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Abstract

In this thesis we study several mathematical aspects of a system of equations mod-
elling the interaction between short waves, described by a nonlinear Schrödinger equa-
tion, and long waves, described by the equations of magnetohydrodynamics for a
compressible, heat conductive fluid. The system in question models an aurora-type
phenomenon, where a short wave propagates along the streamlines of a magnetohy-
drodynamic medium. We address several problems in both the one dimensional and
in the multidimensional versions of the model. Namely, existence and uniqueness of
strong solutions, as well as the vanishing viscosity problem, in the 1-dimensional case;
and existence of weak solutions with large data in the 2-dimensional case.
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Chapter 1

Introduction

This thesis concerns the study of several mathematical aspects of a system of equations
modelling Short Wave-Long Wave Interactions between the Magnetohydrodynamics
(MHD) equations and a nonlinear Schrödinger equation. The model describes the
evolution of the wave function, obeying a nonlinear Schrödinger equation, along the
streamlines of the fluid flow. As such, the nonlinear Schrödinger equation is stated in
a different coordinate system; namely in the Lagrangian coordinates of the fluid.

The Lagrangian coordinates are characterized by being constant along the stream-
lines of the fluid. Accordingly, the change of variables can be defined through the flux
Φ associated to the fluid’s velocity field u, given by

dΦ
dt

(t; x) = u(t,Φ(t; x)),

Φ(0; x) = x,

and the Lagrangian transformation Y(x, t) = (y(x, t), t) can be defined by the relation

y(t,Φ(t; x)) = y0(x),

where the function y0 is a diffeomorphism which may be chosen conveniently according
to the problem. In particular, y0 can be chosen so that the Jacobian Jy(t; x) :=
det

(
∂y
∂z (t,Φ(t; x))

)
of the coordinate change satisfies

Jy(t; x) = ρ(t,Φ(t; x)). (1.1)

where, ρ is the fluid’s density.
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Note, that this relation implies that the Lagrangian transformation becomes sin-
gular in the presence of vacuum or concentration, that is, when the density vanishes
or becomes infinity.

Having this, the nonlinear Schrödinger equation can be stated and the coupling is
made through the external force term in the MHD equations and the potential term
in the Schrödinger equation due to external forces.

Specifically, the full three dimensional system that we study is the following.

ρt + div(ρu) = 0,
(ρu)t + div(ρu ⊗ u) + ∇p

= divS + β(∇ × H) × H + α∇(g′(1/ρ)h(|ψ ◦ Y|2)),

Et + div(u(E − β

2 |H|2 + p)) = div(β(u × H) × H + νH × (∇ × H))

+ div(κ∇θ) + div(Su) + α∇(g′(1/ρ)h(|ψ ◦ Y|2)) · u,

βHt − βcurl(u × H) = −∇ × (ν∇ × H),
div H = 0,
iψt + ∆yψ = |ψ|2ψ + α̃g(v)h′(|ψ|2)ψ.

Here, ρ, u ∈ R3 and θ denote the fluid’s density, velocity and temperature, re-
spectively, H ∈ R3 the magnetic field and ψ = ψ(t,y) is the wave function; the total
energy is

E := ρ
(
e+ 1

2 |u|2
)

+ β

2 |H|2,

with e being the internal energy and 1
2 |H|2 the magnetic energy; p denotes the pressure

and S is the viscous stress tensor given by

S = λ(divu)Id + µ(∇u + (∇u)t).

The viscosity coefficients λ and µ satisfy 2µ + λ > 0 and µ > 0; κ is the heat
conductivity, ν > 0 is the magnetic difusivity and β > 0 is the magnetic permeability.

The pressure and the internal energy, in general, depend on the density and the
temperature through constitutive relations of the form

p = p(ρ, θ), e = e(ρ, θ),
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and must satisfy Maxwell’s relation

eρ(ρ, θ) = 1
ρ2 (p− θpθ(ρ, θ)).

Moreover, g and h are the coupling functions, α and α̃ are the interaction coeffi-
cients and v = v(t,y) is the specific volume given by

v(t,y(tx)) = 1
ρ(t,x) .

The most important feature of this coupling is that it is endowed with an energy
identity, which can be stated in differential form as
{

(ρ(1
2 |u|2 + e) + β|H|2)t + divx(u(ρ(1

2 |u|2 + e) + p))

− divx(κ∇θ) − divx((λ(divu)Id + µ(∇u + (∇u)t)) · u)

− divx(β(u × H) × H) − divx(H × ν(∇x × H))
}
dx

= α

α̃

{
divy(ψt∇yψ + ψt∇yψ) − α̃(g(v(t,y))h(|ψ(t,y)|2))t

− 1
2(|∇yψ(t,y)|2)t − 1

2(|ψ(t,y)|4)t
}
dy.

In particular, under suitable integrability conditions, this identity yields an integral
form of the conservation of energy:

d

dt

∫ (
ρ
(1

2 |u|2 + e
)

+ 1
2µ̃ |H|2

)
dx

+ d

dt

∫ α

α̃

(1
2 |∇yψ(t,y)|2 + 1

2 |ψ(t,y)|4 + α̃g(v(t,y))h(|ψ(t,y)|2)
)
dy = 0.

The phenomenon that we have in mind when we study this model is one like that of
the auroras. Auroras, commonly known as polar lights, occur as fast-moving charged
particles released from the sun collide with the Earth’s atmosphere, channelled by
Earth’s magnetic field. The stream of charged particles, called solar wind, consists
mainly of electrons, protons and alpha particles that, upon reaching the earth’s mag-
netosphere, collide with atoms in the atmosphere, such as oxygen and nitrogen, im-
parting energy into them and thus making them excited. As the atoms return to their
normal state they release photons, and when many of these collisions occur together
they emit enough light for the phenomenon to be visible by the naked eye.
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The aurora can thus be seen as small waves propagating along the trajectories
of the particles of the atmosphere, a magnetohydrodynamic medium. Let us recall
that the MHD equations describe the motion of a conductive fluid in the presence of
a magnetic field. On the other hand, the nonlinear Schrödinger equation describes
collective phenomena in quantum plasmas. The example of the aurora gathers many
of the ingredients captured by this model.

This model was proposed and studied recently (in 2016) by Frid, Jia and Pan [28]
in the three dimensional context, showing existence, uniqueness and decay rates of
smooth solutions for small initial data. A similar model involving the Navier-Stokes
Equations instead of the MHD equations was proposed earlier by Dias and Frid [17],
and was further studied by Frid, Pan and Zhang [27].

The thesis is divided into three parts. In the first part, corresponding to Chapter
2, we do a review of some of the ideas involved in the deduction of the MHD equations
and in the deduction of the SW-LW interaction model above. We also state the kind of
constitutive relations we consider for the pressure and internal energy, the initial and
boundary conditions for the problem and the hypotheses on the coefficients and the
coupling functions. In particular, throughout this work we assume that the pressure
can be decomposed into an elastic part, given by a γ-law, and a thermal part, which
is linear with respect to the temperature. That is, we assume that

p(ρ, θ) = aργ + θpθ(ρ), (1.2)

where a > 0 and γ > 1 are constants, with very general assumptions on the function
pθ(ρ).

The second part, corresponding to Chapter 3, concerns the study of the one dimen-
sional version of this model. The one dimensional case arises under the assumption
that the flow moves in a preferable direction. That is, we assume that the three di-
mensional MHD flow with space variables x = (x, x2, x3) moves in the x direction and
is uniform in the transverse direction (x2, x3). This assumption considerably simplifies
the equations as well as the short wave-long wave interaction coupling, since the one
dimensional Lagrangian transformation takes a very specific and plain form.

For convenience, we decompose our dependent MHD variables as

ρ = ρ(t, x), θ = θ(t, x), u = (u,w)(t, x), w = (u2, u3),

H = (h1,h)(t, x), h = (h2, h3),
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where u and h1 are the longitudinal velocity and the longitudinal magnetic field, and
w and h are the transverse velocity and the transverse magnetic field, respectively.
Under these assumptions, we have that the partial derivatives with respect to x2 and
x3 of the involved functions are identically zero.

With this in mind, a straightforward calculation shows that h1 is constant (which
we take to be equal to 1 without loss of generality) and our model is simplified as

ρt + (ρu)x = 0, ,

(ρu)t +
(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ ◦ Y|2)
)
x

= (εux)x,

(ρw)t + (ρuw − βh)x = (µwx)x,(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ β
2 |h|2

)
t
+
(
u
(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ p
))

x

= (βw · h − βu|h|2)x + (εuux + µw · wx + νh · hx)x + (κθx)x

+ α
(
g′(1/ρ)h(|ψ ◦ Y|2)

)
x
u,

βht + (βuh − βw)x = (νhx)x,
iψt + ψyy = |ψ|2ψ + α̃g(v)h′(|ψ|2)ψ.

Here, µ and ε = λ+ 2µ are the shear viscosity and the bulk viscosity of the fluid,
respectively.

In this setting, we are able to prove global existence and uniqueness of smooth
solutions in a bounded open spacial domain Ω. We first prove existence and uniqueness
of local solutions and then extend the local solutions to global ones based on a priori
estimates.

For the local result we use a Faedo-Galerkin type method similar to that applied
by Dias and Frid in [17], which in turn resembles the classic work by Kazhikhov and
Shelukhin in [32] (c.f. [2, Chapter 2]). As for the global result, we develop some a
priori estimates inspired by the work of Chen and Wang in [15] and by the work of
Wang in [48]. In particular we show that no vacuum nor concentration develop in
finite time.

Having well posedness for the one dimensional model, we turn our attention to
the vanishing viscosity problem. First, we assume that the pressure has the form
p(ρ, θ) = aργ + δθpθ(ρ), where a > 0, γ > 1, δ > 0 and pθ is a function of the density
that satisfies certain growth conditions. Note that if ε, α, α̃, δ and β are all zero we
are left with a system involving Euler’s equations of compressible fluid dynamics and
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a decoupled nonlinear Schrödinger equation. In this connection we show convergence
of the sequence of solutions as ε, α, α̃, δ and β tend to zero. More specifically, we
show that if α, α̃ = o(ε1/2) and δ, β = o(ε) as ε → 0, leaving µ > 0 and ν > 0 fixed,
then the sequence of solutions to system (3.1)-(3.6) converges to a solution of the limit
problem.

As the limit problem has different regularity properties than the original one (in
Euler’s equations shock waves are expected to occur in finite time, even if the initial
data is smooth) this convergence is not a straightforward task.

To achieve this, we employ the compensated compactness method as applied by
Chen and Perepelitsa in [14], where they study the problem of vanishing viscosity limit
for the one dimensional Navier-Stokes equations. Due to the presence of the magnetic
field and the short wave-long wave interactions we have to deduce some new estimates
in order to be able to to apply the method.

It is worth mentioning that the magnetic permeability β is usually taken to be
equal to 1 in the literature ([33]) since in most real world media covered by the model
this constant differs only slightly from the unity. However, the only physical restriction
on it is its positivity.

The third part of the thesis, contained in Chapter 4, deals with the multidimen-
sional version of the model. The main difficulty in higher dimensions is the possible
occurrence of vacuum. As the Lagrangian transformation becomes singular in the
presence of vacuum an effective coupling of the fluid equations with the nonlinear
Schrödinger equation cannot be made in a straightforward way. In order to overcome
these difficulties, we define the interaction through a regularized system that provides
a good definition for an approximate Lagrangian coordinate. Then, after showing exis-
tence of solutions, we show compactness of the sequence of solutions to the regularized
system thus making sense of the desired SW-LW interaction in the limit process.

For simplicity, in the multidimensional model we focus on the isentropic case, that
is, the case of a non heat-conductive fluid, which trivializes the energy equation.

In order to workaround the lack of regularity of the density we first add an artificial
viscosity to the continuity equation. Fix ε > 0 and δ > 0 and consider the following
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regularized MHD system

ρt + div(ρu) = ε∆ρ,
(ρu)t + div(ρu ⊗ u) + ∇(aργ + δρβ) + ε∇u · ∇ρ

= (∇ × H) × H + µ∆u + (λ+ µ)∇(divu) + ρF,

Ht − ∇ × (u × H) = −∇ × (ν∇ × H),
div H = 0,

where F is the term accounting for external forces.

Note that besides the artificial viscosity added to the continuity equation, two new
terms appeared in the momentum equation (2.5). The term δρβ, where β > 1, acts
as an artificial pressure and is intended to provide better estimates on the density,
whereas the term ε∇u · ∇ρ is set to equate the unbalance in the energy estimates
of the MHD equations caused by the introduction of the artificial viscosity. This
approximate system resembles the one employed by Hu and Wang in [29] where they
study the existence of weak solutions to the three dimensional MHD equations. A
similar approximation was introduced by Feireisl, et al. in [24] in the study of the
Navier-Stokes equations, who, in turn, followed the pioneering ideas by Lions in [38].
Recall that ε and δ are small constants and the analysis that we develop provides
insights that justify the accuracy to which this regularized model approximates the
desired SW-LW interaction.

Now, as it turns out, even in this regularized setting the velocity field might not be
smooth enough to provide a good enough definition of Lagrangian transformation that
we can work with. More specifically, in the present situation there is no a priori bound
available for Jacobian of the Lagrangian transformation, as it depends on the L∞ norm
of divu. For this reason we replace the velocity by a suitable smooth approximation
uN (which tends to u as N → ∞) in the definition of the Lagrangian transformation.
Thus obtaining an approximate Lagrangian coordinate with u replaced by uN in its
definition.

Although we now have a smoothed Lagrangian coordinate, we lose relation (1.1)
and instead we have

Jy(t) = e−
∫ t

0 div uN (s,Φ(s,x))ds.



8 Introduction

With this our regularized SW-LW interactions model reads as:

ρt + div(ρu) = ε∆ρ,
(ρu)t + div(ρu ⊗ u) + ∇(aργ + δρβ) + ε∇u · ∇ρ

= ∇(αJy
ρ
g′(1/ρ)h(|ψ|2)) + (∇ × H) × H + µ∆u + (λ+ µ)∇(divu),

Ht − ∇ × (u × H) = −∇ × (ν∇ × H),
div H = 0.
iψt + ∆yψ = |ω|2ψ + αg(v)h′(|ψ|2)ψ,

Regarding this new system, we prove the existence of solutions on any finite time
interval provided that ε2/α ≫ 1 and show the convergence of the approximate solu-
tions when the artificial viscosity ε together with the interaction coefficients α tend
to 0 and as N tends to ∞. Then, we make δ tend to zero and show convergence to
a renormalized solution of the system formed by the MHD equations together with
the decoupled nonlinear Schrödinger equation. As emphasized before, the proposed
approximation scheme has the purpose to legitimize the coordinates of the limiting
Schrödinger equation to be considered as the Lagrangian coordinates of the fluid in a
generalized sense.

Let us remark that our results hold in a smooth bounded open spacial domain in
R2. The only restriction that does not allow us to proceed in the full three dimensional
case comes from the lack of solvability of the nonlinear Schrödinger equation in this
setting. However, assuming this our methods can be adapted to the three dimensional
case. Also, our result covers large initial data and permits vacuum at the price of
obtaining only weak solutions.

These results, both in the one dimensional and in the multidimensional cases, are
the result of the research developed during this Ph.D. program, under the supervision
of prof. Hermano Frid. Let us mention that the results on the multidimensional case
are product of an ongoing collaboration with prof. Hermano Frid, as well as with prof.
Ronghua Pan.



Chapter 2

Physical considerations and
deduction of the equations

The aim of this chapter is to give a detailed description of the Short Wave-Long Wave
Interactions model to be studied throughout this thesis. We first review of some of
the ideas involved in the deduction of the MHD equations, then introduce the SW-
LW interactions coupling and finally specify the structural conditions, constitutive
relations and general assumptions under which we develop our analysis.

2.1 The Magnetohydrodynamics equations

Magnetohydrodynamics (MHD) concerns the dynamics of a compressible conducting
fluid in the presence of a magnetic field. This interaction is described by a cou-
pling between the Navier-Stokes equations, modelling the hydrodynamic part, and
the Maxwell’s equations, which describe the electromagnetic effects.

Let us begin by reviewing the general ideas behind the deduction of the MHD
coupling.

2.1.1 The general fluid equations

In continuum mechanics the motion of a body is described by a family of one to one
mappings

X(t, ·) : Ω → Ω, t ∈ I,

where I ⊆ R is an interval (representing time) and Ω ⊆ Rn is a spatial domain occupied
by the body. The Continuum hypothesis requires X(t, ·) to be a diffeomorfism for any
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fixed t ∈ I. Regarding X(t, ·) as the evolution of the motion in time, it is convenient
to choose a reference configuration X(tI ,x) = x for all x ∈ Ω at a certain time tI ∈ I;
that is, an initial setting. According to this configuration the curve t → X(t,x)
describes the trajectory of a particle starting from the position x at time tI .

Granted the smoothness of the motion, X can be completely determined by the
velocity field u : I × Ω → Ω given by the ordinary differential equation

∂X(t,x)
∂t

= u(t,X(t,x)), X(tI ,x) = x, for x ∈ Ω, t ∈ I.

By applying physical laws, it is possible to deduce certain relations between the
motion and the physical properties of the body under consideration. These relations
are usually expressed in terms of integral equations which, in turn, can be restated as
partial differential equations provided that the motion is smooth.

We are interested in the mathematical aspects of fluid dynamics; when the body in
motion is a fluid. We adopt the macroscopic description of the motion which regards
a fluid as a continuum occupying a certain domain Ω. This is in contrast with the
microscopic point of view that considers the fluid as a collection of molecules and
describes its motion through the dynamics of each individual particle. Accordingly,
the dynamics are completely determined by the velocity field denoted by u.

When studying the dynamics of fluids, aside from the velocity field, other quantities
are taken into consideration; namely, its density ρ and temperature θ, regarded as
functions of the time t ∈ R and the spatial variable x ∈ Ω. The general description of
the dynamics can be summarized in a system of partial differential equations relating
these quantities1: the Navier-Stokes equations.

The general Navier-Stokes equations are a system consisting of:

• the continuity equation:
∂ρ

∂t
+ div(ρu) = 0,

• the momentum equation:

∂(ρu)
∂t

+ div(ρu ⊗ u) − divT = f ,

1Sometimes, the entropy is considered instead of the temperature. These quantities, however,
are related by the second law of thermodynamics expressed through Gibbs relation, and provide
equivalent descriptions of the dynamics.
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• and the energy equation:

∂

∂t

(
ρ
(1

2 |u|2 + e
))

+ div
(
ρ
(1

2 |u|2 + e
)

u
)

+ divq = div(Tu) + f · u.

Here, as aforementioned, ρ, u and θ denote the density, the velocity field and the
temperature of the fluid respectively. Additionally, e denotes the internal energy, T is
a stress tensor, q is the energy flux and f is an external force. The symbol ⊗ stands
for the tensor product [u ⊗ u]i,j := uiuj.

Each one of these equations is derived from particular physical considerations. The
continuity equation is a consequence of the mass conservation principle stating that
mass is preserved along the motion. The momentum equation comes from Newton’s
second law of motion, relating the inertial nature of the fluid to the forces acting on
it, decomposed into a stress tensor and external forces. The energy equation is the
result of thermodynamics considerations that link changes in the energy of the system
due to the motion to the heat flux of the fluid.

The stress tensor in the momentum equation can be written as

T = S − pId,

where Id is the identity matrix, p is a scalar function called pressure and S is the
viscous stress tensor. According to the principle of material frame indifference, the
viscous stress tensor must depend on the velocity field u and possibly other state
variables like ρ and θ. Assuming that the physical properties of the fluid are isotropic
(“uniform in all orientations”) and assuming that S is a linear function of ∇u, it can
be shown that S necessarily can be written as

S = λ(divu)Id+ 2µD(u), (2.1)

where λ and µ are real scalar coefficients called viscosity coefficients that may depend
on the values of other state variables like ρ and θ, and

D(u) = 1
2
(
∇u + (∇u)⊤

)
. (2.2)

A fluid satisfying (2.1) and (2.2) is called Newtonian. The viscosity coefficients are
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often required to satisfy the relations2

µ > 0, λ+ 2
3µ ≥ 0.

In general the pressure is a function of the density and the temperature of the fluid
and is expressed through a constitutive relation of the form

p = p(ρ, θ). (2.3)

For instance, in the case of perfect gases the pressure satisfies Boyle’s law:

p(ρ, θ) = Rρθ,

where R is a constant. When the time comes, we will specify the kind of constitutive
relation we are going to consider. For now we will stick to the general relation (2.3).

Moving on to the state variables involved in the energy equation, we must consider
a constitutive relation for the internal energy as well. Given the respective relation
(2.3) for the pressure, the internal energy e = e(ρ, θ) must satisfy the second law of
thermodynamics, which in particular implies Maxwell’s relation

∂e

∂ρ
= 1
ρ2 (p(ρ, θ) − θpθ) .

Concerning the energy flux, we consider the constitutive relation

q = −κ∇θ,

where κ is a nonnegative scalar function called heat conductivity coefficient which may
depend on ρ and θ. This relation is known as Fourier’s law.

Gathering all this information we arrive to Navier-Stokes-Fourier system of equa-

2The fluid dynamics equations make mathematical sense in n dimensions. In this general case the
number 3 in the denominator of the second relation should be replaced by n. We, however, restrict
ourselves to the 3-dimensional case.
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tions for a Newtonian fluid, given by

ρt + div(ρu) = 0, (2.4)

(ρu)t + div(ρu ⊗ u) + ∇p = div
(
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
+ f , (2.5)(

ρ
(1

2 |u|2 + e
))

t
+ div

(
u
(
ρ
(1

2 |u|2 + e
)

+ p
))

= div (κ∇θ)

+ div
((

λ(divu)Id + µ
(
∇u + (∇u)⊤

))
· u
)

+ f · u. (2.6)

In order to conclude this Section and for future reference, we point out that, in
view of (2.4) and (2.5), the energy equation (2.6) is equivalent to

(ρe)t + div(ρeu) + pdivu = div(κ∇θ) + λ(divu)2 + µ
(
∇u + (∇u)⊤

)
: ∇u. (2.7)

2.1.2 The equations of electromagnetism

Magnetohydrodynamics (MHD) concerns the dynamics of conducting fluids in a mag-
netic field. While the hydrodynamic part is described by the Navier-Stokes equations,
the electromagnetic effects are governed by the Maxwell’s equations. The general MHD
equations consist of a coupling between the two.

In practice, this coupling is not stated in its most general form. Several assumptions
that simplify the model are made, often motivated by physical considerations such as
empirical data of actual materials. For instance, the magnetic permeability, which
is a parameter characteristic of each particular material, is usually assumed to be
constant and equal to 1 since it differs only slightly from the unity in most real world
media covered by the MHD model (see [33]). For our purposes, however, the magnetic
permeability will be important and we need to keep track of it in the deduction of the
coupling in order to state correctly the equations we are going to work with. With
this in mind, we now turn our attention to the electromagnetic description.

Let us recall Maxwell’s equations of electromagnetism.

• the Maxwell-Ampère equation:

−∂D
∂t

+ ∇ × H = j,
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• the Maxwell-Coulomb equation:

div D = ρc,

• the Maxwell-Faraday equation:

∂B
∂t

+ ∇ × E = 0,

• and the Maxwell-Gauss equation:

div B = 0

Here, the three-dimensional vector fields D,B,E,H, j are the electric induction,
the magnetic induction, the electric field, the magnetic field and the current density,
respectively, while the scalar field ρc denotes the charge density (not to be confused
with the fluid’s density ρ of the previous section).

Similarly to the fluid equations of motion, the Maxwell’s equations come from
particular physical principles. They are related to Ampère’s law, Gauss’ law for electric
fields, Faraday’s law and Gauss’ law for magnetism, respectively.

According to the physical properties of the medium where the electromagnetic fields
propagate, some relations that link the vector fields D,B,E and H can be formulated.
Specifically, these relations are of the form

D = ε̃E

H = µ̃−1B,
(2.8)

for some ε̃ and µ̃ called electric permitivity (or dielectric constant) and magnetic
permeability of the medium. These parameters may depend on E and B respectively
(and may also depend on other quantities such as the density or the temperature in
the case of fluids) and are, in general, tensor valued. However, in the simple isotropic,
homogeneous case, both ε̃ and µ̃ can be assumed to be scalar and constant and the
medium is called a perfect medium.

Accordingly, the Maxwell’s equations take the following form:

−∂(ε̃E)
∂t

+ ∇ ×
(

1
µ̃

B
)

= j,
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div(ε̃E) = ρc,

∂B
∂t

+ ∇ × E = 0,

div B = 0

In order to close the system one more relation is needed. Such relation will be
provided by Ohm’s law, which relates j, E and B. As it also involves the velocity
field of the medium we treat it in the following section where we talk about the MHD
coupling.

2.1.3 The MHD Coupling

MHD models the interaction of conductive fluids and electromagnetic fields. When a
conducting fluid moves in a magnetic field, electric fields and electric currents develop.
Meanwhile, the magnetic field exerts forces on these currents which affect the motion
of the fluid. Such an interaction is described by a coupling between the equations
of fluid mechanics and the equations of electromagnetism. In order to complete the
MHD model it is necessary to specify the body force exerted by the magnetic field,
through the external force term in the momentum equation (2.5). Furthermore, a
term must be added to the energy equation (2.6) due to mechanical work exerted by
the magnetic field that dissipates into heat in the conductor.

In our current situation (a homogeneous Newtonian conductive fluid in the presence
of a magnetic field) the body force can be decomposed as

f = j × B + fext,

where the first term is the Lorentz force, owning to the electric current j within the
magnetic field H, which is related to B through (2.8), and the second term is due to
possible further external forces.

Additionally, in the present setting Ohm’s law can be stated as

j = σ̃(E + u × B),

where σ̃ denotes the electric conductivity of the field.

Moreover, according to Joule’s law, the energy dissipation in a conductor when a
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given current flows in it (the Joule heat) is given by

j · (E + u × B),

and must be added to the right hand side of equation (2.7) (see [33]). As a result we
obtain the equation

(ρe)t + div(ρeu) + pdivu

= div(κ∇θ) + λ(divu)2 + µ
(
∇u + (∇u)⊤

)
: ∇u + j · (E + u × B).

Gathering all this information, we obtain the following general system for MHD:

ρt + div(ρu) = 0, (2.9)

(ρu)t + div(ρu ⊗ u) + ∇p = div
(
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
+ j × B + fext,

(2.10)

(ρe)t + div(ρeu) + pdivu

= div(κ∇θ) + λ(divu)2 + µ
(
∇u + (∇u)⊤

)
: ∇u + j · (E + u × B). (2.11)

− ∂(ε̃E)
∂t

+ ∇ ×
(

1
µ̃

B
)

= j, (2.12)

div(ε̃E) = ρc, (2.13)
∂B
∂t

+ ∇ × E = 0, (2.14)

div B = 0, (2.15)
j = σ̃(E + u × B). (2.16)

Note that, in view of equations (2.9), (2.10) and (2.16), equation (2.11) is equivalent
to (

ρ
(1

2 |u|2 + e
))

t
+ div

(
u
(
ρ
(1

2 |u|2 + e
)

+ p
))

= div (κ∇θ)

+ div
((

λ(divu)Id + µ
(
∇u + (∇u)⊤

))
· u
)

+ j · E + fext · u. (2.17)

This is the most general system modelling a compressible magnetohydrodynamic
flow. Given its great complexity, we adopt a commonly used simplification of the
model: it is often assumed that the first term ∂(ε̃E)/∂t of the Maxwell-Ampère equa-
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tion, called the displacement current, is small and can be neglected (see [33]), so that,
from equation (2.12) we obtain

j = ∇ ×
(

1
µ̃

B
)
.

Also, from Ohm’s law and (2.14) we have

∂B
∂t

+ ∇ ×
(

1
σ̃

∇ ×
(

1
µ̃

B
))

= ∇ × (u × B).

Since, j and E (and therefore ρc) are completely determined by B and u, we can
drop equations (2.12), (2.13) and (2.16). Moreover, we have that

j · E = ∇ ×
(

1
µ̃

B
)

·
(

1
σ̃

∇ ×
(

1
µ̃

B
)

− u × B
)

= div
(

1
µ̃

B ×
(

1
σ̃

∇ × 1
µ̃

B
))

+ ∇ ×
(

1
σ̃

∇ ×
(

1
µ̃

B
))

· 1
µ̃

B

+div
(

(u × B) × 1
µ̃

B
)

− ∇ × (u × B) · 1
µ̃

B,

where we used the identity div(V × W) = (∇ × V) · W − V · (∇ × W) from vector
calculus. Using this, taking the inner product of (2.14) with µ̃−1B and adding the
resulting equation to (2.17) we deduce the energy equation for the simplified system:

(
ρ
(1

2 |u|2 + e
)

+ 1
2µ̃ |B|2

)
t

+ div
(

u
(
ρ
(1

2 |u|2 + e
)

+ p
))

= div (κ∇θ)

+ div
((

λ(divu)Id + µ
(
∇u + (∇u)⊤

))
· u
)

+ div
(

(u × B) × 1
µ̃

B
)

+ div
(

1
µ̃

B ×
(

1
σ̃

∇ × 1
µ̃

B
))

+ fext · u. (2.18)

Accordingly, the momentum equation results in

(ρu)t + div(ρu ⊗ u) + ∇p

= div
(
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
+
(

∇ × 1
µ̃

B
)

× B + fext, (2.19)
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the conservation of mass remains the same:

ρt + div(ρu) = 0, , (2.20)

and the Maxwell equations yield

Bt + ∇ ×
(

1
σ̃

∇ ×
(

1
µ̃

B
))

= ∇ × (u × B), (2.21)

div B = 0, (2.22)

thus obtaining the simplified MHD system consisting of equations (2.18), (2.19), (2.20),
(2.21) and (2.22).

From this point on we are going to restrict ourselves to this system and are going
to address it simply as the MHD system.

2.2 Short Wave-Long Wave Interactions

Up to this point we have only reviewed some of the ideas involved in the deduction
of the MHD system. Our main goal is to study certain mathematical aspects of the
interaction between the MHD system and a nonlinear Schrödinger equation in the
context of Short Wave-Long Wave Interactions. Our work is mainly inspired by three
papers that pursue similar objectives.

The first paper written by J. P. Dias and H. Frid in 2011 where, inspired by the work
of Benney on short wave-long wave interactions in [5], they propose a model consisting
of a coupling between the Navier-Stokes equations for a compressible isentropic fluid
and a nonlinear Schrödinger equation, studying existence and uniqueness of global
solutions and the problem of vanishing viscosity and interaction coefficient limit in
the one space dimensional context (see [17]).

The second paper, by H. Frid, R. Pan and W. Zhang in 2014 ([27]) which addresses
the problem of global existence of smooth solutions to the Cauchy problem, when
the initial data are smooth small perturbations of an equilibrium state, for a similar
coupling; this time in the full 3D case.

More recently, in 2016, H. Frid, J. Jia and R. Pan extended the results of this last
paper for a similar short short wave-long wave interactions coupling only this time
involving the MHD equations instead of the Navier Stokes system ([28]).
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Our main goal here is to study this same model in several other contexts and to
give answers that are still open such as existence of global strong solutions in the
planar 1D case, existence of weak solutions in the full 3D case, vanishing viscosity,
etc.

In the model, the Schrödinger equation is coupled to the MHD system along parti-
cle paths, meaning that the former is stated in a different coordinate system; namely
in Lagrangian coordinates.

The MHD system we deduced earlier is stated in the so called Eulerian coordinates,
where the motion is described from an outsider’s point of view. In the Eulerian de-
scription, the spatial variable and the temporal one are independent. The Lagrangian
coordinate, in contrast, is constant along the trajectories. In other words, the La-
grangian description follows the flow, as if the observer is on a boat following the
stream lines. As the Schrödinger equation is stated in Lagrangian coordinates we
must first give a precise definition of this coordinate system.

2.2.1 Lagrangian Coordinates and Coupling

Given a velocity field u = u(t,x) in Rd for t ∈ R and x ∈ Rd, the Lagrangian
coordinate related to u can be defined in the following way.

For (t,x) ∈ [0,∞) × Rd, let Φ(t,x) be the solution of the initial value problem

dΦ
dt

(t; x) = u(t,Φ(t; x)), (2.23)

Φ(0; x) = x.

Then, the Jacobian JΦ(t; x) = det
(
∂Φ
∂x (t; x)

)
of the transformation x 7→ Φ(t; x)

satisfies
dJΦ

dt
(t; x) = divu(t,Φ(t; x))JΦ(t; x), (2.24)

JΦ(0; x) = 1.

As aforementioned the Lagrangian coordinate is characterized by being constant
along particle paths. In the notation introduced above, the Lagrangian transformation
Y(t,x) = Y(t,y(t,x)) can thus be defined by the relation

y(t,Φ(t; x)) = y0(x), (2.25)

where the function y0 is a diffeomorphism which may be chosen conveniently according
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to the problem.

In the 3-dimensional case of the MHD system, we can define the Lagrangian coor-
dinate through the velocity field u of the fluid, by defining

y0(x) :=
(
x1, x2,

∫ x3

0
ρ0(x1, x2, s)ds

)
, (2.26)

where, ρ0 is the initial density ρ0(x) = ρ(0,x). This is in accordance with [27] and
[28].

By (2.25), we have that

∂y
∂z

(t,Φ(t; x)) · ∂Φ
∂x

(t; x) = ∂y0

∂x
(x).

Defining Jy(t; x) := det
(
∂y
∂z (t,Φ(t; x))

)
, we consequently have

Jy(t; x)JΦ(t; x) = det ∂y0

∂z
(x).

Taking derivative with respect to t we find that(
d

dt
Jy(t; x)

)
JΦ(t; x) + Jy(t; x)

(
d

dt
JΦ(t; x)

)
= 0,

and using (2.24) we get

d

dt
Jy(t; x) = −(divu)Jy(t; x).

Therefore from equation (2.20) we have

d

dt

(
ρ(t,Φ(t; x))
Jy(t; x)

)

= [ρt(t,Φ(t; x)) + ∇ρ(t,Φ(t; x)) · u(t,Φ(t; x))]Jy(t; x) + ρ(t,Φ(t; x))(divu)Jy(t; x)
Jy(t; x)2

= [−ρ(t,Φ(t; x))(divu)Jy(t; x) + ρ(t,Φ(t; x))(divu)Jy(t; x)
Jy(t; x)2

= 0.
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And since Jy(0; x) = ρ0(x), we conclude that

det
(
∂y
∂z

(t,Φ(t; x))
)

= Jy(t; x) = ρ(t,Φ(t; x)), (2.27)

i.e.
det

(
∂y
∂z

(t, z)
)

= ρ(t, z), (2.28)

for all (t, z) ∈ [0,∞) × R3.

We are interested in a coupling, involving a nonlinear Schrödinger equation along
particle paths. To that end, we consider the following Schrödinger equation

i
dψ

dt
+ ∆yψ = |ψ|2ψ +Gψ, (2.29)

where ψ is the complex valued wave function, G is a real valued function corresponding
to a potential due to external forces and y is the Lagrangian coordinate as defined
above. Recall that the momentum equation (2.19) also has a term accounting for
possible external forces.

As in [17], [27] and [28] we propose to model the short wave-long wave interaction
by taking fext in (2.19) and G in (2.29) as

fext = α∇(g′(1/ρ)h(|ψ ◦ Y|2)), G = α̃(g(v)h′(|ψ|2)), (2.30)

where α and α̃ are positive constants, Y(t,x) = (t,y(t,x)) is the Lagrangian trans-
formation as before, v(t,y) is the specific volume defined by

v(t,y(t,x)) = 1
ρ(t,x) , (2.31)

and g, h : [0,∞) → [0,∞) are nonnegative smooth functions with h(0) = 0.

The most important feature of this coupling is that it is endowed with an energy
identity. Indeed, having defined the external force by (2.30), the last term of equation
(2.18) reads

fext · u = αdiv(g′(1/ρ)h(|ψ ◦ Y|2)u) − αg′(1/ρ)h(|ψ ◦ Y|2)divu.
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Multiplying (2.20) by −(1/ρ)αg′(1/ρ)h(|ψ ◦ Y|2) we deduce that

−αg′(1/ρ)h(|ψ ◦ Y|2)divu = −α(g(1/ρ)t + u · ∇xg(1/ρ))h(|ψ ◦ Y|2)ρ.

Observe that from the definition of Y we have the conversion formula between
Eulerian and Lagrangian coordinates:

β(t,y)t = (β ◦ Y(t,x))t + u · ∇x(β ◦ Y(t,x)),

or synthetically,
β(t,y)t = βt(t,x) + u · ∇xβ(t,x).

Keeping in mind the previously deduced formula for the Jacobian of the Lagrangian
transformation synthesized by the identity dy = ρ(t,x)dx, we multiply equation (2.29)
by ψt (the complex conjugate of ψt), take real part and incorporate the definition of
G to obtain

− α(g(1/ρ)t + u · ∇xg(1/ρ))h(|ψ ◦ Y|2)ρdx
= −αg(v(t,y))th(|ψ(t,y)|2)dy
= −α

{(
g(v(t,y))h(|ψ(t,y)|2)

)
t
− g(v(t,y))h(|ψ(t,y)|2)t

}
dy

= α

α̃

{
divy(ψt∇yψ + ψt∇yψ) − α̃

(
g(v(t,y))h(|ψ(t,y)|2)

)
t

− 1
2(|∇yψ(t,y)|2)t − 1

2(|ψ(t,y)|4)t
}
dy.

Putting all of this information together and replacing it in the energy equation
(2.18) we arrive at the following differential form of the conservation of energy
{(
ρ
(1

2 |u|2 + e
)

+ 1
2µ̃ |B|2

)
t
+ divx

(
u
(
ρ
(1

2 |u|2 + e
)

+ p
))

− divx(κ∇θ) − divx
((
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
· u
)

− divx
(
(u × B) × 1

µ̃
B
)

− divx
( 1
µ̃

B ×
( 1
σ̃

∇x × 1
µ̃

B
))}

dx

= α

α̃

{
divy(ψt∇yψ + ψt∇yψ) − α̃

(
g(v(t,y))h(|ψ(t,y)|2)

)
t

− 1
2(|∇yψ(t,y)|2)t − 1

2(|ψ(t,y)|4)t
}
dy. (2.32)

In particular, under suitable integrability conditions, this identity yields an integral
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form of the conservation of energy:

d

dt

∫ (
ρ
(1

2 |u|2 + e
)

+ 1
2µ̃ |B|2

)
dx

+ d

dt

∫ α

α̃

(1
2 |∇yψ(t,y)|2 + 1

2 |ψ(t,y)|4 + α̃g(v(t,y))h(|ψ(t,y)|2)
)
dy = 0.

2.2.2 The Final System

As a result we are left with the following system of equations:

ρt + div(ρu) = 0, (2.33)

(ρu)t + div(ρu ⊗ u) + ∇p− α∇
(
g′(1/ρ)h(|ψ ◦ Y|2)

)
= div

(
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
+
(

∇ × 1
µ̃

B
)

× B, (2.34)(
ρ
(1

2 |u|2 + e
)

+ 1
2µ̃ |B|2

)
t

+ div
(

u
(
ρ
(1

2 |u|2 + e
)

+ p
))

= div (κ∇θ)

+ div
((

λ(divu)Id + µ
(
∇u + (∇u)⊤

))
· u
)

+ div
(

(u × B) × 1
µ̃

B
)

+ div
(

1
µ̃

B ×
(

1
σ̃

∇ × 1
µ̃

B
))

+ α∇
(
g′(1/ρ)h(|ψ ◦ Y|2)

)
· u, (2.35)

Bt + ∇ ×
(

1
σ̃

∇ ×
(

1
µ̃

B
))

= ∇ × (u × B), (2.36)

div B = 0, (2.37)
iψt + ∆yψ = |ψ|2ψ + α̃g(v)h′(|ψ|2)ψ. (2.38)

Here, the Schrödinger equation (2.38) is stated in the Lagrangian coordinates
(hence the subindex y in the differential operator) and the rest of the equations are
stated in Eulerian coordinates.

This system is also endowed with the energy identity (2.32). Let us not forget
about the constitutive relations:

p = p(ρ, θ), e = e(ρ, θ),

and Maxwell’s relation:

eρ(ρ, θ) = 1
ρ2 (p(ρ, θ) − θpθ(ρ, θ)). (2.39)
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Of course ρ is always a nonnegative function and the Lagrangian transformation
Y = Y(t,y(t,x)) satisfies

∣∣∣∣∣det ∂y
∂x

(t,x)
∣∣∣∣∣ = ρ(t,x), for all (t,x).

As a result the Lagrangian transformation is nonsingular as long as the density is
strictly positive and finite (away from vacuum and concentration).

2.3 Structural conditions

In this section we state the conditions under which we base our entire analysis on.
These conditions include growth conditions on the pressure, internal energy and heat
conductivity, initial and boundary conditions and hypotheses on the coupling func-
tions.

Although some of the results in this work may be stated in a more general setting,
in order to maintain a more clean presentation we are going to restrict our analysis to
a specific set of constitutive relations which we specify below. Our assumptions cover
a variety of physical cases and agree with several other references in the literature.

2.3.1 Constitutive relations

In this work, we consider a general constitutive relation for the pressure of the form

p(ρ, θ) = pe(ρ) + θpθ(ρ). (2.40)

That is, we assume that the pressure can be decomposed into an elastic part pe and a
thermal part θpθ which depends linearly on the temperature. Note that (2.40) can be
viewed as the first two terms of a Taylor expansion

p(ρ, θ) = p(ρ, θ0) + (θ − θ0)pθ(ρ, θ0) +O((θ − θ0)2),

for a given θ > 0. Such constitutive relation agrees with the one considered in [23]
and we refer to it for a wide discussion on its physical relevance.

For our purposes, we are going to assume that the elastic part of the pressure is
given by a γ-law:

pe(ρ) = aργ, (2.41)
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for some a > 0 and γ > 1. This last constraint may be relaxed as in [23], but we
choose to restrict ourselves to this more simple case, since it illustrates satisfactorily
the methods used in our study.

Now, according to Maxwell’s relation (2.39) the internal energy can be written in
the form

e(ρ, θ) = Pe(ρ) +Q(θ), (2.42)

with Pe given by
Pe(ρ) = a

γ − 1ρ
γ−1, (2.43)

and Q(θ) given by
Q(θ) =

∫ θ

0
Cϑ(z)dz, (2.44)

where Cϑ(θ) := ∂e/∂θ is the specific heat at constant volume, which depends only on
the temperature.

Under these assumptions, using equation (2.33) it is easy to see that equation
(2.35) can be rewritten as

(ρQ(θ))t + div(ρQ(θ)u) + θpθ(ρ)divu

= div(κ∇θ) + λ(divu)2 + µ
(
∇u + (∇u)⊤

)
: ∇u + 1

σ̃

∣∣∣∇ × ( 1
µ̃
B)
∣∣∣2 . (2.45)

Let us also introduce the specific entropy s = s(ρ, θ) through the thermodynamic
relations

θsρ = eρ − p

ρ2 , θsθ = eθ,

that is
s(ρ, θ) =

∫ θ

1

Cϑ(z)
z

dz − Pϑ(ρ), (2.46)

where,
Pϑ(ρ) :=

∫ ρ

1

pθ(z)
z2 dz. (2.47)

In connection with (2.45), the entropy then satisfies the following equation

(ρs)t + div(ρsu) − div
(
κ∇θ
θ

)

= κ|∇θ|2

θ2 + λ

θ
(divu)2 + µ

θ

(
∇u + (∇u)⊤

)
: ∇u + 1

θ

∣∣∣ 1
σ̃
∇ × 1

µ̃
B)
∣∣∣2 . (2.48)
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2.3.2 Initial and boundary conditions

Throughout this work we are going to assume that the fluid under consideration oc-
cupies a domain Ω ⊆ R3 during a time interval [0, T ], where T > 0 is arbitrary. We
focus on the case where Ω is a smooth and bounded domain. Accordingly, equations
(2.33)-(2.38) must be supplemented with a set of initial and boundary conditions in
order to obtain a well posed problem. Regarding the boundary conditions, we assume
that

(u,∇xθ · n,B)|∂Ω = 0,
ψ|∂Ωy = 0, t ∈ [0, T ].

Here, n is the outer normal vector of Ω, and Ωy is the corresponding domain of the
Lagrangian coordinate y. Note that, by virtue of (2.25) and the boundary condition
on the velocity, the Lagrangian transformation Y (t, ·) : Ω → R3 is a diffeomorphism
onto Ωy := y0(Ω) for every t ∈ [0, T ].

As for the initial conditions, we assume that

(ρ,m, ρQ(θ),B)(0,x) = (ρ0,m0, χ0,B0)(x), x ∈ Ω
ψ(0,y) = ψ0(y), y ∈ Ωy,

where m = ρu is the momentum of the fluid.
The reason why we specify the initial conditions in terms of m and ρQ is to include

regimes where the density ρ may vanish. Although our model depends on the fact that
the density is strictly positive, since the Lagrangian coordinate becomes singular in
the presence of vacuum, we will discuss the possible existence of weak solutions of
our system where the Lagrangian coordinate makes sense in an approximate way. On
the other hand, equations (2.34) and (2.35) (and respectively (2.45)) become singular
whenever ρ vanishes. This problem will be dealt with in time. For now, we simply
demand that m0 and χ0 satisfy the following compatibility condition

(m0, χ0) = 0, on the set {x ∈ Ω : ρ0(x) = 0}. (2.49)

2.3.3 Growth conditions and coupling functions

Finally, let us stablish the growth conditions on the pressure, thermal energy and
heat conductivity; as well as the hypotheses on the coupling functions g and h. The
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conditions below are in accordance with those in [23] and also agree with those imposed
in [15] and in [48], where a more general constitutive relation for the pressure is
considered.

Pressure:

As already mentioned, we are considering a pressure function of the form

p(ρ, θ) = pe(ρ) + θpθ(ρ), (2.50)

where the elastic part pe is given by a γ-law:

pe(ρ) = aργ, (2.51)

with a > 0 and γ > 1. Concerning the thermal part of the pressure we assume that
pθ satisfies the following conditions:


pθ ∈ C[0,∞) ∩ C1(0,∞), pθ(0) = 0

pθ is a nondecreasing function of ρ ∈ [0,∞]

pθ(ρ) ≤ p0(1 + ρΓ), for all ρ ≥ 0,

(2.52)

for some p0 ≥ 0 and Γ ≤ γ
2 .

Internal energy:

As aforementioned, this particular choice of pressure function and Maxwell’s relation
(2.39) force the internal energy e to have the form

e(ρ, θ) = Pe(ρ) +Q(θ), (2.53)

where

Pe(ρ) = a

γ − 1ρ
γ−1, Q(θ) =

∫ θ

0
Cϑ(z)dz.

Concerning the function Cϑ we assume that:
Cϑ ∈ C1[0,∞), infz∈[0,∞) Cϑ(z) > 0

e1(1 + θr) ≤ Cϑ(θ) ≤ e2(1 + θr),
(2.54)
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where r ∈ [0, 1] and e1 and e2 are appropriate positive constants.

Heat conductivity:

As in [15, 23, 48] we need to impose some growth conditions on the heat conductivity
coefficient κ for our results to hold. In the most general case all the viscosity coefficients
(µ and λ), electromagnetic coefficients (µ̃ and σ̃) and heat conductivity (κ) may depend
on both the density and the temperature. For our purposes, however, we take them
all to be constant, except for the heat conductivity, which we assume to depend on
the temperature, satisfying some growth rates. Although, dependence on the density
may be assumed for generality, the dependence on the temperature is necessary for
our analysis. Specifically, we assume that κ = κ(θ) depends on the temperature and
satisfies: 

κ ∈ C2([0,∞))

k1(1 + θq) ≤ κ(θ) ≤ k2(1 + θq), for all θ ≥ 0

κθ(θ) ≤ k2(1 + θq
′), for all θ ≥ 0.

(2.55)

Here, k1 > 0, q ≥ 2 + 2r, q′ ≥ 0 and r is the same as in (2.54).

Coupling:

Finally we impose some conditions on the functions involved in the coupling describing
the short wave-long wave interaction, which agree with those in [17, 27, 28]


g, h : [0,∞) → [0,∞), smooth with g(0) = h(0) = 0,

suppg′ compact in (0,∞),

supph′ compact in [0,∞).

(2.56)

In the upcoming chapters we are going to discuss several questions on our model
under these structural conditions, such as existence and uniqueness of solutions. Given
the complexity of the model, we begin by studying the one dimensional case, where so-
lutions are well behaved, and then move on to the more complicated multidimensional
case.



Chapter 3

SW-LW Interactions in Planar
MHD

3.1 Planar equations

Considering the complexity of the model we deduced in the previous chapter, we
analyse first a simplified version of it. Namely, we are going to study several aspects
of the model under the assumption that the flow moves in a preferable direction. We
are going to assume that the three dimensional MHD flow with space variables x =
(x, x2, x3) moves in the x direction and is uniform in the transverse direction (x2, x3).
This assumption considerably simplifies the equations as well as the short wave-long
wave interaction coupling, since the one dimensional Lagrangian transformation takes
a very specific and plain form. Taking advantage of this, we can write the whole
system in Lagrangian coordinates in order to carry out a straightforward (although
not necessarily simple) analysis.

Our approach is motivated by the work of Dias and Frid in [17], as was already
mentioned, but also relies on Chen and Wang’s work in [15] and on the work of Wang in
[48] on the existence and uniqueness of solutions for the planar MHD system. We also
incorporate Chen and Perepelitsa’s results from [14], where they study the vanishing
viscosity problem for the Navier Stokes equations, and adapt them to our model. More
details will be given in the respective sections.
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3.1.1 Planar MHD and Lagrangian coordiantes

Let us consider a three dimensional MHD flow with spatial variables x = (x, x2, x3).
Let us assume that it moves in the x direction and is uniform in the transverse direction
(x2, x3). For convenience, let us decompose our dependent MHD variables as

ρ = ρ(t, x), θ = θ(t, x), u = (u,w)(t, x), w = (u2, u3),

B = (b1,b)(t, x), b = (b2, b3),

where u and b1 are the longitudinal velocity and the longitudinal magnetic induc-
tion, and w and b are the transverse velocity and the transverse magnetic induction,
respectively.

Under our assumptions, we have that the partial derivatives with respect to x2

and x3 of all the functions involved in our system are zero. With this in mind, a
straightforward calculation shows that (2.36) takes the form

b1t = 0,

bt + (ub − b1w)x =
(

1
α̃µ̃

bx
)
x

.

Also, (2.37) implies
b1x = 0.

As a result b1 is constant and we can take it to be equal to 1 (that is b1 ≡ 1).

For convenience, and for later applications, in what follows we are going to write
all of the equations in terms of the magnetic field H instead of the magnetic induction
B. Recall that B and H are related by the identity

H = µ̃−1B.

Consequently, writing H = (h1,h), the one (space) dimensional version of equations
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(2.33)-(2.38) is

ρt + (ρu)x = 0, (3.1)

(ρu)t +
(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ ◦ Y|2)
)
x

= (εux)x, (3.2)

(ρw)t + (ρuw − βh)x = (µwx)x, (3.3)(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ β
2 |h|2

)
t
+
(
u
(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ p
))

x

= (βw · h − βu|h|2)x + (εuux + µw · wx + νh · hx)x + (κθx)x

+ α
(
g′(1/ρ)h(|ψ ◦ Y|2)

)
x
u, (3.4)

βht + (βuh − βw)x = (νhx)x, (3.5)
iψt + ψyy = |ψ|2ψ + α̃g(v)h′(|ψ|2)ψ. (3.6)

Here, ε = λ + 2µ is the bulk viscosity, β = µ̃ is the magnetic permeability and
ν = σ̃−1 is the electric resistivity. The change in notation regarding the magnetic
permeability is to prevent confusion with the shear viscosity parameter µ and to avoid
the overload of notation caused by the tilde.

Let us also recall that p = p(ρ, θ) and e = e(ρ, θ) are given by (2.50) and (2.53),
respectively; and according to (2.45), equation (3.4) is equivalent to

(ρQ(θ))t + (ρQ(θ)u)x + θpθ(ρ)ux = (κθx)x + εu2
x + µ|wx|2 + ν|hx|2. (3.7)

It is worth mentioning that in this case the Lagrangian transformation Y(t, x) =
(t, y(t, x)) can be defined in a simpler way by the identities

∂y

∂x
= ρ,

∂y

∂t
= −ρu y(0, x) =

∫ x

0
ρ0(z)dz, (3.8)

clarifying any ambiguity in the system above. In addition, the one dimensional version
of the energy identity (2.32) continues to hold. Namely, we have
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(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ β

2 |h|2
)
t

+
(
u
(
ρ
(
e+ 1

2u
2 + 1

2 |w|2
)

+ p
))

x

− (εuux + µw · wx + νh · hx)x − (κθx)x − (βw · h − βu|h|2)x

dx
= α

α̃

(ψtψy + ψtψy)y −
(
α̃g(v)h(|ψ|2) + 1

2 |ψy|2 + 1
4 |ψ|4

)
t

dy. (3.9)

Furthermore, we can rewrite the whole system in Lagrangian coordinates as

vt − uy = 0, (3.10)

ut +
(
p+ β

2 |h|2 − αg′(v)h(|ψ|2)
)
y

=
(
εuy
v

)
y
, (3.11)

wt − βhy =
(
µwy

v

)
y
, (3.12)[

e+ 1
2(u2 + |w|2 + βv|h|2) + α

α̃

(
α̃g(v)h(|ψ|2) + 1

2 |ψy|2 + 1
2 |ψ|4

)]
t

+
(
u

(
p+ β

2 |h|2 − αg′(v)h(|ψ|2)
)

− βh · w − (ψtψy + ψtψy)
)
y

=
(
κθy
v

+ εuuy
v

+ µw · wy

v
+ νh · hy

v

)
y

, (3.13)

(βvh)t − βwy =
(
νhy
v

)
y

, (3.14)

iψt + ψyy = |ψ|2ψ + α̃g(v)h′(|ψ|2)ψ. (3.15)

where, v is the specific volume given by (2.31). Accordingly, equation (3.7) results in

Q(θ)t + θpθ(ρ)uy = (κθy
v

)y +
εu2

y

v
+ µ|wy|2

v
+ ν|hy|2

v
. (3.16)

Of course, this change of variables is justified only when ρ is finite and strictly
positive.
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3.1.2 The initial-boundary value problem

In what follows we are going to study several aspects of the systems (3.1)-(3.6) and
(3.10)-(3.15), such as the vanishing bulk viscosity and interaction coefficients limit.
However, before we get there, we must first ensure that the proposed system is well
posed. For this reason we dedicate a couple of sections to the existence and uniqueness
of solutions.

Let us state precisely the problem we are going to focus our attention on. Consider
the initial-boundary value problem for the system (3.1)-(3.6) in a bounded spatial
domain, which we can assume to be (0, 1) without loss of generality, with the following
initial and boundary conditions

(ρ, u,w,h, θ, ψ)|t=0 = (ρ0, u0,w0,h0, θ0, ψ0)(x), x ∈ (0, 1),

(u,w,h, θx)|x=0,1 = 0, ψ|∂Ω = 0
(3.17)

where the initial data satisfes the respective compatibility conditions.

In order to show well-posedness of this problem we first do it for the system in
Lagrangian coordinates. In the process, we show that no vacuum nor concentration of
mass develop in finite time, which also implies well posedness of the original problem
in Eulerian coordinates.

From (3.8) we have that

y(t, x) =
∫ x

0
ρ(t, z)dz.

Using equation (3.1) and the boundary conditions we see that

y(t, 1) = y(0, 1) =
∫ 1

0
ρ0(z)dz.

Up to a scaling we can assume that
∫ 1

0
ρ0(z)dz = 1,

so that 0 < y < 1. With this, the initial-boundary value problem (3.1)-(3.6), (3.17) in
Eulerian (t, x) coordinates is transformed into the initial-boundary value problem for
the system (3.10)-(3.15) in Lagrangian coordinates (t, y) for y ∈ Ω := (0, 1) and t ≥ 0
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with the following initial and boundary conditions
(v, u,w,h, θ, ψ)|t=0 = (v0, u0,w0,h0, θ0, ψ0)(y), y ∈ Ω,

(u,w,h, θy, ψ)|∂Ω = 0.
(3.18)

Remember that we are assuming the structural and growth conditions from Section
2.3. In connection with (2.50) and (2.53), by an abuse of notation we have that
p = p(v, θ) is given by

p(v, θ) = pe(v) + θpθ(v), (3.19)

where the elastic part pe is given by

pe(ρ) = av−γ, (3.20)

with a > 0 and γ > 1. Concerning the thermal part of the pressure pθ we assume that


pθ ∈ C(0,∞) ∩ C1(0,∞), limv→∞ pθ(v) = 0

pθ is a nonincreasing function of v ∈ (0,∞)

pθ(v) ≤ p0(1 + v−Γ), for all ρ ≥ 0,

(3.21)

for some p0 ≥ 0 and Γ ≤ γ
2 .

Accordingly, the internal energy e = e(v, θ) is given by

e(v, θ) = Pe(v) +Q(θ), (3.22)

where

Pe(v) = a

γ − 1v
1−γ, Q(θ) =

∫ θ

0
Cϑ(z)dz. (3.23)

Concerning the function Cϑ we assume (2.54).
As aforementioned, the heat conductivity κ must depend on θ and satisfy (2.55).

Moreover, we assume that the coupling functions g and h satisfy (2.56).As for the
parameters ε, µ, ν, β, α and α̃, we take them to be fixed positive constants. Let us in
fact take α = α̃ from this point on, since the analysis developed below does not change
otherwise, but may be clouded by the overload of notation.

Under these conditions we can prove the following result.
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Theorem 3.1. Supose that there are positive constants m < M such that

m ≤ v0(y), θ0(y) ≤ M, y ∈ Ω, (3.24)

and that
v0, u0,w0,h0, θ0 ∈ H1(Ω), ψ0 ∈ H2(Ω;C), (3.25)

and v0 ∈ W 1,∞(Ω). Then, problem (3.10)-(3.15), (3.18) has a unique global solution
(v, u,w,h, θ, ψ)(t, y) such that for any fixed T > 0

v ∈ C([0, T ];H1(Ω)) ∩ L∞(0, T ;W 1,∞(Ω)),
(u,w,h) ∈ C([0, T ];H1

0 (Ω)) ∩ L2(0, T ;H2(Ω)),
θ ∈ C([0, T ];H1(Ω)), θy ∈ L2(0, T ;H1

0 (Ω))
ψ ∈ C([0, T ];H1

0 (Ω;C)) ∩ L∞(0, T ;H2(Ω;C)).

Also, for each (t, y) ∈ [0, T ] × Ω we have

C−1 ≤ v(t, y), θ(t, y) ≤ C,

where C > 0 is a constant depending only on T,m,M and the initial data. Moreover,
solutions depend continuously on the initial data.

In order to prove this theorem we first prove existence of local solutions and then
extend the local solutions to global ones based on a priori estimates.

For the local result we use a Faedo-Galerkin type method similar to that applied
by Dias and Frid in [17], which is in turn resembles the classic work by Kazhikhov
and Shelukhin in [32] (c.f. [2, Chapter 2]). As for the global result, we develop some
a priori estimates inspired by the work of Chen and Wang in [15] and by the work of
Wang in [48].

The uniqueness of solutions is proved by analysing the equations satisfied by the
difference of two possible solutions that have the same initial values and conclude by
an application of Gronwall’s inequality. In this part we incorporate some of the ideas
by Chen and Wang in [16] and adapt them to our needs.

Note that the results in Theorem 3.1 for the problem in Lagrangian coordinates
imply the corresponding results for problem (3.1)-(3.6), (3.17) in Eulerean coordinates.
More precisely we have the following theorem.
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Theorem 3.2. Supose that there are positive constants m < M such that

m ≤ ρ0(x), θ0(x) ≤ M, x ∈ (0, 1), (3.26)

and that
ρ0, u0,w0,h0, θ0 ∈ H1((0, 1)), ψ0 ∈ H2(Ω;C), (3.27)

and ρ0 ∈ W 1,∞((0, 1)). Then, problem (3.1)-(3.6), (3.17) has a unique global solution
(ρ, u,w,h, θ)(t, x), ψ(t, y) such that for any fixed T > 0

ρ ∈ C([0, T ];H1((0, 1))) ∩ L∞(0, T ;W 1,∞((0, 1))),
(u,w,h) ∈ C([0, T ];H1

0 ((0, 1))) ∩ L2(0, T ;H2((0, 1))),
θ ∈ C([0, T ];H1((0, 1))), θy ∈ L2(0, T ;H1

0 ((0, 1)))
ψ ∈ C([0, T ];H1

0 (Ω;C)) ∩ L∞(0, T ;H2(Ω;C)).

Also, for each (t, x) ∈ [0, T ] × (0, 1) we have

C−1 ≤ ρ(t, x), θ(t, x) ≤ C, ,

where C > 0 is a constant depending only on T,m,M and the initial data.

3.2 Existence and Uniqueness of solutions

Our main goal in this section is to prove Theorems 3.1 and 3.2. Note that Theorem 3.2
follows from Theorem 3.1 by changing back to the original coordinate system once we
show that the coordinate change is nonsingular. As observed before, the Lagrangian
transformation is nonsingular as long as ρ (or equivalently v) is strictly positive and
finite. As this is part of the conclusion of Theorem 3.1 we need only prove this theorem.

Let us begin by showing existence of local solutions.

3.2.1 Local solutions: Galerkin method

Let us assume that the initial data (v0, u0,w0,h0, θ0, ψ0)(y) satisfies

m ≤ v0(y), θ0(y) ≤ M, y ∈ Ω, (3.28)
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and that
v0, u0,w0,h0, θ0 ∈ H1(Ω), ψ0 ∈ H1(Ω;C). (3.29)

Then, we have the following local result.

Lemma 3.1. There exists T > 0 and a solution of (3.10)-(3.15), (3.18) satisfying

v ∈ C([0, T ];H1(Ω)), m

4 ≤ v ≤ 4M

(u,w,h) ∈ C([0, T ];H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)),

θ ∈ C([0, T ];H1(Ω)), θy ∈ L2(0, T ;H1
0 (Ω)), θ > 0

ψ ∈ C([0, T ];H1
0 (Ω;C)),

vt, ut,wt,ht, θt ∈ L2(0, T ;L2(Ω)).

The rest of this section is devoted to the proof of this lemma.
Let us construct a sequence of approximate solutions (vn, un,wn,hn, θn, ψn) where

(un,wn,hn, θn, ψn) are of the form

un(t, y) =
n∑
k=1

unk(t)sin(kπy),

wn(t, y) =
n∑
k=1

wn
k(t)sin(kπy),

hn(t, y) =
n∑
k=1

hnk(t)sin(kπy), n = 1, 2, ... (3.30)

θn(t, y) =
n∑
j=0

θnj (t)cos(jπy),

ψn(t, y) =
n∑
k=1

ψnk (t)sin(kπy).

Note that each approximation is written as a sum of either sines or cosines so that
they match the desired boundary conditions (for example, θny |∂Ω = 0).

In order to determine the coefficients unk(t),wn
k(t),hnk(t), θnj (t), ψnk (t), j = 0, 1, ..., n,

k = 1, ..., n, we demand that equations (3.11)-(3.15) be satisfied in an approximate
way. To this end, we consider the spaces

Sn := spanC{sin(kπy) : k = 1, ..., n},

Cn := spanC{cos(jπy) : j = 0, 1, ..., n},
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with respective projections

P S
n : L2(Ω) → Sn, P C

n : L2(Ω) → Cn.

By virtue of (3.10) we take

vn(t, y) := v0(y) +
∫ t

0
uny (y, s)ds, (3.31)

so that,
vnt = uny , vn|t=0 = v0.

With the notation above, we consider the following system.

unt = P S
n

(−p(vn, θn) − β

2 |hn|2 + αg′(vn)h(|ψn|2)
εuny
vn

)
y

, (3.32)

wn
t = P S

n

βhny +
(
µwn

y

vn

)
y

, (3.33)

βhnt = P S
n

 1
vn

− βunyhn + βwn
y +

(
νhny
vn

)
y

, (3.34)

θnt = P C
n

 1
Cϑ(θn)

− θnpθ(vn)uny +
(
κ(θn)θny
vn

)
y

+
ε|uny |2

vn
+
µ|wn

y |2

vn
+
ν|hny |2

vn

, (3.35)

iψnt = P S
n

− ψnyy + |ψn|2ψn + αg(vn)h′(|ψn|2)ψn
. (3.36)

This “approximate problem” is defined in such a way that (heuristically) a limit
(v, u,w,h, θ, ψ) of the sequence (or a subsequence of) (vn, un,wn,hn, θn, ψn) satisfy
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the system

vt = uy, (3.37)

ut =
(

−p(v, θ) − β

2 |h|2 + αg′(v)h(|ψ|2)εuy
v

)
y

, (3.38)

wt = βhy +
(
µwy

v

)
y
, (3.39)

βht = 1
v

− βuyh + βwy +
(
νhy
v

)
y

, (3.40)

θt = 1
Cϑ(θ)

− θpθ(v)uy +
(
κ(θ)θy
v

)
y

+ ε|uy|2

v
+ µ|wy|2

v
+ ν|hy|2

v

, (3.41)

iψt = −ψyy + |ψ|2ψ + αg(v)h′(|ψ|2)ψ, (3.42)

which is equivalent to our original system (3.10)-(3.15).

Now, system (3.32)-(3.36) poses a system of ODE’s for the coefficients unk(t), wn
k(t),

hnk , θnj (t), ψnk (t), k = 1, 2, ..., n, j = 0, 1, ..., n. Namely,

d

dt
unk(t) = 2

∫ 1

0

(
−p(vn, θn) − β

2 |hn|2 + αg′(vn)h(|ψn|2)
εuny
vn

)
y

sin(kπy)dy, (3.43)

d

dt
wn
k(t) = 2

∫ 1

0

(
βhn +

µwn
y

vn

)
y

sin(kπy)dy, (3.44)

β
d

dt
hnk(t) =

∫ 1

0

1
vn

− βunyhn + βwn
y +

(
νhny
vn

)
y

sin(kπy)dy, (3.45)

d

dt
θnj (t) =

∫ 1

0

1
Cϑ(vn, θn)

− θnpθ(vn)uny +
(
κ(θn)θny
vn

)
y

+
ε|uny |2

vn
+
µ|wn

y |2

vn
+
ν|hny |2

vn

cos(jπy)dy,

(3.46)
d

dt
ψnk (t) =

∫ 1

0

(
−ψnyy + |ψn|2ψn + αg(vn)h′(|ψn|2)ψn

)
sin(kπy)dy. (3.47)

Regarding the initial conditions, we impose that

(un,wn,hn, θn, ψn)|t=0 = (un0 ,wn
0 ,hn0 , θn0 , ψn0 ), (3.48)
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where the latter satisfy

un0 ,wn
0 ,hn0 , ψn0 ∈ Sn, θn0 ∈ Cn, (3.49)

and
(un0 ,wn

0 ,hn0 , θn0 , ψn0 ) → (u0,w0,h0, θ0, ψ0) (3.50)

in H1(Ω) (and, therefore, uniformly). For instance, θn0 can be defined by

θn0 (y) = −
n∑
j=1

θ̂0y(j)
jπ

cos(jπy) +
θ0(0) −

n∑
j=1

θ̂0y(j)
jπ

 ,
where θ̂0y(j), j = 1, 2, ... are the coefficients of the sine Fourier series of θ0y; that is

θ0y(·) =
∞∑
j=1

θ̂0y(j)sin(jπ·), in L2(Ω).

Taking the coefficients of the newly defined approximate initial data as initial
conditions for the respective coefficients and taking into account relation (3.31), the
existence and uniqueness of solutions of (3.43)-(3.47) are guaranteed by the well known
classical results on the theory of ordinary differential equations. From this, the ex-
istence and uniqueness of solutions of the form (3.30) for the system (3.32)-(3.36),
(3.48) follow.

Having a sequence of approximate solutions we now need some uniform estimates
that allow us to take a convergent subsequence to a solution of the original problem
(3.10)-(3.15), (3.18).

Observe that each one of the approximate solutions is merely a local one. That
is, each solution (vn, un,wn,hn, θn, ψn) exists only on a time interval [0, tn]. So, we
not only have to bound properly the norms of the involved functions, but have to
guarantee that they are all defined on a uniform small enough interval [0, t0].

From the theory of ODE’s we know that whenever one has existence and uniqueness
of solutions to an ODE

d

dt
X = F (X), X(0) = X0,

where, F : W ⊆ Rn → Rn, then given an initial condition X0 ∈ W , there is a maximal
interval of existence (t−, t+), t− < 0 < t+. Such an interval is characterized by the fact
that whenever t± is finite then as t → t± one of the following two possibilities hold:
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• either X(t) tends to the boundary ∂W of W , or

• |X(t)| tends to infinity.

With this in mind, we see that in order to guarantee the existence of t0 > 0 that
bounds tn from below for all n, we have to ensure that the coefficients of (un,wn,hn,
θn, ψn) do not blow up before t0 and also that (vn, θn) remain in a compact subset of
the domain of the functions p, e and κ. That is, we have to show that (vn, θn)(t) does
not leave a certain compact subset of (0,∞) × [0,∞).

In order to avoid this last constraint we are going to make two remarks.
First we are going to assume that

m

2 ≤ vn(y, t) ≤ 2M, y ∈ Ω, t ∈ [0, tn]. (3.51)

This is certainly true on a possibly smaller time interval, which we will show later on
contains [0, t0] for some uniform t0 > 0.

Second, since we do not seem to be able to show directly that θn is nonnegative
on a uniform over n time interval, we consider smooth extensions of the functions

Cϑ(θ), p(v, θ), κ(θ)

for (v, θ) ∈ (0,∞) × R such that for all v ∈ [m/4, 4M ] and all θ ≤ 0

0 ≤ p(v, θ) ≤ p̃0(1 + |θ|), κ̃0 ≤ κ(θ), (3.52)
ẽ1 ≤ Cϑ(θ) ≤ ẽ2, (3.53)
|pθ(v, θ)| ≤ p̃1, |pv(v, θ)| ≤ p̃2(1 + |θ|), (3.54)
κ(θ), |κθ(v, θ)| ≤ κ̃1(1 + |θ|q̃1), (3.55)

where p̃0, κ̃0, ẽ1, p̃1, p̃2, κ̃1 and ẽ2 are positive constants. These conditions are in agree-
ment with our previous assumptions on the growth of the functions p, e and κ.

Such extensions are not difficult to construct. It suffices to consider a reflection
with respect to the axis (0,∞) × {θ = 0} and some manipulation (cutoff) in the case
of Cϑ so that (3.53) is satisfied.

Thus, from this point on we are going to work on the system (3.32)-(3.36), (3.48)
with the extended Cϑ, p and κ (maintaining the same notation for the extensions).

As mentioned before, we seek to ensure the existence of a convergent (in some
sense) subsequence of (vn, un,wn,hn, θn, ψn) so that its limit satisfies (3.37)-(3.42).
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Once we have achieved this, since θ0 is bounded away from zero, the limit θ of the
(sub)sequence θn will also be positive, at least on a small enough time interval, and
therefore our original system (3.10)-(3.15) (with the original Cϑ, p and κ) will be
satisfied, thus proving Lemma 3.1. Let us remark that, in fact, there is a maximum
principle available for the limit equation (3.41) which guarantees the strict positivity
of θ, but we leave this argument to the a priori estimates from Section 3.2.4

3.2.2 Estimates for the approximate problem

Let us begin by pointing out some useful remarks (Recall that we are assuming (3.51)).
First, the simplest case of Sobolev imbeddings applied to θn implies

max
y∈Ω

|θn(t, y)| ≤ ||θn(t)||L2(Ω) + ||θny (t, y)||L2(Ω). (3.56)

Our growth conditions hypotheses on p and e and also (3.52)-(3.55) then imply

0 ≤ p(vn, θn) ≤ C(1 + ||θn||L2(Ω) + ||θny ||L2(Ω)),
Cϑ(θn) ≥ C−1, κ(θn) ≥ C−1,

|pθ(vn, θn)| ≤ C,

|pv(vn, θn)| ≤ C(1 + ||θn||L2(Ω) + ||θny ||L2(Ω)),
|κ(θn)| + |κθ(θn)| ≤ C(1 + ||θn||q̃L2(Ω) + ||θny ||q̃L2(Ω)).

Here, and in what follows, C denotes a positive constant independent of n.
Second, for any Z ∈ H1(Ω) such that Z(y0) = 0 for some y0 ∈ Ω, we have

max
y∈Ω

|Z(y)| ≤ min{||Zy||L2(Ω), 2||Z||1/2
L2(Ω)||Zy||

1/2
L2(Ω)}.

In particular, this holds for all the functions in the set

{un(t, ·),wn(t, ·),hn(t, ·), ψ(t, ·), uny (t, ·),wn
y (t, ·),hny (t, ·), θny (t, ·) : t ∈ [0, tn]}.

Finally, from (3.31) we have that

m− t1/2
(∫ t

0
||unyy(s)||2L2(Ω)ds

)1/2
≤ vn(t, y) ≤ M + t1/2 + t1/2

(∫ t

0
||unyy(s)||2L2(Ω)ds

)1/2
,

(3.57)
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for a.e. y ∈ Ω and t ∈ [0, tn]. Also,

||vny (t)||L2(Ω) ≤ C + C
(∫ t

0
||unyy(s)||2L2(Ω)ds

)1/2
, (3.58)

for t ∈ [0,min{tn, 1}].

With these observations at hand we are going to prove that as long as (3.51) holds
(which is certainly true at t = 0) we have the following inequality

d

dt
ηn(t) ≤ C1(1 + ηn(t)q1), (3.59)

for a certain q1 > 0 where,

ηn(t) = ||(un,wn,hn, θn, ψn)(t)||2H1(Ω) +
∫ t

0
||(unyy,wn

yy,hnyy, θnyy)(s)||2L2(Ω)ds. (3.60)

Since ηn(0) is bounded by a constant C2 > 0, then from (3.59) we conclude that

ηn(t) ≤ ϕ(t)

for all n = 1, 2, ... and all 0 ≤ t < t∗, where ϕ is the solution of the ODE

d

dt
X(t) = C1(1 +X(t)q1)

X(0) = C2,

and t∗ is the maximal time of existence of the solution to this ODE relative to the
initial condition C2.

After this, by (3.57) we can choose 0 < t0 < t∗ small enough so that (3.51) holds
for all t ∈ [0, t0] and all n.

With this in mind, let us assume (3.51) and begin the proof of (3.59). Multiply
(3.36) by ψn (the complex conjugate of ψn), take imaginary part and integrate over Ω
to obtain

d

dt
||ψn(t)||2L2Ω = 0,

which immediately implies that ||ψn(t)||2L2Ω ≤ C.
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Next, multiply (3.32) by un − unyy and integrate by parts and use (3.58) to obtain

d

dt

[∫
Ω

|un|2dy +
∫

Ω
|uny |2dy

]
+ ε

∫
Ω

|uny |2

vn
dy + ε

∫
Ω

|unyy|2

vn
dy +

∫
Ω
αg′(vn)h(|ψn|2)unydy

=
∫

Ω

(
−p(vn, θn) − β

2 |hn|2
)
unydy +

∫
Ω

pv(vn, θn)vny + pθ(vn, θn)θny

+ βhnhny − αg′′(vn)h(|ψn|2)vny − αg′(vn)h′(|ψn|2)Re(ψnψny ) +
εunyv

n
y

|vn|2

unyydy
≤ C

(
1 + ||θn||L2(Ω) + ||θny ||L2(Ω) + ||hny ||2L2(Ω)

)
||uny ||L2(Ω)

+ C
(
1 + ||θn||L2(Ω) + ||θny ||L2(Ω)

) (
1 +

∫ t

0
||unyy(s)||2L2(Ω)ds

)1/2
||unyy||L2(Ω)

+ C||θny ||L2(Ω)||unyy||L2(Ω)

+ C||hny ||2L2(Ω)||unyy||L2(Ω) + C||ψny ||2L2(Ω)||unyy||L2(Ω)

+ C

(
1 +

(∫ t

0
||unyy(s)||L2(Ω)ds

)1/2)
||uny ||L2(Ω)||unyy||

3/2
L2(Ω)

≤ Cδ1

1 + ||θn||4L2(Ω) + ||θny ||4L2(Ω) + ||hny ||4L2(Ω) + ||ψny ||4L2(Ω) + ||uny ||8L2(Ω)

+
(∫ t

0
||unyy(s)||L2(Ω)ds

)4
+ δ1||unyy||2L2(Ω). (3.61)

Here, δ1 > 0 is arbitrary and Cδ1 > 0 is a constant which depends on δ1.

By (3.31), we see that g′(vn)uny = g(vn)t and therefore the fifth term on the left
hand side can be rewritten as

∫
Ω
αg′(vn)h(|ψn|2)unydy = d

dt

(∫
Ω
αg(vn)h(|ψn|2)dy

)
−
∫

Ω
αg(vn)h′(|ψn|2)2Re(ψnψnt )dy.

Multiplying (3.36) by α
α̃
ψnt , taking real part and integrating by parts we have

−
∫

Ω
αg(vn)h′(|ψn|2)2Re(ψnψnt )dy = d

dt

α

2α̃

∫
Ω

(
|ψny |2 + |ψn|4

)
dy.

Replacing this in (3.61), using our assumption (3.51) and taking δ1 > 0 small enough
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we have

d

dt

(
||un||2L2(Ω) + ||uny ||2L2(Ω) + ||ψn||4L4(Ω) + ||ψny ||2L2(Ω)

+ ||αg(vn)h(|ψn|2)||L1(Ω)

)
+ ||unyy||2L2(Ω)

≤ C

1 + ||θn||4L2(Ω) + ||θny ||4L2(Ω) + ||hny ||4L2(Ω) + ||ψny ||4L2(Ω)

+ ||uny ||8L2(Ω) +
(∫ t

0
||unyy(s)||L2(Ω)ds

)4
. (3.62)

Similarly, multiplying (3.33) and (3.34) by wn −wnyy and hn − hnyy respectively and
integrating by parts, after some manipulation we get

d

dt

(
||wn||2L2(Ω) + ||wn

y ||2L2(Ω)

)
+ ||wn

yy||2L2(Ω)

≤ C

(
1 + ||wn||8L2(Ω) + ||hny ||2L2(Ω) +

(∫ t

0
||unyy(s)||2L2(Ω)

)4)
, (3.63)

and

d

dt

(
||hn||2L2(Ω) + ||hny ||2L2(Ω)

)
+ ||hnyy||2L2(Ω)

≤ C

(
1 + ||uny ||4L2(Ω) + ||hny ||8L2(Ω) + ||wn

y ||2L2(Ω) + ||hn||2L2(Ω) +
(∫ t

0
||unyy(s)||2L2(Ω)

)4)
.

(3.64)

Next, multiplying (3.35) by θn − θnyy and integrating we have

d

dt

(1
2 ||θn||2L2(Ω) + 1

2 ||θny ||2L2(Ω)

)
+
∫

Ω

κ(θn)|θnyy|2

vnCϑ(θn) dy

=
∫

Ω

1
Cϑ(θn)

− θnpθ(vn, θn)uny + κθ(θn)
vn

|θny |2

− κ(θn)
|vn|2

vny θ
n
y +

ε|uny |2

vn
+
µ|wn

y |2

vn
+
ν|hny |2

vn

(θn − θnyy)dy

+
∫

Ω

1
Cϑ(θn)

κ(θn)
vn

θnyyθ
ndy.

Note that our growth conditions imply that κ(θn)
Cϑ(θn) ≥ C−1

0 , for some constant C0 >
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0, so using (3.51) we get

d

dt

(
||θn||2L2(Ω) + ||θny ||2L2(Ω)

)
+ ||θnyy||2L2(Ω)

≤ δ2

∫
Ω

|θnyy|2dy + Cδ2

∫
Ω

1 + (1 + |θn|2)|uny |2 + (1 + |θn|2q̃)(|vny |2|θny |2 + |θn|2)

(1 + |θn|2q̃)|θny |4 + |uny |4 + |wn
y |4 + |wn

y |4
dy, (3.65)

where δ2 > 0 is arbitrary and Cδ2 is a positive constant depending on δ2.

Let us analyse this last line term by term. First,
∫

Ω
(1 + |θn|2)|uny |2dy ≤ C(1 + ||θn||2L2(Ω) + ||θny ||2L2(Ω))||uny ||2L2(Ω)

≤ C(1 + ||θn||4L2(Ω) + ||θny ||4L2(Ω) + ||uny ||4L2(Ω)).

Second,
∫

Ω
(1 + |θn|2q̃)(|vny |2|θny |2 + |θn|2)dy

≤ C(1 + ||θn||2q̃L2(Ω) + ||θny ||2q̃L2(Ω))(||θ
n||2L2(Ω) + max

y∈Ω
|θny |2||vny ||2L2(Ω))

≤ C(1 + ||θn||2q̃L2(Ω) + ||θny ||2q̃L2(Ω))(||θ
n||2L2(Ω) + ||θny ||L2(Ω)||θnyy||L2(Ω)||vny ||2L2(Ω))

≤ Cδ3

1 + ||θn||8q̃L2(Ω) + ||θny ||8q̃L2(Ω) + ||θn||4L2(Ω) + ||θny ||8L2(Ω)

+

∫ t

0
||unyy(s)||2L2(Ω)ds

8
+ δ3||θnyy||2L2(Ω).

Next,
∫

Ω
(1 + |θn|2q̃)|θny |4dy ≤ C(1 + ||θn||2q̃L2(Ω) + ||θny ||2q̃L2(Ω))||θ

n
y ||3L2(Ω)||θnyy||L2(Ω)

≤ Cδ3(1 + ||θn||8q̃L2(Ω) + ||θny ||8q̃L2(Ω) + ||θny ||12
L2(Ω)) + δ3||θnyy||2L2(Ω).
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Finally,
∫

Ω
(|uny |4 + |wn

y |4 + |wn
y |4)dy

≤ 2(||unyy||L2(Ω)||uny ||3L2(Ω) + ||wn
yy||L2(Ω)||wn

y ||3L2(Ω) + ||hnyy||L2(Ω)||wn
y ||3L2(Ω))

≤ δ4(||unyy||2L2(Ω) + ||wn
yy||2L2(Ω) + ||hnyy||2L2(Ω))

+ Cδ4(||uny ||6L2(Ω) + ||wn
y ||6L2(Ω) + ||hny ||6L2(Ω)).

Putting all of this information together in (3.65) and choosing first δ2 > 0 and then
δ3 > 0 small enough we have

d

dt

(
||θn||2L2(Ω) + ||θny ||2L2(Ω)

)
+ ||θnyy||2L2(Ω)

≤ Cδ4

1 + ||θn||q1
L2(Ω) + ||θny ||q1

L2(Ω) + ||uny ||2L2(Ω) + ||wn
y ||6L2(Ω) + ||hny ||6L2(Ω)

+
(∫ t

0
||unyy(s)||2L2(Ω)ds

)8
+ δ4(||unyy||2L2(Ω) + ||wn

yy||2L2(Ω) + ||hnyy||2L2(Ω)),

(3.66)

where q1 = 8q̃.
Now, adding (3.62), (3.63), (3.64) and (3.66) and choosing δ4 > 0 small enough

we arrive to the inequality (3.59), which, as mentioned before, implies the existence
of t0 > 0 small enough and independent of n such that

max
t∈[0,t0]

||(vn, un,wn,hn, θn, ψn)(t)||2H1(Ω) +
∫ t0

0
||(unyy,wn

yy,hnyy, θnyy)(s)||2L2(Ω)ds ≤ C,

(3.67)
m

2 ≤ vn(t, y) ≤ 2M, y ∈ Ω, t ∈ [0, t0], (3.68)

|θn(t, y)| ≤ C, y ∈ Ω, t ∈ [0, t0], (3.69)

for some positive constant C also independent of n.

3.2.3 Existence of local solutions

As noted earlier, estimates (3.67), (3.68) and (3.69) imply that all approximate solu-
tions (vn, un,wn,hn, θn, ψn) are defined on the interval [0, t0]. That is, t0 ≤ tn for all
n.
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Furthermore, these estimates guarantee the existence of a subsequence, which we
keep denoting by (vn, un,wn,hn, θn, ψn), such that

vn → v

(un, uny ) → (u, uy)
(wn,wn

y ) → (w,wy)
(hn,hny ) → (h,hy)
(θn, θny ) → (θ, θy)

ψn → ψ



weakly in L2([0, t0] × Ω)

Having estimates (3.67)-(3.69) it is easy to prove using equations (3.32)-(3.36) that

max
t∈[0,t0]

||(unt ,wn
t ,hnt , θnt )(t)||L2(Ω) ≤ C (3.70)

From (3.67) and (3.70) we see, in particular, that

(unyy, unt ) ⇀ (uyy, ut) weakly in L2([0, t0] × Ω),

which implies that

u ∈ L2(0, t0;H2(Ω)) with ut ∈ L2(0, t;L2(Ω))

and hence (see e.g. [22])
u ∈ C([0, t0];H1(Ω)).

Similarly,
w,h ∈ C([0, t0];H1

0 (Ω)) ∩ L2(0, t0;L2(Ω)),

and
θ ∈ C([0, t0];H1(Ω)), with θy ∈ L2(0, t0;H1

0 (Ω)).

Finally, we also have the estimates

sup
t∈[0,t0]

||ψnt (t)||H−1(Ω) + max
t∈[0,t0]

||vnt (t)||2L2(Ω) +
∫ t

0
||vnty(s)|| ≤ C,

which also imply the analogues for the limiting functions v and ψ, and hence (see e.g.
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[22])

v ∈ C([0, t0];H1(Ω)),
ψ ∈ L∞(0, t0;H1

0 (Ω)) ∩W 1,∞(0, t0;H−1(Ω)).

The last line also implies that

ψ ∈ C([0, t0];L2(Ω))

so the initial condition makes sense.
By construction the initial and boundary conditions (3.18) are satisfied and mul-

tiplying the equations (3.10)-(3.15) by test functions in Sk and Ck as it corresponds
and taking the limit as n → ∞ (leaving k fixed) we see that (v, u,w,h, θ, ψ) is a
local solution of the system (3.37)-(3.42). Finally, since θ ∈ C(0, t0;H1(Ω)) and θ0

is bounded away from zero, we conclude (upon redefining t0) that θ(t, y) ≥ C−1 > 0
for all y ∈ Ω and t ∈ [0, t0] (another way to see this is observing, as we will show
later when we discuss the a priori estimates, that equation (3.41) admits a maximum
principle which implies the same conclusion without needing to redefine t0). Thus our
original system is satisfied (remember that we had modified the system of equations
by considering extensions of the functions p, e and κ in order to account for possible
negative values of θn).

In order to conclude, let us show that in fact

ψ ∈ C([0, t0];H1
0 (Ω)).

For this, it suffices to show that the function t → ||ψy(t)||2L2(Ω) is continuous. From
the energy identity (3.13) we have the conservation of energy:

∫
Ω

e(v, θ) + 1
2(u2 + |w|2 + βv|h|2) + α

α̃

(
α̃g(v)h(|ψ|2) + 1

2 |ψy|2 + 1
2 |ψ|4

)(t, y)dy

=
∫

Ω

e(v0, θ0) + 1
2(u2

0 + |w0|2 + βv0|h0|2)

+ α

α̃

(
α̃g(v0)h(|ψ0|2) + 1

2 |ψ0y|2 + 1
2 |ψ0|4

)(y)dy.

Isolating the term 1
2
∫

Ω |ψy(t, y)|2dy, we conclude by noting that all the other terms
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in this identity are continuous functions of t ∈ [0, t0]. This concludes the proof of
Lemma 3.1.

3.2.4 A priori estimates and existence of global solutions

In this section we deduce some a priori estimates independent on time on the solutions
of system (3.10)-(3.15) which allow us to extend the local solutions to global ones. The
a priori estimates in this section are based on the analogues contained in [15] and in
[48] on the study of the planar MHD equations, although with some adaptations in
order to include the coupling terms.

Let (v, u,w,h, θ, ψ) be a solution of (3.10)-(3.15), (3.18). Let us assume that
the solution is defined on a time interval [0, T ] where T > 0 is fixed and that that
v(y, t), θ(y, t) > 0 for all (y, t) ∈ Ω × [0, T ]. Under these assumptions we show that v
and θ are actually bounded from above and from below by positive constants. This
implies that the Lagrangian transformation is nonsingular. We also deduce some es-
timates on the derivatives of the solutions which show that the solution does not
leave the initial function space at any finite time. In particular, we show that the
L∞(0, T ;H1(Ω))-norm of the solution is bounded by a constant. Having these esti-
mates for any T > 0 together with lemma 3.1, a standard argument yields global
existence.

Let us begin with some energy estimates, followed by the stated bounds on the
specific volume. In all of the subsequent calculations C will denote a generic positive
constant that may depend on T and on the initial data.

Lemma 3.2.
d

dt

∫
Ω
v(t, y)dy = 0, (3.71)

d

dt

∫
Ω

(
e+ θ1+r + 1

2(u2 + |w|2 + βv|h|2) + αg(v)h(|ψ|2) + 1
2 |ψy|2 + 1

2 |ψ|4
)
dy = 0,

(3.72)

|ψ(t, y)| ≤ C. (3.73)

Proof. Estimate (3.71) follows directly from equation (3.10) and the no-slip boundary
condition u|∂Ω = 0 from (3.18), while (3.72) follows from the energy equation (3.13),
our hypotheses on the initial data (3.25) and the growth conditions (2.54) on the
internal energy.
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Finally, (3.73) is a consequence of (3.72) and the Sobolev embedding H1(Ω) ↪→
C(Ω).

Lemma 3.3.
C−1 ≤ v(y, t) ≤ C, (3.74)

∫
Ω
(θ − 1 − log θ)dy +

∫ t

0

∫
Ω

(
κθy
vθ2 + θ2

y

)
dy ds ≤ C, (3.75)

∫ t

0

∫
Ω

(
εu2

y + µ|wy|2 + ν|hy|2
)
dy ds ≤ C. (3.76)

Proof. In connection with (2.46), we consider the entropy s = s(v, θ) given by

s(ρ, θ) =
∫ θ

1

Cϑ(z)
z

dz − Pϑ(v), (3.77)

where,
Pϑ(v) :=

∫ 1

v
pθ(z)dz. (3.78)

Then, s(v, θ) satisfies the following equation

st −
(
κ(θ)θy
vθ

)
y

= κ(θ)θy
vθ2 +

εu2
y

vθ
+ µ|wy|2

vθ
+ ν|hy|2

vθ
.

Note that our assumptions (3.21) imply in particular, that

|Pϑ(v)| ≤ C(1 + v + Pe(v)) ≤ C(1 + v + e(v, θ))

Integrating equation (3.2.4) we have

∫ t

0

∫
Ω

(
κ(θ)θy
vθ2 +

εu2
y

vθ
+ µ|wy|2

vθ
+ ν|hy|2

vθ

)
dyds−

∫
Ω
sdy = −

∫
Ω
s|t=0dy. (3.79)
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Now, we have that

−
∫

Ω
sdy =

∫ 1

0

∫ θ

1
Cϑ(z)

(
1 + 1

z

)
dzdy −

∫
Ω
(Q(θ) −Q(1))dy

+
∫

Ω
Pθ(ρ)dy

≥ C−1
∫

Ω
(θ − 1 − log θ)dy −

∫
Ω
(Q(θ) −Q(1))dy

− C − C
∫

Ω
vdy − C

∫
Ω
Pe(ρ)dy

≥ C−1
∫

Ω
(θ − 1 − log θ)dy − C − C

∫
Ω
e dy

≥ C−1
∫

Ω
(θ − 1 − log θ)dy − C, (3.80)

and this together with (3.79) imply

∫ t

0

∫
Ω

(
κ(θ)θy
vθ2 +

εu2
y

vθ
+ µ|wy|2

vθ
+ ν|hy|2

vθ

)
dyds+

∫ 1

0
(θ − 1 − log θ)dy ≤ C. (3.81)

With this information at hand we can proceed to bound v. Using (3.10) we can
rewrite equation (3.11) as

(ε log v)yt = ut +
(
p+ β

2 |h|2 − αg′(v)h(|w|2)
)
y

. (3.82)

Now, from lemma (3.71) we see that for every t ∈ [0, T ] there is a point a = a(t) ∈ Ω
such that 0 < v(a(t), t) ≤ 2C1, where C1 :=

∫
Ω v0dy > 0. Integrating equation (3.82)

over [0, t] first and then over [a(t), y], and potentiating the resulting equation we get

v(y, t)
v0(y) Y (t)B(y, t) = exp

(1
ε

∫ t

0
(p(y, s) + 1

2 |h|2)ds
)
, (3.83)

where

B(y, t) := exp
[1
ε

∫ y

a
(u(ξ, t) − u0(ξ))dξ + α

ε

∫ t

0
g′(v(y, s))h(|ψ(y, s)|2)ds

]
,
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and

Y (t) := v0(a(t))
v(a(t), t) exp

1
ε

∫ t

0
(p(a(t), s) + 1

2 |h(a(t), s)|2)ds

− α

ε

∫ t

0
g′(v(a(t), s))h(|ψ(a(t), s)|2)ds

.
Here, p(y, t) = p(v(y, t), θ(y, t)) and p(a(t), s) = p(v(a(t), s), θ(a(t), s)). Next, we
multiply (3.83) by 1

ε
(p+ 1

2 |h|2) in order to deduce the identity

d

dt
exp

(1
ε

∫ t

0
(p(y, s) + 1

2 |h|2)ds
)

= 1
ε

v(y, t)
v0(y) (p+ 1

2 |h|2)Y (t)B(y, t),

which implies

exp
(1
ε

∫ t

0
(p(y, s) + 1

2 |h|2)ds
)

= 1 + 1
εv0(y)

∫ t

0
v(p+ 1

2 |h|2)Y (s)B(y, s)ds.

With this and (3.83) we deduce the following identity for v(y, t):

v(y, t) =
v0(y) + 1

ε

∫ t
0 v(p+ 1

2 |h|2)Y (s)B(y, s)ds
Y (t)B(y, t) . (3.84)

Now, we proceed to bound all of the terms in the right hand side of this identity.
Let us begin with B.

From Lemma 3.2 and our hypothesis on the initial data we know that ||u0||2L(Ω),
||u(t)||2L(Ω) ≤ C for almost every t ∈ [0, T ]. Also, our hypotheses on the coupling
functions imply, in particular, that g and h are bounded. Taking this information into
account it is easy to see that

C−1 ≤ B(y, t) ≤ C,

for all (y, t) ∈ Ω × [0, T ]. Now, a(t) was chosen so that 0 < v(a(t), t) ≤ C1. Thus, as
p is nonnegative (recall our hypotheses (3.19)-(3.21)) we have that

Y (t) ≥ C−1.
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Next, rewrite (3.84) as

Y (t)v(y, t) =
v0(y) + 1

ε

∫ t
0 v(p+ 1

2 |h|2)Y (s)B(y, s)ds
B(y, t) .

Then, using the bounds on B, integrating over Ω and using (3.71) we have

Y (t) ≤ C + C
∫ t

0
Y (s)

∫
Ω
v(p+ |h|2)dy ds,

Let us recall that p is given by (3.19). Furthermore, by (3.21) we have that

0 ≤ pθ(v) ≤ C(1 + v−γ),

so that by (3.22) and (3.23)
vpθ(v) ≤ C(v + e).

Consequently,

Y (t) ≤ C + C
∫ t

0
(1 +Mθ(s))Y (s)

∫
Ω
(v + e+ v|h|2)dy ds

≤ C + C
∫ t

0
Mθ(s)Y (s)ds,

where Mθ(t) = maxy∈Ω θ(t, y) and the last inequality holds due to Lemma 3.2. Now,
using (2.55) we derive the following estimate on Mθ:

∫ t

0
Mθ(s)ds ≤

∫ t

0

(∫
Ω
θdy +

∫
Ω

|θy|dy
)
ds

≤ C +
∫ t

0

(∫
Ω

θ2
y

v
dy +

∫
Ω
v dy

)
ds

≤ C + C
∫ t

0

∫
Ω

κθ2
y

vθ2 dy ds

≤ C (3.85)

Consequently, using Gronwall’s inequality we get

Y (t) ≤ C.
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Coming back to identity (3.84) we have

v(y, t) ≥ C−1.

On the other hand, from (3.83) we have

v(y, t) ≤ C exp
(

−1
ε

∫ t

0
(p+ 1

2 |h|2)ds
)
.

Now, from (3.19) we have that
∫ t

0
p(v, θ)ds ≤ C + C

∫ t

0
θds ≤ C

And, since h(0, t) = 0, using Lemma 3.2 and (3.81) we have
∫ t

0

1
2 |h|2ds ≤

∫ t

0

∫
Ω

|h · hy|dy ds

≤
∫ t

0

∫
Ω
θv|h|2dy ds+ C

∫ t

0

∫
Ω

ν|hy|2

vθ
dy ds

≤
∫ t

0
Mθ(s)

∫
Ω
v|h|2dy ds+ C

≤ C
∫ t

0
Mθ(s)ds+ C ≤ C,

thus proving that
v(y, t) ≤ C.

We are left with estimate (3.76). For this we use equation (3.16). Note that,
similarly to (3.85), by (2.55) we have

∫ t

0

∫
Ω
(1 + θ2)dy ds ≤ C + C

∫ t

0
Mθ(s)2ds

≤ C + C
∫ t

0

∫
Ω

κθ2
y

θ2 dy ds ≤ C (3.86)

Consequently, having (3.74) we just need to integrate equation (3.16) to obtain
∫ t

0

∫
Ω
(εu2

y + µ|wy|2 + ν|hy|2)dy ds

≤ C + 1
2

∫ t

0

∫
Ω
εu2

ydy ds+ C
∫ t

0

∫
Ω
(1 + θ2)dy ds

≤ C + 1
2

∫ t

0

∫
Ω
εu2

ydy ds,
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which implies (3.76).

Let us now bound the L2 norm of the derivatives of v, u,w and h.

Lemma 3.4.
∫

Ω
(v2
y + u2

y + |wy|2 + |hy|2)dy

+
∫ t

0

∫
Ω
(u2

yy + |wyy|2 + |hyy|2 + u4
y + |wy|4 + |hy|4)dy ds ≤ C. (3.87)

∫
Ω
(|ψt|2 + |ψyy|2)dy ≤ C, (3.88)

Proof. First we deal with the L2 norm of vy. Define V (y, t) := ε log v. Then, from
(3.10) we see that V satisfies Vt = εuy

v
, so we can rewrite equation (3.11) as

(Vy − u)t =
(
p+ β

2 |h|2 − αg′(v)h(|ψ|2)
)
y

. (3.89)

Multiply the above equation by Vy − u and integrate to obtain

1
2

∫
Ω

|Vy − u|2dy

≤ C +
∫ t

0

∫
Ω
(pvvy + pθθy + h · hy + αg′′(v)h(|ψ|2)vy

− αg′(v)h′(|ψ|2)Re(ψψy))(Vy − u)dy ds

Therefore, observing that |vy| ≤ C|Vy − u| + |u|, using (3.19) and (2.55), and
recalling that both g and h have compact support, we have that

1
2

∫
Ω

|Vy − u|2dy

≤ C + C
∫ t

0

∫
Ω
(1 + θ)|Vy − u|2dy ds+ C

∫ t

0

∫
Ω
(1 + θ)|u|2dy ds

+ C
∫ t

0

∫
Ω
θ2
ydy ds+ C

∫ t

0

∫
Ω

|h · hy|2 ds+ C
∫ t

0

∫
Ω

|ψy|2dy ds

≤ C + C
∫ t

0
(1 +Mθ(s))

∫
Ω

|Vy − u|2dy ds+ C
∫ t

0
(1 +Mθ(s))

∫
Ω

|u|2dy ds

+ C
∫ t

0

∫
Ω

κθ2
y

θ2 dy ds+ C
∫ t

0

∫
Ω

|h · hy|2 ds

≤ C + C
∫ t

0
(1 +Mθ(s))

∫
Ω

|Vy − u|2dy ds+ C
∫ t

0

∫
Ω

|h · hy|2 ds.
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And since we have (3.85), Gronwalls’s inequality then implies
∫

Ω
|Vy − u|2dy ≤ C + C

∫ t

0

∫
Ω

|h · hy|2 ds.

In particular, ∫
Ω
v2
ydy ≤ C + C

∫ t

0

∫
Ω

|h · hy|2 ds. (3.90)

Let us bound the right hand side of this inequality. First, taking into account the
boundary conditions on h, we observe the following

∫ t

0

∫
Ω

|h|8dy ds ≤
∫ t

0
max
y∈Ω

|h|6
∫

Ω
|h|2dy ds

≤ C
∫ t

0
max
y∈Ω

|h|6ds

≤ C
∫ t

0

∫
Ω

|h|4|h · hy|dy ds

≤ 1
2

∫ t

0

∫
Ω

|h|8dy ds+ C
∫ t

0

∫
Ω

|h · hy|2dy ds.

Thus, ∫ t

0

∫
Ω

|h|8dy ds ≤ C2

∫ t

0

∫
Ω

|h · hy|2dy ds, (3.91)

for a certain constant C2 ≥ 0. Now, note that

(vh)t · (|h|2h) = 1
4(v|h|4)t + 3

4vt|h|4.

Having this, we multiply equation (3.14) by |h|2h, integrate over Ω × [0, t] and use
(3.10) to obtain

1
4

∫
Ω
v|h|4dy + 3

4

∫ t

0

∫
Ω
uy|h|4dy ds−

∫ t

0

∫
Ω

wy · |h|2hdy ds

=
∫ t

0

∫
Ω

(
νhy
v

)
y

· |h|2 · hdy ds+ 1
4

∫
Ω
v0|h0|2dy.

Concerning the first term on the right hand side we integrate by parts and get

∫ t

0

∫
Ω

(
νhy
v

)
y

· |h|2 · hdy ds = −
∫ t

0

∫
Ω

νhy
v

· (2(h · hy)h + |h|2hy)dy ds

= −
∫ t

0

∫
Ω
νv−1(2|h · hy|2 + |h|2|hy|2)dy ds.
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Replacing this in the equation above and rearranging the terms we have

1
4

∫
Ω
v|h|4dy +

∫ t

0

∫
Ω
νv−1(2|h · hy|2 + |h|2|hy|2)dy ds

= −3
4

∫ t

0

∫
Ω
uy|h|4dy ds+

∫ t

0

∫
Ω

wy · |h|2hdy ds+ 1
4

∫
Ω
v0|h0|2dy.

Using the bounds on v, Young’s inequality with ε and the estimates from Lemmas
3.2 and 3.3 we have

∫
Ω

|h|4dy +
∫ t

0

∫
Ω

|h · hy|2dy ds

≤ Cδ

∫
Ω
u2
y + δ

2

∫ t

0

∫
Ω

|h|8dy ds+ 1
2

∫ t

0

∫
Ω

|wy|2dy ds+ 1
2

∫ t

0

∫
Ω

|h|6dy ds

≤ Cδ + δ
∫ t

0

∫
Ω

|h|8dy ds,

where, δ > 0 is arbitrary and Cδ > 0 is a big enough constant which depends on δ.
Using (3.91) we obtain

1
4

∫
Ω
v|h|4dy +

∫ t

0

∫
Ω

|h · hy|2dy ds ≤ Cδ + δC2

∫ t

0

∫
Ω

|h · hy|2dy ds,

and choosing δ small enough we arrive to the estimate
∫

Ω
|h|4dy +

∫ t

0

∫
Ω

|h · hy|2dy ds ≤ C, (3.92)

which together with (3.90) implies
∫

Ω
v2
ydy ≤ C. (3.93)

Let us now carry on with the estimates on u. First, note that

max
y∈Ω

u2
y ≤

∫
Ω
uydy + 2

∫
Ω

|uyuyy|dy

≤ Cδ1

∫
Ω
u2
ydy + δ1

∫
Ω
u2
yydy (3.94)

for any δ1 > 0 and a big enough Cδ > 0. Next, multiply (3.11) by uyy and integrate
over Ω × [0, t]. After integrating by parts, using (3.86) and the uniform bounds on v
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we get

1
2

∫
Ω
u2
ydy +

∫ t

0

∫
Ω

εu2
yy

v
dy ds

= 1
2

∫
Ω
u2

0ydy +
∫ t

0

∫
Ω

(
εuyvy
v2 + pvvy + pθθy + βh · hy + αg′′(v)h(|ψ|2)vy

+ αg′(v)h′(|ψ|2)Re(ψψy) +
)
uyydy ds

≤ C + Cδ2

∫ t

0

∫
Ω
(|uyvy|2 + (1 + θ2)v2

y + θ2
y + |h · hy|2 + |ψy|2)dy ds

+ δ2

∫ t

0

∫
Ω

εu2
yy

v
dy ds

≤ C + Cδ2

∫ t

0
max
y∈Ω

(1 + |uy| + θ2)
∫

Ω
v2
ydy ds

+ Cδ2

∫ t

0

∫
Ω

(
κθ2

y

θ2 + |h · hy|2 + |ψy|2
)
dy ds+ δ2

∫ t

0

∫
Ω

εu2
yy

v
dy ds

≤ Cδ2 + Cδ1Cδ2

∫ t

0

∫
Ω
u2
ydy ds+ (δ2 + δ1Cδ2)

∫ t

0

∫
Ω

εu2
yy

v
dy ds

≤ Cδ1,δ2 + (δ2 + δ1Cδ2)
∫ t

0

∫
Ω

εu2
yy

v
dy ds,

and this holds for any δ2 > 0 and certain Cδ2 , Cδ1,δ2 . Consequently, choosing first
δ2 = 1

4 and then δ1 = 1
4C

−1
δ2 we arrive to the estimate

∫
Ω
u2
ydy +

∫ t

0

∫
Ω
u2
yydy ds ≤ C. (3.95)

Now, using (3.94) and (3.95) we see that
∫ t

0

∫
Ω
u4
ydy ds ≤

∫ t

0
max
y∈Ω

u2
y

∫
Ω
u2
ydy ds ≤ C. (3.96)

In a similar way as we deduced estimates (3.95) and (3.96) we can multiply (3.12)
by wyy integrate and use integration by parts as well as the estimates we already have
and the interpolation inequality

max
y∈Ω

|wy|2 ≤ Cδ

∫
Ω

|wy|2dy + δ
∫

Ω
|wyy|2dy (3.97)

in order to obtain the estimates
∫

Ω
|wy|2dy +

∫ t

0

∫
Ω
(|wyy|2 + |wy|4)dy ds ≤ C. (3.98)
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After this, rewrite (3.14) as

ht = −v−1huy + v−1wy + v−1
(
νhy
v

)
y

. (3.99)

Multiplying this equation by hyy and using the interpolation inequality

max
y∈Ω

|hy|2 ≤ Cδ

∫
Ω

|hy|2dy + δ
∫

Ω
|hyy|2dy, (3.100)

as we did above with uy and wy, we find
∫

Ω
|hy|2dy +

∫ t

0

∫
Ω
(|hyy|2 + |hy|4)dy ds ≤ C. (3.101)

Finally, we are left with (3.88). Differentiate (3.15) with respect to t, multiply it
by ψt (the complex conjugate of ψt), take imaginary part and integrate to obtain

∫
Ω

|ψt|2dy ≤ C + C
∫ t

0

∫
Ω
v2
t dy ds+ C

∫ t

0

∫
Ω

|ψt|2dy ds

= C + C
∫ t

0

∫
Ω
u2
ydy ds+ C

∫ t

0

∫
Ω

|ψt|2dy ds

≤ C + C
∫ t

0

∫
Ω

|ψt|2dy ds,

and from Gronwall’s inequality we get
∫

Ω
|ψt|2dy ≤ C. (3.102)

Note that in light of all the estimates we have deduced so far, and in view of
equation (3.15), the L2(Ω)-norm of ψt is equivalent to the L2(Ω)-norm of ψyy (it is at
this point that we use our assumption that ψ0 ∈ H2(Ω)). Thus we conclude that

∫
Ω

|ψyy|2dy ≤ C. (3.103)

We now turn our attention to the a priori estimates on the derivatives of the
temperature.

Lemma 3.5.
C−1 ≤ θ ≤ C, (3.104)



3.2 Existence and Uniqueness of solutions 61

|vy| ≤ C, (3.105)

∫
Ω
θ2
ydy +

∫ t

0

∫
Ω
(θ2
t + θ2

yy)dy ds ≤ C. (3.106)

Proof. For these last estimates we adapt the proof of an analogue lemma in [48], which
is very similar to a corresponding lemma in [15]. Set

Θ := max
(y,t)∈Ω×[0,t]

θ(y, t), X :=
∫ T

0

∫
Ω
(1 + θq+r)θ2

t dy ds

Y := max
t∈[0,T ]

∫
Ω
(1 + θ2q)θ2

ydy.

This Y should not be confused with the function defined in the proof of Lemma 3.3.

We begin by making some useful observations. First, using the interpolation in-
equality

u2
y ≤

∫
Ω
u2
ydy + 2

(∫
Ω
u2
ydy

)1/2 (∫
Ω
u2
yydy

)1/2
,

we see that
max
y∈Ω

|uy| ≤ C + C
(∫

Ω
u2
yydy

)1/4
.

Let q be as in (2.55). Then,

max
y∈Ω

θ(2q+3+r)/2 ≤
(∫

Ω
θdy

)(2q+3+r)/2
+ 2q + 3 + r

2

∫
Ω
θ(2q+1+r)/2|θy|dy

≤ C + C
(∫

Ω
θ1+rdy

)1/2 (∫
Ω
θ2qθ2

ydy
)1//2

≤ C + CY 1/2.

Thus,
Θ ≤ C + CY δ1 (3.107)

where δ1 = (2q + 3 + r)−1.

Now, let us show that X + Y ≤ C. Set H(v, θ) := v−1 ∫ θ
0 κ(ξ)dξ. Then,

Ht = Hvuy + κ

v
θt,

Hty = Hvuyy +Hvvuyvy +
(1
v

)
v
κθtvy +

(
κ

v
θy

)
t
.
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Now let us rewrite equation (3.16) as

Cϑ(θ)θt + θpθuy =
(
κθy
v

)
y

+
εu2

y

v
+ µ|wy|2

v
+ ν|hy|2

v
. (3.108)

Multiplying this equation by Ht and integrating by parts

∫ t

0

∫
Ω

(
Cϑθt + θpθuy −

εu2
y

v
+ µ|wy|2

v
+ ν|hy|2

v

)
Htdy ds+

∫ t

0

∫
Ω

κθy
v
Htydy ds = 0.

(3.109)

Let us estimate each one of the terms in the above identity. First, from (2.54) we
have ∫ t

0

∫
Ω
Cϑθt

κ

v
θtdy ds ≥ M1X,

and also ∫ T

0

∫
Ω

κθy
v

(
κ

v
θy

)
t
dy ds =

∫ T

0

d

dt

∫
Ω

κ2θ2
y

v2 dy ds ≥ M2Y − C,

for positive constants M1 and M2. From (2.55)

|Hv| + |Hvv| ≤ C
∫ θ

0
(κ)dξ ≤ C(1 + θq+1).

Next, from (2.54) and the boundedness of v

∫ t

0

∫
Ω
CϑθtHvuydy ds ≤ C

∫ T

0

∫
Ω
(1 + θq+1+r)|θt| |uy|dy ds

≤ M1

8 X + C(1 + Θq+2+r)
∫ t

0

∫
Ω
u2
ydy ds

≤ M1

8 X + C(1 + Θq+2+r)

≤ M1

8 X + C + CY (q+2+r)δ1

≤ C + M1

8 X + M2

8 Y,
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also,

∫ t

0

∫
Ω

(
θpθuy −

εu2
y

v
− µ|wy|2

v
+ ν|hy|2

v

)
Hvuydy ds

≤ C(1 + Θq+2)
∫ t

0

∫
Ω
(|uy| + u2

y + |wy|2 + |hy|2)|uy|dy ds

≤ C(1 + Θq+2)
∫ t

0

∫
Ω
(u2

y + u4
y + |wy|4 + |hy|4)dy ds

≤ C(1 + Θq+2)
≤ C + CY (q+2)δ1

≤ C + M2

8 Y,

and
∫ t

0

∫
Ω

(
θpθuy −

εu2
y

v
− µ|wy|2

v
+ ν|hy|2

v

)
κ

v
θtdy ds

≤ C
∫ t

0

∫
Ω
((1 + θ)|uy| + u2

y + |wy|2 + |hy|2)(1 + θq)|θt|dy ds

≤ M1

8 X + C(1 + Θq+2−r)
∫ t

0

∫
Ω
(|uy| + u2

y + |wy|2 + |hy|2)dy ds

≤ C + M1

8 X + CY (q+2−r)δ1

≤ C + M1

8 X + M2

8 Y.

Using Lemma 3.4 we have

∫ t

0

∫
Ω

κθy
v
Hvvuyvy ≤ C(1 + Θ(3q+3)/2)

∫ t

0

∫
Ω

κ1/2|θy|
θ

|uy| |vy|dy ds

≤ C(1 + Θ(3q+3)/2)
(∫ t

0
max
y

u2
y

∫
Ω
v2
ydy ds

)1/2 (∫ t

0

∫
Ω

κθ2
y

θ2 dy ds

)1/2

≤ C(1 + Θ(3q+3)/2)
(

1 +
∫ t

0

(∫
Ω
u2
yydy

)1/2
ds

)1/2

≤ C(1 + Θ(3q+3)/2)
≤ C + CY (3q+3)δ/2

≤ C + M2

8 Y.
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Next, taking into account the boundary conditions on θ we have

∫ t

0

∫
Ω

κθy
v

(
κ

v

)
v
θtvydy ds ≤

∫ t

0

∫
Ω
(1 + θq)|θt|

∣∣∣∣∣κθyv
∣∣∣∣∣ |vy|dy ds

≤ M1

16 X + C(1 + Θq−r)
∫ t

0
max
y

∣∣∣∣∣κθyv
∣∣∣∣∣
2 ∫

Ω
vydy ds

≤ M1

16 X + C(1 + Θq−r)
∫ t

0
2
∫

Ω

∣∣∣∣∣∣κθyv
(
κθy
v

)
y

∣∣∣∣∣∣ dy ds
≤ M1

16 X + C(1 + Θq+1−r)
∫ t

0

∫
Ω
κ

(
κθy
v

)2

y

dy ds

1/2 (∫ t

0

∫
Ω

κθ2
y

θ2 dy ds

)1/2

≤ M1

16 X + C(1 + Θq+1−r)
(∫ t

0

∫
Ω
κ(C2

ϑθ
2
t + θ2p2

θu
2
y + u4

y + |wy|4 + |hy|4)dy ds
)1/2

≤ M1

16 X + C(1 + Θ(2q+2−r)/2)X1/2 + C(1 + Θ(3q+4−r)/2)
(∫ t

0

∫
Ω
u2
ydy ds

)1/2

+ C(1 + Θ(3q+2−2r)/2)
(∫ t

0

∫
Ω
(u4

y + |wy|4 + |hy|4)dy ds
)1/2

≤ C + M1

8 X + CΘ2q+2

≤ C + M1

8 + CY (2q+2)δ1

≤ C + M1

8 + M2

8 Y.

Finally,

∫ t

0

∫
Ω

κθy
v
Hvuyydy ds ≤

∫ t

0

∫
Ω
(1 + θ(3q+4)/2)κ

1/2|θy|
θ

|uyy|dy ds

≤ C(1 + Θ(3q+4)/2)
(∫ t

0

∫
Ω

κθ2
y

θ2 dy ds

)1/2 (∫ t

0

∫
Ω
u2
yydy ds

)1/2

≤ C(1 + Θ(3q+4)/2)
≤ C + Y (3q+4)δ1/2

≤ C + M2

8 Y.

Putting all of these estimates together with (3.109) we get

X + Y ≤ C, (3.110)
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which leads to the estimates
θ ≤ C, (3.111)

and ∫
Ω
θ2
ydy +

∫ t

0

∫
Ω
θ2
t dy ds ≤ C. (3.112)

In order to conclude estimate (3.106) we write (3.108) as

κθyy
v

= Cϑθt + θpθuy −
εu2

y

v
− µ|wy|2

v
− µ|hy|2

v
−
(
κ

v

)
v
θyvy −

κθθ
2
y

v
.

Squaring this equality, integrating and using the interpolation inequality

max
y

θ2
y ≤ 2

(∫
Ω
θ2
ydy

)1/2 (∫
Ω
θ2
yydy

)1/2
≤ C

(∫
Ω
θ2
yydy

)1/2
,

we have
∫ t

0

∫
Ω
θ2
yydy ds ≤ C

∫ t

0

∫
Ω
(θ2
t + u2

y + u4
y + |wy|4 + |hy|4)

+ C
∫ t

0
max
y

θ2
y

∫
Ω
v2
ydy ds+

∫ t

0
max
y

θ2
y

∫
Ω
θ2
ydy ds

≤ C + C
∫ t

0

(∫
Ω
θ2
yydy

)1/2
ds

≤ C + 1
2

∫ t

0

∫
Ω
θ2
yydy ds

which yields ∫ t

0

∫
Ω
θ2
yydy ds ≤ C. (3.113)

We finally move on to the last estimate, consisting of a lower bound for the tem-
perature. We have to prove that

C−1 ≤ θ(y, t), (3.114)

for a big enough constant C > 0. In order to show this it suffices to apply the maximum
principle (see [43]) to equation (3.108). More specifically, note that θ satisfies the
following inequality

Cϑθt + v

2εθ
2p2
θ −

(
κ

v

)
v
θyvy ≥ κθyy

v
. (3.115)

This follows from equation (3.108) and Young’s inequality. In order to apply the
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maximum principle we have to show that the coefficients of this parabolic inequality
are bounded. With the estimates already obtained, we only have to show that vy is
uniformly bounded. Let V be as in (3.89). Then,

Vy(y, t) = Vy(y, 0) + u(y, t) − u0(y) +
∫ t

0
(pvvy + pθθy + βh · hy

− αg′′(v)h(|ψ|2)vy − 2αg′(v)h′(|ψ|2)Re(ψψy))ds

Then, squaring this identity and using interpolation inequalities on θy hy and ψy we
get

v2
y ≤ C + C

∫ t

0

∫
Ω
(|θ2

yy + |hyy|2 + |ψyy|2)dy ds+
∫ t

0
v2
yds

≤ C + C
∫ t

0
v2
yds,

which yields, using Gronwall’s inequality that

|vy| ≤ C

.
Consequently, taking into consideration the boundary conditions on θ, the max-

imum principle applied to the parabolic inequality (3.115) (see [43]) implies that θ
cannot be zero in finite time, which concludes the proof.

The estimates from Lemmas 3.2 through 3.5 provide the necessary a priori esti-
mates which, in light of the local result from Lemma 3.1, guarantee the gobal existence
of solutions.

3.2.5 Uniqueness and continuous dependence

We are left with the uniqueness part of Theorem 3.1. For this part we incorporate
some of the ideas by Chen and Wang in [16] on the MHD system, although some new
estimates are deduced in order to account for the SW-LW interaction.

The strategy to prove uniqueness is very straightforward, although it involves sev-
eral calculations. We begin by supposing that there exist two solutions with the same
initial data and consider the difference of them. This new set of functions satisfies a
system of equations related to the original system (3.10)-(3.15). The proof consists in
making some estimates on this new system, similar to the a priori estimates from the
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previous section, and use Gronwall’s inequality to conclude that the difference of the
two solutions has to be identically equal to zero. Such estimates are presented in a
few Lemmas in order to organize the presentation.

Suppose that (vj, uj,wj,hj, θj, ψj), j = 1, 2 are two solutions of (3.10)-(3.15), (3.18)
with the same initial data (v0, u0,w0,h0, θ0, ψ0) satisfying the hypotheses of Theorem
3.1. Let (ṽ, ũ, w̃, h̃, θ̃, ψ̃) = (v1 − v2, u1 − u2,w1 − w2,h1 − h2, θ1 − θ2, ψ1 − ψ2). For
convenience we define

G(t) :=
∑
j=1,2

∫
Ω
(|∂y(uj,wj,hj, θj, ψj)|2 + |∂yy(uj,wj,hj, θj, ψj)|2).

Note that ∫ t

0
G(s)ds ≤ C.

With this notation, let us carry on with the estimates.

Lemma 3.6.
∫

Ω
|(ṽ, ũ, w̃)|2dy +

∫ t

0

∫
Ω

|(ũy, w̃y)|2dy ds ≤ C
∫ t

0
(1 +G(s))

∫
Ω

|(ṽ, h̃, θ̃, ψ̃)|2dy ds.
(3.116)

Proof. As (vj, uj,wj,hj, θj, ψj), j = 1, 2 are solutions of (3.10)-(3.15), (3.18) we have,
in partiular that,

ũt −
(
εũy
v1

)
y

−
(
ε
u2y

v1v2
ṽ
)
y

= −
(
p(v1, θ1) − p(v2, θ2) + β

2 (|h1|2 − |h2|2) − αg′(v1)h(|ψ1|2) − αg′(v2)h(|ψ2|2)
)
y

.

(3.117)

Note that for any C1 function φ we have that the function

(z1, z2) → φ(z1) − φ(z2)
z1 − z2

is a continuous function. With this in mind we see that equation (3.117) can be
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rewritten as

ũt −
(
εũy
v1

)
y

= (A1(v1, v2)u2yṽ)y −
(
A2(v1, v2, θ1)ṽ + pθ(v2)θ̃ + β

2 (h1 + h2) · h̃

+ A3(v1, v2)h(|ψ1|2)ṽ + g′(v2)A4(|ψ1|, |ψ2|)ψ̃
)
y
. (3.118)

for some continuous functions Ak, k = 1, 2, 3, 4. Let us recall that vj, θj, hj and ψj

are uniformly bounded with vj bounded from below by a positive constant for both
j = 1, 2. Consequently, multiplying equation (3.118) integrating by parts and using
Young’s inequality with δ we have

∫
Ω
ũ2dy +

∫ t

0

∫
Ω
ũ2
ydy ds

≤ 1
2

∫ t

0

∫
Ω
ũ2
ydy ds+ C

∫ t

0
(1 + max

y∈Ω
|u1y|2)

∫
Ω
(ṽ + h̃ + θ̃ + ψ̃)dy ds,

and using the interpolation inequality

|u1y|2 ≤ C(||u1y||2L2(Ω) + ||u1yy||2L2(Ω)),

we obtain
∫

Ω
ũ2dy +

∫ t

0

∫
Ω
ũ2
ydy ds ≤ C

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + |h̃|2 + θ̃2 + |ψ̃|2)dy ds. (3.119)

Next, multiplying the equation
ṽt = ũy

by ṽ, integrating and using Young’s inequality with δ

∫
Ω
ṽ2dy ≤ δ0

∫ t

0

∫
Ω
ũ2
ydy ds+ Cδ0

∫ t

0

∫
Ω
ṽ2dy ds, (3.120)

for any δ0 > 0 and some Cδ0 big enough. Finally, taking the inner product of the
following equation

w̃t −
(
µ

v1
w̃y

)
y

=
(
µw2y

v1v2
ṽ + βh̃

)
y
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with w̃ and integrating by parts we have
∫

Ω
|w̃|2dy +

∫ t

0

∫
Ω

|w̃y|2dy ds

≤ 1
2

∫ t

0

∫
Ω

|w̃y|2dy ds+ C
∫ t

0
(1 + max

y∈Ω
|w2y|)

∫
Ω
(ṽ2 + |h̃|2)dy ds,

which implies
∫

Ω
|w̃|2dy +

∫ t

0

∫
Ω

|w̃y|2dy ds ≤ C
∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + |h̃|2)dy ds. (3.121)

Adding (3.119),(3.120) and (3.121) and choosing δ0 small enough we get (3.116).

Lemma 3.7.
∫

Ω
θ̃2dy +

∫ t

0

∫
Ω
θ̃2
ydy ds

≤ δ1

∫ t

0

∫
Ω
(ũ2

y + |w̃y|2 + |h̃y|2)dy ds+ Cδ1

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + θ̃2)dy ds, (3.122)

for any δ1 > 0 and some Cδ1 > 0.

Proof. We have the following equation

(Q(θ1) −Q(θ2))t −
(
κ(θ1)
v1

θ̃y

)
y

=
(
κ(θ1)θ2y

v1v2
ṽ − κ(θ1) − κ(θ2)

v1(θ1 − θ2)
θ1yθ̃

)
y

−
(
θ1pθ(v1)ũy + θ1

pθ(v1) − pθ(v2)
v1 − v2

u2yṽ + pθ(v2)u2yθ̃

)

+ ε(u1y + u2y)ũy + µ(w1y + w2y)w̃y + ν(h1y + h2y)h̃y
v1

−
εu2

2y + µ|w2y|2 + ν|h2y|2

v1v2
ṽ. (3.123)

Our assumptions (2.54) imply that

|Q(θ1) −Q(θ2)| =
∣∣∣∣∣
∫ θ1

θ2
Cϑ(z)dz

∣∣∣∣∣ ≥ C−1|θ̃|.
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By the same token and using the boundedness of θ1 and θ2

|Q(θ1) −Q(θ2)| ≤ C
∣∣∣θ1+r

1 − θ1+r
2

∣∣∣+ |θ̃| = C

(∣∣∣∣∣θ
1+r
1 − θ1+r

2
θ1 − θ2

∣∣∣∣∣+ 1
)
θ̃ ≤ Cθ̃.

Also, note that

(Q(θ1) −Q(θ2))y = cϑ()θ1)θ̃y + Cϑ(θ1) − Cϑ(θ2)
θ1 − θ2

θ2yθ̃.

With this information at hand we proceed similarly as in Lemma (3.6), multiplying
(3.123) by (Q(θ1) −Q(θ2)) and integrating to obtain

∫
Ω
θ̃2dy +

∫ t

0

∫
Ω
θ̃2
ydy ds ≤ 1

2

∫ t

0

∫
Ω
θ̃2
ydy ds+ δ1

∫ t

0

∫
Ω
(ũ2

y + |w̃y|2 + |h̃y|2)dy ds

+ Cδ1

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + θ̃2)dy ds,

for any δ1 > 0 and some Cδ1 > 0, which yields
∫

Ω
θ̃2dy +

∫ t

0

∫
Ω
θ̃2
ydy ds ≤ δ1

∫ t

0

∫
Ω
(ũ2

y + |w̃y|2 + |h̃y|2)dy ds

+ Cδ1

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + θ̃2)dy ds,

Lemma 3.8.
∫

Ω
|h̃|2dy +

∫ t

0

∫
Ω

|h̃y|2dy ds ≤ δ2

∫ t

0

∫
Ω
(u2

y + |w̃y|2)dy ds+ Cδ2

∫ t

0

∫
Ω
ṽ2
ydy ds

+ Cδ2

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + |h̃|2)dy ds. (3.124)

Proof. This time we consider the equation

β(v1h1 − v2h2)t −
(
νh̃y
v1

)
y

=
(
νh2y

v1v2
ṽ

)
y

+ βw̃y. (3.125)

We observe that

(v1h1 − v2h2)y = v1h1y − v2h2y + v1yh1 − v2yh2

= v1h̃ + h2yṽ + h1ṽy + v2yh̃.
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Also, we have that
|v1h1 − v2h2| ≥ v1|h̃| − |h2|ṽ|.

Then, taking inner product of equation (3.125) with (v1h1 − v2h2) and proceeding
as before

∫
Ω

|h̃|2dy +
∫ t

0

∫
Ω

|h̃y|2dy ds

≤ 1
2

∫ t

0

∫
Ω

|h̃y|2dy ds+ C
∫

Ω
ṽ2dy + Cδ2

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + |h̃|2)dy ds

+ C
∫ t

0

∫
Ω
ṽ2
ydy ds+ δ2

∫ t

0

∫
Ω

|w̃y|2dy ds,

and we conclude using (3.120) and choosing δ0 = δ2.

Lemma 3.9.
∫

Ω
(|ψ̃|2 + |ψ̃y|2)dy ds ≤ C

∫ t

0
(1 +G(s))

∫
Ω
(ṽ2
y + |ψ̃|2 + |ψ̃y|2)dy ds. (3.126)

Proof. As ψ1 and ψ2 are solutions of equation (3.15), we have that ψ̃ satisfies and
equation of the form

iψ̃t + ψ̃yy = B1(ψ1, ψ2, v1)ψ̃ +B2(ψ1, ψ2, v1)ψ̃ +B3(ψ2, v1, v2)ṽ, (3.127)

for some continuous functions B1, B2 and B3. Multiplying this equation by ψ̃t (the
complex conjugate of ψ̃t), taking real part and integrating

∫
Ω

|ψ̃y|2dy

= Re
[∫ t

0

∫
Ω
(B1ψ̃ +B2ψ̃ +B3ṽ)ψ̃tdy ds

]
= Re

[−1
i

∫ t

0

∫
Ω

|B1ψ̃ +B2ψ̃ +B3ṽ|2dy ds
]

+ Re
[1
i

∫ t

0

∫
Ω
(B1ψ̃ +B2ψ̃ +B3ṽ)ψ̃yydy ds

]
= Re

[−1
i

∫ t

0

∫
Ω
(B1ψ̃ +B2ψ̃ +B3ṽ)yψ̃ydy ds

]
≤ C

∫ t

0
(1 + max

y∈Ω
[|ψ1y|2 + |ψ2y|2 + v2

1y + v2
2y])

∫
Ω

|ψ̃y|2dy ds

+ C
∫ t

0

∫
Ω
ṽ2
ydy ds+

∫ t

0

∫
Ω

|ψ̃|2dy ds

≤ C
∫ t

0
(1 +G(s))

∫
Ω
(ṽ2
y + |ψ̃|2 + |ψ̃y|2)dy ds.
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By the same token, multiplying (3.127) by ψ̃, taking imaginary part and integrating
we find ∫

Ω
|ψ̃|2dy ≤ C

∫ t

0

∫
Ω
(ṽ2 + |ψ̃|2)dy ds,

which added to the above inequality yields (3.126).

Lemma 3.10.
∫

Ω
ṽ2
ydy ≤ C

∫ t

0

∫
Ω
ṽ2
ydy ds+ δ3

∫ t

0

∫
Ω
(ũ2

y + θ̃2
y + |h̃y|2)dy ds

+ C
∫ t

0
(1 +G(s))

∫
Ω
(ṽ2 + θ̃2 + |h̃|2 + |ψ̃|2 + |ψ̃y|2)dy ds. (3.128)

Proof. From (3.89) we have the equation
(
λv1y

v1
− λv2y

v2

)
t

+ ũt

=
(
p(v1, θ1) − p(v2, θ2) + β

2 (|h̃1|2 − |h̃2|2) − αg′(v1)h(|ψ1|2) − αg′(v2)h(|ψ2|2)
)
y

.

Then we multiply this equtation by
(
λv1y

v1
− λv2y

v2

)
, integrate and proceed as before.

The only term that might pose a problem is ũt
(
v1y

v1
− v2y

v2

)
, but we observe that

ũt

(
v1y

v1
− v2y

v2

)
= (ũ(log v1 − log v2)y)t − (ũ(log v1 − log v2)t)y + ũy

(
u1y

v1
− u2y

v2

)
,

so that
∫ t

0

∫
Ω
ũt

(
v1y

v1
− v2y

v2

)
dy ds ≤ δ

∫
Ω

(
v1y

v1
− v2y

v2

)2
dy + Cδ

∫
Ω
ũ2dy

+ C0

∫ t

0

∫
Ω
ũ2
ydy ds+ C

∫ t

0
(1 +G(s))

∫
Ω
ṽ2dy ds,

and from (3.116) we can choose δ > 0 small and Cδ > C0 in order to obtain

Cδ

∫
Ω
ũ2dy + C0

∫ t

0

∫
Ω
ũ2
ydy ds

≤ (−Cδ + C0)
∫ t

0

∫
Ω
ũ2
ydy ds+ C̃δ

∫ t

0
(1 +G(s))

∫
Ω

|(ṽ, h̃, θ̃, ψ̃)|2dy ds.

We omit the rest of the details as they go by the same lines as the proofs of the
last few lemmas.

We now have all the elements to prove the uniqueness of solutions stated in The-
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orem 3.1. All we have to do is add (3.116), (3.122), (3.124), (3.126) and (3.128) and
choose δ1, δ2 and δ3 small enough to arrive at the following inequality

D(t) ≤
∫ t

0
(1 +G(s))D(s)ds, , (3.129)

where

D(s) :=
∫

Ω
|(ṽ, ũ, w̃, h̃, θ̃, ψ̃, ṽy, ψ̃y)|2dy +

∫ t

0

∫
Ω

|(ũy, w̃y, h̃y, θ̃y)|2dy ds.

Since ∫ T

0
G(s)ds ≤ C,

we conclude, by Gronwall’s inequality, that D(t) = 0 for all t ∈ [0, T ], which implies
uniqueness of solutions of system (3.10)-(3.15), (3.18).

Let us point out that the same proof yields continuous dependence of solutions as
the same calculations show that

D(t) ≤ C(M)D(0) + C(M)
∫ t

0
(1 +G(s))D(s), (3.130)

where (vj, uj,wj,hj, θj, ψj) are solutions of (3.10)-(3.15) with initial data (v0j, u0j,w0j,

h0j, θ0j, ψ0j), j = 1, 2 respectively; and inequality (3.130) holds with a constant C(M)
which depends on an arbitrary M > 0 such that

|||(v0j, u0j,w0j,h0j, θ0j, ψ0j)||| ≤ M, M−1 ≤ v0j, θ0,j ≤ M,

for both j = 1, 2; where

|||(v0, u0,w0,h0, θ0, ψ0)||| = ||((v0, u0,w0,h0, θ0)||H1(Ω) + ||ψ0||H2(Ω) + ||v0||W 1,∞(Ω).

In this case, Gronwall’s inequality implies

D(t) ≤ C(M)eC(M)
∫ T

0 (1+G(s))dsD(0) = C̃(M)D(0).
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3.3 Vanishing bulk viscosity and interaction coef-
ficients

We have established well posedness of the planar SW-LW interactions model. We
proved this for the system expressed in the Lagrangian coordinates of the fluid and,
after showing that the Lagrangian transformation was nonsingular, the respective
result for the original system followed by changing back to the original coordinates.
Having this, we may turn our attention to some other questions about the model.

In Chapter 2, when we were reviewing the ideas involved in the deduction of the
MHD equations, we mentioned in passing that the magnetic permeability parameter
β is usually assumed to be equal to 1 as it differs only slightly from the unity in most
real world media covered by the MHD model. We, however, chose to keep track of it
and made it explicit in the equations. Let us remark that the only physical constraint
on this parameter is that it be positive (see [33]).

Now, let us introduce a new artificial small parameter δ multiplying the thermal
part of the pressure. That is, we substitute relation (2.50) by

p(ρ, θ) = aργ + δθpθ(ρ), (3.131)

where δ is some positive constant. This certainly agrees with our previous assumptions
and the results we have proved so far continue to hold.

Note, however, that if we take ε = α = β = δ = 0 then we are left with a decoupled
system involving the compressible one dimensional Euler Equations and the nonlinear
Schrödinger equation. Namely,

ρt + (ρu)x = 0, , (3.132)
(ρu)t + (ρu2 + aργ)x = 0, (3.133)
(ρw)t + (ρuw)x = (µwx)x, (3.134)
(ρQ(θ))t + (ρQ(θ)u)x = (κθx)x + µ|wx|2 + ν|hx|2, (3.135)
(νhx)x = 0, (3.136)
iψt + ψyy = |ψ|2ψ. (3.137)

Our next task is to study this system and its relation with our original viscous
system (3.1)-(3.6). More precisely, we are going to show that the sequence of solutions
to the viscous system, given by Theorem 3.2, converges to a solution of the limit prob-
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lem above as (ε, α, β, δ) → 0. This is a delicate issue as it involves several subtleties.
Besides the loss of regularity in the velocity field caused by the vanishing viscosity
in the momentum equation, we point out some other issues that might complicate
our analysis. For instance, the Schrödinger equation (3.137) is stated in a different
coordinate system, which in principle should be the Lagrangian coordinate associated
to the velocity field u. Yet, solutions of the Euler equations are not expected to be
smooth and a Lagrangian transformation as we defined it is likely to be singular. On
the other hand, as we pointed out in the beginning of Subsection 3.1.2, given the no-
slip boundary condition u|x=0,1 = 0 on the original viscous system, the Lagagrangian
coordinate takes values in the domain Ωy = (0, d) where d is the L1 norm of the initial
density ρ0. In light of this, we have to be careful when passing to the limit equation
(3.6).

As aforementioned, we are inspired by the work of Dias and Frid in [17] who
pursue similar objectives on a SW-LW interactions model involving the isentropic
Navier-Stokes equations and who, in turn, follow the work by Chen and Perepelitsa in
[14] on the vanishing viscosity limit for the isentropic one dimensional Navier-Stokes
equations. Our main contribution here is to include the thermal description as well as
the electromagnetic coupling.

The tools employed by Chen and Perepelitsa include the compensated compactness
method. In this direction we cannot fail to mention the following references. The
compensated compactness method arose from the ideas by Tartar and Murat (see
[46, 47] and [41]). Tartar gave the first applications for scalar conservation laws. This
approach was extended by DiPerna in [21] to systems con two conservation laws and
the first applications to fluid dynamics [20]. DiPerna’s results was later extended by
Chen in [9, 10], Lions, Perthame and Souganidis [39] and Lions, Perthame and Tadmor
[40]. Let us also mention the work by LeFloch and Westdickenberg [35] and of course
the above mentioned work by Chen and Perepelitsa [14] and the references contained
in these works.

Before we begin with the specifics, we first do a quick review of the fundamental
ideas behind the compensated compactness method.

3.3.1 Compensated compactness

The problem described above is twofold. On the one hand, we have to show compact-
ness of the sequence of solutions to the viscous system. That is, we have to show that
the sequence of solutions has a convergent subsequence. On the other hand, we have
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to show consistency, i.e., that the limit of such convergent subsequence solves the limit
equations.

Through some uniform estimates on the viscous system we can deduce compact-
ness; in some sense. By uniform estimates we mean estimates independent of the
vanishing parameters. As it turns out, we encounter ourselves in a situation where
the uniform estimates available are not good enough to guarantee strong compactness
directly through the usual Sobolev spaces arguments, but perhaps weak compactness
only. Unfortunately, limits of weak convergent sequences do not, in general, commute
with nonlinear functions of the sequence; not even for continuous functions, and the
nonlinearities appearing in the limit equations suggest that strong compactness of the
sequence is required in order to show consistency.

These considerations apply to more general situations and a natural question that
arises is whether some nonlinear function of a particular weakly convergent sequence
converges to the function of the limit.

The compensated compactness method provides a way to answer this question
positively in some situations. The method consists in combining the Young measures
theorem, which characterizes the weak limits of functions of a given weak convergent
sequence, with the Div-Curl lemma, that provides conditions under which a particular
nonlinear function of the sequence actually commutes with the limit. It has been
employed successfully by several authors in the study of fluid dynamics including the
ones mentioned in the previous subsection, and we intend to apply their framework
to our present situation. For this reason, we dedicate this small subsection to review,
very superficially, the fundamental ideas behind it.

Let us begin by stating (without proof) the Young measures theorem ([46]).

Lemma 3.11 (Young measures). Supose K ⊆ Rm is bounded and Ω ⊆ Rn is open.
Let {zε} be a sequence of measurable functions, with zε : Ω → Rm, such that zε(x) ∈ K

for a.e. x ∈ Ω. Then there is a subsequence {zεk} and a family of probability measures
νx, x ∈ Ω on Rm with suppνx ∈ K so that if f is a continuous function in K and

f(x) := ⟨νx, f(λ)⟩, a.e.

then
f(zεk) ⇀ f in L∞(Ω) weakly − ∗.

This is not the most general statement available of this theorem, but it is very
appropriate for our current illustrative purposes.
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Note that this theorem provides not only a characterization of the limits of con-
tinuous functions of weakly convergent sequences, but also a criterion to decide if the
convergence is in fact strong. In the notation of the Theorem, one may consider the
function z(x) := ⟨νx, g(λ)⟩ with g(λ) = λ. Then, the question at hand is whether

f = f(z), (3.138)

for some (or any) continuous function f . Now, suppose that somehow we manage
to show that νx is a Dirac measure for all x. Then, necessarily νx = δz(x) (the Dirac
measure concentrated at z(x)), (3.138) holds and the convergence f(zεk) → f is strong.

The Young measures Theorem, then, reduces the problem of consistency to the
analysis of the Young measures. In practice, this has to be done on a case by case
basis, depending on the problem under consideration.

In many applications the reduction of the Young measures to Dirac masses follows
by applying cleverly the Div-Curl Lemma due to Murat and Tartar. (A version of)
This Lemma may be stated as follows (see [41, 46, 47]).

Lemma 3.12 (Div-Curl Lemma). Let {vε}, {wε} two bounded sequences in L2(Ω;Rn)
such that

• {divvε} is pre-compact in W−1,2(Ω), and

• {curlwε} is pre-compact in W−1,2(Ω;Mnxn),

where Mnxn is the space of n× n matrices and

(curlw)ij := ∂

∂xj
wi − ∂

∂xi
wj, 1 ≤ i, j ≤ n.

Suppose, further, that vε ⇀ v, wε ⇀ w weakly in L2(Ω;Rn). Then,

vε · wε → v · w

in the sense of distributions.

Let us consider a 2 × 2 system of conservation laws written in the form

vt + F (v)x = 0 (3.139)

where v = (v1, v2)⊤ and F : R2 → R2 is a given function. The compressible Euler
equations (3.132), (3.133) constitute a particular example of this kind.
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Assuming that v is smooth we can deduce a set of auxiliary equations

η(v)t + q(v)x = 0 (3.140)

by taking the inner product of (3.139) with ∇η(v1, v2) as long as η and q satisfy

∇q(v) = ∇η(v)∇F (v). (3.141)

A pair (η, q) satisfying this relation is called an entropy-entropy flux pair.
Note that equation (3.140) can be written either as divt,xG(v) = 0 or as curlt,xH(v) =

0, by choosing G(v) = (η(v), q(v))⊤ and H(v) = (q(v),−η(v))⊤.
Now suppose that we have a sequence vε of solutions to a system of the form

vεt + F (vε)x = Rε, (3.142)

with Rε → 0 (in the sense of distributions, for instance) as ε → 0, and that there is a
whole family of pairs {(ηj, qj)}j∈I that satisfy (3.141). Then, (heuristically) for each
pair (ηj, qj) we have that

ηj(vε)t + qj(vε)x = R̃ε
ηj . (3.143)

Under suitable conditions one might be able to use this last equation to verify the
hypotheses of the Div-Curl Lemma and also use the Young measures Theorem in order
to find a subsequence {vεk}k such that

ηi(vεk)qj(vεk) − ηj(vεk)qi(vεk) → ηi qj − ηj qi

as k → ∞, for all i, j ∈ I, which means that

ηi qj − ηj qi = ηi qj − ηj qi (3.144)

Lastly, if the family of entropies is rich enough the relations (3.144) may provide
enough information to guarantee that the support of each one of the Young measures
associated to the limit v must be contained in a single point, thus concluding that
the convergence vεk → v is strong and, consequently, that v solves equation (3.139)
in the sense of distributions.

A useful tool that is often used to verify the hypotheses of the Div-Curl Lemma is
Murat’s Lemma which can be stated as follows ([42], see also [9]).
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Lemma 3.13 (Murat’s Lemma). Let 1 < q ≤ p < r ≤ ∞. Then

{Compact of W−1,q
loc (Ω)} ∩ {Bounded of W−1,r

loc (Ω)} ⊆ {Compact of W−1,p
loc (Ω)}.

In connection to Murat’s Lemma the following result also proves itself useful in
this framework.

Lemma 3.14. For each 1 ≤ q < 1∗ := n
n−1 , (n being the dimension of the domain

Ω ⊆ Rn)
M(Ω) ↪→ W−1,q(Ω),

with compact inclusion, where, M(Ω) is the space of Radon measures on Ω. In par-
ticular L1(Ω) ↪→ W−1,q.

These are the basic ideas that compose the compensated compactness method. Of
course, there are a lot of “ifs” in this framework that have to be dealt with in each
specific application.

3.3.2 Limit equations

Let us come back to our main subject, which is the study of the SW-LW interactions
system. Our objective here is to study the limit of solutions of our planar SW-LW
interactions system as (ε, α, β, δ) → 0. In order to deal with the convergence issues in
the continuity and momentum equations we employ the framework by Chen and Pere-
pelitsa in [14]. Regarding the convergence of solutions in the nonlinear Schrödinger
equation a simple application of Aubin-Lions lemma will suffice. The magnetic de-
scription poses no problems as we can deduce good uniform estimates on the magnetic
field. Lastly, for the thermal description we adapt some ideas from the study by Feireisl
in [23] on the full multidimensional compressible Navier-Stokes equations. Of course,
in order to achieve all this we deduce some new uniform estimates that allow us to
accommodate all of the techniques in the cited references. Such estimates pose, as
will be shown later, some restriction in the way that the coefficients (ε, α, β, δ) tend
to zero. Namely, α = o(ε1/2), β = o(ε) and δ = o(ε) as ε → 0. As such, we can, for
simplicity, consider α, β and δ as functions of ε and denote the sequence of solutions
to (3.1)-(3.6) with initial data (ρε0, uε0,wε

0,hε0, θε0, ψε0) as (ρε, uε,wε,hε, θε, ψε).
In the interest of analysing the limit as (ε, α, β, δ) → 0, let us make some consid-

erations on the limit equations. In order to fix notation we denote by Ω the spatial
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domain where the Eulearean coordinates take values and by Ωy the corresponding
domain of the Lagrangian coordinate. We begin by the compressible Euler equations.

Isentropic Euler equations

Let us consider the isentropic Euler equations

ρt + (ρu)x = 0, , (3.145)
(ρu)t + (ρu2 + pe(ρ))x = 0, (3.146)

where the pressure pe(ρ) (denoted this way to maintain the notation of section 2.3) is
given by

pe(ρ) = aργ (3.147)

for some γ > 1, with initial data

(ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)) ∈ L∞(Ω). (3.148)

As it is not possible to avoid the occurrence of vacuum in this setting, it is convenient to
consider the momentum m = ρu as state variable in place of the velocity. Accordingly,
system (3.145), (3.146) may be written as

Ut + F (U)x = 0 (3.149)

where, U = (ρ,m)⊤ and F (U) = (m, m2

ρ
+ pe).

A pair of functions (η, q) : R2 → R2 is called an entropy-entropy flux pair (or
simply entropy pair) of system (3.149) provided that they satisfy

∇q(U) = ∇η(U)∇F (U). (3.150)

An entropy pair for (3.145), (3.146) is said to be convex if the Hessian ∇2η(ρ,m) ≥ 0,
and η is called a weak entropy if

lim
ρ→0,

m
ρ

=const.
η(ρ,m) = 0.

A very important example of weak entropy pair for (3.145), (3.146) is given by the
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mechanical energy η∗ and the mechanical energy flux q∗:

η∗(ρ,m) = 1
2
m2

ρ
+ ρPe(ρ), q∗(ρ,m) = 1

2
m2

ρ2 +mPe(ρ) + ρmP ′
e(ρ), (3.151)

where (in the notation of Section 2.3) Pe(ρ) is the elastic potential

Pe(ρ) = a

γ − 1ρ
γ−1.

The total mechanical energy for (3.145), (3.146) is

E[ρ, u](t) :=
∫

Ω
η∗(ρ,m)dx =

∫
Ω

(
1
2ρu

2 + a

γ − 1ρ
γ

)
dx. (3.152)

Relation (3.150) may be written in the variables (ρ, u) as the wave equation
ηρρ − p′

e(ρ)
ρ2 ηuu = 0, ρ > 0

η|ρ=0 = 0.
(3.153)

and consequently, any weak entropy pair (η, q) can be represented by
η

ζ(ρ, ρu) =
∫
R χ(ρ; s− u)ζ(s)ds,

qζ(ρ, ρu) =
∫
R(ϑs+ (1 + ϑ)u)χ(ρ; s− u)ζ(s)ds, ϑ = γ−1

2 ,

for any continuous function ζ(s), where χ(ρ, u; s) = χ(ρ; s− u) is determined by
χρρ − p′

e(ρ)
ρ2 χuu = 0,

χ(0, u; s) = 0, χρ(0, u; s) = δu=s.
(3.154)

For the γ-law case, where the pressure is given by (3.147), the weak entropy kernel
is given by

χ(ρ, u; s) = [ρ2ϑ − (s− u)2]Λ+, Λ = 3 − γ

2(γ − 1) , (3.155)

and the corresponding weak entropy pairs are given by
η

ζ(ρ, ρu) = ρ
∫ 1

−1 ζ(u+ ρϑs)[1 − s2]Λ+ds,

qζ(ρ, ρu) = ρ
∫ 1

−1(u+ ϑρϑs)ζ(u+ ρϑs)[1 − s2]Λ+ds.
(3.156)
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A direct consequence of this representation is the following ([14, Lemma 2.1]),
which we state for later reference.

Lemma 3.15. For a C2 function ζ : R → R compactly supported in [a, b], we have

suppηζ , suppqζ ⊆ {(ρ, ρu) : ρϑ + u ≥ a, u− ρϑ ≤ b}.

Furthermore, there exists a constant Cζ > 0 such that, for any ρ ≥ 0 and u ∈ R, we
have

• (i) For γ ∈ (1, 3],
|ηζ(ρ,m)| + |qζ(ρ,m)| ≤ Cζρ.

• (ii) For γ > 3,

|ηζ(ρ,m)| ≤ Cζρ, |qζ(ρ,m)| ≤ Cζρmax{1, ρϑ}.

(iii) If ηζn is considered as a function of (ρ,m), m = ρu, then

|ηζm(ρ,m)| + |ρηζmm(ρ,m)| ≤ Cζ ,

and if ηζn is considered as a function of (ρ, u), then

|ηζmu(ρ,m)| + |ρ1−ϑηζmρ(ρ,m)| ≤ Cζ .

Bearing in mind the procedure described in the previous subsection, the fact that
we have a very rich family of entropy pairs, with an explicit description for them, is
extremely advantageous. As the solutions to our viscous system are strong solutions,
from equations (3.1), (3.2) we can deduce a relation of the form (3.143) for any entropy
pair given by (3.156), which fits perfectly into the compensated compactness scheme.

In light of these considerations we state the following concept, taken from [14].

Definition 3.1. Let (ρ0, u0) be given initial data such that E[ρ0, u0] ≤ E0 < ∞.
A pair (ρ, u) : Ω × [0, T ) → [0,∞) × R is called a finite-energy entropy solution of
(3.145),(3.146),(3.148) if the following hold:

• There is a locally bounded function C(E, t) ≥ 0 such that

E[ρ, u](t) ≤ C(E0, t).
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• (ρ, u) satisfies (3.145) and (3.146) in the sense of distributions and, more gen-
erally,

ηζ(ρ, u)t + qζ(ρ, u)x ≤ 0,

in the sense of distributions, for the test functions ζ(s) ∈ {±1,±s, s2}.

• The initial data are attained in the sense of distributions.

The first step in our analysis is to show strong convergence of a subsequence of
(ρε, ρεuε) to a finite-energy entropy solution to (3.145),(3.146). For this we rely heavily
on [14] and also on [17].

Transverse velocity field and magnetic field

We move on to the limit equations (3.134) and (3.136) for the transverse velocity field
and the magnetic field. As µ and ν are left fixed independently of ε we can deduce
some satisfactory uniform estimates on wx and on hx that permit the passage to the
limit for the sequence (wε,hε) without any major complications, once we have shown
that ρε and ρεuε converge strongly.

Regarding equation (3.136), we see that we are left with a stationary equation and
therefore the initial condition loses its meaning. However, note that from equation
(3.5) we have that
∫

Ω
βhεφdx−

∫
Ω
βhε0φ|t=0ds−

∫ t

0

∫
Ω
(βuεhε − βwε)φxdxds = −

∫ t

0

∫
Ω
νhεxφxdxds,

for any smooth test function φ with compact support in Ω × [0, T ).
A couple of energy estimates based on the energy identity (3.9) and on equation

(3.7) (which will be deduced later) as well as an interpolation inequality for uε and for
wε show that βhε → 0 in L∞(0, T ;L2(Ω)) and β(uεhε,wε) → 0 in L1(Ω × (0, T )) as
ε → 0 with β = o(ε). By the same token we can a assume that hεx converges weakly
to hx for some h ∈ L2(0, T ;H1

0 (Ω)). As a result, in the limit we have

lim
ε→0

∫
Ω
βhε0φ|t=0ds =

∫ t

0

∫
Ω
νhxφxdxds.

For this reason, we are compelled to impose that βhε0 → 0 in the sense of distribu-
tions, in which case we would have that hx = 0, thus forcing h to be identically equal
to zero.
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As for the limit equation (3.134), the same energy estimates allow us to assume
that wε → w weakly in L2(0, T ;H1

0 (Ω)) and provided that ρε and ρεuε converge
strongly, we can conclude that the limit equation (3.134) is satisfied in the sense of
distributions.

Thermal energy

The uniform estimates that we obtain further ahead, guarantee that ε|uε|2, µ|wε|2 and
ν|hε|2 are bounded in L1(Ω × (0, T )). Nonetheless, this is the best uniform estimate
that we can hope to obtain on the derivatives of u, w and h. This means that,
consistency becomes an issue in the thermal energy limit equation (3.135) as we cannot
guarantee that the sequence (or any subsequence of) ε|uε|2 +µ|wε|2 +ν|hε|2 converges
to anything other than possibly a positive Radon measure. For this reason we do not
expect equation (3.135) to be satisfied and the best we can aim to obtain when taking
the limit as ε → 0 in equation (3.7) is an inequality.

On the bright side we note that given a nonnegative smooth test function φ, the
function f →

∫ t
0
∫

Ω |f |2φdxds defined for f ∈ L2(Ω × (0, T )) and taking values in
[0,∞) may be regarded as the squared norm in the weighted L2

φ space. As we have
that the sequence (wε

x,hεx) is weakly convergent in L2(Ω × (0, T )) (and therefore, also
in L2

φ(Ω × (0, T ))) we see that

lim inf
ε→0

∫ t

0

∫
Ω
(µ|wε

x|2 + ν|hεx|2)φdxds ≥
∫ t

0

∫
Ω
(µ|wx|2 + ν|hx|2)φdxds.

Recall that, in fact, the limit magnetic field h has to be equal to zero. With this
in mind, we intend to show that, in the limit, the following inequality

(ρQ(θ))t + (ρQ(θ)u)x ≥ (κθx)x + µ|wx|2, (3.157)

is satisfied in the sense of distributions by the limit functions. In the process we are
going to show that the following inequality also holds

∫
Ω
ρ
(
Pe(ρ) +Q(θ) + 1

2 |u|2 + 1
2 |w|2

)
(t)dx

≤
∫

Ω

(
ρ0Pe(ρ0) + ρ0Q(θ0) + 1

2
m2

0
ρ0

+ ρ0
1
2 |w|2

)
dx, (3.158)
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which is nothing other that to say in the notation of (3.152) that

E[ρ, u](t) + ||(ρQ(θ), ρ|w|2)(t)||L1(Ω) ≤ E[ρ0, u0](0) + ||(ρ0Q(θ0), ρ0|w0|2)||L1(Ω),

which compensates, in some way, the “loss of information” resulting from considering
an inequality instead of an identity in the limit thermal energy equation. This is in
accordance with the definition of variational solution of the thermal energy equation
considered by Feireisl in [23, Definition 4.5].

Let us point out, that even by considering the inequality (3.157) in place of (3.135),
the task of showing consistency is not simple as Q and κ are nonlinear functions of θ.
This means that we have to show strong convergence of the sequence θε.

For this we adapt an idea in [23] which can be divided into two steps. First,
using uniform estimates and some careful analysis we can show that Q(θε) converges
pointwise to some limit Q, in the set where ρ (the limit density) is positive. As Q is
a strictly increasing function, we can write Q as Q = Q(θ ), i.e., θ = Q−1(Q). Then,
using (2.54) we see that

0 = lim
ε→0

∫ T

0

∫
Ω
(Q(θε) −Q(θ))(θε − θ)1{ρ>0}dxds ≥ lim

ε→0
C−1

∫ T

0

∫
Ω
(θε − θ)2

1{ρ>0}dxds,

so that θε also converges pointwise to θ in the set {ρ > 0}. After this, we adapt
a clever argument from [23] to show that the function K(θ) :=

∫ θ
0 κ(z)dz converges

weakly to some K. Accordingly, K = K(θ) in the set where ρ > 0. Thus, if we define
θ := K−1(K ) we then have that θ = θ in the set {ρ > 0} and we can pass to the limit
in equation (3.7) in order to conclude that θ satisfies inequality (3.157).

We will fill in the details of this procedure later.

Nonlinear Schrödinger equation

Finally, we consider the limit equation (3.137). Let us recall that ψ : Ωy×(0, T ) → C is
called a weak solution of (3.137) with initial data ψ|t=0 = ψ0 if ψ ∈ L∞(0, T ;H1

0 (Ωy))∩
W 1,∞(0, T ;H−1(Ωy)), (3.137) is satisfied in H−1(Ωy) for each t ∈ (0, T ) and the initial
data is attained in the sense of distributions. Existence and uniqueness of global weak
solutions to (3.137) with initial data ψ0 ∈ H1(Ω) is a well known result (see [30],[7]).

Assuming, as before, that α = o(ε1/2), the energy identity (3.9) yields uniform
estimates on the L∞(0, T ;L4(Ωy) ∩ H1

0 (Ωy)) norm of ψε. In view of our hypotheses
(2.56) on the coupling, functions a direct application of Aubin-Lions lemma (see [3, 36])
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allows us to pass to the limit in equation (3.15). (A version of) Aubin-Lions lemma
may be stated as ( see [45])

Lemma 3.16 (Aubin-Lions Lemma). Let X0, X and X1 be Banach spaces such that

X0 ⊂ X ⊂ X1

Supose that X0 is compactly embedded in X and that X is continuously embedded in
X1. For 1 ≤ α0, α1 ≤ ∞, let

W := {v ∈ Lα0(0, T ;X0),
dv

dt
∈ Lα1(0, T ;X1)},

under the norm
||v||W = ||v||Lα0 (0,T ;X0) +

∥∥∥∥∥dvdt
∥∥∥∥∥
Lα1 (0,T ;X1)

.

Then,

(i) If α0 < ∞, then the embedding of W into Lα0(0, T ;X) is compact;

(ii) If α0 = ∞ and α1 > 1, then the embedding of W into C([0, T ];X) is compact.

Of course, in order to apply this lemma we have to deal with one technicality that
presents itself. The wave function ψε is defined on the space Ωy×(0, T ) where Ωy is the
spatial domain of the Lagrangian coordinate. As we pointed out earlier, we have that
this domain actually depends on ε and we have Ωy = (0, dε), where dε is the L1 norm of
the initial density ρε0. Now, if we assume that ∥ρε0∥L1(Ω) → d := ∥ρ0∥L2(Ω) then there is
some ε0 > 0 such that dε ≤ d+1 for all ε ≤ ε0. Extending each ψε by zero to the spatial
domain (0, d+1) and in view of (3.6) and by the estimates on ψε we can apply Aubin-
Lions Lemma with X0 = H1((0, d+1)), X = L2((0, d+1)) and X1 = H−1((0, d+1)) in
order to conclude strong convergence of ψε → ψ in L2(0, T ;L2((0, d+1)). Furthermore,
ψ ∈ L∞(0, T ;H1

0 ((0, dε))) ∩ L∞(0, T ;H1
0 ((0, d + 1))). Finally, as dε → d we conclude

that ψ ∈ L∞(0, T ;H1
0 ((0, d))) and constitutes a weak solution for the limit equation

(3.137) on the spatial domain Ωy = (0, d).
As for the initial data, we only have to assume that ψε0 → ψ0 in H1

0 as ε → 0 for
the argument above to hold.
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3.3.3 Uniform estimates

Our goal now is to deduce some uniform estimates that allow us to proceed as sketched
above. They are divided into several lemmas. Lemmas 3.17 through 3.20 are inspired
by their analogues contained in [14]. In order to avoid the overload of notation,
in this subsection we denote by (ρ, u,w,h, θ, ψ) a solution of (3.1)-(3.6) with initial
conditions (ρ0, u0,w0,h0, θ0, ψ0). The estimates below are uniform in the sense that
the bounding constants do not depend on ε (and hence nor on β, α or δ). To this
end, in what follows C will stand for a universal constant independent of ε. We also
assume that α = o(ε1/2), β = 0(ε) and δ = o(ε) as ε → 0, and that µ and ν are fixed
positive constants independent of ε and that κ satisfies (2.55), also independently of
ε.

We begin with the following basic energy estimate.

Lemma 3.17. Assume that

C−1
0 ≤

∫ 1

0
ρ0dx ≤ C0, −

∫
Ω
ρ0s(ρ0, θ0)dx ≤ C0

where s is the entropy given by (2.46), and that

∫
Ω

(
ρ0

(
e(ρ0, θ0) + 1

20
u2 + 1

2 |w0|2
)

+ β

2 |h0|2
)
dx

+
∫

Ωy

(1
2 |ψ0y|2 + 1

4 |ψ0|4 + αg(v0)h(|ψ0|2)
)
dy ≤ C0,

where C0 > 0 is independent of ε. Then, there exists C = C(C0) > 0, independent of
ε such that
∫

Ω

(
ρ
(
e(ρ, θ) + 1

2u
2 + 1

2 |w|2
)

+ β

2 |h|2
)
dx+

∫
Ωy

(1
2 |ψy|2 + 1

4 |ψ|4 + αg(v)h(|ψ|2)
)
dy

+
∫

Ω
ρ(θ − 1 − log θ)dx+

∫ t

0

∫
Ω

(
κθ2

y

θ2 + εu2
x + µ|wx|2 + ν|hx|2

)
dxds ≤ C

(3.159)
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Proof. First, from the energy identity (3.9) we have that

∫
Ω

(
ρ
(
e(ρ, θ) + 1

2u
2 + 1

2 |w|2
)

+ β

2 |h|2
)
dx

+
∫

Ωy

(1
2 |ψy|2 + 1

4 |ψ|4 + αg(v)h(|ψ|2)
)
dy ≤ C0.

(3.160)

Second, from equation (3.1) we have that
∫

Ω
ρdx =

∫
Ω
ρ0dx, (3.161)

Also, note that the one dimensional version of equation (2.46) yields

(ρs)t + (ρus)x −
(
κθx
θ

)
x

= κθ2
x

θ2 + εu2
x

θ
+ µ|wx|2

θ
+ ν|h|2x

θ
(3.162)

From the definition of s and using (2.42) and (2.54) we have, similarly as in (3.80),
that

−
∫

Ω
ρsdx ≥ C−1

∫
Ω
(θ − 1 − log θ)dx− C − C

∫
Ω
ρe(ρ, θ)dx

≥ C−1
∫

Ω
(θ − 1 − log θ)dx− C.

Then, integrating equation (3.162) over Ω × (0, T ) we get

∫
Ω
ρ(θ − 1 − log θ)dx+

∫ t

0

∫
Ω

(
κθ2

y

θ2 + εu2
x

θ
+ µ|wx|2

θ
+ ν|h|2x

θ

)
dxds

≤ C − C
∫

Ω
ρ0s(ρ0, θ0)dx

≤ C.

Next, integrating equation (3.7) and using (3.160) together with (3.131) and our



3.3 Vanishing bulk viscosity and interaction coefficients 89

assumption that δ = o(ε)
∫ t

0

∫
Ω
(εu2

x + |wx|2 + ν|hx|2)dxds

≤
∫

Ω
ρedx+

∫
Ω
ρ0e(ρ0, θ0)dx+

∫ t

0

∫
Ω
δθpθ(ρ)uxdxds

≤ C + C
∫ t

0

∫
Ω
δθ(1 + ργ/2)|ux|dxds

≤ C + C
∫ t

0
Mθ(s)2

∫
Ω
(1 + ργ)dxds+ ε

2

∫ t

0

∫
Ω
u2
xdxds.

Here, Mθ(t) = maxx∈Ω θ(x, t). Now, according to (2.54) and using (3.160) we have
that

∫
Ω ρθdx ≤ C. Now, for any t ∈ [0, T ] there is a point b = b(t) ∈ Ω such that

θ(b(t), t) = (
∫

Ω ρdx)−1 ∫
Ω ρθdx ≤ C. Thus, similarly as in (3.86), using (2.55) we have

∫ T

0
Mθ(s)2ds ≤ C + C

∫ T

0

∫
Ω

κθ2
x

θ2 ≤ C. (3.163)

Also notice that by (2.53)
∫

Ω
ργdx ≤ C

∫
Ω
ρedxds ≤ C,

and hence, ∫ t

0

∫
Ω
(εu2

x + µ|wx|2 + ν|hx|2)dxds ≤ C.

We now establish an estimate for the spatial derivative of the density.

Lemma 3.18. Let ρ0, u0 and h0 be such that

ε2
∫

Ω

ρ2
0x
ρ3

0
dx+ εβ2

∫
Ω

|h0|2

ρ0
dx ≤ C0,

and that
C−1

0 ≤
∫

Ω
ρ0dx ≤ C0.

where C0 is independent of ε. Then, there exists C = C(C0) such that

ε2
∫

Ω

ρ2
x

ρ3 dx+ εβ2
∫

Ω

|h|2

ρ
dx+ ε

∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds+ εβ
∫ t

0

∫
Ω

|hx|2

ρ
dxds ≤ C. (3.164)
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Proof. As in [14] we deduce the following equation for v(x, t) = 1/ρ(x, t):

(ρv2
x)t + (ρuv2

x)x = 2vxuxx. (3.165)

Using equation (3.2) we have

2vxuxx = 2
ε
vx(px + (ρu)t + (ρu2)x) + β

ε
vx(|h|2)x − 2α

ε
vx(g′(v)h(|ψ|2))x

= 2
ε
vxpx + 2

ε
((ρuvx)t + [ρu(uvx)x − ρu(vux)x + vx(ρu2)x])

+ 2
ε
vx(|h|2)x − 2α

ε
vx(g′(v)h(|ψ ◦ Y|2))x. (3.166)

Denoting by J the expression in square brackets, by integration by parts, we have
∫

Ω
Jdx =

∫
Ω
(vux(ρu)x − uvx(ρu)x + vx(u(ρu)x + ρuux))dx

=
∫

Ω
(vux(ρu)x + ρuvxux)dx =

∫
Ω
u2
xdx.

Next, bearing in mind our assumption (3.131) we see that

vxpx = −aγργ−3ρ2
x − δ

ρx
ρ2 θxpθ(ρ) − δ

ρ2
x

ρ2 θp
′
θ(ρ).

In order to deal with the term vx(|h|2)x we first rewrite (3.1) as

vt + vxu = vux.

Multiply this equation by β|h|2 to obtain

βvt|h|2 + βvxu|h|2 − βvux|h|2 = 0.

Now, multiply (3.5) by 2vh and add the resulting equation to the above to obtain

β(v|h|2)t + 2νv|hx|2 + β(vu|h|2)x − (2νvh · hx)x + 2βvh · wx = −νvx(|h|2)x.

In this way,

vx(|h|2)x = −β

ν
(v|h|2)t − 2v|hx|2 + β

ν
(vu|h|2)x + (2vh · hx)x − 2β

ν
vh · wx.

Gathering this information in (3.165), multiplying by ε2 and integrating over Ω ×
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(0, t) we get

ε2
∫

Ω

ρ2
x

ρ3 dx

= ε2
∫

Ω

ρ2
0,x

ρ3
0
dx− 2aγε

∫ t

0

∫
Ω
ργ−3ρ2

xdxds− 2εδ
∫ t

0

∫
Ω

(
ρx
ρ2 θxpθ(ρ) + ρ2

x

ρ2 θp
′
θ(ρ)

)
dxds

− 2ε
∫

Ω

ρx
ρ
udx+ 2ε

∫
Ω

ρ0x

ρ0
u0dx+ 2ε

∫ t

0

∫
Ω
u2
xdx

− εβ2

ν

∫
Ω

1
ρ

|h|2dx+ εβ2

ν

∫
Ω

1
ρ0

|h0|2dx− 2εβ
∫ t

0

∫
Ω

1
ρ

|hx|2dxds+ 2εβ2

ν

∫ t

0

∫
Ω

1
ρ

b · wxdx

+ 2αε
∫ t

0

∫
Ω

ρx
ρ2 (g′(1/ρ)h(|ψ ◦ Y|2))xdxds. (3.167)

Concerning the third integral on the right hand side, by virtue of (2.52), we have
that

−2εδ
∫ t

0

∫
Ω

(
ρx
ρ2 θxpθ(ρ) + ρ2

x

ρ2 θp
′
θ(ρ)

)
dxds ≤ 2Cεδ

∫ t

0

∫
Ω

|ρx|
ρ2 |θx|(1 + ργ/2)dx ds.

Observe that since
∫

Ω ρdx =
∫

Ω ρ0dx, then for each t ∈ (0, T ) there is a point
b(t) ∈ Ω such that ρ(b(t), t) =

∫
Ω ρ0dx ≥ C−1

0 . Therefore,

max
z∈Ω

1√
ρ(z, t)

≤
√
C0 +

∫
Ω

∣∣∣∣∣
(

1
√
ρ

)
x

∣∣∣∣∣ dx ≤ C + C

(∫
Ω

ρ2
x

ρ3 dx

)1/2

.

Thus, taking (2.55) into consideration we see that

2εδ
∫ t

0

∫
Ω

|ρx|
ρ2 |θx|(1 + ργ/2)dxds

≤ Cε
∫ t

0
max
x∈Ω

1
ρ1/2

∫
Ω

(
δ

|ρx|
ρ3/2 |θx| + δ|θx| |ρx|ρ(γ−3)/2

)
dxds

≤ Cε
∫ t

0

C + C

(∫
Ω

ρ2
x

ρ3 dx

)1/2
(∫

Ω

κθx
θ2 dx

)1/2
(∫

Ω
ε2ρ

2
x

ρ3 dx

)1/2

+
(∫

Ω
ε2ρ2

xρ
γ−1

)1/2
 ds

≤ aγε

4

∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds+ C
∫ t

0

(
1 +

∫
Ω

κθ2
x

θ2 dx

)(
1 +

∫
Ω
ε2ρ

2
x

ρ3 dx

)
ds.

We already know from Lemma 3.17 that

ε
∫ t

0

∫
Ω
u2
xdxds ≤ C.
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Concerning the fourth integral on the right hand side

2ε
∫

Ω

ρx
ρ
udx ≤ ε2

4

∫
Ω

ρ2
x

ρ3 dx+ C
∫

Ω
ρu2dx ≤ ε2

4

∫
Ω

ρ2
x

ρ3 dx+ C.

We continue with (recall that β = o(ε))

2εβ2

ν

∫ t

0

∫
Ω

1
ρ

h · wxdxds

≤ 2εβ2

ν

∫ t

0
max
x∈Ω

1
ρ1/2

(∫
Ω

1
ρ

|h|2dx
)1/2 (∫

Ω
|wx|2dx

)1/2
ds

≤ C
εβ2

ν

∫ t

0

1 +
(∫

Ω

ρ2
x

ρ3 dx

)1/2
(∫

Ω

1
ρ

|h|2dx
)1/2 (∫

Ω
|wx|2dx

)1/2
ds

≤ C
∫ t

0

ε+
(∫

Ω
ε2ρ

2
x

ρ3 dx

)1/2
(∫

Ω

εβ2

ν

1
ρ

|h|2dx
)1/2 (∫

Ω

β2

εν
|wx|2dx

)1/2

ds

≤ C
∫ t

0

(
1 +

∫
Ω
µ|wx|2dx

)(
1 +

∫
Ω
ε2ρ

2
x

ρ3 dx+
∫

Ω
εβ2 1

ρ
|h|2dx

)
ds.

Finally, recalling (3.8) we see that (ψ◦Y)x = ρψy. We also know that the Jacobian
of the Lagrangian coordinate change is equal to ρ. Therefore, using (2.56) and Lemma
3.17 we see that

2αε
∫ t

0

∫
Ω

ρx
ρ2 (g′(1/ρ)h(|ψ ◦ Y|2)))xdxds ≤ aγε

8

∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds+ C
∫ t

0

∫
Ω

|ψx|2dxds

≤ aγε

8

∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds+ C.

Putting all of these estimates together with (3.167) we deduce the inequality

ε2
∫

Ω

ρ2
x

ρ3 dx+ εβ2
∫

Ω

|h|2

ρ
dx+ ε

∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds+ εβ
∫ t

0

∫
Ω

|hx|2

ρ
dxds

≤ C + C
∫ t

0

[
1 +

∫
Ω

(
κθ2

x

θ2 + µ|wx|2
)
dx

](
1 + ε2

∫
Ω

ρ2
x

ρ3 dx+ εβ2
∫

Ω

1
ρ

|h|2dx
)
ds,

with C > 0 independent of ε. And since,

∫ t

0

[
1 +

∫
Ω

(
κθ2

x

θ2 + µ|wx|2
)
dx

]
ds ≤ C,

Gronwall’s inequality yields (3.164).
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We now deduce some higher integrability estimates for the density.

Lemma 3.19. Let ∫
Ω
ρ0e(ρ0, θ0)dx+

∫
Ω
ρ0u

2
0dx ≤ C0

where C0 is independent of ε. Then, there is a constant C = C(C0), independent of ε
such that ∫ t

0

∫
Ω
(ργ+1 + δρθpθ(ρ) + βρ|h|2)dxds ≤ C. (3.168)

Let us point out that according to the growth conditions (2.53), Lemma 3.17 yields
only uniform boundedness of ρ in the space L∞(0, T ;Lγ(Ω)). Let us carry on the proof.

Proof. Let b ∈ {0, 1} (recall that we are assuming that Ω = (0, 1) without loss of
generality) and let σ(x) be a smooth function such that

σ(b) = 0, σ(1 − b) = 0 and 0 ≤ σ ≤ 1. (3.169)

Multiplying equation (3.2) by σ and integrating from b to x (with respect to the
space variable) we have

pσ + β

2 |h|2 = − ρu2σ + εuxσ + αg′(1/ρ)h(|ψ|2)σ −
(∫ x

b
ρuσdξ

)
t

+
∫ x

b

[(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ|2)
)
σx − εuxσx

]
dξ.

Multiply this identity by ρσ and use (3.1) to obtain

ρpσ2 + β

2 ρ|h|2σ2

= −ρ2u2σ2 + ερuxσ
2 + αg′(1/ρ)h(|ψ|2)ρσ2 −

(
ρσ
∫ x

b
ρuσdξ

)
t
− (ρu)xσ

∫ x

b
ρuσdξ

+ ρσ
∫ x

b

[(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ|2)
)
σx − εuxσx

]
dξ

= ερuxσ
2 + αg′(1/ρ)h(|ψ|2)ρσ2 −

(
ρσ
∫ x

b
ρuσdξ

)
t
−
(
ρuσ

∫ x

b
ρuσdξ

)
x

+ ρuσx

∫ x

0
ρuσdξ + ρσ

∫ x

b

[(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ|2)
)
σx − εuxσx

]
dξ.
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Integrating over Ω × (0, t) we have

∫ t

0

∫
Ω
ρpσ2dx + β

2

∫ t

0

∫
Ω
ρ|h|2dxds

= α
∫ t

0

∫
Ω
g′(1/ρ)h(|ψ|2)ρσ2dxds+ ε

∫ t

0

∫
Ω
ρuxσ

2dxds

+
∫

Ω
ρσ
(∫ x

b
ρuσdxi

)
dx+

∫
Ω
ρ0σ

(∫ x

b
ρ0u0σdxi

)
dx+ r1(t),

where

r1(t) =
∫ t

0

∫
Ω
ρuσx

(∫ x

b
ρuσdξ

)
dxds

+
∫ t

0

∫
Ω
ρσ
∫ x

b

[(
ρu2 + p+ β

2 |h|2 − αg′(1/ρ)h(|ψ|2)
)
σx − εuxσx

]
dξdxds

Note that,

ε
∫ t

0

∫
Ω
ρuxσ

2dxds ≤ ε

δ1

∫ t

0

∫
Ω
u2
xdxds+ δ1

∫ t

0

∫
Ω
ρ2σ2dxds

≤ Cδ1 + Cδ1

∫ t

0

∫
Ω
ρ2σ2dxds.

Now, ∣∣∣∣∫ x

b
ρuσdξ

∣∣∣∣ ≤
(∫

Ω
ρdx

)1/2 (∫
Ω
ρu2dx

)1/2
≤ C.

And then, ∣∣∣∣∫
Ω
ρσ
(∫ x

b
ρuσdxi

)
dx
∣∣∣∣ ≤ C.

Similarly,
∣∣∣∣∫ t

0

∫
Ω
ρuσx

(∫ x

b
ρuσdξ

)
dxds

∣∣∣∣+ ∣∣∣∣∫ t

0

∫
Ω
ρσ
(∫ x

b
ρu2σxdξ

)
dxds

∣∣∣∣
+
∣∣∣∣∫ t

0

∫
Ω
ρσ
(∫ x

b
εuxσxdξ

)
dxds

∣∣∣∣ ≤ C

Recall that we are assuming (3.131). Also, from Lemma 3.17 we have
∫

Ω
ργdx ≤ C.
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Hence, taking into account (3.163), we see that
∣∣∣∣∫ t

0

∫
Ω
ρσ
(∫ x

b
pσxdξ

)
dxds

∣∣∣∣ ≤ C
∫ t

0
(1 +Mθ(s)2)

∫
Ω
ρσ
(∫

Ω
(ργ + 1)dξ

)
dxds

≤ C
∫ t

0
(1 +Mθ(s)2)

∫
Ω
ρdxds

≤ C
∫ t

0
(1 +Mθ(s)2)ds ≤ C.

We continue with

∣∣∣∣∣
∫ t

0

∫
Ω
ρσ

(∫ x

b

β

2 |h|2σxdξ
)
dxds

∣∣∣∣∣ ≤ C
∫ t

0

∫
Ω
ρ

(∫ 1

0

β

2 |h|2dξ
)
dxds

≤ C
∫ t

0

∫
Ω
ρdxds ≤ C.

Lastly, ∣∣∣∣α ∫ t

0

∫
Ω
ρσ2g′(1/ρ)h(|ψ|2)dxds

∣∣∣∣ ≤ C,

and ∣∣∣∣α ∫ t

0

∫
Ω
ρσ
(∫ x

b
g′(1/ρ)h(|ψ|2)σxdxi

)
dxds

∣∣∣∣ ≤ C

Choosing δ1 > 0 small enough, we get

∫ t

0

∫
Ω

(
ρp+ β

2 ρ|h|2
)
σ2dxds ≤ C,

and using the hypotheses (2.50) on p

∫ t

0

∫
Ω

(
ργ+1 + δθρpθ(ρ) + β

2 ρ|h|2
)
σ2dxds ≤ C,

and this holds for any σ that satisfies (3.169) (of course, the constant C in this last
inequality depends on σ). Choosing σ1(x) = x and σ2(x) = 1 − x (again, Ω = (0, 1))
we get ∫ t

0

∫
Ω

(
ργ+1 + δθρpθ(ρ) + β

2 ρ|h|2
)

(x2 + (1 − x)2)dxds ≤ C.

Since minx∈(0,1)(x2 + (1 − x)2) = 1/2 we conclude that

∫ t

0

∫
Ω

(
ργ+1 + δθρpθ(ρ) + β

2 ρ|h|2
)
dxds ≤ C.
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We now improve the integrability of the velocity.

Lemma 3.20. Let (ρ0, u0,h0, θ0) satisfy

∫
Ω
ρ0dx ≥ C−1, ε2

∫
Ω

ρ2
0,x

ρ3
0
dx+ εβ2

∫
Ω

1
ρ0

|h0|2dx ≤ C0,

and ∫
Ω
ρ0(e(ρ0, θ0) + u2

0)dx ≤ C0

where, C0 is a constant independent of ε. Then
∫ t

0

∫
Ω
(ρ|u|3 + ργ+ϑ)dxds ≤ C, (3.170)

where, ϑ = γ−1
2 and C > is a constant independent of ε.

Proof. Let ζ#(z) = 1
2z|z|. Then, the corresponding weak entropy pair (η#, q#) :=

(ηζ# , qζ#) satisfies

|η#(ρ,m)| ≤ C(ρ|u|2 + ργ), C−1(ρ|u|3 + ργ+ϑ) ≤ q#(ρ,m) ≤ C(ρ|u|3 + ργ+ϑ),
(3.171)

|η#
m(ρ,m)| ≤ C(|u| + ρϑ), |η#

mm(ρ,m) ≤ Cρ−1.

(3.172)

and, regarding η#
m in the coordinates (ρ, u)

|η#
mu(ρ, ρu)| ≤ C, |η#

mρ(ρ, u)| ≤ Cρϑ−1, (3.173)

for all ρ ≥ 0 and all u ∈ R. This is a consequence of the representation formulas
(3.156).

Multiply (3.1) by η#
ρ and (3.2) by η#

u and add the resulting equations to obtain

η#(ρ,m)t + q#(ρ,m)x =
(

−β

2 |h|2 + αg′(1/ρ)h(|ψ|2) + εux

)
x

η#
m(ρ,m). (3.174)

Define the function

f(x, t) :=
[
q#(ρ,m) +

(
β
2 |h|2 − αg′(1/ρ)h(|ψ ◦ Y |2) − εux

)
η#
m(ρ,m)

]
(x, t). (3.175)
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We claim that there is a function a(t) taking values in Ω such that
∫ t

0
|f(a(s), s)|ds ≤ C, (3.176)

for some C > 0 independent of ε.

Assuming this for now, we integrate (3.174) over (a, x) first and then over (0, t)
and get

∫ x

a
(η#(ρ,m) − η#(ρ0,m0))dξ +

∫ t

0
q#(ρ,m)ds

=
∫ t

0
f(a(s), s)ds+

∫ t

0

(
−β

2 |h|2 + αg′(1/ρ)h(|ψ ◦ Y |2) + εux

)
η#
mds

−
∫ t

0

∫ x

a

(
−β

2 |h|2 + αg′(1/ρ)h(|ψ|2) + εux

)
(η#
mρρx + η#

muux)dxds. (3.177)

First, from (3.171) we see that
∫ t

0

∫
Ω
q#(ρ,m)dxds ≥ C−1

∫ t

0

∫
Ω
(ρ|u|3 + ργ+ϑ).

Second, from Lemma 3.17 and (3.171)
∫ t

0

∫
Ω
(|η#(ρ,m)| + |η#(ρ0,m0)|)dx ≤ C.

Next, using the fact that h|x=0 = 0 we see that

β1/2|h|2 ≤ 2
(
β
∫

Ω
|h|2

)1/2 (∫
Ω

|hx|2
)1/2

≤ C
(∫

Ω
|hx|2

)1/2
. (3.178)

Similarly,

ε1/2|u| ≤
∫

Ω
ε1/2|ux|dx ≤ C

(
ε
∫

Ω
u2
xdx

)1/2
. (3.179)

Using these two observations along with (3.172) and Lemma 3.17

∫ t

0

∫
Ω

(
−β

2 |h|2 + αg′(1/ρ)h(|ψ|2) + εux

)
η#
mdxds

≤ C + C
∫ t

0

∫
Ω
(ν|hx|2 + εu2

x)dxds+ C(β + α2 + ε)
∫ t

0

∫
Ω
(u2

x + ργ−1)dxds

≤ C.
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Finally, by the same reasoning and using (3.173) and Lemma 3.19 we see that

∫ t

0

∫
Ω

(
−β

2 |h|2 + αg′(1/ρ)h(|ψ|2) + εux

)
(η#
mρρx + η#

muux)dxds

≤ C + C
∫ t

0

∫
Ω
ν|hx|2dxds+ C(β + α2 + ε)

∫ t

0

∫
Ω
u2
xdxds

+ C(β + α2 + ε)
∫ t

0

∫
Ω
ρ2
xρ

γ−3dxds

≤ C.

Taking this information into account, integrating (3.177) over Ω and using (3.176)
we obtain (3.170).

In order to complete the proof we have to prove our claim. For this, fix k ∈ N
large enough so that γ ≥ max{1 + 2

2k−3 , 1 + 1
2(k−1)} and observe that

ρ(x, t) min
z∈Ω

|f(z, t)|1/k ≤ ρ(x, t)|f(x, t)|1/k ≤ ρ(x, t) max
z∈Ω

|f(z, t)|1/k.

Integrating over Ω and using (3.161) we see that for a.e. t there is a point a =
a(t) ∈ Ω such that

|f(a(t), t)| =
(∫

Ω
ρ0dx

)−k (∫
Ω
ρ(x, t)|f(x, t)|1/kdx

)k
.

Let us show that
∫ t

0

(∫
Ω
ρ(x, s)|f(x, s)|1/kdx

)k
ds ≤ C. (3.180)

On the one hand, since k was chosen so that γ ≥ 1 + 2
2k−3 (which implies that

1
2k ≤ γ−1

3γ−1), we can use (3.171) and (3.160) in order to show that

∫
Ω
ρ|q#(ρ,m)|1/k

≤ C
∫

Ω

(
ρ(2k−1)/2k(ρu2)3/2k + ρ1+(3γ−1)/2k

)
dx

≤ C
(∫

Ω
ρ(2k−1)/(2k−3)dx

)(2k−3)/2k (∫
Ω
ρu2dx

)3/2k
+ C

∫
Ω
ρ1+(3γ−1)/2kdx

≤ C
(

1 +
∫

Ω
ργdx

)(2k−3)/2k (∫
Ω
ρu2dx

)3/2k
+ C

(
1 +

∫
Ω
ργdx

)
≤ C
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On the other hand, since γ ≥ 1 + 1
2(k−1) we have that

∫
Ω
ρ|εuxη#

m|1/kdx

≤ ε1/2k
∫

Ω
ρ1−1/2k(εu2

x)1/2k((ρu2)1/2k + ργ/2k)dx

≤ C
(∫

Ω
ρ1+1/2(k−1)dx

)(k−1)/k (∫
Ω
εu2

xdx
)1/2k (∫

Ω
(ρu2 + ργ)dx

)1/2k

≤ C
(

1 +
∫

Ω
ργdx

)(k−1)/k (
1 +

∫
Ω
εu2

xdx
)1/k

≤ C
(

1 +
∫

Ω
εu2

xdx
)1/k

.

With this, we conclude that

∫ t

0

(∫
Ω
ρ|εuxη#

m|1/kdx
)k
ds ≤ C.

Finally, by the same reasoning, we see that

∫
Ω
ρ

∣∣∣∣∣
(
β

2 |h|2 − αg′(1/ρ)h(|ψ ◦ Y |2)
)
η#
m

∣∣∣∣∣
1/k

dx

≤ C
(

1 + ν
∫

Ω
|hx|2dx

)1/k (∫
Ω
ρdx

)(2k−1)/2k (∫
Ω
(ρu2 + ργ)dx

)1/2k

≤ C
(

1 + ν
∫

Ω
|hx|2dx

)1/k
,

which implies that

∫ t

0

∫
Ω
ρ

∣∣∣∣∣
(
β

2 |h|2 − αg′(1/ρ)h(|ψ ◦ Y |2)
)
η#
m

∣∣∣∣∣
1/k

dx

k ds ≤ C,

thus proving (3.180).

These last four Lemmas provide the necessary uniform estimates that allow us
apply Chen and Perepelitsa’s compensated compactness scheme in order to deal with
the convergence in the continuity equation (3.1) and in the momentum equation (3.2).
They also suffice to handle the convergence issues in equations (3.3), (3.5) and (3.6)
to the extent that was explained in Subsection 3.3.2. Yet, in order to address the
convergence issues in the thermal energy equation (3.7) we need one more estimate
that reads as follows.
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Lemma 3.21. Let

C−1 ≤
∫

Ω
ρ0dx ≤ C0,

∫
Ω
ρ0e(ρ0, θ0)dx ≤ C0

for some C0 > 0 independent of ε. Then,
∫ t

0

∫
Ω
(θq+1 + |(θq/2)x|2)dxds ≤ C, (3.181)

where, C > 0 is constant independent of ε.

Proof. Let us define K as in Subsection 3.3.2 as

K(θ) :=
∫ θ

0
κ(z)dz.

Then, from (2.55) we have that

C−1(1 + θq+1) ≤ K(θ) ≤ C(1 + θq+1).

Also, note that equation (3.7) can be rewritten as

Kxx = (ρQ(θ))t + (ρuQ(θ))x + δθpθ(ρ)ux − εu2
x − µ|wx|2 − ν|hx|2. (3.182)

Realizing that (Kx)|x=0 = 0, we integrate this equation over (0, x)× (0, t) to obtain
∫ t

0
Kxds =

∫ x

0
(ρQ(θ) − ρ0Q(θ0))dξ +

∫ t

0
ρQ(θ)uds+ δ

∫ t

0

∫ x

0
θpθuxdξ ds

−
∫ t

0

∫ x

0
(εu2

x + µ|wx|2 + ν|hx|2)dξ ds.

Let us choose some b = b(t) ∈ Ω such that θ(b(t), t) = (
∫

Ω ρ0dx)−1 (
∫

Ω ρθdx) ≤ C.
Then, integrating the above equality from b(t) to x (with respect to the space variable)
and using Lemma 3.17 we obtain

∫ t

0
Kds ≤ C.

In particular, ∫ t

0

∫
Ω
θq+1dxds ≤ C.
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In order to conclude, we observe that

∫ t

0

∫
Ω

|∇(θq/2)x|2dxds ≤ C + C
∫ t

0

∫
Ω

κθ2
x

θ2 dxds ≤ C.

With these estimates at hand we are ready to pass to the limit as ε → 0

3.3.4 Limit in the continuity and momentum equations

Let (ρε, uε,wε,hε, θε, ψε) be the unique global solution of (3.1)-(3.6). Let us consider
the sequence (ρε, uε). The first step in the sketch outlined in Subsection3.3.1 is to apply
the Young measures theorem to the sequence (ρε, uε). However, we do not have any
uniform estimates that guarantee that this sequence takes values on a fixed compact
of R2. We can only ensure that they take values in H := {(ρ, u) ∈ R2 : ρ > 0}.

Fortunately, there is a stronger version of the Young measures theorem which allows
us to assume that the set in which the sequence takes values is a compact metric space;
and the conclusion of the theorem is the same ([1, Theorem 2.4], also [4]). With this
in mind, and following [14] (cf. [35]) we can consider a compactification H of H such
that the space C(H) is isometrically isomorphic to the space of continuous functions
ϕ ∈ C(H) satisfying that ϕ(ρ, u) is constant on the vacuum {ρ = 0} and that the
map (ρ, u) → lims→∞ ϕ(sρ, su) belong to C(S) ∩ H, where S ⊆ R2 is the unit circle.
Of course, H is naturally embedded in H (note that the vacuum line V = {ρ = 0} is
identified to a single point in H).

By the Young measures theorem there exists a subsequence, still denoted (ρε, uε)
and a weakly measurable mapping from Ω×[0,∞) to Prob(H), the space of probability
measures in H, (x, t) → νx,t such that for all ϕ ∈ C(H)

ϕ(ρε, uε) ⇀
∫
H
ϕ(ρ, u)dνx,t, weakly − ∗ in L∞(Ω × [0,∞)).

As aforementioned, in order to show that the sequence (ρε, ρεuε) converges to a
finite-energy weak solution (ρ, ρu) of the isentropic Euler equations (3.145), (3.146) it
suffices to show that

νx,t = δ(ρ(x,t),ρ(x,t)u(x,t)). (3.183)

Now, we have a rich family of entropy pairs given by (3.156) and from earlier ex-
position we know that they may provide enough information that allow us to conclude
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(3.183).
Just as in [14] we can show the following.

Proposition 3.1. The following statements hold:

(i) ∫
H

(ργ+1 + ρ|u|3)dνx,t ∈ L1
loc(Ω × [0,∞)). (3.184)

(ii) Let ϕ(ρ, u) be a function such that

(a) ϕ is continuous on H and zero on ∂H (in the vacuum);

(b) suppϕ ⊆ {(ρ, u) : ρϑ + u ≥ −a, u− ρϑ ≤ a} for some constant a > 0;

(c) |ϕ(ρ, u)| ≤ ρβ(γ+1) for all (ρ, u) with large ρ and some β ∈ (0, 1).

Then, ϕ is νx,t-integrable and

ϕ(ρε, uε) ⇀
∫

H
ϕdνx,t in L1

loc(Ω × [0,∞)). (3.185)

(iii) For νx,t viewed as an element of (C(H))∗

νx,t[H \ (H ∪ V )] = 0,

meaning that νx,t is concentrated at H and or the vacuum V = {ρ = 0}.

In view of this proposition, and by Lemma 3.15 the entropy pairs are νx,t-integrable
and we can use them as test functions in the hope to deduce the relations of the form
(3.144). The proof follows the same ideas as the analogue in [14] and goes as follows.

Proof. For each k, let ωk(ρ, u) be a nonnegative and continuous cutoff function such
that ωk = 1 on {(ρ, u) : k−1ρϑ ≤ k,−k ≤ u ≤ k} and with suppωk ⊆ {(ρ, u) : (2k)−1 ≤
ρϑ ≤ 2k,−2k ≤ u ≤ 2k}. Then, as

∫ T

0

∫
Ω
((ρε)γ+1 + ρε|uε|3)ωk(ρε, uε)dxds →

∫ T

0

∫
Ω

(∫
H

(ργ+1 + ρ|u|3)ωk(ρ, u)dνx,t
)
dxds,

by virtue of Lemmas 3.19 and 3.20 and the monotone convergent theorem (3.184)
follows.

In order to prove (ii), let K ⊆ Ω be any compact subset and take ϕ satisfying (a),
(b) and (c) and consider the same cutoff functions as above. Then ωkϕ ∈ C(H) and
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by the Lebesgue dominated convergence theorem and (3.184)

lim
k→∞

∫ T

0

∫
K

(∫
H
ϕωkdνx,t

)
dxds =

∫ T

0

∫
K

(∫
H
ϕdνx,t

)
dxds,

which is to say the same as

lim
k→∞

lim
ε→0

∫ T

0

∫
K
ϕ(ρε, uε)ωk(ρε, uε)dxds =

∫ T

0

∫
K

(∫
H
ϕdνx,t

)
dxds

Hence, proving (3.185) becomes justifying the interchange in the order of the limits in
this last equation. For this, it is enough to show that

∫ T

0

∫
K
ϕ(ρε, uε)(ωk1(ρε, uε) − ωk2(ρε, uε))dxds → 0

as k1, k2 → ∞ uniformly in ε, but this follows from (a)-(c) and Lemma (3.19).
Finally, to prove (iii) we consider, for each d, k > 0, a test function ϕk,d ∈ C(H)

such that

• 0 ≤ ϕk,d ≤ 1,

• ϕk,d = 1 on the set {ρ2 + u2 ≥ k + 1, ρ ≥ 2d|u|}, and

• ϕk,d = 0 on the set {ρ2 + u2 ≤ k} ∪ {ρ ≤ d|u|}.

By the monotone convergence theorem we have that

lim
d→0

lim
k→∞

∫ T

0

∫
Ω

(∫
H
ϕk,d(ρ, u)dνx,t

)
dxdt =

∫ T

0

∫
Ω
νx,t[H \ (H ∪ V )]dxdt.

On the other hand, by Lemma 3.19, we see that
∫ T

0

∫
Ω

(∫
H
ϕk,d(ρ, u)dνx,t

)
dxdt = lim

ε→0

∫ T

0

∫
Ω
ϕk,d(ρε, uε)dxdt

≤ (1 + d−2)
k

∫ T

0

∫
Ω
ργ+1dxdt

≤ C
(1 + d−2)

k

Taking the limit as k → ∞ first and then as d → 0 we conclude that
∫ T

0

∫
Ω
νx,t[H \ (H ∪ V )]dxdt = 0,

which implies that νx,t[H \ (H ∪ V )] = 0 for a.e. (x, t).
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As we recall the next step to take is to apply the Div-Curl Lemma in order to find
a set of relations of the form (3.144). As a matter of fact, we have the following.

Proposition 3.2. Let ζ be any compactly supported C2 function and let (ηζ , qζ) be the
corresponding entropy pair given by (3.156). Then the entropy dissipation measures

ηζ(ρε, ρεuε)t + qζ(ρε, ρεuε)x

belong to a compact of H−1
loc (Ω × [0,∞)).

Proof. Multiplying (3.1) by ηζρ and (3.2) by ηζm and adding the resulting equations we
obtain

ηζ(ρε,mε)t + qζ(ρε,mε)x
= ε(ηζm(ρε, ρεuε)uεx)x − εηmu(ρε, ρεuε)|uεx|2 − εηζmρ(ρε, ρεuε)ρεxuεx

− (δθεpθ(ρε)ηζm(ρε, ρεuε))x + δθεpθ(ρε)(ηζmu(ρε, ρεuε)uεx + ηζmρ(ρε, ρεuε)ρεx)

−
(
β

2 |hε|2 − αg′(1/ρε)h(|ψε|2)
)
x

ηζm(ρε, ρεuε). (3.186)

Using using Hölder inequality and Lemmas 3.15, 3.17 and 3.18 we see that

||εηmu(ρε, ρεuε)|uεx|2 − εηζmρ(ρε, ρεuε)ρεxuεx||L1((Ω×(0,T ))

≤ Cζ ||(ε1/2uεx, ε
1/2(ρε)

γ−3
2 ρεx)||L2(Ω×(0,T )) ≤ C,

Similarly, using (3.163) and (2.52)

||δθεpθ(ρε)(ηζmu(ρε, ρεuε)uεx + ηζmρ(ρε, ρεuε)ρεx)||L1((Ω×(0,T )) ≤ C,

and using (3.178), (2.56) and Lemmas 3.17 and 3.18
∥∥∥∥∥
(
β

2 |hε|2 − αg′(1/ρε)h(|ψε|2)
)
x

ηζm(ρε, ρεuε)
∥∥∥∥∥
L1((Ω×(0,T ))

≤ C

Also, note that
∥εηζm(ρε, ρεuε)uεx∥L2((Ω×(0,T )) ≤ C,

and
∥δθεpθ(ρε)ηζm(ρε, ρεuε)∥L2((Ω×(0,T )) ≤ C.
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With this estimates we can use Lemma 3.14 and equation (3.3.4) in order to con-
clude that

ηζ(ρε,mε)t + qζ(ρε,mε)x are confined in a compact subset of W−1,q1
loc (Ω × [0,∞)).

for some 1 < q1 < 2.
On the other hand, using the bounds in Lemma 3.15 and the estimates in Lemmas

3.19 and 3.20 we have that

ηζ(ρε,mε), qζ(ρε,mε) are uniformly bounded in L2
loc(Ω × [0,∞)),

which implies that

ηζ(ρε,mε)t + qζ(ρε,mε)x are uniformly bounded in W−1,q2
loc (Ω × [0,∞))

where q2 = γ + 1 > 2, when γ ∈ (1, 3] and q2 = γ+ϑ
1+ϑ > 2 when γ > 3.

Finally, using Lemma 3.13 we conclude that

ηζ(ρε, ρεuε)t + qζ(ρε, ρεuε)x

belong to a compact of H−1
loc (Ω × [0,∞)).

Let us introduce the following notation. First, in order to avoid the overload
of notation we omit the first two arguments (ρ and u) in the entropy kernel (recall
(3.155)) and denote

χ(s) = [ρ2ϑ − (u− ξ)2]Λ+.

Second, given any function f(ρ, u) with growth slower than ρ|u|3 + ργ+max{1,ϑ}, we
denote

f(ρε, uε) ⇀ f(ρ, u)(x, t) := ⟨νx,t, f(ρ, u)⟩.

In other words, the overline stands for integration with respect to the young measure.
In the next proposition, we show that our parametrized Young measure νx,t satisfies

the same commutator relation than the one in [14] (cf. [11, 19, 20, 39, 40]). It is based
on this relation that one can conclude that the support of each νx,t is reduced to
a point or else contained in the vacuum and, as pointed out earlier, this is enough
to conclude that (ρε, ρεuε) converges to a finite-energy entropy solution to (3.145),
(3.146), (3.148). As the argument that reduces the support of νx,t relies only on the
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commutator relation and not on the approximating sequence we only have to prove
that the commutator relation holds. Remember that we are assuming that α = o(ε1/2),
β = o(ε) and δ = o(ε).

Proposition 3.3. For each test function ζ(s) ∈ {±1,±s, s2} we have that

⟨νt,x, ηζ⟩t + ⟨νx,t, qζ⟩x ≤ 0, ⟨νx,t, ηζ⟩(0, ·) = η(ρ0, ρ0u0), (3.187)

in the sense of distributions. Moreover, νx,t satisfies the following commutator relation

ϑ(ξ2 − ξ1)(χ(ξ1)χ(ξ2) −χ(ξ1) χ(ξ2) ) = (1 −ϑ)(uχ(ξ2) χ(ξ1) −uχ(ξ1) χ(ξ2) ), (3.188)

where, as before, ϑ = (γ − 1)/2.

Proof. First we prove (3.187). Multiplyigng (3.1) by ηζρ and (3.2) by ηζm and adding
the resulting equations we obtain

ηζ(ρε,mε)t + qζ(ρε,mε)x
= (εηζm(ρε,mε)uεx − δθεpθ(ρε))x

−
(
εuεx − δθεpθ(ρε)

)(
ηζmu(ρε,mε)uεx + ηζmρ(ρε,mε)ρεx

)
− ηζm(ρε,mε)

(β
2 |hε|2 − αg′(1/ρε)h(|ψε|2)

)
x
. (3.189)

Let us show that all the terms on the RHS tend to zero as ε → 0 in the sense
of distributions, except possibly for the term εηζm(ρε,mε)|uεx|2, which turns out to be
nonpositive anyway.

From (3.156), given any ζ ∈ C2(R) we have

ηζm(ρ, ρu) =
∫ 1

−1
ζ ′(u+ ρϑs)[1 − s2]Λ+ds.

Hence
ηζmu(ρ, ρu) =

∫ 1

−1
ζ ′′(u+ ρϑs)[1 − s2]Λ+ds,

and also
ηζmρ = (ρ, ρu) = ϑρϑ−1

∫ 1

−1
ζ ′′(u+ ρϑs)s[1 − s2]Λ+ds.

Take ζ(s) ∈ {±1,±s, s2}. Then, |ηζm(ρε,mε)| ≤ C(1 + |uε|), ηζmρ(ρε,mε) = 0 and
0 ≤ ηζmu(ρε,mε) ≤ C (note that

∫
s[1 − s2]Λ+ds = 0).
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Let us recall (3.178) and (3.179). Then,

∫ T

0

∫
Ω

∣∣∣∣∣ηζm(ρε,mε)
(
β

2 |h|2
)
x

∣∣∣∣∣ dxds ≤ C
∫ T

0

∫
Ω
(1 + |uε|)β|hε · hεx|dxds

≤ C

1 +
(∫ T

0

∫
Ω

|uεx|2dxds
)1/2

(β ∫ T

0

∫
Ω

|hε · hεx|2dxds
)1/2

≤ C

1 +
(∫ T

0

∫
Ω

|uεx|2dxds
)1/2

(β1/2
∫ T

0

∫
Ω

|hε|2xdxds
)

≤ C
β1/2

ε1/2

ε1/2 +
(
ε
∫ T

0

∫
Ω

|uεx|2dxds
)1/2


≤ C

β1/2

ε1/2 ,

which tends to zero as ε → 0.
Similarly, recalling (2.56), that ψx = ρψy and that the Jacobian of the coordinate

change equals ρ, from Lemmas 3.17 and 3.18 we have
∫ T

0

∫
Ω

∣∣∣ηζm(ρε,mε)
(
αg′(1/ρε)h(|ψε|2)

)
x

∣∣∣ dxds
≤ Cα

∫ T

0

∫
Ω
(1 + |ρε|1/2|uε|)(|ρε|

γ−3
2 |ρεx| + |ψεxg′(1/ρε)|)dxds

≤ C
α

ε1/2 ,

which also tends to zero as ε → 0.
Next, using (3.163)

∫ T

0

∫
Ω

|δθεpθ(ρε)(ηζmu(ρε,mε)uεx + ηζmρ(ρε,mε)ρx)|dxds

≤ C
δ

ε1/2

(∫ T

0
Mθ(s)2

∫
Ω
ργdxds

)1/2 (
ε
∫ T

0

∫
Ω
u2
xdxds

)1/2

≤ C
δ

ε1/2

which, tends to zero as well.
Finally, by the same token we have that

ηζm(ρε,mε)(εuεx − δθεpθ(ρε)) → 0

in the sense of distributions. Thus, taking ε → 0 in (3.189) we obtain (3.187).
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Let us now prove (3.188). In view of Lemmas 3.19 and 3.20 and Proposition 3.2,
we can apply the Div-Curl Lemma (Lemma 3.12) in order to conclude that for any
C2 compactly supported functions ζ and ϕ we have

ηζqϕ − ηϕqζ = ηζ qϕ − ηϕ qζ .

Consequently,
∫
ζ(ξ1)χ(ξ1)dξ1

∫
ϕ(ξ2)ϑξ2 + (1 − ϑ)u)χ(ξ2)dξ2

−
∫
ϕ(ξ2)χ(ξ2)dξ2

∫
ζ(ξ1)ϑξ1 + (1 − ϑ)u)χ(ξ1)dξ1

=
∫
ζ(ξ1)ϕ(ξ2)χ(ξ1)(ϑξ2 + (1 − ϑ)u)χ(ξ2)dξ1dξ2

−
∫
ζ(ξ1)ϕ(ξ2)(ϑξ1 + (1 − ϑ)u)χ(ξ1)χ(ξ2)dξ1dξ2.

As this holds for any ζ and ϕ we have

χ(ξ1) ϑξ2 + (1 − ϑ)u)χ(ξ2) − χ(ξ2) ϑξ1 + (1 − ϑ)u)χ(ξ1) = ϑ(ξ2 − ξ1)χ(ξ1)χ(ξ2),

which implies (3.188).

With this proposition, the argument to reduce the Young measures in [15] applies
and we have shown the following.

Theorem 3.3. Let the initial functions (ρε0, uε0,wε
0,hε0, θε0, ψε0) be smooth and satisfy

the following conditions:

(i) ρε0 ≥ cε0 > 0, M−1
0 ≤

∫
Ω ρ

ε
0dx ≤ M0,

∫
Ω ρ

ε
0u

ε
0dx ≤ M0, −

∫
Ω ρ

ε
0s(ρε0, θε0)dx ≤ M0;

(ii)
∫

Ω(ρε0(|uε0|2 + |wε
0|2) + |hε0|2)dx+

∫
Ωy

(|ψε0y|2 + |ψε0|2)dy ≤ M0;

(iii) ε2 ∫
Ω |ρε0x|2|ρε0|−3dx+ εβ2 ∫

Ω |hε0|2(ρε0)−1dx ≤ M0;

(iv) (ρε0, ρε0uε0) → (ρ0, ρ0u0) as ε → 0 in the sense of distributions, with ρ0 ≥ 0 a.e.

Let ((ρε, uε,wε,hε, θε, ψε)) be the solution of (3.1)-(3.6) with p given by (3.131) and
with initial data (ρε0, uε0,wε

0,hε0, θε0, ψε0). Assume, further that α = o(ε1/2), β = o(ε) and
δ = o(ε). Then, we may extract a subsequence (not relabelled) of (ρε, ρεuε) that con-
verges in L1

loc(Ω×(0,∞)) to a finite-energy entropy solution (ρ, ρu) of the compressible
Euler equations (3.145), (3.146) with initial data (ρ0, ρ0u0).
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3.3.5 Limit for the transverse velocity, magnetic field and
wave function

With Theorem 3.3 at hand, the passage to the limit in equations (3.3) and (3.5)
becomes a straightforward exercise. As pointed out in Subsection 3.3.2, the uniform
estimates in Lemma 3.17 and the fact that we are leaving µ and ν fixed independently
of ε, imply that βhε and βwε tend to zero in L2(Ω × (0, T )) and βuεhε tends to
zero in L1(Ω × (0, T )). Accordingly, we have that hεxx in the sense of distributions.
Nonetheless, we also have a uniform bound for the L2(0, T ;H1

0 (Ω)) for hε so that
we can assume that it converges to some limit h weakly in L2(0, T ;H1

0 (Ω)). This
implies that, necessarily, h = 0 and the limit equation is satisfied trivially. Thus,
for consistency, we demand that the initial data hε0 satisfies βhε0 → 0 in the sense of
distributions and drop equation (3.136).

Moving on to equation (3.3), the uniform estimates from Lemma 3.17 imply that
wε has a subsequence (not relabelled) that converges to some limit w weakly in
L2(0, T ;H1

0 (Ω)). Since (ρε, ρεuε) converges strongly to (ρ, ρu) we have that ρεwε and
ρεuεwε converge to ρw and ρuw, respectively, in the sense of distributions. As βh
converges strongly to zero, we have that the limit functions ρ, ρu and w solve the
limit equation (3.134).

Regarding the initial data for the transverse velocity, we demand that ρε0wε
0 con-

verge to some limit ρ0w0 in the sense of distributions. Note that we specify the initial
data for the limit equation in terms of the transverse momentum as vacuum is un-
avoidable in the limit functions. Accordingly, we have that the initial data is attained
in the sense of distributions through the weak formulation of (3.134):

∫ t

0

∫
Ω
ρwφtdxds−

∫
Ω
ρ0w0φ|t=0ds−

∫ t

0

∫
Ω
ρuwφxdxds = −

∫ t

0

∫
Ω
µwxφxdxds

for any φ ∈ C∞(Ω × ([0,∞)).
Lastly, the passage to the limit in the nonlinear Schrödinger equation is a direct

consequence of Aubin-Lions Lemma, as explained in Subsection 3.3.2. For consistency,
we assume that the initial data ψε0 converges to ψ0 in H1

0 (Ωy), thereby concluding that
ψε converges to the unique solution of the limit nonlinear Schrödinger equation (3.137).

We have thus proved the following.

Theorem 3.4. Let the initial functions (ρε0, uε0,wε
0,hε0, θε0, ψε0) be smooth and satisfy

the hypotheses of Theorem 3.3. Moreover, assume that
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(v) ρε0wε → ρ0w0 and βhε0 → 0 in the sense of distributions;

(vi) ψε0 → ψ0 in H1
0 (Ωy).

Let ((ρε, uε,wε,hε, θε, ψε)) be the solution of (3.1)-(3.6) with p given by (3.131) and
with initial data (ρε0, uε0,wε

0,hε0, θε0, ψε0). Assume, further that α = o(ε1/2), β = o(ε)
and δ = o(ε). Then, we may extract a subsequence (not relabelled) of (wε,hε, ψε) such
that

• (wε,hε) → (w, 0) weakly in L2(0, T ;H1
0 (Ω)), and

• ψε → ψ strongly in L∞(0, T ;L4(Ω) and weakly-* in L∞(0, T ;H1
0 (Ω)).

Moreover, (ρ, ρu,w) solve equation (3.134)with initial data ρ0w0 attained in the sense
of distributions; and ψ is the unique weak solution of equation (3.137).

To conclude, we move on to discussing the limit passage in the thermal energy
equation (3.7).

3.3.6 Limit in the thermal energy equation

As explained in Subsection 3.3.2 the limit process in the thermal energy equation (3.7)
is not straightforward on account of the nonlinearities. Also, the loss of regularity
of the longitudinal velocity u forces us to consider the inequality (3.157) instead of
(3.135).

In order to justify the passage to the limit, we adapt some ideas in [23].
First, we observe that estimate (3.181) implies that Q(θε) is uniformly bounded in

L2(0, T ;H1(Ω)) and hence we can assume that

Q(θε) ⇀ Q weakly in L2(0, T ;H1(Ω)).

By the same token, Q(θε) is uniformly bounded in L2(0, T ;L∞(Ω)) which, in light
of Lemma 3.17, implies that ρεQ(θε) is uniformly bounded in the space L2(0, T ;Lγ(Ω)).

Now, from equation (3.7) and using Lemmas 3.17 and 3.21 we can easily see that
(ρεQ(θε))t is uniformly bounded in the space L1(0, T ;H−3(Ω)) (recall that (κθx)x can
be written as Kxx and that by Lemma 3.21 K is uniformly bounded in L1(Ω× (0, T ))).
With this, a direct application of Aubin-Lions lemma (Lemma 3.16) and the fact that
ρε converges strongly to ρ imply that

ρεQ(θε) → ρQ strongly in L2(0, T ;H−1(Ω)).
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We claim that
∫ T

0

∫
Ω
ρεQ(θε)2φdxds →

∫ T

0

∫
Ω
ρQ

2
φdxds, (3.190)

as ε → 0, for any φ ∈ C∞
0 (Ω × (0, T )). Indeed, we have

∫ T

0

∫
Ω
(ρεQ(θε)2 − ρQ

2)φdxds

≤
∫ T

0

∫
Ω
(ρεQ(θε) − ρQ)(Q(θε) +Q)φdxds+

∫ T

0

∫
Ω
Q(θε)Q(ρε − ρ)φdxds.

On the one hand we have
∫ T

0

∫
Ω
(ρεQ(θε) − ρQ)(Q(θε) +Q)φdxds

≤
∫ T

0
∥(ρεQ(θε) − ρQ)(s)∥H−1(Ω)∥(Q(θε) +Q)(s)φ∥H1

0 (Ω)ds

≤ Cφ

∫ T

0
∥(ρεQ(θε) − ρQ)(s)∥H−1(Ω)

(
∥Q(θε)(s)∥H1(Ω) + ∥Q(s)∥H1(Ω)

)
ds

≤ Cφ∥ρεQ(θε) − ρQ∥L2(0,T ;H−1(Ω))
(
∥Q(θε)(s)∥L2(0,T ;H1(Ω)) + ∥Q(s)∥L2(0,T ;H1(Ω))

)
,

which tends to zero as ε → 0.

On the other hand,
∫ T

0

∫
Ω
Q(θε)Q(ρε − ρ)φdxds → 0

by the dominated convergence theorem (recall that ρε → ρ a.e. in Ω × (0, T )), thus
proving the claim.

Now, from (3.190) we have that

∫ T

0

∫
Ω
ρQ(θε)φdxds

=
∫ T

0

∫
Ω
(ρ− ρε)Q(θε)φdxds+

∫ T

0

∫
Ω
ρεQ(θε)φdxds

→
∫ T

0

∫
Ω
ρQφdxds.

also by the dominated convergence theorem.

This can be interpreted as convergence of norms in a weighted L2
ρφ space. In
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particular, we have

Q(θε) → Q a.e. in {(x, t) ∈ Ω × (0, T ) : ρ(x, t) > 0}. (3.191)

Since Q is strictly increasing (recall our hypotheses (2.54)) we can define ϑ :=
Q−1(Q ) and we have that

0 = lim
ε→0

∫ T

0

∫
Ω
(Q(θε) −Q)(θε − θ)1{ρ>0}dxds

≥ C−1
∫ T

0

∫
Ω
(θε − θ)2

1{ρ>0}dxds,

and hence,
θε → θ in L2({ρ > 0}).

This last bit of information guarantees that we can pass to the limit in the first two
terms of equation (3.7) (remember that ρεuε → ρu strongly). Regarding the third term
in that equation, we are assuming that there is a coefficient δ = o(ε) multiplying it,
and by the estimates in Lemma 3.17 it converges to zero in the sense of distributions.

All there is left to do, then, is justify the passage to the limit in the second order
term on the right hand side. For this we need the following lemma (see [23, Proposition
2.1]).

Lemma 3.22. Let O ⊆ RM be a bounded open set. Let {vn}∞
n=1 be a sequence of

measurable functions,
vn : O → RN ,

such that
sup
n≥1

∫
O

Φ(|vn|)dξ < ∞

for a certain continuous function Φ : [0,∞) → [0,∞).
Then, there exists a subsequence (not relabelled) such that

ζ(vn) → ζ(v) weakly in L1(O)

for all continuous functions ζ : RN → R satisfying

lim
|z|→∞

ζ(z)
Φ(z) = 0.

Fix 0 < ω < 1 and choose ζ : [0,∞) → [0,∞) as ζ(z) = 1
(1+z)ω . Then, multiplying
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(3.7) by ζ(θε) and using equation (3.1) we have

(ρεQζ(θε))t + (ρεuεQζ(θε))x + δθεpθ(ρε)ζ(θε)uεx

= (Kζ(θε))xx + ωκ(θε)|θεx|2
(1 + θε)ω + ε|uεx|2 + µ|wε

x|2 + ν|hεx|2

(1 + θε)ω , (3.192)

where, Qζ and Kζ are given by

Qζ(θ) :=
∫ θ

0

Cϑ(z)
(1 + z)ω dz, Kζ(θ) :=

∫ θ

0

κ(z)
(1 + z)ω dz

From the strong convergence of ρε, ρεuε and the strong convergence of θε in {ρ > 0}
and the uniform estimates we see that

ρεQζ(θε) → ρQζ(θ)
ρεuεQζ(θε) → ρuQζ(θ)
δθεpθ(ρε)ζ(θε)uεx → 0

 weakly in L1(Ω × (0, T )).

Next, using Lemma 3.22 we see that

Kζ(θε) → Kζ weakly in L1(Ω × (0, T )),

for some Kζ that satisfies

ρKζ = ρKζ(θ), on Ω × (0, T ).

Now, let φ be a test function such that

φ ≥ 0, φ ∈ W 2∞(Ω × (0, T )), ψx|∂Ω = 0, suppφ ⊆ Ω × [0, T ). (3.193)

For any such test function we have that

∫ T

0

∫
Ω

µ|wx|2

(1 + θ)ω
φdxds ≤ lim inf

ε→0

∫ T

0

∫
Ω

µ|wε
x|2

(1 + θε)ωφdxds.
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Thus, multiplying (3.192) by φ, integrating and taking the limit as ε → 0 we obtain

∫ T

0

∫
Ω

(
ρQζ(θ)φt + ρuQζ(θ)φx + Kζφxx

)
dxds

≤ −
∫ T

0

∫
Ω

µ|wx|2

(1 + θ)ω
φdxds−

∫
Ω
ρ0Qζ(θ0)φ|t=0dx.

(3.194)

For this last term we are assuming that ρε0Q(θε0) → ρ0Q(θ0).

Now, note that
1

(1 + z)ω ↗ 1, as ω → 0,

then, using the monotone convergence theorem we see that

Kζ ↗ K,

where,
ρK = ρK(θ),

and ∫ T

0

∫
Ω

Kdxds ≤ lim inf
ε→0

∫ T

0

∫
Ω

K(θε)dxds.

Finally, we can define θ := K−1(K) and take the limit as ω → 0 in (3.194) in order
to conclude that the nonnegative function θ satisfies
∫ T

0

∫
Ω

(
ρQ(θ)φt + ρuQ(θ)φx + K(θ)φxx

)
dxds

≤ −
∫ T

0

∫
Ω
µ|wx|2φdxds−

∫
Ω
ρ0Q(θ0)φ|t=0dx, (3.195)

for any test function that satisfies (3.193); which is the weak formulation of inequality
(3.157).
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Finally, let us show that (3.158) holds. From the energy identity (3.9) we have

∫
Ω

(
ρε
(
e(ρε, θε) + 1

2 |uε|2 + 1
2 |wε|2

)
+ β

2 |hε|2
)
dx

+
∫

Ωy

(
αg(vε)h(|ψε|2) + 1

2 |ψεy|2 + 1
4 |ψε|4

)
dy

=
∫

Ω

(
ρε0
(
e(ρε0, θε0) + 1

2 |uε0|2 + 1
2 |wε

0|2
)

+ β

2 |hε0|2
)
dx

+
∫

Ωy

(
αg(vε0)h(|ψε0|2) + 1

2 |ψε0y|2 + 1
4 |ψε0|4

)
dy.

By assumption, the right hand side tends to
∫

Ω
ρ0
(
e(ρ0, θ0) + 1

2 |u0|2 + 1
2 |w0|2

)
dx+

∫
Ωy

(
1
2 |ψ0y|2 + 1

4 |ψ0|4
)
dy.

By lower semi-continuity we have that
∫

Ω

(
1
2ρ|w|2

)
dx ≤

∫
Ω

(
1
2ρ

ε|wε|2
)
dx

and by strong convergence in Ω × (0, T ) we have that
∫

Ω
ρ
(
e(ρ, θ) + 1

2 |u|2 + 1
2 |w|2

)
(t)dx+

∫
Ωy

(
1
2 |ψy|2 + 1

4 |ψ|4
)

(t)dy.

≤
∫

Ω
ρ0
(
e(ρ0, θ0) + 1

2 |u0|2 + 1
2 |w0|2

)
dx+

∫
Ωy

(
1
2 |ψ0y|2 + 1

4 |ψ0|4
)
dy.

for a.e. t ∈ (0, T ).
Finally, since the unique solution of the nonlinear Schrödinger equation has con-

servation of energy:
∫

Ωy

(
1
2 |ψy|2 + 1

4 |ψ|4
)

(t)dy =
∫

Ωy

(
1
2 |ψ0y|2 + 1

4 |ψ0|4
)
dy

we conclude that
∫

Ω
ρ
(
e(ρ, θ) + 1

2 |u|2 + 1
2 |w|2

)
(t)dx ≤

∫
Ω
ρ0
(
e(ρ0, θ0) + 1

2 |u0|2 + 1
2 |w0|2

)
dx. (3.196)

We can sum up the results found in this Section through the following theorem:

Theorem 3.5. Let the initial functions (ρε0, uε0,wε
0,hε0, θε0, ψε0) be smooth and satisfy

the hypotheses of Theorem 3.3 and Theorem 3.4.
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Let (ρε, uε,wε,hε, θε, ψε) be the solution of (3.1)-(3.6) with p given by (3.131) and
with initial data (ρε0, uε0,wε

0,hε0, θε0, ψε0). Assume, further that α = o(ε1/2), β = o(ε) and
δ = o(ε). Then, we may extract a subsequence (not relabelled) of (ρε, uε,wε,hε, θε, ψε)
such that as ε → 0 we have

• (ρε, ρεuε) converges in L1
loc(Ω×(0,∞)) to a finite-energy entropy solution (ρ, ρu)

of the compressible Euler equations (3.145), (3.146) with initial data (ρ0, ρ0u0);

• (wε,hε) → (w, 0) weakly in L2(0, T ;H1
0 (Ω)) and (ρ, ρu,w) solve equation (3.134)with

initial data ρ0w0 attained in the sense of distributions;

• ψε → ψ strongly in L∞(0, T ;L4(Ω) and weakly-* in L∞(0, T ;H1
0 (Ω)), where ψ

is the unique weak solution of equation (3.137)

• ρεQ(θε) converges strongly to ρQ(θ) in L1
loc(Ω × (0,∞)) and (ρ, ρu,w, θ) consti-

tute a variational solution of equation (3.135) in the sense of inequality (3.195),
also satisfying (3.196).



Chapter 4

Higher dimensions

We now move on to the multidimensional case. The main difficulty in higher dimen-
sions is the possible occurrence of vacuum. As the Lagrangian transformation becomes
singular in the presence of vacuum an effective coupling of the fluid equations with the
nonlinear Schrödinger equation can not be made in a straightforward way. In order
to overcome these difficulties, we define the interaction through a regularized system
that provides a good definition for an approximate Lagrangian coordinate. Then, after
showing existence of solutions, we show compactness of the sequence of solutions to
the regularized system thus making sense of the desired SW-LW interaction in the
limit process.

For simplicity, in the multidimensional model we focus on the isentropic case, that
is, the case of a non heat-conductive fluid, which trivializes the energy equation (2.35).

Let us remark that the results that we present here hold in a smooth bounded
open spacial domain in R2. The only restriction that does not allow us to proceed
in the full three dimensional case comes from the lack of solvability of the nonlinear
Schrödinger equation in this setting. However, assuming this our methods can be
adapted to the three dimensional case. Also, our result covers large initial data at the
price of obtaining only weak solutions.

Let us mention that the results on the multidimensional case are product of an
ongoing collaboration with prof. Hermano Frid, as well as with prof. Ronghua Pan.

4.1 Regularized problem

We now consider the two-dimensional model for an isentropic magentohydrodynamic
flow. Similarly to the planar case, the two-dimensional MHD equations are deduced
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from the full three-dimensional ones under the assumption that all the involved func-
tions are independent of the third variable. Accordingly, we assume that our state
variables ρ, u and H are functions of (x, t) ∈ Ω × [0, T ], with Ω a smooth bounded
domain of R2 and T > 0 arbitrary. As we are dealing with an isentropic flow, the
energy equation is trivialized and we end up with the following system

ρt + div(ρu) = 0, (4.1)
(ρu)t + div(ρu ⊗ u) + ∇p

= div
(
λ(divu)Id + µ

(
∇u + (∇u)t

) )
+ (∇ × H) × H + fext, (4.2)

Ht + curl (νcurl (H)) = curl(u × H), (4.3)
div H = 0, (4.4)

where p = p(ρ) = aργ. Let us point out that, in this case, we are assuming that the
magnetic permeability is constant and equal to 1, as is usual in the literature.

Since we allow for large initial data, we work with weak solutions. As a result, the
Lagrangian transformation as defined before may become singular due to the possible
occurrence of vacuum in finite time.

In order to workaround the lack of regularity of the density we first add an artificial
viscosity to the continuity equation (4.1). Fix ε > 0 and δ > 0 and consider the
following regularized system

ρt + div(ρu) = ε∆ρ, (4.5)
(ρu)t + div(ρu ⊗ u) + ∇(aργ + δρβ) + ε∇u · ∇ρ

= (∇ × H) × H + div
(
λ(divu)Id + µ

(
∇u + (∇u)t

) )
+ fext, (4.6)

Ht − ∇ × (u × H) = −∇ × (ν∇ × H), (4.7)
div H = 0. (4.8)

Note that besides the artificial viscosity added to the continuity equation, two new
terms appeared in the momentum equation (4.2). The term δρβ, where β > 1, acts
as an artificial pressure and is intended to provide better estimates on the density,
whereas the term ε∇u · ∇ρ is set to equate the unbalance in the energy estimates
of the MHD equations caused by the introduction of the artificial viscosity. This
approximate system resembles the one employed by Hu and Wang in [29] where they
study the existence of weak solutions to the three dimensional MHD equations. A
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similar approximation was introduced by Feireisl, et al. in [24] in the study of the
Navier-Stokes equations, who, in turn, followed the pioneering ideas by P.-L. Lions
in [38]. Recall that ε and δ are small constants and the analysis that we intend to
develop will provide insights that justify the accuracy to which this regularized model
approximates the desired SW-LW interaction.

Now, as it turns out, even in this regularized setting the velocity field might not
be smooth enough to provide a good enough definition of Lagrangian transformation
that we can work with. More specifically, in the present situation there is no a priori
bound available for the Jacobian of the Lagrangian transformation, as it depends on
the L∞ norm of divu. For this reason we replace the velocity by a suitable smooth
approximation uN (which tends to u as N → ∞) in the definition of the Lagrangian
transformation. Thus obtaining an approximate Lagrangian coordinate defined as
before with u replaced by uN .

In order to define such an approximation of the velocity we consider the following
subspaces of L2(Ω). For each n ∈ N consider the space Xn ⊆ L2(Ω;R3) defined as

Xn := En × En × En,

where, En = span{ηj : j = 1, ..., n} and η1, η2, · · · is the complete collection of normal-
ized eigenvectors of the Laplacian with zero boundary condition in Ω; with respective
projection

Pn : L2(Ω) → Xn,

With this notation, given N ∈ N we define uN as

uN = PNu. (4.9)

Note that for any u(x, t) that satisfies u(·, t) ∈ L2(Ω) for a.e. t, uN thus defined
is smooth and can be written as

uN(x, t) =
N∑
j=1

uNj (t)ηj(x), (4.10)

for some vector valued coefficients uNj (t), j = 1, · · · , N ; and satisfies,

||uN(t)||L2(Ω) =
 N∑
j=1

|uNj (t)|2
1/2

. (4.11)
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In fact, in light of (4.10) we have that

||∇uN ||L∞(Ω) ≤ CN ||uN ||L2(Ω) ≤ CN ||u||L2(Ω), (4.12)

where
CN := N max

j=1,··· ,N
||∇ηj||L∞(Ω). (4.13)

With this in mind, we define the Lagrangian transformation Y (t,x) = Y (t,y(t,x))
through (2.23), (2.25) with the fluids velocity u replaced by uN . Recall that we have
a certain flexibility in the choice of the function y0. In the previous Chapters we chose
it in terms of the initial density as it yielded a convenient expression for the Jacobian
of the Lagrangian transformation, namely (2.26).

In the present situation, however, as we allow for vacuum, even in the initial data,
we go another direction and choose

y0(x) = x.

With this choice for the initial diffemorphism, we see that for every t ≥ 0 the
coordinate change is a diffeomorphism from Ω into itself as well, and this holds for
any N . This is due to the zero boundary conditions satisfied by each approximate
velocity field uN .

With these modifications we now have a smoothed Lagrangian coordinate. Nonethe-
less, with the new definition we lose relation (2.27) and instead we have

Jy(t) = exp
[
−
∫ t

0
div uN(s,Φ(s, x))ds

]
. (4.14)

Note that, by Poincaré’s inequality, (4.12) implies

|Jy(t)| ≤ exp
[
CN

(
t+

∫ t

0
||u(s)||2H1

0 (Ω)ds
)]
, (4.15)

provided that u ∈ L2(0, T ;H1
0 (Ω)), which is to be expected for the kind of solutions

that we work with.
Now that we have a Lagrangian coordinate we can talk about the SW-LW inter-

actions. To that end, we consider the following nonlinear Schrödinger equation stated
in the newly defined Lagrangian coordinates

iψt + ∆yψ = |ψ|2ψ +Gψ, (4.16)
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where ψ is the complex valued wave function and G is a real valued function corre-
sponding to a potential. In order to complete our regularized model we have to define
the coupling terms through the external force term fext in (4.2) and the potential G.
As before we choose G as

G = αg(v)h′(|ψ|2). (4.17)

Regarding fext we choose

fext = α∇
(
Jy

ρ
g′(1/ρ)h(|ψ ◦ Y|2)

)
. (4.18)

Note that this coincides with our previous choice (2.30) once we realize that in our
original model we had that Jy = ρ. Note that, although vacuum is permitted in our
new model, the fact that g is compactly supported in (0,∞) clarifies any ambiguity
in the definition of fext.

As a result we end up with the following system of equations:

ρt + div(ρu) = ε∆ρ, (4.19)
(ρu)t + div(ρu ⊗ u) + ∇(aργ + δρβ) + ε∇u · ∇ρ

= ∇(αJy

ρ
g′(1/ρ)h(|ψ ◦ Y|2)) + (∇ × H) × H + div

(
λ(divu)Id + µ

(
∇u + (∇u)t

) )
,

(4.20)

Ht − ∇ × (u × H) = −∇ × (ν∇ × H), (4.21)
div H = 0. (4.22)
iψt + ∆yψ = |ψ|2ψ + αg(v)h′(|ψ|2)ψ, (4.23)

Regarding this new system, we prove the existence of solutions on a time interval
[0, TN ], where TN depends on ε, α and N . After this, we show the convergence of
the approximate solutions when the artificial viscosity ε together with the interaction
coefficients α tend to zero and asN tends to infinity at a specific rate at which TN tends
to infinity. Then, we make δ tend to zero and show convergence (on an arbitrary time
interval [0, T ]) to a solution of the system formed by the MHD equations together with
the decoupled nonlinear Schrödinger equation. In other words, we find a solution to the
limit decoupled system, consisting of the MHD equations and a nonlinear Schrödinger
equation, as the limit of a sequence of solutions of the regularized SW-LW interactionsd
system.
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As emphasized before, the proposed approximation scheme has the purpose to
legitimize the coordinates of the limiting Schrödinger equation to be considered as the
Lagrangian coordinates of the fluid in a generalized sense.

4.2 Solutions to the regularized system

We consider the initial-boundary value problem for system (4.19)-(4.23) with initial
data

(ρ, ρu,H)(x, 0) = (ρ0,m0,H0)(x), ψ(y, 0) = ψ0(y), (4.24)

where m0 is the initial momentum. Again, as vacuum is possible, it is better to regard
the initial data in terms of the momentum instead of the velocity field.

With respect to the boundary conditions we demand that

(∇ρ · n,u,H)|∂Ω = 0, ψ|∂Ωy = 0. (4.25)

Note that a Neumann boundary condition was added for the density as a result of
the introduction of the artificial viscosity in the continuity equation.

Theorem 4.1. Let T > 0 be given and N ∈ N be fixed. Suppose that the initial data
is smooth and that

M−1
0 ≤ ρ0 ≤ M1, (4.26)

for some positive constants M0 and M1. Assume, further, that β is big enough.
Then, if ε and α are small and satisfy ε2

α
≫ 1, there exists a solution (ρ,u,H, ψ)

of (4.19)-(4.23) with initial and boundary conditions (4.24), (4.25). Moreover there is
some 1 < r < 2, independent of N , ε, α and δ such that

1. ρ is nonnegative and

ρ ∈ Lr(0, T ;W 2,r(Ω)) ∩ Lβ+1(Ω × (0, T )), ρt ∈ Lr(Ω × (0, T )); (4.27)

2. u,H ∈ L2(0, T ;H1
0 (Ω));

3. ψ ∈ L∞(0, T ;H1
0 (Ω))

4. the initial and boundary conditions are satisfied in the sense of traces.
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Furthermore, we have that

Eε(t) + ε
∫ t

0

∫
Ω
(aγργ−2 + δβρβ−2)|∇ρ|2dxds ≤ Eε(0) + ε1/2E1, (4.28)

for a.e. t ∈ [0, T ], where

Eε(t) =
∫

Ω

(
1
2ρ|u|2 + a

γ − 1ρ
γ + δ

β − 1ρ
β + 1

2 |H|2
)
dx

+
∫

Ωy

(1
2 |∇yψ|2 + 1

4 |ψ|4 + αg(v)h(|ψ|2)
)
dy

+
∫ t

0

∫
Ω
(µ|∇u|2 + (λ+ µ)(divu)2 + ν|∇H|2)dxds, (4.29)

and
E1 := ε||ρ0||W 2,r(Ω) + ||ρ0||2H1(Ω) + E0 + 1.

Let us make some remarks on the statement of this theorem. First, the largeness
assumed on β is to be understood in the following sense. Theorem 4.1 holds, as will
be shown later, with r ∈ (1, 2) as long as β > max{ 2r

2−r ,
2r
r−1}. Second, Theorem

4.1 does not actually assert the existence of global solutions to the regularized SW-
LW interactions. It affirms that given a prefixed T > 0, there is a solution in the
time interval [0, T ] satisfying (4.28) as long as ε2

α
is big enough. Remember that ε

is an artificial small parameter we introduced in order to regularize the continuity
equation. The reason for this hypothesis is to control uniformly in N the Jacobian
of the regularized Lagrangian transformation (which may explode as N → ∞). More
specifically, we are going to show that (4.28) holds as long as T ≤ TN , where TN =
TN(α, ε) is defined in terms of CN from (4.12) as

TN := 1
CN

log
(
ε2

α

)
− 1
µ

(E0 + ε1/2E1), (4.30)

whenever the right hand side is positive, which is the case, in particular, for α and ε

small enough satisfying ε2

α
≫ 1.

We intend to analyse convergence of solutions to the regularized system as (ε, α,N) →
(0, 0,∞) and we do it based on the energy estimate (4.28). Thus, if we are looking for
convergence to a global solution of the limit problem we simply have to ensure that
this TN covers any given bounded interval for big enough N and small enough ε and
α. This is the case if, for instance, we take the limit (ε, α,N) → (0, 0,∞) ate any rate
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that satisfies (
ε2

α

)1/CN

→ ∞. (4.31)

The proof of this theorem consists in a Faedo-Galerkin method, only slightly dif-
ferent than the one employed in the planar case. In the present situation we are going
to apply Shauder’s fixed point theorem in the finite-dimensional space Xn in order to
solve the momentum equation, having solved all the other equations in terms of the
velocity. This provides a local approximate solution of the regularized system. Then,
we deduce an energy estimate, corresponding to (4.28), that allows us to extend the
local approximate solutions to the time interval [0, TN ]. As mentioned before, our
analysis is based on the work by Hu and Wang in [29] in the study of the multidimen-
sional MHD equations and also on the work by Feireisl, et al. in [24] and the work
of P.-L. Lions in [38] in the study of the Navier-Stokes equations, although we had to
develop new estimates in order to include the SW-LW interactions.

The rest of this section is devoted to the proof of this theorem.

4.2.1 Approximate solutions, Faedo-Galerkin scheme

Let us now fix ε, α, δ, β and N as in the statement of Theorem 4.1. For each n ∈ N, we
consider the space Xn as defined before. We are going to apply Schauder’s fixed point
theorem in order to find a function un ∈ C(0, T ;Xn) that satisfies equation (4.20) in
an approximate way. In order to achieve this, we must first show that given a function
u ∈ Xn all the other equations (4.19), (4.21), (4.22) and (4.23) can be solved in terms
of it.

Let us begin with the solvability of the continuity equation in terms of the velocity.
Specifically, we consider the problem


ρt + div(ρu) = ε∆ρ, on Ω × (0, T )

∇ρ · n = 0, on ∂Ω

ρ = ρ0, on Ω × {t = 0}.

(4.32)

Lemma 4.1. Let ρ0 ∈ C2+ζ(Ω), ζ > 0 and u ∈ C([0, T ];C2
0(Ω)) be given. Assume,

further, that ∇ρ0 · n = 0 on ∂Ω.
Then, problem (4.32) has a unique classical solution ρ such that

∂tρ ∈ C([0, T ];Cζ(Ω)), ρ ∈ C([0, T ];C2+ζ(Ω)). (4.33)
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Moreover, suppose that the initial function ρ0 is positive and let

u → ρ[u]

be the solution mapping which assigns to any u ∈ C([0, T ];C2
0(Ω)) the unique solution

ρ of (4.32).
Then, this mapping takes bounded sets in the space C([0, T ];C2

0(Ω)) into bounded
sets in the space

V := {∂tρ ∈ C([0, T ];Cζ(Ω)), ρ ∈ C([0, T ];C2+ζ(Ω))}

and
u ∈ C([0, T ];C2

0(Ω)) → ρ[u] ∈ C1([0, T ] × Ω)

is continuous.

For the proof of this Lemma, we refer to [23, Proposition 7.1](cf. [24, Lemma 2.2]).
Let us point out that solutions of the parabolic problem (4.32) obey the maximum
principle which implies that

( inf
x∈Ω

ρ0(x, 0)) exp
(

−
∫ t

0
||divu||L∞(Ω)ds

)
≤ ρ(x, t)

≤ (sup
x∈Ω

ρ0(x, 0)) exp
(∫ t

0
||divu||L∞(Ω)ds

)
, (4.34)

for all t ∈ [0, T ] and all x ∈ Ω.
We also have to consider the following problem for the magnetic field



Ht − ∇ × (u × H) = −∇ × (ν∇ × H), on Ω × (0, T )

div H = 0, on Ω × (0, T )

H = 0, on ∂Ω

H = H0, on Ω × {t = 0}.

(4.35)

Regarding this problem we have the following result as presented by Hu and Wang
(see [29, Lemma 3.2]):

Lemma 4.2. Assume that u ∈ C([0, T ];C2
0(Ω)) is given. Then, problem (4.35) has a
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unique solution H that satisfies

H ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), (4.36)

which solves (4.35) in the weak sense and satisfies the initial and boundary conditions
in the sense of traces. Moreover, let

u → H[u]

be the solution operator which assigns to u ∈ C([0, T ];C2(Ω)) the unique solution H
of (4.35). Then, this mapping maps bounded sets in C([0, T ];C2

0(Ω)) into bounded
subsets of

Y := L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)),

and
u ∈ C([0, T ];C2(Ω)) → H ∈ Y

is continuous.

Finally, we move on to the solvability of the nonlinear Schrödinger equation in
terms of u. It is this issue that poses a restriction on the dimension of Ω. To our
knowledge, he global solvability of the nonlinear Schrödinger equation on a bounded
domain of Rd with large initial data is an open problem for d > 2. In the two-
dimensional case, however, we have the result by Brezis and Gallouet at hand (see [6])
whose proof we can addapt to our present situation.

Consider the following problem

iψt + ∆yψ = |ψ|2ψ + αg(v)h′(|ψ|2)ψ, on Ωy × (0, T )

ψ = 0, on ∂Ωy

ψ = ψ0, on Ωy × {t = 0},

(4.37)

where, v = v[u] is given by

v(t,y(t,x)) = 1
ρ[u](t,x) ,

ρ[u] is as in Lemma 4.1 and y is the approximate Lagrangian coordinate associated
to the approximate velocity field uN . Then, we can prove the following.
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Lemma 4.3. Assume that ψ0 ∈ H2(Ωy)∩H1
0 (Ωy) and u ∈ C([0, T ];C2

0(Ω)) are given.
Then, problem (4.37) has a unique solution ψ that satisfies

ψ ∈ C([0, T ];H2(Ωy) ∩H1
0 (Ωy)) ∩ C1([0, T ];L2(Ωy)). (4.38)

Moreover, let
u → ψ[u]

be the solution operator which assigns to u ∈ C([0, T ];C2(Ω)) the unique solution ψ

of (4.37). Then, this mapping maps bounded sets in C([0, T ];C2
0(Ω)) into bounded

subsets of
Z := C(0, T ;H1

0 (Ωy) ∩ L2(Ω))

and
u ∈ C([0, T ];C2(Ω)) → ψ ∈ Z

is continuous.

As this result is not explicitly covered by Brezis and Gallouet’s one, we prove it
next using an adaptation of their proof. For this we need the following two preliminary
results.

The first one is due to Brezis and Gallouet and reads as

Lemma 4.4. There is a constant C > 0 depending only on Ω such that

||ψ||L∞(Ω) ≤ C
(
1 +

√
log[1 + ||ψ||H2(Ω)]

)
,

for every ψ ∈ H2(Ω) with ||ψ||H1(Ω) ≤ 1.

We refer to [6] for the proof. The second preliminary result is due to Segal (see
[44]).

Lemma 4.5. Assume H is a Hilbert Space and A : D(A) ⊆ H → H is am m-accretive
linear operator. Assume F is a mapping from D(A) into itself which is Lipschitz on
every bounded subset of D(A).

Then, for every ψ0 ∈ D(A) there exists a unique solution ψ of the equation

dψ
dt

+ Aψ = F (ψ),

ψ(0) = ψ0,
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defined for t ∈ [0, Tmax) such that

ψ ∈ C1([0, Tmax);H) ∩ C([0, Tmax);D(A)),

with the additional property that
either Tmax = ∞,

or Tmax < ∞ and limt↗Tmax(||ψ|| + ||Aψ||) = ∞.

Proof of Lemma 4.3. We want to solve the equation (4.37). For this we apply Lemma
4.5 with H = L2(Ωy), A(ψ) = 1

i
∆yψ, D(A) = H2(Ωy) ∩H1

0 (Ωy) and

F (ψ) = 1
i
|ψ|2ψ + α

i
g(v)h′(|ψ|2)ψ.

It is enough to show that ||ψ||H2(Ωy) remains bounded on every bounded interval.
Fix T > 0 and consider ψ solving (4.37) on the time interval [0, T ).

First, Multiplying (4.37) by ψ, taking imaginary part and integrating we have

||ψ(t)||L2(Ωy) = ||ψ0||L2(Ωy).

Similarly, multiplying (4.37) by ψt, taking real part and integrating we have

1
2

∫
Ωy

|∇ψ|2dy+1
4

∫
Ωy

|ψ|4dy = 1
2

∫
Ωy

|∇ψ0|2dy+1
4

∫
Ωy

|ψ0|4dy+
∫ t

0

∫
Ωy
αg(v)h(|ψ|2)tdyds.

(4.39)
Now,

∫ t

0

∫
Ωy
αg(v)h(|ψ|2)tdyds =

∫
Ωy
αg(v)h(|ψ|2)dy −

∫
Ωy
αg(v0)h(|ψ0|2)dy

−
∫ t

0

∫
Ωy
αg(v)th(|ψ|2)dyds.

Regarding the last term on the right hand side and using the definition of the
Lagrangian transformation

∫ t

0

∫
Ωy
αg(v)th(|ψ|2)dyds =

∫ t

0

∫
Ωy
αg′(1/ρ)h(|ψ ◦ Y|2)

((1
ρ

)
t
+ uN · ∇

(1
ρ

))
Jydx. (4.40)
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As u ∈ C([0, T ];C2
0(Ω)), we have that |Jy| ≤ C and using (2.56) and Lemma 4.1

we have that the right hand side of (4.40) is bounded, that is
∣∣∣∣∣
∫ t

0

∫
Ωy
αg(v)th(|ψ|2)dyds

∣∣∣∣∣ ≤ C.

This implies that
||∇ψ(t)||L2(Ωy) ≤ C. (4.41)

Next, let S(t) be the isometry group generated by A. Then,

ψ(t) = S(t)ψ0 + 1
i

∫ t

0
S(t− s)

(
|ψ(s)|2ψ(s) − αg(v)h′(|ψ(s)|2)ψ(s)

)
ds,

and, so

Aψ(t) = S(t)Aψ0 + 1
i

∫ t

0
S(t− s)A

[(
|ψ(s)|2ψ(s) − αg(v)h′(|ψ(s)|2)ψ(s)

)]
ds.

Consequently,

||Aψ(t)||L2(Ωy) ≤||Aψ0||L2(Ωy) +
∫ t

0
||A[|ψ(s)|2ψ(s)]|L2(Ωy)ds

+ α
∫ t

0
||A
[
g(v(s))h(|ψ(s)|2)ψ(s)

]
||L2(Ωy)ds.

Using (4.41), Lemma 4.4 can be used to show that
∫ t

0
||A[|ψ(s)|2ψ(s)]|L2(Ωy)ds ≤ C

∫ t

0
||ψ(s)||H2(Ωy)

(
1+log[1+ ||ψ(s)||H2(Ωy)]

)
ds. (4.42)

Indeed, observe that

|D2(|ψ|ψ)| ≤ C(|ψ|2|D2ψ| + |ψ| |∇ψ|2),

which implies

|| |ψ|2ψ||H2(Ωy) ≤ C||ψ||2L∞(Ωy)||ψ||H2(Ωy) + C||ψ||L∞(Ωy)||ψ||2W 1,4(Ωy).

But, Gagliardo-Nirenberg Inequality implies (recall that Ω ⊆ R2)

||ψ||W 1,4(Ωy) ≤ C||ψ||1/2
L∞(Ωy)||ψ||1/2

H2(Ωy).
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These two inequalities combined together with Lemma 4.4 imply (4.42).

A similar argument shows that
∫ t

0
||A
[
g(v(s))h(|ψ(s)|2)ψ(s)

]
||L2(Ωy)ds

≤ C + C
∫ t

0
||ψ(s)||H2(Ωy)

(
1 + log[1 + ||ψ(s)||H2(Ωy)]

)
ds.

Here we have used (4.41) and Lemma 4.1.

Thus we conclude that

||ψ(t)||H2(Ωy) ≤ C + C
∫ t

0
||ψ(s)||H2(Ωy)

(
1 + log[1 + ||ψ(s)||H2(Ωy)]

)
ds. (4.43)

Denoting G(t) the right hand side of this inequality we have that

G′(t) ≤ CG(t)(1 + log[1 +G(t)]),

which, implies that
d

dt
log

[
1 + log[1 +G(t)]

]
≤ C

And hence we arrive at an estimate of the form

||ψ(t)||H2(Ωy) ≤ eb1eb2t

,

for some constants b1 and b2 and every t ∈ [0, T ). In particular

||ψ(t)||H2(Ωy) ≤ eb1eb2T

, for every t ∈ [0, T ).

As this holds for every T > 0 we conclude that Tmax = ∞.

In order to conclude the proof we have to show the stated continuity of the map
u → ψ[u]. Let {uk}k be a sequence in C([0, T ];C2(Ω)) such that uk → u∞ ∈
C([0, T ];C2(Ω)), and let vk = v[uk], v∞ = v[u∞], ψk = ψ[uk] and ψ∞ = ψ[u∞]. In
light of Lemma 4.1 and by the smoothness of the Lagrangian transformation we have
that vk → v∞ in C1(Ω × [0, T ]). Next, by Aubin-Lions lemma (Lemma 3.16) we have
that there is a subsequence {ψkj

}j that converges in C([0, T ];H1
0 (Ω)) to a solution ψ

of the limit equation (4.37) with v = v∞. By uniqueness we have that ψ = ψ[u∞] and
also that the whole sequence {ψk}k converges to ψ in C([0, T ];H1

0 (Ω)), thus concluding
the proof.
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Having these results we can apply the Faedo-Galerkin method in order to find
solutions to the regularized system. First, for each n ∈ N, we are going to look for a
function un that satisfies (4.20) in an approximate way. Specifically, we demand that
un satisfies
∫

Ω
ρnun · ηdx −

∫
Ω

m0 · ηdx

+
∫ t

0

∫
Ω

(
div(ρnun ⊗ un) + ∇(aργn + δρβn) + ε∇un · ∇ρn

)
· ηdxds

=
∫ t

0

∫
Ω

(
∇(αJy

ρn
g′(1/ρn)h(|ψn ◦ Y|2)) + (∇ × Hn) × Hn

+ µ∆un + (λ+ µ)∇(divun)
)

· ηdxds, (4.44)

for any t ∈ [0, T ] and any η ∈ Xn, where ρn = ρ[un], Hn = H[un], ψn = ψ[un] and Y is
Lagrangian transformation associated to the velocity field uNn = PN un, with Jacobian
Jy. This formulation may be interpreted as a projection of equation (4.20) onto the
finite dimensional space Xn.

Let us rewrite this integral equation in a more suitable way. Given some function
ρ ∈ L1(Ω), consider the operator M[ρ] : Xn → X∗

n, where X∗
n is the dual space of Xn,

given by
⟨M[ρ]v,w⟩ :=

∫
Ω
ρv · w.

Then, the operator M is invertible provided that ρ is strictly positive on Ω and
the map ρ → M−1[ρ], mapping L1(Ω) into L(X∗

n;Xn), satisfies

||M[ρ]−1||L(X∗
n;Xn) ≤ 1

infΩ ρ
. (4.45)

Moreover, the identity

M[ρ1]−1 − M[ρ2]−1 = M[ρ2]−1
(
M[ρ2] − M[ρ1]

)
M[ρ1]−1,

can be used to obtain

||M[ρ1]−1 − M[ρ2]−1||L(X∗
n;Xn) ≤ c(n, ρ)||ρ1 − ρ2||L1(Ω), (4.46)

for any ρ1 and ρ2 such that
inf
Ω
ρ1, inf

Ω
ρ2 ≥ ρ.
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In connection with (4.44) we also define the operator N : Xn → X∗
n given by

⟨N [u], η⟩ = −
∫

Ω

(
div(ρu ⊗ u) + ∇(aργ + δρβ) + ε∇u · ∇ρ

)
· ηdx

+
∫

Ω

(
∇(αJy

ρ
g′(1/ρn)h(|ψ|2)) + (∇ × H) × H

+ µ∆u + (λ+ µ)∇(divu)
)

· ηdx,

with ρ = ρ[u], H = H[u] and ψ = ψ[u].
With this notation, identity (4.44) can be rewritten as

un(t) = M−1[ρn(t)]
(

m∗
0 +

∫ t

0
N [un(s)]ds

)
.

This means that we are looking for a fixed point of the application T : C([0, T ];Xn) →
C([0, T ];Xn) given by

T [u](t) = M[ρ[u](t)]−1
(

m∗
0 +

∫ t

0
N [u(s)]ds

)
.

Using Lemmas 4.1, 4.2 and 4.3, as well as (4.45) and (4.46) and Arzelà-Ascoli
theorem it can be shown that T maps bounded sets in C([0, T ];Xn) into precompact
sets in C([0, T ];Xn).

Moreover, define u0 ∈ Xn as being the only element in Xn that satisfies
∫

Ω
ρ0u0 · ηdx =

∫
Ω

m0 · ηdx, for all η ∈ Xn.

Consider a ball B := {v ∈ C([0, T ];Xn) : supt∈[0,T ] ||v(t)−u0||Xn ≤ 1}. Then, T maps
the ball B into itself, provided T = T (n) is small enough. Consequently, Schauder’s
fixed point theorem guarantees the existence of at least one fixed point un, un = T [un]
which provides a solution to (4.44).

Now, we want to find a solution to the regularized system as a limit of the sequence
un. However, the approximate velocity field un is defined only on the time interval
[0, T (n)]. Accordingly, we have to guarantee that this solution can be extended to a
uniform over n time interval [0, T ∗]. In order to achieve this, we deduce next some
a priori estimates on the fixed point un we found above that allow us to iterate the
fixed point argument a finite number of times until we reach the whole time interval
[0, T ∗].

In the case of the MHD system and in the case of the Navier Stokes system, the
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conservation of energy provides good enough global a priori estimates that guarantee
boundedness of the fixed point globally in time. In our present situation, however,
the short wave-long wave interaction turns the estimate more difficult as the energy of
the system is not well balanced. As a consequence we do not obtain a global a priori
estimate. Fortunately, we are able to bound from below the maximal time during
which the estimates hold by some TN independent of n that satisfies the properties
stated in Theorem 4.1.

The a priori estimates are based on the usual energy estimates for the MHD equa-
tions, but rely on a bootstrap argument in order to accommodate the unbalance in
the energy caused by the short wave-long wave interactions coupling terms.

For convenience, we define En(t) as in (4.29) with (ρ,u,H, ψ) replaced by (ρn,un,Hn, ψn).
That is

En(t) =
∫

Ω

(
1
2ρn|un|2 + a

γ − 1ρ
γ
n + δ

β − 1ρ
β
n + 1

2 |Hn|2
)
dx

+
∫

Ωy

(1
2 |∇yψn|2 + 1

4 |ψn|4 + αg(vn)h(|ψn|2)
)
dy

+
∫ t

0

∫
Ω
(µ|∇un|2 + (λ+ µ)(divun)2 + ν|∇Hn|2)dxds (4.47)

In the notation of Theorem 4.1 we have the following estimate.

Lemma 4.6. Let TN be given by (4.30) and take r ∈ (0, 1). Assume that β >

max{2r/(2 − r), 2r/(1 − r)} and that ε and α are small and satisfy TN > 0. Then,
for all t ≤ TN we have

En(t) + ε
∫ t

0

∫
Ω
(aγργ−2

n + δβρβ−2
n )|∇ρn|2dxds ≤ E(0) + ε1/2R. (4.48)

Also,

||ε1/2∇ρn||L2(Ω×(0,T )) + ||ε2ρnt||Lr(Ω×(0,T )) + ||ε3∆ρn||Lr(Ω×(0,T )) ≤ C (4.49)

where C is a universal constant independent of ε, α, n and N .

Proof. First, we find an energy identity in a similar way as when deducing (2.32).
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Taking η = un in (4.44) and using equations (4.32), (4.35) we have

d

dt

∫
Ω

(
1
2ρn|un|2 + a

γ − 1ρ
γ
n + δ

β − 1ρ
β
n + 1

2 |Hn|2
)
dx

+
∫

Ω
(µ|∇un|2 + (λ+ µ)(divun)2 + ν|∇Hn|2)dx

+ ε
∫

Ω
(aγργ−2

n + δβρβ−2
n )|∇ρn|2dx

+
∫

Ω
α
Jy

ρn
g′(1/ρn)h(|ψn ◦ Y|2)divundx = 0. (4.50)

As ρn is a solution of equation (4.32) with u = un we have that

divun
ρn

=
(

1
ρn

)
t

+ un · ∇
(

1
ρn

)
+ ε

∆ρn
ρ2
n

Now, from the coordinate change and the definition of vn = vn(y, t) we have vnt =
(1/ρn)t + uNn · ∇ (1/ρn).

Thus,
∫

Ω
α
Jy

ρn
g′(1/ρn)h(|ψn ◦ Y|2)divundx =

∫
Ωy
αg(vn)th(|ψn|2)dy

+
∫

Ω
αg′(1/ρn)h(|ψn ◦ Y|2)Jy

(
ε
∆ρn
ρ2
n

+ (uNn − un) · ∇ρn
ρ2
n

)
dx

Now, using equation (4.37) we have that

∫
Ωy
αg(vn)th(|ψn|2)dy = d

dt

∫
Ωy

(1
2 |∇yψn|2 + 1

4 |ψn|4 + αg(vn)h(|ψn|2)
)
dy.

Gathering this information in (4.50) we have

d

dt

∫
Ω

(
1
2ρnun + a

γ − 1ρ
γ
n + δ

β − 1ρ
β
n + 1

2 |Hn|2
)
dx

+ d

dt

∫
Ωy

(1
2 |∇yψ|2 + 1

4 |ψ|4 + αg(v)h(|ψ|2)
)
dy

+
∫

Ω
(µ|∇un|2 + (λ+ µ)(divun)2 + ν|∇Hn|2)dx

+ ε
∫

Ω
(aγργ−2

n + δβρβ−2
n )|∇ρn|2dx

=
∫

Ω
αg′(1/ρn)h(|ψn ◦ Y|2)Jy

(
ε
∆ρn
ρ2
n

+ (uNn − un) · ∇ρn
ρ2
n

)
dx.
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In order to estimate the right hand side of this identity we use a bootstrap argument
as follows. First, recalling (4.15), we have that

|Jy(t)| ≤ exp
[
CN

(
t+

∫ t

0
||un(s)||2H1

0 (Ω)ds
)]
. (4.51)

Next, we assume that

µ
∫ t

0
||un(s)||2H1

0 (Ω)ds ≤ E(0) + ε1/2R (4.52)

for all t ≤ TN . This is certainly the case for t small enough. Accordingly, the following
calculations hold as long as (4.52) is satisfied.

With this in mind, using (2.56) and Poincaré’s inequality, we have that

d

dt

∫
Ω

(
1
2ρnun + a

γ − 1ρ
γ
n + δ

β − 1ρ
β
n + 1

2 |Hn|2
)
dx

+ d

dt

∫
Ωy

(1
2 |∇yψ|2 + 1

4 |ψ|4 + αg(v)h(|ψ|2)
)
dy

+
∫

Ω
(µ|∇un|2 + (λ+ µ)(divun)2 + ν|∇Hn|2)dx

+ ε
∫

Ω
(aγργ−2

n + δβρβ−2
n )|∇ρn|2dx

≤ αCeCN (TN +µ−1(E(0)+ε1/2R))
∫

Ω

(
ε|∆ρn| + µ|∇un|2 + aγργ−2

n |∇ρn|2
)
dx.

Taking (4.30) into consideration we see that

αCeCN (TN +µ−1(E(0)+ε1/2R))
∫

Ω

(
ε|∆ρn| + µ|∇un|2 + aγργ−2

n |∇ρn|2
)
dx

≤ Cε3
∫

Ω
|∆ρn|dx + Cε2

∫
Ω
µ|∇un|2dx + Cε2

∫
Ω
aγργ−2

n |∇ρn|2dx,

and thus, if ε ≤ min{(2C)−1, (2C)−1/2} we have that

d

dt
En(t) + ε

∫
Ω
(aγργ−2

n + δβρβ−2
n )|∇ρn|2dx ≤ Cε3

∫
Ω

|∆ρn|dx, (4.53)

for all t ≤ TN , and some constant C > 0 independent of α, ε, n and N . In particular
given r > 1 we have that

||√ρun||2L∞(0,T ;L2(Ω)) + ||ρn||βL∞(0,T ;Lβ(Ω)) + ||un||2L2(0,T ;H1
0 (Ω))

≤ E(0) + C(r)||ε3∆ρn||Lr(Ω×(0,T )). (4.54)
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Regarding the right hand side of this inequality, we are going to use Lp − Lq

estimates on the parabolic equation (4.32) in order to bound appropriately the Lr(Ω×
(0, T ))-norm of ∆ρn (for any fixed T ≤ TN). Said Lp − Lq estimates read

||ρt||Lp(0,T ;Lq(Ω)) + ||ε∆ρ||Lp(0,T ;Lq(Ω))

≤ c(p, q)(||ρ0||W 2,q(Ω) + ||div(ρu)||Lp(0,T ;Lq(Ω))). (4.55)

for any 1 < p, q < ∞. Taking p = q := r in (4.55) and applying it to ρn we have

||ε∆ρn||Lr(Ω×(0,T ))

≤ c(r)(||ρ0||W 2,r(Ω) + ||div(ρnun)||Lr(Ω×(0,T )))
≤ c(r)(||ρ0||W 2,r(Ω) + ||un · ∇ρn||Lr(Ω×(0,T )) + ||ρndivun||Lr(Ω×(0,T ))) (4.56)

On the one hand,

||ρndivun||L2β/(β+2)(Ω) ≤ ||ρn||Lβ(Ω)||un||H1
0 (Ω),

and therefore

||ρndivun||L2(0,T ;L2β/(β+2)(Ω)) ≤ ||ρn||L∞(0,T ;Lβ(Ω))||un||L2(0,t;H1
0 (Ω)), (4.57)

On the other hand, we need to estimate ||∇ρn · un||Lr(Ω×(0,T )), and for this we
need a good estimate on ∇ρn. Such an estimate is provided by the following Lp − Lq

estimate on equation (4.32), analogue to (4.55)

||ε∇ρ||Lp(0,T ;Lq(Ω)) ≤ c(p, q)(||ρ0||W 1,q(Ω) + ||div(ρu)||Lp(0,T ;W−1,q(Ω))). (4.58)

At this point we choose q = 2 and leave p to be chosen conveniently. In connection
with (4.58) we have that

||ε∇ρn||Lp(0,T ;L2(Ω)) ≤ c(p)(||ρ0||H1(Ω) + ||ρnun||Lp(0,T ;L2(Ω))). (4.59)

By Sobolev’s embedding for any p′ ∈ [1,∞) we have, since Ω ⊆ R2, that

||un||Lp′ (Ω) ≤ c(p′)||un||H1
0 (Ω).



4.2 Solutions to the regularized system 137

This implies that

||ρnun||L2(0,T ;Lp′ (Ω)) ≤ c(p′)||ρn||L∞(0,T ;Lβ(Ω))||un||L2(0,T ;H1
0 (Ω)), (4.60)

for any p′ < β. Furthermore, we have that

||ρnun||L∞(0,T ;L2β/(β+1)(Ω)) ≤ ||ρn||L∞(0,T ;Lβ(Ω))||
√
ρnun||L∞(0,T ;L2(Ω)).

Now, for 2 < p′ < β we have

||ρnun||L2(Ω) ≤ ||ρnun||1−σ
L2β/(β+1)(Ω)||ρnun||σLp′ (Ω) (4.61)

where, 1
2 = (1−σ)β+1

2β +σ 1
p′ and σ ∈ (0, 1). Consequently, taking p = 2

σ
> 2 we obtain

||ρu||Lp(0,T ;L2(Ω)) ≤ ||ρnun||1−σ
L∞(0,T ;L2β/(β+1)(Ω))||ρnun||σL2(0,T ;Lp′ (Ω))

≤ ||ρn||L∞(0,T ;Lβ(Ω))||
√
ρnun||1−σ

L∞(0,T ;L2(Ω))||un||σL2(0,T ;H1
0 (Ω)).

In connection with (4.59) we have that

||ε∇ρ||Lp(0,T ;L2(Ω))

≤ c(p)(||ρ0||H1(Ω) + ||ρn||L∞(0,T ;Lβ(Ω))||
√
ρnun||1−σ

L∞(0,T ;L2(Ω))||un||σL2(0,T ;H1
0 (Ω))).

Finally, we see that we can choose p′ so that r = p/2 and we have

||ε∇ρn · un||rLr(Ω×(0,T )) ≤
∫ t

0
||ερn||rL2(Ω)||un||L2r/(2+r)(Ω)ds

≤ C
∫ t

0
||ερn||rL2(Ω)||un||rH1

0 (Ω)ds

≤ C
(∫ t

0
||ερn||pL2(Ω)ds

)r/p (∫ t

0
||un||2H1

0 (Ω)ds
)1/2

.

In this way we have

||ε∇ρn · un||Lr(Ω×(0,T )) ≤ C||ε∇ρn||Lp(0,T ;L2(Ω))||un||1/r
L2(0,T ;H1

0 (Ω))

≤ C(||ρ0||H1(Ω) + ||ρn||L∞(0,T ;Lβ(Ω))||
√
ρnun||1−σ

L∞(0,T ;L2(Ω))||un||σL2(0,T ;H1
0 (Ω)))×

× ||un||1/r
L2(0,T ;H1

0 (Ω)). (4.62)

Then, for β large enough so that 2β
2+β > r (which is equivalent to β > 2r

2−r ) we have
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that
||ρndivun||Lr(Ω×(0,T )) ≤ C||ρndivun||L2(0,T ;L2β/(2+β)). (4.63)

Putting this together with (4.54), (4.56), (4.57) and (4.62) we have that

||ε3∆ρn||Lr(Ω×(0,T )) ≤ Cε2||ρ0||W 2,r(Ω) + Cε||ρ0||2H1(Ω)

+ Cε(E(0) + ||ε3∆ρn||Lr(Ω×(0,T )))
1
β

+ 1
2 + 1

2r ,

and consequently, if β is large enough so that 1
β

+ 1
2 + 1

2r ≤ 1 (in other words if
β ≥ 2r/(1 − r)) and ε is small we have

||ε3∆ρn||Lr(Ω×(0,T )) ≤ Cε(ε||ρ0||W 2,r(Ω) + ||ρ0||2H1(Ω) + E(0) + 1).

In order to conclude, we observe that this last inequality together with (4.53) and
(4.54) reconfirms our bootstrap assumption (4.52), and implies (4.48).

4.2.2 Convergence of the Faedo-Galerkin approximations

The uniform estimates from Lemma 4.6 permit us to iterate the fixed point argument
a finite number of times to extend the local approximate solutions to the interval
[0, T ] (provided that T ≤ TN). The next step in the proof of Theorem 4.1 consists
in passing to the limit as n → ∞. We point out that the convergence in the terms
concerning ρn and un can be justified similarly as in [23, Section 7.3.6] and the terms
involving Hn may be treated as in [29, Section 4]. Regarding the terms involving ψn a
direct application of Aubin-Lions Lemma (Lemma 3.16) yields the desired result. The
details are as follows.

Let N , ε, α and δ be fixed, 0 < T < TN and {(ρn,un,Hn, ψn)}∞
n=1 be the approx-

imate solution to the regularized system, defined in the time interval [0, T ], given by
the Faedo-Galerkin method described above.

First, as ρn satisfies (4.32), we have that

||∇ρn||L2(Ω×(0,T )) ≤ C(ε),

for some constant that depends on ε, but is independent of n. This can be easily
deduced by multiplying (4.32) by ρn and integrating by parts. Using (4.49) and (4.48),
Aubin-Lions Lemma 3.16 implies that ρn has a subsequence (not relabelled) such that
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ρn → ρ in Lβ(Ω × (0, T )). (4.64)

Furthermore, by (4.48) we can assume that

un → u weakly in L2(0, T ;H1
0 (Ω)). (4.65)

Next, we see that Hn satisfies the following equation, equivalent to (4.35),


Ht − ∇ × (u × H) = ν∆H, on Ω × (0, T )

div H = 0, on Ω × (0, T )

H = 0, on ∂Ω

H = H0, on {t = 0} × Ω.

(4.66)

Consequently, by (4.48) we can also use Aubin-Lions Lemma in order to conclude
that (selecting a subsequence if necessary)

Hn → H (4.67)

strongly in L2(Ω × (0, T )) and weakly(-*) in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)). Fur-
thermore, H satisfies

divH = 0.

Now, from (4.48) and using the embedding we see that ρnun is uniformly bounded
in L∞(0, T ;Lm∞(Ω)), where m∞ = 2γ

γ+1 . Indeed,

∫
Ω

|ρnun|m∞dx ≤
(∫

Ω
ρn|un|2dx

)1/2 (∫
Ω
ργndx

)1/γ
≤ C.

Thus, as the convergence in (4.64) is strong we may assume that

ρnun → ρu weakly-* in L∞(0, T ;Lm∞(Ω)). (4.68)

By the same token, we have that

(∇ × Hn) × Hn → (∇ × H) × H, (4.69)
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weakly in L1(Ω × (0, T )), and

∇(un × Hn) → ∇(u × H), (4.70)

in the sense of distributions.

Next, in view of (4.37) Aubin-Lions lemma also yields

ψn → ψ (4.71)

strongly in C(0, T ;L2(Ω)) and weakly-* in L∞(0, T ;H1
0 (Ω)).

Let us state (without proof) the following result, which is a consequence of the
Ascoli-Arzelà theorem (see [23, Corollary 2.1]).

Lemma 4.7. Let O ⊆ RM be compact and let X be a separable Banach space. Assume
that vn : O → X∗, n = 1, 2, ... is a sequence of measurable functions such that

ess sup
y∈O

||vn(y)||X∗ ≤ C uniformly in n = 1, 2, ...

Moreover, let the family of (real) functions

⟨vn,Φ⟩ : y → ⟨vn(y),Φ⟩, y ∈ O, n = 1, 2...

be equi-continuous for any fixed Φ belonging to a dense subset in the space X.

Then, vn ∈ C(O;X∗
weak) for any n = 1, 2, ... and there exist v ∈ C(O;X∗

weak) such
that

vn → v in C(O;X∗
weak) as n → ∞,

passing to a subsequence as the case may be.

In view of (4.44) and using (4.48) we see that the functions

t →
∫

Ω
ρnunηjdx

form a precompact system in C([0, T ]) for any fixed j. This implies, by Lemma 4.7
that in fact

ρnun → ρu in C([0, T ];L2γ/(γ+1)
weak (Ω)). (4.72)
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A similar argument shows that the mapping

t →
∫

Ω
Hφdx

is continuous for any test function φ.

Now, as γ > 1, L2γ/(γ+1)
weak (Ω) is compactly embedded intoH−1(Ω) and, consequently,

ρnun ⊗ un → ρu ⊗ u (4.73)

weakly in L2(0, T ;Lc2(Ω)), where c2 = 2γ/(γ + 1) >.

Next, as ρn and ρ are strong solutions of (4.32), we have that

||ρn(t)||2L2(Ω) + 2ε
∫ t

0
||∇ρn||2L2(Ω)ds = −

∫ t

0

∫
Ω
ρ2
ndivundxds+ ||ρ0||2L2(Ω),

and
||ρ(t)||2L2(Ω) + 2ε

∫ t

0
||∇ρ||2L2(Ω)ds = −

∫ t

0

∫
Ω
ρ2divudxds+ ||ρ0||2L2(Ω)

Using (4.64) and (4.65) we see that the right hands side of the former converges to
its counterpart in the latter and thus,

||∇ρn||2L2(Ω×(0,T )) → ||∇ρ||2L2(Ω×(0,T )),

and
||ρn(t)||2L2(Ω) → ||ρ(t)||2L2(Ω)

for any t ∈ [0, T ], which implies the strong convergence

∇ρn → ∇ρ in L2(Ω × (0, T )).

With this we conclude that

∇un · ∇ρn → ∇u · ∇ρ

in the sense of distributions.

Finally, recalling the definition of uNn through (4.9), we note that the weak con-
vergence in (4.65) implies the strong convergence

uNn → uN
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which implies that the sequence Jacobians of the Lagrangian transformation Jyn de-
fined through uNn converge strongly to the corresponding one related to uN .

With this we have shown that equations (4.19)-(4.23) are satisfied in the sense
of distributions (equation (4.44) can be verified by taking test functions of the form
ψ(t)ηj(x), where ψ ∈ C∞

0 (0, T )) by the limit function (ρ,u,H, ψ) as each term ap-
pearing on those equations is the limit in the sense of distributions of the respective
terms corresponding to the Faedo-Galerkin approximation (ρn,un,Hn, ψn). We have
also shown that the initial and boundary conditions (4.24), (4.25) are satisfied in the
sense of distributions.

Lastly, inequality (4.28) is a consequence of (4.48) and this completes the proof of
Theorem 4.1.

4.3 Vanishing artificial viscosity and interaction co-
efficients

Theorem 4.1 guarantees the existence of solutions to the Short Wave-Long Wave In-
teractions regularized system (4.19)-(4.23). Our next goal is to show that the sequence
(or a subsequence) of solutions to this system converge to a global solution of the of
the decoupled limit system when (ε, α,N, δ) → (0, 0,∞, 0). In this Section we analyse
the limit as (ε, α,N) → (0, 0,∞), leaving δ > 0 fixed. As pointed out before, we can
do all of of this as long as (

ε2

α

)1/CN

→ ∞. (4.74)

In order to achieve this, we essentially adapt the arguments in [23, Section 7.4]
and in [29].

The key point in the argument is to show that the sequence of densities converges
strongly, in order to account for the nonlinearites from the pressure terms in the
momentum equation (4.6). This is not straightforward, as it was in the previous
section, since we loose regularity of the density as ε → 0. In particular, an argument
like that of Aubin-Lions lemma does not apply. In this direction, we can exploit the
weak continuity properties of the effective viscous flux p(ρ) − (λ+ 2µ)divu, originally
discovered by P.-L. Lions ([38]).

Let us point out that the terms involving the velocity field, the magnetic field and
the wave function can be treated essentially as in the previous Section. Regarding the
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strong convergence of densities, the proof of weak continuity of the effective viscous
flux found in [29] (cf. [23]) can be adapted with no major difficulties once we realize
that (4.28), (4.15), (4.30) and (2.56) imply that the extra term, due to the SW-LW
interactions, appearing in the momentum equation

α∇(Jy

ρ
g′(1/ρ)h(ψ|2))

tends to zero in the sense of distributions as (ε, α,N) → (0, 0,∞) satisfying (4.74).
Accordingly, and to avoid the overload of notation, we may assume that N and α tend
to ∞ and 0 respectively as functions of ε and denote by (ρε,uε,Hε, ψε) the solution
of the regularized system provided by Theorem 4.1.

The plan is as follows. First we show that ρε is uniformly (in ε) bounded in
Lβ+1
loc (Ω × (0, T )) so that we can ensure that δρβ and aργ have (weakly) convergent

subsequences. We know from Theorem 4.1 that ρε ∈ Lβ+1(Ω × (0, T )) for each ε, but
we have not yet shown that they are uniformly bounded in this space.

Second, we prove the continuity of the effective viscous flux. And finally, we use
this last result in order to show that ρ log ρ = ρ log ρ where the over line stands for
a weak limit of the sequence indexed by ε. This last bit of information is enough to
conclude the strong convergence of the densities due to the following result, which we
state without proof (see [23, Theorem 2.11]).

Lemma 4.8. Let O ⊆ RN be a measurable set and {vn}∞
n=1 a sequence of functions

in L1(O;RM) such that

vn → v weakly in L1(O;RM).

Let Φ : RM → (−∞,∞] be a lower semi-continuous convex function such that Φ(vn) ∈
L1(O) for any n and

Φ(vn) → Φ(v) weakly in L1(O).

Then,
Φ(v) ≤ Φ(v) a.a. on O.

If, moreover, Φ is strictly convex on an open convex set U ⊆ RM , and

Φ(v) = Φ(v) a.a. on O, ,
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then,
vn(y) → v(y) for a.e. y ∈ {y ∈ O : v(y) ∈ U},

extracting a subsequence as the case may be.

From this point on, T > 0 will denote an arbitrary prefixed time and C > 0 will
be a constant that may change from line to line being independent of ε, α and N .
We also assume that δ > 0 is fixed and that (ε, α,N) → (0, 0,∞) satisfying (4.74).
Accordingly, we can also assume that (ρε,uε,Hε, ψε) are all defined in the time interval
[0, T ] and satisfy (4.28).

4.3.1 Higher integrability of the density

This subsection is devoted to the proof of the following estimate.

Lemma 4.9. For any compact O ⊆ (Ω × (0, T )) there is a constant c = c(O) inde-
pendent of ε (and α and N) such that

δ
∫
O
ρβ+1dx ≤ c(O). (4.75)

The idea behind the proof of this Lemma is essentially the same as the one in the
proof of Lemma 3.19, where we proved higher integrability of the density in the one
dimensional setting. Of course, in the one dimensional setting we could easily find an
explicit formula for the pressure in terms of the other state functions, directly from
the momentum equation, by integration with respect to the spatial variable. In this
multidimensional case this task is not so straightforward. Alternatively, the proof can
be carried out by using appropriately chosen test functions.

Before going through the proof, let us introduce some preliminaries.
As in [23, 24, 29] we consider the operator A by its coordinates

Aj[v] := ∆−1[∂xj
v], j = 1, 2, (4.76)

where ∆−1 stands for the inverse of the Laplacian in R2. Equivalently, Aj can be
defined through its Fourier symbol as

Aj[v] = F−1
[

−iξj
|ξ|2

F [v]
]
, j = 1, 2.
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As shown in [23] the operator A has the following properties:

||Ajv||W 1,s(Ω) ≤ c(s,Ω)||v||Ls(R2), 1 < s < ∞, (4.77)

and consequently, by Sobolev’s embeddings

||Ajv||Lq(Ω) ≤ c(s,Ω)||v||Ls(R2), q finite, provided 1
q

≥ 1
s

− 1
2 , (4.78)

||Ajv||L∞(Ω) ≤ c(s,Ω)||v||Ls(Ω), if s > 2. (4.79)

Let us also introduce the following standard smoothing operator

[v]ωx(z) := (ϑω ∗ v)(z) =
∫
R2
ϑω(ξ − z)v(ξ)dξ, (4.80)

where, for each ω > 0,

ϑω(z) := 1
ω2ϑ

(
|z|
ω

)
, z ∈ R2,

and ϑ ∈ C∞
0 ((−1, 1)) with

ϑ(−τ) = ϑ(τ),
∫
R2
ϑ(|z|)dz = 1, ϑ nonincreasing on [0,∞).

Let us also observe that from (4.28) we have, in particular, that

ρε is bounded in L∞(0, T ;Lβ(Ω)), , (4.81)

uε is bounded in L2(0, T ;H1
0 (Ω))., (4.82)

Hε is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). (4.83)

ψε is bounded in L∞(0, T ;L4(Ω) ∩H1
0 (Ω)). (4.84)

Proof of Lemma 4.9. For ω > 0, set

Bω = [ρε]ωx.
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Let us recall that ρε and uε satisfy (4.19) a.a. on Ω × (0, T ), along with the boundary
condition (∇ρε · n)|∂Ω = 0. Then, extending ρε and uε to be zero outside of Ω we have
that

ρεt + div(ρεuε) = εdiv(1Ω∇ρε) (4.85)

in the sense of distributions in R2 × (0, T ), where 1Ω is the characteristic function of
Ω.

Applying the smoothing operator [·]ωx to equation (4.85) we have

Bωt = fω, (4.86)

with
fω = −div([ρεuε]ωx) + εdiv[1Ω∇ρε]ωx.

Note that hω is uniformly bounded in L2(0, T ;H−1(Ω)).

As in [23] we choose the test function1

φ(x, t) = ζ(t)η(x)A[ξ(·)Bω(·, t)](x, t),

where η, ξ ∈ C∞
0 (Ω) and ζ ∈ C∞

0 ((0, T )), and use it in the momentum equation (4.20)
to obtain
∫ T

0

∫
Ω
ζηξ(aργε + δρβε )Bωdxds =

∫ T

0

∫
Ω
ζηSε : (∇∆−1∇)[ξBω]dxds+

9∑
j=1

Ij, (4.87)

where, in the notation of Chapter 2, Sε = λ(divuε)Id+µ(∇uε+(∇uε)⊤) is the viscous

1Let us recall that our two dimensional model can be regarded as the three dimensional one under
the assumption that the involved functions are independent of the third variable. In particular, the
velocity field takes values in R3. Accordingly, in order to use φ as a test function we define its third
component as being identically equal to zero.
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stress tensor, and

I1 =
∫ T

0

∫
Ω
ζSε∇η · A[ξBω]dxds,

I2 = −
∫ T

0

∫
Ω
ζ(aργε + δρβε )∇η · A[ξBω]dxds,

I3 = −
∫ T

0

∫
Ω
ζ(ρεuε ⊗ uε)∇η · A[ξBω]dxds

I4 = −
∫ T

0

∫
Ω
ζuε · (∇∆−1∇)[ξBω]ηρεuεdxds

I5 = −
∫ T

0

∫
Ω
ζη(∇ × Hε) × Hε · A[ξBω]dxds

I6 = −
∫ T

0

∫
Ω
ζt ηρεuε · A[ξBω]dxds

I7 = −
∫ T

0

∫
Ω
ζηρεuε · A[ξfω]dxds

I8 = ε
∫ T

0

∫
Ω
ζη∇uε∇ρε · A[ξBω]dxds

I9 = −
∫ T

0

∫
Ω
ζα
Jy

ρε
g′(1/ρε)h(|ψε|2)

(
ηξBω + ∇η · A[ξBω]

)
dxds

Note that by (4.79), we have that

A[ξBω] are bounded in L∞(Ω × (0, T )), (4.88)

provided that β > 2. This together with (4.81) and (4.82) implies that the integrals
I1, I2, I3 and I7 are bounded by a constant independent of ε and ω. Next, by (4.77)
combined with (4.81) and (4.82) we have that I4 is also bounded. Now, by the fact
that T ≤ TN combined with (4.30), (4.15), (4.28) and (4.74) we see that

α|Jy| ≤ ε2,

and thus, by (2.56), I9 → 0 as ε → 0. In particular, I9 is also bounded by a constant
independent of ε and ω.

Regarding I7, we see that ρε, being a solution of equation (4.32), satisfies the
identity

||ρε(t)||2L2(Ω) + 2ε
∫ t

0
||∇ρε||2L2(Ω)ds = −

∫ t

0

∫
Ω
ρ2
εdivuεdxds+ ||ρ0||2L2(Ω),
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and therefore we see that

ε1/2∇ρε are uniformly bounded in L2(0, T ;L2(Ω)).

In particular, by (4.77)

A[ξfε] are uniformly bounded in L2(Ω × (0, T )),

Thus, we conclude that I7 is bounded by a constant independent of ε and ω. By the
same token we see that I8 is uniformly bounded as well. In fact, we have that I8 → 0
as ε → 0.

Next, we see that (4.83) and (4.88) imply that I5 is also bounded by a constant
independent of ε and ω.

Finally, (4.77) and (4.82) also yield a uniform bound for the integral

∫ T

0

∫
Ω
ζηSε : (∇∆−1∇)[ξBω]dxds.

Gathering all this information in (4.87) and letting ω → 0 we arrive at (4.75). Of
course, the bounds obtained for the integrals above depend on ζ, η and ξ, which is
why the result is local.

4.3.2 The effective viscous flux

This section concerns the proof of the weak continuity of the effective viscous flux.
However, before we get to it we have to make a few observations.

By (4.81), (4.82), (4.83) and (4.84) we can assume that

ρε → ρ weakly-* in L∞(0, T ;Lβ(Ω)) (4.89)
uε → u weakly in L2(0, T ;H1

0 (Ω)) (4.90)
Hε → H strongly in L2(Ω × (0, T ))

and weakly-* in L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) (4.91)
ψε → ψ strongly in C(0, T ;L2(Ω)) and weakly-* in L∞(0, T ;H1

0 (Ω)), (4.92)

where the strong convergence in (4.91) and in (4.92) is due to Aubin-Lions Lemma
(Lemma 3.16).
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Then, by the same arguments used to obtain (4.69), (4.72) and (4.73) we see that

(∇ × Hε) × Hε → (∇ × H) × H, in the sense of distributions, (4.93)
∇ × (uε × Hε) → ∇ × (u × H) in the sense of distributions, (4.94)
ρεuε → ρu in C([0, T ];L2β/(β+1)

weak (Ω)), (4.95)
ρεuε ⊗ uε → ρu ⊗ u weakly in L2(0, T ;Lc2(Ω)), (4.96)

where, c2 = 2γ/(1 + γ) > 1.
As pointed out before we have that

ε∇uε · ∇ρε → 0 (4.97)

and
α∇

(
Jy

ρε
g′(1/ρε)h(|ψε|2)

)
→ 0 (4.98)

in the sense of distributions.
Moreover, by (4.75) we can assume that

aργ + δρβ → p weakly in L(β+1)/β(Ω × (0, T )). (4.99)

All of this information implies that the limit functions satisfy the equations

ρt + div(ρu) = 0 (4.100)

(ρu)t + div(ρu ⊗ u) + ∇p = div
(
λ(divu)Id + µ

(
∇u + (∇u)⊤

))
+ curl (H) × H.

(4.101)

in the sense of distributions.
With this, we can state the result on the weak continuity of the effective viscous

flux, originally discovered by P.-L. Lions (see [38]), as (cf. [23, 24, 29])

Lemma 4.10. Let (ρε,uε,Hε, ψε) be the solution of the regularized system provided
by Theorem 4.1. Then,

lim
ε→0

∫ T

0

∫
Ω
ζη(aργε + δρβε − (λ+ 2µ)divuε)ρεdxds

=
∫ T

0

∫
Ω
ζη(aργ + δρβ − (λ+ 2µ)divu)ρdxds, (4.102)
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for any ζ ∈ C∞
0 ((0, T )), and η ∈ C∞

0 (Ω).

Proof. First, noting that

ξdiv([ρεuε]ωx) = div(ξ[ρεuε]ωx) − ∇ξ · [ρεuε]ωx,

we see that I7 in (4.87) may be rewritten as

I7 = I1
7 + I2

7 + I3
7 ,

where

I1
7 =

∫ T

0

∫
Ω
ζξ[ρεuε]ωx(∇∆−1div)[ηρεuε]dxds

I2
7 = −

∫ T

0

∫
Ω
ζηρεuεA

[
∇ξ · [ρεuε]ωx

]
dxds

I3
7 = −ε

∫ T

0

∫
Ω
ζηρεuεA[ξdiv(1Ω∇ρε)]dxds.

Therefore, passing to the limit as ω → 0 in (4.87) we obtain

∫ T

0

∫
Ω
ζη
(
ξ(aργε + δρβε )ρε − Sε : (∇∆−1∇)[ξρε]

)
dxds =

9∑
j=1

Jεj

+
∫ T

0

∫
Ω
ζuε

(
ξρε(∇∆−1div)[ηρεuε] − (∇∆−1∇)[ξρε]ηρεuε

)
dxds, (4.103)

where,

Jε1 =
∫ T

0

∫
Ω
ζSε∇η · A[ξρε]dxds,

Jε2 = −
∫ T

0

∫
Ω
ζ(aργε + δρβε )∇η · A[ξρε]dxds,

Jε3 = −
∫ T

0

∫
Ω
ζ(ρεuε ⊗ uε)∇η · A[ξρε]dxds

Jε4 = −
∫ T

0

∫
Ω
ζη(∇ × Hε) × Hε · A[ξρε]dxds

Jε5 = −
∫ T

0

∫
Ω
ζt ηρεuε · A[ξρε]dxds
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Jε6 = −
∫ T

0

∫
Ω
ζηρεuεA[∇ξ · ρεuε]dxds

Jε7 = −ε
∫ T

0

∫
Ω
ζηρεuεA[ξdiv(1Ω∇ρε)]dxds

Jε8 = ε
∫ T

0

∫
Ω
ζη∇uε∇ρε · A[ξρε]dxds

Jε9 = −
∫ T

0

∫
Ω
ζα
Jy

ρε
g′(1/ρε)h(|ψε|2)

(
ηξρε + ∇η · A[ξρε]

)
dxds

Now, using equations (4.100) and (4.101), a similar procedure yields

∫ T

0

∫
Ω
ζη
(
ξ(aργ + δρβ)ρ− S : (∇∆−1∇)[ξρ]

)
dxds =

6∑
j=1

Jj

+
∫ T

0

∫
Ω
ζu
(
ξρ(∇∆−1∇)[ηρu] − (∇∆−1div)[ξρ]ηρu

)
dxds, (4.104)

where,

J1 =
∫ T

0

∫
Ω
ζS∇η · A[ξρ]dxds,

J2 = −
∫ T

0

∫
Ω
ζp∇η · A[ξρ]dxds,

J3 = −
∫ T

0

∫
Ω
ζ(ρu ⊗ u)∇η · A[ξρ]dxds

J4 = −
∫ T

0

∫
Ω
ζη(∇ × H) × H · A[ξρ]dxds

J5 = −
∫ T

0

∫
Ω
ζt ηρu · A[ξρ]dxds

J6 = −
∫ T

0

∫
Ω
ζηρuA[∇ξ · ρu]dxds

Following [23, 29], we now proceed to show that all the integrals in the right hand
side of (4.103) converge to their counterparts in (4.104).

As ρε satisfies equation (4.19), Lemma 4.7 yields

ρε → ρ in C([0, T ];Lβweak(Ω)), (4.105)

and consequently, by (4.77) and the compactness of the embedding W 1,β(Ω) → C(Ω)
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(recall that β > 2) we have that

A[ξρε] → ξρ in C(Ω × (0, T )),

Thus, in light of (4.90), (4.99), (4.93), (4.95) and (4.96), we have that

Jεk → Jk, for k = 1, 2, 3, 4, 5.

Similarly, by (4.89) and (4.90) we have, in particular, that

ρεuε is bounded in L2(Ω × (0, T )), (4.106)

and this together with (4.77) and (4.105) implies that

∇ξ · ρεuε → ∇ξ · ρu weakly in L2(0, T ;H1(Ω)).

Consequently, taking (4.95) into account we have that

Jε6 → J6.

As was already mentioned we have that

Jεk → 0, for j = 7, 8, 9.

In order to deal with the last term on the right hand side of (4.103) we state the
following result (see [23, Corollary 6.1], also [24, Lemma 3.4]).

Lemma 4.11. Let O ⊆ RN be an arbitrary domain.

(i) Let
vn → v weaky in Lp(O;RN), wn → w weaky in Lq(O;RN),

with
1 < p, , q < ∞,

1
p

+ 1
q

≤ 1.

Then

vn · (∇∆−1div)[wn]−wn · (∇∆−1div)[vn] → v · (∇∆−1div)[w]−w · (∇∆−1div)[v]

in the sense of distributions.
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(ii) Under the same hypotheses, if

Bn → B weakly in Lp(O), vn → v weakly in Lq(O;Rn),

then

(∇∆−1∇)[Bn]vn − (∇∆−1div)[vn]Bn → (∇∆−1∇)[B]v − (∇∆−1div)[v]B

The proof of this result consists in applying a particular case of the Div-Curl
Lemma (Lemma 3.12). We refer to [23] for the proof.

Now, by (4.89) and (4.95), a direct application of the above Lemma implies

(∇∆−1∇)[ξρε(t)]ηρεuε(t) − ξρε(t)(∇∆−1div)[ηρεuε(t)]
→ (∇∆−1∇)[ξρ(t)]ηρu(t) − ξρ(t)(∇∆−1div)[ηρu(t)],

weakly in L2β/(β+3)(Ω) , for each fixed t.

As we know Lq(Ω) is compactly embedded in H−1(Ω) for each q > 1 (remember
that our spatial domain is a bounded open subset of R2). In particular,

(∇∆−1∇)[ξρε]ηρεuε − ξρε(∇∆−1div)[ηρεuε]
→ (∇∆−1∇)[ξρ]ηρu − ξρ(∇∆−1div)[ηρu],

strongly in L2(0, T ;H−1(Ω)). As a consequence, keeping in mind (4.90), we see that

∫ T

0

∫
Ω
ζuε

(
ξρε(∇∆−1div)[ηρεuε] − (∇∆−1∇)[ξρε]ηρεuε

)
dxds

→
∫ T

0

∫
Ω
ζu
(
ξρ(∇∆−1∇)[ηρu] − (∇∆−1div)[ξρ]ηρu

)
dxds.

All of this information put together with (4.103) and (4.104) yields

lim
ε→0

∫ T

0

∫
Ω
ζη
(
ξ(aργε + δρβε )ρε − Sε : (∇∆−1∇)[ξρε]

)
dxds

=
∫ T

0

∫
Ω
ζη
(
ξ(aργ + δρβ)ρ− S : (∇∆−1∇)[ξρ]

)
dxds, (4.107)

for any ζ ∈ C∞
0 ((0, T )) and η, ξ ∈ C∞

0 (Ω).
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In order to conclude, as in [23], we compute

∫ T

0

∫
Ω
ζηSε : (∇∆−1∇)[ξρε]dxds

=
∫ T

0

∫
Ω
ζξ(∇∆−1∇) : (ηSε)ρεdxds

=
∫ T

0

∫
Ω
ζξ(2µ+ λ)div(ηuε)ρεdxds

−
∫ T

0

∫
Ω
ζξρε[2µ(∇∆−2∇) : (uε ⊗ ∇η) + λuε · ∇η]dxds

=
∫ T

0

∫
Ω
ζξη(2µ+ λ)divuε ρεdxds

−
∫ T

0

∫
Ω

2µζξρε[(∇∆−2∇) : (uε ⊗ ∇η) − uε · ∇η]dxds (4.108)

and similarly
∫ T

0

∫
Ω
ζηS : (∇∆−1∇)[ξρ]dxds

=
∫ T

0

∫
Ω
ζξη(2µ+ λ)divu ρdxds

−
∫ T

0

∫
Ω

2µζξρ[(∇∆−2∇) : (u ⊗ ∇η) − u · ∇η]dxds (4.109)

Taking (4.105) into account, we see that the last integral on the right hand side
of (4.108) converges to the last integral in the right hand side of (4.109). This and
(4.107) imply (4.102), which concludes the proof.

4.3.3 Strong convergence of densities, renormalized solutions

Using the results above we can show strong convergence of densities, essentially, in
the same way as in [23, Section 7.4.3]. For this, we need to show first that the limit
functions ρ and u solve the continuity equation in the sense of renormalized solutions,
that is, they satisfy (4.100) in the sense of distributions, and more generally,

B(ρ)t + div(B(ρ)u) + b(ρ)divu = 0, (4.110)

also in the sense of distributions, for any functions

B ∈ C[0,∞) ∩ C1(0,∞), b ∈ C[0,∞), bounded on [0,∞), B(0) = b(0) = 0,
(4.111)
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satisfying
b(z) = B′(z)z −B(z). (4.112)

Remark 4.1. The function b in the definition of renormalized solutions does not have
to be bounded. Indeed, provided that ρ ∈ L∞(0, T ;Lγ(Ω)) and u ∈ L2(0, T ;H1

0 (Ω)), by
Lebesgue’s dominated convergence theorem it can be shown that (4.110) also holds for
b ∈ C[0,∞) satisfying

|b′(z)z| ≤ czγ/2, for z larger than some positive constant z0. (4.113)

Now, the fact that ρ and u solve (4.100) in the sense of renormalized solutions is
a direct consequence of the following general result (cf. [23, Corollary 4.1])

Lemma 4.12. Let Ω ⊆ RN be an arbitrary domain. Let,

ρ ∈ L2(Ω × (0, T ))

solve the continuity equation (4.100) in the sense of distributions with

u ∈ L2(0, T ;H1
0 (Ω)).

Then, ρ is a renormalized solution of (4.100) on Ω × (0, T ).

This result follows by applying the the regularizing operator v → [v]ωx given by
(4.80) (that is, taking the functions ϑω as test functions) to equation (4.100), multi-
plying by B′(ρ) and taking the limit as ω → 0, wherein the convergence is justified by
the integrability properties of ρ and u assumed as hypotheses. We omit the details.

Coming back to our present situation, as β > 2 and by virtue of (4.89) and (4.90)
we can apply directly this result in order to conclude that ρ and u indeed satisfy
(4.110).

In particular, in view of Remark 4.1 and using the fact that ρ ∈ L∞(0, T ;Lβ(Ω))
we can choose B(z) = z log(z) in (4.110) to conclude that the following equation is
satisfied in the sense of distributions on R2 × Ω:

(ρ log(ρ))t + div(ρ log(ρ)u) + ρdivu = 0. (4.114)

On the other hand, as ρε satisfies (4.19) a.e. on Ω × (0, T ), we can multiply (4.19)
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by B′(ρε) to obtain

B(ρε)t+div(B(ρε)uε)+
(
B′(ρε)ρε−B(ρε)

)
divuε = εdiv(1Ω∇B(ρε))−ε1ΩB

′′(ρε)|∇ρε|2,
(4.115)

for any function B ∈ C2(Ω) such that B(0) = 0 with B′ and B′′ uniformly bounded.
Accordingly, if B is convex, and taking into account the boundary conditions (4.25),

we have
∫ T

0

∫
Ω
ζ
(
B′(ρε)ρε −B(ρε)

)
divudxds ≤

∫
Ω
B(ρ0)dx +

∫ T

0

∫
Ω
ζtB(ρε)dxds,

for any ζ ∈ C∞[0, T ] with ζ(0) = 1 and ζ(T ) = 0.
Approximating the function z → z log(z) by a sequence of convex functions B as

above we conclude that
∫ T

0

∫
Ω
ζρεdivudxds ≤

∫
Ω
ρ0 log(ρ0)dx +

∫ T

0

∫
Ω
ζtρε log(ρε)dxds.

Taking the limit as ε → 0 we obtain
∫ T

0

∫
Ω
ζρdivudxds ≤

∫
Ω
ρ0 log(ρ0)dx +

∫ T

0

∫
Ω
ζtρ log(ρ)dxds,

where, as before, the over line stands for a weak limit of the sequence indexed by
ε. In particular, by (4.89), we can assume that ρε log(ρε) → ρ log(ρ) weakly in
L∞(0, T ;Lq(Ω)) for any q < β. As a consequence,

∫ t

0

∫
Ω
ρdivudxds ≤

∫
Ω
ρ0 log(ρ0)dx +

∫
Ω
ρ log(ρ)(t)dx, (4.116)

for any Lebesgue point t of the function ρ log(ρ).
Similarly, using a test function φ(x, t) = ζ(t)η(x) in (4.114), where ζ and η are

smooth and ζ ≥ 0, η ≥ 0, η|Ω = 1, we obtain
∫ t

0

∫
Ω
ρdivudxds =

∫
Ω
ρ0 log(ρ0)dx −

∫
Ω
ρ log(ρ)(t)dx, (4.117)

for t ∈ [0, T ]. Thus, from (4.116) and (4.117) we find the inequality
∫

Ω

(
ρ log(ρ) − ρ log(ρ)

)
(t)dx ≤

∫ t

0

∫
Ω

(
ρdivu − ρdivu

)
dxds, (4.118)

for a.e. t ∈ [0, T ].
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Using Lemma 4.10 we see that
∫
O

(
ρdivu − ρdivu

)
dxds ≥ 1

λ+ 2µ lim inf
ε→0

∫
O

(
(aργ+1

ε + δρβ+1
ε ) − p

)
ρdxds,

for any compact O ⊆ Ω × (0, T ). Recall that

p = aργ + δρβ.

Now, as the function z → zβ is increasing we have

ρβ+1
ε − ρβ ρ = (ρβε − ρβ)(ρε − ρ) + ρβ(ρε − ρ) + (ρβε − ρβ)ρ

≥ ρβ(ρε − ρ) + (ρβε − ρβ)ρ.

Moreover, by virtue of Lemma 4.9 we have that

ρε → ρ weakly in Lβ+1(O), ρβε → ρβ weakly in L(β+1)/β,

as ε → 0. Thus, we conclude that

lim inf
ε→0

∫
O

(
δρβ+1

ε − δρβ ρ
)
dxds ≥ 0. (4.119)

By the same token, we have that

lim inf
ε→0

∫
O

(
aργ+1

ε − aργ ρ
)
dxds ≥ 0, (4.120)

and consequently, from (4.118) we get
∫

Ω

(
ρ log(ρ) − ρ log(ρ)

)
(t)dx ≤ 0, (4.121)

for a.e. t.

Finally, using Lemma 4.8 we conclude that

ρ log(ρ) = ρ log(ρ),

which, is equivalent to the strong convergence

ρε → ρ in L1(Ω × (0, T )) and a.e.. (4.122)
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In fact, by applying Lemma 4.7 we have that

ρε → ρ in C([0, T ];L1(Ω)). (4.123)

In particular, we have that

aργε + δρβε → aργ + δρβ (4.124)

in the sense of distributions.

4.3.4 Conclusion

With the strong convergence of the densities we have that all the nonlinearities present
in the continuity and in the momentum equations are accounted for. Taking into
account (4.89)-(4.98) and also (4.123) and (4.124) we conclude that the limit functions
ρ, u, H and ψ solve the following decoupled limit system

ρt + div(ρu) = ε∆ρ, (4.125)
(ρu)t + div(ρu ⊗ u) + ∇(aργ + δρβ)

= (∇ × H) × H + µ∆u + (λ+ µ)∇(divu), (4.126)
Ht − ∇ × (u × H) = −∇ × (ν∇ × H), (4.127)
div H = 0. (4.128)
iψt + ∆yψ = |ψ|2ψ, (4.129)

with initial and boundary conditions (4.24) and

(u,H)|∂Ω = 0, ψ|∂Ωy = 0, (4.130)

respectively, and we have proved the following result.

Theorem 4.2. Let (ρε,uε,Hε, ψε) be the solution of the regularized system (4.19)-
(4.23) provided by Theorem 4.1.

Then, there is a subsequence (not relabelled) that converges to a global weak solution
(ρ,u,H, ψ) of system (4.125)-(4.129), where the initial and boundary conditions are
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satisfied in the sense of distributions, as (ε, α,N) → (0, 0,∞) provided that

(
ε2

α

)1/CN

→ ∞, (4.131)

where CN is given by (4.13).
Moreover, the density ρ is nonnegative and satisfies equation (4.125) in the sense

of renormalized solutions, meaning that (4.110) is satisfied in the sense of distributions
with B and b as in (4.111) and (4.112).

Furthermore, we have that (4.89)-(4.98), (4.123) and (4.124) are satisfied along
with the energy inequality

Eδ(t) ≤ Eδ(0), (4.132)

for a.e. t ∈ (0, T ) where,

Eδ(t) =
∫

Ω

(
1
2ρ|u|2 + a

γ − 1ρ
γ + δ

β − 1ρ
β + 1

2 |H|2
)
dx +

∫
Ωy

(1
2 |∇yψ|2 + 1

4 |ψ|4
)
dy

+
∫ t

0

∫
Ω
(µ|∇u|2 + (λ+ µ)(divu)2 + ν|∇H|2)dxds. (4.133)

Let us recall that the regularized system (4.19)-(4.23) was proposed as a regular-
ized Short Wave-Long Wave interaction between the MHD System and the nonlinear
Schrödinger equation. Due to the lack of regularity of solutions, and in particular, due
to the possible occurrence of vacuum in finite time, the Short Wave-Long Wave inter-
actions could not be made in a straightforward way, as the Lagrangian transformation
becomes singular in the presence of vacuum. To workaround these difficulties we de-
fined the Lagrangian coordinate through a smooth approximation uN of the velocity
field of the fluid, given by (4.9), and accordingly, by considering the limit as N → ∞
satisfying (4.131), Theorem 4.2 serves the purpose to legitimize the coordinates of
the limiting Schrödinger equation to be considered as the Lagrangian coordinate in a
generalized sense.

In short, we have produced a finite-energy renormalized weak solution of the two
dimensional MHD equations as a limit of solutions of the regularized Short Wave-Long
Wave interactions.

Of course, there is one step left to complete the analysis, which consists in analysing
the limit as δ → 0. Although the techniques are similar to those contained in this
Section, there are a lot of limitations that have to be dealt with as we loose uniform
boundedness of the sequence of densities in the space L∞(0, T ;Lβ(Ω)). In particular,
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Lemma 4.12 can no longer be applied as we do not know, a priori, whether ρ ∈
L2(Ω × (0, T )). Let us recall that β was chosen conveniently large in order to justify
the analysis developed.

Fortunately, we are now dealing with the decoupled system involving the two di-
mensional MHD equations and the nonlinear Schrödinger equation, and the arguments
in Section 5 of [29] can be followed literally line by line in order to justify the passing
to the limit as δ → 0 in equations (4.125)-(4.128). Finally, a simple application of
Aubin-Lions Lemma (Lemma 3.16) yields compactness of the sequence of solutions of
(4.129) as δ → 0.

In order to conclude we dedicate the following Section to quickly describe the
passage to the limit as δ → 0 as in [29, Section 5].

4.4 Vanishing artificial pressure

In the interest of analysing the limit as δ → 0 we consider the limit problem

ρt + div(ρu) = 0, (4.134)
(ρu)t + div(ρu ⊗ u) + ∇(aργ)

= (∇ × H) × H + div
(
λ(divu)Id + µ(∇u + (∇u)⊤)

)
, (4.135)

Ht − ∇ × (u × H) = −∇ × (ν∇ × H), (4.136)
div H = 0. (4.137)
iψt + ∆yψ = |ψ|2ψ, (4.138)

subject to initial and boundary conditions

(ρ, ρu,H)(x, 0) = (ρ0,m0,H0)(x), ψ(y, 0) = ψ0(y), (4.139)

and
(u,H)|∂Ω = 0, ψ|∂Ωy = 0. (4.140)

Recall that we assume the initial data to be smooth in order to carry out the
Faedo-Galerkin method from Section 4.2. This constraint may be removed and we can
consider more general initial data by means of approximation by smooth functions.
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For system (4.134)-(4.138) above we consider initial data in (4.139) satisfying


ρ0 ≥ 0, ρ0 ∈ Lγ(Ω),
|m0|
ρ0

∈ L1(Ω),

H0 ∈ L2(Ω),

ψ0 ∈ H1
0 (Ω).

(4.141)

Accordingly, we consider a sequence of approximate initial data (ρ0δ,u0δ,H0δ, ψ0δ)
such that

(i)

ρ0δ is smooth and satisfies ∇ρ0δ · n, 0 < δ ≤ ρ0δ ≤ δ−1/2β, (4.142)
ρ0δ → ρ0 in Lγ(Ω), |{x ∈ Ω : ρ0δ < ρ0}| → 0, (4.143)

as δ → 0.

(ii)

m0δ(x) =

m0(x), if ρ0δ(x) ≥ ρ0(x),

0, if ρ0δ(x) < ρ0(x),
(4.144)

(iii) H0δ → H0 in L2(Ω), and

(iv) ψ0δ → ψ0 in H1
0 (Ω).

Then, we have the following result.

Theorem 4.3. Let (ρδ,uδ,Hδ, ψδ) be the solution of the decoupled system (4.125)-
(4.129), (4.130) with initial data

(ρδ,uδ,Hδ, ψδ)|t=0 = (ρ0δ,u0δ,H0δ, ψ0δ)

provided by Theorem 4.2.
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Then, as δ → 0 we have that

ρδ → ρ, weakly-* in L∞(0, T ;Lγ(Ω)) and strongly in C([0, T ];Lγweak(Ω)), (4.145)
uδ → u weakly in L2(0, T ;H1

0 (Ω)), (4.146)
Hδ → H weakly in L2(0, T ;H1

0 (Ω)) and strongly in C([0, T ];L2
weak(Ω)), (4.147)

ψδ → ψ strongly in C([0, T ];L4(Ω)) and weakly-* in L∞(0, T ;H1
0 (Ω)), (4.148)

subject to a subsequence as the case may be, where (ρ,u,H, ψ) is a global weak solution
of (4.134)-(4.138) with initial data (4.139) satisfying (4.141) and boundary conditions
(4.140), satisfied in the sense of distributions. In fact we have that

ρδ → ρ, in C([0, T ];L1(Ω)) (4.149)

Moreover, ρ solves (4.134) in the sense of renormalized solutions, meaning that
(4.110) is satisfied in the sense of distributions for any B and b as in (4.111) and
(4.112).

Furthermore, we have that
E(t) ≤ E(0), (4.150)

for a.e. t with

E(t) =
∫

Ω

(
1
2ρ|u|2 + a

γ − 1ρ
γ + 1

2 |H|2
)
dx

+
∫ t

0

∫
Ω
(µ|∇u|2 + (λ+ µ)(divu)2 + ν|∇H|2)dxds, (4.151)

and, ∫
Ωy

(1
2 |∇yψ|2 + 1

4 |ψ|4
)
dy =

∫
Ωy

(1
2 |∇yψ0|2 + 1

4 |ψ0|4
)
dy, (4.152)

also for a.e. t.

As aforementioned, once we have Theorem 4.2, the proof of Theorem 4.3 follows
by repeating line by line the arguments in [29, Section 5]. For completeness, we give
a sketch of the proof below.

First, we observe that, in view of (4.142), the right hand side of (4.132) can be
understood to be a constant independent of δ, and therefore, as in the previous sections
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we can conclude that (4.145)-(4.148) hold and, moreover,

(∇ × Hδ) × Hδ → (∇ × H) × H, in the sense of distributions, (4.153)
∇ × (uδ × Hδ) → ∇ × (u × H) in the sense of distributions, (4.154)
ρδuδ → ρu in C([0, T ];L2γ/(γ+1)

weak (Ω)), (4.155)
ρδuδ ⊗ uδ → ρu ⊗ u weakly in L2(0, T ;Lc2(Ω)), (4.156)

where, c2 = 2γ/(1 + γ) > 1.
The next step is to deduce a higher order uniform estimate on the densities in order

to conclude that aργδ has a weak limit and that δρβδ → 0 in the sense of distributions
as δ → 0.

In this direction we have the following result corresponding to Lemma 5.1 in [29].

Lemma 4.13. For any ζ ∈ C∞
0 (0, T ) we have

∫ T

0

∫
Ω
ζ(δρβδ + aργδ ) log(1 + ρδ)dxds ≤ C, (4.157)

where, C > 0 is a constant independent of δ.

The proof is similar to that of Lemma 4.9. It consists in using a particular con-
veniently chosen test function in the momentum equation (4.126) equation. The fact
that ρδ is a renormalized solution of the continuity equation (4.125) is important in
order to estimate the terms involving time derivatives.

More specifically, we introduce the operator

B :
{
f ∈ Lp(Ω) :

∫
Ω
fdx = 0

}
→ [W 1,p

0 (Ω)]2, (4.158)

being a bounded linear operator, that is,

||B[f ]||W 1,p
0 (Ω) ≤ c(p)||f ||Lp(Ω), for any 1 < p < ∞;

such that the function W = B[f ] ∈ R3 solves the problem

divW = f in Ω, W|∂Ω = 0. (4.159)

Moreover, if f can be written in the form f = divg for some g ∈ Lr, g cot n|∂Ω = 0,
then

||B[f ]||Lr ≤ c(r)||g||Lr .
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With this notation, we can define the test function φ by its coordinates

φj = ζ(t)Bi

[
log(1 + ρδ) − 1

|Ω|

∫
Ω

log(1 + ρδ)dx
]
, j = 1, 2, (4.160)

and φ3 = 0 and use it the momentum equation (4.126) in order to obtain an identity
of the form ∫ T

0

∫
Ω
ζ(δρβδ + aργδ ) log(1 + ρδ)dxds =

∑
j

Ij (4.161)

similar to identity (4.87). At this point, the fact that ρδ is a renormalized solution of
the continuity equation comes into play in order to treat the integral corresponding to
the term (ρδuδ)t of (4.126). This is done in a similar way as was done in (4.87) only
this time instead of (4.86) we have the identity

(log(1 + ρδ))t + div(log(1 + ρδ)uδ) +
( ρδ

1 + ρδ
− log(1 + ρδ)

)
divu = 0. (4.162)

Now, by virtue of inequality (4.132) and using the properties of the operator B, all
the integrals on the right hand side of (4.161) turn out to be bounded by a constant
independent of δ. We omit the details.

Estimate (4.157) can be used in order to conclude that

∫ T

0

∫
Ω
δρβδ dxds → 0, (4.163)

as δ → 0. This is shown in [29] by a clever application of the Hölder inequality in the
Orlicz space associated to the Young function s → (1 + s) log(1 + s) − s.

Furthermore, estimate (4.157) can also be employed in order to show that the
sequence aργδ has a weakly convergent subsequence. This is due to the following
general result (see [23, Proposition 2.1]).

Lemma 4.14. Let O ⊆ RM be a bounded open set. Let {vn}∞
n=1 be a sequence of

measurable functions,
vn : O → RN ,

such that
sup
n

∫
O

Φ(|vn|)dy < ∞

for a certain continuous function Φ : [0,∞) → [0,∞).
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Then, there exists a subsequence (not relabelled) such that

g(vn) → g(v) weakly in L1(O)

for all continuous functions g : RN → R satisfying

lim
|z|→∞

|g(z)|
Φ(|z|) = 0.

In light of this Lemma we can assume that

aργδ → aργ. (4.164)

As a consequence, we conclude that the limit functions satisfy the following system

ρt + div(ρu) = 0, (4.165)
(ρu)t + div(ρu ⊗ u) + a∇ργ

= (∇ × H) × H + div
(
λ(divu)Id + µ(∇u + (∇u)⊤)

)
, (4.166)

Ht − ∇ × (u × H) = −∇ × (ν∇ × H), (4.167)
div H = 0. (4.168)
iψt + ∆yψ = |ψ|2ψ, (4.169)

and all that is left to do is show strong convergence of the densities so that, in fact,
aργ = aργ.

As in Subsection 4.3.3, this is a consequence of the weak continuity of the effective
viscous flux together with the fact that ρ is solves (4.134) in the sense of renormalized
solutions. This last assertion (that ρ is a renormalized solution of the continuity
equation) is not straightforward. In particular, we cannot apply Lemma 4.12 as we do
not have a bound available for the L2(Ω × (0, T ))-norm of ρ. Remember that we are
only assuming that γ > 1 and the best bound we have for ρ so far is the finiteness of
its L∞(0, T ;Lγ(Ω))-norm.

Let us introduce the cut-off functions

Tk(z) = kT
(z
k

)
, for z ∈ R and k = 1, 2, ...
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where, T ∈ C∞(R) is concave and satisfies

T (z) =

z, z ≤ 1,

2, z ≥ 3.

As ρδ solves (4.125) in the sense of renormalized solutions we have

Tk(ρδ)t + div(Tk(ρδ)uδ) + (T ′
k(ρδ)ρδ − Tk(ρδ))divuδ = 0, (4.170)

in the sense of distributions.

Passing to the limit as δ → 0 we have

Tk(ρ)t + div(Tk(ρ)u) + (T ′
k(ρ)ρ− Tk(ρ))divu = 0, (4.171)

in the sense of distributions, where, as usual, the over line stands for a weak limit of
the sequence indexed by δ. Note that Tk(ρ)u = Tk(ρ)u as in view of (4.170),

Tk(ρδ) → Tk(ρ) in C([0, T ];Lγweak(Ω)),

with Lγ(Ω) being compactly embedded in H−1(Ω).

Let us define φ given by

φj(x, t) = ζ(t)η(x)Aj[ξTk(ρδ)], for j = 1, 2

and φ3 = 0, where, ζ ∈ C∞
0 (0, T ), η, ξ ∈ C∞

0 (Ω) and A is the operator introduced
in (4.76). Using φ as test function in equation (4.126) and using (4.170) we find an
identity similar to (4.103). Namely,

∫ T

0

∫
Ω
ζηξ

(
aργδ + δρβδ − (λ+ 2µ)divuδ

)
Tk(ρδ)dxds =

∑
j

Jδj (4.172)

Similarly, using the test function

φj(x, t) = ζ(t)η(x)Aj[ξTk(ρ)], for j = 1, 2

and φ3 = 0 and taking (4.171) into account we deduce the respective analogue to
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(4.104): ∫ T

0

∫
Ω
ζηξ

(
aργ − (λ+ 2µ)divu

)
Tk(ρ)dxds =

∑
j

Jj. (4.173)

As in the proof of Lemma 4.10 we can show that each one of the terms on the right
hand side of (4.172) converges to its counterpart in (4.173) by using the the properties
of the operator A and Lemma 4.11. Thus, we end up with the following result of weak
continuity of the effective viscous flux.

Lemma 4.15. For any ζ ∈ C∞
0 (0, T ) and η, ξ ∈ C∞

0 (Ω) we have

lim
δ→0

∫ T

0

∫
Ω
ζηξ

(
aργδ − (λ+ 2µ)divuδ

)
Tk(ρδ)dxds

=
∫ T

0

∫
Ω
ζηξ

(
aργ − (λ+ 2µ)divu

)
Tk(ρ)dxds. (4.174)

Having this result, we can prove the following estimate, which is crucial in the
proof of the fact that ρ is a renormalized solution of the continuity equation.

Lemma 4.16. There is a constant C > 0 independent of k such that

lim sup
δ→0

||Tk(ρδ) − Tk(ρ)||Lγ+1(Ω×(0,T ))dxds ≤ C. (4.175)

Proof. Observe that

ργδTk(ρδ) − ργ Tk(ρ) =(ργδ − ργ)(Tk(ρδ) − Tk(ρ)) + (ργ − ργ)(Tk(ρ) − Tk(ρ))
+ (ργδ − ργδ )Tk(ρ) + ργ(Tk(ρδ) − Tk(ρ)).

Since the functions τ → aτ γ and τ → −Tk(τ) are convex, by Lemma 4.8 we have
that

ργ ≥ ργ and Tk(ρ) ≥ Tk(ρ) a.e. on Ω × (0, T ).

Consequently (ργ − ργ)(Tk(ρ) − Tk(ρ)) ≥ 0.
Also note that

(zγ − yγ)(Tk(z) − Tk(y)) ≥ γ|Tk(z) − Tk(y)|γ+1, for all x, y ≥ 0.

As a result
(ργδ − ργ)(Tk(ρδ) − Tk(ρ)) ≥ γ|Tk(ρδ) − Tk(ρ)|γ+1,
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and thus
∫ T

0

∫
Ω

(
ργδTk(ρδ) − ργ Tk(ρ)

)
dxds

≥
∫ T

0

∫
Ω
γ|Tk(ρδ) − Tk(ρ)|γ+1dxds+

∫ T

0

∫
Ω

(
(ργδ − ργδ )Tk(ρ) + ργ(Tk(ρδ) − Tk(ρ))

)
dxds

(4.176)

On the other hand, observe that

divuδTk(ρδ) − divuTk(ρ) = divuδ
(
Tk(ρδ) − Tk(ρ)

)
+ divu

(
Tk(ρ) − Tk(ρ)

)
.

Therefore

−
∫ T

0

∫
Ω

(
divuδTk(ρδ) − divuTk(ρ)

)
dxds

≥ −||divuδ||L2(Ω×(0,T ))||Tk(ρδ) − Tk(ρ)||L2(Ω×(0,T )))

− ||divu||L2(Ω×(0,T ))||Tk(ρ) − Tk(ρ)||L2(Ω×(0,T )))

Now, note that Tk(ρ) −Tk(ρ) is a weak limit of Tk(ρ) −Tk(ρδ). Then we have that

||Tk(ρ) − Tk(ρ)||L2(Ω×(0,T ))) ≤ lim inf
δ→0

||Tk(ρ) − Tk(ρδ)||L2(Ω×(0,T )))

Also recall that the sequence uδ is uniformly bounded in L2(0, T ;H1
0 (Ω)). Thus,

since γ > 1 we see that

−
∫ T

0

∫
Ω

(
divuδTk(ρδ) − divuTk(ρ)

)
dxds

≥ −C − γ

4 ||Tk(ρδ) − Tk(ρ)||γ+1
Lγ+1(Ω×(0,T ))) − γ

4 lim sup
δ→0

||Tk(ρ) − Tk(ρδ)||γ+1
Lγ+1(Ω×(0,T ))).

(4.177)

Adding (4.176) and (4.177), taking the limit as δ → 0 and using Lemma 4.15 we
arrive at (4.175).

With this result at hand we can finally prove the following result, which is essen-
tially the same as Lemma 5.4 in [29] (cf. [23, Proposition 6.3]).

Lemma 4.17. The limit functions ρ and u solve (4.134) in the sense of renormalized
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solutions. That is
B(ρ)t + div(B(ρ)u) + b(ρ)divu = 0, (4.178)

in the sense of distributions, for any functions

B ∈ C[0,∞) ∩ C1(0,∞), b ∈ C[0,∞), bounded on [0,∞), B(0) = b(0) = 0,
(4.179)

satisfying
b(z) = B′(z)z −B(z). (4.180)

Proof. First we point out that it is enough to show that (4.178) holds for any

B ∈ C1[0,∞), B′(z) = 0, for all z ≥ zB, b(z) = B′(z)z −B(z). (4.181)

Indeed, a simple approximation argument combined with Lebesgue dominated con-
vergence theorem we recover the general case.

Let us assume that B and b satisfy (4.181). Recall that we have (4.171). Regu-
larizing this identity via the smoothing operators [·]ωx, multiplying by B′(Tk(ρ)) and
letting ω → 0 we get

B(Tk(ρ))t + div(B(Tk(ρ))u) + b(Tk(ρ))divu = B′(Tk(ρ)) (Tk(ρ) − T ′
k(ρ)ρ)divu,

(4.182)
in the sense of distributions. The idea now is to let k → ∞.

Let 1 ≤ p < γ. By the weak lower semicontinuity of the norm we have that

||Tk(ρ) − ρ||pLp(Ω×(0,T )) ≤ lim inf
δ→0

||Tk(ρδ) − ρδ||pLp(Ω×(0,T ))

≤ kp−γ sup
δ

||ρδ||pLγ(Ω×(0,T ))

≤ Ckp−γ, (4.183)

where the right hand side tends to zero as k → ∞. As a consequence

B(Tk(ρ)) → B(ρ), b(Tk(ρ)) → b(ρ) in Lr(Ω × (0, T )) for any r ≥ 1. (4.184)

In order to complete the proof, we have to show that the right hand side of (4.182)
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tends to zero as k → ∞. To this end, we estimate
∥∥∥B′(Tk(ρ)) (Tk(ρ) − T ′

k(ρ)ρ)divu
∥∥∥
L1(Ω×(0,T )))

≤ max
z≥0

|B′(z)|
∫

{Tk(ρ)≤zB}

∣∣∣(Tk(ρ) − T ′
k(ρ)ρ)divu

∣∣∣ dxds
≤ max

z≥0
|B′(z)| sup

δ
||divu||L2(Ω×(0,T )) lim inf

δ→0
||Tk(ρδ) − T ′

k(ρδ)ρδ||L2({Tk(ρ)≤zB}).

(4.185)

By interpolation we have that

||Tk(ρδ) − T ′
k(ρδ)ρδ||L2({Tk(ρ)≤zB})

≤ ||Tk(ρδ) − T ′
k(ρδ)ρδ||ωL1(Ω×(0,T )))||Tk(ρδ) − T ′

k(ρδ)ρδ||1−ω
Lγ+1({Tk(ρ)≤zB})

for a certain 0 < ω < 1. Similarly as above, we have

||Tk(ρδ) − T ′
k(ρδ)ρδ||ωL1(Ω×(0,T ))) ≤ 2k1−γ sup

δ
||ρδ||Lγ(Ω×(0,T )), (4.186)

which tends to zero as k → ∞. Finally, by virtue of Lemma 4.16

lim sup
δ→0

||Tk(ρδ) − T ′
k(ρδ)ρδ||Lγ+1({Tk(ρ)≤zB})

≤ 2 lim sup
δ→0

||Tk(ρδ)||Lγ+1({Tk(ρ)≤zB})

≤ 2
(

lim sup
δ→0

||Tk(ρδ) − Tk(ρ)||Lγ+1(Ω×(0,T ))) + ||Tk(ρ) − Tk(ρ)||Lγ+1(Ω×(0,T )))

+ ||Tk(ρ)||Lγ+1({Tk(ρ)≤zB})

)
≤ 4C + 2zB(T |Ω|)1/(γ+1). (4.187)

All of this information put together with (4.185) implies that the right hand side
of (4.182) tends to zero as k → ∞. This and (4.184) yield (4.179).

At last, we are ready for the final step in the proof the Theorem 4.3, which consists
in showing strong convergence of the sequence of densities. We present here the proof
contained in [29]. The argument is similar to the one in Section 4.3.3.

As in [29], we introduce the functions Lk ∈ C1(R), k = 1, 2, ... given by

Lk(z) =

z log(z), for 0 ≤ z ≤ k,

z log(k) + z
∫ z
k
Tk(s)
s2 ds, for z ≥ k.
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Then, Lk can be written as

Lk(z) = ckz +Bk(z),

where Bk(z) satisfies (4.181). Since ρδ and uδ are renormalized solutions of equation
(4.134) we have

Lk(ρδ)t + div(Lk(ρδ)uδ) + Tk(ρδ)divuδ = 0. (4.188)

Similarly, by Lemma 4.17 we have

Lk(ρ)t + div(Lk(ρ)u) + Tk(ρ)divu = 0, (4.189)

in the sense of distributions. Taking the difference of (4.188) and (4.189), and inte-
grating we have

∫
Ω
(Lk(ρδ) − Lk(ρ))Φdx

=
∫ t

0

∫
Ω

(
(Lk(ρδ)uδ − Lk(ρ)u) · ∇Φ + (Tk(ρ)divu − Tk(ρδ)divuδ)Φ

)
dxds,

(4.190)

for any Φ ∈ C∞
0 (Ω).

Now, as u ∈ L2(0, T ;H1
0 (Ω)) then (see [23, Theorem 4.2])

|u|
dist(x, ∂Ω) ∈ L2(Ω × (0, T )).

Considering a sequence of functions Φm ∈ C∞
0 (Ω) which approximate the charac-

teristic function of Ω satisfying

0 ≤ Φ ≤ 1, Φ(x) = 1 fox all x such that dist(x, ∂Ω) ≥ 1
m
,

and |∇Φm| ≤ 2m, for all x ∈ Ω,

and using them in (4.190) and letting m → ∞ first and then δ → 0 we see that
∫

Ω
(Lk(ρ) − Lk(ρ))dx =

∫ t

0

∫
Ω
Tk(ρ)divudxds−

∫ t

0

∫
Ω
Tk(ρ)divudxds. (4.191)
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Note that by (4.145) we can assume

ρδ log(ρδ) → ρ log(ρ) weakly-* in L∞(0, T ;Lr(Ω)) for any 1 ≤ r < γ.

Further, noting that z → Lk(z) approximates the function z → z log(z) and also
noting that (4.145) implies that

|{(x, t) ∈ Ω × (0, T ) : ρδ(x, t) ≥ k}| → 0 as k → ∞

uniformly in δ, as in [29], we have

||Lk(ρ) − ρ log(ρ)||L∞(0,T ;Lr(Ω)) ≤ lim inf
δ→0

||Lk(ρδ) − ρδ log(ρδ)||L∞(0,T ;Lr(Ω)) → 0,

as k → ∞.

Similarly we have

Lk(ρ) → ρ log(ρ) in L∞(0, T ;Lr(Ω)), for all 1 ≤ α < γ.

Now, similarly as in estimatives (4.185)-(4.187), we can estimate
∣∣∣∣∫ t

0

∫
Ω
(Tk(ρ) − Tk(ρ))divudxds

∣∣∣∣ ≤ ||divu||L2(Ω×(0,T ))||Tk(ρ) − Tk(ρ)||L2(Ω×(0,T )),

where

||Tk(ρ) − Tk(ρ)||L2(Ω×(0,T ))

≤ ||Tk(ρ) − Tk(ρ)||ωL1(Ω×(0,T ))||Tk(ρ) − Tk(ρ)||1−ω
Lγ+1(Ω×(0,T )),

for a certain 0 < ω < 1, wherein, similarly as in (4.183),

||Tk(ρ) − Tk(ρ)||L1(Ω×(0,T )) → 0, as k → ∞

and by virtue of Lemma 4.16 we have that

||Tk(ρ) − Tk(ρ)||Lγ+1(Ω×(0,T )) ≤ C



4.4 Vanishing artificial pressure 173

Thus, letting k → ∞ in (4.191) we have
∫

Ω
(ρ log(ρ) − ρ log(ρ))dx = lim

k→∞

∫ t

0

∫
Ω

(
Tk(ρ)divu − Tk(ρ)divu

)
dxds, (4.192)

Regarding the right hand side, we can use Lemma 4.15 and the monotonicity of
the pressure function z → azγ, as in (4.118)-stongepsrhologrho to conclude that

∫
Ω
(ρ log(ρ) − ρ log(ρ))dx ≤ 0, (4.193)

which, in light of Lemma 4.8 implies that

ρ log(ρ) = ρ log(ρ),

and this, in turn, shows that

ρδ → ρ in L1(Ω × (0, T )) and a.e., (4.194)

and the proof is complete.
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