R1−α(Z)} > 0. For u ≤ s ≤ U , assume

that the random variables Ws := [Z − s]+ − E [Z − s]+ are σ-sub-Gaussian31, that

is,

Ms(z) := E exp (Wsz) ≤ exp{σ2z2/2}, for all z ∈ R. (1.0.68)

It can be shown that (see [73, Proposition 6.63]):

P
[∣∣∣ÂV@R1−α(Z1, . . . , ZN)− AV@R1−α(Z)

∣∣∣ ≥ ε
]
≤ 8(U−u)

(1−α)ε
exp

[
−Nε2(1−α)2

32σ2

]
,

(1.0.69)

for any 0 < ε < ∆. Therefore, given a confidence level of θ ∈ (0, 1), if we take the

sample size

N ≥ log

(
8(U − u)

(1− α)θε

)
32σ2

(1− α)2ε2
, (1.0.70)

then the probability in (1.0.69) is less than or equal to θ. This completes the

presentation of selected results in [73, Section 6.6.1].

As we have said previously, to the best of our knowledge sample complexity

estimates for risk averse stochastic programming problems were not derived yet

30When α = 0 it is a well-known fact (see also Proposition 3.1.11 and Remark 3.1.12) that

AV@R1(Z) = EZ, for any integrable random variable Z.
31In [73, Section 6.6.1] the authors suppose that the family of random variables Ws, for u ≤

s ≤ U , are (σ, a)-sub-exponential instead of σ-sub-Gaussian, where σ and a are positive constants.

That means that the inequality (1.0.68) is satisfied for |z| ≤ a rather than for all z ∈ R. Of

course, every σ-sub-Gaussian random variable is a (σ, a)-sub-exponential random variable, but the

converse is not true in general. Therefore, we are assuming here a more strict condition. This

simplifies a little bit the exposition.
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in the literature. One contribution of this thesis is to derive sample complexity

estimates for a class of risk averse stochastic programming problems. We derive

results for static or two-stage problems and for dynamic or multistage problems

that have a finite number of stages.

In this thesis, we consider the class of Optimized Certainty Equivalent (OCE)

risk measures. As far as we can tell the class of OCE risk measures is a sufficiently

broad class. In fact, many risk averse stochastic problems solved in practice [19,

39, 51, 57, 70, 72, 76] adopts a risk measure that belongs to this class32 (see also

Example 3.1.8). We recall some properties of OCE risk measures in Section 3.1 and

establish new results that we use in the sequel.

The remainder of this thesis is organized as follows. In Chapter 2 we present

some background material, such as known propositions and definitions, that are

used along the thesis. Our objective in doing so is to make the thesis more self-

contained. Although we prove some results in this chapter, in many occasions the

proofs are omitted and we just give a pointer to the standard literature in case one

wishes to have more details. In Sections 2.1.1 and 2.1.2 we give more details about

the derivation of sample complexity estimates for static and dynamic, respectively,

risk neutral stochastic programming problems. We derive the results by using the

uniform exponential bound theorem (see Theorem 2.1.5). We follow this approach

here because we use this particular tool for extending the sample complexity results

to the risk averse setting. As mentioned previously, we extend in Section 2.1.2 the

analysis done in [69]. Here we derive the results considering slightly weaker regularity

assumptions. Moreover, we allow the parameters T and δ to be, respectively, T ≥ 3

and 0 ≤ δ < ε, instead of T = 3 and δ = ε/2. These are minor differences with

respect to [68]. What we consider is the most important difference, is that working

directly with T -stage problems it is possible to show that the sample complexity

of multistage problems grows even faster than what a first look in the estimate

provided in [69] for 3-stage problems might suggest. The remainder of Chapter 2

can be skipped without loss and it can be consulted as the need arises.

Starting from Chapter 3, most of the results presented in this thesis are new.

In Chapter 3 we derive the sample complexity estimates for static stochastic pro-

gramming problems with OCE risk measures. We recall in Section 3.1 the definition

of this class of risk measures and provide some of its properties. In Section 3.2

we present the extended formulation for this class of problems, and explain the

approach used for deriving the sample complexity estimates by using the theory

already developed for risk neutral problems. It is worth mentioning that the de-

veloped theory cannot be applied directly, since when we deal with the extended

formulation the feasible set of the optimization problem becomes unbounded. We

32Although it is worth noting that most of these references never mention that the considered

risk measure is an OCE risk measure.
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properly derive the sample complexity estimates in Section 3.3. We obtain a lower

bound for the probability of the event (1.0.14) that is valid for every N ∈ N and

that approaches one exponentially fast when we make N to infinity. The estimate

is akin to the one obtained for the risk neutral case, although the dependence on

some problem data parameters differs. One important difference is the dependence

with respect to the parameter L(φ), that is the Lipschitz constant of the function

φ ∈ Φ (see Section 3.1). Our estimate also provides a theoretical guarantee that

static or two-stage stochastic programming problems with OCE risk measures can

be efficiently approximated by Monte Carlo sampling-based approaches. Now, the

result depends not only in not asking for obtaining a too much accurate solution of

the true problem (ε > 0 too small), but also in not using an OCE risk measure with

L(φ) that is too large.

In Chapter 4 we extend the results of Chapter 3 considering the dynamic or mul-

tistage stochastic programming problems with nested OCE risk measures. Similar

to the risk neutral setting, the derived sample complexity estimates for multistage

problems present an order of growth that is even faster than the exponential with

respect to the number of stages T (see (4.0.75)). Indeed, a multiplicative term

(T −1)2(T−1) appears when one obtain an estimate for the total number of scenarios

in the scenario tree.

One could ask if the sample complexity estimates obtained for stochastic pro-

gramming problems are in some sense tight. One possibility would be that the

derived estimates were too gross and much bigger than the “best possible” estimate.

Maybe much smaller sample sizes could be sufficient for guaranteeing that with a

desirable level of probability the SAA optimal solutions would be approximate op-

timal solutions of the true problem. In particular, one could ask if the exponential

growth of the sample complexity estimates for multistage problems with respect to

the number of stages is really an unavoidable phenomenon or if maybe we just have

not derived sufficiently tight estimates that do not present this behavior and, in

some sense, do not suffer from the curse of dimensionality. In Chapter 5 we have

shown that an order of growth exhibited by the sample complexity estimates derived

in [69] (see also Section 2.1.2) is unavoidable for some problems. We construct a

family of risk neutral T -stage problems whose members satisfy all the regularity con-

ditions assumed in order to derive the sample complexity estimates for multistage

problems and show that the number of scenarios needed for obtaining approximate

optimal solutions of the true problem with high probability grows even faster than

the exponential function with respect to T . This study was published in [53].
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Background material and preliminary results

2.1 Risk neutral stochastic programming prob-

lems

2.1.1 The static case

In this section we recall some sample complexity results on the SAA method for static

risk neutral stochastic programming problems. To the best of our knowledge, these

results were first developed in [75] for general stochastic programming problems.

This type of results were obtained previously for specialized kind of problems such

as problems with discrete decision variables (see [37]) and problems with a finite

number of scenarios (see [74]). Here we follow closely reference [73], although we

derive the results as a direct consequence of the uniform exponential bound theorem1

(see [73, Theorem 7.75]).

We consider the general static risk neutral stochastic programming problem

(SRN-SPP):

min
x∈X
{f(x) := EF (x, ξ)} , (2.1.1)

1As a consequence, some constants appearing in our estimates differs from their counterparts

in [73]. Of course, this is a minor difference between both presentations.
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where ξ = (ξ1, . . . , ξd) is a random vector defined on a probability space (Ω,F ,P);

x ∈ Rn are the decision variables; X ⊆ Rn is the feasible set and F : Rn × Rd → R
is a measurable function.

As discussed in Chapter 1, one difficulty in solving problem (2.1.1) is that it is

not possible, in general, to evaluate with accuracy the objective function f(x) at

x ∈ Rn. In fact, we have that f(x) is a d-dimensional integral. When it is possible

to obtain a random sample from ξ, the SAA method can be used to circumvent this

difficulty. In the SAA method, one takes a random sample {ξ1, . . . , ξN} of ξ and

considers the SAA problem:

min
x∈X

{
f̂N(x) :=

1

N

N∑
i=1

F (x, ξi)

}
. (2.1.2)

In the static case we usually assume that it is possible to evaluate F (x, ξ), for

x ∈ Rn and ξ ∈ supp(ξ). It turns out that given a sample realization of ξ the SAA’s

objective function f̂N can now be evaluated accurately. The SAA problem is usually

easier to solve than the “true” problem, although one must keep in mind that the

problem we are really trying to solve is problem (2.1.1).

In a nutshell, the sample complexity of the SAA method for SRN-SPP studies

how large the sample size N should be in order for (approximate) solutions of prob-

lem (2.1.2) be approximate solutions of problem (2.1.1) with high probability. In

order to obtain results of this nature, one must assume some regularity conditions to

be fulfilled by the problem instance. Let us recall some notation before proceeding.

We denote the optimal values of problems (2.1.1) and (2.1.2) by:

v∗ := inf
x∈X

f(x), and (2.1.3)

v̂∗N := inf
x∈X

f̂N(x), (2.1.4)

respectively. Given ε ≥ 0, we denote the set of ε-optimal solutions of problems

(2.1.1) and (2.1.2) by:

Sε := {x ∈ X : f(x) ≤ v∗ + ε}, (2.1.5)

ŜεN := {x ∈ X : f̂N(x) ≤ v̂∗N + ε}, (2.1.6)

respectively. When dealing with exact optimal solutions, i.e. ε = 0, we drop the

superscript and write S and ŜN instead of Sε and ŜεN , respectively.

Let us assume that the true optimization problem is solvable, i.e. S 6= ∅2. We

assume that the optimizer aims at obtaining an ε-solution of the true problem,

where ε > 0 is a given tolerance parameter. For such, he will solve the SAA problem

2In fact, this will follow from the regularity conditions used for deriving the sample complexity

estimates.
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obtaining a δ-optimal solution of this problem. This approach is guaranteed to work

whenever every δ-optimal solution of the SAA problem is an ε-solution of the true

problem, assuming that there exists a δ-optimal solution of the SAA problem3. So

let us consider the favorable event:[
ŜδN ⊆ Sε

]⋂[
ŜδN 6= ∅

]
. (2.1.7)

More rigorously, in the study of the sample complexity of the SAA method one

determines how large N should be in order to:

P
([
ŜδN ⊆ Sε

]⋂[
ŜδN 6= ∅

])
≥ 1− θ, (2.1.8)

where ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1) are the sample complexity parameters.

One strategy for deriving this kind of result consists of bounding from below the

probability of the event:

sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≥ ε− δ

2
, (2.1.9)

in terms of N and ε− δ > 0. The uniform exponential bound theorem is a key tool

for obtaining such an estimate. Before presenting this theorem, let us consider the

following regularity conditions:

(A1) For every x ∈ X, f(x) = EF (x, ξ) is finite.

(A2) There exists σ ∈ R+ such that F (x, ξ) − f(x) is a σ-sub-Gaussian random

variable, for every x ∈ X, that is:

Mx(s) := E exp{s (F (x, ξ)− f(x))} ≤ exp{σ2s2/2}, ∀s ∈ R.

(A3) There exists a measurable function χ : supp(ξ)→ R+ whose moment generat-

ing function Mχ(s) is finite, for s in a neighborhood of zero, such that

|F (x, ξ)− F (x′, ξ)| ≤ χ(ξ) ‖x− x′‖ , (2.1.10)

for all x′, x ∈ X and ξ ∈ E ⊆ supp{ξ}, where P [ξ ∈ E] = 1.

(A4) X ⊆ Rn is a nonempty compact set with diameter D.

(A5) {ξi : i ∈ N} is an independent and identically distributed (i.i.d.) sequence of

random vectors defined on a probability space (Ω,F ,P) such that ξ1 d∼ ξ.

3If ŜδN = ∅, then ŜδN ⊆ Sε immediately. However this situation is not favorable, since the

optimizer does not obtain an ε-solution of the true problem.
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Remark 2.1.1. In principle, the function F (x, ξ) restricted to the set X × supp(ξ)

can assume the values ±∞ (see Example 2.1.2). Let us point out that this is not a

frivolous mathematical generality. Later we will show that two-stage stochastic pro-

gramming problems can be cast as static problems. Moreover, for two-stage stochastic

problems, let us recall that F (x, ξ) = +∞, whenever the feasible set of the second

stage problem, that depends on x and on ξ, is empty.

Of course, the regularity conditions (A1)-(A4) impose some restrictions on the

problems instances that we will consider here. Assumption (A1) guarantees that

F (x, ξ) is finite for almost every ξ ∈ supp(ξ), since the random variable F (x, ξ) has

finite expected value. This means that there exists a measurable set Ex ⊆ supp(ξ)

such that P[ξ ∈ Ex] = 1 and F (x, ξ) ∈ R, for every ξ ∈ Ex. For two-stage stochastic

programming problems this implies that the recourse is relatively complete. Note

that (A1) does not imply, in general, that there exists a measurable set E that has

probability 1 such that F (x, ξ) is finite, for every ξ ∈ E and x ∈ X. However,

assumption (A3) does imply that stronger condition. In fact, by assumption (A3),

it follows that:

0 ≤ |F (x′, ξ)− F (x, ξ)| ≤ χ(ξ) ‖x′ − x‖ < +∞, ∀x′, x ∈ X, ∀ξ ∈ E. (2.1.11)

Therefore, it follows that F (x, ξ) is finite, for every x ∈ X and ξ ∈ E. �

The following example is a modification of the one presented in [9, Page 109].

We show that even if the problem data satisfies the regularity (A1)-(A4), the cost

function F (x, ξ) can assume non-finite values, for some x ∈ X and ξ ∈ supp ξ.

Example 2.1.2. Consider the feasible set X = [0, 1] ⊆ R and the random data ξ

having the following c.d.f.

Hξ(z) =

 0, if z ≤ 0

exp

{
− 1

z3

}
, if z > 0

. (2.1.12)

Note that supp ξ = [0,∞). Now, consider the following function:

F (x, ξ) := inf {y ≥ 0 : ξy = 1− x} . (2.1.13)

Note that (x, 0) ∈ X×supp ξ, for every 0 ≤ x ≤ 1. Moreover, observe that F (x, 0) =

∞, for every x ∈ [0, 1). Therefore, it is not true that F (x, ξ) is finite, for every

x ∈ X and ξ ∈ supp ξ. However, it is worth noting that P [ξ = 0] = 0 and F (x, ξ) =

(1 − x)/ξ is finite, for every x ∈ X, whenever ξ > 0. Of course, P [ξ > 0] = 1.

In fact, one can verify that the problem data satisfy all the regularity conditions

(A1)-(A4)4. This fact is an elementary consequence of the following:

4Recall that condition (A5) is about the sampling method and not about the problem data.
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Claim 2.1.3. The random variable Z = 1/ξ is a ψ2-random variable (see Section

2.4).

Before proving the claim, let us show that it implies the validity of the conditions

(A1)-(A4). (A4) is valid since X = [0, 1]. Since Z is a ψ2-random variable, it

follows that Z − EZ is a σ-sub-Gaussian random variable, for some σ > 0. Since

F (x, ξ) = (1−x)Z w.p.1, it follows that f(x) := EF (x, ξ) is finite, for every x ∈ [0, 1]

and

F (x, ξ)− f(x) = (1− x) (Z − EZ) (2.1.14)

is a σ-sub-Gaussian random variable, for every x ∈ [0, 1]. Finally, note that

|F (x, ξ)− F (x′, ξ)| = 1

ξ
|x− x′| , (2.1.15)

for every x, x′ ∈ [0, 1] and ξ > 0. Since Z is a ψ2-random variable, we have in

particular that MZ(t) is finite, for every t ∈ R. Thus, condition (A4) is also satisfied.

Proof. (of the Claim 2.1.3) For showing that Z is a ψ2-random variable we verify

that its tails decay sufficiently fast to zero (see Proposition 2.4.2), i.e., that there

exists a finite K > 0 such that

P [|Z| ≥ s] ≤ exp
(
1− s2/K2

)
,∀s ≥ 0. (2.1.16)

Take any s > 0. Since ξ ≥ 0 w.p.1, we have that

P [|Z| ≥ s] = P [Z ≥ s]

= P [1/ξ ≥ s]

= P [ξ ≤ 1/s]

= exp
{
−s3

}
≤ exp

{
1− s2

}
.

Thus, (2.1.16) is satisfied with K = 1. This completes the proof of the claim.

In the next proposition we show that, as a consequence of the previous regularity

conditions, S 6= ∅ and P[ŜN 6= ∅] = 1.

Proposition 2.1.4. Let N ∈ N be given. The following statements hold:

(a) If conditions (A1) and (A3) hold, then f : X → R is Lipschitz continuous on

X.

(b) Assuming additionally that condition (A4) holds, then S 6= ∅.

(c) If conditions (A1) and (A3)− (A5) hold, then P[ŜN 6= ∅] = 1.
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Proof. Suppose that (A1) and (A3) hold. By (A3) there exists a measurable E ⊆
supp(ξ) that has probability 1 such that inequality (2.1.10) holds, for every x′, x ∈
X and ξ ∈ E. Moreover, since χ(ξ) has finite moment generating function in a

neighborhood of zero, Proposition 2.8.6 implies that:

E|χ(ξ)|k < +∞, (2.1.17)

for all k ∈ N. In particular, we have that M := Eχ(ξ) < +∞. Since (A1) is also

satisfied, we conclude that:

|f(x)− f(x′)| = |EF (x, ξ)− EF (x′, ξ)| (2.1.18)

= |E[F (x, ξ)− F (x′, ξ)]| (2.1.19)

≤ E |F (x, ξ)− F (x′, ξ)| (2.1.20)

= E
[
|F (x, ξ)− F (x′, ξ)|1{ξ∈E}

]
(2.1.21)

≤ E
[
χ(ξ) ‖x− x′‖1{ξ∈E}

]
(2.1.22)

= M ‖x− x′‖ , (2.1.23)

for all x, x′ ∈ X. Observe that the second equality is valid because F (x, ξ) and

F (x′, ξ) are both integrable by (A1)5. The third and fourth equalities hold because

P [ξ ∈ E] = 1. We obtain that f is M -Lipschitz continuous on X.

Additionally, if we assume that condition (A4) holds, we obtain that problem

(2.1.1) has an optimal solution, since X is a nonempty compact set.

Finally, let us consider that condition (A5) is also satisfied and let N ∈ N be

given. Since {ξi : i ∈ N} are identically distributed and ξ1 d∼ ξ, we have that:

P[ξi ∈ E] = 1, (2.1.24)

for all i ∈ N. It follows that:

1 ≥ P

[
N⋂
i=1

[ξi ∈ E]

]
≥ P

[
+∞⋂
i=1

[ξi ∈ E]

]
= 1. (2.1.25)

When ξi ∈ E, for all i = 1, . . . , N , we have that:∣∣F (x, ξi)− F (x′, ξi)
∣∣ ≤ χ(ξi) ‖x− x′‖ , (2.1.26)

for all x, x′ ∈ X and 0 ≤ χ(ξi) < +∞. So,∣∣∣f̂N(x)− f̂N(x′)
∣∣∣ ≤ 1

N

N∑
i=1

χ(ξi) ‖x− x′‖ , (2.1.27)

for all x, x′ ∈ X and 1
N

∑N
i=1 χ(ξi) < +∞, i.e. f̂N is Lipschitz continuous on X

w.p.1. Therefore, P[ŜN 6= ∅] = 1.

5It is not true, in general, that E[Z−Y ] = EZ−EY . Consider arbitrary (finite-valued) random

variables Z = Y satisfying EZ = +∞. Although Z − Y = 0 and E[Z − Y ] = 0, we have that

EZ − EY = +∞− (+∞) = +∞.
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Now we state the uniform exponential bound theorem (see [73, Theorem 7.75]).

Theorem 2.1.5. Consider a general SRN-SPP such as (2.1.1) and suppose that

conditions (A1)-(A5) are satisfied. Take any M̃ > M = Eχ(ξ) finite. Then, for

ε > 0 and N ∈ N, we have that:

P
[
sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≥ ε

]
≤ exp{−Nm}+ 2

[
2ρDM̃

ε

]n
exp

{
− Nε

2

32σ2

}
, (2.1.28)

where m ∈ (0,+∞] is a quantity depending on M̃ and χ(ξ), D and σ2 are constants

depending on the problem data, and ρ is a universal constant.

Proof. For a proof see [73, Sec. 7.2.10], particularly Theorems 7.73 and 7.75. Let

us point out that assumptions (A1) and (A5) were stated in the first paragraph of

reference’s section (see page 450 of [73]). Moreover, conditions (C2) and (C3) of

the reference were agglutinated in assumption (A2) in our presentation. Finally,

condition (C4) is just assumption (A2).

Remark 2.1.6. Our notation is slightly different from that of reference [73]. Here

we denote by M the expected value of χ(ξ), instead of L. We proceed in that way in

order to avoid any possible confusion to the constant L(φ) that will be defined when

we present the OCE risk measures (see section 3.1). The constant m ∈ (0,+∞] was

denoted by l on [73, Theorem 7.75]. Observe that it can assume the value +∞ and,

in that case, we assume the following convention:

exp{−∞} := lim
x→−∞

exp{x} = 0. (2.1.29)

�

Remark 2.1.7. (A glimpse on Large Deviation Theory) In order to give more details

about how m was obtained from the problem data, we give a very short presentation

of some concepts and result of the large deviation theory. All the results presented

here are taken from [73, Section 7.2.9]. For a more detailed presentation of this

topic, the reader should also consult [18, Chapter 2]. Let Z be a random variable.

We denote its moment generating function by MZ(s) := E exp{sZ} ∈ (0,+∞], for

every s ∈ R. It is well-known that MZ(·) is a convex function, MZ(0) = 1 and

domMZ is an interval of R. Suppose that EZ = µ ∈ R. Given {Z1, . . . , ZN} i.i.d.

copies of Z, the upper bound of Cramer’s Large Deviation theorem gives

P

[
1

N

N∑
i=1

Zi ≥ z

]
≤ exp {−NIZ(z)} (2.1.30)

for every z ≥ µ, where IZ(·) := (logMZ)∗ (·) is known as the LD rate function of Z

and ∗ denotes the convex conjugate operator. The rate function IZ(·) is a nonnegative
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convex function and IZ(µ) = 0. Note that IZ(·) attains its minimum value at z = µ.

If the moment generating function MZ(s) is finite for s in a neighborhood of s = 0,

then IZ(z) ∈ (0,+∞], for any z 6= 0, and satisfies

IZ(z) =
(z − µ)2

2σ2
+ o

(
|a− µ|2

)
, (2.1.31)

where σ2 := Var [Z] < +∞. This finishes our presentation of this topic.

Now, let us consider the definition of m. Assuming that χ(ξ) has finite moment

generating function in a neighborhood of 0 and taking any M̃ > M := Eχ(ξ) ∈ R,

m is given by Iχ

(
M̃
)
∈ (0,+∞]. If {ξ1, . . . , ξN} are i.i.d. copies of ξ, then

P

[
1

N

N∑
i=1

χ(ξi) ≥ M̃

]
≤ exp {−Nm} (2.1.32)

for every N ∈ N. A similar bound is also valid for P
[

1
N

∑N
i=1 χ(ξi) ≤ M̃

]
where

M̃ < M and m = Iχ(M̃) ∈ (0,+∞]. This means that the sample mean 1
N

∑N
i=1 χ(ξi)

concentrates around the expected value M exponentially fast with respect to the sam-

ple size N . �

Remark 2.1.8. We have shown in Proposition 2.8.3 that the absolute constant

ρ > 0 appearing in equation (2.1.28) is less than or equal to 5. �

Theorem 2.1.5 shows that the SAA objective function f̂N(x) converges in prob-

ability to f(x), uniformly on X, as N → +∞. Now we present as its corollary the

sample complexity estimate of the SAA method for SRN-SPP satisfying the stated

regularity conditions.

Corollary 2.1.9. Consider a general SRN-SPP such as (2.1.1) and suppose that

conditions (A1) − (A5) are satisfied. Take any M̃ > M = Eχ(ξ). Let ε > 0,

0 ≤ δ < ε and N ∈ N be given. We have that:

P
([
ŜδN ⊆ Sε

]
∩ [ŜδN 6= ∅]

)
≥ 1− exp{−Nm} − 2

[
4ρDM̃

ε− δ

]n
exp

{
−N(ε− δ)2

128σ2

}
,

(2.1.33)

where m := Iχ(M̃) ∈ (0,+∞], D = diamX and σ2 are constants depending on the

problem data; and ρ is a universal constant.

Proof. We begin by showing that:[
sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≤ ε− δ

2

]
⊆
[
ŜδN ⊆ Sε

]
. (2.1.34)
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If {ξ1, . . . , ξN} is such that ŜδN = ∅, then there is nothing to be done: ŜδN ⊆ Sε triv-

ially. Suppose that {ξ1, . . . , ξN} is such that the events
[
supx∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≤ ε−δ

2

]
and

[
ŜδN 6= ∅

]
occur. Assume x ∈ ŜδN . We have that:

f(x)− ε− δ
2

≤ f̂N(x) (2.1.35)

≤ v̂∗N + δ (2.1.36)

≤
(
v∗ +

ε− δ
2

)
+ δ (2.1.37)

= v∗ +
ε+ δ

2
, (2.1.38)

i.e. f(x) ≤ v∗+ε, therefore x ∈ Sε. Let us point out that we have applied Proposition

2.8.4 (observe that infx∈X f(x) > −∞ by Proposition 2.1.4) in the third inequality

above in order to conclude that:

|v̂∗N − v∗| =

∣∣∣∣ inf
x∈X

f̂N(x)− inf
x∈X

f(x)

∣∣∣∣ (2.1.39)

≤ sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ . (2.1.40)

We have also used the fact that the event
[
supx∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≤ ε−δ

2

]
occurs. By

Proposition 2.1.4 we have that:

1 ≥ P[ŜδN 6= ∅] ≥ P[ŜN 6= ∅] = 1, (2.1.41)

i.e. P[ŜδN 6= ∅] = 1. Applying Theorem 2.1.5 we conclude that:

P
([
ŜδN ⊆ Sε

]
∩ [ŜδN 6= ∅]

)
= P

[
ŜδN ⊆ Sε

]
(2.1.42)

≥ P
[
sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ < ε− δ

2

]
(2.1.43)

≥ 1− exp{−Nm} (2.1.44)

−2

[
4ρDM̃

ε− δ

]n
exp

{
−N(ε− δ)2

128σ2

}
, (2.1.45)

which proves the corollary.

Now, we present the result in terms of the three sample complexity parameters:

ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1). Given real numbers a, b, we denote max{a, b} by

a ∨ b.

Corollary 2.1.10. Consider a general SRN-SPP such as (2.1.1) and suppose that

conditions (A1) − (A5) are satisfied. Take any M̃ > M . Let ε > 0, 0 ≤ δ < ε,
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θ ∈ (0, 1) and N ∈ N be given. If the sample size N satisfies:

N ≥ 128σ2

(ε− δ)2

[
n log

(
4ρDM̃

ε− δ

)
+ log

(
4

θ

)]∨[
1

m
log

(
2

θ

)]
, (2.1.46)

where the constants m, M and ρ are as in the previous corollary, then:

P
([
ŜδN ⊆ Sε

]
∩ [ŜδN 6= ∅]

)
≥ 1− θ. (2.1.47)

Proof. Given ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1), just take N sufficiently large so that:

exp{−Nm} ≤ θ

2
, and (2.1.48)

2

[
4ρDM̃

ε− δ

]n
exp

{
−N(ε− δ)2

128σ2

}
≤ θ

2
(2.1.49)

are satisfied. The result follows from the previous corollary.

Now, let us present an important class of problems, known as two-stage stochas-

tic programming problems. As we have briefly discussed previously, this class of

problems can be cast as static stochastic programming problems. Consider the

general two-stage (risk neutral) stochastic programming problem:

min
x1∈X1

{
F1(x1) + E

[
inf

x2∈X2(x1,ξ)
F2(x2, ξ)

]}
, (2.1.50)

where ξ = (ξ1, . . . , ξd) is the random data; x1 ∈ Rn1 and x2 ∈ Rn2 are the first and

second stage decision variables, respectively; F1 : Rn1 → R is a continuous function

and F2 : Rn2×Rd → R is a normal integrand (see Definition 2.6.12); X1 ⊆ Rn1 is the

feasible set of the first stage problem and X2 : Rn1 × Rd ⇒ Rn2 is a closed-valued

multifunction (see Definition 2.6.2), where X2(x, ·) is measurable (see Definition

2.6.8), for every x ∈ Rn1 .

The optimal value function of the second stage problem is known as the recourse

function Q2 : Rn1 × Rd → R that is given by:

Q2(x1, ξ) := inf
x2∈X2(x1,ξ)

F2(x2, ξ). (2.1.51)

Under the conditions considered above, Q2(x1, ·) is a measurable function, for any

x1 ∈ Rn1 . In fact, given x1 ∈ Rn1 , we have that X2(x1, ·) is a closed-valued measur-

able multifunction and F2 is a normal integrand. It follows from Corollary 2.6.17

that Q2(x1, ·) is measurable.

In this class of problems, the optimizer has to make a decision x1 in the first

stage before knowing the realization of the random data ξ. After that, he observes
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ξ and must solve the second stage problem, given that x1 was already chosen and

that ξ is known:

min
x2∈X2(x1,ξ)

F2(x2, ξ). (2.1.52)

For casting two-stage stochastic programming problems as static ones, first note

that we can write:

F (x1, ξ) := F1(x1) +Q2(x1, ξ). (2.1.53)

Moreover, note that the objective-function of problem (2.1.50) is:

F1(x1) + E [Q2(x1, ξ)] = E [F1(x1) +Q2(x1, ξ)] = EF (x1, ξ). (2.1.54)

So, the same sample complexity results are valid for two-stage stochastic program-

ming problems. For closing this section let us just rewrite the regularity conditions

for two-stage problems. This will prepare the terrain to present the regularity con-

ditions for multistage stochastic programming problems.

(A1’) For every x1 ∈ X1, Q2(x1) := EQ2(x1, ξ) is finite.

(A2’) There exists σ ∈ R+ such that Q2(x1, ξ)−Q2(x1) is a σ-sub-Gaussian random

variable, for all x1 ∈ X1, that is:

Mx1(s) := E exp{s (Q2(x1, ξ)−Q2(x1))} ≤ exp{σ2s2/2}, ∀s ∈ R.

(A3’) There exists a measurable function χ : supp(ξ)→ R+ whose moment generat-

ing function Mχ(s) is finite, for s in a neighborhood of 0, such that:

|Q2(x1, ξ)−Q2(x′1, ξ)| ≤ χ(ξ) ‖x− x′‖ ,

for all x′1, x1 ∈ X and ξ ∈ E ⊆ supp ξ, where P [ξ ∈ E] = 1.

(A4’) X1 ⊆ Rn1 is a nonempty compact set with diameter D1.

(A5’) {ξi : i ∈ N} is an i.i.d. sequence of random variables defined on a probability

space (Ω,F ,P) such that ξ1 d∼ ξ.

Remark 2.1.11. Writing F (x1, ξ) = F1(x1) + Q2(x1, ξ), for every x1 ∈ Rn1 and

ξ ∈ Rd, and X = X1, it follows that all the regularity conditions above are equivalent

to the ones considered previously, excepting for condition (A3’). In fact,

|F (x1, ξ)− F (x′1, ξ)| = |F1(x1) +Q2(x1, ξ)− F1(x′1)−Q2(x′1, ξ)| (2.1.55)

that we cannot bound, in general, by an expression akin to the right hand side of

(2.1.10). Indeed, F1 was assumed just continuous, instead of Lipschitz continuous6

6Consider, for instance, Q2(x1, ξ) = Q2(x′1, ξ), for all x1, x
′
1 ∈ X1 and ξ ∈ Rd. Note that

item (A3’) is satisfied, although item (A3) is not, if we take a non-Lipschitz continuous function

F1 : X1 → R.
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This difference is irrelevant in order to derive the sample complexity results for

two-stage stochastic programming problems. In fact, note that:

f(x1) = F1(x1) + EQ2(x1, ξ), and (2.1.56)

f̂N(x1) = F1(x1) +
1

N

N∑
i=1

Q2(x1, ξ
i). (2.1.57)

So, the difference:

∣∣∣f̂N(x1)− f(x1)
∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

Q2(x1, ξ
i)− EQ2(x1, ξ)

∣∣∣∣∣
does not depend on the function F1. It follows that the uniform exponential bound

theorem can be applied for two-stage stochastic programming problems assuming

(A3’) instead of (A3). �

This finishes the presentation of the sample complexity results for static and

two-stage risk neutral stochastic programming problems. In the next section we

consider multistage problems.

2.1.2 The dynamic case

In this section we present the sample complexity estimates of the SAA method

for multistage risk neutral stochastic programming problems. To the best of our

knowledge, these results were first derived in [69].

Let us begin with the problem formulation. We follow closely [73, Section 3.1].

Consider the T -stage risk neutral stochastic programming problem

min
x1∈X1

{
F1(x1) + E|ξ1

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) +E|ξ[2] [...

+E|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]
. . .

]}
,

(2.1.58)

where {ξ1, ..., ξT} is a stochastic process defined on some probability space (Ω,F ,P).

For every t = 1, . . . , T , ξt is a dt-dimensional random vector and ξ1 is deterministic.

Here, xt ∈ Rnt , t = 1, ..., T , are the decisions variables, Ft : Rnt × Rdt → R, t =

2, . . . , T , are Carathéodory functions (see Definition 2.6.14), and Xt : Rnt−1×Rdt ⇒
Rnt , t = 2, ..., T , are measurable multifunctions. We assume that the function

F1 : Rn1 → R is continuous, and X1 ⊆ Rn1 is a nonempty closed set. Unless

otherwise stated, all these features are automatically assumed when we consider

multistage stochastic programs in this thesis.

Program (2.1.58) has a finite number of stages T ≥ 2. The case T = 2 was

already considered in the previous section. So, here we assume that T ≥ 3, although
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the derived results are also valid for T = 2. For each t = 1, . . . , T , ξ[t] := (ξ1, . . . , ξt)

represents the history of the stochastic process up to stage t. In this kind of problems,

one has to make a sequence of decisions x1, · · · , xT while the information about the

random process unfolds sequentially at the beginning of each stage. The vector ξ1 is

already known when the decision x1 ∈ X1 must be made, but the remaining random

vectors ξ2, . . . , ξT are unknown at this time. After x1 is chosen, the decision maker

observes a realization of the random vector ξ2 and must choose x2 ∈ X2(x1, ξ2) before

knowing ξ3, . . . , ξT . The process continues stage after stage, and, at the final stage

t = T , having already decided xT−1 ∈ XT−1(xT−2, ξT−1) in stage T − 1 and having

observed ξT at the begin of stage T , the optimizer must choose xT ∈ XT (xT−1, ξT ).

Therefore, each decision xt should depend only on the history up to stage t, that is

ξ[t], for t = 1, . . . , T . These are commonly refereed in the stochastic programming

literature as the nonanticipativity constraints.

The use of the conditional expectations in (2.1.58) instead of the unconditional

expectations has to deal with the fact that when one must choose xt at the begin

of stage t, the history of the process until stage t is already known by the decision

maker. In general, the distribution of the future uncertainties ξt+1, . . . , ξT could

depend on ξ[t]. Thus, one should make the decision xt in order to minimize the sum

of the t-stage cost “Ft(xt, ξt)” and the conditional expected costs of the future stages

t+ 1, . . . , T given that ξ[t] happened.

In the nested formulation (2.1.58) one stresses the fact that the optimizer must

solve a sequence of optimization problems at the begin of each stage t = 1, . . . , T .

This is particularly suitable for considering the dynamic programming equations7.

Problem (2.1.58) can be written as

min
x1∈X1

{f(x1) := F1(x1) +Q2(x1, ξ1)} , (2.1.59)

where

Q2(x1, ξ1) := E|ξ1
[
Q2(x1, ξ[2])

]
, (2.1.60)

7An equivalent way to present multistage stochastic programming problems is to consider the

decision variables xt as policy functions of the data process ξ[t] up to stage t. In this approach

a solution candidate of problem (2.1.58) is a decision policy {xt(·) : t = 1, . . . , T} defined on

(Ω,F ,P) that is adapted to the filtration
{
Ft := σ

(
ξ[t]
)
, t = 1, . . . , T

}
generated by the data

process ξ[t] up to stage t and that satisfies w.p.1 the feasibility conditions x1 ∈ X1, xt(ξ[t]) ∈
Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T . A policy is said to be implementable if it is adapted to the

filtration
{
Ft := σ

(
ξ[t]
)
, t = 1, . . . , T

}
and it is said to be feasible if it satisfies w.p.1 the feasibility

conditions x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T . Therefore a solution (if it exists)

of the T -stage stochastic programming problem is an implementable and feasible policy that min-

imizes the expected value E
[
F1(x1) + F2(x2(ξ[2])) + · · ·+ FT (x[T ])

]
. See Section [73, Section 3.1]

for more information about this topic, in particular its Remark 3 where the equivalence between

both formulations is discussed in details.
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and

Q2(x1, ξ[2]) = inf
x2∈X2(x1,ξ2)

{
F2(x2, ξ2) + Eξ[2]

[
inf

x3∈X3(x2,ξ3)
F3(x3, ξ3) + Eξ[3] [. . .

+E|ξ[T−1]

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]
. . .

]}
,

(2.1.61)

Given the history process ξ[2] up to stage t = 2, the function Q2(x1, ξ[2]) relates

each first-stage decision x1 to the conditional expected value of the total costs of

the stages t = 2, . . . , T assuming that the optimizer chooses the best possible de-

cisions x2, . . . , xT on the remaining stages t = 2, . . . , T . Of course when we say

that decisions x2, . . . , xT are the best possible ones, we are considering a specific

criterion to compare future decisions. In risk neutral problems, the conditional ex-

pectation given the available information about the data process is the functional

used to compare future decisions. Note also that Q2(x1, ξ[2]) is F2-measurable, thus

its value is unknown in stage 1. In stage 1, the optimizer must choose x1 in order

to minimize the sum of the first stage costs F1(x1) and the expected recourse cost

Q2(x1, ξ1) = E|ξ1Q2(x1, ξ[2]). The function Q2(x1, ξ[2]) is known as a cost-to-go func-

tion and it can also be obtained recursively, going backward in stages. For seeing

this, let us consider the last-stage problem

min
xT∈XT (xt−1,ξT )

FT (xT , ξT ) (2.1.62)

whose optimal value QT (xT−1, ξT ) depends on the decision vector xT−1 and data ξT .

Although the decision xT−1 depends on ξ[T−1], note that QT : RnT × RdT → R does

not depend directly on the terms ξ1, . . . , ξT−1. Observe that the last term of the

sum in (2.1.58) is

QT (xT−1, ξ[T−1]) := E|ξ[T−1]
[QT (xT−1, ξT )] . (2.1.63)

This function depends directly on the variables ξ[T−1], although QT (xT−1, ξT ) does

not. This dependence is due only to the conditional expectation in (2.1.63). Given

xT−2 and data ξT−1, the optimal value of the (T − 1)-stage problem is

QT−1(xT−2, ξ[T−1]) = inf
xT−1∈XT−1(xT−2,ξT−1)

{
FT−1(xT−1, ξT−1) +QT (xT−1, ξ[T−1])

}
(2.1.64)

Again, we can consider the expected value of this random variable with respect to

ξ[T−2]

QT−1(xT−2, ξ[T−2]) := E|ξ[T−2]
[QT−1(xT−2, ξT−1)] . (2.1.65)

Continuing this process backward until t = 2, we obtain that

Q2(x1, ξ[2]) = inf
x2∈X2(x1,ξ2)

{
F2(x2, ξ2) +Q3(x2, ξ[2])

}
(2.1.66)
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obtaining the mentioned recursion relationship.

The optimal value of problem (2.1.59) is

v∗ := inf
x1∈X1

{f(x1) = F1(x1) +Q2(x1, ξ1)} , (2.1.67)

and its set of ε-solutions is given by

Sε := {x1 ∈ X1 : f(x1) ≤ v∗ + ε} , (2.1.68)

where ε ≥ 0. When ε = 0 we write just S instead of S0. Note that S is the set of

first stage optimal solutions of the multistage problem considering the policy formu-

lation. The policy and nested formulations are linked by the dynamic programming

equations

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1(xt, ξ[t])

}
, (2.1.69)

for t = 2, . . . , T 8 in the following sense: an implementable policy x̄t(ξ[t]), t =

1, . . . , T , is optimal if and only if x̄1 is an optimal solution of the first stage problem,

i.e. x̄1 ∈ S, and for t = 2, . . . , T

x̄t(ξ[t]) ∈ argmin
xt∈Xt(x̄t−1(ξ[t−1]),ξt)

{
Ft(xt, ξt) +Qt+1(xt, ξ[t])

}
w.p.1. (2.1.70)

Note that in the policy formulation the optimal solution of a multistage stochastic

programming problem depends on the process data, since x̄t(·) is Ft-measurable.

In the sequel we discuss how one can use Monte Carlo sampling-based methods to

approximate problem (2.1.58) by one which has a finite number of scenarios. We

continue to denote the approximating problem as the SAA problem. Note that a

solution of the SAA problem considering the policy formulation consists of functions

of the sampled scenarios that are adapted to the sample history process. Therefore,

in general, the SAA optimal policy is not an implementable policy for the true

problem. However, one can still consider how well the first stage solution of the

SAA problem approximates the first stage solution of the true problem.

The sample complexity estimates in the multistage setting are obtained assuming

that the random data ξ2, . . . , ξT are stagewise independent. Let us present some of

the consequences of this assumption. First, note that under the stagewise indepen-

dent hypothesis the conditional distribution of ξt given ξ[t−1] (or equivalently Ft−1) is

equal to its unconditional or marginal distribution, for every t = 2, . . . , T . Moreover,

for every Borel-measurable function g : Rdt → R such that g(ξt) is integrable,

E|ξ[t−1]
g(ξt) = Eg(ξt) (2.1.71)

8For t = T , we define QT+1(·) appearing in the right-side of (2.1.69) as the zero function.
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is satisfied. Therefore, the following equality holds in the stagewise independent

case
QT (xT−1, ξ[T−1]) := E|ξ[T−1]

[QT (xT−1, ξT )]

= E [QT (xT−1, ξT )] .
(2.1.72)

This means that QT (·) does not depend on ξ[T−1], which implies that (see equation

(2.1.63)) QT−1(·) does not depend on the entire history process ξ[T−1] up to stage

T−1, but just on ξT−1 (and naturally also on xT−2). Continuing backward in stages,

we obtain that

Qt(xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{Ft(xt, ξt) +Qt+1(xt)} , and (2.1.73)

Qt(xt−1) := EQt(xt−1, ξt), (2.1.74)

for every t = T − 1, . . . , 2.

Let us recall that even in the static setting, it is in general not possible to evaluate

accurately the objective function f(x1) := F1(x1)+Q2(x1) = F1(x1)+EQ2(x1, ξ2) at

a point x1 ∈ Rn1 . Naturally, the situation gets even worse in the multistage setting.

Note that if T ≥ 3, then even the accurate evaluation of Q2(x1, ξ2) is not possible

anymore (except on trivial cases). Indeed, for evaluating Q2(x1, ξ2) exactly, one must

solve a (T−1)-stage stochastic programming problem. Fortunately, akin to the static

case, one can consider Monte Carlo sampling-based approaches for approximating

problem (2.1.58) by a problem that has a finite (and hopefully manageable) number

of scenarios.

We present two sampling schemes for obtaining a discrete state space stochastic

process that approximates the original one. In both procedures we build a scenario

tree to represent the stochastic process generated by the sampling scheme. We say

that the generated stochastic process is the SAA stochastic process as opposed to

the true stochastic process. In Section 2.2 we make an exposition about scenario

trees. A scenario tree is composed by a set of nodes N and a set of arcs A ⊆ N ×N .

The nodes are organized in T ≥ 2 levels, each one corresponding to the stages of

the T -stage stochastic program. The set of nodes of level t is denoted by Nt. There

is only one node at level 1 that is the root node ι1. Every node ιt+1 of level t+ 1 is

connected by an arc (ιt, ιt+1) ∈ A to a unique node ιt of level t, for t = 1, . . . , T − 1.

In that case, we say that ιt is the parent node a(ιt+1) of ιt+1. Equivalently, we say

that ιt+1 is a child node of ιt. Of course, a node can have more than one child and we

denote by Cιt ⊆ Nt+1 the set of all children nodes of ιt. The leaves nodes of the tree

are the nodes at level T . These nodes do not have any children and are also denoted

as the terminal nodes of the tree. In a scenario tree one moves from the root node

at level t = 1 to a leaf node at level t = T by following a path (ι1, ι2, . . . , ιT ), where

(ιt, ιt+1) ∈ A, for t = 1, . . . , T − 1. A scenario tree is also composed by a family

of positive real numbers ρ = {ρa : a ∈ A} satisfying condition (2.2.6). Take any

(ιt, ιt+1) ∈ A, where ιt ∈ Nt, ιt+1 ∈ Nt+1 and t < T . The quantity ρ(ιt,ιt+1) represents
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the conditional probability of moving from node ιt to node ιt+1 given that we are

at node ιt. Finally, a scenario tree is also composed by a family of real vectors

ξ = {ξιtt ∈ Rnt : ιt ∈ Nt, t = 1, . . . , T} that we assume satisfies condition (2.2.5). A

key assumption for implementing the sampling schemes to be described in the sequel

is that one is able to obtain independent observations ξjt+1 of the random vector ξt+1

conditional to the history process ξ[t] up to stage t < T . So, the distribution of every

ξjt+1 is equal to the distribution of ξt+1 given ξ[t].

First we consider the independent conditional sampling scheme. We begin by

associating the root node ι1 with the value of ξ1 that is already known at stage 1,

i.e. ξι11 := ξ1. Then, we obtain an i.i.d. sample ξj2, j = 1, . . . , N2, of ξ2
9, and create as

many nodes at level t = 2 as different values of {ξj2 : j = 1, . . . , N2}, connecting each

created node ι2 to the root node ι1 through the arc (ι1, ι2). By selecting appropriate

indices 1 ≤ j1 < · · · < jcardCι1
≤ N2, it follows that

cardCι1 = card
{
ξj2, j = 1, . . . , N2

}
= card

{
ξjk2 , k = 1, . . . , cardCι1

}
≤ N2.

(2.1.75)

We associate to each node ι2 ∈ Cι1 a vector ξι22 := ξjk2 in such a way that all different

vectors are related to one node of Cι1 . For every ι2 ∈ Cι1 define

ρ(ι1,ι2) :=
card{1 ≤ j ≤ N2 : ξj2 = ξι22 }

N2

> 0. (2.1.76)

This completes the definition of N2 = Cι1 . Note that
∑

ι2∈Cι1
ρ(ι1,ι2) = 1, and that

if ι2 6= ι′2, then ξι22 6= ξ
ι′2
2 .

We continue the definition of the scenario tree inductively for 2 ≤ t < T . Con-

sider as given N1 = {ι1}, Ns = ∪ιs−1∈Ns−1Cιs−1 , for s = 2, . . . , t, and A = {(ιs, ιs+1) :

ιs ∈ Ns, ιs+1 ∈ Cιs , s = 1, . . . , t− 1}. We also consider that there exists a family of

vectors {ξιss ∈ Rns : ιs ∈ Ns, s = 1, . . . , t} such that for every 2 ≤ s ≤ t, if ιs 6= ι′s
are nodes at level s, there exists 2 ≤ r ≤ s such that

ξa
s−r(ιs)
r 6= ξa

s−r(ι′s)
r . (2.1.77)

Consider also as given a family of positive numbers {ρa : a ∈ A} satisfying∑
ιs+1∈Cιs

ρ(ιs,ιs+1) = 1, (2.1.78)

for every ιs ∈ Ns and s = 1, . . . , t−1. For every node ιt ∈ Nt, we obtain a conditional

i.i.d. sample {ξιt,jt+1 : j = 1, . . . , Nt+1} of the random vector ξt+1 given that the history

process up to stage t is equal to ξt = ξιtt , ξt−1 = ξ
a(ιt)
t−1 , . . . , ξ1 = ξ

at−1(ιt)
1 . We create as

many children nodes Cιt as different values of {ξιt,jt+1 : j = 1, . . . , Nt+1} and connect

9Since ξ1 is deterministic, the marginal distribution of ξ2 is equal to the conditional distribution

of ξ2 given ξ1.
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every created node ιt+1 with ιt through the arc (ιt, ιt+1). By selecting appropriate

indeces 1 ≤ j1 < · · · < jcardCιt
≤ Nt+1, it follows that

cardCιt = card
{
ξιt,jt+1, j = 1, . . . , Nt+1

}
= card

{
ξιt,jkt+1 , k = 1, . . . , cardCιt

}
≤ Nt+1.

(2.1.79)

To every node ιt+1 ∈ Cιt , we associate a vector ξ
ιt+1

t+1 := ξιt,jkt+1 in such a way that all

different vectors are related to one node of Cιt . For every node ιt+1 ∈ Cιt , we define

ρ(ιt,ιt+1) :=
card{1 ≤ j ≤ Nt+1 : ξjt+1 = ξ

ιt+1

t+1 }
Nt+1

> 0. (2.1.80)

This completes the definition of Cιt . Repeating this procedure for every ιt ∈ Nt, we

construct all nodes Nt+1 at level t+ 1

Nt+1 = ∪ιt∈NtCιt . (2.1.81)

Note that ∑
ιt+1∈Cιt

ρ(ιt,ιt+1) = 1, (2.1.82)

for every ιt ∈ Nt. Let ιt+1 6= ι′t+1 be any nodes at level t + 1. If a(ιt+1) = a(ι′t+1),

then ξ
ιt+1

t+1 6= ξ
ι′t+1

t+1 . Otherwise their parents nodes ιt = a(ιt+1) and ι′t := a(ι′t+1) are

different, then by the induction hypothesis there exists 2 ≤ s ≤ t,

ξa
t+1−s(ιt+1)
s = ξa

t−s(ιt)
s 6= ξa

t−s(ι′t)
s = ξ

at+1−s(ι′t+1)
s .

We assume that all conditional samples at each stage are independent of each other.

This finishes the definition of the independent conditional sampling scheme.

This scheme can be used to approximate any stochastic process ξ = (ξ1, . . . , ξT )

by one that has finite state space. Note however that the scheme suffers from a

serious drawback. To fix the ideas, suppose that for every t = 2, . . . , T and every

realization ξ[t−1] of the history process up to stage t− 1 the conditional distribution

of the random vector ξt given ξ[t−1] is continuous. Therefore, we draw conditional

i.i.d. samples of a continuous random vector at every node of the tree. Moreover the

samples are also independent from each other. This implies that w.p.1 all samples are

different from each other. Thus, one needs to generate and store
∏t

s=2Ns vectors

at each level t = 2, . . . , T of the tree. Assuming that Nt ≥ N ≥ 2, for every

t = 2, . . . , T , we have to generate and store at least

1 +N + · · ·+NT−1 =
NT − 1

N − 1
= O

(
NT−1

)
(2.1.83)

number of vectors. This number grows exponentially with respect to the number

of stages T . This can be a serious limitation for the application of this scheme for

multistage problems with a large number of stages.
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In many applications one supposes that the stochastic process (or a suitable

transformation of it) is stagewise independent. Even in that case, if one generates

the scenario tree following the independent conditional sampling scheme, then, in

general, the SAA stochastic process will not inherit the stagewise independence

property from the true process. Many algorithms used to solve multistage stochastic

programming problems, like the Stochastic Dual Dynamic Programming (SDDP)

method (see [46]), take advantage of the stagewise independence hypothesis. In

fact, we have already pointed that if the random data is stagewise independent,

then the expected cost-to-go functions Qt(xt, ξ[t−1]) = Qt(xt), t = 2, . . . , T , do not

depend on the history process ξ[t−1] up to stage t − 1. This property implies that

the cuts generated in the stage t of the backward step of the method improves all

cost-to-go functions of this stage at once10.

The previous remarks motivate the consideration of a sampling scheme that is

able to approximate a stagewise independent stochastic process in such a way that:

(i) the number of samples does not grow exponentially with respect to the number

of stages,

(ii) the constructed SAA stochastic process has stagewise indepedent random data.

The following scheme is known as the identical conditional sampling scheme and

it accomplishes both tasks above. Given sample sizes N2, . . . , NT ∈ N, one draws

i.i.d. samples ξjt , j = 1, . . . , Nt, of the marginal distribution of ξt, for t = 1, . . . , T .

We also assume that the set of random vectors{
ξjt : t = 2, . . . , T, j = 1, . . . , Nt

}
(2.1.84)

is independent.

The following steps of the procedure are similar. At level t = 1 of the tree we

create the root node ι1 and relate with it the value of ξ1, i.e. ξι11 := ξ1. At level

t = 2, we create as many nodes as different realizations of {ξjt : j = 1, . . . , N2},
connecting each created node ι2 to the root node ι1 through the arc (ι1, ι2). We

select appropriate indeces 1 ≤ j1 < · · · < jcardCι1
such that

{ξj2 : j = 1, . . . , N2} = {ξjk2 : k = 1, . . . , cardCι1}, (2.1.85)

and associate to each node ι2 ∈ Cι1 a vector ξι22 := ξjk2 in such a way that all different

vectors are related to one node of Cι1 . For every ι2 ∈ Cι1 define

ρ(ι1,ι2) :=
card{1 ≤ j ≤ N2 : ξj2 = ξι22 }

N2

> 0. (2.1.86)

10Saying in a different way, the generated cuts in the stage t of the backward step are shared

between all cost-to-go of stage t.
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As in the previous sampling scheme, this completes the definition of N2 = Cι1 . We

also have that
∑

ι2∈Cι1
ρ(ι1,ι2) = 1, and that if ι2 6= ι′2, then ξι22 6= ξ

ι′2
2 .

For the remaining levels t = 3, . . . , T of the tree, we use the same sample ξ
ιt−1,j
t =

ξjt , j = 1, . . . , Nt, at every node ιt−1 at level t−1. We create as many children nodes

for ιt−1 as different values of ξjt , j = 1, . . . , Nt, connecting every children node ιt of

ιt−1 through an arc (ιt−1, ιt). We relate to each element of Cιt−1 a different element

of {ξjt , j = 1, . . . , Nt} and define

ρ(ιt−1,ιt) :=
card{1 ≤ j ≤ Nt : ξjt = ξιtt }

Nt

> 0, (2.1.87)

for every ιt ∈ Cιt−1 . This finishes the definition of the scenario tree.

Given a scenario tree (N ,A, {ξιtt : ιt ∈ Nt, t = 1, . . . , T}, {ρa : a ∈ A}) constructed

either way by some sampling scheme (such as any of the ones described previously),

we consider its associated stochastic process11 ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂T )

ξ̂(ι1, . . . , ιT ) := (ξι11 , ξ
ι2
2 , . . . , ξ

ιT
T ) (2.1.88)

defined on the set of all scenarios of the tree

S = {(ι1, . . . , ιT ) ∈ N1 × · · · × NT : ι2 ∈ Cι1 , ι3 ∈ Cι2 , . . . , ιT ∈ CιT−1
} (2.1.89)

where each scenario s = (ι1, . . . , ιT ) ∈ S has the following probability of occurring

ρs =
T−1∏
t=1

ριt,ιt+1 .

In the next proposition we show that if the scenario tree is constructed via the

identical conditional sampling scheme, then ξ̂ is stagewise independent. We also

provide formulas in either sampling schemes for the conditional expectation of a

function of ξ̂t+1 given the history process ξ̂[t] up to stage t. This is particularly

useful for deriving expressions of the cost-to-go functions under either the sampling

schemes considered previously.

Proposition 2.1.12. Take any integer T ≥ 3 and let N2, . . . , NT ∈ N be the sample

sizes. The following assertions hold:

(a) If the scenario tree is constructed via the identical conditional sampling scheme,

then ξ̂ =
(
ξ̂1, . . . , ξ̂T

)
is stagewise independent:

P̂
[
ξ̂2 = ξj22 , . . . , ξ̂T = ξjTT

]
=

T∏
t=2

card{1 ≤ i ≤ Nt : ξit = ξjtt }
Nt

(2.1.90)

=
T∏
t=2

P̂
[
ξ̂t = ξjtt

]
, (2.1.91)

for 1 ≤ jt ≤ Nt and t = 2, . . . , T .

11For more details, see Section 2.2.
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(b) Take any function g : Rt+1 → R, where 1 ≤ t ≤ T − 1 is given. If the scenario

tree is constructed either via the independent conditional sampling scheme or

the identical conditional sampling scheme, then

Ê
[
g
(
ξ̂t+1

) ∣∣∣ξ̂1 = ξι11 , . . . , ξ̂t = ξιtt

]
=

1

Nt+1

Nt+1∑
j=1

g
(
ξιt,jt+1

)
. (2.1.92)

Remark 2.1.13. In item (b), equation (2.1.92) simplifies, as one should expect, to

Ê
[
g
(
ξ̂t+1

) ∣∣∣ξ̂1 = ξι11 , . . . , ξ̂t = ξιtt

]
=

1

Nt+1

Nt+1∑
j=1

g
(
ξjt+1

)
= Ê

[
g
(
ξ̂t+1

)]
(2.1.93)

when the scenario tree is constructed via the identical conditional sampling scheme.

�

Proof. (a) Given 1 ≤ jt ≤ Nt, for t = 2, . . . , T , there exists a unique scenario

(ι1, ι
∗
2, . . . , ι

∗
T ) ∈ S such that ξ

ι∗t
t = ξjtt , for t = 2, . . . , T . It follows that

P̂
[
ξ̂2 = ξj22 , . . . , ξ̂T = ξjTT

]
= ρ(ι1,ι∗2,...,ι

∗
T ) = ρ(ι1,ι∗2)ρ(ι∗2,ι

∗
3) . . . ρ(ι∗T−1,ι

∗
T ) (2.1.94)

Now, note that

ρ(ι∗t−1,ι
∗
t ) =

card{1 ≤ i ≤ Nt : ξit = ξ
ι∗t
t }

Nt

(2.1.95)

=
card{1 ≤ i ≤ Nt : ξit = ξjtt }

Nt

, (2.1.96)

since ξ
ι∗t
t = ξjtt , for t = 2, . . . , T . This proves the first equality of item (a). Let us

show the second one. Take any 1 ≤ jt ≤ Nt, where 2 ≤ t ≤ T is given. We have

that

P̂
[
ξ̂t = ξjtt

]
=

∑
(ι1, . . . , ιT ) ∈ S

ξιtt = ξjtt

ρ(ι1,...,ιT ). (2.1.97)

Note that every node ιt−1 at level t−1 has one and only one child node ιt(ιt−1) ∈ Cιt−1

satisfying ξ
ιt(ιt−1)
t = ξjtt . Therefore, we can write the sum on the right-side of equation
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(2.1.97) as the iterated sum

P̂
[
ξ̂t = ξjtt

]
=

∑
ι2∈Cι1

· · ·
∑

ιt−1∈Cιt−2

∑
ιt+1∈Cιt(ιt−1)

· · ·
∑

ιT∈CιT−1

ρ(ι1,...,ιt−1,ιt(ιt−1),...,ιT )

=
∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιt−1∈Cιt−2

ρ(ιt−2,ιt−1) · ρ(ιt−1,ιt(ιt−1)) · · ·
∑

ιT∈CιT−1

ρ(ιT−1,ιT )

=
∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιt−1∈Cιt−2

ρ(ιt−2,ιt−1) · ρ(ιt−1,ιt(ιt−1)) · · ·
∑

ιT−1∈CιT−2

ρ(ιT−2,ιT−1)

=
...

=
∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιt−1∈Cιt−2

ρ(ιt−2,ιt−1) · ρ(ιt−1,ιt(ιt−1)),

where we have used above that
∑

ιs∈Cιs−1
ρ(ιs−1,ιs) = 1, for every ιs−1 ∈ Ns−1 and

s = T, . . . , t+ 1. Note also that

ρ(ιt−1,ιt(ιt−1)) =
card{1 ≤ i ≤ Nt : ξit = ξ

ιt(ιt−1))
t }

Nt

(2.1.98)

=
card{1 ≤ i ≤ Nt : ξit = ξjtt }

Nt

, (2.1.99)

for every ιt−1 ∈ Nt−1. Therefore, ρ(ιt−1,ιt(ιt−1)) = C does not depend on ιt−1 ∈ Nt−1.

It follows that

P̂
[
ξ̂t = ξjtt

]
= C

∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιt−1∈Cιt−2

ρ(ιt−2,ιt−1)

= C

=
card{1 ≤ i ≤ Nt : ξit = ξjtt }

Nt

,

using the fact that
∑

ιs∈Cιs−1
ρ(ιs−1,ιs) = 1, for every ιs−1 ∈ Ns−1 and s = 2, . . . , t− 1

in the second equality. This completes the proof of item (a).

(b) First, let us consider that the scenario tree was generated using the indepen-

dent conditional sampling scheme. We have that

Ê
[
g
(
ξ̂t+1

) ∣∣∣ξ̂1 = ξι11 , . . . , ξ̂t = ξιtt

]
=

∑
ιt+1∈Cιt

ρ(ιt,ιt+1)g
(
ξ
ιt+1

t+1

)
. (2.1.100)

For every ιt+1 ∈ Cιt , define J(ιt+1) := {1 ≤ j ≤ Nt+1 : ξιt,jt+1 = ξ
ιt+1

t+1 }. We have that

{1, . . . , Nt+1} =
⋃

ιt+1∈Cιt

J(ιt+1), (2.1.101)
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where this union is disjoint and each one of its members is a nonempty set. Moreover,

ρ(ιt, ιt+1)g
(
ξ
ιt+1

t+1

)
=

1

Nt+1

card J(ιt+1)g
(
ξ
ιt+1

t+1

)
(2.1.102)

=
1

Nt+1

∑
j∈J(ιt+1)

g
(
ξ
ιt+1

t+1

)
(2.1.103)

=
1

Nt+1

∑
j∈J(ιt+1)

g
(
ξιt,jt+1

)
(2.1.104)

Summing up, we obtain

Ê
[
g
(
ξ̂t+1

) ∣∣∣ξ̂1 = ξι11 , . . . , ξ̂t = ξιtt

]
=

1

Nt+1

∑
ιt+1∈Cιt

∑
j∈J(ιt+1)

g
(
ξιt,jt+1

)
(2.1.105)

=
1

Nt+1

∑
j∈

⋃
ιt+1∈Cι

J(ιt+1)

g
(
ξιt,jt+1

)
(2.1.106)

=
1

Nt+1

Nt+1∑
j=1

g
(
ξιt,jt+1

)
, (2.1.107)

which proves the result for the independent conditional sampling scheme. The re-

sult for the identical conditional sampling scheme follows immediately noting that

ξιt,jt+1 = ξjt+1, for every ιt ∈ Nt and j = 1, . . . , Nt+1, that is, we use the same sample

{ξjt+1 : j = 1, . . . , Nt+1} for generating the children nodes of every node at level

t = 1, . . . , T − 1.

It is possible to obtain sample complexity estimates in the multistage setting

for the SAA method considering that the scenario tree is generated using the in-

dependent conditional sampling scheme (see [69]). However, here we just present

the results assuming that the scenario tree is generated via the identical conditional

sampling scheme. As pointed out previously, this sampling scheme is particularly

appealing for computational implementations. The following result is an immediate

corollary of Proposition 2.1.12.

Corollary 2.1.14. Take any integer T ≥ 3 and let N2, . . . , NT ∈ N be the sam-

ple sizes. If we generate the scenario tree using the identical conditional sampling

scheme, then the following formulas for the SAA cost-to-go functions and the SAA

expected cost-to-go functions hold:

Q̂t

(
xt−1, ξ

j
t

)
= inf

xt∈Xt(xt−1,ξ
j
t)

{
Ft
(
xt, ξ

j
t

)
+ Q̂t+1(xt)

}
(2.1.108)

Q̂t(xt−1) =
1

Nt

Nt∑
j=1

Q̂t

(
xt−1, ξ

j
t

)
, (2.1.109)
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for 1 ≤ j ≤ Nt and t = 2, . . . , T 12.

Proof. The result follows immediately from item (a) of Proposition 2.1.12, since

ξ̂ =
(
ξ̂1, . . . , ξ̂T

)
is stagewise independent.

Before proceeding, we introduce some notation that will be used when we present

in the sequel the regularity conditions for a T -stage stochastic programming problem:

X0 := {0} ⊆ R, (2.1.110)

X1(x0, ξ1) := X1, ∀x0 ∈ X0, (2.1.111)

QT+1(xT ) := 0, ∀xT ∈ RnT+1 . (2.1.112)

We introduce these objects only for the uniformity of notation. Now we enumerate

some regularity conditions for a T -stage stochastic programming problem:

(M0) the random data ξ1, ξ2, . . . , ξT is stagewise independent.

(M1) the family of random vectors {ξjt : j ∈ N, t = 2, . . . , T} is independent and

satisfies ξjt
d∼ ξt, for all j ∈ N, and t = 2, . . . , T 13.

For each t = 1, . . . , T − 1:

(Mt.1) There exist a compact set Xt with finite diameter Dt such that Xt(xt−1, ξt) ⊆
Xt, for every xt−1 ∈ Xt−1 and ξt ∈ supp(ξt).

(Mt.2) For every xt ∈ Xt, Qt+1(xt) = EQt+1(xt, ξt+1) is finite.

(Mt.3) There exists a finite constant σt > 0 such that for any x ∈ Xt, the following

inequality holds

Mt,x(s) := E [exp (s(Qt+1(x, ξt+1)−Qt+1(x))] ≤ exp
(
σ2
t s

2/2
)
, ∀s ∈ R.

(2.1.113)

(Mt.4) There exists a measurable function χt : supp(ξt+1) → R+ whose moment

generating function Mχt(s) is finite, for s in a neighborhood of zero, such that

|Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)| ≤ χt(ξt+1) ‖x′t − xt‖ (2.1.114)

holds, for all x′t, xt ∈ Xt and ξt+1 ∈ Et+1 ⊆ supp ξt+1, where P [ξt+1 ∈ Et+1] = 1.

(Mt.5) W.p.1 ξt+1 the multifunction Xt+1(·, ξt+1) restricted to Xt is continuous (see

Definition 2.6.3).

12As usual we consider the boundary condition Q̂T+1(xT ) = 0, for every xT ∈ RnT .
13Since ξ1 is deterministic, it is not necessary to sample from it.
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We make some remarks about the stated conditions. Similar to the analysis

done in [69] and [73, Section 5.8.2], here we are assuming the stagewise independence

hypothesis (M0). As discussed previously this allows us to generate the scenario tree

using the identical conditional sampling scheme. In this thesis we present the sample

complexity estimates assuming always that the SAA scenario tree is constructed via

the identical conditional sampling scheme. This is accomplished by considering the

samples {ξjt : 1 =, . . . , Nt}, for t = 2, . . . , T , where N2, . . . , NT are the sample sizes.

(M1) asserts that this family of random vectors is independent and that ξjt
d∼ ξt,

for every j = 1, . . . , Nt and t = 2, . . . , T (compare with assumption (A5’) of the

static case). Item (M1.1) asserts that there exists a compact set X1 that contains

X1. Since X1 is assumed nonempty closed (see the paragraph following equation

(2.1.58)), this is equivalent to assume that X1 is compact (compare with assumption

(A4’) in the static case). For the remainder of the stages t = 2, . . . , T − 1, it is

assumed that the multifunctions Xt(xt−1, ξt) are uniformly bounded for xt−1 ∈ Xt−1

and ξt ∈ supp ξt. This allow us to apply the uniform exponential bound theorem

considering appropriate family of random variables indexed in Xt, for t = 1, . . . , T−1.

The set of assumptions (Mt.2) implies that the multistage problem has relatively

complete recourse (compare with assumption (A1’) of the static case). Assumptions

(Mt.2) and (Mt.3) are akin to assumptions (A2’) and (A3’), respectively, of the static

case. Finally, assumptions (Mt.5) are technical conditions that guarantee that w.p.1.

the SAA objective function f̂N2,...,NT (·) is continuous on X1 (see Proposition 2.1.15).

This implies that w.p.1 ŜN2,...,NT 6= ∅.
Before proceeding let us introduce some notation. Whenever we assume condi-

tions (Mt.4), for t = 1, . . . , T − 1, we denote the expected value of χt(ξt+1) by

Mt := Eχt(ξt+1). (2.1.115)

Since the random variable χt(ξt+1) ≥ 0 has finite moment generating function in a

neighborhood of 0, it follows that 0 ≤Mt < +∞, for t = 1, . . . , T−1. In Proposition

2.1.15 we consider some consequences of the stated regularity conditions.

Proposition 2.1.15. Consider a general T -stage stochastic programming problem

such as (2.1.58), where T ≥ 3 is an arbitrary integer. The following assertions hold:

(a) If the problem satisfies the regularity conditions (M0), (Mt.1), (Mt.2), and

(Mt.4), for t = 1, . . . , T − 1, then Qt+1(·, ξt+1) is a Lipschitz continuous func-

tion on Xt w.p.1, for t = 1, . . . , T−1. It also follows that Xt ⊆ domXt+1(·, ξt+1)

w.p.1 and Qt+1(·) is Mt-Lipschitz continuous on Xt, for t = 1, . . . , T − 1. In

particular, we conclude that the first stage objective function

f(x1) = F1(x1) +Q2(x1)

of the true problem restricted to x1 ∈ X1 is finite-valued and continuous and

the set of first stage optimal solutions S is nonempty.
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(b) Consider given the sample sizes N2, . . . , NT ∈ N. If the problem satisfies

the regularity conditions (M0), (M1), (Mt.1), (Mt.4) and (Mt.5), for t =

1, . . . , T − 1, and the SAA scenario tree is constructed using the identical

conditional sampling scheme, then the SAA objective function f̂N2,...,NT (x1)

restricted to the set X1 is finite-valued and continuous w.p.1. In particular,

P
[
ŜN2,...,NT 6= ∅

]
= 1.

Proof. Let us recall that the stagewise independent hypothesis (M0) implies that

the dependence of the cost-to-go functions Qt+1(·, ·) relative to the history process

ξ[t+1] up to stage t + 1 is limited only to the random vector ξt+1 instead of ξ[t+1],

for t = 1, . . . , T − 1. In particular, the expected cost-to-go functions Qt+1(·) do

not depend on the random data. The proof of item (a) is similar to the proof of

items (a) and (b) of Proposition 2.1.4. Note that condition (Mt.4) implies that,

for every ξt+1 ∈ Et+1, Qt+1(·, ξt+1) is χt(ξt+1)-Lipschitz continuous on Xt, where

Et+1 ⊆ supp ξt+1 satisfies

P [ξt+1 ∈ Et+1] = 1,

for t = 1, . . . , T − 1. In particular, we have that Qt+1(·, ξt+1) is a finite-valued

function on Xt, for every ξt+1 ∈ Et+1. Since

Qt+1(xt, ξt+1) = inf
xt+1∈Xt+1(xt,ξt+1)

{Ft+1(xt+1, ξt+1) +Qt+2(xt+1)} , (2.1.116)

it follows thatXt+1(xt, ξt+1) 6= ∅, for all xt ∈ Xt and ξt+1 ∈ Et+1, i.e. domXt+1(·, ξt+1)

⊇ Xt, for all t = 1, . . . , T − 1. Assuming conditions (Mt.2), for t = 1, . . . , T − 1, it

follows that

|Qt+1(x′t)−Qt+1(xt)| ≤ Eχt(ξt+1) ‖x′t − xt‖ (2.1.117)

= Mt ‖x′t − xt‖ , (2.1.118)

for every x′t, xt ∈ Xt. The first stage objective function of the true problem is just

f(x1) = F1(x1) +Q2(x1), where F1 : Rn → R is a finite-valued continuous function.

It follows that the restriction of f to the compact set X1 ⊇ X1 is continuous and

that S = argminx1∈X1
f(x1) 6= ∅, since X1 is nonempty compact. This completes

the proof of item (a).

Now, we prove item (b). Condition (Mt.5) says that there exists Ft+1 ∈ supp ξt+1

satisfying P [ξt+1 ∈ Ft+1] = 1 such that Xt+1(·, ξt+1) : Xt ⇒ Xt+1 is a continuous

multifunction, for every ξt+1 ∈ Ft+1 and for every t = 1, . . . , T − 1. Since conditions

(M1) and (Mt.4) also hold true, for t = 1, . . . , T − 1, we claim that the following

event has probability 1

E :=
T−1⋂
t=1

⋂
j∈N

[
ξjt+1 ∈ Et+1 ∩ Ft+1

]
. (2.1.119)
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This is a consequence of the following facts: (a) a countable intersection of almost

sure events14 is also an almost sure event, (b) P [ξt+1 ∈ Et+1 ∩ Ft+1] = 1, for every

t = 1, . . . , T − 1, and (c) ξjt+1
d∼ ξt+1, for every j ∈ N and t = 1, . . . , T − 115.

Take any sample sizes N2, . . . , NT ∈ N. We have that

EN2,...,NT :=
T−1⋂
t=1

Nt+1⋂
j=1

[
ξjt+1 ∈ Et+1 ∩ Ft+1

]
⊇ E , (2.1.120)

therefore P (EN2,...,NT ) = 1. Now, we show that whenever the event EN2,...,NT happens,

every SAA expected cost-to-go function

Q̂t+1(xt) =

Nt+1∑
j=1

Q̂t+1(xt, ξ
j
t+1), ∀xt ∈ Xt, (2.1.121)

is finite-valued and continuous on Xt, for t = 1, . . . , T − 1, where

Q̂t+1(xt, ξ
j
t+1) = inf

xt+1∈Xt+1(xt,ξ
j
t+1)

{
Ft+1(xt+1, ξt+1) + Q̂t+2(xt+1)

}
(2.1.122)

are the SAA cost-to-go functions, for t = 1, . . . , T − 1. As usual we set Q̂T+1(xT ) :=

0, for every xT ∈ XT , for uniformity of notation. For proving the result we show

that if Q̂t+1 : Xt → R is finite-valued and continuous, then Q̂t : Xt−1 → R is also

finite-valued and continuous, for t = T, . . . , 2. We also verify that Q̂T (·) : XT−1 → R
is finite-valued and continuous (base case in order to apply the induction step). Note

that

Q̂T (xT−1, ξT ) = QT (xT−1, ξT ), (2.1.123)

for every xT−1 ∈ XT−1 and ξT ∈ supp ξT .

Whenever the event EN2,...,NT happens, we have in particular that ξjT ∈ ET , for

every j = 1, . . . , NT . So, it follows from item (a) that

xT−1 ∈ XT−1 7→ QT (xT−1, ξ
j
T ) (2.1.124)

is finite-valued and continuous (since this is a Lipschitz continuous mapping), for

every j = 1, . . . , NT . It follows that

Q̂T (xT−1) =
1

NT

NT∑
j=1

QT (xT−1, ξ
j
T ), ∀xT−1 ∈ XT−1, (2.1.125)

is finite-valued and continuous. This shows the base case.

14That is, events having probability 1.
15Note that we are not using here the fact that the random vectors {ξjt+1 : j ∈ N, t = 1, . . . , T−1}

are independent.
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Now we prove the induction step. Assume that Q̂t+1 : Xt → R is finite-valued

and continuous for some t+ 1 ≤ T 16. We claim that

Q̂t(xt−1, ξ
j
t ) = inf

xt∈Xt(xt−1,ξ
j
t )

{
Ft(xt, ξ

j
t ) + Q̂t+1(xt)

}
,∀xt−1 ∈ Xt−1, (2.1.126)

is finite-valued and continuous, for every j = 1, . . . , Nt, whenever the event EN2,...,NT

happens. In fact, let us verify that the hypotheses of the Berge’s Maximum Theorem

(BMT) (see Proposition 2.6.4) hold whenever EN2,...,NT occurs. For such, take any

xt−1 ∈ Xt−1 and 1 ≤ j ≤ Nt. Note that

(i) xt−1 ∈ Xt−1 ⊆ domXt(·, ξjt ), since ξjt ∈ Et,

(ii) g : Xt×Xt−1 → R defined as g(xt, xt−1) := Ft(xt, ξ
j
t ) + Q̂t+1(xt) is continuous,

since Ft(·, ·) is a Carathéodory function and Q̂t+1(·) is continuous (induction

hypothesis),

(iii) Xt(·, ξjt ) is continuous at xt−1, since ξjt ∈ Ft,

(iv) Defining V := Xt−1 and noting that Xt(V, ξ
j
t ) ⊆ Xt (condition (Mt.1)), it

follows that V is a neighborhood of xt−1 in Xt−1 and the image of V through the

continuous multifunction Xt(·, ξjt ) is a compact metric space (see Proposition

2.6.6).

Therefore, the BMT implies that Q̂t(·, ξjt ) : Xt−1 → R is continuous at xt−1 ∈ Xt−1.

Since xt−1 and 1 ≤ j ≤ Nt are arbitrary, we conclude that Q̂t(·) : Xt−1 → R is

continuous. Thus, f̂N2,...,NT : X1 → R is continuous, whenever the event EN2,...,NT

occurs. Finally, since X1 is compact, it follows that

EN2,...,NT ⊆
[
ŜN2,...,NT 6= ∅

]
,

i.e. P
[
ŜN2,...,NT 6= ∅

]
= 1.

In Proposition 2.1.15 we considered sufficient conditions that guarantee the solv-

ability of the true and the SAA stochastic programming problems17. Now we apply

Theorem 2.1.5 for proving that, under appropriate regularity conditions, the prob-

ability that the first stage SAA objective function stays arbitrarily close to the first

stage true objective function uniformly in X1 approaches 1 exponentially fast with

respect to the sample sizes N2, . . . , NT . This result is an extension of Theorem

2.1.5 to the multistage setting. In the sequel, we apply it for obtaining the sample

complexity estimates of the SAA method for risk neutral stochastic programming

problems in the multistage setting.

16So, we are considering the range t = 2, . . . , T − 1.
17Of course, we can only state that the SAA problem is solvable w.p.1.
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Proposition 2.1.16. Take any integer T ≥ 3. Consider a T -stage stochastic

programming problem satisfying conditions (M0), (M1), and (Mt.1)-(Mt.4), for

t = 1, . . . , T − 1. Denote the stage sample sizes by N2, . . . , NT ∈ N, and suppose

that the scenario tree is constructed via the identical conditional sampling scheme.

Let M̃t > Mt = E [χt(ξt+1)] ∈ R+ be given real numbers, t = 1, . . . , T − 1. Then, for

any ε > 0, the following estimate holds

P
[

sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ ≥ ε

]
≤

T−1∑
t=1

(
exp

{
−Nt+1Iχt(M̃t)

}
+

2
[

2ρDtM̃t

ε/(T−1)

]nt
exp

{
− Nt+1ε2

32σ2
t (T−1)2

})
,

(2.1.127)

where Iχt(·) is the LD rate function (see Remark 2.1.7) of the random variable

χt(ξt+1), for t = 1, . . . , T − 1.

Proof. The idea of the proof is to bound from above w.p.1 the random quantity

sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ (2.1.128)

by a sum of random variables, such that we have a control of the tail decay of its

terms with respect to the sample sizes Nt+1, for t = 1, . . . , T − 1. In fact, we show

that we can take each term of the sum as

Zt := sup
xt∈Xt

∣∣∣∣∣ 1

Nt+1

Nt+1∑
j=1

[
Qt+1(xt, ξ

j
t+1)−Qt+1(xt)

]∣∣∣∣∣ , t = 1, . . . , T − 1. (2.1.129)

In the final step, we apply Theorem 2.1.5 for each Zt, t = 1, . . . , T − 1, obtaining

an upper bound for the probability of Zt be greater or equal than ε/(T − 1) as a

function that depends on the problem data and on the sample size Nt+1.

From (M1) and (Mt.4), t = 1, . . . , T − 1, it follows that the event

EN2,...,NT :=
T⋂
t=2

Nt⋂
j=1

[
ξjt ∈ Et

]
(2.1.130)

has probability 1, where Et are the measurable sets appearing in condition (Mt.4),

for t = 1, . . . , T − 1. We claim that whenever the event EN2,...,NT happens,

sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ ≤ T−1∑

t=1

Zt. (2.1.131)

Since f(x1) = F1(x1) + Q2(x1), f̂N2,...,NT (x1) = F1(x1) + Q̂2(x1) and F1(x1) is

finite, for every x1 ∈ X1, it follows that∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ =

∣∣∣Q̂2(x1)−Q2(x1)
∣∣∣ , (2.1.132)
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for every x1 ∈ X1. Therefore, it is sufficient to bound from above the expression

sup
x1∈X1

∣∣∣Q̂2(x1)−Q2(x1)
∣∣∣ . (2.1.133)

We divide the proof into two steps. In the first one, we show that whenever the

event EN2,...,NT occurs the following inequality holds

sup
xt∈Xt

∣∣∣Q̂t+1(xt)−Qt+1(xt)
∣∣∣ ≤ Zt + sup

xt+1∈Xt+1

∣∣∣Q̂t+2(xt+1)−Qt+2(xt+1)
∣∣∣ , (2.1.134)

for t = 1, . . . , T − 1. Let us prove this statement. Take any xt ∈ Xt, where 1 ≤ t ≤
T − 1 is arbitrary. By the triangular inequality, it follows that∣∣∣Q̂t+1(xt)−Qt+1(xt)

∣∣∣ ≤ ∣∣∣∣ 1
Nt+1

Nt+1∑
t=1

[
Qt+1(xt, ξ

j
t )−Qt+1(xt)

]∣∣∣∣+
1

Nt+1

Nt+1∑
t=1

∣∣∣Qt+1(xt, ξ
j
t )− Q̂t+1(xt, ξ

j
t )
∣∣∣ , (2.1.135)

using also that

Q̂t+1(xt) =
1

Nt+1

Nt+1∑
j=1

Q̂t+1(xt, ξ
j
t+1). (2.1.136)

The first term on the right-side of (2.1.135) is less than or equal to Zt. Applying the

inf-sup inequality (see Proposition 2.8.4) we obtain an upper bound for the second

term. For this, we need to verify that: (i) Xt+1(xt, ξ
j
t+1) 6= ∅, for every xt ∈ Xt and

for every j = 1, . . . , Nt+1, and

(ii) Qt+1

(
xt, ξ

j
t+1

)
= inf

xt+1∈Xt+1(xt,ξ
j
t+1)

{
Ft+1

(
xt+1, ξ

j
t+1

)
+Qt+2(xt+1)

}
> −∞,

for every xt ∈ Xt and j = 1, . . . , Nt+1. By item (a) of Proposition 2.1.15 both

conditions (i) and (ii) hold whenever the event EN2,...,NT occurs. Therefore,∣∣∣Qt+1(xt, ξ
j
t+1)− Q̂t+1(xt, ξ

j
t+1)
∣∣∣ =∣∣∣∣∣ inf

x∈Xt+1(xt,ξjt+1)

{
Ft+1

(
x, ξjt+1

)
+Qt+2(x)

}
− inf

x∈Xt+1(xt,ξjt+1)

{
Ft+1

(
x, ξjt+1

)
+ Q̂t+2(x)

}∣∣∣∣∣
≤ sup

x∈Xt+1(xt,ξjt+1)

∣∣∣Qt+2(x)− Q̂t+2(x)
∣∣∣

≤ sup
x∈Xt+1

∣∣∣Qt+2(x)− Q̂t+2(x)
∣∣∣ ,

(2.1.137)

since Xt+1 (xt, ξt+1) ⊆ Xt+1, for every xt ∈ Xt and ξt+1 ∈ Et+1 ⊆ supp ξt+1. Summing

up, we have shown that∣∣∣Q̂t+1(xt)−Qt+1(xt)
∣∣∣ ≤ Zt + sup

x∈Xt+1

∣∣∣Qt+2(x)− Q̂t+2(x)
∣∣∣ (2.1.138)
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holds, for every xt ∈ Xt. Taking the supremum in Xt we obtain that (2.1.135) holds,

for every t = 1, . . . , T −1, whenever the event EN2,...,NT happens. It follow that w.p.1

sup
x1∈X1

∣∣∣Q2(x1)− Q̂2(x1)
∣∣∣ ≤ Z1 + · · ·+ ZT−1 + sup

x∈RnT

∣∣∣QT+1(x)− Q̂T+1(x)
∣∣∣

= Z1 + · · ·+ ZT−1,

since QT+1(x) = 0 = Q̂T+1(x), for every x ∈ RnT .

Note that we can apply Theorem 2.1.5 for every Zt, t = 1, . . . , T − 1, since

conditions (M1) and (Mt.1)-(Mt.4) are satisfied. Thus, the following bound

P
[
Zt ≥

ε

T − 1

]
≤ exp

{
−Nt+1Iχt

(
M̃t

)}
+2

[
2ρDtM̃t

ε/(T − 1)

]nt
exp

{
− Nε2

32σ2
t (T − 1)2

}
,

(2.1.139)

holds, for every ε > 0 and Nt+1 ∈ N. Since[
sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ ≥ ε

]
∩ EN2,...,NT ⊆(

T−1⋃
t=1

[
Zt ≥

ε

T − 1

])
∩ EN2,...,NT

and P (EN2,...,NT ) = 1, it follows that

P
[

sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ ≥ ε

]
≤ P

(
T−1⋃
t=1

[
Zt ≥

ε

T − 1

])

≤
T−1∑
t=1

P
[
Zt ≥

ε

T − 1

]

≤
T−1∑
t=1

(
exp

{
−Nt+1Iχt

(
M̃t

)}
+

2

[
2ρDtM̃t

ε/(T − 1)

]nt
exp

{
− Nε2

32σ2
t (T − 1)2

})
.

This completes the proof of the proposition.

Let us make some remarks about Proposition 2.1.16. Note that it was not nec-

essary to assume conditions (Mt.5), for t = 1, . . . , T − 1, in order to derive the

exponential bound (2.1.127). Moreover, since f : X1 → R is continuous under

the hypotheses of Proposition 2.1.16, we have that f̂N2,...,NT (·) is bounded in X1,

whenever the event [
sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ < ε

]
(2.1.140)
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occurs, where ε > 0 is arbitrary. So, whenever this event occurs, it automatically

follows that ŜδN2,...,NT
6= ∅ provided that δ > 0. However, if δ = 0, then it is not

clear that ŜN2,...,NT 6= ∅ and some additional regularity conditions such as (Mt.5),

t = 1, . . . , T − 1, must be assumed in order to guarantee that the SAA problem is

solvable.

Akin to the static case, given ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1), it is possible to

obtain sample complexity estimates for a T -stage stochastic programming problem

applying Proposition 2.1.1618. In [69, 73] sample complexity estimates were derived

for arbitrary ε > 0 by taking T = 3 and δ := ε/2 > 0. In these references, instead of

conditions (Mt.4), it was assumed that there exists Mt ∈ R, t = 1, . . . , T − 1, such

that

|Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)| ≤Mt ‖x′t − xt‖ , (2.1.141)

for all x′t, xt ∈ Xt and w.p.1 ξt+1, t = 1, 2. One advantage of assuming these slightly

stronger regularity conditions is that, defining χt(ξT+1) := Mt, for t = 1, . . . , T − 1,

it follows that Iχt(M̃t) becomes equal to +∞, for every M̃t > Mt. So, one can

simplify the upper bound (2.1.127) getting rid of the terms

exp
{
−Nt+1Iχt

(
M̃t

)}
, (2.1.142)

for t = 1, . . . , T − 1, since they vanish in that case. However, we prefer to present

the result considering these slightly weaker regularity conditions. Here we also

consider the case δ = 0. When we derive in Chapter 5 a lower bound for the sample

complexity of a class of T -stage stochastic programming problems, it will become

clear that these two generalizations are important in order to make a fair comparison

between the derived upper and lower bounds for this class of problems.

In Proposition 2.1.17 we obtain the sample complexity estimates for the multi-

stage setting.

Proposition 2.1.17. Take any integer T ≥ 3. Consider a T -stage stochastic

programming problem that satisfies conditions (M0), (M1) and (Mt.1)-(Mt.4), for

t = 1, . . . , T − 1. Denote the sample sizes by N2, . . . , NT ∈ N and suppose that

the scenario tree is constructed via the identical conditional sampling scheme. Let

M̃t > Mt := E [χt(ξt+1)] ∈ R+, t = 1, . . . , T − 1, be arbitrary real numbers. For

ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1), define Ñ (ε, δ, θ) ⊆ N× · · · × N as:
(N2, . . . , NT ) ∈ NT−1 :

T−1∑
t=1

(
exp{−Nt+1Iχt(M̃t)}+

2
[

4ρDtM̃t

(ε−δ)/(T−1)

]nt
exp

{
− Nt+1(ε−δ)2

128σ2
t (T−1)2

})
≤ θ


(2.1.143)

18More precisely, this holds for 0 < δ < ε. For δ = 0, the result follows by invoking also

Proposition 2.1.15.
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If (N2, . . . , NT ) ∈ Ñ (ε, δ, θ) and δ > 0, then

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ 1− θ. (2.1.144)

If, additionally, conditions (Mt.5) are satisfied, for t = 1, . . . , T − 1, then (2.1.144)

also holds for δ = 0.

Proof. Before proceeding, let us introduce the following (local) notation:

Eε
N2,...,NT

(X1) :=

[
sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ < ε

]
, (2.1.145)

for ε > 0. Assume that conditions (M0), (M1) and (Mt.1)-(Mt.4) hold, for t =

1, . . . , T − 1. Take any ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1). Since (ε− δ)/2 > 0, we have

by Proposition 2.1.16 that

P
(
E

ε−δ
2

N2,...,NT
(X1)

)
≥ 1− θ, (2.1.146)

whenever (N2, . . . , NT ) ∈ Ñ (ε, δ, θ). Note that

E
ε−δ
2

N2,...,NT
(X1) ⊆

[
ŜδN2,...,NT

⊆ Sε
]
. (2.1.147)

Indeed, since X1 is a nonempty compact set and f is continuous on X1, it follows that

v∗ ∈ R. So, whenever the event E
ε−δ
2

N2,...,NT
(X1) occurs, it follows from Proposition

2.8.4 that ∣∣v̂∗N2,...,NT
− v∗

∣∣ ≤ sup
x1∈X1

∣∣∣f̂N2,...,NT (x1)− f(x1)
∣∣∣ < ε− δ

2
. (2.1.148)

So, if x ∈ ŜδN2,...,NT
, then

f(x)− ε− δ
2
≤ f̂N2,...,NT (x) ≤ v̂∗N2,...,NT

+ δ ≤
(
v∗ +

ε− δ
2

)
+ δ, (2.1.149)

i.e. x ∈ Sε. This proves that the inclusion (2.1.147) is always satisfied (if ŜδN2,...,NT
=

∅, then ŜδN2,...,NT
⊆ Sε is automatically satisfied).

Now, consider that δ > 0. In that case, since v̂∗N2,...,NT
is finite whenever the

event E
ε−δ
2

N2,...,NT
(X1) happens, it follows that ŜδN2,...,NT

6= ∅. We conclude that

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ P

(
E

ε−δ
2

N2,...,NT
(X1)

)
≥ 1− θ,

whenever (N2, . . . , NT ) ∈ Ñ (ε, δ, θ). Now, suppose additionally that conditions

(Mt.5), for t = 1, . . . , T − 1, are satisfied. From item (b) of Proposition 2.1.15 we
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obtain that P
[
ŜδN2,...,NT

6= ∅
]
≥ P

[
ŜN2,...,NT 6= ∅

]
= 1, for every δ ≥ 0. Therefore,

for given ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1), we have that

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ P

(
E

ε−δ
2

N2,...,NT
(X1) ∩

[
ŜδN2,...,NT

6= ∅
])

= P
(
E

ε−δ
2

N2,...,NT
(X1)

)
≥ 1− θ,

whenever (N2, . . . , NT ) ∈ Ñ (ε, δ, θ). This completes the proof of the proposition.

In general the number of scenarios of a SAA scenario tree constructed via the

identical conditional sampling scheme is at most equal to

T∏
t=2

Nt, (2.1.150)

where N2, . . . , NT ∈ N are the number of samples taken from each random vector ξt,

for t = 2, . . . , T . We have already pointed that if each random vector ξt, t = 2, . . . , T ,

has a continuous marginal distribution19, then the number of scenarios is exactly

equal to (2.1.150) w.p.1. Thus, in the multistage setting, we study how quantity

(2.1.150) grows with respect to: (a) the sample complexity parameters ε > 0, δ ∈
[0, ε), θ ∈ (0, 1), (b) the problem data such as Mt, σ

2
t and Dt, for t = 1, . . . , T − 1,

and (c) the number of stages T ≥ 3.

Consider the following quantity

Ñ(ε, δ, θ) := inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ Ñ (ε, δ, θ)

}
, (2.1.151)

where ε > 0, δ ∈ [0, ε), and θ ∈ (0, 1). Since Ñ (ε, δ, θ) 6= ∅20, the infimum in

(2.1.151) is achieved for some (N∗2 , . . . , N
∗
T ) ∈ Ñ (ε, δ, θ). In fact, the set in (2.1.151)

is discrete, since it is a subset of N. The quantity Ñ(ε, δ, θ) is an upper bound for the

sample complexity of T -stage stochastic programming problems satisfying the stated

regularity conditions. Maybe it is not easy to obtain a closed formula expression

for Ñ(ε, δ, θ); however it is not difficult to derive lower and upper estimates for this

quantity (see Lemma 2.1.18). In the sequel, we use these estimates in order to study

the behavior of Ñ(ε, δ, θ) with respect to the sample complexity parameters, the

problem data and the number of stages.

19Let us recall that we are assuming here the stagewise independent hypothesis.
20In fact, one just needs to take each Nt+1 sufficiently large, since Iχt(M̃t) > 0 and (ε−δ)2

128σ2
t (T−1)2

>

0, for t = 1, . . . , T − 1.
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Lemma 2.1.18. Take any integer T ≥ 3. Given θ ∈ (0, 1), consider the following

subset of NT−1:

N :=

{
(N2, . . . , NT ) ∈ NT−1 :

T−1∑
t=1

[exp {−β1,tNt+1}+ Ct exp {−β2,tNt+1}] ≤ θ

}
,

(2.1.152)

where β1,t, β2,t and Ct are positive real numbers, for t = 1, . . . , T − 1. Define the

following quantity

N := inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ N

}
. (2.1.153)

We have that N ⊆ N ⊆ N, where

N :=

{
(N2, . . . , NT ) :

exp{−β1,tNt+1} ≤ θ
2(T−1)

and

Ct exp{−β2,tNt+1} ≤ θ
2(T−1)

, for 1 ≤ t ≤ T − 1

}
,

N :=

{
(N2, . . . , NT ) :

exp{−β1,tNt+1} ≤ θ and Ct exp{−β2,tNt+1} ≤ θ,

for t = 1, . . . , T − 1

}
.

In particular,

inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ N

}
≤ N ≤ inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ N

}
.

(2.1.154)

Proof. Take any (N2, . . . , NT ) ∈ N. It follows that

T−1∑
t=1

[exp {−β1,tNt+1}+ Ct exp {−β2,tNt+1}] ≤
T−1∑
t=1

[
θ

2(T − 1)
+

θ

2(T − 1)

]
= θ,

(2.1.155)

i.e. (N2, . . . , NT ) ∈ N.

Now, take any (N2, . . . , NT ) ∈ N. Since each term exp {−β1,tNt+1} and Ct exp{
−β2,tNt+1} is nonnegative, for t = 1, . . . , T − 1, and their sum is less than or equal

to θ, it follows that each term is also less than or equal to θ, i.e. (N2, . . . , NT ) ∈ N.

This completes the proof of the inclusions N ⊆ N ⊆ N. Equation (2.1.154) follows

immediately from these inclusions.

Note that it is elementary to obtain closed form formulae for inf
{∏T

t=2Nt :

(N2, . . . , NT ) ∈ N
}

and inf
{∏T

t=2Nt : (N2, . . . , NT ) ∈ N
}

. In fact, (N2, . . . , NT ) ∈
N if and only if

Nt+1 ≥
⌈

1

β1,t

log

(
1

θ

)⌉
∨
⌈

1

β2,t

log

(
Ct
θ

)⌉
, (2.1.156)
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for t = 1, . . . , T − 1. Therefore,

inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ N

}
=

T−1∏
t=1

(⌈
1

β1,t

log

(
1

θ

)⌉
∨
⌈

1

β2,t

log

(
Ct
θ

)⌉)
.

(2.1.157)

Similarly, (N2, . . . , NT ) ∈ N if and only if

Nt+1 ≥
⌈

1

β1,t

log

(
2(T − 1)

θ

)⌉
∨
⌈

1

β2,t

log

(
2(T − 1)Ct

θ

)⌉
, (2.1.158)

for t = 1, . . . , T − 1. Therefore,

inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ N

}
=

T−1∏
t=1

(⌈
1
β1,t

log
(

2(T−1)
θ

)⌉
∨⌈

1
β2,t

log
(

2(T−1)Ct
θ

)⌉)
.

(2.1.159)

Now we discuss the implications of Lemma 2.1.18 on the sample complexity

estimate for T -stage stochastic programming problems. Consider a T -stage problem

satisfying conditions (M0), (M1), (Mt.1)-(Mt.5), for t = 1, . . . , T − 1. Let M̃t > Mt

be given real numbers and consider the sample complexity parameters ε > 0, δ ∈
[0, ε) and θ ∈ (0, 1). For such values, we have that

β1,t = Iχt

(
M̃t

)
, (2.1.160)

β2,t =
(ε− δ)2

128σ2
t (T − 1)2

, and (2.1.161)

Ct = 2

[
4ρDtM̃t(T − 1)

ε− δ

]nt
, (2.1.162)

for t = 1, . . . , T − 1.

Now, note that by taking T = 2 and using equation (2.1.156) we obtain that

Ñ(ε, δ, θ) is greater than or equal to[
1

Iχ1(M̃1)
log

(
1

θ

)]
∨

(
128σ2

1

(ε− δ)2

[
n1 log

(
4ρD1M̃1

ε− δ

)
+ log

(
2

θ

)])
. (2.1.163)

This recovers the sample complexity estimate obtained for 2-stage stochastic pro-

gramming problems (see estimate (2.1.46)). As discussed previously, for sufficiently

small values of ε− δ > 0 the second term of the maximum (2.1.163) is greater than

its first term. In that case, the sample complexity estimate for 2-stage problems is

just

N2 ≥

(
128σ2

1

(ε− δ)2

[
n1 log

(
4ρD1M̃1

ε− δ

)
+ log

(
2

θ

)])
. (2.1.164)

60 2017



CHAPTER 2. BACKGROUND MATERIAL AND PRELIMINARY RESULTS

In order to fix some ideas, we assume that

σ1 = σ2 = · · · = σT−1, (2.1.165)

D1M̃1 = D2M̃2 = · · · = DT−1M̃T−1, (2.1.166)

n1 = n2 = · · · = nT−1. (2.1.167)

Using again equation (2.1.156) we obtain that

Ñ(ε, δ, θ) ≥
T−1∏
t=1

(
128σ2

t (T−1)2)

(ε−δ)2

[
nt log

(
4ρDtM̃t(T−1)

ε−δ

)
+ log

(
2
θ

)])
≥ (T − 1)2(T−1)

(
128σ2

1

(ε−δ)2

[
n1 log

(
4ρD1M̃1

ε−δ

)
+ log

(
2
θ

)])T−1
(2.1.168)

Therefore, the sample complexity estimate for T -stage problems is like the estimate

obtained for 2-stage problems to the power of T − 1 multiplied by the factor

(T − 1)2(T−1).

Treating the number of stages T as a varying parameter, it follows that (2.1.168)

has an order of growth with respect to the T that is much greater than simply the

estimate obtained for static problems to the power of T − 1. Indeed, the factor

(T − 1)2(T−1) grows even faster than the factorial function T ! with respect to T .

Recall that the factorial function grows much faster than the exponential function

cT , for c > 1 constant. It is worth mentioning that in Chapter 5 (see also [53])

we show that this is an unavoidable phenomenon for some T -stage stochastic pro-

gramming problems. In fact, we have shown that even some problems satisfying

“nice” regularity conditions such as the ones considered here can present this kind

of behavior with respect to T .

Now, let us consider how the sample complexity parameters ε, δ and θ affects

estimate Ñ(ε, δ, θ). Ñ(ε, δ, θ) depends on ε and δ only through the difference ε− δ >
0. So, without loss of generality, take δ = 0. Of course, the sample complexity

estimate grows whenever we ask for obtaining a more accurate solution of the true

problem, i.e. for smaller values of ε > 0. Then, ceteris paribus21,

Ñ(ε) = O

(
1

ε2(T−1)

[
log

(
1

ε

)]T−1
)

(2.1.169)

when ε > 0 approaches 0. Furthermore, note that the sample complexity grows

whenever we ask for obtaining an approximate solution with higher degree of cer-

tainty, i.e. for θ > 0 small. The dependence of Ñ(ε, δ, θ) with respect to θ is of

order

Ñ(θ) = O

(
log

(
1

θ

)T−1
)
, (2.1.170)

21That is, considering the remaining parameters fixed.
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ceteris paribus.

It is worth noting that assumptions (2.1.165), (2.1.166), and (2.1.167) are not

essential for obtaining this order of growth. In fact, we can apply the same reasoning

by considering in (2.1.168) the following quantities

σ := min
1≤t≤T−1

σt, (2.1.171)

D := min
1≤t≤T−1

Dt, (2.1.172)

M̃ := min
1≤t≤T−1

M̃t, (2.1.173)

n := min
1≤t≤T−1

nt, (2.1.174)

respectively, instead of considering σ1, D1, M̃1, and n1.

In Chapter 4 we extend the analysis done here for multistage stochastic pro-

gramming problems with nested OCE risk measures.

2.2 Scenario Trees

In this section we make a detailed exposition of scenario trees that are objects

commonly used by the stochastic programming community for representing finite

state space stochastic processes ξ = (ξ1, . . . , ξT ), where T ≥ 2.

Let us begin by defining a directed rooted tree.

Definition 2.2.1. (directed rooted trees) A directed rooted tree is a tree (N ,A) in

which a node ι1 was selected as a root node, N is the set of nodes of the tree, and

A ⊆ N ×N is the set of arcs of the tree. Here we always assume that every arc of

the tree points away from the root ι1.

We always assume that N 6= ∅ is finite. Now, let us present some standard

terminology concerning trees. Take any directed rooted tree (N ,A) and let ι1 ∈ N
be its root node. ι1 is the unique node of the tree at level t = 1, i.e. N1 = {ι1},
where Nt is the set of nodes of the tree at level t ∈ N. For each node ι we consider

the set Cι ⊆ N of children of ι

Cι := {ι′ ∈ N : (ι, ι′) ∈ A} .

If Cι = ∅, then we say that ι is a leaf node of the tree or a terminal node. For t ≥ 2,

the set of nodes Nt at level t of the tree is given by

Nt := {ιt ∈ N : for s = 1, . . . , t− 1 there exists ιs+1 ∈ Cιs}. (2.2.1)

This means that the (unique) path (ι1, ι2, . . . , ιt) connecting the root node ι1 with

node ιt has length t. Since N is finite, Nt = ∅, for t > cardN . The depth of the

tree is given by

T := max{t ∈ N : Nt 6= ∅}. (2.2.2)
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Note that

N =
T⋃
t=1

Nt, (2.2.3)

and Nt∩Ns = ∅, for s 6= t. Except when otherwise stated, we assume that the path

connecting the root node to any leaf node has length T ≥ 2. Equivalently, we have

that Cι 6= ∅, for all ι ∈ Nt, and 1 ≤ t < T . The following equalities are also satisfied

N1 = {ι1}, N2 = Cι1 , N3 =
⋃
ι∈N2

Cι, . . . , NT =
⋃

ι∈NT−1

Cι. (2.2.4)

Every node ι 6= ι1 has a unique parent node a(ι) that is characterized as the unique

node that satisfies (a(ι), ι) ∈ A. Note also that ι ∈ Ca(ι).

In order to introduce scenario trees suppose that each node ι ∈ Nt is related to

a vector ξιt ∈ Rdt . We also assume that for each ι, ι′ ∈ Nt
ξa

t−s(ι)
s 6= ξa

t−s(ι′)
s , (2.2.5)

for some 2 ≤ s ≤ t ≤ T , if ι 6= ι′. For clarifying the notation, we define a0 := Id and

as := a ◦ as−1, for s = 1, . . . , T . This condition means that every node ιt at level t

can be distinguished from a different node ι′t at level t by looking at the sequences

of values associated with each node of the path that connect the root node to each

one of these nodes.

Let us also consider a family of positive22 numbers ρ := {ρa : a ∈ A} defined on

A that satisfies ∑
ι′∈Cι

ρ(ι,ι′) = 1 (2.2.6)

for every ι ∈ Nt, and t = 1, . . . , T − 1. The set of all paths from the root node to

the leaves nodes is

S := {(ι1, . . . , ιT ) ∈ N1 × · · · × NT : (ιt, ιt+1) ∈ A, for t = 1, . . . , T − 1} . (2.2.7)

Using ρ := {ρa : a ∈ A} we can associate a probability value for each complete

path23 or scenario of the tree

ρ(ι1,...,ιT ) :=
T−1∏
t=1

ρ(ιt,ιt+1). (2.2.8)

It is instructive to show that {ρ(ι1,...,ιT ) : (ι1, . . . , ιT ) ∈ S} really defines a probability

on S24 Since S is finite, we just need to verify that

ρ(ι1,...,ιT ) ≥ 0, ∀(ι1, . . . , ιT ) ∈ S, and (2.2.9)∑
(ι1,...,ιT )∈S

ρ(ι1,...,ιT ) = 1. (2.2.10)

22We assume that ρa > 0, for every a ∈ A.
23In the sense that the path begins at the root node of the tree and travels until one of its leaf

nodes.
24Or more precisely, on P(S).
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The first condition follows immediately from (2.2.8), since ριt,ιt+1 > 0, for every

t = 1, . . . , T − 1, whenever (ι1, . . . , ιT ) ∈ S. We can also write S in the following

way

S =
{

(ι1, . . . , ιT ) ∈ N1 × · · · × NT : ι2 ∈ Cι1 , ι3 ∈ Cι2 , . . . , ιT ∈ CιT−1

}
. (2.2.11)

Therefore, the sum (2.2.10) can also be written as the iterated sum∑
(ι1,...,ιT )∈S

ρ(ι1,...,ιT ) =
∑
ι2∈Cι1

∑
ι3∈Cι2

· · ·
∑

ιT∈CιT−1

ρ(ι1,...,ιT ) (2.2.12)

=
∑
ι2∈Cι1

∑
ι3∈Cι2

· · ·
∑

ιT∈CιT−1

ρ(ι1,ι2) . . . ρ(ιT−1,ιT ) (2.2.13)

=
∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιT−1∈CιT−2

ρ(ιT−2,ιT−1)

∑
ιT∈CιT−1

ρ(ιT−1,ιT ) (2.2.14)

=
∑
ι2∈Cι1

ρ(ι1,ι2) · · ·
∑

ιT−1∈CιT−2

ρ(ιT−2,ιT−1) (2.2.15)

... (2.2.16)

=
∑
ι2∈Cι1

ρ(ι1,ι2) = 1, (2.2.17)

using that
∑

ιt∈Cιt−1
ρ(ιt−1,ιt) = 1, for every ιt−1 ∈ Nt−1 and t = T, . . . , 2.

The value ρ(ιt,ιt+1) represents the conditional probability of going from node ιt ∈
Nt to node ιt+1 ∈ Cι ⊆ Nt+1 given that we are currently at node ιt. We are ready

to present the definition of a scenario tree that we consider in this thesis.

Definition 2.2.2. (scenario trees) A scenario tree τ := (N ,A, ξ, ρ) is a tuple sat-

isfying the following conditions:

(i) (N ,A) is a directed rooted tree with root node ι1 and such that every arc of

the tree points away from the root node.

(ii) the family of vectors ξ = {ξιt ∈ Rnt : ι ∈ Nt, t = 1, . . . , T} is such that condition

(2.2.5) is satisfied.

(iii) the family of positive numbers ρ := {ρa : a ∈ A} is such that condition (2.2.6)

is satisfied.

Given a scenario tree (N ,A, ξ, ρ), we consider, with a slight abuse of notation, its

associated stochastic process defined on the probability space (S,P(S), {ρs : s ∈ S})
of scenarios of the tree:

ξ : S → Rd = Rd1 × · · · × RdT

(ι1, . . . , ιT ) 7→ (ξι11 , . . . , ξ
ιT
T )

(2.2.18)
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The random vector ξt of stage t is just the projection of ξ on Rdt , for t = 1, . . . , T .

When we describe sampling schemes for approximating the true random data by

a finite state space stochastic process in Section 2.1.2, we detail a procedure that

generates a scenario tree. Then, the SAA stochastic process is just the stochastic

process associated to the generated scenario tree.

2.3 Quantiles

Definition 2.3.1. Let Z be a random variable and α ∈ [0, 1]. We say that z ∈ R is

an α-quantile of Z if the following conditions hold:

(a) P [Z ≤ z] ≥ α,

(b) P [Z ≥ z] ≥ 1− α.

The following result is well-known, but we present a proof for the sake of self-

containedness.

Proposition 2.3.2. Let Z be a random variable and α ∈ (0, 1) be arbitrary. Define

the following quantities:

q−α (Z) := inf {z ∈ R : P [Z ≤ z] ≥ α} , and (2.3.1)

q+
α (Z) := sup {z ∈ R : P [Z ≥ z] ≥ 1− α} . (2.3.2)

We have that q−α (Z) ≤ q+
α (Z) are finite numbers and that the set of α-quantiles of

Z is given by the (nonempty compact) interval [q−α (Z), q+
α (Z)].

Proof. Let α ∈ (0, 1) be given and denote by:

I−α := {z ∈ R : P[Z ≤ z] ≥ α}, (2.3.3)

I+
α := {z ∈ R : P[Z ≥ z] ≥ 1− α}. (2.3.4)

We will show that I−α and I+
α are closed unbounded intervals that are, respec-

tively, bounded from below and above. First of all, observe that if z ∈ I−α and w > z,

then P[Z ≤ w] ≥ P[Z ≤ z] ≥ α, i.e. w ∈ I−α . Moreover, we have that:

Ω =
⋃
k∈N

[Z ≤ k], and (2.3.5)

∅ =
⋂
k∈N

[Z ≤ −k]. (2.3.6)

It follows that limk→+∞ P[Z ≤ k] = 1 > α > 0 = limk→+∞ P[Z ≤ −k]. Therefore,

I−α 6= ∅ is an unbounded interval that is bounded from below. Let us show that

q−α (Z) ∈ I−α . We have that q−α (Z) + 1/k ∈ I−α , for all k ∈ N. Moreover,

[Z ≤ q−α (Z)] =
⋂
k∈N

[Z ≤ q−α (Z) + 1/k] (2.3.7)
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which implies that: P[Z ≤ q−α (Z)] = limk→+∞ P[Z ≤ q−α (Z) + 1/k] ≥ α. This shows

that I−α = [q−α (Z),+∞). In order to show that I+
α = (−∞, q+

α (Z)] we follow similar

steps. Omitting some details, let us just observe that:

Ω =
⋃
k∈N

[Z ≥ −k]; (2.3.8)

∅ =
⋂
k∈N

[Z ≥ k]; (2.3.9)

if z ∈ I+
α and w < z, then w ∈ I+

α ; Z ≥ q+
α (Z) =

⋂
k∈N[Z ≥ q+

α (Z) − 1/k], and the

argument follows similarly.

Now, let us show that q−α (Z) ≤ q+
α (Z). For z < q−α (Z), we have that P[Z ≤ z] <

α. Therefore, P[Z ≥ z] = 1− P[Z < z] ≥ 1− P[Z ≤ z] > 1− α. We conclude that:

(−∞, q−α (Z)) ⊆ I+
α (Z),

so: q−α (Z) ≤ q+
α (Z). This also shows that [q−α (Z), q+

α (Z)] 6= ∅. Finally, observe that

z is an α-quantile of Z if and only if z ∈ I−α ∩ I+
α = [q−α (Z), q+

α (Z)]. The proposition

is proved.

Proposition 2.3.2 states that q−α (Z) is the minimum or the leftmost α-quantile of

Z, q+
α (Z) is the maximum or the rightmost α-quantile of Z, and that these quantities

are finite when α ∈ (0, 1). When α = 0 or α = 1 the set of α-quantiles of a random

variable can be the empty set or an unbounded interval. The following lemma

will be useful for showing some interesting properties of the leftmost and rightmost

α-quantiles functions of a given random variable.

Lemma 2.3.3. Take a random variable Z and α ∈ (0, 1) . The leftmost and right-

most α-quantiles of Z admit the following alternatives characterization:

q−α (Z) = sup{z ∈ R : P[Z < z] < α}, (2.3.10)

q+
α (Z) = inf{z ∈ R : P[Z > z] < 1− α}, (2.3.11)

respectively.

Proof. We will show only that equation (2.3.10) holds, since we will only need it

in the next proposition. Let us denote by z̃ := sup{z ∈ R : P[Z < z] < α}.
For an arbitrary z > z̃, we have that z /∈ {z ∈ R : P[Z < z] < α}, that is:

α ≤ P[Z < z] ≤ P[Z ≤ z]. It follows that:

(z̃,+∞) ⊆ {z ∈ R : P [Z ≤ z] ≥ α} . (2.3.12)

Taking the infimum of these sets, we obtain that q−α (Z) ≤ z̃. Now, observe that:

[Z ≤ z̃] =
⋂
k∈N

[Z ≤ z̃ + 1/k]. (2.3.13)
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It follows that:

P[Z ≤ z̃] = lim
k→+∞

P[Z ≤ z̃ + 1/k] ≥ α. (2.3.14)

We conclude that q−α (Z) ≤ z̃ and equation (2.3.10) is proved. The proof of equation

(2.3.11) is similar.

Proposition 2.3.4. Let Z be a given random variable. We have that the rightmost

quantile function:

α ∈ (0, 1) 7→ q+
α (Z) ∈ R, (2.3.15)

and the leftmost quantile function:

α ∈ (0, 1) 7→ q−α (Z) ∈ R (2.3.16)

are monotonically non-decreasing and satisfy the following conditions:

(i) q+
α (Z) ≤ q−β (Z), for all 0 < α < β < 1;

(ii) for all α ∈ (0, 1),

q+
α (Z) = inf

β>α
q+
β (Z) = inf

β>α
q−β (Z); (2.3.17)

(iii) for all β ∈ (0, 1),

q−β (Z) = sup
α<β

q−α (Z) = inf
α<β

q+
α (Z). (2.3.18)

Proof. We begin by showing item (i). Let 0 < α < β < 1 be given. Observe that:

{z ∈ R : P[Z ≥ z] ≥ 1− β} ⊆ {z ∈ R : P[Z < z] < α}. (2.3.19)

Indeed, if P[Z ≥ z] ≥ 1− β, then P[Z < z] = 1− P[Z ≥ z] ≤ 1− (1− β) = β < α.

Taking the supremum of these sets, it follows from Lemma 2.3.3 that: q+
β (Z) ≤

q−α (Z). We also have that:

q−α (Z) ≤ q+
α (Z) ≤ q−β (Z) ≤ q+

β (Z), (2.3.20)

that is, both functions are monotonically non-decreasing.

Now we show item (ii). From item (i), it follows that:

q+
α (Z) ≤ inf

β>α
q−β (Z) ≤ inf

β>α
q+
β (Z). (2.3.21)

We need only to show that infβ>α q
+
β (Z) ≤ q+

α (Z). Let ε > 0 be given. We have

that:

P[Z ≥ q+
α (Z) + ε] < 1− α. (2.3.22)

Taking β > α sufficiently close to α, we obtain that:

P[Z ≥ q+
α (Z) + ε] < 1− β ≤ P[Z ≥ q+

β (Z)], (2.3.23)

i.e., q+
β (Z) < q+

α (Z) + ε. It follows that infβ>α q
+
β (Z) ≤ q+

α (Z) + ε, for all ε > 0,

which proves item (ii). The proof of item (iii) is similar.
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Proposition 2.3.5. Let Z be a random variable and α ∈ (0, 1) be arbitrary. Then,

q−α (Z) = −q+
1−α(−Z). (2.3.24)

Proof. Observe that:

α = 1− (1− α) ≤ P
[
−Z ≥ q+

1−α(−Z)
]

= P
[
Z ≤ −q+

1−α(−Z)
]
, (2.3.25)

so, q−α (Z) ≤ −q+
1−α(−Z). Moreover,

1− (1− α) = α ≤ P
[
Z ≥ q−α (Z)

]
= P

[
−Z ≥ −q−α (Z)

]
, (2.3.26)

so, q+
1−α(−Z) ≥ −qα(Z), that is, −q+

1−α(−Z) ≤ q−α (Z) and the result is proved.

2.4 Sub-Gaussian and ψ2-random variables

In this section, we recall the definitions of sub-Gaussian and ψ2-random variables

and present some of their basic properties. We follow closely reference [79], although

we prefer to distinguish these two classes of random variables.

Let (Ω,F ,P) be a given probability space and denote by Z := Z (Ω,F ,P) the

set of (real) random variables defined on (Ω,F ,P). For 1 ≤ p < +∞, the linear

space Lp := Lp (Ω,F ,P) is the set of random variables Z that satisfies E |Z|p < +∞.

Identifying two random variables that are equal almost surely (with respect to P),

the following function

‖Z‖p := (E |Z|p)1/p
. (2.4.1)

is a norm on the space Lp that is known as the Lp-norm.

Let us consider the function ‖·‖ψ2
: Z → R ∪ {+∞} given by

‖Z‖ψ2
:= sup

p≥1

‖Z‖p√
p
. (2.4.2)

We define the set of ψ2-random variables as

ψ2 := ψ2 (Ω,F ,P) := {Z ∈ Z : ‖Z‖ψ2
< +∞}. (2.4.3)

Identifying two random variables that are equal almost surely, ‖·‖ψ2
is a norm on

ψ2, as the notation suggests.

Now, let us consider the definition of a sub-Gaussian random variable.

Definition 2.4.1. We say that Z ∈ Z is a σ-sub-Gaussian random variable, where

σ ∈ [0,+∞), if

MZ(s) = E [exp {sZ}] ≤ exp {σ2s2/2}, ∀s ∈ R. (2.4.4)
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The constant

σ(Z) := inf{σ ≥ 0 : MZ(s) ≤ exp {σ2s2/2}, ∀s ∈ R} (2.4.5)

is the sub-Gaussian moment of Z.

The classes of sub-Gaussian and ψ2-random variables are closely related. Let

us begin by pointing that every sub-Gaussian random variable is centered. In fact,

[54, Proposition 2.1] shows that EZ = 0 if Z is sub-Gaussian. Additionally, it is

possible to show that every sub-Gaussian random variable is a ψ2-random variable;

see Proposition 2.4.2 below. Reciprocally, if Z is a centered ψ2-random variable,

then Z is a sub-Gaussian random variable. So, the space of sub-Gaussian random

variables (defined on (Ω,F ,P)) is a linear subspace of ψ2. Observe that a ψ2 random

variable need not to be centered (e.g., take Z = 1).

In [79] the author does not distinguish these two classes of random variables.

Here, we prefer to follow the classical definition of sub-Gaussians that uses the

moment generating function condition instead of the moment growth condition. To

the best of our knowledge, sub-Gaussian random variables were first defined in [34]

using its moment generating function and this definition is still usual in the literature

nowadays. Of course this is just a matter of taste.

The following proposition, see [79, Lemma 5.5], establishes equivalent proper-

ties of ψ2-random variables and relates this class with the sub-Gaussians random

variables.

Proposition 2.4.2. Let Z be a random variable. Then the following properties are

equivalent, with parameters Ki > 0 differing from each other by at most an absolute

constant factor.

1. Tails: P [|Z| ≥ s] ≤ exp (1− s2/K2
1) , ∀s ≥ 0;

2. Moments: ‖Z‖p ≤ K2
√
p, ∀p ≥ 1;

3. Super-exponential moment: E [exp (Z2/K2
3)] ≤ e.

Moreover, if EZ = 0 then properties 1–3 are also equivalent to the following one:

4. Moment generating function: E exp(sZ) ≤ exp(s2K2
4), for all s ∈ R.

Proof. See [79, Lemma 5.5].

So, the previous proposition establishes that, for each 1 ≤ i, j ≤ 4, there exists

an absolute constant Ci,j such that if Z satisfies property i with constant Ki, then Z

satisfies property j with constant Ci,jKi. Moreover, the additional condition EZ = 0

is necessary for obtaining property (4.) from the remaining ones, although it is not

necessary to assume this condition explicitly for the converse statement. In the

following corollary, we estimate the constants values C1,2, C2,3, C3,1, C3,4 and C4,1.
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Corollary 2.4.3. We can take the absolute constants of the previous proposition as

• C1,2 =
√

e
2
;

• C2,3 =
√

2
e−1

;

• C3,1 = 1;

• C3,4 =
√

e+1
2

;

• C4,1 = 2.

Proof. That we can take C3,1 = 1 and C4,1 = 2 can be seen directly in the proof

of [79, Lemma 5.5]. Following this proof, it was shown that if Z satisfies (1.) with

K1 = 1, then

‖Z‖p ≤
[(ep

2

)(p
2

)p/2]1/p

=
1√
2

(ep
2

)1/p√
p. (2.4.6)

Now, it is straightforward to verify that p = 2 maximizes p 7→
(
ep
2

)1/p
on p ≥ 1. So,

we obtain that
‖Z‖p√
p
≤
√
e

2
, (2.4.7)

which proves that we can take C1,2 as above. In the same proof, it was also shown

that:

E exp(cZ2) ≤ 1 +
∞∑
p=1

(2c/e)p =
1

1− 2c/e
=

e

e− 2c
, (2.4.8)

for 0 < c < e/2. Taking c = (e − 1)/2, we obtain that E exp(cZ2) ≤ e, i.e. we can

take C2,3 =
√

1/c =
√

2/(e− 1).

Finally, for showing the claim about C3,4, we follow the proof of [54, Theorem

3.1]. Let us suppose that for K3 = 1, we have E exp(Z2/K2
3) = E exp(Z2) ≤ e.

Then, it was shown in the proof of the implication (3) ⇒ (1) in [54, Theorem 3.1]

(for a = 1/K2
3 = 1) that:

E exp(sZ) ≤ 1 +
s2

2
es

2/2EeZ2 ≤ 1 +
es2

2
es

2/2 ≤
(

1 +
es2

2

)
es

2/2 ≤ exp

{
s2

2
(e+ 1)

}
,

(2.4.9)

for all s ∈ R. So, we conclude that (4.) is satisfied with K4 =
√

e+1
2

, i.e. C3,4 =√
e+1

2
.

The following result will be useful later.

Lemma 2.4.4. Let Z be a ψ2-random variable. Then,

‖EZ‖ψ2
= |EZ| ≤ ‖Z‖ψ2

. (2.4.10)
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Proof. It is immediate to verify that ‖c‖ψ2
= |c|, for arbitrary c ∈ R. Since Z is

a ψ2-random variable, we conclude that EZ is finite, so ‖EZ‖ψ2
= |EZ|. Taking

p = 1, we obtain:

‖Z‖ψ2
≥ ‖Z‖1 /

√
1 = E |Z| ≥ |EZ| , (2.4.11)

which proves the lemma.

Now, we present the key result of this section concerning our work. It shows that

a L-Lipschtiz-transformation of a σ-sub-Gaussian random variable, after centering,

is a (κLσ)-sub-Gaussian random variable, where κ is an absolute constant. Applying

Corollary 2.4.3, we estimate the constant κ25.

Proposition 2.4.5. Let Y be a random variable with finite expected value such that

“Y − EY ” is σ-sub-Gaussian. If ψ : R → R is a L-Lipschitz-continuous function,

then ψ(Y ) has finite expected value and the random variable Z := ψ(Y )−Eψ(Y ) is

(κLσ)-sub-Gaussian, where

κ = 2(C1,2C2,3C3,4C4,1) = 4

√
e(e+ 1)

2(e− 1)
≤ 6.86. (2.4.12)

Proof. First of all, since ψ is L-Lipschitz, we have that |ψ(Y )−ψ(0)| ≤ L|Y − 0| =
L|Y |, so

|ψ(Y )| ≤ |ψ(0)|+ |ψ(Y )− ψ(0)| ≤ |ψ(0)|+ L|Y |, (2.4.13)

which shows that Eψ(Y ) is finite and Z is well-defined. Now, consider the random

variable W := ψ(Y )− ψ(EY ). We have that

|W | = |ψ(Y )− ψ(EY )| ≤ L|Y − EY |, (2.4.14)

so ‖W‖p ≤ L ‖Y − EY ‖p for all p ≥ 1. This shows that

‖W‖ψ2
≤ L ‖Y − EY ‖ψ2

. (2.4.15)

Since Y − EY is σ-sub-Gaussian, it satisfies item (4.) of Proposition 2.4.2 with

K4 = σ/
√

2. So, we obtain that:

‖Y − EY ‖ψ2
≤ C4,1C1,2√

2
σ. (2.4.16)

Now, observe that Z = W − EW , so

‖Z‖ψ2
≤ ‖W‖ψ2

+ ‖EW‖ψ2
≤ 2 ‖W‖ψ2

≤
√

2(C1,2C4,1)Lσ, (2.4.17)

where the first inequality is just the triangular inequality and the second one follows

from Lemma 2.4.4. Since EZ = 0, applying again Proposition 2.4.2, we obtain that

Z satisfies item (4.) with K4 =
√

2(C1,2C2,3C3,4C4,1)Lσ. So, we conclude that Z is

(κLσ)-sub-Gaussian, with κ = 2(C1,2C2,3C3,4C4,1) = 4
√

e(e+1)
2(e−1)

.

25Of course, it is possible that the result holds for a smaller κ.

71 2017



CHAPTER 2. BACKGROUND MATERIAL AND PRELIMINARY RESULTS

2.5 Convex analysis

In this section we present basic definitions and results of convex analysis that are

used throughout the thesis. Let us begin by recalling some basic definitions.

Definition 2.5.1. (extended real numbers) Appending −∞ and +∞ to the set of

real numbers, we consider the set of extended real numbers R := R ∪ {−∞,+∞}.
The appended elements satisfy:

−∞ < x < +∞, (2.5.1)

for all x ∈ R. Moreover, it is straightforward to extend the sum and product opera-

tions to R, except for the following combinations that we consider below:

(−∞) + (+∞) = (+∞) + (−∞) = +∞, (2.5.2)

0 · (±∞) = (±∞) · 0 = 0. (2.5.3)

We also assume the following conventions:

sup ∅ = −∞; (2.5.4)

inf ∅ = +∞. (2.5.5)

Definition 2.5.2. (convex set) We say that X ⊆ Rn is convex, if

λx1 + (1− λ)x2 ∈ X, (2.5.6)

for all x1, x2 ∈ X and 0 ≤ λ ≤ 1.

Definition 2.5.3. (face of a convex set) Let C be a (nonempty) convex set. We say

that F ⊆ C is a face of C if F is nonempty and if F satisfies the following property:

• if x, y ∈ C are such that λx+ (1− λ)y ∈ F , for all 0 < λ < 1, then x, y ∈ F .

Note that a nonempty convex set is always a face of itself. We say that F ⊆ C

is a proper face of C, if F 6= C is a face of C.

A polyhedral set is an important example of a convex set. This class of sets are

very important for the theory of linear programming.

Definition 2.5.4. (polyhedron or polyhedral set) We say that X ⊆ Rn is a polyhe-

dron or a polyhedral set if there exist a matrix A ∈ Rm×n and a vector b ∈ Rm such

that

X = {x ∈ Rn : Ax ≤ b}.

Note that Definition 2.5.4 implies that every polyhedron is not just convex, but

also closed26.

Now we present the definition of a cone in Rn.

26Some authors consider less restrictive definitions for polyhedral sets, but we adopt this one in

the thesis.
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Definition 2.5.5. (cones) We say that K ⊆ Rn is a cone if K 6= ∅ and for every

λ ≥ 0 and x ∈ K, we have that λx ∈ K.

It is elementary to verify that if K is a cone, then 0 ∈ K and −K := {−x : x ∈
K} is also a cone. Cones are commonly used for introducing binary relations in Rn

by the formula

x �K y ⇔ x− y ∈ K, (2.5.7)

for all x, y ∈ Rn. As an example consider the positive orthant Rn
+ := {x ∈ R : xi ≥

0, i = 1, . . . , n}. Note that Rn
+ is a cone. It defines the relation �Rn+ that is a partial

ordering in Rn. We have that x �Rn+ y if and only if xi ≥ yi, for every i = 1, . . . , n.

Note also that a polyhedral set can be written as

X := {x ∈ Rn : L(x) ∈ Rm
+}, (2.5.8)

where L(x) := b − Ax is an affine function. In many interesting examples of opti-

mization problems, it is typical to consider its feasible set on the form

X := {x ∈ Rn : G(x) ∈ K}, (2.5.9)

where K is a closed convex cone and G : Rn → Rm is a function.

Definition 2.5.6. (pointed cones) We say that K ⊆ Rn is a pointed cone if K is a

cone and whenever x,−x ∈ K, we must have that x = 0.

Definition 2.5.7. (Properties of a binary relation in Rn) Let � ⊆ Rn × Rn be a

binary relation. Consider the following properties:

(i) Reflexivity: for every x ∈ Rn, x � x.

(ii) Transitivity: for every x, y, z ∈ Rn, if x � y and y � z, then x � z.

(iii) Anti-symmetry: for every x, y ∈ Rn, if x � y and y � x, then x = y.

(iv) Homogeneity: for every x, y ∈ Rn and λ ≥ 0, if x � y, then λx ≥ λy.

(v) Additivity: for every w, x, y, z ∈ Rn, if x � y and w � z, then x+ w � y + z.

(vi) Continuity: for every sequences {xj : j ∈ N} and {yj : j ∈ N} in Rn, if

xj � yj, for every j ∈ N, xj → x and yj → y, then x � y.

The following proposition relates properties of the cone K with properties of the

binary relation �K induced by K.

Proposition 2.5.8. Take any cone K ⊆ Rn. The following assertions hold:

(i) �K is reflexive and homogeneous.
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(ii) If K is convex, then �K is also transitive and satisfies the additivity property.

(iii) If K is pointed, then �K is anti-symmetric.

(iv) If K is closed, then �K is continuous.

Proof. (i) Since x − x = 0 ∈ K, it follows that x �K x. Moreover, if x �K y and

λ ≥ 0, then λx− λy = λ(x− y) ∈ K.

(ii) Note that if K is a convex cone, then K+K = K. Since 0 ∈ K, the inclusion

⊇ is trivial. Take any x, y ∈ K. Note that x+ y = 2(x/2 + y/2) ∈ K, which proves

the converse inclusion. The transitivity and the additivity properties follow easily

from this equality K +K = K.

(iii) Let K be a pointed cone. If x �K y and y �K x, then x − y ∈ K and

y − x = −(x− y) ∈ K. It follows that x− y = 0, i.e. x = y.

(iv) Note that xj − yj ∈ K, for every j ∈ N. Moreover, x− y = limj (xj − yj) ∈
K = K, i.e. x �K y.

Let us recall that a binary relation � in Rn is said to be a partial order if it is

reflexive, transitive and anti-symmetrical. It follows that if K is a pointed convex

cone, then �K is a partial order in K. The following lemma will be useful.

Lemma 2.5.9. Take any convex cone K ⊆ Rn. If x ∈ K and y ∈ intK, then

x+ y ∈ intK.

Proof. Since y ∈ intK, there exists ε > 0 such that B(y; ε) ⊆ K. By item (ii)27 of

Proposition 2.5.8 it follows that

B(x+ y; ε) = x+B(y; ε) ⊆ K +K = K, (2.5.10)

i.e. x+ y ∈ intK.

Definition 2.5.10. (affine set) We say that A ⊆ Rn is an affine set if for every

x1, x2 ∈ A, we have that:

(1− t)x1 + tx2 ∈ A, ∀t ∈ R.

Definition 2.5.11. (affine hull of a set) Let X ⊂ Rn be given. We define the affine

hull of X as:

aff X :=
⋂
{A : A ⊇ X,A is an affine set } .

It can be shown that an arbitrary intersection of affine sets is also an affine set.

It follows that the affine hull of X is the smallest affine set that contains X. This

notion is crucial to define the relative interior of a set. We will recall interesting

properties of the the relative interior of convex sets.

27We have shown in the proof of Proposition 2.5.8 that if K is a convex cone, then K +K = K.
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Definition 2.5.12. (relative interior of a set) Let X ⊆ Rn be a nonempty set. We

say that x ∈ riX if there exists ε > 0 such that:

B(x; ε) ∩ aff X ⊆ X. (2.5.11)

Let us define ri ∅ := ∅.

When X is nonempty convex its relative interior is nonempty28. In fact, the

following result holds:

Proposition 2.5.13. Let X ⊆ Rn be a convex set. Then, riX = X.

Proof. See [7, Proposition 1.3.5].

Definition 2.5.14. (epigraph of a real-valued function) Let f : Rn → R be a func-

tion. The epigraph of f is the set:

epi f := {(x, t) ∈ Rn × R : f(x) ≤ t}. (2.5.12)

Definition 2.5.15. (domain of a real-valued function) Let f : Rn → R be a function.

The domain of f is the set:

dom f := {x ∈ Rn : f(x) < +∞}. (2.5.13)

Definition 2.5.16. (proper functions) We say that f : Rn → R is proper if dom f 6=
∅ and f(x) > −∞, for all x ∈ R.

Definition 2.5.17. (convex functions) We say that f : Rn → R is a convex function

if epi f ⊆ Rn+1 is a convex set.

We can also consider the definition of a vector-valued convex function with re-

spect to a binary relation � in Rm.

Definition 2.5.18. Take any binary relation � in Rm. We say that G : Rn → Rm

is convex with respect to � if

G(λx+ (1− λ)y) � λG(x) + (1− λ)G(y), (2.5.14)

for every x, y ∈ Rn and for every 0 ≤ λ ≤ 1.

Definition 2.5.19. (polyhedral functions) We say that f : Rn → R is a polyhedral

function if it is proper and epi f ⊆ Rn+1 is a polyhedron.

Note that every polyhedral function is l.s.c. (see Definition 2.5.24 and Proposi-

tion 2.5.25) and convex.

28That is not the case with the topological interior. For example, X = {0} ⊆ R is such that

intX = ∅.
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Definition 2.5.20. (subdifferential of a convex function) Let f : Rn → R be a

convex function. We define the subdifferential set of f at x ∈ Rn as:

∂f(x) := {s ∈ Rn : f(y) ≥ f(x) + 〈s, y − x〉 , for all y ∈ Rn}. (2.5.15)

We denote the elements of ∂f(x) as the subgradients of f at x.

For x ∈ dom f , we have that:

∂f(x) =
⋂

y∈dom f

{s ∈ Rn : f(y) ≥ f(x) + 〈s, y − x〉}. (2.5.16)

Since each set in the intersection is closed and convex, it follows that ∂f(x) is also

closed and convex (this is trivially true for x /∈ dom f). The following proposition

gives a sufficient condition for the existence of subgradients of f at a point x ∈ Rn.

Proposition 2.5.21. Let f : Rn → R be a convex function. For every x ∈ ri domf ,

we have that ∂f(x) 6= ∅. Moreover, if x ∈ int dom f , we conclude (additionally) that

∂f(x) is compact.

Proof. This proposition is an immediate consequence of [7, Prop. 5.4.1].

Definition 2.5.22. (convex conjugate of real-valued functions) Let f : Rn → R be

given. The convex conjugate of f is:

f ∗(y) := sup
x∈Rn
{〈y, x〉 − f(x)} = sup

x∈dom f
{〈y, x〉 − f(x)}. (2.5.17)

The following result gives a characterization of the subgradients of a convex

function f at x in terms of the values assumed by f and f ∗.

Proposition 2.5.23. Let f : Rn → R∪{+∞} be a convex function. We have that:

s ∈ ∂f(x)⇔ 〈s, x〉 = f(x) + f ∗(s). (2.5.18)

Proof. See [7, Proposition 5.4.3]. Note that the result is trivially true if f is not

proper. Indeed, in that case, none of the conditions can hold.

Definition 2.5.24. (lower semi-continuous functions) We say that f : Rn → R is

lower semi-continuous (l.s.c.) at x ∈ Rn if for all t ∈ R such that f(x) > t, there

exists an ε > 0 such that f(y) > t, for all y ∈ B(x; ε). We say that f : Rn → R is

l.s.c. if f is l.s.c. at every x ∈ Rn.

The following result is well-known.

Proposition 2.5.25. A function f : Rn → R is l.s.c. if and only if epi f ⊆ Rn+1 is

closed.
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Proof. See [7, Proposition 1.1.2].

Definition 2.5.26. (closure of a function) Let f : Rn → R be a function. We define

the closure of f as the unique function cl f : Rn → R that satisfies29

epi(cl f) = epi f.

Of course, cl f ≤ f . By Proposition 2.5.25, we have that f is l.s.c. if and only if

cl f = f . The function cl f is the greater l.s.c. function that is below f . Finally, if

f is convex, then cl f is also convex.

Proposition 2.5.27. Let f : Rn → R be arbitrary. We have that f ∗ is l.s.c. and

convex.

Proof. We just need to show that epi(f ∗) is closed and convex. Observe that f ∗ is

the supremum of the affine functions:

Lx(s) := 〈x, s〉 − f(x),

that are, in particular, l.s.c. and convex. It follows that epiLx is closed and convex,

for every x ∈ Rn. So,

epi(f ∗) =
⋂
x∈Rn

epiLx

is closed and convex.

Let us recall this classic result of convex analysis.

Theorem 2.5.28. (Fenchel-Moreau theorem) Let f : Rn → R ∪ {+∞} be a proper

l.s.c. convex function. Then,

f ∗∗ = f. (2.5.19)

Proof. See [7, Proposition 1.6.1] or [59, Pag. 474, Theorem 11.1].

Now, we introduce the definition of the directional derivative of a function.

Definition 2.5.29. Let f : Rn → R∪{+∞} be a function. We define the directional

derivative of f at x ∈ dom f on direction d ∈ Rn as the limit (if it exists!):

f ′(x; d) := lim
t→0+

{
f(x+ td)− f(x)

t

}
. (2.5.20)

When f is convex, the limit (2.5.20) exists, possibly assuming the values ±∞,

for every x ∈ dom f (see, for example, [7, Page 196]).

The following variational characterization of the directional derivative f ′(x; ·) of

a convex function f at a point x ∈ dom f in terms of the subdifferential of f at x is

particularly useful.

29In fact, it is possible to show that if E ⊆ Rn+1 is the epigraph of a function, then E is also

the epigraph of a function. For instance, see [7, Section 1.3.3]
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Proposition 2.5.30. Let f : Rn → R ∪ {+∞} be a proper convex function and

x ∈ dom f . The following conditions hold:

(i) When ∂f(x) 6= ∅, we have that:

cl f ′(x; ·) = sup
s∈∂f(x)

〈s, ·〉 . (2.5.21)

(ii) If x ∈ ri dom f , we have that:

f ′(x; ·) = sup
s∈∂f(x)

〈s, ·〉 . (2.5.22)

Proof. See [7, Proposition 5.4.8].

Now, let us consider convex functions f : R → R ∪ {+∞} defined on the set of

real numbers. For x < y < z, y ∈ dom f , we have the secant inequality (see [7, Page

196], for d = ±1):
f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
. (2.5.23)

It is also clear from Definition (2.5.20) that, for x ∈ dom f , f ′(x; 1) and −f ′(x;−1)

are the right and left derivatives of f at x, respectively. Considering also inequality

(2.5.23), we have that:

f ′(x; 1) = lim
y→x+

f(y)− f(x)

y − x
= inf

y>x

f(y)− f(x)

y − x
, (2.5.24)

−f ′(x;−1) = lim
y→x−

f(y)− f(x)

y − x
= sup

y<x

f(y)− f(x)

y − x
. (2.5.25)

For x < y < z, y ∈ dom f , we can bound the left and right derivatives of f at y by

the slopes:
f(y)− f(x)

y − x
≤ −f ′(y;−1) ≤ f ′(y; 1) ≤ f(z)− f(y)

z − y
. (2.5.26)

When a proper convex function f is defined on R, the directional derivative

f ′(x; ·) is l.s.c., for every x ∈ R such that ∂f(x) 6= ∅. Let us point out that this is

not necessarily the case when f is defined on Rd, for d > 1.

Lemma 2.5.31. Let f : R→ R∪{+∞} be a proper convex function and x ∈ dom f

be given. If ∂f(x) 6= ∅, then f ′(x; ·) is a l.s.c. function, i.e. cl f ′(x; ·) = f ′(x; ·).

Proof. Let x ∈ dom f be arbitrary. It is immediate to verify that f ′(x; ·) is positively

homogeneous. In fact, let s > 0 be given, we have that:

f ′(x; sd) = lim
t→0+

f(x+ t(sd))− f(x)

t
= s lim

t→0+

f(x+ (ts)d))− f(x)

ts
= sf ′(x; d).
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So, we conclude that:

f ′(x; s) =


sf ′(x; 1), when s > 0;

0, when s = 0;

sf ′(x;−1), when s < 0.

(2.5.27)

From the equality above, we obtain that whenever f ′(x; 1) ∈ (−∞,+∞] 3 f ′(x;−1),

f ′(x; ·) is a l.s.c. function. For proving the lemma, we only need to show that

f ′(x; 1) > −∞ and f ′(x;−1) > −∞. By hypothesis, there exists s ∈ ∂f(x). So, for

t > 0, we have that:
f(x+ t)− f(x)

t
≥ s > −∞, (2.5.28)

and letting t → 0+, we obtain that f ′(x; 1) ≥ s > −∞. Finally, for t > 0, we also

have that:

f(x− t)− f(x) ≥ −st, (2.5.29)

that is:
f(x− t)− f(x)

t
≥ −s > −∞, (2.5.30)

and letting t→ 0+, we obtain that f ′(x;−1) ≥ −s > −∞.

We introduce next some notation about intervals of R.

Remark 2.5.32. (intervals on R) Let a and b be elements of R. We define the

interval:

[a, b] := {x ∈ R : a ≤ x and x ≤ b}. (2.5.31)

Observe that we do not assume, in principle, that a ≤ b. So, if a > b, we have

that [a, b] = ∅. One way to restrict the interval [a, b] to the set of real numbers is to

consider [a, b]∩R. Of course, when a, b ∈ R, we have that [a, b] = [a, b]∩R. Observe

that it is not true in general that:

inf[a, b] = a, or sup[a, b] = b. (2.5.32)

Consider, for example, a = 1 and b = 0. We have that [a, b] = ∅, inf[a, b] = +∞ > a

and sup[a, b] = −∞ < b. This is a somewhat pathological situation. In fact, the

following conditions rule out this situation:

(i) if [a, b] 6= ∅, then inf[a, b] = a and sup[a, b] = b.

(ii) if [a, b] ∩ R 6= ∅, then inf ([a, b] ∩ R) = a and sup ([a, b] ∩ R) = b.

The following result is a corollary of the previous proposition, lemma and remark.
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Corollary 2.5.33. Let be given a proper convex function f : R → R ∪ {+∞} and

x ∈ dom f . We have that:

∂f(x) = [−f ′(x;−1), f ′(x; 1)] ∩ R. (2.5.33)

Moreover, we also have that:

inf ∂f(x) = −f ′(x;−1) and (2.5.34)

sup ∂f(x) = f ′(x; 1), (2.5.35)

when ∂f(x) 6= ∅.

Proof. Let x ∈ dom f be given. First of all, let us show that:

∂f(x) ⊆ [−f ′(x;−1), f ′(x; 1)] ∩ R.

If ∂f(x) = ∅, then there is nothing to prove. Suppose that ∂f(x) 6= ∅. By Proposi-

tion 2.5.30 and by Lemma 2.5.31, we have that:

f ′(x; 1) = cl f ′(x; 1) = sup
s∈∂f(x)

s = sup ∂f(x),(2.5.36)

−f ′(x;−1) = − cl f ′(x;−1) = − sup
s∈∂f(x)

−s = −(− inf ∂f(x)) = inf ∂f(x).(2.5.37)

So, for s ∈ ∂f(x), we have that inf ∂f(x) ≤ s ≤ sup ∂f(x) and s ∈ R, which proves

the inclusion ∂f(x) ⊆ [−f ′(x;−1), f ′(x; 1)] ∩ R.

Now let us show the converse inclusion [−f ′(x;−1), f ′(x; 1)]∩R ⊆ ∂f(x). Again,

if [−f ′(x;−1), f ′(x; 1)] ∩ R = ∅, then there is nothing to be proved. Suppose that

[−f ′(x;−1), f ′(x; 1)] ∩ R 6= ∅ and take s ∈ [−f ′(x;−1), f ′(x; 1)] ∩ R. For y > x, we

get from equation (2.5.23) that:

f(y)− f(x)

y − x
≥ f ′(x; 1) ≥ s. (2.5.38)

For y < x, we get again from equation (2.5.23) that:

f(y)− f(x)

y − x
≤ −f ′(x;−1) ≤ s. (2.5.39)

We conclude that [−f ′(x;−1), f ′(x; 1)]∩R ⊆ ∂f(x). Finally, suppose that ∂f(x) 6=
∅. By Remark 2.5.32, we obtain that:

inf ∂f(x) = −f ′(x;−1), and (2.5.40)

sup ∂f(x) = f ′(x; 1). (2.5.41)

This concludes the proof of the corollary.
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Of course when ∂f(x) 6= ∅ is bounded, we have that:

∂f(x) = [−f ′(x;−1), f ′(x; 1)] .

Now, let us consider a basic lemma from real analysis.

Lemma 2.5.34. Let {I(s) : s ∈ J} be a family of nonempty closed intervals on R,

where J ⊆ R is also an interval. Let a(s) ≤ b(s) be the extreme points of I(s), for

all s ∈ J . Suppose that the following conditions are satisfied:

(i) For every s < t on J , we have that b(s) ≤ a(t).

(ii) For every s ∈ J such that s < sup J :

b(s) = lim
t→ s+

t ∈ J

a(t);

(iii) For every s ∈ J such that s > inf J :

a(s) = lim
t→ s−
t ∈ J

b(t).

Then, it follows that:

I :=
⋃
s∈J

I(s)

is an interval on R.

Proof. If I is empty or a singleton, then there is nothing to prove. So, let y1 < y2 be

given elements of I. We just need to show that (y1, y2) ⊆ I. For such, let y1 < y < y2

be arbitrary. First of all, observe that there exist s1, s2 ∈ J such that y1 ∈ I(s1)

and y2 ∈ I(s2); that is:

a(s1) ≤ y1 < y < y2 ≤ b(s2).

We will show that there exists t ∈ J such that y ∈ I(t). Define the following sets:

J− := {s ∈ J : b(s) < y}; (2.5.42)

J+ := {s ∈ J : a(s) > y}. (2.5.43)

Note that if J− = ∅ or J+ = ∅, we obtain that y ∈ I(s1) or y ∈ I(s2), respectively.

In fact, if J− = ∅, then s1 /∈ J−, i.e. y ≤ b(s1) and it follows that y ∈ I(s1) ⊆ I.

Similarly, if J+ = ∅, we obtain that y ∈ I(s2) ⊆ I. So, let us suppose without
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loss of generality that J− and J+ are both nonempty. We claim that there exists

t ∈ J \ J− ∪ J+. Observe that if such t exists, then:

a(t) ≤ y ≤ b(t),

i.e. y ∈ I(t) ⊆ I.

Note that J− ∩ J+ = ∅, since if s ∈ J−, then a(s) ≤ b(s) < y, so s /∈ J+. We also

have that J− and J+ are open on J . In fact, let us show the claim for J−
30. Let s ∈ J−

be given. Let us show that there exists an ε > 0 such that (s − ε, s + ε) ∩ J ⊆ J−.

Of course, if s′ ∈ J is such that s′ < s, then: b(s′) ≤ a(s) ≤ b(s) < y. i.e. s′ ∈ J−.

Suppose by contradiction that for every ε > 0, there exists s < s′ < s+ ε such that

b(s′) ≥ y. Then we can construct a decreasing sequence (s′k : k ∈ N) on J converging

to s such that b(s′k) ≥ y, for all k ∈ N. We have that:

a(s′k) ≥ b(s′k+1) ≥ y, ∀k ∈ N.

Letting k → +∞, we obtain that y ≤ limk∈N a(s′k) = b(s) < y (→←).

Since J is connected and we are supposing that J− 6= ∅ 6= J+, it cannot occur

that J = J− ∪ J+, which concludes the proof.

Proposition 2.5.35. Let f : R → R ∪ {+∞} be a proper convex function. Con-

sider the family of sets {∂f(x) : x ∈ R}. For every x ∈ R, ∂f(x) = ∅ or ∂f(x) is

a nonempty closed interval that has as extreme points −f ′(x;−1) ≤ f ′(x; 1). More-

over, {x ∈ R : ∂f(x) 6= ∅} is a nonempty interval. The following conditions are also

satisfied:

(i) For every x, y ∈ dom f such that x < y, we have that: f ′(x; 1) ≤ −f ′(y;−1);

(ii) For every x ∈ dom f satisfying x < sup(dom f), we have that:

f ′(x; 1) = lim
y → x+

y ∈ dom f

f ′(y; 1) = lim
y → x+

y ∈ dom f

−f ′(y;−1). (2.5.44)

(iii) For every x ∈ dom f satisfying x > inf(dom f), we have that:

−f ′(x; 1) = lim
y → x−
y ∈ dom f

−f ′(y;−1) = lim
y → x−
y ∈ dom f

f ′(y; 1). (2.5.45)

Proof. Let x ∈ R be such that ∂f(x) 6= ∅. It follows that x ∈ dom f and, by

Corollary 2.5.33, that ∂f(x) is a (nonempty) closed interval with extreme points

−f ′(x;−1) ≤ f ′(x; 1).

30The proof of the fact that J+ is open on J is similar.
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Now, let x, y ∈ dom f satisfying x < y be given. By equation (2.5.23), we have

that:

f ′(x; 1) ≤ f(y)− f(x)

y − x
≤ −f ′(y;−1), (2.5.46)

which shows item (i). Moreover, since −f ′(z;−1) ≤ f ′(z; 1), for all z ∈ dom f , it

follows that both functions −f ′(·;−1) and f ′(·; 1) are monotonically non-decreasing

on dom f .

Since f is proper, we have that dom f 6= ∅, and so ri dom f 6= ∅. Moreover,

J := {x ∈ R : ∂f(x) 6= ∅} ⊇ ri dom f , by Proposition 2.5.21, and we conclude that

J is nonempty. Let us show that J is an interval. Let be given x < y such that

∂f(x) 6= ∅ 6= ∂f(y). We will show that (x, y) ⊆ J . In fact, we have that x and

y belong to dom f . By the convexity of f , it follows that (x, y) ⊆ dom f . Since

(x, y) is open, we also conclude that (x, y) ⊆ int dom f and, by Proposition 2.5.21,

∂f(z) 6= ∅, for all z ∈ (x, y).

Now, we show item (ii). Let x ∈ dom f satisfying x < sup(dom f) be given.

Since f ′(x; 1) ≤ −f ′(y;−1) ≤ f ′(y; 1), for all x < y ∈ dom f , we conclude that:

f ′(x; 1) ≤ lim
y→x+, y∈dom f

−f ′(y;−1) ≤ lim
y→x+, y∈dom f

f ′(y; 1),

where the limits exist by the monotonicity of −f ′(·;−1) and f ′(·; 1) on dom f . Now

we show that the opposite inequalities are also satisfied. Given ε > 0 there exists

ȳ > x (ȳ ∈ dom f) such that:

f(y)− f(x)

y − x
≤ f ′(x; 1) + ε/2,∀x < y ≤ ȳ. (2.5.47)

So, taking x < z ≤ (x+ ȳ)/2 arbitrary and considering y := z + (z − x), we obtain

that: z < y ≤ ȳ and (z − x)/(y − x) = 1/2 = (y − z)/(y − x). It follows that:

f ′(x; 1) + ε/2 ≥ f(y)− f(x)

y − x
(2.5.48)

=
f(y)− f(z)

y − z
y − z
y − x

+
f(z)− f(x)

z − x
z − x
y − x

(2.5.49)

≥ 1

2
f ′(z; 1) +

1

2
f ′(x; 1) (2.5.50)

≥ 1

2
lim

w→x+, w∈dom f
f ′(w; 1) +

1

2
f ′(x; 1). (2.5.51)

So, for every arbitrary ε > 0, we conclude that:

f ′(x; 1) + ε ≥ lim
y→x+, y∈dom f

f ′(y; 1) ≥ lim
y→x+, y∈dom f

−f ′(y;−1); (2.5.52)

i.e. lim
y→x+, y∈dom f

−f ′(y;−1) ≤ lim
y→x+, y∈dom f

f ′(y; 1) ≤ f ′(x; 1), which proves item (ii).
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The proof of item (iii) is similar to the previous one. Let x ∈ dom f satisfying x >

inf(dom f) be given. It follows immediately that−f ′(x;−1) ≥ lim
y→x−, y∈dom f

f ′(y; 1) ≥
lim

y→x−, y∈dom f
−f ′(−y; 1) and that the limits are well-defined. Given ε > 0, there ex-

ists ȳ < x (ȳ ∈ dom f) such that:

−f ′(x;−1)− ε

2
≤ f(x)− f(y)

x− y
,

for all ȳ ≤ y < x. So, taking (x + ȳ)/2 ≤ z < x arbitrary and considering y :=

z − (x− z), it follows that:

−f ′(x;−1)− ε

2
≤ f(x)− f(y)

x− y
(2.5.53)

=
1

2

f(x)− f(z)

x− z
+

1

2

f(z)− f(y)

z − y
(2.5.54)

≤ 1

2
(−f ′(x;−1)) +

1

2
(−f ′(z;−1)), (2.5.55)

which implies that:

−f ′(x;−1) ≤ −f ′(z;−1)+ε ≤ lim
y→x−, y∈dom f

−f ′(y;−1)+ε ≤ lim
y→x−, y∈dom f

f ′(y; 1)+ε.

(2.5.56)

Since ε > 0 is arbitrary, we conclude the proof of item (iii).

Corollary 2.5.36. Let f : R → R ∪ {+∞} be a proper convex function. We have

that: ⋃
x∈domf

∂f(x) (2.5.57)

is a nonempty interval on R.

Proof. Immediate from Lemma 2.5.34 and Proposition 2.5.35.

Now let us consider the definition of the set of all subgradients of a convex

function f : R→ R ∪ {+∞}.

Definition 2.5.37. (set of subgradients of a convex function) Let f : R→ R∪{+∞}
be a convex function. We define the set of all subgradients of f by:

If :=
⋃
x∈R

∂f(x) =
⋃

x∈dom f

∂f(x). (2.5.58)

We also denote its extreme points by:

l(f) := inf If ≥ −∞; (2.5.59)

L(f) := sup If ≤ +∞. (2.5.60)
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When f is proper, we have that If is an nonempty interval and l(f) ≤ L(f).

When f is not proper, i.e. f(x) = +∞, for all x ∈ R, we have that If = ∅ and

l(f) = +∞ > −∞ = L(f). In the next proposition we study the extreme points of

Iφ, for φ ∈ Φ.

Proposition 2.5.38. Let φ ∈ Φ be given. The following statements hold:

(i) 0 ≤ l(φ) ≤ 1;

(ii) 1 ≤ L(φ) ≤ +∞;

(iii) φ is Lipschitz continuous if and only if L(φ) < +∞. In that case, L(φ) is the

(smallest possible) Lipschitz constant of φ.

Proof. Take φ ∈ Φ and s ∈ Iφ. There exists x ∈ domφ such that s ∈ ∂φ(x). Since

φ is monotonically non-decreasing, we conclude that s ≥ 0. In fact:

φ(x− 1) ≥ φ(x) + s(−1),

which implies that:

s ≥ φ(x)− φ(x− 1) ≥ 0.

Moreover, we have that 1 ∈ ∂φ(0) ⊆ Iφ, so 0 ≤ l(φ) = inf Iφ ≤ 1 and item (i) is

proved. Item (ii) follows also immediately from the fact that 1 ∈ ∂φ(0).

Now, let us prove item (iii). Suppose that φ is L-Lipschitz continuous, where

0 ≤ L < +∞. Since φ is proper (in fact, φ(0) = 0) we conclude that φ is finite-

valued. Indeed,

|φ(x)| = |φ(x)− φ(0)| ≤ L|x|, ∀x ∈ R.

Let s ∈ ∂φ(x) be given, where x ∈ R is arbitrary. Taking y > x we obtain that:

L(y − x) ≥ f(y)− f(x) ≥ s(y − x),

i.e. s ≤ L. Taking the supremum for s on Iφ, we conclude that L(φ) ≤ L < +∞.

Reciprocally, suppose that L(φ) < +∞. First of all, let us show that φ is L(φ)-

Lipschitz continuous on domφ. Then, we will show that domφ = R. Let x < y be

elements of domφ. By Theorem 2.5.40, we have that:

|φ(y)− φ(x)| = φ(y)− φ(x) =

∫ y

x

φ′(t; 1)dt ≤ L(φ)(y − x), (2.5.61)

which proves that φ is L(φ)-Lipschitz on domφ. Taking x = 0 in equation (2.5.61),

we obtain that:

φ(y) ≤ L(φ)y, ∀0 < y ∈ domφ. (2.5.62)
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Since φ is non-decreasing and φ(0) = 0, we have the following possibilities for

domφ:

domφ =


(−∞, x̄), 0 < x̄ < +∞,
(−∞, x̄], 0 ≤ x̄ < +∞,
R.

Let us rule out the first possibility. Suppose by contradiction that domφ =

(−∞, x̄), where 0 < x̄ < +∞. Take a sequence of positive numbers {xk : k ∈ N} ⊆
domφ such that limk∈N xk = x̄. Since φ is l.s.c., using equation (2.5.62) we obtain

that:

+∞ = φ(x̄) ≤ lim inf
k∈N

φ(xk) ≤ lim inf
k∈N

L(φ)xk = L(φ)x̄ < +∞ (→←).

Finally, let us rule out the second possibility. Suppose by contradiction that

domφ = (−∞, x̄], where 0 ≤ x̄ < +∞. By Proposition 2.5.33, we have that:

∂φ(x̄) = [−φ′(x̄;−1), φ′(x̄; 1)] ∩ R. (2.5.63)

Observe that φ(x) = +∞, for all x > x̄. So, it follows that φ′(x̄; 1) = +∞. Moreover,

by Proposition 2.5.35, we have that:

− φ′(x̄;−1) = lim
x→x̄−

φ′(x; 1) ≤ L(φ). (2.5.64)

The last inequality holds because x < x̄ belongs to int(domφ), so ∂φ(x) 6= ∅ which

implies that φ′(x; 1) = sup ∂φ(x) ≤ sup Iφ = L(φ)31. It follows that ∂φ(x̄) ⊇
[L(φ),+∞), so:

+∞ > L(φ) = sup Iφ ≥ sup ∂φ(x̄) = +∞ (→←),

and the result is proved.

The following example shows that we really have to be careful with the steps

made in the proof of the previous proposition.

Example 2.5.39. Consider the following convex function:

f : R → R ∪ {+∞}

x 7→


x, for x < 1,

2, for x = 1,

+∞, for x > 1.

Observe that f satisfies all properties defining Φ, excepting the lower semicontinuity.

Moreover,

∂f(x) =

{
{1}, for x < 1,

∅, otherwise.
(2.5.65)

31It is not true, in general, that f ′(x; 1) = sup ∂f(x), for x ∈ dom f . See Example 2.5.39.
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We conclude that If = ∪x∈dom f∂f(x) = {1}. Although L(f) = 1, it is not true

that f is Lipschitz continuous, even on dom f ! Also, observe that f ′(1; 1) = +∞ 6=
sup ∂f(1) = −∞. �

The following theorem is a classical result from real analysis.

Theorem 2.5.40. (fundamental theorem of calculus for convex functions) Let f :

R→ R∪ {+∞} be a proper convex function satisfying int dom f 6= ∅. We have that

f is almost everywhere differentiable with respect to (w.r.t.) the Lebesgue measure

on int dom f . Moreover, the left and right derivatives of f are (finite) monotonically

non-decreasing functions on int dom f and f ′(x) is well-defined at x ∈ int dom f if

and only if −f ′(x;−1) = f ′(x; 1). Finally, for every x, y ∈ int dom f satisfying

x < y, we have that:

f(y)− f(x) =

∫ y

x

f ′(s)ds =

∫ y

x

f ′(s; 1)ds =

∫ y

x

−f ′(s;−1)ds. (2.5.66)

Proof. See [60, Page 110, Theorem 14 and Corollary 15; Page 113, Proposition

17].

Next we show an optimality condition for proper convex functions. First of all,

let us recall that for a proper convex function f : Rn → R ∪ {+∞} we have that

x̄ ∈ argminx∈Rn f(x) if and only if 0 ∈ ∂f(x̄). Indeed, this follows immediately from

Definition 2.5.20.

Proposition 2.5.41. Let f : R→ R be a convex function. We have that

argmin
x∈R

f(x) = R ∩ [x, x] , (2.5.67)

where

x := sup{x ∈ R : −f ′(x;−1) < 0}, (2.5.68)

x := inf{x ∈ R : f ′(x; 1) > 0}. (2.5.69)

Proof. We begin by showing the inclusion argminx∈R f(x) ⊆ R∩ [x, x]. Of course, if

argminx∈R f(x) = ∅, then there is nothing to prove. So, let x̃ ∈ argminx∈R f(x) be

given. We just have to show that x ≤ x̃ ≤ x. By Corollary 2.5.33 and the finiteness

of f , we conclude that 0 ∈ ∂f(x̃) = [−f ′(x̃;−1), f ′(x̃; 1)], i.e. −f ′(x̃;−1) ≤ 0 ≤
f ′(x̃; 1). If x < x̃, then f ′(x; 1) ≤ −f ′(x̃;−1) ≤ 0. It follows that {x ∈ R : f ′(x; 1) >

0} ⊆ [x̃,+∞), i.e. x̃ ≤ x. Moreover, if x > x̃, then −f ′(x;−1) ≥ f ′(x̃; 1) ≥ 0. It

follows that {x ∈ R : −f ′(x;−1) < 0} ⊆ (−∞, x̃], i.e. x ≤ x̃.

Now, let us show the following inclusion: R ∩ [x, x] ⊆ argminx∈R f(x). If R ∩
[x, x] = ∅, then there is nothing to prove. Let x̃ ∈ R ∩ [x, x] be arbitrary. We claim
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that −f ′(x̃;−1) ≤ 0 and f ′(x̃; 1) ≥ 0, i.e. 0 ∈ ∂f(x̃). Suppose, by contradiction,

that −f ′(x̃;−1) > 0. By Proposition 2.5.35, we have that

− f ′(x̃;−1) = sup
x<x̃

f ′(x; 1). (2.5.70)

It follows that f ′(x; 1) > 0, for some x < x̃, i.e. x ≤ x < x̃ (→←). Similarly,

suppose by contradiction that f ′(x̃; 1) < 0. Again, by Proposition 2.5.35, we have

that

f ′(x̃; 1) = inf
x>x̃
−f ′(x;−1). (2.5.71)

It follows that −f ′(x;−1) < 0, for some x > x̃, i.e. x ≥ x > x̃ (→←). The

proposition is proved.

The following result is particularly useful to study the set of optimal solutions

of the optimization problem associated with an OCE risk measure.

Proposition 2.5.42. Let f : R → R be a finite-valued convex function. If Z is a

random variable such that:

g(t) := Ef(Z − t) ∈ R, (2.5.72)

for all t ∈ R, then g is a convex function that satisfies:

∂g(t) = [−Ef ′(Z − t; 1),Ef ′(Z − t;−1)] , (2.5.73)

for all t ∈ R.

Proof. This result follows in particular from [73, Theorem 7.51].

Observe that if Z is an integrable random variable and f is Lipschitz continuous,

then condition (2.5.74) of Proposition 2.5.42 is satisfied.

Proposition 2.5.43. Let f : R→ R be a L-Lipschitz continuous function. If Z is

an integrable random variable, then:

g(t) := Ef(Z − t) ∈ R, (2.5.74)

for all t ∈ R.

Proof. We have that:

|f(Z − t)| − |f(−t)| ≤ |f(Z − t)− f(−t)| ≤ L|(Z − t)− (−t)| ≤ L|Z|. (2.5.75)

It follows that:

|f(Z − t)| ≤ L|Z|+ |f(−t)|, (2.5.76)

and so:

E|f(Z − t)| ≤ LE|Z|+ |f(−t)| < +∞. (2.5.77)

We conclude that g(t) = Ef(Z − t) ∈ R, for all t ∈ R.
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The following result shows that a sort of reversed inequality holds for convex

functions when we deal with an affine combination of elements that are not a convex

combination.

Proposition 2.5.44. Let f : Rn → R∪{+∞} be a convex function. Given x1, x2 ∈
Rn, we have that:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2), (2.5.78)

for λ < 0 or λ > 1.

Proof. Suppose that λ > 1. Observe that 0 < 1/λ < 1 and

x1 =
1

λ
(λx1 + (1− λ)x2) +

(
1− 1

λ

)
x2, (2.5.79)

so

f(x1) ≤ 1

λ
f (λx1 + (1− λ)x2) +

(
1− 1

λ

)
f(x2), (2.5.80)

since f is convex. Multiplying the previous equation by λ, we obtain, after some

algebra, that equation (2.5.78) holds for λ > 1. For λ < 0, apply the same reasoning

to 1− λ > 1, by writing x2 as a convex combination of x1 and λx1 + (1− λ)x2.

2.6 Set-valued analysis

In this section we make a short presentation of set-valued analysis, introducing the

concept of continuity of a multifunction32 between metric spaces. This section has

two subsections. In the first one we present some results in parametric optimization.

We study under which conditions on the problem data the optimal value function

and the multifunction of optimal solutions are, respectively, continuous and outer

semicontinuous. In the second subsection we discuss measurable multifunctions and

present sufficient conditions for the measurability of optimal value functions. The

results presented here are standard ones in this somewhat non-standard field of

mathematics. For a more detailed discussion about these topics, the reader should

consult [13, 59, 6].

Let (X, d) be a metric space33. Let us consider two concepts of set convergence

in metric spaces.

32Also known in the literature as a set-valued mapping, point-to-set mapping or correspondence.
33Usually we do not mention the metric d explicitly and just say that X is a metric space. Let

us recall that a metric in X is a function d : X × X → R+ satisfying the following properties:

(i) d(x, y) = 0 ⇔ x = y, (ii) d(x, y) = d(y, x), for all x, y ∈ X, and (c) for every x, y, z ∈ X,

d(x, z) ≤ d(x, y) + d(y, z).
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Definition 2.6.1. Let {Ak : k ∈ N} be a sequence of subsets of X, i.e. Ak ⊆ X for

all k ∈ N. Let us define, respectively, the interior and exterior limits34 {Ak : k ∈ N}
by:

limint
k∈N

Ak :=

{
x ∈ X : lim sup

k∈N
d(x,Ak) = 0

}
, (2.6.1)

limext
k∈N

Ak :=

{
x ∈ X : lim inf

k∈N
d(x,Ak) = 0

}
. (2.6.2)

It is elementary to verify that limint
k∈N

Ak ⊆ limext
k∈N

Ak. When both limits coincide,

that is:

A := limext
k∈N

Ak = limint
k∈N

Ak, (2.6.3)

we say that the sequence {Ak : k ∈ N} converges to A. Now we consider the

definition of a multifunction.

Definition 2.6.2. (multifunction) Consider X and Y (nonempty) sets. A multi-

function S : X ⇒ Y associates every input x ∈ X with an output S(x) that is a

subset of Y , i.e. S(x) ⊆ Y . We define the domain of S by:

domS := {x ∈ X : S(x) 6= ∅}. (2.6.4)

Now, we recall the concepts of inner-semicontinuity (I.S.C.), outer-semicontinuity

(O.S.C.) and continuity of a multifunction.

Definition 2.6.3. Let S : X ⇒ Y be a multifunction between (nonempty) metric

spaces X and Y . Let x ∈ X be arbitrary.

(a) We say that S is O.S.C. at x if whenever a sequence {xk : k ∈ N} ⊆ X

converges to x, then

limext
k∈N

S(xk) ⊆ S(x).

(b) We say that S is I.S.C. at x if whenever a sequence {xk : k ∈ N} ⊆ X

converges to x, then

S(x) ⊆ limint
k∈N

S(xk).

(c) We say that S is continuous at x if S is O.S.C. and I.S.C. at x.

We also consider the restriction of a multifunction S to an arbitrary (nonempty)

subset W of X:
S|W : W ⇒ Y

x 7→ S(x) ⊆ Y.
(2.6.5)

Whenever it is said that S restricted to W is I.S.C. or O.S.C. at x ∈ W , we consider

only sequences {xk : k ∈ N} converging to x that are on W .

34Some authors denote these limits as lim infk∈NAk and lim supk∈NAk, respectively. We prefer

to use another notation in this thesis in order to avoid any possible confusion with the identi-

cal well-established notation adopted in measure theory, i.e., lim infk∈NAk = ∪j∈N ∩k≥j Ak and

lim supk∈NAk = ∩j∈N ∪k≥j Ak.
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2.6.1 Continuity of optimal value functions

In this section, unless stated otherwise, X and Θ are nonempty metric spaces,

g : X × Θ → R is a function, and C : Θ ⇒ X is a multifunction. Consider the

optimal value function

h(θ) := inf
x∈C(θ)

g(x, θ), for all θ ∈ Θ, (2.6.6)

and the multifunction S : Θ ⇒ X of optimal solutions

S(θ) := argmin
x∈C(θ)

g(x, θ), for all θ ∈ Θ. (2.6.7)

We are interested in studying under which conditions in the problem data, function h

is continuous at θ0 ∈ Θ. As a bonus we also obtain that under these same conditions

the multifunction S is O.S.C. at θ0. There are at least two possible ways to derive

these kind of results. Here we present a version of Berge’s Maximum Theorem

(BMT) [6, Page 116]. For a different approach one should consult [73, Section 7.1.5]

or [10, Proposition 4.4].

We apply the results of this section for showing that under appropriate regularity

conditions w.p.1 the SAA problem in the multistage setting is such that

x1 ∈ X1 7→ Q̂2(x1) =

N2∑
j=1

Q̂2(x1, ξ
j) (2.6.8)

is a continuous function (see Proposition 2.1.15). The continuity of Q̂2(·) : X1 → R
was shown assuming that the multifunctions Xt+1(·, ξt+1) : Xt ⇒ Rnt+1 are con-

tinuous, for all ξt+1 ∈ supp ξt+1, t = 1, . . . , T − 1 (see conditions (Mt.5), for

t = 1, . . . , T − 1 in Section 2.1.2).

Proposition 2.6.4 is a version (see Remark 2.6.5) of BMT.

Proposition 2.6.4. Take any θ0 ∈ Θ. Suppose that the following conditions hold:

(i) the function g : X × Θ→ R is continuous, (ii) the multifunction C : Θ ⇒ X is

compact-valued, (iii) there exists a neighborhood V of θ0 ∈ dom(C) such that

C(V ) =
⋃
θ∈V

C(θ) (2.6.9)

is a compact metric space, and (iv) C is continuous at θ0. Then h is continuous at

θ0 and S is O.S.C. at θ0.

Proof. First, let us show that θ0 ∈ int(dom(C)). Suppose by contradiction that

θ0 /∈ int(dom(C)). Thus, there exists a sequence {θk : k ∈ N} ⊆ Θ\ dom(C) such

that limk θk = θ0. Note that C(θk) = ∅, for all k ∈ N, so

∅ 6= C(θ0) ⊆ limint
k

C(θk) = ∅ (→←).
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Now, let {θk : k ∈ N} be any sequence in Θ converging to θ0. For proving that

h(θ0) = limk h(θk), it is sufficient to show that for any subsequence {θk : k ∈ N ′},
where N ′ ⊆ N, there exists a subsubsequence {θk : k ∈ N ′′}, N ′′ ⊆ N ′, such that

h(θ0) = limk∈N ′′ h(θk). Observe that there exists K ∈ N such that θk ∈ V ∩dom(C),

for all k ≥ K. Since C is compact-valued and g is continuous, we can consider a

selection xk ∈ S(θk) ⊆ C(θk), for k ≥ K and k ∈ N ′. Since C(V ) is compact and

xk ∈ C(V ), for all k ≥ K, there exists a subsequence {xk : k ∈ N ′′}, where N ′′ ⊆ N ′,

such that xk −→ x̄ ∈ C(V ), as k ∈ K ′′ goes to +∞. Note that x̄ ∈ limextk C(θk) ⊆
C(θ0), where the inclusion holds since C is O.S.C. at θ0. Moreover, let x ∈ C(θ0)

be arbitrary. Since C is I.S.C. at θ0, there exists yk ∈ C(θk) (for k ≥ K) such that

yk −→ x, as k → +∞. Summing up, we obtain that

g(xk, θk) ≤ g(yk, θk), for all k ∈ N ′′ and k ≥ K.

Letting k → +∞ above and using the (jointly) continuity of g, we obtain that

g(x̄, θ0) ≤ g(x, θ0), for all x ∈ C(θ0). This shows that x̄ ∈ S(θ0) and that h(θ0) =

limk∈N ′′ h(θk), proving the continuity of h at θ0.

Finally, let us show that limextk S(θk) ⊆ S(θ0). Take any x̂ ∈ limextk S(θk).

It follows that there exists a subsequence {xkj : j ∈ N} such that xkj −→ x̂, as

j → +∞, where xkj ∈ S(θkj), for all k ∈ N. Take any x ∈ C(θ0). Using again the

fact that C is I.S.C. at θ0, there exists a sequence {yk : k ≥ K} converging to x

such that yk ∈ C(θk), for all k ≥ K. Using again the continuity of g, we obtain that

g(x̂, θ0) ≤ g(x, θ0). It follows that x̂ ∈ S(θ0) and the result is proved.

Remark 2.6.5. Let us make two remarks about the differences between our presen-

tation of BMT and the original theorem. First note that here we present the result

considering a parametric minimization problem, instead of a parametric maximiza-

tion problem. This difference is irrelevant in the sense that trivial modifications of

the proofs presented here and in the original versions of BMT work, respectively,

for parametric maximization problems and for parametric minimization problems.

A more relevant difference between the versions is that in [6] the author considers

a different notion of continuity of a multifunction that the one considered here. In

[6, Chapter VI, §1] the author defines the concepts of lower semicontinuous (l.s.c.)

and upper semicontinuous (u.s.c.) multifunctions at a given point of its domain.

He states that a multifunction is continuous at a given point if it is l.s.c. and u.s.c.

at this point. It is possible to show that the concept of a l.s.c. multifunction con-

sidered in [6] is equivalent to the concept of a I.S.C. multifunction considered here.

However, the concept of a u.s.c. multifunction considered in [6] is different from the

concept of a O.S.C. multifunction considered here. In [13] the authors considered,

besides the notion of continuity of a multifunction presented here, the concept of

Kuratowski-continuity. This concept coincides with the one presented in [6]. �
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In the next proposition we consider metrics on the subsets X and Y of the

Euclidean spaces Rn and Rm, respectively, that are given by any norm of Rn and

Rm.

Proposition 2.6.6. Let X ⊆ Rn and Y ⊆ Rm be (nonempty) compact sets. If

C : X ⇒ Y is a continuous multifunction, then C is compact-valued, C(X) :=

∪x∈XC(x) ⊆ Rm is compact and dom(C) is open in X and compact.

Proof. If dom(C) = ∅, the result holds trivially. It is well-known (see [13, Theorem

2.5.4]) that C : X ⇒ Y is O.S.C. at X if and only if gph(C) ⊆ X × Y is closed

in X × Y . Any closed subset of a compact set is compact. Note that X × Y is

compact, so gph(C) is also compact. Denote by πx(x, y) := x and πy(x, y) := y

the projections in the x-variable and y-variable, respectively. Since these functions

are continuous, it follows that dom(C) = πx(gph(C)) and C(X) = πy(gph(C)) are

compact sets. In particular, C(x) ⊆ Rm is compact, for all x ∈ X. Let us show that

dom(C) is open in X. Suppose by contradiction that dom(C) is not open in X and

take any x ∈ dom(C)\ intX(dom(C)). So, there exists a sequence {xk : k ∈ N} in

X\ domC such that xk −→ x, as k → +∞. Since C is I.S.C. at x, we obtain that

C(x) ⊆ limintk C(xk) = ∅, which contradicts the fact that x ∈ dom(C).

In many applications the multifunction C : Θ ⇒ Rn is of the form

C(θ) := {x ∈ Rn : G(x, θ) ∈ K}, (2.6.10)

where G : Rn×Θ→ Rm is a function, K ⊆ Rm is a pointed closed convex cone, and

Θ is a metric space. In Proposition 2.6.7 we present some sufficient conditions that

guarantee the outer semicontinuity and the inner semicontinuity of C(·) at θ0 ∈ Θ.

Proposition 2.6.7. Take any nonempty metric space Θ. Let C : Θ ⇒ Rn be

a multifunction of the form (2.6.10) where K ⊆ Rm is a closed convex cone (see

Definition 2.5.5) and G : Rn × Θ → Rm is a function. The following assertions

hold: (a) if G is continuous, then C is O.S.C. in Θ, (b) suppose, additionally,

that G(·, θ) is convex with respect to −K (see Definition 2.5.18) and that the Slater

constraint qualification is satisfied at θ0 ∈ Θ, i.e. there exists x0 ∈ Rn such that

G(x0, θ0) ∈ intK. Then, C(·) is I.S.C. at θ0.

Proof. For proving item (a) it is sufficient (and necessary) to show that gph(C) is

closed in Θ×Rn. Take any sequence (θj, xj) ∈ gph(C) such that (θj, xj)→ (θ̄, x̄) ∈
Θ × Rn. We just need to show that (θ̄, x̄) ∈ gphC, i.e. x̄ ∈ C(θ̄). Note that

G(xj, θj) ∈ K, for every j ∈ Rn. Moreover, since G is continuous and (θj, xj) →
(θ̄, x̄), it follows that G(x̄, θ̄) = limj G(xj, θj) ∈ K = K, i.e. x̄ ∈ C(θ̄). This proves

item (a).
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Now we prove item (b). Take any sequence θj → θ0. For showing that C(·) is

I.S.C. at θ0, we just have to prove that C(θ0) ⊆ limintj C(θj). Take any x̂ ∈ C(θ0).

We consider two steps.

Step 1: Suppose that G(x̂, θ0) ∈ intK. Note that G(x̂, θj) →j G(x̂, θ0) ∈ intK,

since G is continuous. Therefore, G(x̂, θj) ∈ K for sufficiently large j ∈ N, that is

x̂ ∈ C(θj) for sufficiently large j. It follows that x̂ ∈ limintj C(θj).

Step 2: Take any 0 ≤ λ < 1. By hypothesis, there exists x0 ∈ Rn such that

G(x0, θ0) ∈ intK. Note that λG(x̂, θ0) + (1 − λ)G(x0, θ0) ∈ intK, since 1 − λ > 0

and G(x̂, θ0) ∈ K. Since G(·, θ0) is convex with respect to −K, we have that

λG(x̂, θ0) + (1− λ)G(x0, θ0) �−K G(λx̂+ (1− λ)x0, θ0), (2.6.11)

that is:

G(λx̂+ (1− λ)x0, θ0)− [λG(x̂, θ0) + (1− λ)G(x0, θ0)] ∈ K. (2.6.12)

Since K is a convex cone and λG(x̂, θ0) + (1 − λ)G(x0, θ0) ∈ intK, it follows from

Lemma 2.5.9 that

G(λx̂+ (1− λ)x0, θ0) = (G(λx̂+ (1− λ)x0, θ0)− [λG(x̂, θ0) + (1− λ)G(x0, θ0)])

+ [λG(x̂, θ0) + (1− λ)G(x0, θ0)] ∈ intK.

By Step 1, we conclude that λx̂+ (1− λ)x0 ∈ limintj C(θj), for 0 ≤ λ < 1. Letting

λ → 1, we obtain that x̂ ∈ limintj C(θj) = limintj C(θj), since limintj C(θj) is a

closed set (see [13, Remark 2.5.2]). This completes the proof of item (b).

2.6.2 Measurability of multifunctions

In this section we follow closely reference [59, Chapter 14]. Another reference on

this topic is [73, Section 7.2.3]. The main objective of this section is to introduce

the basic theory of measurable multifunctions that guarantees that optimal value

functions of the form

q(ω) := inf
x∈Rn

f(x, ω) (2.6.13)

are F -measurable, where (Ω,F) is a measurable space and f : Rn × Ω → R is a

extended real-valued function. Although it does not appear any multifunction in the

formulation above, the sufficient conditions on f that guarantee the measurability of

q(·) will involve the notion of measurable multifunctions. This topic is particularly

useful when we deal with technical measurability questions of two-stage and multi-

stage stochastic programming problems. Let us begin by recalling the definition of a

measurable multifunction. In the sequel, (Ω,F) will always be a measurable space.
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Definition 2.6.8. (measurable multifunctions) A multifunction S : Ω ⇒ Rn is

measurable if for every open set G ⊆ Rn its inverse image by S

S−1(G) := {ω ∈ Ω : S(ω) ∩G 6= ∅} (2.6.14)

belongs to F .

Proposition 2.6.9 states equivalent conditions for the measurability of a multi-

function S : Ω ⇒ Rn. Here we state just some equivalent statements that will be

useful in our presentation. See [59, Theorem 14.3] for other equivalent conditions.

Proposition 2.6.9. Let S : Ω ⇒ Rn be a multifunction. Consider the following

statements:

(a) S−1(G) ∈ F , for all open sets G ⊆ Rn.

(b) S−1(F ) ∈ F , for all closed sets F ⊆ Rn.

(c) the function ω ∈ Ω→ d (x, S(ω)) is F-measurable for each x ∈ Rn.

We have that (a) ⇔ (b) ⇒ (c). Moreover, when S is closed-valued, we also have

that (c)⇒ (a).

Proof. See [59, Theorem 14.3].

Remark 2.6.10. Let S : Ω ⇒ Rn be a measurable multifunction. Differently from

measurable functions, it is not true, in general, that S−1(B) ∈ F , for every B ∈
B(Rn). See [59, Theorem 14.8] for more details about this topic. �

The following result will be useful.

Proposition 2.6.11. Consider J a countable index set and let Sj : Ω ⇒ Rn be

measurable, for each j ∈ J . The following assertions hold true:

(a) ω ∈ Ω 7→
⋃
j∈J Sj(ω) is measurable,

(b) if each Sj is closed-valued, then ω ∈ Ω 7→
⋂
j∈J Sj(ω) is measurable.

(c) if J is finite, say J = {1, . . . ,m}, then ω ∈ Ω 7→ S1(ω) × · · · × Sm(ω) is

measurable.

Proof. See [59, Proposition 14.11].

Given a function f : Rn × Ω→ R, we consider its epigraph multifunction

Ef : ω ∈ Ω 7→ Ef (ω) := epi f(·, ω) ⊆ Rn+1. (2.6.15)

Note that for any ω ∈ Ω, f(·, ω) is the function that associates every input x ∈ Rn

with the output f(x, ω) ∈ R. So, epi f(·, ω) ⊆ Rn+1, for every ω ∈ Ω.
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Definition 2.6.12. (normal integrands or random l.s.c. functions) We say that

f : Rn × Ω → R is a normal integrand (or random l.s.c. function) when Ef is

closed-valued and measurable.

Remark 2.6.13. If f is a normal integrand, then epi f(·, ω) is a closed set, i.e.

f(·, ω) is a l.s.c. function. It is also true that f(x, ·) is F-measurable, for every

x ∈ Rn. Let us show that. Take any x ∈ Rn. We just have to verify that

f−1(x, F ) = {ω ∈ Ω : f(x, ω) ∈ F} ∈ F , (2.6.16)

for every closed set F ⊆ R. Note that

f−1(x, F ) = E−1
f ({x} × F ) (2.6.17)

that belongs to F since Ef is a measurable multifunction and {x}×F is closed (see

Proposition 2.6.9).

For closing this remark, let us point out that it is not true, in general, that

a function f : Rn × Ω → R satisfying conditions (i) and (ii) below is a normal

integrand, where:

(i) f(x, ·) is measurable, for all x ∈ Rn,

(ii) f(·, ω) is l.s.c., for every ω ∈ Ω.

For a counterexample see the proof of [59, Proposition 14.28]. �

Before proceeding we present the definition of Carathéodory functions. This is

an important subclass of normal integrands (see Proposition 2.6.15).

Definition 2.6.14. (Carathéodory functions) We say that f : Rn × Ω → R is a

Carathéodory function when f(x, ·) is F-measurable for every x ∈ Rn and f(·, ω) is

continuous for every ω ∈ Ω.

Proposition 2.6.15. If f : Rn × Ω → R is a Carathéodory function, then f is a

normal integrand.

Proof. Define the function F : (Rn × R)× Ω→ R as

F (x, α, ω) := f(x, ω)− α. (2.6.18)

Since f is a Carathéodory function, the following assertions hold: (a) (x, α) 7→
F (x, α, ω) = f(x, ω) − α is continuous, for every ω ∈ Ω, and (b) ω ∈ Ω 7→
F (x, α, ω) = f(x, ω)− α is F -measurable, for every (x, α) ∈ Rn × R. Saying equiv-

alently, F is also a Carathéodory function. Now, note that

Ef (ω) = F−1(·, ·, ω)((−∞, 0]), (2.6.19)
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since (x, α) ∈ F−1(·, ·, ω)((−∞, 0]) ⇔ F (x, α, ω) = f(x, ω) − α ≤ 0 ⇔ f(x, ω) ≤
α ⇔ (x, α) ∈ epi f(·, ω) ⇔ (x, α) ∈ Ef (ω). Ef (ω) is a closed set, since F (·, ·, ω) is

continuous and (−∞, 0] is closed. This proves that Ef : Ω ⇒ Rn×R is closed-valued.

Now, let us show that Ef is a measurable multifunction. Take any open G ⊆
Rn × R. We just need to prove that E−1

f (G) ∈ F . If G = ∅, then there is nothing

to be done: E−1
f (∅) = ∅ ∈ F . Otherwise, let D = {(xk, tk) : k ∈ N} be a countable

dense subset of G. We claim that

E−1
f (G) = E−1

f (D) (2.6.20)

=
⋃
k∈N

E−1
f ({(xk, tk)}) (2.6.21)

=
⋃
k∈N

f−1(xk, ·) ((−∞, tk]) ∈ F . (2.6.22)

It is elementary to verify that the second and third equalities hold. The countable

union in the left-side of the third equality is a measurable set, since

f−1(xk, ·) ((−∞, tk]) ∈ F ,

for every k ∈ N. Indeed, this follows from the facts that (−∞, tk] is closed and

f(xk, ·) is F -measurable. Now, we show that the first equality holds. Since G ⊇ D,

it follows that E−1
f (G) ⊇ E−1

f (D). So, we just need to prove the converse inclusion.

Take any ω ∈ E−1
f (G). It follows that there exists (x, t) ∈ Ef (ω) ∩ G. Since G is

open, there exists ε > 0 such that B((x, t), ε) ⊆ G. Moreover, by the continuity

of f(·, ω), there exists δ > 0, that we can take less than or equal to ε/2, such that

f(x′, ω) < t + ε/4, for every x′ ∈ B(x, δ). Finally, note that B(x, δ) × (t + ε/4, t +

ε/2) ⊆ B((x, t), ε) ⊆ G is open. Therefore, (xk, tk) ∈ B(x, δ)× (t+ ε/4, t+ ε/2), for

some k ∈ N. It follows that

f(xk, ω) < t+ ε/4 < tk, (2.6.23)

i.e. (xk, tk) ∈ epi f(·, ω) = Ef (ω), in particular, ω ∈ E−1
f (D). This completes the

proof of the proposition.

Now we present the key result of this subsection.

Proposition 2.6.16. Consider a normal integrand f : Rn × Ω→ R and define:

q(ω) := inf
x∈Rn

f(x, ω); (2.6.24)

S(ω) := argmin
x∈Rn

f(x, ω). (2.6.25)

Then the optimal value function q : Ω → R is F-measurable and the multifunction

of optimal solutions S : Ω ⇒ Rn is closed-valued and F-measurable.
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Proof. See [59, Theorem 14.37].

Corollary 2.6.17. Consider a normal integrand f : Rn×Ω→ R and a closed-valued

measurable multifunction X : Ω ⇒ Rn. Define:

q(ω) := inf
x∈X(ω)

f(x, ω); (2.6.26)

S(ω) := argmin
x∈X(ω)

f(x, ω). (2.6.27)

Then the optimal value function q : Ω → R is F-measurable and the multifunction

of optimal solutions S : Ω ⇒ Rn is closed-valued and F-measurable.

Proof. Let us define the following function

f̃(x, ω) :=

{
f(x, ω) if x ∈ X(ω),

+∞ otherwise.
(2.6.28)

Note that q(ω) = infx∈Rn f̃(x, ω) and S(ω) = X(ω) ∩ argminx∈Rn f̃(x, ω). We claim

that the result follows from Proposition 2.6.16 if we show that f̃ is a normal inte-

grand. Indeed, assume that f̃ is a normal integrand. Proposition 2.6.16 implies that

q is measurable and

ω ∈ Ω 7→ argmin
x∈Rn

f̃(x, ω) (2.6.29)

is closed-valued and measurable. Since X is also closed-valued and measurable, it

follows from Proposition 2.6.11 that

ω ∈ Ω 7→ X(ω) ∩ argmin
x∈Rn

f̃(x, ω) (2.6.30)

is measurable and closed-valued.

Now, let us show that f̃ is a normal integrand. Note that

Ef̃ (ω) = Ef (ω) ∩ (X(ω)× R) . (2.6.31)

It follows from Proposition 2.6.11 that ω ∈ Ω 7→ X(ω) × R is closed-valued and

measurable. Since Ef is closed-valued and measurable, we conclude that Ef̃ is also

closed-valued and measurable, i.e. f̃ is a normal integrand.

2.7 Risk measures

In this section we present the notion of risk measures. As we have discussed previ-

ously, in some contexts the use of the expected value operator in order to summa-

rize a random cost into a real number may not be a good criterion to be used in a

stochastic optimization problem. That is particularly the case when lower and up-

per deviations of the random cost from its expected value do not perfectly offset in
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terms of the decision maker preferences. In a risk averse situation the relative losses

of upper deviations of the random costs from its expected value are greater than

the relative gains obtained from the lower deviations. In the sequel we consider

many properties that a risk measure could present, like: risk aversity, convexity,

coherence, law invariance, etc. We begin our presentation considering static risk

measures, i.e. risk measures taking values on the real numbers. From static risk

measures, it is straightforward to consider risk averse formulations of stochastic pro-

gramming problems. Subsequently we consider conditional risk measures that are

used to formulate risk averse multistage stochastic programming problems.

Unless stated otherwise, in the remainder of this section (Ω,F ,P) is a given

probability space and Z = Lp (Ω,F ,P) is the space of random variables defined on

(Ω,F ,P) having finite p-th order moment, where p ∈ [1,∞). As usual we identify

two random variables Z and W in Z that agree w.p.1. With some abuse of notation,

we also write Z ≤ W to denote that Z(ω) ≤ W (ω) w.p.1.

Definition 2.7.1. (risk measures) We say that ρ : Z → R is a risk measure on Z
if it is a proper function, i.e. dom ρ = {Z ∈ Z : ρ(Z) < +∞} 6= ∅ and ρ(Z) > −∞,

for all Z ∈ Z.

Since we are identifying two random variables Z,W ∈ Z that agree w.p.1, i.e.,

such that P [Z = W ] = 1, a risk measure ρ defined on Z must relate the same value

ρ(Z) = ρ(W ) for such random variables.

Definition 2.7.2. (risk averse risk measures) We say that a risk measure ρ : Z → R
is risk averse if it satisfies the following properties:

(a) ρ(Z) ≥ EZ, for all Z ∈ Z.

(b) ρ(a) = a, for all a ∈ R.

Remark 2.7.3. With some abuse of notation, we identify any real number a ∈ R
with the constant random variable a · 1Ω(·) ∈ Z. In that sense, a ∈ Z and ρ(a) is

well-defined, for every a ∈ R. �

Risk measures can be used by a decision maker to rank random outcomes. Take

Z and W in Z and consider a risk measure ρ defined in Z. A decision maker

that uses the risk measure ρ as his choice criterion will choose Z over W , whenever

ρ(Z) ≤ ρ(W ). By Definition 2.7.2 note that a risk averse decision maker prefers to

incur in the certain cost EZ instead of incurring in the random cost Z, since

ρ(Z) ≥ EZ = ρ(EZ), (2.7.1)

for all Z ∈ Z.
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Definition 2.7.1 is too broad in the sense that it does not impose any consistency

constraints on ρ. As we have pointed out previously, the elements of Z are random

losses. One wants to compare distinct elements Z,W ∈ Z using a risk measure

ρ : Z → R. Of course, the greater a random loss Z ∈ Z is, the less desirable it

must be. A reasonable risk measure ρ must be able to meet this basic requirement

condition. Let us consider the following set of axioms to be satisfied by a risk

measure ρ:

(R1) Monotonicity: If Z,W ∈ Z and Z ≤ W , then ρ(Z) ≤ ρ(W ).

(R2) Translation equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

(R3) Convexity: For all Z,W ∈ Z and λ ∈ [0, 1],

ρ(λZ + (1− λ)W ) ≤ λρ(Z) + (1− λ)ρ(W ).

(R4) Positive homogeneity: if λ > 0 and Z ∈ Z, then ρ(λZ) = λρ(Z).

We say that a risk measure ρ satisfying conditions (R1)-(R3) is a convex risk mea-

sure. If ρ satisfies, additionally, condition (R4), we say that it is a coherent risk

measure. The notion of a coherent risk measure was introduced in the seminal pa-

per [3]. In [3] the authors stated that a risk measure ρ is coherent if it satisfies

conditions (R1), (R2), (R4) and

(R3’) Subadditivity: For all Z,W ∈ Z,

ρ(Z +W ) ≤ ρ(Z) + ρ(W ).

It is elementary to show that the set of conditions (R1)-(R2)-(R3)-(R4) and (R1)-

(R2)-(R3’)-(R4) are equivalent. In [25] the authors dropped the last axiom (R4)

from the list and substituted the axiom (R3’) by (R3) to define the class of convex

risk measures.

Now we argue that the axioms (R1)-(R3) are in fact quite natural conditions to

be imposed to a risk measure ρ. Condition (R1) is obvious: if the random cost Z is

always less than or equal to W (or even just w.p.1), then its perceived risk ρ(Z) must

be less than or equal to ρ(W ). Condition (R3) is related to portfolio diversification.

It means that the risk associated with diversified positions must be at most equal to

the weighted mean of the risks associated with the individual positions. Condition

(R2) is natural to assume when we first consider the definition of acceptance sets

A ⊆ Z and then consider the risk measure ρA(·) (see [25, Page 430]) constructed

from A (see also the set of axioms (2.1)-(2.4) in [3] that must be satisfied by an

acceptance set A). Assume also that the risk measure ρ satisfies the normalized

condition ρ(0) = 0. In this case it follows that ρ(a) = ρ(0 + a) = ρ(0) + a = a, for
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all a ∈ R. The quantity ρ(Z) can be interpreted as the minimal amount of cash to

be given to the decision maker in order for him to accept taking the random cost

Z. As pointed out in [3], the axiom (2.4), that is related to the acceptance set A, is

a less natural condition to require. This axiom is intimately related with condition

(R4) that was dropped in [25] when the authors considered the definition of convex

risk measures. Indeed, in [25, Page 2] the authors argued that the risk associated

with a given financial position might increase in a nonlinear way with the size of the

position. In fact, an additional liquidity risk may arise if a position is multiplied by

a large factor λ > 0.

As we have pointed before, in this thesis we derive sample complexity results for

risk averse stochastic programming problems with OCE risk measures. It is worth

mentioning that although the class of OCE risk measures is a subclass of convex

risk measures (see Proposition 3.1.5), it is not true that every OCE risk measure is

a coherent risk measure. However, by the discussion made in the last paragraph,

this fact does not weaken the importance of this class of risk measure.

Now, let us consider some examples of risk measures (see [73, Section 6.3.2] for

some other examples).

Example 2.7.4. Let be given a probability space (Ω,F ,P). Consider the following

examples of risk measures:

(i) (Expected Value) E : L1 (Ω,F ,P)→ R

EZ =

∫
Ω

Z(ω)dP(ω). (2.7.2)

This is the most basic risk measure and it is used as a building block of many

other important risk measures. It is elementary to verify that E(·) is a coherent

risk measure.

(ii) (Value-at-Risk) Take any α ∈ (0, 1). The Value-at-Risk with significance level

α of a random variable Z is the left-side (1− α)-quantile of Z:

V@Rα(Z) := {z ∈ R : P [Z ≤ z] ≥ 1− α} .

This particular risk measure is widely adopted by financial institutions in order

to measure the risk of portfolios. Although it satisfies the axioms (R1), (R2)

and (R4), it does not satisfy, in general, the convexity axiom (R3)35. Thus,

in general, the Value-at-Risk is not a convex risk measure. As a consequence,

it turns out that risk averse stochastic programming problems with the Value-

at-Risk risk measure are computationally difficult to solve (see [47]).

35Note that this depends on the underlined probability space (Ω,F ,P). For example, if we take

Ω just a singleton, then L1 (Ω,F ,P) can be identified as the set of real numbers and we have that

V@Rα(a) = a, for every a ∈ R. Of course, this is a very artificial example.
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(iii) (Average Value-at-Risk) For every α ∈ (0, 1], the risk measure AV@Rα :

L1 (Ω,F ,P)→ R is defined as:

AV@Rα(Z) := inf
s∈R

{
s+

1

α
Emax{Z − s, 0}

}
,∀Z ∈ Z. (2.7.3)

This risk measure is closely related to the Value-at-Risk risk measure. Note

that the calculation of AV@Rα(Z) involves solving an optimization problem on

the real line. As it is well-known (see Proposition 3.1.13), the set of (1− α)-

quantiles of the random variable Z is the solution set of (2.7.3). In particular,

V@Rα(Z) ∈ argmin
s∈R

{
s+

1

α
Emax{Z − s, 0}

}
.

It is also well-known that the AV@Rα(·) risk measure is a coherent risk measure

(see [1]). Stochastic programming models adopting the average value-at-risk

risk measure has been widely used by the stochastic programming community.

One of its main features is that risk averse linear models can be solved very

efficiently using this type of risk measures (see, e.g., [58]).

(iv) (Mean-variance) For every c ≥ 0, consider the mean-variance risk measure

ρc(Z) := EZ + cVar [Z]

defined on L2 (Ω,F ,P). Let us consider that c > 0, otherwise we are dealing

again with the expected value risk measure. In general, ρc(·) does not satisfy

the monotonicity axiom (R1), although it satisfies axioms (R2) and (R3). It

also does not satisfies axiom (R4).

�

Note that in all examples considered above, if Z
d∼ W with respect to P, then

ρ(Z) = ρ(W ). Note that Z
d∼ W with respect to P if and only if FZ(x) = FW (x),

for all x ∈ R, where:

FZ(x) := P [Z ≤ x] and FW (x) := P [W ≤ x]

are the cumulative distribution functions of Z and W , respectively. Note that this

fact is always true, regardless of the considered probability space (Ω,F ,P). In

Section 3.1 we prove that this also true for the class of OCE risk measures. We

consider below the concept of law invariant risk measures.

Definition 2.7.5. (law invariant risk measures) We say that a risk measure ρ :

Z → R is law invariant, with respect to the reference probability space (Ω,F ,P), if

ρ(Z) = ρ(W ) whenever Z,W ∈ Z satisfy Z
d∼ W .
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In order to consider the risk averse formulation of multistage problems, the

following concept of conditional risk mappings will be useful. Let (Ω,F ,P) be a

probability space, G ⊆ F be a sub-σ-algebra of F , Z := Lp (Ω,F ,P) and W :=

Lp (Ω,G,P), where p ∈ [1,∞).

Definition 2.7.6. (conditional risk measures) We say that a mapping ρ : Z → W
is a conditional risk measure if it satisfies the following property:

(CR1) Monotonicity: ρ(Z) ≤ ρ(W ) for all Z,W ∈ Z such that Z ≤ W .

The following axioms are also usually considered for conditional risk measures:

(CR2) Predictable translation equivariance: If W ∈ W and Z ∈ Z, then ρ(W +Z) =

W + ρ(Z).

(CR3) Convexity: If Z,W ∈ Z and λ ∈ [0, 1], then

ρ (λZ + (1− λ)W ) ≤ λρ (Z) + (1− λ)ρ (W ) .

(CR4) Positive homogeneity: If λ > 0 and Z ∈ Z, then ρ(λZ) = λρ(Z).

We say that a conditional risk mapping satisfying the axioms (CR1)-(CR3) is a

convex conditional risk measure. If ρ satisfies additionally the axiom (CR4) it is

referred as a coherent conditional risk measure.

In Chapter 4 we derive sample complexity estimates considering a risk averse

multistage stochastic programming problems with conditional OCE risk measures.

We show in that chapter that this class of conditional risk measures is convex. We

also point that conditional OCE risk measures are not coherent, in general.

2.8 Miscellany

In this section we show some technical results that are used in this work. Let us

begin by presenting some estimates of the covering theory in Rn. The first result

is a lemma that will be used in the derivation of the second result, which provides

an upper bound estimate for the absolute constant ρ > 0 that appears repeatedly

along the text (see, for instance, Theorem 2.1.5).

Lemma 2.8.1. Consider finite constants D > d > 0 and n ∈ N. We can cover the

closed n-dimensional (euclidean) ball with radius D with K closed n-dimensional

(euclidean) balls with radius d, where K ≤ (2D/d+ 1)n.

103 2017



CHAPTER 2. BACKGROUND MATERIAL AND PRELIMINARY RESULTS

Proof. All balls considered below are closed euclidean balls of Rn. In the following

procedure, every small ball has radius d/2 and the big ball has radius D.

Place a small ball in the space with center belonging to the big ball. Suppose

that we have placed k ≥ 1 disjoints small balls in Rn, where the center of each one

belongs to the big ball36. If it is possible to place another small ball in the space

satisfying both conditions above, proceed and make k = k + 1; otherwise, stop. Of

course, by volume considerations (see below), the preceding algorithm stops after a

finite number of iterations, say K. After the termination, we are in a configuration

that for every point of the big ball, there exists a small ball whose distance to this

point is ≤ d/2. Indeed, if there exists a point in the big ball whose distance to each

small ball is greater than d/2, then we can place an additional small ball with center

at this point. Moreover, this small ball is disjoint to all others, which contradicts

the fact that the algorithm has stopped.

Now, duplicate the radius of each one of the K small balls, keeping the same

center. We claim that these K balls with radius d cover the big one. In fact, consider

an arbitrary point of the big ball. We know that there exists one small ball whose

distance to this point is ≤ d/2. By the triangular inequality, we conclude that this

point belongs to the enlarged ball with radius d.

Finally, observe that each one of the small balls (with radius d/2) is contained

in a ball with radius D + d/2. Since the small balls are disjoint, we conclude that

K.Vol(Bn)(d/2)n ≤ (D + d/2)n Vol(Bn),

where Vol(Bn) is the volume of the unitary euclidean ball of Rn and we have used

that the volume of the ball with radius r > 0 is equal to rn Vol(Bn). We obtain that

K ≤ (2D/d+ 1)n, and the lemma is proved.

Definition 2.8.2. (v-net) Let X ⊆ Rn and v > 0 be given. We say that V =

{x1, . . . , xM} ⊆ X is a v-net of X if for every x ∈ X, there exists 1 ≤ i ≤ M such

that: ||xi − x|| ≤ v.

Proposition 2.8.3. Assume that X ⊆ Rn has finite diameter D > 0. For every

d ∈ (0, D), there exists a d-net of X with K ≤ (5D/d)n elements.

Proof. Let B be a ball with radius D such that B ⊇ X. By Lemma 2.8.1, it is

possible to cover B with {Bi : i = 1, . . . , K}, where each Bi has radius d/2 and K ≤
(4D/d + 1)n ≤ (5D/d)n. Consider the following procedure. For each i = 1, . . . , K,

if Bi ∩X 6= ∅, select any of its elements, say xi. Denote the set of selected elements

by V . Of course, V ⊆ X and cardY ≤ (5D/d)n. We claim that V is a d-net of X.

In fact, take any x ∈ X. Since X ⊆ B ⊆
⋃K
i=1Bi, there exists i such that x ∈ Bi.

Since X ∩ Bi 6= ∅, we have selected an element xi ∈ Bi along the construction of

36We are not assuming that each small ball is contained in the big one, only its center
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V . Since Bi has radius d/2, the triangular inequality guarantees that ||xi− x|| ≤ d,

and the proposition is proved.

Now we show a useful inequality involving differences of infima and the supremum

of differences.

Proposition 2.8.4. Let f, g : X → R be arbitrary functions, where X is a nonempty

set, and suppose that at least one of these functions is bounded from below. Then,∣∣∣∣ inf
x∈X

f(x)− inf
x∈X

g(x)

∣∣∣∣ ≤ sup
x∈X
|f(x)− g(x)| . (2.8.1)

Proof. Suppose, without loss of generality, that 0 ≤ infx∈X f(x) − infx∈X g(x). It

follows that a := infx∈X f(x) > −∞, since at most one of the functions f or g is

unbounded from below. For every y ∈ X, we have that infx∈X f(x) ≤ f(y), so

infx∈X f(x) − g(y) ≤ f(y) − g(y), ∀y ∈ X. Taking the supremum on y ∈ X, and

using that supy∈X −g(y) = − infy∈X g(y) and a > −∞, we conclude that:

0 ≤ inf
x∈X

f(x)− inf
y∈X

g(y) = a− inf
y∈X

g(y) (2.8.2)

= sup
y∈X
{a− g(y)} (2.8.3)

≤ sup
y∈X

(f(y)− g(y)) (2.8.4)

= sup
x∈X
|f(x)− g(x)| , (2.8.5)

and the result is proved.

Remark 2.8.5. Observe that equation (2.8.3) holds, because a > −∞. In fact the

previous proposition is not true, in general, without supposing that at least one of

the functions f or g is bounded from below. Consider the following counterexample:

f := g := Id : R → R. Then, infx∈R f(x) = infx∈R g(x) = infx∈R x = −∞, and so

infx∈R f(x)− infx∈R g(x) = (−∞)− (−∞) = +∞ > 0 = supx∈R |f(x)− g(x)|. �

Proposition 2.8.6. Let X be a random variable such that:

MX(s) = E exp{sX} < +∞, (2.8.6)

for all |s| < s0, where s0 > 0 is a positive number. Then, X has finite moments of

all orders

EXk < +∞, ∀k ∈ N, (2.8.7)

and

MX(s) =
∞∑
k=0

sk

k!
EXk, for all |s| < s0. (2.8.8)
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Proof. See [8, Page 278].

Proposition 2.8.7 is a basic result about the relationship of the exponential rate

of convergence of a sequence of nonnegative real numbers to 0 and the superior limit

of a related sequence obtained from the convergent one. This result is often used in

large deviation theory.

Proposition 2.8.7. Let {an : n ∈ N} be a sequence of nonnegative real numbers. If

there exists β > 0 such that

lim sup
n→∞

1

n
log an ≤ −β, (2.8.9)

then for any β′ < β there exists C = C(β′) > 0 finite such that

an ≤ C exp{−β′n}, ∀n ∈ N. (2.8.10)

Reciprocally, if an ≤ C exp{−βn}, ∀n ∈ N, then

lim sup
n→∞

1

n
log an ≤ −β

Proof. Take any β′ < β. Since −β < −β′ and condition (2.8.9) holds, it follows that

there exists N0 ∈ N such that

1

n
log an ≤ −β′, ∀n ≥ N0.

So, an ≤ exp{−β′n}, for every n ≥ N0. Equation (2.8.10) follows by taking

C := max {1, a1 exp{β′}, . . . , aN0 exp{β′N0}} .

The converse implication is elementary.

The following example shows that, in general, it is not possible to obtain (2.8.10)

with β = β′ from (2.8.10).

Example 2.8.8. Take an := n exp{−n}, for every n ∈ N. Therefore, 0 ≤ an ≤ 1,

for all n ∈ N and

lim sup
n→∞

1

n
log an = lim sup

n→∞

(
log n

n
− 1

)
= −1. (2.8.11)

However, note that does not exist a finite C > 0 satisfying

an ≤ C exp{−n}, ∀n ∈ N.

�
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Sample complexity for static problems with OCE risk measures

3.1 Optimized certainty equivalent risk measures

In this section we present the class of Optimized Certainty Equivalent (OCE) risk

measures. This class of risk measures was extensively studied in [5].

Let us consider as given a probability space (Ω,F ,P) and a linear space Z :=

Lp (Ω,F ,P), where p ∈ [1,∞). Here, an element Z ∈ Z represents a random loss.

Definition 3.1.1. (Optimized Certainty Equivalent Risk Measures)

Denote by Φ the class of functions φ : R → R ∪ {+∞} that are proper, l.s.c.,

convex and satisfy: (a) φ(0) = 0, (b) 1 ∈ ∂φ(0), and (c) φ is monotonically non-

decreasing. For φ ∈ Φ, the OCE risk measure µφ is defined as:

µφ(Z) := inf
s∈R
{s+ Eφ(Z − s)} , for Z ∈ Z. (3.1.1)

�

Remark 3.1.2. It may seem that we are considering a definition of OCE risk mea-

sures different from those used by other authors, like [5, 12]. But this is not the

case, as we show next.

In [12] the author considers a class of functions ψ : R→ R∪{+∞}, say Ψ, that

are proper, l.s.c., convex and satisfy: (a) ψ(1) = 0, (b) 0 ∈ ∂ψ(1), (c) domψ ⊆ R+.

Moreover, for each ψ ∈ Ψ, the OCE risk measures µψ is defined as:

µψ(Z) := inf
s∈R
{s+ Eψ∗(Z − s)} , (3.1.2)
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where ψ∗ is the convex conjugate of ψ, see Definition 2.5.22. Defining Ψ∗ := {ψ∗ :

ψ ∈ Ψ} one can show that Ψ∗ = Φ; see Proposition 3.1.3. It follows that the

definitions considered in this work and in [12] are equivalent.

Moreover, as has been pointed out in [12], the definition of OCE risk measures

there is equivalent to the one given in [5]. �

The following proposition shows that the definition of Optimized Certainty Equiv-

alent risk measures considered in this thesis is equivalent to the one considered in

[12].

Proposition 3.1.3. Let Φ and Ψ be the sets of functions considered in Definition

3.1.1 and Remark 3.1.2, respectively. We have that:

Φ = Ψ∗ := {ψ∗ : ψ ∈ Ψ}. (3.1.3)

Proof. Φ ⊆ Ψ∗ : Let φ ∈ Φ be arbitrary. Since φ is proper, l.s.c. and convex, we have

by Theorem 2.5.28 that φ = φ∗∗ = (φ∗)∗. Let us show that φ∗ ∈ Ψ for concluding

that φ ∈ Ψ∗. First of all, φ∗ is l.s.c. and convex by Proposition 2.5.27. Since φ

is proper, we have that φ∗(s) > −∞, for all s ∈ R. Moreover, since 1 ∈ ∂φ(0), it

follows from Proposition 2.5.23 that:

0 = 0 · 1 = φ(0) + φ∗(1) = φ∗(1).

Since we have that φ∗∗ = φ, we can rewrite the previous equation as:

φ∗(1) + φ∗∗(0) = 0 = 1 · 0.

Again by Proposition 2.5.23, we have that 0 ∈ ∂φ∗(1). Finally, let us show that

domφ∗ ⊆ [0,+∞). Since domφ∗ is convex, we have that domφ∗ ⊆ domφ∗ =

ri(domφ∗) by Proposition 2.5.13. So, let s ∈ ri(domφ∗) be given. By Proposition

2.5.21 we have that there exists x ∈ R such that x ∈ ∂φ∗(s), i.e.

s.x = φ∗(s) + φ∗∗(x) = φ∗(s) + φ(x).

Then, s ∈ ∂φ(x) ⊆ [0,+∞), since φ is a non-decreasing function1. It follows that

domφ∗ ⊆ [0,+∞) and φ∗ ∈ Ψ.

Ψ∗ ⊆ Φ : Let ψ ∈ Ψ be given. Let us show that ψ∗ ∈ Φ. The reasoning is similar

to the previous case. By Proposition 2.5.27 we have that ψ∗ is l.s.c. and convex.

Moreover, since 0 ∈ ∂ψ(1), it follows that:

0 = 1 · 0 = ψ(1) + ψ∗(0) = ψ∗(0).

Since ψ∗∗ = ψ, we have that:

ψ∗∗(1) + ψ∗(0) = 0 = 1 · 0,
1Indeed, φ(x− 1) ≥ φ(x) + s · ((x− 1)− x) implies that s ≥ φ(x)− φ(x− 1) ≥ 0.

108 2017



CHAPTER 3. SAMPLE COMPLEXITY FOR STATIC PROBLEMS WITH OCE RISK MEASURES

so 1 ∈ ∂ψ∗(0). Finally, let x1 < x2 and t ∈ domψ ⊆ [0,+∞) be given. We have

that:

t.x1 − ψ(t) ≤ t.x2 − ψ(t),

for all t ∈ domψ. Taking the supremum on t ∈ domψ, we obtain that ψ∗ is a

non-decreasing function.

Given φ ∈ Φ, we show in Proposition 3.1.4 that µφ(Z) is well-defined, whenever

Z ∈ L1(Ω,F ,P). Moreover if φ is Lipschitz continuous, then µφ(Z) is finite. We also

show that µφ(·) is a risk averse risk measure in L1 (Ω,F ,P) (see Definition 2.7.2).

Before proceeding, let us recall that the expected value of a random variable Z is

not always well-defined. In fact, given a random variable Z, we consider its positive

part Z+ := max{Z, 0} ≥ 0 and negative part Z− := max{−Z, 0} ≥ 0, respectively.

Note that Z = Z+−Z− and that the expected value of each of its part is well-defined

and satisfies:

0 ≤ EZ+ ≤ +∞, and (3.1.4)

0 ≤ EZ− ≤ +∞. (3.1.5)

The expected value of Z is defined as:

EZ := EZ+ − EZ− ∈ R, (3.1.6)

whenever at least one of the quantities EZ+ and EZ− is finite2. Note that if Eφ(Z−s)
is well-defined, for all s ∈ R, then µφ(Z) ∈ R is also well-defined. However, in order

for µφ : Z → R being a risk measure, we must also show that it is a proper function

(see Definition 2.7.1).

Proposition 3.1.4. Let φ ∈ Φ and Z ∈ L1(Ω,F ,P) be given. Then, µφ(Z) is

well-defined and satisfies:

−∞ < EZ ≤ µφ(Z) ≤ Eφ(Z) ≤ +∞. (3.1.7)

Moreover, µφ(a) = a, for every a ∈ R, and if φ is Lipschitz continuous, then Eφ(Z)

and µφ(Z) are finite.

Proof. First of all, since φ(0) = 0 and 1 ∈ ∂φ(0), we have that:

φ(Z − s) ≥ φ(0) + 1 · (Z − s− 0) = Z − s, (3.1.8)

for any s ∈ R. It follows that:

Z ≤ s+ φ(Z − s),∀s ∈ R. (3.1.9)

2Since we have already defined that +∞ + (−∞) = +∞, we could have considered that the

expected value of a random variable is always a well-defined quantity. However, we prefer to

disregard this convention here.
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Then,

−∞ < EZ ≤ s+ Eφ(Z − s) ≤ +∞, (3.1.10)

for all s ∈ R. Taking the infimum on s ∈ R and considering s = 0, we obtain the

following inequalities:

−∞ < EZ ≤ µφ(Z) = inf
s∈R
{s+ Eφ(Z − s)} ≤ Eφ(Z) ≤ +∞.

Now, let Z(ω) := a, for every ω ∈ Ω, where a ∈ R is given. We have that

η : s 7→ s+ Eφ (Z − s) = s+ φ (a− s) , (3.1.11)

is a proper convex function that satisfies ∂η(a) = ∂η(s)|s=a = 1 − ∂φ(a − s)|s=a =

1 − ∂φ(0). Since 1 ∈ ∂φ(0), it follows that 0 ∈ ∂η(a), i.e., a ∈ argmins∈R ψ(s). We

conclude that

µφ(a) = η(a) = a+ φ(a− a) = a+ φ(0) = a. (3.1.12)

Finally, let us suppose that φ is Lipschitz continuous, that is, there exists L ∈ R
such that |φ(t)− φ(s)| ≤ L |t− s|, for all t, s ∈ R. So:

|φ(Z)| = |φ(Z)− φ(0)| ≤ L |Z| , (3.1.13)

and we conclude that φ(Z) ∈ L1(Ω,F ,P), i.e. µφ(Z) ≤ Eφ(Z) < +∞.

It follows from Proposition 3.1.4 that µφ : L1(Ω,F ,P)→ R is a proper function

that satisfies:

(i) µφ(Z) ≥ EZ, for every Z ∈ L1(Ω,F ,P), and

(ii) µφ(a) = a, for every a ∈ R

for every φ ∈ Φ. Thus, µφ : L1(Ω,F ,P)→ R is a risk averse risk measure (see Def-

inition 2.7.2). In Proposition 3.1.5 we prove that µφ : L1(Ω,F ,P) → R is a convex

risk measure, i.e., it satisfies axioms (R1)-(R3) below. Unless stated otherwise, we

always take Z = L1(Ω,F ,P) in the remainder of this section.

Proposition 3.1.5. Take any φ ∈ Φ. Then, µφ : Z → R satisfies the following

properties:

(R1) µφ(Z) ≤ µφ(W ), for every Z,W ∈ Z, whenever Z ≤ W .

(R2) µφ(Z + a) = µφ(Z) + a, for every Z ∈ Z and a ∈ R.

(R3) µφ(λZ + (1 − λ)W ) ≤ λµφ(Z) + (1 − λ)µφ(W ), for every Z,W ∈ Z and

λ ∈ [0, 1].
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Proof. (R1): Take any Z,W ∈ Z satisfying Z ≤ W . For any s ∈ R, we have that

Eφ(Z − s) ≤ Eφ(W − s), since φ(·) is a non-decreasing function. It follows that

µφ(Z) ≤ s+ Eφ(Z − s) ≤ s+ Eφ(W − s), (3.1.14)

for all s ∈ R. Taking the infimum in s ∈ R above, we conclude that µφ(Z) ≤ µφ(W ),

which proves (R1).

(R2): Take any Z ∈ Z and a ∈ R. Note that

µφ(Z + a) = inf
s∈R
{s+ Eφ(Z + a− s)} (3.1.15)

= inf
s∈R
{a+ (s− a) + Eφ(Z − (s− a))} (3.1.16)

= a+ inf
s∈R
{s− a+ Eφ(Z − (s− a))} (3.1.17)

= a+ µφ(Z), (3.1.18)

which proves (R2).

(R3): Take any Z,W ∈ Z and λ ∈ [0, 1]. Suppose, without loss of generality,

that µφ(Z) and µφ(W ) are finite. So, let s1, s2 ∈ R be such that Eφ(Z − s1) and

Eφ(W − s2) are finite. It follows that

λ [s1 + Eφ(Z − s1)] + (1− λ) [s2 + Eφ(W − s2)] =

= λs1 + (1− λ)s2 + E [λφ(Z − s1) + (1− λ)φ(W − s2)]

≥ λs1 + (1− λ)s2 + Eφ (λZ + (1− λ)W − [λs1 + (1− λ)s2])

≥ µφ (λZ + (1− λ)W ) .

Taking the infimum in s1, s2 ∈ R above, it follows that λµφ(Z) + (1 − λ)µφ(W ) ≥
µφ(λZ + (1− λ)W ). This completes the proof of the proposition.

It is not true, in general, that an OCE risk measure is coherent. In fact, taking

φ(s) = exp(s)− 1, for all s ∈ R, we show in Example 3.1.18 that

µφ(Z) = log (E exp {Z}) = log (MZ(1)) , (3.1.19)

for any Z ∈ Z. As usual, we denote by MZ(·) the moment generating function of Z.

So, let Z
d∼ Gaussian(0, 1)3 and λ > 0 be given. Noting that λZ

d∼ Gaussian(0, λ2)

and MGaussian(0,σ2)(s) = exp{σ2s2/2 }, for all s ∈ R, we obtain that

µφ(λZ) = log
(
exp{λ2/2}

)
= λ2/2 6= λ/2 = λµφ(Z), (3.1.20)

3Of course, we can consider a sufficiently rich probability space (Ω,F ,P) such that there exists

a random variable Z ∈ Z = L1(Ω,F ,P) that has standard Gaussian distribution. Indeed, take

Ω := [0, 1], F := B([0, 1]) and P = “the Lebesgue measure on [0, 1]”. For every F ∈ D1, consider

F−1(ω) := inf {z ∈ R : F (z) ≤ ω}, for every ω ∈ [0, 1]. It is elementary to show that the cumulative

distribution function of Z := F−1 is FZ = F . Since F ∈ D1, it follows that Z ∈ Z. Now, taking

F (z) := 1√
2π

∫
(−∞,z]

exp
{
−x

2

2

}
dx, we obtain that Z

d∼ Gaussian(0, 1).
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for any positive λ 6= 1. Thus, we conclude that µφ(·) is not positively homogeneous,

in particular, it is not a coherent risk measure.

Take any φ ∈ Φ and consider Z = L1 (Ω,F ,P), where (Ω,F ,P) is an arbitrary

probability space. We have already shown that µφ : Z → is a well-defined risk

measure. Changing the probability space Z to another one, we obtain a different risk

measure. We have already shown in Proposition 3.1.5 that regardless the reference

probability space that we consider, µφ : Z → R is always a convex risk measure.

In Proposition 3.1.6 we show that this is also true regarding the law invariance

property of µφ : Z := L1 (Ω,F ,P) → R in Z. It is worth mentioning that a risk

measure can be law invariant with respect to some reference probability, but could

fail to satisfy this property when one considers another reference probability space

(see [73, Example 6.48]).

Proposition 3.1.6. Take any probability space (Ω,F ,P) and let Z := L1 (Ω,F ,P).

Let φ ∈ Φ be arbitrary. We have that

µφ(Z) = µφ(W ), (3.1.21)

for all Z,W ∈ Z such that Z
d∼ W .

Proof. Let Z,W ∈ Z be such that Z
d∼ W . Take any s ∈ R. We already know by

Proposition 3.1.4 that Eφ (Z − s) is well-defined, for any Z ∈ Z. Since Z
d∼ W , it

follows that φ(Z − s) d∼ φ(W − s). Thus,

s+ Eφ (Z − s) = s+ Eφ (W − s) , (3.1.22)

for every s ∈ R. We conclude that µφ(Z) = µφ(W ), which proves the proposition.

Before presenting some examples of OCE risk measures, we show the following

result, to be used in item (c) of Example 3.1.8.

Proposition 3.1.7. The class of functions Φ is a convex set, i.e. ∀φ1, φ2 ∈ Φ and

0 ≤ λ ≤ 1, we have that (1− λ)φ1 + λφ2 ∈ Φ.

Proof. Let us verify that ψ := (1 − λ)φ1 + λφ2 is l.s.c., convex and satisfies items

(a)-(c) of Definition 3.1.1. First of all, note that:

ψ(0) = (1− λ)φ1(0) + λφ2(0) = 0,

which shows item (a). Moreover, since λ and 1 − λ are non-negative numbers and

φ1 and φ2 are monotonically non-decreasing, it follows that ψ is monotonically non-

decreasing, which shows item (c). We also have that:

(1− λ)∂φ1(x) + λ∂φ2(x) ⊆ ∂ψ(x),
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for any x ∈ R. Indeed, if ∂φ1(x) = ∅ or ∂φ2(x) = ∅, the claim is trivially true. So,

let si ∈ ∂φi(x) be given (i = 1, 2). We have that:

ψ(y) = (1− λ)φ1(y) + λφ2(y) (3.1.23)

≥ (1− λ)[φ1(x) + s1(y − x)] + λ[φ2(x) + s2(y − x)] (3.1.24)

= (1− λ)φ1(x) + λφ2(x) + [(1− λ)s1 + λs2](y − x) (3.1.25)

= ψ(x) + [(1− λ)s1 + λs2](y − x), (3.1.26)

for all y ∈ R. We conclude that (1 − λ)s1 + λs2 ∈ ∂ψ(x). Applying the result for

s1 = 1 = s2 and x = 0, we obtain that 1 ∈ ∂ψ(0), which shows item (b). The proof

that ψ is l.s.c. and convex is elementary.

Now, let us consider some examples of OCE risk measures.

Example 3.1.8. In all the examples below, µφ (φ ∈ Φ) is defined on Z := L1(Ω,F ,P),

where (Ω,F ,P) is a given probability space. That is, all random losses Z are inte-

grable random variables.

(a) (Expected value operator) Consider φ := Id : R → R, i.e. φ(z) = z, for all

z ∈ R. It is straightforward to verify that φ ∈ Φ. Let Z ∈ Z and s ∈ R be

given, we have that:

s+ Eφ(Z − s) = EZ, (3.1.27)

i.e. µφ(Z) = EZ. Therefore the expected value operator is an example of OCE

risk measure.

(b) (Average Value-at-Risk) For α ∈ [0, 1) given, consider φ(z) := 1
1−α max{z, 0},

for all z ∈ R. It is straightforward to verify that φ ∈ Φ. Observe that:

1 ∈ ∂φ(0) = [0, 1/(1− α)] . (3.1.28)

The associated risk measure:

AV@R1−α(Z) := inf
s∈R

{
s+

1

1− α
Emax{Z − s, 0}

}
, (3.1.29)

is known as the Average Value-at-Risk risk measure.

(c) (Convex combination of OCE risk measure with the expected value operator)

Let φ ∈ Φ be given. We have that:

µ(Z) := (1− λ)EZ + λµφ(Z)

is also an OCE risk measure. We claim that µ = µψ, where ψ := (1 −
λ) Id +λφ. Before showing our claim, observe that ψ ∈ Φ by Proposition 3.1.7

which shows that µψ is an OCE risk measure. For every s ∈ R, we have that:

EZ = s+ E(Z − s). (3.1.30)
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It follows that:

µ(Z) = (1− λ)EZ + λ inf
s∈R
{s+ Eφ(Z − s)} (3.1.31)

= inf
s∈R
{(1− λ) [s+ E(Z − s)] + λ [s+ Eφ(Z − s)]} (3.1.32)

= inf
s∈R
{s+ E((1− λ) Id +λφ)(Z − s)} (3.1.33)

= µψ(Z), (3.1.34)

and the claim is proved. One particular example of such risk measure is the

convex combination of the expected value operator and the Average Value-at-

Risk. �

Given φ ∈ Φ, consider the set of all subgradients of φ (see Definition 2.5.37):

Iφ =
⋃

z∈domφ

∂φ(z). (3.1.35)

By Corollary 2.5.36, we have that Iφ ⊆ R is a nonempty interval. By Proposition

2.5.38, we have that its extreme points l(φ) := inf Iφ and L(φ) := sup Iφ satisfy:

0 ≤ l(φ) ≤ L(φ) ≤ +∞.

Moreover, φ is a Lipschitz continuous function if and only if L(φ) < +∞, in which

case, L(φ) is a Lipschitz constant of φ. We show in Proposition 3.1.9 that if L(φ) <

∞, then µφ : Z → R is L(φ)-Lipschitz continuous. This result will be used often in

the sequel.

Proposition 3.1.9. Take any φ ∈ Φ such that L(φ) <∞. We have that µφ : Z → R
is L(φ)-Lipschitz continuous in Z considering the L1-norm:

‖Z‖1 := E |Z| , ∀Z ∈ Z. (3.1.36)

Proof. Let φ ∈ Φ be such that L(φ) <∞ and take any Z,W ∈ Z. We have that

|µφ(Z)− µφ(W )| =

∣∣∣∣inf
s∈R
{s+ Eφ (Z − s)} − inf

s∈R
{s+ Eφ (W − s)}

∣∣∣∣ (3.1.37)

≤ sup
s∈R
|(s+ Eφ (Z − s))− (s+ Eφ (W − s))| (3.1.38)

≤ sup
s∈R

E |φ (Z − s)− φ (W − s)| (3.1.39)

≤ sup
s∈R

L(φ)E |(Z − s)− (W − s)| (3.1.40)

= L(φ)E |Z −W | (3.1.41)

= L(φ) ‖Z −W‖1 . (3.1.42)

It is elementary to verify the validity of each equation above, let us just mention that

we used Proposition 2.8.4 in (3.1.38). This completes the proof of the result.
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Let Z be an integrable random variable. We will establish some properties

regarding the optimal set and the optimal value of the optimization problem on R:

µφ(Z) := inf
s∈R
{η(s) := s+ Eφ(Z − s)} . (3.1.43)

In the next lemma, we obtain bounds for the right and left derivatives of φ on

domφ.

Lemma 3.1.10. Let φ ∈ Φ be given. For all z ∈ domφ such that ∂φ(z) 6= ∅, we

have that:

l(φ) ≤ −φ′(z;−1) ≤ φ′(z; 1) ≤ L(φ). (3.1.44)

Proof. Let z ∈ domφ be such that ∂φ(z) 6= ∅. By Corollary 2.5.33, we have that:

∂φ(z) = [−φ′(z;−1), φ(z; 1)] ∩ R. (3.1.45)

Moreover, since ∂φ(z) 6= ∅, we have that inf ∂φ(z) = −φ′(z;−1) and sup ∂φ(z) =

φ′(z; 1). We also have that ∂φ(z) ⊆ Iφ, so:

l(φ) = inf Iφ ≤ inf ∂φ(z) = −φ′(z;−1) ≤ φ′(z; 1) = sup ∂φ(z) ≤ sup Iφ = L(φ),

(3.1.46)

and the lemma is proved.

In the next proposition we show that when any of these conditions hold:

(i) L(φ) = 1,

(ii) l(φ) = 1 and φ is Lipschitz continuous4,

the OCE risk measure µφ is just the expected value operator on Z. By Proposition

3.1.11, we also have that l(φ) ≤ 1 ≤ L(φ), for φ ∈ Φ. So, the interesting situation

to analyze for OCE risk measures with φ Lipschitz continuous occurs when l(φ) <

1 < L(φ).

Proposition 3.1.11. Take Z ∈ Z and φ ∈ Φ such that L(φ) < +∞. Let us

consider the objective function η(s) := s + Eφ(Z − s), for all s ∈ R. The following

assertions hold:

(a) If l(φ) = 1, then µφ(Z) = lim
s→+∞

η(s) = EZ.

(b) If L(φ) = 1, then µφ(Z) = lim
s→−∞

η(s) = EZ.

4As pointed out previously, L(φ) < +∞ if and only if φ is Lipschitz continuous. So, item (i)

automatically implies that φ is Lipschitz continuous.
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Proof. Since Z ∈ L1 (Ω,F ,P) and φ is Lipschitz continuous, it follows from Propo-

sition 2.5.43 that:

Eφ(Z − s) ∈ R, (3.1.47)

for all t ∈ R. By Proposition 2.5.42, we conclude that η is a finite-valued convex

function that satisfies:

∂η(s) = [1− Eφ′(Z − s; 1), 1 + Eφ′(Z − s;−1)] , (3.1.48)

for all s ∈ R. Since φ is Lipschitz continuous, we have that domφ = R. Given

s ∈ R, we have by Lemma 3.1.10 that:

l(φ) ≤ −φ′(z − s;−1) ≤ φ′(z − s; 1) ≤ L(φ), (3.1.49)

for all z ∈ R. Therefore we obtain the following bounds:

l(φ) ≤ −φ′(Z − s;−1) ≤ φ′(Z − s; 1) ≤ L(φ) (3.1.50)

for all s ∈ R. Taking the expected value, we obtain that:

l(φ) ≤ −Eφ′(z − s;−1) ≤ Eφ′(z − s; 1) ≤ L(φ), (3.1.51)

for all s ∈ R. It follows that:

−η′(s;−1) = 1− Eφ′(Z − s; 1) ≥ 1− L(φ),

η′(s; 1) = 1 + Eφ′(Z − s;−1) ≤ 1− l(φ),
(3.1.52)

for all s ∈ R.

Since η is finite-valued, we have that int(dom η) = R. Applying Theorem 2.5.40

to the convex function η, we obtain that:

η(s)− η(t) =

∫ s

t

η′(u; 1)du =

∫ s

t

−η′(u;−1)du, (3.1.53)

for all t < s.

Now, suppose that l(φ) = 1. We obtain that η′(u; 1) ≤ 1 − l(φ) = 0, for all

u ∈ R. By equation (3.1.53) we conclude that η(s) ≤ η(t), for s > t. It follows that:

µφ(Z) := inf
s∈R

η(s) = lim
s→∞

η(s). (3.1.54)

Moreover, observe that for every s ∈ ∂φ(z) with z < 0, we have that 1 = l(φ) ≤ s ≤
1 ∈ ∂φ(0), i.e. s = 1. We conclude that φ′(z) = 1 for all z < 0. Since φ(0) = 0, it

follows from equation (3.1.53) that φ(z) = z, for all z < 0. Let s ≥ 0 be arbitrary.

We have that:

η(s) = s+ Eφ(Z − s) = E
[
(φ(Z − s) + s)1{Z<s}

]
+ E

[
(φ(Z − s) + s)1{Z≥s}

]
= E

[
Z1{Z<s}

]
+ r(s),

(3.1.55)
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where:

0 ≤ r(s) := E
[
(φ(Z − s) + s)1{Z≥s}

]
≤ E

[
(L(φ)(Z − s) + s)1{Z≥s}

]
≤ L(φ)E

[
Z1{Z≥s}

]
,

since s ≥ 0, L(φ) ≥ 1, Z ≥ s and φ(z) ≤ L(φ)z, for z ≥ 0. Since Z is integrable, we

have that:

lim
s→+∞

EZ1{Z≥s} = 0.

We conclude that r(s) converges to zero, as s→ +∞, hence lim
s→+∞

η(s) = EZ, which

proves item (a).

Now, suppose that L(φ) = 1. We obtain that −η′(u;−1) ≥ 1−L(φ) ≥ 0, for all

u ∈ R. It follows that η(s) ≥ η(t), for all s > t. So,

µφ(Z) := inf
s∈R

η(s) = lim
s→−∞

η(s). (3.1.56)

Moreover, observe that for all s ∈ ∂φ(z) with z > 0, we have that ∂φ(0) 3 1 ≤ s ≤
L(φ) = 1, i.e. s = 1. This shows that φ′(z) = 1, for z > 0. Since φ(0) = 0, it follows

that φ(z) = z, for all z > 0. Let s ≤ 0 be arbitrary. We have that:

η(s) = s+ Eφ(Z − s) = E
[
(φ(Z − s) + s)1{Z>s}

]
+ E

[
(φ(Z − s) + s)1{Z≤s}

]
= E

[
Z1{Z>s}

]
+R(s)

≤ E
[
Z1{Z>s}

]
,

(3.1.57)

since R(s) := E
[
(φ(Z − s) + s)1{Z≤s}

]
≤ 0. In fact, for Z ≤ s ≤ 0, we have that

φ(Z − s) + s ≤ φ(0) + s ≤ 0. Letting s→ −∞, we obtain that

(EZ ≤) lim
s→−∞

η(s) ≤ lim
s→−∞

E
[
Z1{Z>s}

]
= EZ,

where the first inequality follows from Proposition 3.1.4. So, the result is proved.

Remark 3.1.12. It follows from the previous proposition that AV@R1(Z) = EZ, for

Z ∈ L1(Ω,F ,P). In fact, in this case we have that φ(z) = max{z, 0}, so L(φ) = 1.

This particular result is well-known. �

Now, we begin to analyze the situation l(φ) < 1 < L(φ) < +∞. Before pro-

ceeding, we show a well-known result on the AV@R risk measure. In Section 2.3 we

recall the definition of an α-quantile of a random variable Z. When α ∈ (0, 1) the

set of α-quantiles of Z is a nonempty compact interval whose extreme points are

denoted as q−α (Z) ≤ q+
α (Z) (see Proposition 2.3.2).
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Proposition 3.1.13. Let be given Z ∈ Z and 0 < α < 1. For the AV@R1−α(·) risk

measure, the set of optimal solutions of the optimization problem:

min
s∈R

{
s+

1

1− α
Emax{Z − s, 0}

}
(3.1.58)

is the set of α-quantiles of Z.

Proof. Let us denote the objective function of the optimization problem by η(s) :=

s+ Eφ(Z − s), where:

φ(z) =
1

1− α
max{z, 0},∀z ∈ R. (3.1.59)

The right and left derivatives of φ are:

φ′(z; 1) =

{
0, for z < 0,

1/(1− α), for z ≥ 0,
(3.1.60)

and:

− φ′(z;−1) =

{
0, for z ≤ 0,

1/(1− α), for z > 0,
, (3.1.61)

respectively. It follows from Proposition 2.5.42 that:

−η′(s;−1) = 1− Eφ′(Z − s; 1) = 1− 1

1− α
E1{Z≥s} = 1− 1

1− α
P[Z ≥ s], (3.1.62)

η′(s; 1) = 1 + Eφ′(Z − s;−1) = 1− 1

1− α
E1{Z>s} = 1− 1

1− α
P[Z > s].(3.1.63)

We also have that s̄ ∈ argmins∈R η(s) if and only if 0 ∈ ∂η(s̄) = [−η′(s̄;−1), η′(s̄; 1)],

i.e. −η′(s;−1) ≤ 0 ≤ η′(s; 1). Hence s̄ must be such that:

P[Z ≥ s̄] ≥ 1− α, and (3.1.64)

P[Z ≤ s̄] ≥ α. (3.1.65)

We conclude that s̄ ∈ argmins∈R η(s) if and only if s̄ is an α-quantile of Z.

Remark 3.1.14. Let us point out that for the AV@R1−α(·) risk measure (α ∈ (0, 1))

Proposition 2.5.42 can be applied supposing just that EZ+ < +∞. This condition is

weaker than assuming that Z ∈ L1(Ω,F ,P). In fact, given s ∈ R, we have that:

0 ≤ max{Z − s, 0} ≤ Z+ + |s|. (3.1.66)

Therefore η(·) is finite-valued when EZ+ < +∞. �
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We will extend Proposition 3.1.13 to general OCE risk measures µφ satisfying

l(φ) < 1 < L(φ) < +∞. In fact, in Proposition 3.1.17 we show that the solution set

of problem:

min
s∈R
{s+ Eφ(Z − s)} (3.1.67)

is a nonempty interval that is contained in a bounded interval whose extreme points

depend on particular quantiles of the random variable Z, and on particular finite

numbers z ≤ 0 ≤ z that depend only on φ. The following lemma will be useful.

Lemma 3.1.15. Take Z ∈ Z and φ ∈ Φ satisfying l(φ) < 1 < L(φ) < +∞. The

following assertions hold:

(i) There exist real constants z ≤ 0 ≤ z depending only on φ such that:

φ′(z; 1) ≥ 1 + L(φ)

2
, for all z ≥ z, (3.1.68)

−φ′(z;−1) ≤ 1 + l(φ)

2
, for all z ≤ z. (3.1.69)

(ii) If s ≤ q+
α (Z)− z, then

E [φ′(Z − s; 1)] ≥ l(φ)α +
1 + L(φ)

2
(1− α). (3.1.70)

(iii) If s ≥ q−α (Z)− z, then

E [−φ′(Z − s;−1)] ≤ L(φ) +
1 + l(φ)− 2L(φ)

2
α. (3.1.71)

Proof. Firstly, we show item (i). Since L(φ) < +∞, we have that φ is finite-valued

and φ′(·; 1) is a monotonically non-decreasing finite-valued function. Moreover, we

have that:

L(φ) = sup
⋃
z∈R

∂φ(z) = sup
⋃
z∈R

[−φ′(z;−1), φ′(z; 1)] = sup
z∈R

φ′(z; 1).

Since L(φ) > 1, it follows that (1 + L(φ))/2 < L(φ). Thus there exists z ∈ R such

that φ′(z; 1) ≥ (1 + L(φ))/2. Therefore, if z ≥ z, we have that φ′(z; 1) ≥ φ′(z; 1) ≥
(1 + L(φ))/2. Observe also that if z < 0, then:

φ′(z; 1) ≤ −φ′(0;−1) ≤ 1 < (1 + L(φ))/2 ≤ φ′(z; 1),

which implies that z̄ ≥ 0. The proof that there exists z ≤ 0 such that −φ′(z;−1) ≤
(1 + l(φ))/2 for all z ≤ z is similar. Just note that −φ′(·;−1) is monotonically

non-decreasing; −φ′(z;−1) ≥ 1, for all z > 0; l(φ) < (1 + l(φ))/2 < 1 and l(φ) =

infz∈R−φ′(z;−1). We have shown item (i).
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Now, let us show item (ii). Denote by PZ the probability measure induced by P
and Z on R, that is:

PZ(B) := P [Z ∈ B] , ∀B ∈ B(R). (3.1.72)

Let s ≤ q+
α (Z)− z be given. We have that:

E [φ′(Z − s; 1)] =
∫
R
φ′(z − s; 1)PZ(dz)

=
∫

(−∞,z+s)
φ′(z − s; 1)PZ(dz) +

∫
[z+s,∞)

φ′(z − s; 1)PZ(dz)

≥
∫

(−∞,z+s)
l(φ)PZ(dz) +

∫
[z+s,∞)

1 + L(φ)

2
PZ(dz)

= l(φ) (1− P[Z ≥ z + s]) +
1 + L(φ)

2
P[Z ≥ z + s],

(3.1.73)

where the inequality follows from φ′(·; 1) ≥ l(φ) and φ′(z − s; 1) ≥ (1 + L(φ)/2, for

z ≥ z + s. Since z + s ≤ q+
α (Z), we have that:

P[Z ≥ z + s] ≥ P[Z ≥ q+
α (Z)] ≥ 1− α. (3.1.74)

The affine function θ ∈ [1 − α,+∞) 7→ l(φ)(1 − θ) + (1 + L(φ))θ/2 attains its

minimum value at θ = 1− α, since l(φ) < (1 + L(φ))/2. Therefore, we obtain that:

E [φ′(Z − s; 1)] ≥ l(φ)α +
1 + L(φ)

2
(1− α), (3.1.75)

which shows item (ii).

Now, let us show item (iii). Given s ≥ q−α (Z)− z, we have that:

E [−φ′(Z − s;−1)] =
∫
R
−φ′(z − s;−1)PZ(dz)

=
∫

(−∞,z+s)
−φ′(z − s; 1)PZ(dz) +

∫
[z+s,∞)

−φ′(z − s; 1)PZ(dz)

≤
∫

(−∞,z+s]

1 + l(φ)

2
PZ(dz) +

∫
(z+s,∞)

L(φ)PZ(dz)

=
1 + l(φ)

2
P[Z ≤ z + s] + L(φ)P[Z > z + s]

= L(φ) +
1 + l(φ)− 2L(φ)

2
P[Z ≤ z + s]

≤ L(φ) +
1 + l(φ)− 2L(φ)

2
P[Z ≤ q−α (Z)]

≤ L(φ) +
1 + l(φ)− 2L(φ)

2
α,

,

(3.1.76)

using the fact that −φ′(z−s; 1) ≤ (1+l(φ))/2, for z−s ≤ z, and −φ′(z−s; 1) ≤ L(φ)

in the first inequality. And the fact that z + s ≥ q−α (Z) and 1− l(φ) ≤ 2L(φ) in the

second one.
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Remark 3.1.16. In the previous lemma, we could have taken:

z := inf

{
z ∈ R : φ′(z; 1) ≥ 1 + L(φ)

2

}
, (3.1.77)

z := sup

{
z ∈ R : −φ′(z;−1) ≤ 1 + l(φ)

2

}
. (3.1.78)

Indeed, we just have to check that z and z belong, respectively, to the correspon-

dents sets above. These facts follow from items (ii) and (iii) of Proposition 2.5.35,

respectively. �

Now we show that the solution set of the optimization problem associated with

a general OCE risk measure satisfying some regularity conditions is a nonempty

bounded interval.

Proposition 3.1.17. Let be given Z ∈ Z and φ ∈ Φ satisfying l(φ) < 1 < L(φ) <

+∞. The solution set of the convex optimization problem on the real numbers:

min
s∈R
{η(s) := s+ Eφ(Z − s)} (3.1.79)

is a nonempty closed interval that is contained in the interval:[
q−γ1(Z)− z, q+

γ2
(Z)− z

]
, (3.1.80)

where:

γ1 := γ1(l(φ), L(φ)) :=
L(φ)− 1

1 + L(φ)− 2l(φ)
, (3.1.81)

γ2 := γ2(l(φ), L(φ)) :=
2(L(φ)− 1)

2L(φ)− 1− l(φ)
, (3.1.82)

and z and z are defined as in (3.1.77) and (3.1.78), respectively.

Proof. First of all, let us point out that 0 < γ1 < γ2 < 1, since 0 ≤ l(φ) < 1 <

L(φ) < +∞. Since η is a finite-valued convex function, it follows from Proposition

2.5.41 that:

argmin
s∈R

η(s) = R ∩ [s, s] , (3.1.83)

where s := sup{s ∈ R : −η′(s;−1) < 0} and s := inf{s ∈ R : η′(s; 1) > 0}5. Of

course, this already shows that argmins∈R η(s) is closed and convex6.

Take s ≤ q+
α (Z)− z, where 0 < α < γ1. We have that:

−η′(s;−1) = 1− E [φ′(Z − s; 1)]

≤ 1− 1 + L(φ)

2
(1− α)

< 1− l(φ)γ1 −
1 + L(φ)

2
(1− γ1) = 0.

(3.1.84)

5Until now, we have in principle that s, s ∈ R. We will show later that both s and s are finite.
6This is also an immediate consequence of the convexity and continuity of η.
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We conclude that q+
α (Z) − z ≤ s, for all 0 < α < γ1. By item (iii) of Proposition

2.3.4 we have that:

q−γ1(Z) = sup
α<γ1

q+
α (Z). (3.1.85)

Therefore, q−γ1(Z)− z ≤ s.

Now, take s ≥ q−α (Z)− z, where γ2 < α < 1 is arbitrary. We have that:

η′(s; 1) = 1 + E [φ′(Z − s;−1)]

≥ 1− L(φ)− 1 + l(φ)− 2L(φ)

2
α

> 1− L(φ)− 1 + l(φ)− 2L(φ)

2
γ2 = 0.

(3.1.86)

We conclude that s ≤ q−α (Z) − z, for all γ2 < α < 1. By item (ii) of Proposition

2.3.4 we have that:

q+
γ2

(Z) = inf
α>γ2

q−α (Z). (3.1.87)

Then, s ≤ q+
γ2

(Z)− z.

Summing up, we have proved that

argmin
s∈R

η(s) = [s, s] ⊆
[
q−γ1(Z)− z, q+

γ2
(Z)− z

]
. (3.1.88)

Now, we only have to show that argmins∈R η(s) 6= ∅, that is: s ≤ s. This is a

consequence of Proposition 2.5.35. In fact, let s < s be given. Taking s < t < s, we

obtain that:

η′(s; 1) ≤ η′(t;−1) < 0 ≤ lim
s>s

η′(s; 1) = η′(s; 1). (3.1.89)

It follows that s < s, i.e. s ≤ s.

In the next example we show that if the condition L(φ) < +∞ is not satisfied,

then it is not possible, in general, to bound the set of optimal solutions of problem

min
s∈R
{s+ Eφ(Z − s)} (3.1.90)

using an interval whose extreme points depend on particular quantiles 0 < γ1 <

γ2 < 1 of Z and on quantities z and z that depend only on φ.

Example 3.1.18. Take φ(z) := exp (z)− 1. It is elementary to verify that φ ∈ Φ.

Moreover, since φ′(z) = exp (z), we conclude that l(φ) = 0 < 1 < +∞ = L(φ). Note

that φ satisfy all conditions of Proposition 3.1.17, but the “L(φ) < +∞” condition.

Take any α ∈ (0, 1) and z ∈ R. We will show that there exists an integrable (in fact,

bounded!) random variable Z, whose distribution depends on α and on z, such that:

argmin
s∈R

{s+ Eφ(Z − s)} *
(
−∞, q+

α (Z)− z
]
. (3.1.91)

122 2017



CHAPTER 3. SAMPLE COMPLEXITY FOR STATIC PROBLEMS WITH OCE RISK MEASURES

Let us begin by showing that, for this particular φ, the optimization problem in

variable s has as its unique solution s̄ = log (E exp (Z))7. To see this, just set the

derivative of (the differentiable convex) function

s ∈ R 7→ s+ E exp (Z − s)− 1 (3.1.92)

equal to zero and solve for s. Now, observe that:

s̄ = log (E exp (Z)) ≥ log (expEZ) = EZ, (3.1.93)

where we have used Jensen’s inequality (see [22, Theorem 1.6.2]) above.

So, given α ∈ (0, 1) and z ∈ R, we just need to define a random variable Z such

that:

EZ > q+
α (Z)− z. (3.1.94)

Take Z having the following probability distribution:

P [Z = 0] =
1 + α

2
, (3.1.95)

P
[
Z =

2 |z|+ 2

1− α

]
=

1− α
2

. (3.1.96)

It is elementary to verify that:

q+
α (Z) = 0, and (3.1.97)

EZ = |z|+ 1. (3.1.98)

The result follows, since:

EZ = |z|+ 1 > −z = q+
α (Z)− z. (3.1.99)

�

The example below compares the estimate given by Proposition 3.1.17 of the

set of optimal solutions of the optimization problem (3.1.79) with the exact set of

optimal solutions for the AV@R1−α(·) risk measure.

Example 3.1.19. For 0 < α < 1, let us consider the AV@R1−α(·) risk measure,

i.e. take φα(z) := max{0, z/(1 − α)}, for all z ∈ R. As it is well-known (see also

Proposition 3.1.13), for any Z ∈ L1(Ω,F ,P), the set of α-quantiles of Z is the

solution set of the convex optimization problem:

min
s∈R
{s+ E [φα(Z − s)]}. (3.1.100)

7For the record, we also have that µφ(Z) = s̄ + Eφ(Z − s̄) = s̄ = log (E exp {Z}), for every

Z ∈ Z.
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The left-side α-quantile of Z is the so-called Value-at-Risk risk measure. Observe

that l(φα) = 0 < 1 < 1/(1 − α) = L(φα) < +∞. Moreover, we can take z = 0 = z

such that the conditions below hold (see Lemma 3.1.15 and Remark 3.1.16):

φ′α(z; 1) =
1

1− α
≥ 1− α/2

1− α
=

1 + L(φα)

2
, for all z ≥ z = 0, (3.1.101)

φ′α(z;−1) = 0 ≤ 1/2 =
1 + l(φα)

2
, for all z ≤ z = 0. (3.1.102)

So, by Proposition 3.1.17, we have that:

argmin
s∈R

{s+ Eφα(Z − s)} =
[
q−α (Z), q+

α (Z)
]
⊆
[
q−γ1(Z), q+

γ2
(Z)
]
, (3.1.103)

where:

γ1 =
α

2− α
, (3.1.104)

γ2 =
2α

1 + α
. (3.1.105)

Figure 3.1: Lower and upper bounds for the solution set of problem (3.1.100) as quantiles

of the random variable Z.

Of course, γ1 ≤ α ≤ γ2, for all α ∈ (0, 1). Moreover, for j = 1, 2, γj → 0, as

α→ 0, and γj → 1, as α→ 1. �
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3.2 Static problems with OCE risk measures

Let us consider a general static risk averse stochastic programming problem (SRA-

SPP):

min
x∈X
{v(x) := µφ(F (x, ξ))} (3.2.1)

with OCE risk measure µφ, with φ ∈ Φ. Akin to static risk neutral problems,

ξ = (ξ1, . . . , ξd) is a random vector defined on a probability space (Ω,F ,P); x ∈ Rn

are the decision variables; X ⊆ Rn is the feasible set and F : Rn × Rd → R is a

measurable function.

For risk neutral problems the expected value operator “E(·)” is used to sum-

marize the random cost F (x, ξ) into a real number f(x) = EF (x, ξ). This can be

reasonable for many applications, although note that the random cost F (x, ξ) can

be much larger than its mean f(x) for some realizations of ξ. In some situations

it makes sense to give an extra penalization to upper deviations of F (x, ξ) from its

mean. Such problems use a risk measure to summarize the random cost into a real

number.

For problems with OCE risk measures, a risk measure “µφ(·)” is used to sum-

marize the random cost F (x, ξ) into a real number v(x) = µφ(F (x, ξ)). As we have

seen in Example 3.1.8, the expected value operator is, in particular, an OCE risk

measure. Moreover, given λ ∈ [0, 1] and α ∈ [0, 1), we have that:

Z ∈ L1(Ω,F ,P) 7→ (1− λ)EZ + λAV@R1−α(Z) (3.2.2)

is an OCE risk measure. This is a mean-risk type of risk measure that is widely

used in applications (e.g., [19, 39, 48, 51, 70, 72, 76, 78]).

For stochastic programming problems with OCE risk measures, one can also ap-

ply Monte Carlo methods in order to build a problem with discrete random data.

We will continue to denote this approach as the SAA method. Note that the “av-

erage” is just the sample or empirical mean, so we will substitute the OCE risk

measure by its empirical counterpart.

Given a sample realization {ξ1, . . . , ξN} of ξ, one considers the empirical random

vector ξ̂ having the empirical distribution:

P̂
[
ξ̂ ∈ B

]
=

1

N

N∑
i=1

δξi(B),∀B ∈ B(Rd), (3.2.3)

where:

δy(B) :=

{
1, if y ∈ B
0, otherwise

.

Given φ ∈ Φ, the SAA problem is:

min
x∈X

{
v̂N(x) := µ̂φ

(
F (x, ξ̂)

)}
, (3.2.4)
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where:

µ̂φ

(
F (x, ξ̂)

)
:= inf

s∈R

{
s+ Êφ

(
F (x, ξ̂)− s

)}
(3.2.5)

= inf
s∈R

{
s+

1

N

N∑
i=1

φ
(
F (x, ξi)− s

)}
(3.2.6)

Take φ ∈ Φ and x ∈ X. Note that µφ(F (x, ξ)) is the optimal value of an

optimization problem in R. This motivates us to consider an extended formulation

of problem (3.2.1):

min
(x,s)∈X×R

{v(x, s) := s+ Eφ(F (x, ξ)− s)} , (3.2.7)

by adding an extra decision variable s ∈ R. Given a random sample {ξ1, . . . , ξN} of

ξ, we can also consider an extended formulation of problem (3.2.4):

min
(x,s)∈X×R

{
v̂N(x, s) := s+

1

N

N∑
i=1

φ(F (x, ξi)− s)

}
. (3.2.8)

Note that8

v(x) = inf
s∈R

v(x, s), (3.2.9)

v̂N(x) = inf
s∈R

v̂N(x, s). (3.2.10)

One advantage of considering the extended formulation when studying the sam-

ple complexity of the SAA method is that the theory already developed for risk

neutral problems can be applied. Indeed, observe that the expected value operator

is the risk measure of the extended formulation. One difficult that should be cir-

cumvented is that the feasible set X × R is unbounded, even when X is bounded.

The general theory developed for analyzing the sample complexity of risk neutral

problems assumes a bounded feasible set (see assumption (A4) in section 2.1). Later

we will see how it is possible to deal with the unboundedness of X × R, when X is

assumed bounded.

In the end of this subsection, we will show that v(x, s), v(x), v̂N(x, s) and v̂N(x)

are all well-defined quantities, for all x ∈ X and s ∈ R, assuming that (A1) of

subsection (2.1.1) holds. In the meantime, let us assume that all these quantities

are well-defined9.
8In our exposition we commit an abuse of notation by representing different functions (x, s) ∈

X × R 7→ s + Eφ(F (x, ξ) − s) and x ∈ X 7→ µφ(F (x, ξ)) with the same letter “v”. It will

be clear from the context which function we are talking about. The same remark applies to

the objective-functions of the SAA problems: (x, s) ∈ X × R 7→ s +
∑N
i=1 φ(F (x, ξi) − s) and

x ∈ X 7→ µ̂φ(F (x, ξ̂)).
9Note that if v(x, s) and v̂N (x, s) are well-defined, for all x ∈ X and s ∈ R, then v(x) and v̂N (x)

are well-defined, for all x ∈ X. The delicate point is that the expected value Eφ(F (x, ξ)− s) could

fail, in principle, to be well-defined.
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Let us denote the optimal values of problems (3.2.1) and (3.2.4), respectively,

by:

v∗ := inf
x∈X

v(x) and v̂∗N := inf
x∈X

v̂N(x). (3.2.11)

It is elementary to verify that:

v∗ = inf
(x,s)∈X×R

v(x, s), (3.2.12)

v̂∗N = inf
(x,s)∈X×R

v̂N(x, s). (3.2.13)

Given ε ≥ 0, consider the following sets of optimal ε-solutions of the problems above:

Sε := {x ∈ X : v(x) ≤ v∗ + ε} , (3.2.14)

ESε := {(x, s) ∈ X × R : v(x, s) ≤ v∗ + ε} , (3.2.15)

ŜεN := {x ∈ X : v̂N(x) ≤ v̂∗N + ε} , (3.2.16)

ÊS
ε

N := {(x, s) ∈ X × R : v̂N(x, s) ≤ v̂∗N + ε} . (3.2.17)

In section 3.3 we will extend the sample complexity results obtained for static

risk neutral problems to static problems with OCE risk measures under the same

regularity conditions that were assumed for the risk neutral case, that is, assump-

tions (A1)-(A5) of subsection 2.1.1.

Similarly to risk neutral problems, we estimate the sample size N such that:

P
([
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

])
≥ 1− θ (3.2.18)

holds true, where 0 ≤ δ < ε and θ ∈ (0, 1) are the sample complexity parameters.

Additionally, we obtain an estimate for the sample size N such that:

P
([
ÊS

δ

N ⊆ ESε
]
∩
[
ÊS

δ

N 6= ∅
])
≥ 1− θ (3.2.19)

also holds true.

Akin to the risk neutral case, we show that both the SAA and the extended SAA

problems are solvable w.p.1, that is:

P
[
ŜN 6= ∅

]
= P

[
ÊSN 6= ∅

]
= 1. (3.2.20)

For obtaining a lower bound estimate for the probability of the event:[
ŜδN ⊆ Sε

]
, (3.2.21)

we show that the following probability:

P
[
sup
x∈X
|v̂N(x)− v(x)| ≤ ε− δ

2

]
(3.2.22)
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approaches 1 exponentially fast with respect to the sample size N . For risk neutral

problems, this was shown by applying the uniform exponential bound theorem (see

Theorem 2.1.5) that was used to bound from below:

P
[
sup
x∈X

∣∣∣f̂N(x)− f(x)
∣∣∣ ≤ ε− δ

2

]
, (3.2.23)

where f(x) = EF (x, ξ) and f̂N(x) = 1
N

∑N
i=1 F (x, ξi). Here, we cannot follow this

approach directly, since the risk measure in problem (3.2.1) is not the expected

value, in general. Indeed, [73, Proposition 5.6] and its previous discussion implies

that:

Ev̂N(x) ≤ v(x),∀x ∈ X, (3.2.24)

typically with strict inequality. One can try to show that v̂N(x, s) and v(x, s) become

arbitrarily close, with high probability, uniformly on X × R. Since

v(x, s) = s+ Eφ(F (x, ξ)− s), and (3.2.25)

v̂N(x, s) = s+
1

N

N∑
i=1

φ(F (x, ξi)− s) (3.2.26)

the uniform exponential bound theorem could, in principle, be applied. The dif-

ficulty here is that diam (X × R) = +∞ and the estimate from Theorem 2.1.5 is

useless.

In order to deal with the unboundedness of the set X × R, we will introduce

an auxiliary set X̃ ⊆ X × R. Given X̃, we consider the extended formulations of

the true and SAA problems restricted to this set. These new problems have the

following optimal values:

v∗(X̃) := inf
(x,s)∈X̃

v(x, s), (3.2.27)

v̂∗N(X̃) := inf
(x,s)∈X̃

v̂N(x, s). (3.2.28)

Similarly, we denote the sets of ε-solutions of the extended formulations restricted

to X̃ by:

ESε(X̃) :=
{

(x, s) ∈ X × R : v(x, s) ≤ v∗(X̃) + ε
}
, (3.2.29)

ÊS
ε

N(X̃) :=
{

(x, s) ∈ X × R : v̂N(x, s) ≤ v̂∗N(X̃) + ε
}
, (3.2.30)

respectively.

In Proposition 3.2.1 we show that if X̃ satisfies some suitable properties, then a

series of useful consequences that relate problems (3.2.27) and (3.2.28), respectively,

with problems (3.2.7) and (3.2.8) hold. Before proceeding, let us introduce some

notation. We denote the projection of Rn × R on the first variable by:

πx(x, s) := x, for all (x, s) ∈ Rn × R. (3.2.31)
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Given A ⊆ Rn×R and x ∈ Rn, we denote the cross-section of the set A at the point

x by:

Ax := {s ∈ R : (x, s) ∈ A} . (3.2.32)

It is elementary to show that a ∈ πx(A) if and only if Aa 6= ∅.

Proposition 3.2.1. Take X ⊆ Rn nonempty, a sample realization {ξ1, . . . , ξN} of

ξ and X̃ ⊆ X × R. Suppose that the following conditions hold:

(i) For every x ∈ X, X̃x ∩ argmins∈R v(x, s) 6= ∅.

(ii) For every x ∈ X, X̃x ∩ argmins∈R v̂N(x, s) 6= ∅.

Then, the following statements hold:

(a) The optimal values of problems (3.2.7) and (3.2.27) and of problems (3.2.8)

and (3.2.28), respectively, are equal

v∗ = v∗(X̃),

v̂∗N = v̂∗N(X̃).
(3.2.33)

(b) For all ε ≥ 0, Sε = πx(ES
ε(X̃)) and ŜεN = πx(ÊS

ε

N(X̃)).

(c) Take 0 ≤ δ < ε. If v∗ is finite and

sup
(x,s)∈X̃

|v(x, s)− v̂N(x, s)| ≤ ε− δ
2

, (3.2.34)

then ÊS
δ

N(X̃) ⊆ ESε(X̃) and ŜδN ⊆ Sε.

Proof. Let us begin by noticing that πx(X̃) = X by item (i). Indeed, we have that

X̃x 6= ∅, for all x ∈ X. The fact that v∗ ≤ v∗(X̃) and v̂∗N ≤ v̂∗N(X̃) is immediate,

since X̃ ⊆ X × R. Let us show the converse inequality. Take x ∈ X arbitrary. By

items (i) and (ii), there exist s(x), ŝ(x) ∈ X̃x such that:

v(x, s(x)) = v(x), and (3.2.35)

v̂N(x, ŝ(x)) = v̂N(x), (3.2.36)

respectively. This implies that v∗(X̃) ≤ v(x) and v̂N(X̃) ≤ v̂N(x). Since x ∈ X is

arbitrary, we conclude that v∗(X̃) ≤ v∗ and v̂∗N(X̃) ≤ v̂∗N , which proves (a).

Let us show (b). Since the reasoning is similar for both cases, we will show

that Sε = πx(ES
ε(X̃)), for any ε ≥ 0. Take any (x, s) ∈ ESε(X̃). Observe that

v(x) ≤ v(x, s) ≤ v∗(X̃) + ε = v∗ + ε, since v∗(X̃) = v∗. It follows that x ∈
Sε, i.e. πx(ES

ε(X̃)) ⊆ Sε. Conversely, take any x ∈ Sε. Taking s(x) ∈ X̃x ∩

129 2017



CHAPTER 3. SAMPLE COMPLEXITY FOR STATIC PROBLEMS WITH OCE RISK MEASURES

argmins∈R v(x, s), we have that v(x, s(x)) = v(x) ≤ v∗+ε = v∗(X̃)+ε, so (x, s(x)) ∈
ESε(X̃), i.e. x ∈ πx(ESε(X̃)). Item (b) is proved.

Finally, take 0 ≤ δ < ε and suppose that:

sup
(x,s)∈X̃

|v(x, s)− v̂N(x, s)| ≤ ε− δ
2

(3.2.37)

holds. Since inf(x,s)∈X̃ v(x, s) = v∗ is finite, it follows from Proposition 2.8.4 that:

ε−δ
2
≥ sup

(x,s)∈X̃
|v(x, s)− v̂N(x, s)| ≥

∣∣∣∣ inf
(x,s)∈X̃

v(x, s)− inf
(x,s)∈X̃

v̂N(x, s)

∣∣∣∣
=
∣∣∣v∗(X̃)− v̂∗N(X̃)

∣∣∣ = |v∗ − v̂∗N | .
(3.2.38)

Given any (x, s) ∈ ÊS
δ

N(X̃), we have that:

v(x, s)− ε− δ
2
≤ v̂N(x, s) ≤ v̂∗N + δ ≤ v∗ +

ε− δ
2

+ δ. (3.2.39)

We conclude that v(x, s) ≤ v∗ + ε, i.e. (x, s) ∈ ESε. Then, ÊS
δ

N(X̃) ⊆ ESε(X̃)

and, in particular, ŜδN ⊆ Sε as a consequence of item (b).

Remark 3.2.2. Let us point out that items (i) and (ii) of Proposition 3.2.1 impose

not only conditions to be satisfied by the set X̃, but also conditions regarding problems

(3.2.7) and (3.2.8). Indeed, for every x ∈ X, the optimization problems on the real

line:

min
s∈R

v(x, s), and (3.2.40)

min
s∈R

v̂N(x, s) (3.2.41)

are solvable. We will show in the next section that these conditions are satisfied

under appropriate regularity conditions. Observe also that we do not assume in

Proposition 3.2.1 that X̃ is bounded. We will show that it is possible to take X̃

bounded satisfying items (i) and (ii)10 of that proposition. Then, we will apply the

uniform bounded theorem to obtain an estimate on the sample size N in order to

bound from below the probability of the event:

sup
(x,s)∈X̃

|v(x, s)− v̂N(x, s)| ≤ ε− δ
2

. (3.2.42)

�

10More precisely, item (ii) will be satisfied for almost every random realization {ξ1, . . . , ξN} of

ξ.
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Remark 3.2.3. (Convention: Composition of Functions) Take two functions g, h :

R→ R. In general the composition h◦g is not well-defined, since −∞ or +∞ could

be elements of the range of g. However we can extend the definition of h to R in the

following way when both limits below do exist in R:

h(−∞) := lim
x→−∞

h(x), (3.2.43)

h(+∞) := lim
x→+∞

h(x). (3.2.44)

If h is monotone, then both limits do exist. By item (c) of Definition 3.1.1 every

φ ∈ Φ is non-decreasing. Moreover, we have that φ(z) ≥ z, for all z ∈ R. It follows

that:

φ(−∞) = inf
z∈R

φ(z), (3.2.45)

φ(+∞) = sup
z∈R

φ(z) = +∞. (3.2.46)

We will adopt this convention in this thesis. �

Remark 3.2.4. Take a random variable Z defined on a probability space (Ω,F ,P).

Even if Z has finite expected value, we do not rule out the possibility that Z(ω) =

±∞, for some ω ∈ Ω. Nevertheless, a direct consequence from the finiteness of

EZ is the fact that P [Z = ±∞] = 0. By Remark 3.2.3 we have that φ(Z(ω)) ∈
[φ(−∞),+∞] ⊆ R is well-defined, for every ω ∈ Ω. Moreover, if φ is finite-valued,

then P [φ(Z) = ±∞] = 0. �

Let us recall that we have assumed until now that the objective functions of

problems (3.2.1), (3.2.4), (3.2.7) and (3.2.8) are all well-defined. In the following

proposition we give sufficient conditions for the well-definedness of these functions.

Proposition 3.2.5. Suppose that each member of the family of random variables

{F (x, ξ) : x ∈ X} has finite expected value, i.e. assumption (A1) of Section 2.1.1

holds true. For any φ ∈ Φ, we have that:

v(x, s) = s+ Eφ(F (x, ξ)− s), and (3.2.47)

v(x) = µφ(F (x, ξ)) (3.2.48)

are well-defined and belong to R ∪ {+∞}, for every x ∈ X and s ∈ R. Moreover,

if L(φ) < +∞, then both functions are finite on X × R and on X, respectively.

Finally, given any sample realization {ξ1, . . . , ξN} of ξ, we have that:

v̂N(x, s) := s+
1

N

N∑
i=1

φ
(
F (x, ξi)− s

)
, and (3.2.49)

v̂N(x) := µ̂φ

(
F (x, ξ̂)

)
(3.2.50)

are well-defined functions.
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Proof. Take φ ∈ Φ and a sample realization {ξ1, . . . , ξN} of ξ. Let us begin by

noting that, by the definition of the risk measures µφ and µ̂φ, we have that:

v(x) = inf
s∈R

v(x, s), (3.2.51)

v̂N(x) = inf
s∈R

v̂N(x, s), (3.2.52)

for all x ∈ X. Given x ∈ X, v(x) and v̂N(x) will be well-defined whenever v(x, s)

and v̂N(x, s) are well-defined, respectively, for all s ∈ R. Since F (x, ξ) has finite

expected value, it follows from Proposition 3.1.4 that:

−∞ < EF (x, ξ) ≤ v(x) ≤ s+ Eφ(F (x, ξ)− s) = v(x, s) ≤ +∞, ∀s ∈ R. (3.2.53)

Again by Proposition 3.1.4, we conclude that both functions are finite on X × R
and on X, respectively, if φ is Lispchitz continuous, i.e. L(φ) < +∞.

Now, let us consider an arbitrary sample realization {ξ1, . . . , ξN} of ξ. Given

x ∈ X, not much can be said about the scenario costs {F (x, ξi) : i = 1, . . . , N}11,

but at least they satisfy:

−∞ ≤ F (x, ξi) ≤ +∞, ∀i = 1, . . . , N. (3.2.54)

By Remark 3.2.3 it follows that s+φ(F (x, ξi)−s) ∈ R, for all s ∈ R and i = 1, . . . , N .

Note that v̂N(x, s) is just the mean of these quantities, that is well-defined, adopting

the convention +∞+ (−∞) = +∞.

Remark 3.2.6. In section 3.3, under additional regularity conditions, we show that

(see Proposition 3.3.12), that:

v : X → R and v : X × R→ R (3.2.55)

are Lipschitz continuous on X and on X × R, respectively. Moreover, supposing

that the random sample {ξi : i = 1, . . . , N} is identically distributed (not necessarily

independent), we show in the same proposition that:

v̂N : X → R and v̂N : X × R→ R (3.2.56)

are also Lipschitz continuous on X and on X × R, respectively, w.p.1, where the

Lipschitz constants depend on the sample realization {ξi : i = 1, . . . , N}. �

11Assuming only that (A1) holds, it follows that there exists a measurable set Ex such that

P [ξ ∈ Ex] = 1 and F (x, ξ) ∈ R, for all ξ ∈ Ex. Since X is, in general, an uncountable set, we need

a stronger assumption in order to guarantee the finiteness of F (x, ξ), for all x ∈ X and ξ ∈ E,

where P [ξ ∈ Ex] = 1. See also Remark 2.1.1.
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3.3 Sample complexity results for static problems

In this section, we apply the results developed in sections 3.1 and 3.2 for analyzing

the sample complexity of static stochastic programming problems with OCE risk

measures. We list below the same regularity conditions considered in subsection

2.1.1 which will be used in the sequel.

(A1) For every x ∈ X, f(x) = EF (x, ξ) is finite.

(A2) There exists σ ∈ R+ such that F (x, ξ) − f(x) is a σ-sub-Gaussian random

variable.

(A3) There exists a measurable function χ : supp(ξ)→ R+ whose moment generat-

ing function Mχ(s) is finite, for s in a neighborhood of zero, such that

|F (x, ξ)− F (x′, ξ)| ≤ χ(ξ) ‖x− x′‖ , (3.3.1)

for all x′, x ∈ X and ξ ∈ E ⊆ supp{ξ}, where P [ξ ∈ E] = 1.

(A4) X ⊆ Rn is a nonempty compact set with diameter D.

(A5) {ξi : i ∈ N} is an i.i.d. sequence of random vectors defined on a probability

space (Ω,F ,P) such that ξ1 d∼ ξ.

As usual, given a sample realization {ξ1, . . . , ξN} of ξ, we denote by ξ̂ the random

vector having the empirical distribution (3.2.3). We begin by proving the following

lemma.

Lemma 3.3.1. Take φ ∈ Φ, and a sample realization {ξ1, . . . , ξN} of ξ and x ∈ X.

If F (x, ξi) ∈ R, for every 1 ≤ i ≤ N , then v̂N(x, ·) is a well-defined proper convex

function taking values in R ∪ {+∞}. If φ is Lipschitz continuous, then v̂N(x, ·) is

finite-valued. Finally, if conditions l(φ) < 1 < L(φ) also hold true, then

argmin
s∈R

v̂N(x, s) ⊆
[
q−γ1

(
F (x, ξ̂)

)
− z, q+

γ2

(
F (x, ξ̂)

)
− z
]

(3.3.2)

is a nonempty compact interval of R, where γ1 and γ2 are defined as in equations

(3.1.81) and (3.1.82), respectively, and z ≤ 0 ≤ z are constants defined as in equa-

tions (3.1.77) and (3.1.78), respectively.

Proof. Note that φ ∈ Φ is a proper convex function satisfying domφ ⊇ (−∞, 0].

Moreover, φ(z) ∈ R ∪ {+∞}, for every z ∈ R. Since F (x, ξi) ∈ R, for every

1 ≤ i ≤ N , we have that

s ∈ R 7→ s+ φ(F (x, ξi)− s) (3.3.3)
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is a proper convex function taking values in R∪ {+∞} and whose domain contains

the interval [F (x, ξi),+∞). Since v̂N(x, ·) is a convex combination of the N functions

above, we conclude that v̂N(x, ·) is convex, takes values in R ∪ {+∞} and satisfies:

dom v̂N(x, ·) ⊇
N⋂
i=1

[
F (x, ξi),+∞

)
=

[
max

1≤i≤N
F (x, ξi),+∞

)
. (3.3.4)

In particular, it follows that v̂N(x, ·) is proper. Now, suppose that φ is Lipschitz

continuous. It follows that φ is finite-valued and also each one of the functions in

equation (3.3.3). So, v̂N(x, ·) is also finite-valued.

Now, let us suppose that conditions l(φ) < 1 < L(φ) < +∞ hold true. Let ξ̂

be the empirical random vector having the empirical distribution (3.2.3). Note that

the random variable F (x, ξ̂) has finite expected valued ÊF (x, ξ̂) = 1
N

∑N
i=1 F (x, ξi),

since F (x, ξi) ∈ R (∀i = 1, . . . , N). By Proposition 3.1.17, we conclude that the

solution set of problem:

min
s∈R

{
s+ Êφ(F (x, ξ̂)− s)

}
(3.3.5)

is a nonempty compact interval of R that is contained in[
q−γ1

(
F (x, ξ̂)

)
− z, q+

γ2

(
F (x, ξ̂)

)
− z
]
.

The result follows since v̂N(x, s) = s+ Êφ(F (x, ξ̂)− s).

In the sequel, we will define an auxiliary set X̃ ⊆ X×R having “good properties”

that will allow us to derive sample complexity estimates for stochastic programming

problems with OCE risk measures. Meanwhile, let us write:

X̃ := {(x, s) ∈ X × R : a(x) ≤ s ≤ b(x)}, (3.3.6)

where a : X → R and b : X → R will be defined along the way. The following

proposition will be useful.

Proposition 3.3.2. Assume that (A1) holds true and that φ ∈ Φ satisfies l(φ) <

1 < L(φ) < +∞. Given x ∈ X and real numbers a(x) < b(x), define:

∆(x) :=
1

3
min {v(x, a(x))− v(x), v(x, b(x))− v(x)} . (3.3.7)

If (a(x), b(x)) ⊇ argmins∈R v(x, s), then ∆(x) > 0. Additionally, let be given a

sample realization {ξ1, . . . , ξN} of ξ such that F (x, ξi) ∈ R, for all i = 1, . . . , N .

Suppose also that there exists s̄ ∈ argmins∈R v(x, s) such that:

max
{∣∣v̂N(x, a(x))− v(x, a(x))

∣∣, ∣∣v̂N(x, b(x))− v(x, b(x))
∣∣, ∣∣v̂N(x, s̄)− v(x)

∣∣} < ∆(x).

(3.3.8)

Then,

{s ∈ R : v̂N(x, s) ≤ v̂N(x) + ∆(x)} ⊆ (a(x), b(x)) .
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Proof. Since φ ∈ Φ satisfies l(φ) < 1 < L(φ) < +∞ and the random variable F (x, ξ)

has finite expected value, it follows from Proposition 3.1.17 that argmins∈R v(x, s) is

a nonempty compact interval of R. By hypothesis, (a(x), b(x)) ⊇ argmins∈R v(x, s),

so a(x), b(x) /∈ argmins∈R v(x, s). This implies that ∆(x) > 0.

Now, let {ξ1, . . . , ξN} be a sample realization of ξ satisfying F (x, ξi) ∈ R, for

all i = 1, . . . , N . By Lemma 3.3.1, it follows that v̂N(x, ·) is a finite-valued convex

function. If there exists s̄ ∈ argmins∈R v(x, s) such that equation (3.3.8) is satisfied,

then:

v̂N(x, a(x)) > v(x, a(x))−∆(x) (3.3.9)

≥ v(x, a(x))− 1

3
(v(x, a(x))− v(x)) (3.3.10)

= v(x) +
2

3
(v(x, a(x))− v(x)) (3.3.11)

≥ v(x) + 2∆(x) = (v(x, s̄) + ∆(x)) + ∆(x) (3.3.12)

> v̂N(x, s̄) + ∆(x) (3.3.13)

≥ v̂N(x) + ∆(x). (3.3.14)

Similarly, we can show that v̂N(x, b(x)) > v̂N(x) + ∆(x). Now, observe that any

s < a(x) can be written as λa(x)+(1−λ)s̄, for some λ > 1. Since v̂N(x, ·) is convex,

it follows from Proposition 2.5.44 that:

v̂N(x, s) ≥ λv̂N(x, a(x)) + (1− λ)v̂N(x, s̄) (3.3.15)

= v̂N(x, a(x)) + (λ− 1)(v̂N(x, a(x))− v̂N(x, s̄)) (3.3.16)

> v̂N(x, a(x)) (3.3.17)

> v̂N(x) + ∆(x). (3.3.18)

Similarly, observe that any s > b(x) can be written as λb(x) + (1 − λ)s̄, for some

λ > 1. The same reasoning implies that

v̂N(x, s) > v̂N(x, b(x)) > v̂N(x) + ∆(x), (3.3.19)

for s > b(x). We conclude that {s ∈ R : v̂N(x, s) ≤ v̂N(x)+∆(x)} ⊆ (a(x), b(x)).

Remark 3.3.3. We will define a, b : X → R such that the following conditions hold:

(i) int X̃x = (a(x), b(x)) ⊇ argmin
s∈R

v(x, s), for all x ∈ X,

(ii) −∞ < inf
x∈X

a(x) < sup
x∈X

b(x) < +∞,

(iii) ∆ := inf
x∈X

∆(x) > 0, where ∆(x) is defined as in equation (3.3.7).

�
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Observe that if F (x, ξ) has finite expected value, for all x ∈ X, and φ ∈ Φ

satisfies l(φ) < 1 < L(φ) < +∞, then assuming that a(x) and b(x) satisfy

a(x) < q−γ1(F (x, ξ))− z ≤ q+
γ2

(F (x, ξ))− z < b(x), (3.3.20)

we obtain by Proposition 3.1.17 that (a(x), b(x)) ⊇ argmin
s∈R

v(x, s), for all x ∈ X.

Of course, γ1, γ2, z and z depend only on φ, see Proposition 3.1.17. This addresses

item (i) above. In the next proposition, we address item (iii). Later it will become

clear that our sample complexity estimates hold for ε > 0 sufficiently small, that is,

less than or equal to ∆. So, it is crucial to show that we can define a(x) and b(x)

in such a way that ∆ > 0 and X̃ is bounded.

In the sequel, γ1, γ2, z and z are defined as in Proposition 3.1.17, where φ ∈ Φ. As

before, we will write f(x) := EF (x, ξ) whenever the expected value is well-defined.

Proposition 3.3.4. Assume that (A1) holds true and that there exist two functions

l, u : (0, 1)→ R satisfying the following conditions:

(i.) For all x ∈ X and α ∈ (0, 1),

f(x) + l(α) ≤ q−α (F (x, ξ)) ≤ q+
α (F (x, ξ)) ≤ f(x) + u(α).

(ii.) l(·) and u(·) are monotonically (strictly) increasing.

Let φ ∈ Φ be such that l(φ) < 1 < L(φ) < +∞ is satisfied. For every x ∈ X, define:

a(x) := f(x) + l
(γ1

2

)
− z, (3.3.21)

b(x) := f(x) + u

(
1 + γ2

2

)
− z, (3.3.22)

and ∆(x) as in equation (3.3.7). Then,

∆ := inf
x∈X

∆(x) ≥ 1
3

min
{
L(φ)−1

8

[
l(3γ1

4
)− l(γ1

2
))
]
, 1−l(φ)

8

[
u(1+γ2

2
)− u(1

4
+ 3γ2

4
)
]}

> 0.

(3.3.23)

Proof. Take any x ∈ X. Since φ is Lipschitz continuous and F (x, ξ) has finite

expected value, we conclude that v(x, ·) is a finite-valued convex function in R. So,

for every a < b, Theorem 2.5.40 implies that:

v(x, b)− v(x, a) =

∫ b

a

v′s(x, s)ds =

∫ b

a

v′s(x, s; 1)ds =

∫ b

a

−v′s(x, s;−1)ds, (3.3.24)

where v′s(x, s) is well-defined, except possibly in a countable subset of [a, b]. More-

over, by Proposition 3.1.17, we have that:

∅ 6= argmin
s∈R

v(x, s) ⊆
[
q−γ1(F (x, ξ)− z, q+

γ2
(F (x, ξ)− z

]
. (3.3.25)
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Let s̄ ∈ argmins∈R v(x, t) be arbitrary. Then,

v(x, b(x))− v(x) = v(x, b(x))− v(x, s̄) (3.3.26)

=

∫ b(x)

s̄

v′s(x, s; 1)ds (3.3.27)

≥
∫ f(x)+u( 1+γ2

2 )−z

f(x)+u( 1+3γ2
4 )−z

v′s(x, s; 1)ds (3.3.28)

≥
[
u
(

1+γ2
2

)
− u

(
1+3γ2

4

)]
×

v′s
(
x, f(x) + u

(
1+3γ2

4

)
− z; 1

)
.

(3.3.29)

Observe that (3.3.28) holds since s̄ ≤ q+
γ2

(F (x, ξ))− z ≤ f(x) + u(γ2)− z ≤ f(x) +

u
(

1+3γ2
4

)
− z and v′s(x, s; 1) ≥ 0, for all s ≥ s̄. Moreover, (3.3.29) holds since the

right derivative v′s(x, ·; 1) is non-decreasing by the convexity of v(x, ·). Furthermore,

since s̃ := f(x)+u
(

1+3γ2
4

)
−z ≥ q−1+3γ2

4

(F (x, ξ))−z, it follows by item (iii) of Lemma

3.1.15 that

v′s (x, s̃; 1) = 1 + E [φ′ (F (x, ξ)− s̃;−1)] (3.3.30)

≥ 1− L(φ)− 1 + l(φ)− 2L(φ)

2

(
1 + 3γ2

4

)
(3.3.31)

= A1

(
1 + 3γ2

4

)
, (3.3.32)

where A1(α) := 1 − L(φ) − 1+l(φ)−2L(φ)
2

α. Observe that A(·) is an affine function

satisfying A(γ2) = 0, so

A1

(
1 + 3γ2

4

)
=

1

4
A1(1) +

3

4
A1(γ2) (3.3.33)

=
A1(1)

4
=

1− l(φ)

8
. (3.3.34)

We conclude that

v(x, b(x))− v(x) ≥ 1− l(φ)

8

[
u

(
1 + γ2

2

)
− u

(
1 + 3γ2

4

)]
> 0, (3.3.35)

for every x ∈ X.
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Similarly, taking any x ∈ X, let us obtain a lower estimate for v(x, a(x))− v(x):

v(x, a(x))− v(x) = v(x, a(x))− v(x, s̄) (3.3.36)

=

∫ a(x)

s̄

−v′s(x, s;−1)ds (3.3.37)

=

∫ s̄

a(x)

v′s(x, s;−1)ds (3.3.38)

≥
∫ f(x)+l( 3γ1

4 )−z

f(x)+l( γ12 )−z
v′s(x, s;−1)ds (3.3.39)

≥
[
l
(

3γ1
4

)
− l
(
γ1
2

)]
×

v′s
(
x, f(x) + l

(
3γ1
4

)
− z;−1

)
.

(3.3.40)

Observe that (3.3.39) holds since s̄ ≥ q−γ1(F (x, ξ))− z ≥ f(x) + u(γ1)− z ≥ f(x) +

u
(

3γ1
4

)
− z and v′s(x, s;−1) ≥ 0, for all s ≤ s̄. Moreover, (3.3.40) holds since

derivative v′s(x, ·;−1) is non-increasing by the convexity of v(x, ·). Furthermore,

since ŝ := f(x) + l
(

3γ1
4

)
− z ≤ q+

3γ1
4

(F (x, ξ)) − z, it follows by item (ii) of Lemma

3.1.15 that

v′s (x, ŝ;−1) = −1 + E [φ′ (F (x, ξ)− ŝ; 1)] (3.3.41)

≥ −1 +
1 + L(φ)

2

(
1− 3γ1

4

)
(3.3.42)

= A2

(
3γ1

4

)
, (3.3.43)

where A2(α) := −1 + 1+L(φ)
2

(1− α). Observe that A2(·) is an affine function and

A(γ1) = 0, so

A2

(
3γ1

4

)
=

1

4
A2(0) +

3

4
A2(γ1) (3.3.44)

=
A2(0)

4
=
L(φ)− 1

8
. (3.3.45)

We have that

v(x, a(x))− v(x) ≥ L(φ)− 1

8

[
l

(
3γ1

4

)
− l
(γ1

2

)]
> 0, (3.3.46)

for every x ∈ X, which proves equation (3.3.23).

Observe that if: (a) f : X → R is bounded, (b) conditions (i) and (ii) of

Proposition 3.3.4 hold, and (c) we define a(x) and b(x) as in equations (3.3.21) and

(3.3.22), respectively, then item (ii) of Remark 3.3.3 is satisfied. Let us recall that

assumptions (A1), (A3) and (A4) imply the boundedness of f on X (see Proposition
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2.1.4). Moreover, we will show that assumption (A2) guarantees the existence of

functions l, u : (0, 1)→ R satisfying items (i) and (ii) of Proposition 3.3.4.

In the next proposition we establish lower and upper bounds, respectively, for

the leftmost and rightmost α-quantile of a σ-sub-Gaussian random variable, for

α ∈ (0, 1).

Proposition 3.3.5. Let Y be a σ-sub-Gaussian random variable. For α ∈ (0, 1),

we have that

− σ

√
2 log

(
1

α

)
≤ q−α (Y ) ≤ q+

α (Y ) ≤ σ

√
2 log

(
1

1− α

)
. (3.3.47)

Proof. Let y > 0 be given. For s > 0 arbitrary, we have that

P [Y ≥ y] = P [exp{sY } ≥ exp{sy}] ≤ E [exp{sY }] exp{−sy} ≤ exp{−(sy−σ2s2/2)},
(3.3.48)

where the first inequality is just Markov inequality (see [22, Theorem 1.6.4]). Mini-

mizing this expression with respect to s > 0, we obtain that

P [Y ≥ y] ≤ exp{−y2/2σ2} = 1− (1− exp{−y2/2σ2}). (3.3.49)

Given α ∈ (0, 1), we can take y > 0 such that

α < 1− exp{−y2/2σ2}. (3.3.50)

In fact, just take

y > σ

√
2 log

(
1

1− α

)
. (3.3.51)

For such y, we have that P [Y ≥ y] < 1 − α. Since the function z 7→ P [Y ≥ z] is

non-increasing and P [Y ≥ q+
α (Y )] ≥ 1 − α, we conclude that q+

α (Y ) < y, for all y

satisfying (3.3.51). Taking the infimum on y, we obtain that

q+
α (Y ) ≤ σ

√
2 log

(
1

1− α

)
, (3.3.52)

and the rightmost inequality on (3.3.47) is proved. The leftmost inequality is a

direct consequence of this result, noting that −Y is also an σ-sub-Gaussian random

variable and that q−α (Y ) = −q+
1−α(−Y ) by Proposition 2.3.5.

Corollary 3.3.6. If assumptions (A1) and (A2) hold true, then

f(x)− σ

√
2 log

(
1

α

)
≤ q−α (F (x, ξ)) ≤ q+

α (F (x, ξ)) ≤ f(x) + σ

√
2 log

(
1

1− α

)
,

(3.3.53)

for every α ∈ (0, 1) and x ∈ X.
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Proof. Let α ∈ (0, 1) and x ∈ X be arbitrary. The result follows immediately from

Proposition 3.3.5 by taking Y = F (x, ξ) − f(x) and observing that q−α (F (x, ξ) −
f(x)) = q−α (F (x, ξ))− f(x) and q+

α (F (x, ξ)− f(x)) = q+
α (F (x, ξ))− f(x) hold.

It follows from assumptions (A1) and (A2) that if we take

l(α) := −σ

√
2 log

(
1

α

)
, and (3.3.54)

u(α) := σ

√
2 log

(
1

1− α

)
(3.3.55)

then items (i) and (ii) of Proposition 3.3.4 are satisfied. Let us summarize this result

in the next corollary.

Corollary 3.3.7. Suppose that assumptions (A1) and (A2) are satisfied and that

φ ∈ Φ is such that l(φ) < 1 < L(φ) < +∞. Defining l(·) and u(·) as in equations

(3.3.54) and (3.3.55), respectively; and a(x), b(x) and ∆(x) as in Proposition 3.3.4,

we conclude that ∆ := infx∈X ∆(x) > 0.

Proof. This is an elementary consequence of Proposition 3.3.4 and Corollary 3.3.6.

Now, let us prepare the ground to show that, under appropriate regularity con-

ditions, the probability that the objective functions

v(x, s) = s+ Eφ(F (x, ξ)− s), and (3.3.56)

v̂N(x, s) = s+
1

N

N∑
i=1

φ(F (x, ξi)− s) (3.3.57)

become arbitrarily close on X̃ approaches one exponentially fast with respect to the

sample size N . First of all, note that:

v̂N(x, s)− v(x, s) =
1

N

N∑
i=1

[
φ(F (x, ξi)− s)− Eφ(F (x, ξi)− s)

]
, (3.3.58)

assuming that ξi
d∼ ξ, for every i = 1, . . . , N . So, in order for applying the uniform

exponential bound theorem, we need to verify that the family of random variables

{φ(F (x, ξ)−s) : x ∈ X, s ∈ R} satisfies the regularity conditions of Theorem 2.1.512.

If φ ∈ Φ satisfies L(φ) < +∞ and assumptions (A1)-(A3) hold true, then we will

show that this will be the case.

12In fact, we only need to verify that those conditions are satisfied for the subfamily

{φ (F (x, ξ)− s) : (x, s) ∈ X̃}. It takes the same work to show the result for the whole family

of random variables, though.
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Proposition 3.3.8. Take any φ ∈ Φ satisfying L(φ) < +∞. If assumptions (A1)−
(A3) hold true, then the following conditions are satisfied:

(C1) Eφ(F (x, ξ)− s) is finite, for all x ∈ X and s ∈ R.

(C2) The family of random variables

{φ(F (x, ξ)− s)− Eφ(F (x, ξ)− s) : x ∈ X, s ∈ R}

is (κL(φ)σ)-sub-Gaussian, where κ is an absolute constant13.

(C3) Defining

η(ξ) :=
√

1 + χ(ξ)2 (3.3.59)

we obtain that

|φ (F (x′, ξ)− s′)− φ (F (x, ξ)− s)| ≤ L(φ)η(ξ) ‖(x′, s′)− (x, s)‖ , (3.3.60)

for all (x, s), (x′, s′) ∈ X × R and ξ ∈ E ⊆ supp{ξ}, where P [ξ ∈ E] = 1.

Moreover, the moment generating function of L(φ)η(ξ) is finite in a neighbor-

hood of zero and M ′ := Eη(ξ) ≤ 1 +M , where M = Eχ(ξ) is finite.

Proof. Here we will show that conditions (C1) and (C2) hold true. We establish

the validity of (C3) later on, after presenting some lemmas. Take any x ∈ X and

s ∈ R. Note that (A1) implies that

Y := F (x, ξ)− s (3.3.61)

has finite expected value. Moreover,

Y − EY = (F (x, ξ)− s)− E [F (x, ξ)− s] = F (x, ξ)− f(x) (3.3.62)

is a σ-sub-Gaussian random variable by (A2). Since φ is L(φ)-Lipschitz continuous,

we conclude by Proposition 2.4.5 that:

φ(F (x, ξ)− s) (3.3.63)

has finite expected value and that:

φ(F (x, ξ)− s)− Eφ(F (x, ξ)− s) (3.3.64)

is a (κL(φ)σ)-sub-Gaussian random variable, where κ ≤ 6.86 is an absolute constant.

This shows that conditions (C1) and (C2) are satisfied.

The following lemmas will be useful for showing that condition (C3) is also

satisfied.

13See Proposition 2.4.5.
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Lemma 3.3.9. Define h : Rn+m → R as:

h(z) = h(x, y) := α||x||2 + β||y||2, (3.3.65)

where x ∈ Rn, y ∈ Rm; α, β ∈ R and n,m ∈ N. Then, |h(z)| ≤
√
α2 + β2||z||2.

Proof. We have that:

|h(z)| = |α ‖x‖2 + β ‖y‖2| =

∣∣∣∣〈(||x||2||y||2

)
,

(
α

β

)〉∣∣∣∣ (3.3.66)

≤
√
α2 + β2

√
‖x‖2

2 + ‖y‖2
2 (3.3.67)

=
√
α2 + β2 ‖z‖2 , (3.3.68)

applying the Cauchy-Schwarz inequality.

Remark 3.3.10. We can suppose, without loss of generality, that the norm in equa-

tion (3.3.1) of assumption (A3) is the Euclidean one. In fact, let n ∈ N be given and

take any norm ‖·‖ on Rn. Let us suppose that assumption (A3) holds with this par-

ticular norm. We will show that these assumption is also satisfied with the Euclidean

norm up to a suitable multiplicative constant. Indeed, since Rn is finite-dimensional,

there exists a real constant D > 0 such that:

‖x‖ ≤ D ‖x‖2 , ∀x ∈ Rn. (3.3.69)

So, w.p.1 ξ ∈ supp(ξ), we have that:

|F (x′, ξ)− F (x, ξ)| ≤ Dχ(ξ) ‖x′ − x‖2 , (3.3.70)

for all x′, x ∈ X. Of course, MDχ(s) = Mχ(Ds), for all s ∈ R. So, the moment

generating function of Dχ(ξ) is also finite in a neighborhood of zero. �

From now on, except when otherwise stated, we will always use the Euclidean

norm on Rn, where n ∈ N. We will also denote it just by ‖·‖, instead of ‖·‖2.

Lemma 3.3.11. Suppose that assumption (A3) holds true. Let ν : R → R be a

L−Lipschitz continuous function and consider the family of random variables:

G(x, s, ξ) := ν(F (x, ξ)− s), (3.3.71)

for all x ∈ X and s ∈ R. Then, w.p.1,

|G(x′, s′, ξ)−G(x, s, ξ)| ≤ Lη(ξ) ‖(x, s)− (x′, s′)‖ , (3.3.72)

for all x, x′ ∈ X and s, s′ ∈ R, where η(ξ) is defined as in equation (3.3.59). More-

over, the random variable η(ξ) satisfies:

M = Eχ(ξ) ≤ Eη(ξ) ≤ 1 + Eχ(ξ) = 1 +M, (3.3.73)

and also domMη = domMχ.

142 2017



CHAPTER 3. SAMPLE COMPLEXITY FOR STATIC PROBLEMS WITH OCE RISK MEASURES

Proof. By assumption (A3), there exists a measurable function χ : supp(ξ) → R+

whose moment generating function is finite in a neighborhood of zero and that

satisfies

|F (x′, ξ)− F (x, ξ)| ≤ χ(ξ) ‖x′ − x‖ , (3.3.74)

for all x′, x ∈ X and ξ ∈ E ⊆ supp ξ, where P [ξ ∈ E] = 1. Take any x′, x ∈ X and

s′, s ∈ R. So, for every ξ ∈ E, we have that:

|G(x′, s′, ξ)−G(x, s, ξ)| ≤ L |(F (x, ξ)− s)− (F (x′, ξ)− s′)| (3.3.75)

≤ L(|F (x, ξ)− F (x′, ξ)|+ |s− s′|) (3.3.76)

≤ L(χ(ξ) ‖x− x′‖+ |s− s′|) (3.3.77)

≤ L
√
χ(ξ)2 + 1 ‖(x, s)− (x′, s′)‖ , (3.3.78)

using Lemma 3.3.9 in the last inequality.

Since

z ≤
√
z2 + 1 ≤ 1 + z, ∀z ≥ 0, (3.3.79)

and χ(ξ) ≥ 0, for all ξ ∈ supp(ξ), it follows that:

χ(ξ) ≤ η(ξ) ≤ 1 + χ(ξ), ∀ξ ∈ supp(ξ). (3.3.80)

So,

M = Eχ(ξ) ≤ Eη(ξ) ≤ E [1 + χ(ξ)] = 1 +M. (3.3.81)

Now, let us show that domMη = domMχ. Since χ(ξ) and η(ξ) are non-negative

random variables, it follows that their moment generating functions are finite14 for

s ≤ 0. Since η(ξ) ≥ χ(ξ), we obtain that Mη(s) ≥Mχ(s), for all s > 0. This implies

that domMη ⊆ domMχ. Finally, note that:

Mη(s) = E exp {sη(ξ)} ≤ E exp {s(1 + χ(ξ))} = exp (s)Mχ(s) < +∞, (3.3.82)

for all s > 0 such that s ∈ domMχ. We conclude that domMη ⊇ domMχ, which

concludes the proof.

Take any φ ∈ Φ satisfying L(φ) < +∞. As a direct consequence of Lemma

3.3.11, assumption (A3) implies that the family of random variables

{φ (F (x, ξ)− s) : x ∈ X, s ∈ R}

satisfies condition (C3) (see Proposition 3.3.8). Indeed, we have shown that L(φ)η(ξ)

has a finite moment generating function in a neighborhood of zero15 and satisfies,

with probability 1, ξ ∈ supp(ξ),

|φ (F (x′, ξ)− s′)− φ (F (x, ξ)− s)| ≤ L(φ)η(ξ) ‖(x′, s′)− (x, s)‖ , (3.3.83)

14In fact, less or equal than exp (0) = 1.
15Take any constant c ∈ R and any random variable Z. We have that McZ(s) = MZ(cs), for all

s ∈ R. Since 0 ∈ int domMχ = int domMη, it follows that 0 ∈ intML(φ)η.
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for all (x′, s′), (x, s) ∈ X × R. Moreover, writing M ′ := Eη(ξ), we also have that:

EL(φ)η(ξ) = L(φ)M ′ ≤ L(φ)(1 +M). (3.3.84)

Finally, in order to close this discussion, let us observe that:

IL(φ)η(ξ)(2L(φ)M ′) = Iη(ξ)(2M
′), (3.3.85)

since L(φ) 6= 0. Similarly to the constant m ∈ (0,+∞] appearing in equation

(2.1.28), we will consider an appropriate constant:

m′ := Iη(ξ)(2M
′) ∈ (0,+∞] (3.3.86)

in our sample complexity estimate for stochastic programming problems with OCE

risk measures.

In Proposition 3.3.12 we present a series of assertions that follow from assump-

tions (A1)-(A5), when φ ∈ Φ satisfies l(φ) < 1 < L(φ) < +∞. Before proceeding,

let us introduce some notation. For N ∈ N and ε > 0, define the event16:

Eε
N(X̃) :=

[
sup

(x,s)∈X̃
|v(x, s)− v̂N(x, s)| < ε

]
. (3.3.87)

Note that Eδ
N(X̃) ⊆ Eε

N(X̃), whenever 0 ≤ δ ≤ ε.

Proposition 3.3.12. Take any φ ∈ Φ satisfying l(φ) < 1 < L(φ) < +∞ and

suppose that assumptions (A1)− (A5) hold true. Define l(·), u(·), a(·), b(·) and X̃,

respectively, as in equations (3.3.54), (3.3.55), (3.3.21), (3.3.22) and (3.3.6). Then,

the following assertions hold:

(a) X̃ is a nonempty compact set that satisfies:

(a1) For every x ∈ X, int X̃x = (a(x), b(x)) ⊇ argmins∈R v(x, s) 6= ∅. In

particular, v∗ = v∗(X̃) holds true.

(a2) Take any N ∈ N. For almost every sample realization {ξ1, . . . , ξN} of ξ,

argmins∈R v̂N(x, s) 6= ∅, for all x ∈ X.

(a3) D′ := diam X̃ ≤
√
D2 + (b− a)2, where:

a := inf
x∈X

a(x) = inf
x∈X

f(x) + l
(γ1

2

)
− z > −∞, and (3.3.88)

b := sup
x∈X

b(x) = sup
x∈X

f(x) + u

(
1 + γ2

2

)
− z < +∞. (3.3.89)

16Of course, these event also depends on φ ∈ Φ and X̃ ⊆ Rn+1.
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(b) The objective functions of problems (3.2.1) and (3.2.7) are Lipschitz continu-

ous on X and on X×R, respectively, with Lipschitz constants equal to L(φ)M

and (1 + L(φ)M ′). In particular, problems (3.2.1), (3.2.7) and (3.2.27) are

solvable, i.e. S 6= ∅, ES 6= ∅ and ES(X̃) 6= ∅. Moreover, ES = ES(X̃) holds

true.

(c) Take any N ∈ N. For almost every sample realization {ξ1, . . . , ξN} of ξ, we

have that v̂N : X → R and v̂N : X×R→ R are Lipschitz continuous functions

on X and on X × R, respectively, with Lipschitz constants equal to:

L(φ)

N

N∑
i=1

χ(ξi) and

(
1 +

L(φ)

N

N∑
i=1

η(ξi)

)
. (3.3.90)

In particular, we conclude that:

P
[
ŜN 6= ∅

]
= P

[
ÊSN 6= ∅

]
= P

[
ÊSN(X̃) 6= ∅

]
= 1. (3.3.91)

(d) Define ∆(x) as in equation (3.3.7), for all x ∈ X. It follows that:

∆ := inf
x∈X

∆(x) > 0, (3.3.92)

Moreover, whenever the event E∆
N (X̃) happens,

int X̃x ⊇ {s ∈ R : v̂N(x, s) ≤ v̂∗N + ∆} ⊇ argmin
s∈R

v̂N(x, s), ∀x ∈ X. (3.3.93)

In that case, it is also true that:

ÊSN = ÊSN(X̃). (3.3.94)

Proof. Let us begin by proving item (a). Let us recall that

X̃ = {(x, s) ∈ X × R : a(x) ≤ s ≤ b(x)} ⊆ Rn+1. (3.3.95)

Since φ ∈ Φ satisfies l(φ) < 1 < L(φ) < +∞ and assumptions (A1) and (A2) hold,

we conclude from Proposition 3.1.17 and Corollary 3.3.6 that:

∅ 6= argmin
s∈R

v(x, s) ⊆ [f(x) + l(γ1)− z, f(x) + u(γ2)− z]

⊆ (f(x) + l(γ1/2)− z, f(x) + u((1 + γ2)/2)− z)

= (a(x), b(x)) = int X̃x.

Now, it follows from Proposition 3.2.1 that v∗ = v∗(X̃), which proves item (a1).

Since assumption (A3) is also satisfied, Proposition 2.1.4 implies that f : X → R is

Lipschitz continuous. We conclude that both functions a, b : X → R are Lipschitz
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continuous on X. Let us recall that X is a nonempty compact set (assumption

(A4)). Then,

−∞ < a = inf
x∈X

f(x)+ l
(γ1

2

)
−z < sup

x∈X
f(x)+u

(
1 + γ2

2

)
−z = b < +∞. (3.3.96)

It follows that:

X̃ ⊆ X × [a, b] (3.3.97)

is a nonempty compact set (by the compactness and non-emptiness of X and the

continuity17 of a, b : X → R) whose diameter is bounded by:

D′ = diam X̃ ≤ diam (X × [a, b]) =
√
D2 + (b− a)2. (3.3.98)

This shows item (a3). Now let us define the following event:

E :=
⋂
i∈N

[
ξi ∈ E

]
∈ F , (3.3.99)

where E is a Borel-measurable set of Rd satisfying P [ξ ∈ E] = 1 and equation

(2.1.11) (see Remark 2.1.1). Since ξi
d∼ ξ, for all i ∈ N, it follows that:

P (E) = 1. (3.3.100)

When the event E happens, we have that each function:

x ∈ X 7→ F (x, ξi), i = 1, . . . , N, (3.3.101)

is χ(ξi)-Lipschitz continuous on X. In particular, F (·, ξi) is bounded on X, for all

i = 1, . . . , N . So, there exist real numbers (depending on the sample realization)

ûN ≤ ÛN such that:

ûN ≤ F (x, ξi) ≤ ÛN , (3.3.102)

for all x ∈ X and i = 1, . . . , N . In particular, F (x, ξi) is finite, for all x ∈ X

and i = 1, . . . , N . So, Lemma 3.3.1 implies that v̂N(x, ·) is a finite-valued convex

function that satisfies:

∅ 6= argmin
s∈R

v̂N(x, s) ⊆
[
q−γ1(F (x, ξ̂))− z, q+

γ2
(F (x, ξ̂))− z

]
(3.3.103)

⊆
[
ûN − z, ÛN − z

]
. (3.3.104)

This finishes the proof of item (a)18.

17Note also that a(x) < b(x), for all x ∈ X.
18The assertion “∀x ∈ X : argmins∈R v̂N (x, s) 6= ∅” was the only fact needed for finishing the

proof of item (a2). Nevertheless, we use later that these solution sets are all contained in the

bounded interval
[
ûN − z, ÛN − z

]
.
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Now, let us show item (b). Take any x, x′ ∈ X. Observe that:

|v(x′)− v(x)| =

∣∣∣∣inf
s∈R

v(x′, s)− inf
s∈R

v(x, s)

∣∣∣∣ (3.3.105)

≤ sup
s∈R
|v(x′, s)− v(x, s)| (3.3.106)

= sup
s∈R
|Eφ(F (x′, ξ)− s)− Eφ(F (x, ξ)− s)| (3.3.107)

≤ sup
s∈R

L(φ)E |F (x′, ξ)− F (x, ξ)| (3.3.108)

≤ L(φ)Eχ(ξ) ‖x′ − x‖ (3.3.109)

= L(φ)M ‖x′ − x‖ . (3.3.110)

Note that equations (3.3.106) and (3.3.109) follow, respectively, from Proposition

2.8.4 and assumption (A3). Since X is nonempty compact, we conclude that S 6= ∅.
Moreover, it follows from Proposition 3.2.1 that S = πx

(
ES(X̃)

)
, so ES(X̃) 6= ∅19.

We also have that ES = ES(X̃). Indeed, take any (x̄, s̄) ∈ ES. Then,

v(x̄, s̄) = v∗ ≤ v(x̄, s), ∀s ∈ R, (3.3.111)

i.e. s̄ ∈ argmins∈R v(x̄, s) ⊆ X̃x̄. So, (x̄, s̄) ∈ X̃. The converse inclusion is trivially

true, since v∗(X̃) = v∗.

Now, we show that v : X ×R→ R is Lipschtiz continuous. By Proposition 3.3.8

it follows that:

|φ(F (x′, ξ)− s′)− φ(F (x, ξ)− s)| ≤ L(φ)η(ξ) ‖(x′, s′)− (x, s)‖ , (3.3.112)

for all (x′, s′), (x, s) ∈ X × R and ξ ∈ E20. Therefore,

|v(x′, s′)− v(x, s)| ≤ |s′ − s|+ |Eφ(F (x′, ξ)− s′)− Eφ(F (x, ξ)− s)| (3.3.113)

≤ |s′ − s|+ E |φ(F (x′, ξ)− s′)− φ(F (x, ξ)− s)| (3.3.114)

≤ |s′ − s|+ L(φ)Eη(ξ) ‖(x′, s′)− (x, s)‖ (3.3.115)

= |s′ − s|+ L(φ)M ′ ‖(x′, s′)− (x, s)‖ (3.3.116)

≤ (1 + L(φ)M ′) ‖(x′, s′)− (x, s)‖ , (3.3.117)

which finishes the proof of item (b).

Now, let us show item (c). Following the same reasoning used in the proof of

item (b), it is elementary to show that, whenever the event E happens,

|v̂N(x′)− v̂N(x)| ≤ L(φ)Êχ(ξ̂) ‖x′ − x‖ =
L(φ)

N

N∑
i=1

χ(ξi) ‖x′ − x‖ ,(3.3.118)

19This is a somewhat indirect way for proving this fact. An alternative way would be to argue

that v : X × R→ R is Lipschitz continuous and X̃ is nonempty compact.
20This is the same set considered before in the proof (see also Remark 2.1.1).
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for all x′, x ∈ X, and

|v̂N(x′, s′)− v̂N(x, s)| ≤
(

1 + L(φ)Êη(ξ̂)
)
‖(x′, s′)− (x, s)‖ (3.3.119)

=

(
1 +

L(φ)

N

N∑
i=1

η(ξi)

)
‖(x′, s′)− (x, s)‖ , (3.3.120)

for all x′, x ∈ X and s′, s ∈ R. The compactness of X and X̃ imply that ŜN 6= ∅
and ÊSN(X̃) 6= ∅, whenever E happens, i.e.

P
[
ŜN 6= ∅

]
= P

[
ÊSN 6= ∅

]
= 1. (3.3.121)

Whenever the event E happens, the inclusion (3.3.104) guarantees that ÊSN =

ÊSN

(
X ×

[
ûN , ÛN

])
. Finally, observe that ÊSN

(
X ×

[
ûN , ÛN

])
6= ∅, since X ×[

ûN − z, ÛN − z
]

is (nonempty) compact. This finishes the proof of item (c).

Now, we prove item (d). We first note that ∆ is positive by Corollary 3.3.7, since

assumptions (A1) and (A2) are satisfied. Let us assume, without loss of generality,

that the event E∆
N (X̃) ∩ E happens21. Take any x ∈ X. Since the event E∆

N (X̃)

happens, it follows that:

sup
s∈[a(x),b(x)]

|v̂N(x, s)− v(x, s)| < ∆ ≤ ∆(x). (3.3.122)

From item (a), there exists s(x) ∈ argmins∈R v(x, s) ⊆ (a(x), b(x)), so

|v̂N(x, s(x))− v(x)| < ∆(x).

It follows that equation (3.3.8) is satisfied. We also have that F (x, ξi) is finite, for

all i = 1, . . . , N , since the event E happens. Proposition 3.3.2 implies that:

int X̃x ⊇ {v̂N(x, s) ≤ v̂N(x) + ∆(x)} (3.3.123)

⊇ {v̂N(x, s) ≤ v̂N(x) + ∆} (3.3.124)

⊇ argmin
s∈R

v̂N(x, s). (3.3.125)

Finally, let us show that ÊSN = ÊSN(X̃), whenever E∆
N (X̃) ∩ E happens. Take

any (x̄, s̄) ∈ ÊSN . Note that s̄ ∈ argmins∈R v(x̄, s) ⊆ X̃x, i.e. (x̄, s̄) ∈ X̃. Since

v̂N ≤ v̂N(X̃), it follows that (x̄, s̄) ∈ ÊSN(X̃). For showing the converse inclusion,

note that Proposition 3.2.1 implies that v̂N(X̃) = v̂N . The proof of the proposition

is complete.

21The events E∆
N (X̃) ∩ E and E∆

N (X̃) have equal probabilities.
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Remark 3.3.13. Let us obtain a more explicit bound for D′ = diam X̃ in terms of

D, M , L(φ), l(φ), z and z. Since X is compact and f : X → R is continuous, there

exist x ∈ X and x ∈ X such that

sup
x∈X

f(x)− inf
x∈X

f(x) = f(x)− f(x) ≤M ‖x− x‖ ≤MD. (3.3.126)

Therefore,

D′ ≤
√
D2 + (b− a)2

≤ D + b− a

= D + sup
x∈X

f(x)− inf
x∈X

f(x) + σ

[√
2 log

(
2

1− γ2

)
+

√
2 log

(
2

γ1

)]
+ z − z

≤ (M + 1)D + z − z + σ

[√
2 log

(
2(L(φ)− 1 + L(φ)− l(φ))

1− l(φ)

)
+√

2 log

(
2(L(φ)− l(φ) + 1− l(φ))

L(φ)− 1

)]
.

�

In the remainder of this section we will assume that l(·), u(·), a(·), b(·) and X̃ are

defined, respectively, as in equations (3.3.54), (3.3.55), (3.3.21), (3.3.22) and (3.3.6).

Moreover, the event E is defined as in equation (3.3.99) and:

∆ := inf
x∈X

∆(x),

a := inf
x∈X

a(x),

b := sup
x∈X

b(x).

We are ready to establish the main result of this section.

Proposition 3.3.14. Take any φ ∈ Φ satisfying l(φ) < 1 < L(φ) < +∞. Suppose

that assumptions (A1)− (A5) hold true. Then, for any ε > 0,

P
(
Eε
N(X̃)

)
≥ 1− exp {−Nm′} − 2

[
4ρD′M ′

ε

]n+1

exp

{
− Nε2

32C2L(φ)2σ2

}
,

(3.3.127)

where η =
√

1 + χ(ξ)2; M ′ = Eη(ξ), m′ = Iη(2M
′) ∈ (0,+∞], D′ = diam X̃ and σ2

are constants depending on the problem data; and κ and ρ are absolute constants.

Moreover, if 0 < ε ≤ ∆, then

P
[
sup
x∈X
|v̂N(x)− v(x)| < ε

]
≥ 1− exp {−Nm′}

−2

[
4ρD′M ′

ε

]n+1

exp

{
− Nε2

32C2L(φ)2σ2

}
,

(3.3.128)
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Proof. Take any ε > 0. Since assumptions (A1)-(A3) hold true, Proposition 3.3.8

implies that conditions (C1)-(C3) are satisfied by the family of random variables

{φ(F (x, ξ)− s) : x ∈ X, s ∈ R)}. Moreover, X̃ is a nonempty compact set (item (a)

of Proposition 3.3.12) and assumption (A5) holds true. So, we can apply Theorem

2.1.5, considering the family of random variables {φ(F (x, ξ) − s) : (x, s) ∈ X̃}, in

order to obtain the lower bound in equation (3.3.127), recalling that:

Eε
N(X̃) =

[
sup

(x,s)∈X̃
|v̂N(x, s)− v(x, s)| < ε

]
. (3.3.129)

In fact, equation (3.3.127) is similar to equation (2.1.28)22 with the parameters n+1,

D′, M ′, m′ and κ2L(φ)2σ2 playing the role, respectively, of n, D, M , m and σ2.

Now, take 0 < ε ≤ ∆. Item (d) of Proposition 3.3.12 guarantees that ∆ > 0.

We also have that

P
(
E ∩ Eε

N(X̃)
)

= P
(
Eε
N(X̃)

)
,

since the event E has probability 1. For finishing the proof, we just need to show

that

E ∩ Eε
N(X̃) ⊆

[
sup
x∈X
|v̂N(x)− v(x)| < ε

]
. (3.3.130)

Since ε ≤ ∆, Eε
N(X̃) ⊆ E∆

N (X̃). Item (d) of Proposition 3.3.12 implies that X̃x ⊇
argmins∈R v̂N(x, s) 6= ∅, for all x ∈ X, whenever the event E ∩Eε

N(X̃) happens. We

also have by item (a1) of 3.3.12 that X̃x ⊇ argmins∈R v(x, s) 6= ∅, for all x ∈ X. So,

whenever the event Eε
N(X̃) ∩ E happens, we have that

|v̂N(x)− v(x)| =

∣∣∣∣ inf
s∈X̃x

v̂N(x, s)− inf
s∈X̃x

v(x, s)

∣∣∣∣ (3.3.131)

≤ sup
s∈X̃x
|v̂N(x, s)− v(x, s)| (3.3.132)

≤ sup
(x,s)∈X̃

|v̂N(x, s)− v(x, s)| < ε, (3.3.133)

Therefore,

E ∩ Eε
N(X̃) ⊆

[
sup
x∈X
|v̂N(x)− v(x)| < ε

]
,

and equation (3.3.128) holds true.

Remark 3.3.15. It worth making two points regarding the validity of the exponential

bound (3.3.128) for ε > 0 sufficiently small. Equation (3.3.128) was shown for

22From Theorem 2.1.5 we obtain a upper bound for P
(
EεN (X̃)C

)
= 1−P

(
EεN (X̃)

)
. Of course,

the lower bound in equation (3.3.127) follows immediately from that upper bound.
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0 < ε ≤ ∆, where

∆ := minx∈X ∆(x)

≥ 1
3

min
{
L(φ)−1

8

[
l(3γ1

4
)− l(γ1

2
))
]
, 1−l(φ)

8

[
u(1+γ2

2
)− u(1

4
+ 3γ2

4
)
]}

> 0,

(3.3.134)

by Proposition 3.3.4. Of course, one can obtain an exponential bound like (3.3.128)

for ε > ∆, since, in that case, we have that

P
[
sup
x∈X
|v̂N(x)− v(x)| < ε

]
≥ P

[
sup
x∈X
|v̂N(x)− v(x)| < ∆

]
≥ 1− exp{−Nm′} − C exp {−Nβ(∆)} ,

(3.3.135)

for all N ∈ N, where

β (∆) :=
∆2

32κ2L(φ)2σ2
> 0. (3.3.136)

Second, since F (x, ξ)− f(x) is σ-sub-Gaussian, for every x ∈ X, we can take

l(γ) := −σ

√
2 log

(
1

γ

)
,∀γ ∈ (0, 1), and (3.3.137)

u(γ) := σ

√
2 log

(
1

1− γ

)
,∀γ ∈ (0, 1), (3.3.138)

in (3.3.134). Note also that l(γ) → −∞, when γ → 0, and u(γ) → ∞, when

γ → 1. In particular, by taking 0 < γ′1 < γ1/2 sufficiently small and 1+γ2
2

< γ′2 < 1

sufficiently large and by defining a(x) and b(x) as

a(x) := f(x) + l(γ′1)− z, and (3.3.139)

b(x) := f(x) + u(γ′2)− z, (3.3.140)

we can make ∆ arbitrarily large. In that case, we still have that X̃ = {(x, s) ∈ X × R :

a(x) ≤ s ≤ b(x)} is compact, although its diameter D′ gets larger with these choices

of γ′1 < γ1/2 and γ′2 > (1 + γ2)/2. This impacts the value of the constant

C := 2

[
4ρD′M ′

ε

]n+1

(3.3.141)

in the exponential bound (3.3.128). Either way, we see that it is possible to obtain

an exponential bound like (3.3.128) for arbitrarily large values of ε > 0. �

Corollary 3.3.16. Take φ ∈ Φ satisfying l(φ) < 1 < L(φ) < +∞. Consider

stochastic programming problems such as (3.2.1) and (3.2.7) and suppose that as-

sumptions (A1)-(A5) hold true. Then, for ε > 0 sufficiently small and for all

0 ≤ δ < ε,

P
([
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

])
≥ 1− exp {−Nm′}

−2
[

8ρD′M ′

ε−δ

]n+1

exp
{
− N(ε−δ)2

128κ2L(φ)2σ2

}
,

(3.3.142)
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and,

P
([
ÊS

δ

N ⊆ ESε
]
∩
[
ÊS

δ

N 6= ∅
])
≥ 1− exp {−Nm′}

−2
[

8ρD′M ′

ε−δ

]n+1

exp
{
− N(ε−δ)2

128C2L(φ)2σ2

}
,

(3.3.143)

where D′, M ′, m′ ∈ (0,+∞] and σ2 are constants depending on the problem data;

and κ and ρ are absolute constants.

Proof. Take any ε ≤ 2∆ and 0 ≤ δ < ε. It follows that:

0 <
ε− δ

2
≤ ∆.

From Proposition 3.3.14, it follows that:

P
(
E

ε−δ
2

N (X̃)
)
≥ 1− exp {−Nm′} − 2

[
8ρD′M ′

ε

]n+1

exp

{
− N (ε− δ)2

128κ2L(φ)2σ2

}
(3.3.144)

is satisfied. Moreover, the events E
ε−δ
2

N (X̃) and E ∩ E
ε−δ
2

N (X̃) have the same proba-

bility. For finishing the proof we just need to show that E ∩ E
ε−δ
2

N (X̃) is contained

in the events:[
ÊS

δ

N ⊆ ESε
]
∩
[
ÊS

δ

N 6= ∅
]

and
[
ŜδN ⊆ Sε

]
∩
[
ŜδN 6= ∅

]
. (3.3.145)

In item (c) of Proposition 3.3.12 we have shown that E is contained on the events:[
ÊSN 6= ∅

]
and

[
ŜN 6= ∅

]
. (3.3.146)

In particular, E is contained on the events[
ÊS

δ

N 6= ∅
]

and
[
ŜδN 6= ∅

]
. (3.3.147)

Now, note that item (i) and (ii) of Proposition 3.2.1 are satisfied. So, whenever the

event E ∩ E
ε−δ
2

N (X̃) happens, we have that ÊS
δ

N(X̃) ⊆ ESε(X̃) and ŜδN ⊆ Sε. This

already shows that

E ∩ E
ε−δ
2

N (X̃) ⊆
([
ŜδN ⊆ Sε

]
∩
[
ŜN 6= ∅

])
. (3.3.148)

Finally, note that ES = ES(X̃) by item (b) of Proposition 3.3.12. Moreover, item

(d) of the same proposition establishes that ÊS
δ

N = ÊS
δ

N(X̃) whenever the event

E ∩ E∆
N (X̃) happens. The result follows since (ε− δ)/2 ≤ ∆.
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Remark 3.3.17. As we have shown in Proposition 3.1.11, µφ(Z) = EZ, for every

Z ∈ Z, whenever φ ∈ Φ satisfies either l(φ) = 1 or L(φ) = 1. In that case, we are

back to the risk neutral setting, where equation (3.3.128) holds with:

m′ = Iχ(2M), (3.3.149)

M ′ = M, (3.3.150)

D′ = D, (3.3.151)

κ = L(φ) = 1. (3.3.152)

So, instead of supposing that l(φ) < 1 < L(φ) < ∞ in Proposition 3.3.14 in order

to derive the exponential rate of convergence in (3.3.128), we can just suppose that

L(φ) <∞. �

Note that the sample complexity estimate obtained for risk averse stochastic

programming problems with OCE risk measures is similar to the one obtained for

risk neutral problems under the same regularity conditions. The main difference is

that the constants appearing in the risk averse setting M ′, D′, κ and L(φ) typically

slows down the exponential rate at which the probability of the desirable event

(1.0.14) approaches 1 with the increase of the sample size N . For example, just

considering the second exponential term in the sample complexity estimates in both

risk neutral and risk averse settings, we obtain, respectively, the following sample

sizes estimates

Nrn ≥
128σ2

ε2

[
n log

(
4ρDM

ε

)
+ log

(
2

θ

)]
(3.3.153)

and

Nra ≥
128κ2L(φ)2σ2

ε2

[
(n+ 1) log

(
4ρD′M ′

ε

)
+ log

(
2

θ

)]
. (3.3.154)

So, if23 L(φ) = 10 and assuming that the absolute constant κ is equal to 6, the

sample complexity in the risk averse setting is at least 3, 600 greater than the sample

complexity in the risk neutral setting. We see in the next chapter that the situation

gets even worse in the risk averse multistage setting.

23For example, µφ(·) is the AV@R1−α(·) risk measure with α = 0.9. It is worth mentioning that

in the field of risk management one usually considers greater values for α, like 0.95 or even 0.99.
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CHAPTER 4

Sample complexity for dynamic problems with OCE risk

measures

In this chapter we derive sample complexity estimates for a class of risk averse

multistage stochastic programming problems. As before, we approximate the true

problem by constructing a scenario tree via a Monte Carlo sampling scheme. In

order to formulate a risk averse multistage stochastic programming problem with

OCE risk measures, we begin by defining conditional OCE risk measures.

Definition 4.0.18. Let Z = Lp(Ω,F ,P), for some p ∈ [1,∞). Let φ ∈ Φ be such

that φ(Z) ∈ Lp(Ω,F ,P), for every Z ∈ Z. Given a sub-σ-algebra G ⊆ F we define

the conditional OCE risk measure µφ|G : Z → Lp(Ω,G,P) as

µφ|G(Z)(ω) := inf
Y ∈Lp(Ω,G,P)

{Y (ω) + E [φ (Z − Y ) |G] (ω)} . (4.0.1)

Remark 4.0.19. Note that if L(φ) < ∞, then φ(Z) ∈ Lp(Ω,F ,P), for every Z ∈
Lp(Ω,F ,P). Indeed, this is an immediate consequence of the inequality

|φ(z)| ≤ L(φ) |z| , ∀z ∈ R, (4.0.2)

since φ(0) = 0. �

The following proposition shows that an OCE conditional risk measure is a con-

vex conditional risk measure.

Proposition 4.0.20. Let Z = Lp(Ω,F ,P), for some p ∈ [1,∞). Let φ ∈ Φ be

such that φ(Z) ∈ Lp(Ω,F ,P), for every Z ∈ Z. Take any sub-σ-algebra G ⊆ F .

The conditional OCE risk measure µφ|G : Z → Lp(Ω,G,P) satisfies the following

properties:
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(i) Monotonicity: µφ|G(Z) ≤ µφ|G(W ), for every Z,W ∈ Z such that Z ≤ W .

(ii) Predictable translation equivariance: if W ∈ Lp(Ω,G,P) and Z ∈ Z, then

µφ|G(W + Z) = W + µφ|G(Z).

(iii) Convexity: for every 0 ≤ λ ≤ 1 and for every Z,W ∈ Z,

µφ|G(λZ + (1− λ)W ) ≤ λµφ|G(Z) + (1− λ)µφ|G(W ). (4.0.3)

Proof. (i) Take any Z,W ∈ Z satisfying Z ≤ W . Since φ(·) is monotone, the

following inequalities hold for every Y ∈ Lp(Ω,F ,P) :

µφ|G(Z) ≤ Y + E [φ(Z − Y )|G] (4.0.4)

≤ Y + E [φ(W − Y )|G] . (4.0.5)

It follows that µφ|G(Z) ≤ µφ|G(W ), which proves (i).

(ii) Let W ∈ Lp(Ω,G,P) and Z ∈ Z be given. Then,

µφ|G(W + Z) = inf
Y ∈Lp(Ω,G,P)

{Y + E [φ(Z +W − Y )|G]} (4.0.6)

= W + inf
Y ∈Lp(Ω,G,P)

{Y −W + E [φ(Z − (Y −W ))|G]} . (4.0.7)

= W + µφ|G(Z). (4.0.8)

(iii) Take any λ ∈ [0, 1] and Z,W ∈ Z. Then,

λ (Y1 + E [φ (Z − Y1) |G]) + (1− λ) (Y2 + E [φ (W − Y2) |G]) =

λY1 + (1− λ)Y2 + E [λφ (Z − Y1) + (1− λ)φ (W − Y2) |G] ,

for every Y1, Y2 ∈ Lp(Ω,G,P). Since φ is convex, it follows that

φ (λZ + (1− λ)W − (λY1 + (1− λ)Y2)) ≤ λφ (Z − Y1) + (1− λ)φ (W − Y2) .

By the monotonicity of E [·|G], we obtain that:

λ (Y1 + E [φ (Z − Y1) |G]) + (1− λ) (Y2 + E [φ (W − Y2) |G])

≥ λY1 + (1− λ)Y2 + E [φ (λZ + (1− λ)W − (λY1 + (1− λ)Y2)) |G]

≥ µφ|G(λZ + (1− λ)W ).

Since Y1 and Y2 are arbitrary, it follows that µφ|G(λZ + (1 − λ)W ) ≤ λµφ|G(Z) +

(1− λ)µφ|G(W ).

The nested formulation of risk neutral multistage stochastic programming prob-

lems (see (2.1.58)) makes use of the conditional expectation as the optimization

criterion at each stage t = 1, . . . , T of the decision process. At each stage t, new

information ξt becomes available to the optimizer before he makes the tth-stage
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decision xt = xt(ξ[t])
1. As before, assume that the optimization problem has ran-

dom data ξ = (ξ1, ξ2, . . . , ξT ) defined on a common probability space (Ω,F ,P),

where T ≥ 3 is an integer. The flow of information is modeled through the filtra-

tion F1 ⊆ F2 ⊆ · · · ⊆ FT generated by the history process ξ[t] up to time t, for

t = 1, . . . , T , i.e.,

Ft := σ (ξ1, . . . , ξt) , for t = 1, . . . , T. (4.0.9)

We assume that F1 = {∅,Ω}, i.e., ξ1 is deterministic, and that FT = F . Given

φt ∈ Φ, for t = 2, . . . , T , we consider the conditional OCE risk measures

µφt|Ft−1 : Zt → Zt−1

Z 7→ µφt|Ft−1(Z) = inf
Y ∈Zt−1

{Y + Eφt (Z − Y )} , (4.0.10)

where Zt = Lp (Ω,Ft,P), for every t = 1, . . . , T ; p ∈ [1,∞); and φt ∈ Φ is such that

|φt(Z)|p is integrable, for every Z ∈ Zt. When we present our results, we always

suppose that φt is Lipschitz continuous, for every t = 2, . . . , T . So, we can always

take p = 1 above (see also Remark 4.0.19), since φt(Z) is integebrable, for every

Z ∈ Zt. We also denote the conditional OCE risk measures above as µφt+1|ξ[t] , for

t = 1, . . . , T − 1, since Ft is simply the σ-algebra generated by ξ[t]. The general risk

averse T -stage stochastic programming problem with nested OCE risk measures is

formulated as

min
x1∈X1

{
F1(x1) + µφ2|ξ1

(
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) +µφ3|ξ[2]

(
...

+µφT |ξ[T−1]

(
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

)
. . .

)}
,

(4.0.11)

where xt ∈ Rnt , t = 1, ..., T , are the decisions variables, Ft : Rnt × Rdt → R, t =

2, . . . , T , are Carathéodory functions, and Xt : Rnt−1 × Rdt ⇒ Rnt , t = 2, ..., T , are

closed-valued measurable multifunctions. We assume that the function F1 : Rn1 → R
is continuous, and X1 ⊆ Rn1 is a nonempty closed set. Unless otherwise stated, all

these features are automatically assumed in the remainder of this chapter.

Beginning in the last stage t = T , we can write the dynamic programming

equations

QT (xT−1, ξT ) = inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ). (4.0.12)

Since FT : RnT × RdT → R is a Carathéodory function and XT (xT−1, ·) is a closed-

valued measurable multifunction, we have by Corollary 2.6.17 (see also Proposi-

tion 2.6.15) that QT (xT−1, ·) is measurable, for every xT−1. Let us assume that

QT (xT−1, ·) is also integrable, for every xT−1. Then, QT (xT−1, ·) ∈ ZT and

QT (xt−1, ξ[t−1]) := µφT |ξ[T−1]
(QT (xT−1, ξT )) ∈ ZT−1, (4.0.13)

1At stage t = 1, the optimizer already knows the value of ξ1, since it is deterministic.
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supposing, for example, that L(φT ) <∞. Having considered the functionQt+1(xt, ξ[t+1])

for some t = T − 1, . . . , 2, we write the dynamic programming equation

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1(xt, ξ[t])

}
(4.0.14)

that we assume belongs to Zt. Then, we consider the function

Qt(xt−1, ξ[t−1]) := µφt|ξ[t−1]

(
Qt(xt−1, ξ[t])

)
∈ Zt−1, (4.0.15)

assuming, for example, that L(φt) <∞. At the first stage one solves

min
x1∈X1

{F1(x1) +Q2(x1, ξ1)} . (4.0.16)

Note that ω ∈ Ω 7→ Q2 (x1, ξ1(ω)) is constant, since ξ1 is deterministic.

One can consider Monte Carlo sampling-based approaches to approximate prob-

lem (4.0.11) by a problem driven by a finite state random data ξ̂ =
(
ξ̂1, ξ̂2, . . . , ξ̂T

)
(the empirical data generated by the sampling scheme). In the sequel we derive

sample complexity results for T -stage problems like (4.0.11) considering suitable

regularity conditions. Before proceeding, it is worth making two points about the

problems studied here.

First, let us recall that the nested structure considered in (4.0.11) is in some sense

not very restrictive. Here we make a very short presentation about this topic. It is

possible to develop a general theory of dynamic risk measures {ρt,T : Zt,T → Zt}Tt=1

that are used for in a sequential decision making process for evaluating a sequence

of random outcomes Z1 ∈ Z1, Z2 ∈ Z2, . . . , ZT ∈ ZT (see, for instance, [62] and the

references therein), where Zt,T = Zt × · · · × ZT , for t = 1, . . . , T . Considering the

dynamic risk measures, a multistage stochastic programming problem is formulated

as:

min ρ1,T

(
F1(x1), F2(x2(ξ[2]), ξ2), . . . , FT (xT (ξ[2]), ξT )

)
s.t. xt = xt(ξ[t]), for t = 1, . . . , T

x1 ∈ X1, and xt(ξ[t]) ∈ Xt(xt−1(ξt−1), ξt), for t = 2, . . . , T.

(4.0.17)

A key concept in the development of the theory of dynamic risk measures is the no-

tion of time consistency (see [73, Definition 6.76]). Regarding this notion, it is possi-

ble to show that (see [62, Theorem 1] or [73, Theorem 6.78]) if {ρt,T : Zt,T → Zt}Tt=1

are time consistent dynamic risk measures satisfying some side conditions, such as

the predictable translation equivariance condition and the normalization condition

ρt,T (0, . . . , 0) = 0, then

ρt,T (Zt, . . . , ZT ) = Zt + ρt (Zt+1 + ρt+1 (Zt+2 + ρt+2 (...+ ρT−1(ZT ) . . . ))) , (4.0.18)

where ρs : Zs+1 → Zs is a one-step conditional risk measures, for s = 1, . . . , T − 1.
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Second, many publications dealing with risk averse multistage stochastic pro-

gramming problems like [19, 39, 51, 70, 72, 76] consider problems having a nested

structure like (4.0.11). In these references, a one-step mean-risk model using the

Average Value-at-Risk risk measure is usually considered:

ρt|ξ[t−1]
(Z) := (1− λt)E

[
Z|ξ[t−1]

]
+ λt AV@R1−αt

(
Z|ξ[t−1]

)
,

where λt ∈ [0, 1] and αt ∈ (0, 1) are chosen parameters, for t = 2, . . . , T . Moreover,

in practical applications one usually considers risk averse multistage linear pro-

gramming problems, i.e., problems satisfying: Ft(xt, ξt) = 〈ct, xt〉 and Xt(xt−1, ξt) =

{xt ∈ Rnt : Atxt +Btxt−1 = bt, xt ≥ 0}, where ξt = (ct, At, Bt, bt) for each t = 2, . . . ,

T . Naturally, one also assumes that F1(x1) = 〈c1, x1〉 and X1 = {x1 ∈ Rn1 : A1x1

= b1, x1 ≥ 0}. Thus, the framework considered in (4.0.11) encompasses an impor-

tant class of risk averse stochastic programming problems considered by the stochas-

tic programming community.

Akin to risk neutral multistage stochastic programming problems, here we also

assume that the random data (ξ1, . . . , ξT ) is stagewise independent. In the next

proposition we show that under this hypothesis the one-step conditional OCE risk

measures µφt|ξ[t−1]
(·) boil down to the regular OCE risk measure µφt(·). This is an

expected result like the one observed for the conditional expected value operator.

The following lemma will be useful.

Lemma 4.0.21. Let Y and Z be independent random variables defined on (Ω,F ,P).

Let ϕ : R×R→ R be a function satisfying E |ϕ(Y, Z)| <∞ and let Υ(y) = Eϕ(y, Z).

Then, the following identity is satisfied

E [ϕ(Y, Z)|Y ] = Υ(Y ). (4.0.19)

Proof. See [22, Example 5.1.5].

Lemma 4.0.21 can be applied in a straightforward way for proving the result

regarding the equality between the conditional OCE risk measure and the regular

OCE risk measure.

Proposition 4.0.22. Let g : Rdt → R be a Borel-measurable function such that

Z = g(ξt) is an integrable random variable, where 2 ≤ t ≤ T . Take any φ ∈ Φ such

that φ(Z) is integrable. If ξt is independent of Ft−1 = σ(ξ1, . . . , ξt−1), then

µφ|ξ[t−1]
(Z) = µφ(Z). (4.0.20)

Proof. First note that for every s ∈ R, we have that Y := s · 1Ω(·) ∈ Zt−1. So, for

every Z ∈ Zt, we have that

s+ Eφ(Z − s) = Y + E [φ (Z − Y ) |Ft−1] . (4.0.21)
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It follows that µφ|ξ[t−1]
(Z) ≤ µφ(Z).

Now, we prove that the converse inequality also holds under the hypotheses of

the present proposition. Take any Y ∈ Zt−1. Thus, there exists a Borel measur-

able function h such that Y = h(ξ1, . . . , ξt−1). Define ϕ(ξ[t−1], ξt) := h(ξ[t−1]) +

φ
(
g(ξt)− h(ξ[t−1])

)
. Note that

Y (ω) + E
[
φ(Z − Y )|ξ[t−1]

]
(ω) = E

[
Y + φ(Z − Y )|ξ[t−1]

]
(ω) (4.0.22)

= E
[
ϕ(ξ[t−1], ξt)|ξ[t−1]

]
(ω) (4.0.23)

= Υ(ξ[t−1](ω)) (4.0.24)

= Y (ω) + Eφ(Z − Y (ω)) (4.0.25)

≥ inf
s∈R
{s+ Eφ(Z − s)} (4.0.26)

= µφ(Z), (4.0.27)

where (4.0.24) follows from Lemma 4.0.21 with

Υ(e1, . . . , et−1) = Eϕ(e1, . . . , et−1, ξt) = h(e1, . . . , et−1) + Eφ (Z − h(e1, . . . , et−1)) .

This concludes the proof of the proposition.

Assuming the stagewise independence condition the T -stage stochastic program-

ming problem becomes

min
x1∈X1

{
F1(x1) + µφ2

(
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) +µφ3

(
...

+µφT

(
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

)
. . .

)}
.

(4.0.28)

Now, let us see how the stagewise independence condition affects the cost-to-go

functions. Beginning in the last-stage, the dynamic programming equation under

the stage independence hypothesis becomes

QT (xT−1, ξ[T−1]) := µφT |ξ[T−1]
(QT (xT−1, ξT ))

= µφT (QT (xT−1, ξT )) .
(4.0.29)

This means that QT (xT−1, ξ[T−1]) = QT (xT−1), i.e., it does not depend on ξ[T−1]. So,

QT−1(xT−2, ξ[T−1]) does not depend on the entire history process ξ[T−1] up to stage

T − 1, but just on ξT−1. Continuing backward in stages, we obtain that

Qt(xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{Ft(xt, ξt) +Qt+1(xt)} , and (4.0.30)

Qt(xt−1) := µφt (Qt(xt−1, ξt)) , (4.0.31)

for every t = T − 1, . . . , 2.
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The optimal value of problem (4.0.28) is

v∗ := inf
x1∈X1

{v(x1) := F1(x1) +Q2(x1)} (4.0.32)

and its set of ε-solutions is given by

Sε := {x1 ∈ X1 : v(x1) ≤ v∗ + ε}, (4.0.33)

where ε ≥ 0.

Similarly to the analysis in Section 2.1.2, here we approximate the random data

constructing a scenario tree via the identical conditional sampling scheme. As before,

Nt ∈ N is the number of samples realizations in the tth-stage, for t = 2, . . . , T . Given

any sample realization
{
ξjt : j = 1, . . . , Nt, t = 2, . . . , T

}
, the associated stochastic

process ξ̂ =
(
ξ̂1, . . . , ξ̂T

)
is stagewise independent (see Proposition 2.1.12). The

empirical or the “SAA” problem is just

min
x1∈X1

{
F1(x1) + µ̂φ2

(
inf

x2∈X2(x1,ξ̂2)
F2(x2, ξ̂2) +µ̂φ3

(
...

+µ̂φT

(
inf

xT∈XT (xT−1,ξ̂T )
FT (xT , ξ̂T )

)
. . .

)}
.

(4.0.34)

Akin to Corollary 2.1.14, we obtain the following formulas for the empirical

cost-to-go functions in the multistage setting with OCE risk measures

Q̂t

(
xt−1, ξ

j
t

)
= inf

xt∈Xt(xt−1,ξ
j
t)

{
Ft
(
xt, ξ

j
t

)
+ Q̂t+1(xt)

}
(4.0.35)

Q̂t(xt−1) = µ̂φt

(
Q̂t

(
xt−1, ξ̂t

))
(4.0.36)

= inf
s∈R

{
s+

1

Nt

Nt∑
j=1

φt

(
Q̂t

(
xt−1, ξ

j
t

)
− s
)}

, (4.0.37)

for 1 ≤ j ≤ Nt and t = 2, . . . , T . As usual, we consider the boundary condition

Q̂T+1(xT ) = 0, for every xT ∈ RnT .

The optimal value of problem (4.0.34) is

v̂∗N2,...,NT
:= inf

x1∈X1

{
v̂N2,...,NT (x1) := F1(x1) + Q̂2(x1)

}
(4.0.38)

and its set of ε-solutions is given by

ŜεN2,...,NT
:= {x1 ∈ X1 : v̂N2,...,NT (x1) ≤ v̂∗N2,...,NT

+ ε}, (4.0.39)

where ε ≥ 0. In the sequel we derive sample estimates N2, . . . , NT in order to

guarantee that

P
[
ŜδN2,...,NT

⊆ Sε
]
≥ 1− C(ε, δ) exp {−β(ε, δ)N} , for every N ∈ N, (4.0.40)

161 2017



CHAPTER 4. SAMPLE COMPLEXITY FOR DYNAMIC PROBLEMS WITH OCE RISK MEASURES

where C(ε, δ) and β(ε, δ) are positive constants that depend on the sample complex-

ity parameters 0 ≤ δ < ε and on the problem data.

As before, we consider the following notation to be used in the sequel:

X0 := {0} ⊆ R,
X1(x0, ξ1) := X1, ∀x0 ∈ X0,

QT+1(xT ) := 0, ∀xT ∈ RnT+1 .

Below we enumerate the same regularity conditions used in Section 2.1.2 for deriving

the sample complexity estimates for a risk neutral T -stage stochastic programming

problem:

(M0) The random data ξ1, ξ2, . . . , ξT is stagewise independent.

(M1) The family of random vectors {ξjt : j ∈ N, t = 2, . . . , T} is independent and

satisfies ξjt
d∼ ξt, for all j ∈ N, and t = 2, . . . , T .

For each t = 1, . . . , T − 1:

(Mt.1) There exist a compact set Xt with finite diameter Dt such that Xt(xt−1, ξt) ⊆
Xt, for every xt−1 ∈ Xt−1 and ξt ∈ supp(ξt).

(Mt.2) EQt+1(xt, ξt+1) is finite, for every xt ∈ Xt.

(Mt.3) There exists a finite constant σt > 0 such that for any x ∈ Xt, the following

inequality holds

Mt,x(s) := E [exp (s(Qt+1(x, ξt+1)− EQt+1(x, ξt+1))] ≤ exp
(
σ2
t s

2/2
)
, ∀s ∈ R.

(4.0.41)

(Mt.4) There exists a measurable function χt : supp(ξt+1) → R+ whose moment

generating function Mχt(s) is finite, for s in a neighborhood of zero, such that∣∣Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)
∣∣ ≤ χt(ξt+1) ||x′t − xt|| (4.0.42)

holds, for all x′t, xt ∈ Xt and ξt+1 ∈ Et+1 ⊆ supp ξt+1, where P [ξt+1 ∈ Et+1] = 1.

(Mt.5) W.p.1 ξt+1 the multifunction Xt+1(·, ξt+1) restricted to Xt is continuous.

Remarks regarding these regularity conditions were already made in Section 2.1.2

and we do not repeat them here. As we have done in the risk neutral multistage

setting we first show that under these regularity conditions problems (4.0.28) and

(4.0.34) are solvable. As before, whenever we assume conditions (Mt.4), for t =

1, . . . , T − 1, we denote the expected value of χt(ξt+1) as

0 ≤Mt := Eχt(ξt+1) <∞. (4.0.43)

We are ready to prove the following proposition.
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Proposition 4.0.23. Consider a general T -stage stochastic programming problem

such as (4.0.11), where T ≥ 3 is an arbitrary integer. Assume that φt ∈ Φ satisfies

L(φt) <∞, for every t = 2, . . . , T . The following assertions hold:

(a) If the problem satisfies the regularity conditions (M0), (Mt.1), (Mt.2), and

(Mt.4), for t = 1, . . . , T − 1, then Qt+1(·, ξt+1) is a Lipschitz continuous

function on Xt w.p.1 ξt+1, for t = 1, . . . , T − 1. It also follows that Xt ⊆
domXt+1(·, ξt+1) w.p.1 ξt+1 and Qt+1(·) is (MtL(φt+1))-Lipschitz continuous

on Xt, for t = 1, . . . , T − 1. In particular, we conclude that the first stage

objective function

v(x1) = F1(x1) +Q2(x1)

of the true problem restricted to x1 ∈ X1 is finite-valued and continuous and

the set of first stage optimal solutions S is nonempty.

(b) Consider as given the sample sizes N2, . . . , NT ∈ N. If the problem satisfies

the regularity conditions (M0), (M1), (Mt.1), (Mt.4) and (Mt.5), for t =

1, . . . , T − 1, and the SAA scenario tree is constructed using the identical

conditional sampling scheme, then the SAA objective function v̂N2,...,NT (x1)

restricted to the set X1 is finite-valued and continuous w.p.1. In particular,

P
[
ŜN2,...,NT 6= ∅

]
= 1.

Proof. The proof of this proposition is similar to the one of Proposition 3.3.12.

Let us begin with item (a). Condition (Mt.4) implies that, for every ξt+1 ∈ Et+1,

Qt+1(·, ξt+1) is χt(ξt+1)-Lipschitz continuous on Xt, where Et+1 ⊆ supp ξt+1 satisfies

P [ξt+1 ∈ Et+1] = 1,

for t = 1, . . . , T − 1. In particular, we have that Qt+1(·, ξt+1) is a finite-valued

function on Xt, for every ξt+1 ∈ Et+1. Since

Qt+1(xt, ξt+1) = inf
xt+1∈Xt+1(xt,ξt+1)

{Ft+1(xt+1, ξt+1) +Qt+2(xt+1)} , (4.0.44)

it follows thatXt+1(xt, ξt+1) 6= ∅, for all xt ∈ Xt and ξt+1 ∈ Et+1, i.e. domXt+1(·, ξt+1)

⊇ Xt, for all t = 1, . . . , T − 1. Assuming conditions (Mt.2), for t = 1, . . . , T − 1, it

follows that

‖Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)‖1 ≤ Eχt(ξt+1) ‖x′t − xt‖ (4.0.45)

= Mt ‖x′t − xt‖ , (4.0.46)

By Proposition 3.1.9 we have that µφt+1 : Z → R is L(φt+1)-Lipschitz continuous,

since L(φt+1) <∞. So,

|Qt+1(x′t)−Qt+1(xt)| =
∣∣µφt+1 (Qt+1(x′t, ξt+1))− µφt+1 (Qt+1(xt, ξt+1))

∣∣ (4.0.47)

≤ L(φt+1) ‖Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)‖1 (4.0.48)

≤ L(φt+1)Mt ‖x′t − xt‖ , (4.0.49)
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for every x′t, xt ∈ Xt. The first stage objective function of the true problem is just

v(x1) = F1(x1) +Q2(x1), where F1 : Rn → R is a finite-valued continuous function.

It follows that the restriction of v to the compact set X1 ⊇ X1 is continuous and

that S = argminx1∈X1
v(x1) 6= ∅, since X1 is nonempty compact. This completes

the proof of item (a).

Now, we prove item (b). Condition (Mt.5) says that there exists Ft+1 ⊆ supp ξt+1

satisfying P [ξt+1 ∈ Ft+1] = 1 such that Xt+1(·, ξt+1) : Xt ⇒ Xt+1 is a continuous mul-

tifunction, for every ξt+1 ∈ Ft+1 and for every t = 1, . . . , T−1. Since conditions (M1)

and (Mt.4) also hold true, for t = 1, . . . , T − 1, the following event has probability 1

E :=
T−1⋂
t=1

⋂
j∈N

[
ξjt+1 ∈ Et+1 ∩ Ft+1

]
. (4.0.50)

Take any sample sizes N2, . . . , NT ∈ N. We have that

EN2,...,NT :=
T−1⋂
t=1

Nt+1⋂
j=1

[
ξjt+1 ∈ Et+1 ∩ Ft+1

]
⊇ E , (4.0.51)

therefore P (EN2,...,NT ) = 1.

Now, we show that whenever the event EN2,...,NT happens, every function

Q̂t+1(xt) = µ̂φt+1

(
Q̂t+1

(
xt, ξ̂t+1

))
= inf

s∈R

{
s+

1

Nt+1

Nt+1∑
j=1

φt+1

(
Q̂t+1(xt, ξ

j
t+1)− s

)}
, ∀xt ∈ Xt,

is finite-valued and continuous on Xt, for t = 1, . . . , T − 1, where

Q̂t+1(xt, ξ
j
t+1) = inf

xt+1∈Xt+1(xt,ξ
j
t+1)

{
Ft+1(xt+1, ξt+1) + Q̂t+2(xt+1)

}
(4.0.52)

are the empirical cost-to-go functions, for t = 1, . . . , T − 1. As usual we set

Q̂T+1(xT ) := 0, for every xT ∈ XT , for uniformity of notation. For proving the

result we show that if Q̂t+1 : Xt → R is finite-valued and continuous, then Q̂t :

Xt−1 → R is also finite-valued and continuous, for t = T, . . . , 2. We also verify that

Q̂T (·) : XT−1 → R is finite-valued and continuous (base case in order to apply the

induction step). Note that

Q̂T (xT−1, ξT ) = QT (xT−1, ξT ), (4.0.53)

for every xT−1 ∈ XT−1 and ξT ∈ supp ξT .

Whenever the event EN2,...,NT occurs, we have in particular that ξjT ∈ ET , for

every j = 1, . . . , NT . So, it follows from item (a) that

xT−1 ∈ XT−1 7→ QT (xT−1, ξ
j
T ) (4.0.54)
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is χT−1(ξjT )-Lipschitz continuous on XT−1, for every j = 1, . . . , NT . Therefore, the

mapping

xT−1 ∈ XT−1 7→ QT (xT−1, ξ̂T ) ∈ L1

(
Ŝ,P(Ŝ), P̂

)
(4.0.55)

satisfies∥∥∥Q̂T (x′T−1, ξ̂T )− Q̂T (xT−1, ξ̂T )
∥∥∥
L1(Ŝ,P(Ŝ),P̂)

= 1
NT

NT∑
j=1

∣∣QT (x′T−1, ξ
j
T )−QT (xT−1, ξ

j
T )
∣∣

≤

(
1
NT

NT∑
j=1

χT−1(ξjT )

)∥∥x′T−1 − xT−1

∥∥ ,
for every x′T−1, xT−1 ∈ XT−1. In particular, the mapping (4.0.55) is continuous. Since

L(φT ) <∞, we also have from Proposition 3.1.9 that µ̂φT : L1

(
Ŝ,P(Ŝ), P̂

)
→ R is

L(φT )-Lipschitz continuous. This proves that

xT−1 ∈ XT−1 7→ Q̂T (xT−1), (4.0.56)

is continuous, which is the base case.

Now we prove the induction step. Assume that Q̂t+1 : Xt → R is finite-valued

and continuous for some t+ 1 ≤ T 2. We claim that

Q̂t(xt−1, ξ
j
t ) = inf

xt∈Xt(xt−1,ξ
j
t )

{
Ft(xt, ξ

j
t ) + Q̂t+1(xt)

}
, ∀xt−1 ∈ Xt−1, (4.0.57)

is finite-valued and continuous, for every j = 1, . . . , Nt, whenever the event EN2,...,NT

happens. This fact follows from the BMT (see Proposition 2.6.4) exactly in the

same way as considered in Proposition 2.1.15. Since∥∥∥Q̂t(x
′
t−1, ξ̂t)− Q̂t(xt−1, ξ̂t)

∥∥∥
L1(Ŝ,P(Ŝ),P̂)

= 1
Nt

Nt∑
j=1

∣∣∣Q̂t(x
′
t−1, ξ

j
t )− Q̂t(xt−1, ξ

j
t )
∣∣∣ ,

it follows that xt−1 ∈ Xt−1 7→ Q̂t(xt−1, ξ̂t) ∈ L1

(
Ŝ,P(Ŝ), P̂

)
. Since L(φt) < ∞, we

conclude that the mapping

xt−1 ∈ Xt−1 7→ Q̂t(xt−1) = µ̂φt

(
Q̂t(xt−1, ξ̂t)

)
(4.0.58)

is continuous, whenever the event EN2,...,NT occurs. Therefore,

x1 ∈ X1 7→ v̂N2,...,NT (x1) = F1(x1) + Q̂2(x1)

is continuous w.p.1, since F1(·) is continuous. Since X1 is compact and ∅ 6= X1 ⊆ X1

is closed, it follows that P
[
ŜN2,...,NT 6= ∅

]
= 1. This completes the proof of the

proposition.

2So, we are considering the range t = 2, . . . , T − 1.
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Now we derive the exponential rate of convergence for the risk averse multistage

setting.

Proposition 4.0.24. Consider a general T -stage stochastic programming problem

such as (4.0.11), where T ≥ 3 is an arbitrary integer. Assume that φt ∈ Φ satis-

fies L(φt) < ∞, for every t = 2, . . . , T . Assume also that conditions (M0), (M1),

and (Mt.1)-(Mt.4) hold, for t = 1, . . . , T − 1. Denote the stage sample sizes by

N2, . . . , NT ∈ N, and suppose that the scenario tree is constructed via the identi-

cal conditional sampling scheme. Then, for ε > 0 sufficiently small, the following

estimate holds

P
[

sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| ≥ ε

]
≤

T−1∑
t=1

(
exp {−Nt+1m

′
t}+

2
[

4ρD′tM
′
t

ε/Lt(T−1)

]nt+1

exp
{
− Nt+1ε2

32κ2L2
t+1σ

2
t (T−1)2

})
,

(4.0.59)

for every N2, . . . , NT ∈ N, where L1 = 1 and Lt := L(φt)Lt−1, for t = 2, . . . , T ,

M ′
t > 0, m′t ∈ (0,∞] and D′t are constants depending on the problem data, for

t = 1, . . . , T − 1, and κ > 0 and ρ > 0 are absolute constants.

Proof. The proof is similar to the proof of Proposition 2.1.16, although here we

apply Proposition 3.3.14 instead of Theorem 2.1.5 for deriving the result. We begin

by bounding from above w.p.1 the random quantity

sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| (4.0.60)

by a sum of random variables
∑T−1

t=1 LtZt, where

Zt := sup
xt∈Xt

∣∣∣µ̂φt+1

(
Qt+1(xt, ξ̂t+1)

)
− µφt+1 (Qt+1(xt, ξt+1))

∣∣∣ , t = 1, . . . , T − 1,

(4.0.61)

L1 = 1, and Lt =
∏t

s=2 L(φs), for every t = 2, . . . , T . Then, we apply Proposition

3.3.14 for each Zt, t = 1, . . . , T − 1, obtaining an upper bound for the probability of

Zt be greater or equal than ε/Lt(T − 1) as a function that depends on the problem

data and on the sample size Nt+1.

From (M1) and (Mt.4), t = 1, . . . , T − 1, it follows that the event

EN2,...,NT :=
T⋂
t=2

Nt⋂
j=1

[
ξjt ∈ Et

]
(4.0.62)

has probability 1, where Et are the measurable sets appearing in condition (Mt.4),

for t = 1, . . . , T − 1. We claim that whenever the event EN2,...,NT happens,

sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| ≤ Z1 +
T−1∑
t=2

LtZt. (4.0.63)
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Since v(x1) = F1(x1) + Q2(x1), v̂N2,...,NT (x1) = F1(x1) + Q̂2(x1) and F1(x1) is

finite, for every x1 ∈ X1, it follows that

|v̂N2,...,NT (x1)− v(x1)| =
∣∣∣Q̂2(x1)−Q2(x1)

∣∣∣ , (4.0.64)

=
∣∣∣µ̂φ2 (Q̂2(x1, ξ̂2)

)
− µφ2 (Q2(x1, ξ2))

∣∣∣ (4.0.65)

for every x1 ∈ X1. Therefore, it is sufficient to bound from above the expression

sup
x1∈X1

∣∣∣Q̂2(x1)−Q2(x1)
∣∣∣ . (4.0.66)

We divide the proof into two steps. In the first one, we show that whenever the

event EN2,...,NT occurs the following inequality holds

sup
xt∈Xt

∣∣∣Q̂t+1(xt)−Qt+1(xt)
∣∣∣ ≤ Zt + L(φt+1) sup

xt+1∈Xt+1

∣∣∣Q̂t+2(xt+1)−Qt+2(xt+1)
∣∣∣ ,

(4.0.67)

for t = 1, . . . , T − 1. Let us prove this statement. Take any xt ∈ Xt, where 1 ≤ t ≤
T − 1 is arbitrary. By the triangular inequality, it follows that∣∣∣Q̂t+1(xt)−Qt+1(xt)

∣∣∣ ≤ ∣∣∣µ̂φt+1

(
Qt+1(xt, ξ̂t+1)

)
− µφt+1 (Qt+1(xt, ξt+1))

∣∣∣+∣∣∣µ̂φt+1

(
Q̂t+1(xt, ξ̂t+1)

)
− µ̂φt+1

(
Qt+1(xt, ξ̂t+1)

)∣∣∣ .(4.0.68)

The first term on the right-side of (4.0.68) is less than or equal to Zt. Whenever the

event EN2,...,NT happens,

Qt+1(xt, ξ
j
t+1) ∈ R, (4.0.69)

for every j = 1, . . . , Nt+1. So, µφt+1

(
Qt+1(xt, ξ̂t+1)

)
∈ R and we can bound the

second term applying the inf-sup inequality (see Proposition 2.8.4):∣∣∣µ̂φt+1

(
Q̂t+1(xt, ξ̂t)

)
− µ̂φt+1

(
Qt+1(xt, ξ̂t)

)∣∣∣ =∣∣∣∣∣inf
s∈R

{
s+ 1

Nt+1

Nt+1∑
j=1

φt+1

(
Q̂t+1(xt, ξ

j
t+1)− s

)}
−

inf
s∈R

{
s+ 1

Nt+1

Nt+1∑
j=1

φt+1

(
Qt+1(xt, ξ

j
t+1)− s

)}∣∣∣∣∣
≤ L(φt+1)

Nt+1
sup
s∈R

{
Nt+1∑
j=1

∣∣∣(Q̂t+1(xt, ξ
j
t+1)− s

)
−
(
Qt+1(xt, ξ

j
t+1)− s

)∣∣∣}
= L(φt+1)

Nt+1

Nt+1∑
j=1

∣∣∣Q̂t+1(xt, ξ
j
t+1)−Qt+1(xt, ξ

j
t+1)
∣∣∣ .
(4.0.70)
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As we have also shown in Proposition 2.1.16, we can apply again the inf-sup in-

equality to obtain

1
Nt+1

Nt+1∑
j=1

∣∣∣Q̂t+1(xt, ξ
j
t+1)−Qt+1(xt, ξ

j
t+1)
∣∣∣ ≤ sup

xt+1∈Xt+1

∣∣∣Q̂t+2(xt+1)−Qt+2(xt+1)
∣∣∣ ,

(4.0.71)

for every xt ∈ Xt. We conclude that (4.0.67) holds for every t = 1, . . . , T − 1. Since

QT+1(x) = 0 = Q̂T+1(x), for every x ∈ RnT , it follows that w.p.1

sup
x1∈X1

∣∣∣Q2(x1)− Q̂2(x1)
∣∣∣ ≤ Z1 + L(φ2)Z2 + L(φ2)L(φ3)Z3 + · · ·+

L(φ2) . . . L(φT−1)ZT−1 = Z1 + L2Z2 + L3Z3 + · · ·+ LT−1ZT−1,
(4.0.72)

which proves (4.0.63).

Note that we can apply Proposition 4.0.24 (see also Remark 3.3.17) for every Zt,

t = 1, . . . , T − 1, since conditions (M1) and (Mt.1)-(Mt.4) are satisfied. Thus, the

following bound

P
[
Zt ≥

ε/Lt
T − 1

]
≤ exp {−Nt+1m

′
t}+2

[
4ρD′tM

′
t

ε/Lt(T − 1)

]nt+1

exp

{
− Nt+1ε

2

32κ2L2
t+1σ

2
t (T − 1)2

}
,

(4.0.73)

holds, for ε > 0 sufficiently small and for all Nt+1 ∈ N, t = 1, . . . , T − 1. Since[
sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| ≥ ε

]
∩ EN2,...,NT ⊆(

T−1⋃
t=1

[
LtZt ≥

ε

T − 1

])
∩ EN2,...,NT

and P (EN2,...,NT ) = 1, it follows that

P
[

sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| ≥ ε

]
≤ P

(
T−1⋃
t=1

[
LtZt ≥

ε

T − 1

])

≤
T−1∑
t=1

P
[
LtZt ≥

ε

T − 1

]

≤
T−1∑
t=1

(exp {−Nt+1m
′
t}+

2

[
4ρD′tM

′
t

ε/Lt(T − 1)

]nt+1

exp

{
− Nt+1ε

2

32κ2L2
t+1σ

2
t (T − 1)2

})
.

This completes the proof of the proposition.

Let us make some remarks about Proposition 4.0.24. Note that it was not nec-

essary to assume conditions (Mt.5), for t = 1, . . . , T − 1, in order to derive the
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exponential bound (4.0.59). Moreover, since v : X1 → R is continuous under the hy-

potheses of Proposition 4.0.24, we have that v̂N2,...,NT (·) is bounded in X1, whenever

the event [
sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| < ε

]
(4.0.74)

occurs, where ε > 0 is arbitrary. So, whenever this event occurs, it automatically

follows that ŜδN2,...,NT
6= ∅ provided that δ > 0. However, if δ = 0, then it is not

clear that ŜN2,...,NT 6= ∅ and some additional regularity conditions such as (Mt.5),

t = 1, . . . , T − 1, must be assumed in order to guarantee that the SAA problem is

solvable.

By changing the definition of the auxiliary sets X̃t, for t = 1, . . . , T − 1, one

can obtain an exponential bound like (4.0.59) that works for arbitrarily large values

of ε > 0 (see Remark 3.3.15). As we have pointed in that remark, this increases

the diameter D′t of the auxiliary sets X̃t. In the same remark, we point another

possibility that does not change the involved constants, but modifies the dependence

of the right side of (4.0.59) when ε gets larger than a given threshold ∆ > 0 depending

on the problem data. For finishing the discussion about this topic, it is worth

mentioning that one is usually concerned in how the sample complexity is affected

when ε > 0 is taken arbitrarily small and not arbitrarily large.

Akin to the static case, given ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1), it is possible to

obtain sample complexity estimates for a risk averse T -stage stochastic programming

problem like (4.0.28) applying Proposition 4.0.24. In Corollary 4.0.25 we obtain the

sample complexity estimates for the multistage setting.

Corollary 4.0.25. Take any integer T ≥ 3 and let (4.0.28) be a stochastic program-

ming problem satisfying the assumptions of Proposition 4.0.24. Let M ′
t, m

′, D′t and

Lt be constants depending on the problem data such that (4.0.59) holds for ε > 0

sufficiently small and for all N2, . . . , NT ∈ N. Given 0 < δ < ε and θ ∈ (0, 1), if

Nt ∈ Nt+1 satisfies

Nt+1 ≥
128κ2L2

t+1σ
2
t (T−1)2

(ε−δ)2

[
(nt+1 + 1) log

(
8ρD′tM

′
t

(ε−δ)/Lt(T−1)

)
+ log

(
4(T−1)

θ

)]∨[
1
m′t

log
(

2(T−1)
θ

)]
,

(4.0.75)

for every t = 1, . . . , T − 1, then

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ 1− θ. (4.0.76)

If we suppose additionally that conditions (Mt.5) are satisfied, for t = 1, . . . , T − 1,

then (4.0.76) also holds for δ = 0, whenever Nt+1 satisfies conditions (4.0.75), for

t = 1, . . . , T − 1.
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Proof. Take any ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1). It is elementary to verify that

whenever Nt+1 satisfies (4.0.75), it follows that

exp {−Nt+1m
′
t}+2

[
8ρD′tM

′
t

(ε− δ)/Lt(T − 1)

]nt+1

exp

{
− Nt+1(ε− δ)2

128κ2L2
t+1σ

2
t (T − 1)2

}
≤ θ

T − 1
,

(4.0.77)

for t = 1, . . . , T − 1. By Proposition 4.0.24 we conclude that

P
[

sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| < ε− δ
2

]
≥ 1− θ, (4.0.78)

if we take ε > 0 sufficiently small. We have already argued (multiple times!) before

that [
sup
x1∈X1

|v̂N2,...,NT (x1)− v(x1)| < ε− δ
2

]
⊆
[
ŜδN2,...,NT

⊆ Sε
]
. (4.0.79)

Moreover, when δ > 0, the set in the left side of the equation above is also contained

in
[
ŜδN2,...,NT

6= ∅
]
. Assuming conditions (Mt.5), for t = 1, . . . , T − 1, we also have

from Proposition 4.0.23 that
[
ŜδN2,...,NT

6= ∅
]

is a set having probability 1, which

takes care of the case δ = 0.

We obtain sample complexity estimates in the multistage risk averse setting

that are like the ones obtained in the multistage risk neutral setting. In fact, for

multistage risk neutral problems, (4.0.75) becomes

Nt+1 ≥ 128σ2
t (T−1)2

(ε−δ)2

[
nt+1 log

(
8ρDtMt

(ε−δ)/(T−1)

)
+ log

(
4(T−1)

θ

)]∨[
1
mt

log
(

2(T−1)
θ

)]
,

(4.0.80)

for every t = 1, . . . , T −1. Although it is true that Dt ≤ D′t and Mt ≤M ′
t ≤Mt + 1,

the main differences between these two estimates are given by the constants κ and

Lt ≥ 1 appearing in the risk averse estimate. Indeed, when one considers the total

effect of these constants in the total number of scenarios

N =
T−1∏
t=1

Nt (4.0.81)

of the SAA problem, we obtain that

Nra ≥ Nrnκ
T−1

T−1∏
t=1

Lt+1 (4.0.82)

= Nrnκ
T−1L(φ2)T−1L(φ3)T−2 . . . L(φT ). (4.0.83)
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Note that if L(φt) = L > 1, for every t = 2, . . . , T , then

T∏
t=2

Lt = L
∑T−1
t=1 t = L

T (T−1)
2 . (4.0.84)

This shows that in the risk averse framework the sample complexity of multistage

stochastic programming problems can grow much faster with respect to T than in

the risk neutral framework.
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CHAPTER 5

A lower bound for the sample complexity of a class of risk

neutral dynamic problems

5.1 Introduction

Until now we have presented sufficient conditions on the sample sizes N2, . . . , NT

that guarantee under some regularity conditions that

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ 1− θ, (5.1.1)

where ε > 0, 0 ≤ δ < ε and θ ∈ (0, 1) are the sample complexity parameters. In

Section 2.1.2 using the derived sufficient conditions for the sample sizes N2, . . . , NT ,

we noted that in order to obtain a theoretical guarantee like (5.1.1) the total number

of scenarios

N =
T∏
t=2

Nt (5.1.2)

of the scenario tree used for approximating the true random data explodes exponen-

tially fast with respect to the number of stages T . In Section 2.1.2 we have recalled

these results for the risk neutral problems. In Chapter 4 we have shown that this

behavior gets even worse when one considers the risk averse multistage stochastic

programming problems.

One could ask if the sufficient conditions derived for the sample sizes are not too

loose in the sense that maybe one could obtain guarantees like (5.1.1) with much

smaller sample sizes than the ones prescribed by the sample complexity estimates.

Saying equivalently, one could ask if the sample complexity results derived for mul-

tistage stochastic programming problems are in some sense tight. One interesting
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result would be to check if the exponential behavior of the number of scenarios with

respect to the number of stages T is really an unavoidable phenomenon for some

classes of multistage stochastic programming problems.

In this chapter we answer affirmatively the last question of the previous para-

graph. In fact, take any number 0 < r < 2. We show that there exists an instance of

a risk neutral (convex) T -stage stochastic programming problem such that in order

for (5.1.1) to be satisfied, the total number of scenarios (5.1.2) must be at least(
σ2

ε2−r

)T−1

(n(T − 1))T−1 (5.1.3)

where δ = 0 and θ ∈ (0, 0.3173). It is worth mentioning that the problem instances

considered here are “well-behaved” problems in the sense that they satisfy all the

regularity conditions considered in Section 2.1.2 and in Chapter 4 to derive the

sample complexity estimates for risk neutral (first derived in [69]) and for risk averse

problems, respectively. Before we move on, let us mention that the main result of

this chapter was published in [53].

For the record here we consider a risk neutral T -stage stochastic programming

problem

min
x1∈X1

{
f(x1) := F1(x1) + E

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2)

+E
[
... +E

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]] ]}
,

(5.1.4)

driven by a stagewise independent random data process ξ1, ..., ξT . The others prob-

lem components Ft and Xt, for t = 1, . . . , T , are as considered before in Section 2.1.2.

An instance of (5.1.4) is completely specified by defining the problem components,

that also include the specification of the probability distribution of the random data

process ξ1, ..., ξT . In order to obtain a lower bound for the sample complexity of

T -stage stochastic problems, we first need to define precisely what we mean by the

sample complexity of an instance of a problem. In the sequel we consider the def-

inition of the sample complexity of a class of problems. Afterwards, we show that

the results derived in [69] can be seen as an upper bound for the sample complexity

of a class of stochastic programming problems. We finish this chapter by deriving a

lower bound for the sample complexity of this same class of problems.

Given a problem like (5.1.4) one approximates the random data by constructing

a scenario tree through Monte Carlo sampling methods. In order to simplify the

exposition, here we consider scenario trees with T -levels possessing the following

node structure: every tth-stage node has Nt+1 children nodes at level t + 1, for

t = 1, ..., T − 1. Under this assumption, the total number of scenarios in the tree is

equal to

N =
T∏
t=2

Nt.
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For general scenario trees this does not need to be the case.

As before, we denote the sets of (first-stage) ε-optimal solutions, respectively, of

the true and the SAA problems as

Sε := {x1 ∈ X1 : f(x1) ≤ v∗ + ε} (5.1.5)

and

ŜεN2,...,NT
:= {x1 ∈ X1 : f̂N2,...,NT (x1) ≤ v̂∗N2,...,NT

+ ε}, (5.1.6)

for ε ≥ 0. The quantities v∗ and v̂∗N2,...,NT
are the optimal values of the true and the

SAA problems, respectively.

Definition 5.1.1. (the sample complexity of an instance of T -stage stochastic pro-

gramming problem) Let (p) be an instance of a T -stage stochastic programming prob-

lem like (5.1.4). Given ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1), we define the set of viable

tuples of samples sizes as

N (ε, δ, θ; p) :=

{
(M2, ...,MT ) :

∀ (N2, ..., NT ) ≥ (M2, ...,MT ) ,

P
([
ŜδN2,...,NT

⊆ Sε
]
∩
[
ŜδN2,...,NT

6= ∅
])
≥ 1− θ

}
.

(5.1.7)

The sample complexity of (p) is defined as

N(ε, δ, θ; p) := inf

{
T∏
t=2

Mt : (M2, ...,MT ) ∈ N (ε, δ, θ; p)

}
.

Definition 5.1.2. (the sample complexity of a class of T -stage stochastic program-

ming problems) Let C be a nonempty class of T -stage stochastic programming prob-

lems. We define the sample complexity of C as the following quantity depending on

the parameters ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1)

N(ε, δ, θ; C) := sup
p∈C

N(ε, δ, θ; p).

Remark 5.1.3. One could have considered the alternative definition

N ∗(ε, δ, θ; p) :=
{

(M2, ...,MT ) : P
([
ŜδM2,...,MT

⊆ Sε
]
∩
[
ŜδM2,...,MT

6= ∅
])
≥ 1− θ

}
(5.1.8)

instead of ours. In that case, it is clear that N ∗(ε, δ, θ; p) ⊇ N (ε, δ, θ; p). Thus,

N∗(ε, δ, θ; p) := inf

{
T∏
t=2

Mt : (M2, ...,MT ) ∈ N (ε, δ, θ; p)

}
≤ N(ε, δ, θ; p), (5.1.9)

for every instance (p) of (5.1.4), ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1). Example 5.1.4

shows that N ∗(ε, δ, θ; p) and N (ε, δ, θ; p) could be different. In our definition, if

(N2, . . . , NT ) ∈ N(ε, δ, θ; p) and Mt ≥ Nt, for every t = 2, . . . , T , then equation

(5.1.1) must also hold for this tuple of sample sizes (M2, . . . ,MT ). It is worth

mentioning that the lower bound estimate that we derive for N(ε, δ, θ; p) also holds

for N∗(ε, δ, θ; p). �
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In order to fix some ideas let us take T = 2 for a moment. Although it is

well-known that under mild regularity conditions

P
([
ŜδN2
⊆ Sε

]
∩
[
ŜδN2
6= ∅
])
−→
N2→∞

1, (5.1.10)

it is not true in general that this sequence of real numbers approaches 1 monotoni-

cally (see Example 5.1.4). In particular, it follows that N (ε, δ, θ; p) and N ∗(ε, δ, θ; p)
does not need to be equal for all values of the sample complexity parameters.

Example 5.1.4. Consider the following static stochastic programming problem

min
x∈R
{f(x) := E |ξ − x|} , (5.1.11)

where ξ is a random variable with finite expected value. It is elementary to show

that the set of all medians of ξ is the solution set of this problem. Let us denote the

cumulative distribution function of ξ by Hξ(z) := P [ξ ≤ z], for every z ∈ R. Recall

that, by definition, m ∈ R is a median of ξ (or of Hξ(·)) if m is a 0.5-quantile of ξ,

i.e., if Hξ(m) = P [ξ ≤ m] ≥ 1/2 and 1 − Hξ(m−) = P [ξ ≥ m] ≥ 1/2. Moreover,

it is well-known that the set of medians of every c.d.f. Hξ is a nonempty closed

bounded interval of R (see also Proposition 2.3.2).

Let
{
ξ1, . . . , ξN

}
be a random sample of ξ. The SAA problem is

min
x∈R

{
f̂N(x) := Ê

∣∣∣ξ̂ − x∣∣∣ =
1

N

N∑
i=1

∣∣ξi − x∣∣} . (5.1.12)

If N = 2k − 1, for some k ∈ N, then the set of exact optimal solutions for the SAA

problem is just ŜN =
{
ξ(k)
}

, where ξ(1) ≤ ... ≤ ξ(N) are the order statistics of the

sample {ξ1, . . . , ξN}. If N = 2k, for some k ∈ N, then ŜN =
[
ξ(k), ξ(k+1)

]
. Now

it is easy to show that, in general, the sequence of numbers {pN : N ∈ N} is not

monotone, where

pN := P
([
ŜδN ⊆ Sε

]⋂[
ŜδN 6= ∅

])
,∀N ∈ N, (5.1.13)

ε > 0 and δ ∈ [0, ε) are fixed.

We begin by noting that

f(x) = f(0) +

∫ x

0

(2Hξ(s)− 1) ds, ∀x ∈ R. (5.1.14)

In fact, f is a finite-valued convex function and its right side derivative at x ∈ R is

equal to 2H(x)− 1.Thus, (5.1.14) follows from Theorem 2.5.40.

Let us assume that ξ is a symmetric random variable around the origin satisfying

P [ξ 6= 0] > 01. It follows that ξ and −ξ are equally distributed and that f(−x) =

1This is just to rule out the degenerate case ξ = 0.
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E |ξ + x| = E |(−ξ)− x| = E |ξ − x| = f(x), for every x ∈ R. So, f is an even

function that assumes its minimum value at the origin. Moreover, by (5.1.14) we see

that f is monotonically non-decreasing on R+, since Hξ(s) ≥ 1/2, for all s ≥ 0. Take

δ = 0 and any ε < 0. The set of ε-solutions for the true problem is Sε = [−xε, xε],
for some xε > 0. For N = 1,

[
ŜN ⊆ Sε

]
if and only if

∣∣ξ1
∣∣ ≤ xε. For N = 2,[

ŜN ⊆ Sε
]

if and only if
∣∣ξ1
∣∣ ≤ xε and

∣∣ξ2
∣∣ ≤ xε. Note also that the SAA problem

always has an optimal solution, which implies that pN = P
([
ŜδN ⊆ Sε

])
, for all

N ∈ N. Therefore,

p2 = P
(∣∣ξ1

∣∣ ≤ xε,
∣∣ξ2
∣∣ ≤ xε

)
= P

(∣∣ξ1
∣∣ ≤ xε

)
· P
(∣∣ξ2

∣∣ ≤ xε
)

= p2
1 < p1,

as long as p1 < 1. Of course, this will be the case if we take ε > 0 sufficiently

small. For a concrete example, just consider ξ
d∼ U [−1, 1] and ε ∈ (0, 1/2). It is

elementary to verify that xε =
√

2ε < 1, so p1 < 1 and p2 < p1. �

In Proposition 5.1.5 we restate Proposition 2.1.17 with minor differences. Here

we consider the same regularity conditions (see Page 48) (M0), (M1), (Mt.1)-(Mt.5),

for t = 1, . . . , T −1, that were considered in Proposition 2.1.17. Let us recall that in

Proposition 2.1.17 we have considered as given real numbers M̃t, for t = 1, . . . , T−1,

satisfying M̃t > Mt = Eχt (ξt+1) ≥ 0, for every t = 1, . . . , T − 1. In order to

simplify the exposition, we consider as given an unique real number γ > 1 and

define M̃t := γMt, for every t = 1, . . . , T − 1. In that case, M̃t > Mt if and only if

Mt > 0. Of course, we can always suppose that Mt > 0, for every t = 1, . . . , T − 12.

Proposition 5.1.5. Consider an instance (p) of a T -stage stochastic optimization

problem satisfying conditions (M0), (M1) and (Mt.1)-(Mt.5), for t = 1, . . . , T − 1.

Let N2, . . . , NT be the sample sizes and take any γ > 1. Suppose that the scenario-

tree is constructed via the identical conditional sampling scheme. Then, for ε > 0,

δ ∈ [0, ε) and θ ∈ (0, 1), the following inequality is satisfied

N(ε, δ, α; p) ≤
T−1∏
t=1

max{At, Bt} =: UPPER(ε, δ, θ; p) (5.1.15)

2If Mt = 0, then χt(ξt) = 0 w.p.1. In that case, condition (Mt.4) would also be satisfied if we

take χt(ξt) = Mt > 0, where Mt is any positive constant. Moreover, it is worth mentioning that

if Mt = 0, then w.p.1 Qt+1(xt, ξt+1) = Qt+1(x′t, ξt+1), for every xt, x
′
t ∈ Xt, which is a somewhat

uninteresting and pathological situation. Indeed, when this is the case, the cost-to-go function

does not depend on the random realization ξt+1 and it is indifferent to the choice made in the

tth-stage.
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where, for t = 1, . . . , T − 1,

At :=

⌈
128σ2

t (T − 1)2

(ε− δ)2

[
nt log

(
4ργDtMt(T − 1)

ε− δ

)
+ log

(
4(T − 1)

θ

)]⌉
,

(5.1.16)

Bt :=

⌈
1

Iχt(γMt)
log

(
2(T − 1)

θ

)⌉
. (5.1.17)

Proof. Given γ > 1, define M̃t := γMt, for every t = 1, . . . , T − 1. Given the sample

complexity parameter ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1), it follows from Proposition

2.1.17 that the set Ñ (ε, δ, θ) considered in (2.1.143) is contained in N (ε, δ, θ; p).

Therefore,

N(ε, δ, θ; p) ≤ inf

{
T∏
t=2

Nt : (N2, . . . , NT ) ∈ Ñ (ε, δ, θ)

}
(5.1.18)

≤
T−1∏
t=1

max{At, Bt}, (5.1.19)

where the last inequality follows from Lemma 2.1.18 (see also equations (2.1.159),

(2.1.160), (2.1.161) and (2.1.162).

Take any ε > 0, δ ∈ [0, ε) and θ ∈ (0, 1). It is straightforward to derive an

upper bound for N(ε, δ, θ; C) where C is the class of all T -stage stochastic pro-

gramming problems like (5.1.4) that satisfy the regularity conditions (M0), (M1),

(Mt.1)-(Mt.5), for t = 1, . . . , T − 1, and the following uniformly bounded conditions

(UB) There exist positive real constants σ, K, n ∈ N, γ > 1 and β such that for

every instance (p) ∈ C and for every t = 1, . . . , T − 1, the following assertions

hold:

(i) σ2
t (p) ≤ σ2,

(ii) Dt(p)×Mt(p) ≤ K,

(iii) nt(p) ≤ n,

(iv) (0 <) β ≤ Iχt(p)(γMt(p)).

Then, it is immediate from the previous proposition that

N(ε, δ, θ; C) = sup
p∈C

N(ε, δ, θ; p) ≤
T−1∏
t=1

max{Āt, B̄t}, (5.1.20)
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where

Āt :=

⌈
128σ2(T − 1)2

(ε− δ)2

[
n log

(
4ργK(T − 1)

ε− δ

)
+ log

(
4(T − 1)

θ

)]⌉
,

(5.1.21)

B̄t :=

⌈
1

β
log

(
2(T − 1)

θ

)⌉
, (5.1.22)

for t = 1, . . . , T − 1.

Note that the dependence of At and of Āt with respect to ε and δ is given by the

difference ε− δ > 0. Therefore, unless stated otherwise, we always take δ = 0 in the

sequel. Given a class of problems C and an instance (p) ∈ C, we write N(ε, θ; C) and

N(ε, θ; p), respectively, instead of N(ε, 0, θ; C) and N(ε, 0, θ; p). As we have pointed

out in Section 2.1.2, for sufficiently small values of ε > 0 we have that At ≥ Bt for

each t = 1, . . . , T − 1. Therefore, for θ ∈ (0, 1) fixed and ε > 0 sufficiently small, the

order of growth of UPPER(·) with respect to ε > 0 is at most(
σ2

ε2

[
n log

(
K(T − 1)

ε

)])T−1

(T − 1)2(T−1), (5.1.23)

where we got rid of the absolute constants in the estimate above. It is worth men-

tioning that this estimate holds for general multistage stochastic optimization prob-

lems and not only for particular subclasses of problems, like the convex or linear

subclasses.

5.2 The main result

Now, let us derive a lower bound for the sample complexity of a class of T -stage

stochastic problems that satisfies the previous regularity conditions and also condi-

tion (UB). Let T ≥ 3. We consider a family C := {(pk) : k ∈ N} of T -stage (convex)

stochastic programming problems, where (pk) is specified by the following data:

(a) {ξt
d∼ Gaussian(0, s2In) : t = 2, . . . , T} is stagewise independent, where s > 0

and n ∈ N,

(b) F k
t (xt, ξt) := −2k 〈ξt, xt〉, for t = 2, . . . , T ,

(c) Xk
t (xt−1, ξt) := {xt−1}, for t = 2, . . . , T ,

and F k
1 (x1) := ‖x1‖2k and Xk

1 := 1
k
Bn, where Bn is the closed unit Euclidean ball of

Rn.
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The scenario-tree is constructed following the identical conditional sampling

scheme by considering independent random vectors

SN2,...,NT :=

{
ξit

d∼ Gaussian(0, s2In) :
t = 2, ..., T,

i = 1, ..., Nt

}
. (5.2.1)

In this case, the empirical process ξ̂ =
(
ξ̂1, . . . , ξ̂T

)
defined on the scenario tree is

also stagewise independent.

Let us derive the objective functions fk(·) and f̂k(·), respectively, of the true

problem and the SAA problem3 given SN2,...,NT . We begin with the T th-stage cost-

to-go function obtained by the dynamic programming equation:

QT (xT−1, ξT ) = inf
xT∈XT (xT−1,ξT )

{−2k 〈ξT , xT 〉}

= −2k 〈ξT , xT−1〉 .
(5.2.2)

The true problem and SAA problem T th-stage expected cost-to-go functions are

obtained, respectively, by taking the expected value of QT (xT−1, ξT ) with respect to

the true and empirical distribution of ξT :

QT (xT−1) = E [−2k 〈ξT , xT−1〉] = 0,

Q̂T (xT−1) = Ê
[
−2k

〈
ξ̂T , xT−1

〉]
= −2k

〈
ξ̄T , xT−1

〉
,

(5.2.3)

where ξ̄T = 1
NT

∑NT
i=1 ξ

i
T . Continuing backward in stages, it is elementary to verify

that:
Qt(xt−1, ξt) = −2k 〈ξt, xt−1〉 ,
Q̂t(xt−1, ξt) = −2k

〈
ξ̄t + · · ·+ ξ̄T , xt−1

〉
,

(5.2.4)

where ξ̄t := 1
Nt

∑Nt
i=1 ξ

i
t, for t = 2, . . . , T − 1. It follows from (5.2.4) that the true

and the SAA first-stage cost-to-go functions are

Q2(x1) = 0, and

Q̂2(x1) = −2k
〈
ξ̄2 + ...+ ξ̄T , x1

〉
,

(5.2.5)

Let us define η := ξ̄2 + ... + ξ̄T . By (5.2.5), it follows that fk(x1) = ‖x1‖2k and

f̂k(x1) = ‖x1‖2k−2k 〈η, x1〉, for x1 ∈ 1
k
Bn. The (unique) first-stage optimal solution

of the true problem is x̄1 = 0, so its optimal value is v∗ = 0. Moreover, the (exact)

first-stage optimal solution of the SAA problem is given by:

x̂1 =


0 , if ‖η‖ = 0
1

‖η‖γk
η , if 0 < ‖η‖ ≤ ( 1

k
)2k−1

1

‖η‖ k
η , if ‖η‖ > ( 1

k
)2k−1

(5.2.6)

3In order to simplify the notation, we have dropped the subscript of the SAA objective function

writing f̂(·) instead of f̂kN2,...,NT
(·). We proceed in the same way with the cost-to-go functions that

we derive in the sequel.

180 2017



CHAPTER 5. A LOWER BOUND FOR THE SAMPLE COMPLEXITY OF A CLASS OF RISK NEUTRAL DYNAMIC
PROBLEMS

where γk =
2k − 2

2k − 1
.

Hence, given ε ∈
(
0, 1

k2k

)
, x̂1 is an ε-optimal solution of the true problem if and

only if ‖η‖2k(1−γ) ≤ ε. Define vk := 2k(1 − γk) = 2k/(2k − 1). By (5.2.1), η
d∼

Gaussian

(
0,

T∑
t=2

s2

Nt

In

)
. Considering the harmonic mean, say hm, of the numbers

N2, ..., NT ∈ N:

T − 1

hm
:=

T∑
t=2

1

Nt

,

it follows that:

η
d∼ Gaussian

(
0,
s2(T − 1)

hm
In

)
. (5.2.7)

Let us show that if (N2, . . . , NT ) ∈ N (ε, θ; pk), for ε ∈
(
0, 1

k2k

)
and θ ∈ (0, θ̄),

where θ̄ := P [χ2
1 > 1] ≈ 0.3173, then

N :=
T∏
t=2

Nt ≥
(

s2

ε2−
1
k

)T−1

[n(T − 1)]T−1 . (5.2.8)

Since N(ε, θ; pk) = inf
{∏T

t=2 Nt : (N2, . . . , NT ) ∈ N (ε, θ; pk)
}

, the right side of

(5.2.8) will be a lower bound for the sample complexity of the instance (pk).

Indeed, suppose that (N2, . . . , NT ) ∈ N (ε, θ; pk)
4 where ε and θ are as specified

before, then

P [‖η‖vk ≤ ε] ≥ 1− θ. (5.2.9)

This is equivalent to θ ≥ 1 − P [‖η‖vk ≤ ε] = P [‖η‖vk > ε]. It follows from (5.2.7)

that
hm

s2(T − 1)
‖η‖2 d∼ χ2

n.

Observe also that

P
[

hm

s2(T − 1)
‖η‖2 >

ε2/vk hm

s2(T − 1)

]
= P [‖η‖vk > ε] .

Since the sequence P [χ2
n > n] is monotone increasing and P [χ2

1 > 1] = θ̄, if θ ∈ (0, θ̄)

we must have that ε2/vk hm
s2(T−1)

> n, i.e.:

hm >
s2

ε2/vk
n(T − 1). (5.2.10)

It is a well-known result that the harmonic mean of (positive) real numbers is

always less than or equal to its geometric mean

gm := (N2...NT )1/(T−1) = N1/(T−1). (5.2.11)

4Note that (5.2.9) also holds if we suppose just that (N2, . . . , NT ) ∈ N ∗(ε, θ; pk) (see Remark

5.1.3).
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So, we arrive at the following lower bound for N :

N >

(
s2n

ε2−
1
k

)T−1

(T − 1)T−1

=

(
σ2
kn

4ε2−
1
k

)T−1

(T − 1)T−1 ,

(5.2.12)

where the last equality follows from the fact that σk = 2s, for all k ∈ N. Before

proving this fact, note the similarities between (5.2.12) and (5.1.23) without the

logarithmic term. In particular, observe that the lower bound obtained in (5.2.12)

has the factor (T −1)T−1 that grows even faster with respect to T than the factorial

T !. This shows that such multiplicative factor is unavoidable for some problems,

and that the number of scenarios for T -stage problems can present a much faster

order of growth with respect to T than even the exponential one. Moreover, we

conclude by (5.2.12) that

lim
ε→0+

N(ε, θ, {pk : k ∈ N})
ε2(T−1)−s = +∞, (5.2.13)

for all s ∈ (0, 2(T − 1)), showing a growth order that is almost 1/ε2(T−1), when

ε→ 0+.

Now, let us verify that each instance (pk) satisfies the regularity conditions (M0),

(M1) and (Mt.1)-(Mt.5), for t = 1, . . . , T − 1. Conditions (M0) and (M1)5 are triv-

ially true. Defining X k
t := 1

k
Bn, for t = 1, . . . , T − 1, we see that Dk

t := diam(X k
t ) =

2/k and Xt(xt−1, ξt) = {xt−1} ⊆ X k
t , for every xt−1 ∈ X k

t−1 and ξt ∈ Rn. So,

conditions (Mt.1) and (Mt.5) hold, for every t = 1, . . . , T − 1. We also have that

Qt+1(xt, ξt+1) = −2k {ξt+1, xt} , (5.2.14)

for every xt ∈ X k
t and for every ξt+1 ∈ Rn. It follows thatQt+1(xt) = EQt+1(xt, ξt+1) =

0, for every xt ∈ Xt, which shows that conditions (Mt.2) are also satisfied, for

t = 1, . . . , T − 1. Moreover,

|Qt+1(x′t, ξt+1)−Qt+1(xt, ξt+1)| = 2k |〈ξt+1, x
′
t − xt〉| ≤ 2k ‖ξt+1‖ ‖x′t − xt‖ ,

(5.2.15)

for all x′t, xt ∈ X k
t and ξt+1 ∈ Rn, so condition (Mt.3) is satisfied with χkt (ξt+1) =

2k ‖ξt+1‖. Finally, we show that (Mt.3) holds. In fact, for every xt ∈ X k
t

Qt+1(xt, ξt+1)−Qt+1(xt) = −2k 〈ξt+1, xt〉
d∼ Gaussian(0, 4k2 ‖xt‖2 s2), (5.2.16)

so σt = σ := 2s > 0 is such that this family of random variables is σ-sub-Gaussian.

5More precisely, condition (M1) is about the kind of sampling used in order to obtain the SAA

problem.
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Now, we show that the (UB) condition is also satisfied. It is elementary to verify

tha conditions (i.) and (iii.) are satisfied. Moreover,

Mk
t := E

[
χkt (ξt+1)

]
= 2ksE [‖Z‖] = 2kcns, (5.2.17)

where Z
d∼ Gaussian(0, In) and the last equality follows from Lemma 5.2.2 of the

Appendix. So, Dk
tM

k
t = 4cns =: K, for all k ∈ N and t = 1, . . . , T − 1. Since

‖ξ‖ ≤ ‖ξ‖1, we obtain the following estimate6

Mχk(r) = exp (2k ‖ξ‖ θ) ≤ 2n exp
(
2nk2s2r2

)
,∀r ∈ R. (5.2.18)

Consequently, for γ > 1 (see also Lemma 5.2.3)

Iχkt (γMk) ≥
1

4
γ2 − n log(2), (5.2.19)

for all t = 1, . . . , T − 1 and k ∈ N. Taking γ = 2
√
n we obtain that Iχkt (γLk) ≥

n(1− log(2)) ≥ 1− log(2) =: β(> 0). So, we have shown that all items of (UB) are

satisfied. We can summarize the discussion above in the following proposition.

Proposition 5.2.1. Let C be the class of all T -stage stochastic convex problems

satisfying the regularity conditions (M0), (M1), (Mt.1)-(Mt.5), for t = 1, . . . , T − 1,

and (UB) with arbitrary constants σ > 0, M > 0, n ∈ N, γ > 1 and β > 0, where
1
2
γ2 ≥ β + n log(2). Then, for θ ∈ (0, 1) sufficiently small,

lim
ε→0+

N(ε, θ; C)
ε2(T−1)−r = +∞, for all r ∈ (0, 2(T − 1)). (5.2.20)

The proof is immediate, since C ⊇ {pk : k ∈ N}, for sufficiently small s > 0,

which implies that N(ε, θ; C) ≥ N(ε, θ; {pk : k ∈ N}).

Some lemmas

Lemma 5.2.2. Let ξ be a multivariate standard Gaussian random vector, i.e. ξ
d∼

Gaussian(0, In), n ∈ N. Then

n√
n+ 1

≤ E ‖ξ‖ =

√
2 Γ
(
n+1

2

)
Γ
(
n
2

) ≤
√
n, (5.2.21)

where Γ(s) :=
+∞∫
0

us−1 exp{−u}du, s > 0, is the gamma function.

6In particular, this estimate shows that Mχk
(r) <∞, for every r ∈ R.
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Proof. The probability density function of ξ is equal to

hξ(x) =
1

(2π)n/2
exp

{
−‖x‖

2

2

}
,∀x ∈ Rn. (5.2.22)

Observe that hξ(x) = g(‖x‖), where

g(r) =
1

(2π)n/2
exp

{
−r

2

2

}
,∀r ≥ 0.

So, the expected value of ‖ξ‖ is equal to

E ‖ξ‖ =

∫
x∈Rn
‖x‖ g(‖x‖)dx =

∫ +∞

0

Sn−1(r)rg(r)dr, (5.2.23)

where Sn−1(r) =
nπn/2

Γ
(
n
2

+ 1
)rn−1 is the surface area of the sphere of Rn with radius

r. So, we need to solve the following integral in one variable

E ‖ξ‖ =
nπn/2

(2π)n/2Γ
(
n
2

+ 1
) ∫ +∞

0

rn exp
{
−r2/2

}
dr. (5.2.24)

Making the change of variables u = r2/2, it is elementary to verify the equality

in (5.2.21). The upper bound is an immediate consequence of Jensen’s inequality,

since E ‖ξ‖2 = n. Finally, using an induction argument on k ∈ N, for n = 2k − 1

and for n = 2k (separately), one can show the lower bound after some tedious

calculations. It is not difficult to verify our claims and, for such, it is worth noting

that Γ(s) = (s− 1)Γ(s− 1), for s > 1, and Γ(1/2) =
√
π.

Lemma 5.2.3. Let χk(ξ) := 2k ‖ξ‖, where ξ
d∼ Gaussian(0, s2In), s > 0, cn =√

2 Γ
(
n+1

2

)
/Γ
(
n
2

)
and k ∈ N. The following conditions hold:

i. Mk := Eχk(ξ) = 2kcns, ∀k ∈ N.

ii. Iχk(γMk) ≥ 1
4
γ2 − n log(2), ∀k ∈ N and γ > 1.

Proof. Item (i) follows immediately from Lemma 5.2.2. Let us item (ii). Taking the

logarithm in (5.2.18), we obtain

mχk(r) := log (Mχk(r)) ≤ n log(2) + 2nk2s2r2, ∀r ∈ R. (5.2.25)

Let y > 0 be arbitrary. Then

Iχk(y) = sup
r∈R
{ry −mχk(r)}

≥ sup
r∈R
{ry − n log(2)− 2nk2s2r2}

=
y2

8ns2k2
− n log(2).

(5.2.26)
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Given γ > 1, take y := γMk on (5.2.26) in order to obtain the following lower bound

Iχk(γMk) ≥
c2
nγ

2

2n
− n log(2). (5.2.27)

From (5.2.21), it follows that c2n
n
≥ n

n+1
≥ 1/2, for all n ∈ N. This completes the

proof of the lemma..
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[2] A. Araujo, E. Guiné, The central limit theorem for real and Banach valued

random variables. Wiley, 1980.

[3] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, Coherent measures of risk, Math-

ematical Finance 9 (1999) 203–228.

[4] T.G. Bailey, P. Jensen, D. Morton, Response surface analysis of two-stage

stochastic linear programming with recourse, Naval Research Logistics 46 (1999)

753–778.

[5] A. Ben-Tal, M. Teboulle, An old-new concept of convex risk measures: the

optimized certainty equivalent, Mathematical Finance 17 (2007) 449–476.

[6] C. Berge, Topological spaces: including a treatment of multi-valued functions,

vector spaces and convexity. Oliver and Boyd, 1963.

[7] D.P. Bertsekas, Convex optimization theory. Athena Scientific, 2009.

[8] P. Billingsley, Probability and measure. Wiley, 1995.

[9] J.R. Birge, F. Louveaux, Introduction to stochastic programming. Springer,

2011.

[10] J.F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems.

Springer, 2000.

187



BIBLIOGRAPHY

[11] V. Brazauskas, B.L. Jones, M.L. Puri, R. Zitikis, Estimating conditional tail

expectation with actuarial applications in view, Journal of Statistical Planning

and Inference 138 (2008) 3590–3640.

[12] D.B. Brown, Large deviations bounds for estimating conditional value-at-risk,

Operations Research Letters 35 (2007) 722–730.

[13] R.S. Burachik, A.N. Iusem, Set-valued mappings and enlargements of monotone

operators. Springer, 2008.

[14] K.L. Chung, A course in probability theory. Academic Press, 2001.

[15] G. Dantzig, G. Infanger, Multi-stage stochastic linear programs for portfolio

optimization, Annals of Operations Research 45 (1993) 59–76.

[16] V.L. de Matos, D.P. Morton, E.C. Finardi, Assessing policy quality in a mul-

tistage stochastic program for long-term hydrothermal scheduling, Annals of Op-

erations Research (2016) 1–19.

[17] P. Delbaen, Coherent risk measures on general probability spaces, in: P.J.
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