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Abstract

In this article we propose a novel nonstationary iterated Tikhonov (NIT) type method
for obtaining stable approximate solutions to ill-posed operator equations modeled by linear
operators acting between Hilbert spaces. Geometrical properties of the problem are used
to derive a new strategy for choosing the sequence of regularization parameters (Lagrange
multipliers) for the NIT iteration. Convergence analysis for this new method is provided.
Numerical experiments are presented for two distinct applications: I) A 2D elliptic param-
eter identification problem (Inverse Potential Problem); II) An image deblurring problem.
The results obtained validate the efficiency of our method compared with standard im-
plementations of the NIT method (where a geometrical choice is typically used for the
sequence of Lagrange multipliers).
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1 Introduction

In this article we propose a new nonstationary Iterated Tikhonov (NIT) type method [5,
Sec. 1.2] for obtaining stable approximations of linear ill-posed problems. The Lagrange mul-
tiplier is chosen so as to guarantee the residual of the next iterate to be in a range. Previous
strategies for choosing the Lagrange multiplier in each iteration of NIT type methods either
prescribe (a priori) a geometrical increase of this multiplier [17] or require (a posteriori) the
residual at the next iterate to assume a prescribed value which depends on the current residual.

In those NIT methods that prescribe a geometrical increase of the Lagrange multipliers, the
use of a too large geometric factor may lead to numerical instabilities and failure of convergence,
whereas the use of a too small factor leads to a slow convergent method (see Figures 1 and 2);
these features are highly dependent on the problem at hand and, in general, it is not clear how
to adequately choose the geometric factor.
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In those NIT methods that require the residual at the next iterate to assume a prescribed
value, at each iteration one needs to solve a nonlinear equation which involves the resolvent of
an ill-posed operator [16, 8]. This is accomplished by means of iterative methods (e.g. Newton)
which require, at each of their steps, the solution of a linear system for a different operator.
Consequently, only the number of iterations required for these methods does not fully quantify
their computational costs.

The main contribution in this article is the proposal of a novel a posteriori strategy for
choosing the Lagrange multipliers in NIT methods. Since we prescribe the residual of the
next iterate to be in a range, the set of feasible Lagrange multipliers, at each iteration, is
a non-degenerate interval, which renders feasible their economical computation (as explained
later on). Many relevant theoretical convergence properties present at previous a posteriori
methods [12] (e.g., residual convergence rates, stability, semi-convergence) still hold for our
novel strategy. We also explore the feature of a feasible interval for the Lagrange multiplier
to speed up a Newton-like method for computing it. The resulting method proves, in our
preliminary numerical experiments, to be more efficient than the geometrical choice of the
Lagrange multipliers [17], typically used in implementations of NIT type methods, for low
noise levels.

The inverse problem we are interested in consists of determining an unknown quantity
x ∈ X from the set of data y ∈ Y , where X, Y are Hilbert spaces. In practical situations, one
does not know the data exactly; instead, only approximate measured data yδ ∈ Y are available
with

‖yδ − y‖Y ≤ δ , (1)

where δ > 0 is the (known) noise level. The available data yδ are obtained by indirect mea-
surements of the parameter x, this process being described by the ill-posed operator equation

Ax = y , (2)

where A : X → Y is a bounded linear operator, whose inverse A−1 : R(A) → X either does
not exist, or is not continuous. Consequently, approximate solutions are extremely sensitive
to noise in the data.

Linear ill-posed problems are commonly found in applications ranging from image analysis
to parameter identification in mathematical models. There is a vast literature on iterative
methods for the stable solution of (2). We refer the reader to the books [15, 19, 2, 25, 26, 1,
23, 12, 27, 21] and the references therein. Iterated Tikhonov (IT) type methods for solving the
ill-posed problem (2) are defined by iteration formula

xδk = arg minx∈X
{
λk‖Ax− yδ‖2 + ‖x− xδk−1‖2

}
,

what corresponds to

xδk = xδk−1 − (I + λkA
∗A)−1 λkA

∗(Axδk−1 − yδ) ,

= (λ−1
k I +A∗A)−1

[
λ−1
k xδk−1 +A∗yδ

] (3)

where A∗ : Y → X is the adjoint operator to A. The parameter λk > 0 can be viewed as the
Lagrange multiplier of the problem of projecting xδk−1 onto a levelset of ‖Ax − yδ‖2. If the
sequence {λk = λ} is constant, iteration (3) is called stationary IT (or SIT), otherwise it is
denominated nonstationary IT (or NIT).

In the NIT methods, each λk is either chosen a priori (e.g., in geometric progression) or it
is chosen a posteriori. In the a posteriori variants, λk is chosen so that the next iterate has a
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prescribed residual which is either a fixed fraction of the current residual or a fraction which
depends also on the noise level [8, eq. 2.11b in Alg. 1]. In other words, λk is chosen in (3) so
that

‖Axδk − yδ‖ = Φ(‖Axδk−1 − yδ‖, δ) (4)

(see [9] for yet another strategy). We propose λk to be choose so that

δ ≤ ‖Axδk − yδ‖ ≤ Ψ(‖Axδk−1 − yδ‖, δ). (5)

Our upper bound for the residual also depends on the current residual and the noise level (as
in [8]), although we use a different formula to choose it (see eq. (8)).

The SIT method for solving (2) was considered in [25, 15], where a well developed conver-
gence analysis can be found (see also [24], were Lardy analyzed the particular choice λk = 1).
It is worth distinguishing between the SIT method and the iterated Tikhonov methods of order
n [22, 11, 28], where the number of iterations (namely n) is fixed. In this case λk = λ > 0,
k = 0, . . . , n− 1, and λ plays the role of the regularization parameter.

The NIT method was addressed by many authors, e.g. [13, 17, 5]. In numerical implemen-
tations of this method, the geometrical choice λk = qk, q > 1, is a commonly adopted strategy
and we shall refer to the resulting method as gNIT method (geometrical nonstationary IT
method).

The numerical performances of NIT type methods are superior to the ones of SIT type
methods. This fact is illustrated by Example 1.1.

Example 1.1. A linear system modeled by the Hilbert matrix H25×25 is considered in Figure 1
(random noise of level δ = 0.001% is used). In this benchmark problem the SIT method is
implemented for λk = 2 (RED), while the gNIT method is implemented for λk = 2k (BLACK)
and λk = 3k (BLUE).

The computation λk = qk in the gNIT is straightforward; however, the choice of q > 1 is
exogenous to (2), (1) and it is not clear which are the good values for q. Indeed, as shown in
the next example, increasing the constant q may lead either to faster convergence or failure to
converge:

Example 1.2. We set A = H25×25, X = Y = R25 and random noisy data with δ = 10−5 %.
In Figure 2 the gNIT method is implemented for λk = 2k (BLACK), λk = 3k (BLUE) and
λk = 4k (ORANGE); the last implementation does not converge.

The above described issues motivated the use of a posteriori choices for the Lagrange mul-
tipliers, which requires the residual at the next iterate to assume a prescribed value dependent
on the current residual and also on the noise level.

Next we briefly review some relevant convergence results for IT type methods.
• In [5] Brill and Schock proved that, in the exact data case, the NIT method (3) converges

to a solution of Ax = y if and only if
∑
λk = ∞. Moreover, a convergence rate result was

established under the additional assumption
∑
λ2
k <∞.

• The assumptions needed in [5] in order to derive convergence rates are neither satisfied
for the sIT, nor for the NIT with the geometrical choice λk = qk, q > 1.
• In [17] rates of convergence are established for the stationary Lardy’s method [24] as well

as for the NIT with geometrical choice of λk. Under the source condition x† ∈ Rg((A∗A)ν),
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Figure 1: Comparison between SIT and NIT type methods: A = H25×25 is the square Hilbert matrix;
artificial random noise (δ = 10−3%) is added to the data. The stopping criteria (discrepancy principle
with τ = 2) is reached after 18 steps (BLACK), 12 steps (BLUE) and 83737 steps (RED).

Figure 2: Unstable behavior of gNIT type methods: matrix A ∈ R25×25 as in Figure 1; artificial
random noise (δ = 10−5%) is added to the data. The stopping criteria (discrepancy principle with
τ = 2) is reached after 27 steps (BLACK), 18 steps (BLUE). In the last implementation (ORANGE),
the gNIT method becomes unstable before the stopping criteria is reached.

where x† = A†y is the normal solution of Ax = y1 and ν > 0, 2 the linear rate of convergence
‖xk − x†‖ = O(qkν) is proven.

The article is organized as follows: In Section 2 we introduce the new method (rrNIT), which
is proposed and analyzed in this manuscript. Moreover, a detailed formulation of this method
is given, and some preliminary estimates are also derived. In Section 3 a convergence analysis
of the rrNIT method is presented. In Section 4 we discuss the algorithmic implementation
of the rrNIT method. In particular, we address the challenging numerical issue of efficiently
computing the Lagrange multipliers λk. Section 5 is devoted to numerical experiments. The
Image deblurring problem and the Inverse Potential Problem are considered in Subsections 5.1
and 5.2 respectively. Section 6 is dedicated to final remarks and conclusions.

1I.e., x† is the unique vector satisfying x† ∈ D(A) ∩N(A)⊥ and Ax† = y.
2See [17, Theorem 2.1] for details on the positive the scalar ν.
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2 Range-relaxed non-stationary iterated Tikhonov method

In this section first we propose in Subsection 2.1 a conceptual projection method for solving (1),
(2). In this method, each iterate is obtained projecting the previous one onto a level set of the
residual function. The level set is prescribed to belong to a range of level sets, instead of being
a single one. Second, we propose in Subsection 2.2 an implementable version of the conceptual
method where the projection is computed via Lagrange multipliers. Finally, we derive some
basic properties of the new proposed method.

The implementable method proposed here happens to be a new NIT method where, in
each iteration, the set of feasible choices for the Lagrange multipliers is an interval, instead of
a single real number. For this reason, we call the new method a range-relaxed Non-stationary
Iterative Tikhonov Method (rrNIT).

For the remaining of this article we suppose that the following assumptions hold true:

(A1) There exist x? ∈ X such that Ax? = y, where y ∈ Rg(A) are the exact data.

(A2) The operator A : X → Y is linear, bounded and ill-posed, i.e., even if the operator
A−1 : R(A)→ X (the left inverse of A) exists, it is not continuous.

2.1 A Successive Orthogonal range-relaxed Projections Method

We use the notation Ωµ, for µ ≥ 0, to denote the µ-levelset of the residual functional ‖Ax−yδ‖,
that is,

Ωµ := {x ∈ X : ‖Ax− yδ‖2 ≤ µ2} . (6)

The basic geometric properties of the levelsets Ωµ, described next, are instrumental in the
forthcoming analysis.

Proposition 2.1. Let Ωµ be as in (6).

1. For each µ ≥ 0, the set Ωµ is closed and convex.

2. If µ′ ≥ µ > 0 then Ωµ ⊂ Ωµ′.

3. If µ ≥ δ then A−1(y) ⊂ Ωµ.

4. If µ > δ then Ωµ has non-empty interior.

Notice that all available information about the solution set A−1(y) is contained in (1),
(2). Thus, in the absence of additional information, Ωδ is the set of best possible approximate
solutions for the inverse problem under consideration.3

Nevertheless the levelset Ωδ is, in general, unbounded and it is desirable to exclude those
approximate solutions with “too large” norms. Moreover, very often a crude estimation x̂ to
the solution of (2) is available. In this context, it is natural to consider the projection problem{

minx ‖x− x̂‖2
s.t. ‖Ax− yδ‖2 ≤ µ2.

(7)

where µ ≥ 0. Observe that if ‖Ax̂− yδ‖ > µ ≥ δ, then the solution of this projection problem
is closer to Ωδ than x̂ and has a smaller residual than x̂.

3I.e., given two elements in Ωδ, it is not possible to distinguish which of them better approximates x?.
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The considerations in the preceding paragraph show that it is possible, at least conceptually,
to devise projection methods for solving our ill-posed problem. Let us briefly discuss the
conditioning problem (7) with respect to parameter µ:

(i) for 0 ≤ µ < δ problem (7) may be unfeasible, that is, it may become the problem of
projecting x̂ onto an empty set ;

(ii) for µ = δ, in view of (i), problem (7) is in general ill-posed with respect to the parameter
µ;

(iii) for µ > δ problem (7) is well posed, and it is natural to expect that the larger the µ the
better conditioned it becomes.

A compromise between reducing the residual norm ‖Ax− yδ‖ and preventing ill-posedness
of the projection problem would be to choose

µ̂ = p‖Ax̂− yδ‖+ (1− p)δ ,

where 0 < p < 1 quantify this compromise. However,

1. projecting x̂ onto Ωµ̂, which is a pre-defined level set of ‖Ax− yδ‖2, entails an additional
numerical difficulty: the projection has to be computed by solving a linear system where
the Lagrange multiplier is implicitly defined by an algebraic equation;

2. the projection of x̂ onto any levelset Ωµ with δ ≤ µ ≤ µ̂ is as good as (or even better
than) the projection of x̂ onto Ωµ̂.

In view of these observations, we shall generate xδk from x̂ = xδk−1 by projecting it onto any one
of the range of convex sets (Ωµ)δ≤µ≤µ̂, that is, by solving the range-relaxed projection problem
of computing (x, µ) such that{

minx ‖x− x̂‖2
s.t. ||Ax− yδ||2 ≤ µ2 , δ ≤ µ ≤ p‖Ax̂− yδ‖+ (1− p)δ , (8)

whenever xδk−1 /∈ Ωδ. Observe that this problem has multiple solutions. The advantage of this
strategy is that the set of feasible Lagrange multipliers of the above problem is an interval with
non-empty interior, as we will discuss latter, instead of a single point.

In what follows we use the notation PΩ to denote the orthogonal projection onto Ω, for
∅ 6= Ω ⊂ X closed and convex. The discussion in the previous paragraph leads us to propose
the conceptual successive orthogonal range-relaxed projection Method for problem (1), (2)
described in Algorithm 1.

[1] choose an initial guess x0 ∈ X;

[2] choose p ∈ (0, 1) and τ > 1;

[3] for k ≥ 1 do

[3.1] compute (xδk, µk),

xδk = PΩµk
(xδk−1), δ ≤ µk ≤ p‖Axδk−1 − yδ‖+ (1− p)δ;

[3.2] stop to iterate at step k∗ ≥ 1 s.t. ‖Axδk∗ − yδ‖ < τδ for the first time.

Algorithm 1: Successive orthogonal range-relaxed projection method.
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Since ‖Axδk − yδ‖ = µk, the variable µk is redundant, nevertheless, its use in the conceptual
Algorithm 1 clarify the kind of projection problem used to compute xδk.

By its definition, Algorithm 1 is a method of successive orthogonal projections onto level
sets of ‖Ax − yδ‖. As the level set used in each iteration shall be in a range, we denominate
it a successive orthogonal range-relaxed projection method. Each iterate is obtained from the
previous one by projecting it onto a convex set that contains the solution set and in which
the residual in any point is strictly smaller that the residual at the previous iterate. Therefore
the errors as well as the residuals are strictly decreasing along the iterates and the sequence of
iterates is bounded.

2.2 A Range-relaxed non-stationary iterated Tikhonov algorithm

In order to derive an implementable version of the conceptual method (Algorithm 1) discussed
in the previous section, we need to specify how to compute the range-relaxed projections (at
Step [3]). With this aim, recall that the canonical Lagrangian of problem (7) is

L(x, λ) =
λ

2
(‖Ax− yδ‖2 − µ2) +

1

2
‖x− x̂‖2 . (9)

For each λ > 0, L(·, λ) : X → R has a unique minimizer x′ which is also characterized as the
unique solution of ∇xL(x, λ) = 0, that is,

x′ = x̂− λ(I + λA∗A)−1A∗(Ax̂− yδ).

The next lemma summarizes the solution theory for the projection problem (7) by means of
Lagrange multiplier [29, Sec. 5.7]. Recall that PΩ denotes the orthogonal projection onto Ω.

Lemma 2.2. Suppose ‖Ax̂− yδ‖ > µ > δ. The following assertions are equivalent

1. x′ = PΩµ(x̂);

2. x′ is the solution of (7);

3. x′ = x̂− λ∗(I + λ∗A∗A)−1A∗(Ax̂− yδ), λ∗ > 0 and

‖Ax′ − yδ‖ = µ

Proof. Equivalence between items 1 and 2 follows from the definition of orthogonal projections
onto closed convex sets. Equivalence between items 2 and 3 is a classical Lagrange multipliers
result (see, e.g., [29, Theorem 5.15]).

In the next lemma we address the range-relaxed projection problem (8); its proof follows
from Lemma 2.2.

Lemma 2.3. Suppose ‖Ax̂− yδ‖ > δ and 0 < p < 1. The following assertions are equivalent

1. x′ = PΩµ(x̂) and δ ≤ µ ≤ p‖Ax̂− yδ‖+ (1− p)δ;

2. (x′, µ) ∈ X × R is a solution of (8);

3. x′ = x̂− λ(I + λA∗A)−1A∗(Ax̂− yδ), λ > 0,

δ ≤ ‖Ax′ − yδ‖ ≤ p‖Ax̂− yδ‖+ (1− p)δ,

and µ = ‖Ax′ − yδ‖.
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It follows from Lemma 2.3 that solving the range-relaxed projection problem in (8) boils
down to solving the inequalities

δ ≤ ‖Ax′ − yδ‖ ≤ p‖Ax̂− yδ‖+ (1− p)δ,
where x′ = x̂− λ(I + λA∗A)−1A∗(Ax̂− yδ)

(10)

and defining x = x′ and µ = ‖Ax′ − yδ‖. We use this result to propose an implementable
version of Algorithm 1 as follows:

[1] choose an initial guess x0 ∈ X;

[2] choose p ∈ (0, 1), τ > 1 and set k := 0;

[3] while
(
‖Axδk − yδ‖ > τδ

)
do

[3.1] k := k + 1;

[3.2] compute λk and xδk such that

xδk = xδk−1 − λk (I + λkA
∗A)−1A∗(Axδk−1 − yδ),

δ ≤ ‖Axδk − yδ‖ ≤ p‖Axδk−1 − yδ‖+ (1− p)δ

Algorithm 2: The rrNIT method.

As in Algorithm 1, the stopping index in the above algorithm is defined by the discrepancy
principle

k∗ := min{k ≥ 1 ; ‖Axj − yδ‖ > τδ, j = 0, . . . , k − 1 and ‖Axk − yδ‖ ≤ τδ} . (11)

The computational burden of the above algorithm resides in the computation of step [3.2],
which requires the solution of a linear system whose corresponding residual shall be in a given
range. In other words, λk shall be a solution of (10) with x̂ = xδk−1.

The next lemma provides a lower bound for λ = λk which will be used in the convergence
analysis of Algorithm 2, presented in Section 3. This lower bound can also be used for used as
initial guess to compute λk.

Lemma 2.4. Under the assumptions of Lemma 2.2,

λ∗ ≥ (‖Ax̂− yδ‖ − µ)‖Ax̂− yδ‖
‖A∗(Ax̂− yδ)‖2

.

Proof. To simplify the notation, let

z := PΩµ x̂, b := Ax̂− yδ.

From the assumption ‖Ax̂− yδ‖ > µ > δ, it follows that x̂ /∈ Ωδ. Therefore ‖Az − yδ‖ = µ,

‖A(z − x̂)‖ ≥ ‖Ax̂− yδ‖ − ‖Az − yδ‖ = ‖b‖ − µ, (12)

and
µ2 = ‖A(z − x̂) + b‖2 = ‖A(z − x̂)‖2 + ‖b‖2 + 2〈A(z − x̂), b〉 .

Direct combination of the above equation with the previous inequality yields

−2
〈
A(z − x̂), b

〉
= ‖A(z − x̂)‖2 + ‖b‖2 − µ2

≥
(
‖b‖ − µ

)2
+ ‖b‖2 − µ2

= 2 ‖b‖
(
‖b‖ − µ

)
.
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Therefore, if follows from (12), Cauchy-Schwartz inequality, and the definition of PΩµ that(
‖b‖ − µ

)
‖b‖ ≤

〈
− (z − x̂), A∗b

〉
=

〈
λ∗(I + λ∗A∗A)−1A∗b, A∗b

〉
≤ λ∗ ‖(I + λ∗A∗A)−1‖ ‖A∗b‖2

≤ λ∗ ‖A∗b‖2 ,

proving the lemma.

Corollary 2.5. Let the sequences (xδk) and (λk) be defined by the rrNIT method (Algorithm 2),
with δ ≥ 0 and yδ ∈ Y as in (1) and let µk := ‖Axδk − yδ‖. Then

λk ≥
(
‖Axδk−1 − yδ‖ − µk

)
‖Axδk−1 − yδ‖

‖A∗(Axδk−1 − yδ)‖2
, k = 1, . . . , k∗. (13)

In the exact data case (i.e., δ = 0) the above estimate simplifies to λk ≥ (1− p) ‖A‖−2.

Proof. From (10) and the definition of µk it follows that δ < µk < ‖Axδk−1 − yδ‖. Thus, (13)

follows from Lemma 2.4 with x̂ = xδk−1, λ∗ = λk and µ = µk (in the proof of that lemma it

holds z = xδk).
In the exact data case, it follows from (13), together with Assumption (A2), that λk ≥(

‖Axk−1 − y‖ − µk
)
‖A‖−2‖Axk−1 − y‖−1. Moreover, since δ = 0 we have µk ≤ p‖Axk−1 − y‖.

Combining these two facts, the second assertion follows.

3 Convergence Analysis

We begin this section by establishing an estimate for the decay of the residual ‖Axδk − yδ‖.

Proposition 3.1. Let (xδk) be the sequence defined by the rrNIT method (Algorithm 2), with
δ ≥ 0 and yδ ∈ Y as in (1). Then[

‖Axδk − yδ‖ − δ
]
≤ p

[
‖Axδk−1 − yδ‖ − δ

]
≤ pk

[
‖Ax0 − yδ‖ − δ

]
, k = 1, . . . , k∗ ,

where k∗ ∈ N is defined by (11).

Proof. It is enough to verify the first inequality. Recall that xδk ∈ Ωµk , where δ ≤ µk ≤
p‖Axδk−1− yδ‖+ (1− p)δ. Consequently, ‖Axδk − yδ‖ ≤ p‖Axδk−1− yδ‖+ (1− p)δ, and the first
inequality follows.

Now we are ready to prove finiteness of k∗ and to provide an upper bound for it, whenever
δ > 0.

Corollary 3.2. Let (xδk) be the sequence defined by the rrNIT method (Algorithm 2), with
δ > 0 and yδ ∈ Y as in (1). Then the stopping index k∗ defined in (11) satisfies

k∗ ≤ | ln p|−1 ln

[
‖Ax0 − yδ‖ − δ

(τ − 1)δ

]
+ 1 .
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Proof. We may assume ‖Ax0−yδ‖ > τδ.4 From (11) follows τδ < ‖Axδk−yδ‖, k = 0, . . . k∗−1.
This inequality (for k = k∗ − 1), together with Proposition 3.1 imply that

(τ − 1)δ < ‖Axδk∗−1 − yδ‖ − δ ≤ pk
∗−1
[
‖Ax0 − yδ‖ − δ

]
,

completing the proof (recall that p ∈ (0, 1)).

Monotonicity of the iteration error ‖x? − xδk‖ was already established in Section 2. In the
next proposition we estimate the “gain” ‖x? − xδk−1‖2 − ‖x? − xδk‖2 in the rrNIT method.

Proposition 3.3. Let (xδk) be the sequence defined by the rrNIT method (Algorithm 2), with
δ > 0 and yδ ∈ Y as in (1). Then

‖x? − xδk−1‖2 − ‖x? − xδk‖2 = ‖xδk − xδk−1‖2 + λk‖A(x? − xδk)‖2 + λk

[
r(xδk)− r(x?)

]
, (14)

for k = 1, . . . , k∗, where r(x) := ‖Ax− yδ‖2. Consequently,

‖x? − xδk−1‖2 − ‖x? − xδk‖2 ≥ λ2
k ‖A∗(Axδk − yδ)‖2 + λk

[
‖A(x? − xδk)‖2 + (τ2 − 1) δ2

]
, (15)

for k = 1, . . . , k∗ − 1; moreover,

‖x? − xδk∗−1‖2 − ‖x? − xδk∗‖2 ≥ λ2
k∗ ‖A∗(Axδk∗ − yδ)‖2 + λk∗ ‖A(x? − xδk∗)‖2. (16)

Proof. First we derive (14). Due to the definition of (xδk, λ
δ) in Algorithm 2, the Lagrangian

L in (9) (with µ = µk and x̂ = xk−1) satisfies

L(x, λk) = L(xδk, λk) + Lx(xδk, λk)(x− xδk) +
1

2

〈
(x− xδk), H(λk)(x− xδk)

〉
,

where H(λk) = (I + λkA
∗A) is the Hessian of L(·, λk) at x = xδk. Since Lx(xδk, λk) = 0, we

have

L(x, λk) = L(xδk, λk) +
1

2

〈
(x− xδk), (I + λkA

∗A)(x− xδk)
〉
,

that is,

‖x− xδk−1‖2 + λk
[
r(x)− µ2

k

]
= ‖xδk − xδk−1‖2 + λk

[
r(xδk)− µ2

k

]
+ ‖x− xδk‖2 + λk‖A(x− xδk)‖2.

Now, choosing x = x?, one establishes (14). Inequality (15), on the other hand, follows from
(14) together with r(x?) ≤ δ2 and r(xδk) > τ2δ2, for k = 1, . . . , k∗ − 1. Analogously, (16)
follows from (14) together with r(xδk∗) > δ2 (see Algorithm 2).

Corollary 3.4. In the exact data case, i.e., δ = 0 and yδ = y ∈ R(A), then (14) becomes

‖x? − xk−1‖2 − ‖x? − xk‖2 = ‖xk − xk−1‖2 + 2λk ‖Axk − y‖2,

from which follows
∑

k≥1 λk ‖Axk − y‖2 < ∞ and
∑

k≥1 ‖xk − xk−1‖2 < ∞ (the last
inequality means that the operator describing the rrNIT iteration is a reasonable wanderer in
the sense of [6]).

Next we prove strong convergence of the rrNIT method (in the exact data case) to a solution
of the inverse problem (2). The estimate in Lemma 2.4 plays a key role in this proof.

Theorem 3.5. Let (xk) and (λk) be the sequences defined by the rrNIT method (Algorithm 2),
with δ = 0 and yδ = y ∈ R(A). Then (xk) converges strongly to some x∗ ∈ X. Moreover,
Ax∗ = y.

Proof. From the second assertion in Corollary 2.5 it follows that
∑

k≥1 λk = ∞. The proof
now follows from [5, Theor. 1.4].

4Otherwise the iteration does not start, i.e., k∗ = 0.
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4 Numerical Implementation

In this section the implementation of Algorithm 2 is reviewed. We discuss the implementation
of step [3.2] of that algorithm by means of a Newton-like method, and how we accelerated this
computation.

As discussed in Section 2.2, at step [3] of Algorithm 2, λk ≥ 0 is to be obtained as a solution
of the scalar rational inequalities (or a inclusion) (10) with x̂ = xδk−1, that is,

δ ≤ ‖Akxδk − yδ‖ ≤ p‖Axδk−1 − yδ‖+ (1− p)δ,
where xδk = xδk−1 − λ(I + λA∗A)−1A∗(Axδk − yδ) with λ > 0.

(17)

Define, at iteration k, πk(λ) as the candidate for xδk obtained from xδk−1 with the Lagrange
multiplier λ and let Gk(λ) be the square residual at that point, that is,

πk(λ) := xδk−1 − λ(I + λA∗A)−1A∗(Axδk−1 − yδ), (18a)

:= (λ−1I +A∗A)−1(λ−1xk−1 +A∗yδ), (18b)

Gk(λ) := ‖Aπk(λ)− yδ‖2. (18c)

With this notation, (17) writes

δ2 ≤ Gk(λ) ≤ (p‖Axδk−1 − yδ‖+ (1− p)δ)2 with λ > 0. (19)

As earlier mentioned, the set of feasible Lagrange multipliers is a non-degenerate interval
in each iteration of the rrNIT method.

Proposition 4.1. Suppose Algorithm 2 reaches iteration k and ‖Axδk − yδ‖ > τδ. Then, for
λ ≥ 0

d

d λ
Gk(λ) = −2

〈
A∗(Aπk(λ)− yδ), (I + λA∗A)−1A∗(Aπk(λ)− yδ)

〉
= −2λ−3

〈
xk−1 − πk(λ), (λ−1I +A∗A)−1(xk−1 − πk(λ))

〉
.

Moreover, Gk is strictly decreasing in (0,∞), the solution set of (19) is [λmin, λmax]∩R where

λmin := min{λ > 0 : Gk ≤ (p‖Axδk−1 − yδ‖+ (1− p)δ)2}
λmax := sup{λ > 0 : δ2 ≤ Gk(λ)},

and 0 < λmin < λmax ≤ ∞.

We will solve (19) by means of a Newton-type method. Newton’s method for solving (19),
would be to take some λk,0 > and to iterate

λk,j+1 = λk,j −
Gk(λk,j)− δ2

G′k(λk,j)

as long as (19) is not satisfied; when (19) is satisfied, the last λk,j is used as λk. We will
introduce a number of modifications in this iteration to accelerate it:

(M1) A “greedy” version of Newton’s method will be used, aiming at Gk(λ) = 0, that is, the
numerator on the above fraction will be Gk(λk,j).

11



(M2) Newton’s step will be dynamically over-relaxed by a factor wj , as described below.

(M3) We choose λk,0 using Lemma 2.4 for k = 0 and information gathered at previous iterations
of k ≥ 2, ad described below.

Regarding modifications (M1) and (M2), while λ = λk,j does not satisfy (19), we use the
iteration

λk,j+1 := λk,j − ωj
Gk(λk,j)

G′k(λk,j)
, (20)

where the over-relaxation factor ωj is chosen as follows:
— for j = 0, ω0 = 1;
— for j ≥ 1, after computing λk,j , πk(λk,j), and Gk(λk,j),

if Gk(λk,j−1) > 2
(
p‖Axδk−1 − yδ‖+ (1− p)δ

)2
then ωj = 2ωj−1

else ωj = 1
Regarding modification (M3):
— for k = 1, λ1,0 is the lower bound provided by Lemma 2.4;
— for k = 2, λ2,0 = λ1,
— for k ≥ 3, we use a linear extrapolation on log λ from the two previous iterates as starting
point, that is, λk,0 = λ2

k−1/λk−2.
The acceleration effect caused by modifications (M1), (M2) and (M3) is illustrated in

Example 4.2 below.
Over-relaxation is a well established technique for accelerating iterative methods for solving

linear and non-linear equations, the SOR method being is a classical example. This facts
motivated the introduction of over-relaxation as in (M2).

In our numerical experiments, we observed that the sequence λk increases exponentially.
This fact motivated the use of (liner) extrapolation (in the log) for its initial value from iteration
3 on (modification (M3)).

It is worth noticing that, in step 3, each “inner iteration” (20) requires the solution of
either two linear systems per failed inner iteration or one linear system at the successful last
inner iteration. On the other hand, in the gNIT method the computation of λk = qk (for some
a priori chosen q > 1) is straightforward. Consequently, one needs to solve one linear system
(modeled by (I+qkA∗A)) in each step of the gNIT method. This facts motivated us to use the
accumulated number of linear system to measure the performance of the different NIT method
by plotting the residual and the error as a function of this quantity (see Figure 3).

Example 4.2. The benchmark problem presented in Example 1.1 is revisited and solved by the
rrNIT method using the Newton-method (20) with combinations of modifications (M1)-(M3):
In Figure 3 this inverse problem is solved using:
(BLUE) modification (M1);
(PINK) modifications (M1), (M2);
(RED) modifications (M1), (M2), (M3);
Notice that, in Figure 3, the x-axis denotes the accumulated number of linear systems. This
choice allows an better comparison of the efficiency of the different rrNIT implementations.

Figure 3 illustrates that the cumulative effect of modifications (M1), (M2), and (M3) is to
accelerate the computation of λk as required in step [3] of Algorithm 2.

A pseudo-code version of our implementation of Algorithm 2 with the strategies above
discussed is presented in Appendix A for the sake of completeness.

12



Figure 3: Implementation of rrNIT method: acceleration caused by modifications (M1), (M2), (M3)
to iteration (20).

5 Numerical experiments

In this section, Algorithm 3 (see Appendix A) implemented for solving two well known linear
ill-posed problems. In Section 5.1 the Image Deblurring Problem [4, 3] is considered, while
in Section 5.2 we address the Inverse Potential Problem [18, 20] in 2D, which is an elliptic
parameter identification problem.

In both Sections 5.1 and 5.2, the performance of Algorithm 3 is compared to the perfor-
mance of two well established methods: The gNIT method with λk = 2k; the NIT method
proposed in [8].

5.1 Image deblurring problem

Image deblurring problems [4] are finite dimensional problems modeled, in general, by high
dimensional linear systems of the form (2). In this setting, x ∈ X = Rn represents the pixel
values of an unknown true image, while y ∈ Y = X contains the pixel values of the observed
(blurred) image. In practice, only noisy blurred data yδ ∈ Y satisfying (1) is available.

The matrix A describes the blurring phenomenon [3, 4]. We consider the simple situation
where the blur of the image is modeled by a space invariant point spread function (PSF). In the
continuous model, the blurring process is represented by an integral operator of convolution
type and (2) corresponds to an integral equation of the first kind [12]. In our discrete setting,
after incorporating appropriate boundary conditions into the model, the discrete convolution is
evaluated by means of the FFT algorithm. We added to the exact data (the convoluted image)
a normally distributed noise with zero mean and suitable variance for achieving a prescribed
relative noise level .

The computation of our deblurring experiment was conducted using MATLAB 2012a. The
corresponding setup is shown in Figure 4: (a) True image x ∈ Rn, n = 2562 (Cameraman
256 × 256); (b) PSF is the rotationally symmetric Gaussian low-pass filter of size [257 257]
and standard deviation σ = 4 (command fspecial(’gaussian’, [257 257], 4.0)); (c) Exact
data y = Ax ∈ Rn (blurred image). The noise was generated used the randn routine while the
FFT was computed using the fft2 routine.

Three distinct scenarios are considered, where the relative noise level ‖y − yδ‖/‖y‖ corre-
sponds to 10−1%, 10−3% and 10−6% respectively (in the third scenario, the choice of the noise
level is motivated by MATLAB’s double-precision accuracy).
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Figure 4: Image deblurring problem: setup of the inverse problem. (a) Original image x; (b) Point
spread function; (c) Blurred image y.

In Figure 5 the following methods are compared for the second scenario: (BLACK) gNIT
with λk = 2k; (RED) rrNIT method in Algorithm 3 (with p = 0.2); (BLUE) Hanke-Donatelli
NIT method in [8]. The pictures in Figure 5 show: (TOP) relative error ‖x? − xδk‖/‖x?‖;
(BOTTOM) residual ‖Axδk−yδ‖. The x-axis in the these pictures is scaled by the accumulated
number of linear systems solved. This choice allows an easier comparison between the efficiency
of the different methods.

All methods are stopped according to the discrepancy principle with τ = 3. As initial guess
we choose x0 = yδ (the noisy blurred image).

The numerical results concerning all three scenarios are summarized in Table 1. In this
table we show, for each scenario, the total number of linear systems solved, as well as the
number of iterations needed to reach the stop criteria.

gNIT NIT in [8] rrNIT

10−1% 6 ( 6) 15 ( 5) 7 ( 4)
10−3% 17 (17) 23 ( 7) 11 ( 7)
10−6% 36 (36) 43 (11) 16 (11)

Table 1: Image deblurring problem: total number of linear systems for different noise levels
with the number of iterations in parentheses.

The restored images for the second scenario (δ = 10−3%) are presented in Figure 6. From
left to right: gNIT, NIT in [8], and rrNIT.

5.2 Inverse potential problem

In what follows we address the inverse potential problem [14, 7, 18, 30]. Generalizations of this
inverse problem appear in many relevant applications including Inverse Gravimetry [20, 30],
EEG [10], and EMG [31].

The forward problem considered here consists in solving on a Lipschitz domain Ω ⊂ Rd,
for a given source function x ∈ L2(Ω), the boundary value problem

−∆u = x , in Ω , u = 0 on ∂Ω . (21)

The corresponding inverse problem is the so called inverse potential problem (IPP), which
consists of recovering an L2–function x, from measurements of the Dirichlet data of its corre-
sponding potential on the boundary of Ω, i.e., y := uν |∂Ω ∈ L2(∂Ω). This problem is modeled
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Figure 5: Image deblurring problem: second scenario δ = 10−3%.

by the linear operator A : L2(Ω) → L2(∂Ω) defined by Ax := uν |∂Ω, where u ∈ H1
0 (Ω) is the

unique solution of (21) [18]. Using this notation, the IPP can be written in the abbreviated
form (2), where the available noisy data yδ ∈ L2(∂Ω) satisfies (1).

In our experiments we follow [7] in the experimental setup, selecting Ω = (0, 1)× (0, 1) and
assuming that the unknown parameter x? is an H1-function with sharp gradients shown in
Figure 7 (a). After solving Problem (21) for such x = x?, we added to the exact Dirichlet data
a normally distributed noise with zero mean and suitable variance for achieving a prescribed
relative noise level. In our numerical implementations we set p = 0.1, τ = 3 (discrepancy
principle constant) and the initial guess x0 ≡ 1.5 (constant function in Ω).

As in Section 5.1, three distinct scenarios are considered, where the relative noise level
‖y − yδ‖/‖y‖ corresponds to 10−1%, 10−3% and 10−6% respectively.

In Figure 8 the following methods are compared for the second scenario: (BLACK) gNIT
with λk = 2k; (RED) rrNIT method in Algorithm 3 (with p = 0.1); (BLUE) NIT method
proposed in [8].5 What concerns Algorithm 3, the corresponding iterate xδ4 and iteration error
‖x? − xδ4‖ are shown in Figure 7 (b) and (c) respectively.

The pictures in Figure 5 show: (TOP) relative error ‖x?− xδk‖/‖x?‖; (BOTTOM) residual

5As before, this NIT method was implemented with q = 0.6 and ρ = 10−4. For the computation of the
Lagrange multipliers, a scalar equation was solved using an over-relaxed Newton method and a precision of 5%.
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(a) (b) (c)

Figure 6: Image deblurring problem: restored images for the second scenario. (a) gNIT, (b) NIT in
[8], (c) rrNIT.

‖Axδk − yδ‖. The x-axis in the these pictures is scaled by the accumulated number of linear
systems solved.

The numerical results concerning all three scenarios are summarized in Table 2. In this
table we show, for each scenario, the total number of linear systems solved, as well as the
number of iterations needed to reach the stop criteria.

gNIT NIT in [8] rrNIT

10−1% 6 ( 6) 11 ( 3) 6 ( 3)
10−3% 10 (10) 34 ( 5) 10 ( 5)
10−6% 13 (13) 86 ( 7) 12 ( 6)

Table 2: Inverse potential problem: total number of linear systems for different noise levels
with the number of iterations in parentheses.

5.3 Remarks

In the two above discussed inverse problems, for all scenarios, both a posteriori NIT type
methods (rrNIT in Algorithm 3 and NIT in [8]) require similar number of steps to reach
discrepancy. However, the total numerical effort of rrNIT is much smaller than the one of NIT
in [8], and is comparable to the total numerical effort of the gNIT method (see Tables1 and 2).

Specially in the third scenario (small noise level), the NIT method [8] needs several Newton
steps to compute the Lagrange multipliers in the final iterations. Algorithm 3, on the other
hand, needs only few Newton steps to compute each one of the Lagrange multipliers solving
(19).

Notice the exponential decay of the residual in the rrNIT method (Figures 5 and 8), which
is in accordance to Proposition 3.1. We also observed exponential growth of the corresponding
Lagrange multipliers.

The NIT method proposed in [8] was implemented with q = 0.6 and ρ = 10−4 as described
in [8, Sec.5]. For the computation of the Lagrange multipliers, a scalar equation was solved
using an over-relaxed Newton method with a precision of 1% (Section 5.1) and 5% (Section 5.2).
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(a) (b) (c)

Figure 7: Inverse potential problem: rrNIT method in Algorithm 3. (a) Exact solution x?; (b)
Approximate solution xδk, for k = 5; (c) Iteration error ‖x? − xδ5‖.

6 Conclusions

We investigate NIT type methods for computing stable approximate solutions to ill-posed linear
operator equations. The main contributions of this article is a novel strategy for choosing a
sequence of Lagrange multipliers for the NIT iteration, allowing each of this multipliers to
belong to a non-degenerate interval. We also derived an efficient numerical algorithm based
on this strategy for computing the required Lagrange multipliers.

We prove monotonicity of the proposed rrNIT method, and exponential decay of the resid-
ual ‖Axδk− yδ‖2. Moreover, we provide estimates to the“gain” ‖x?−xδk−1‖2−‖x?−xδk‖2, and
to the Lagrange multipliers λk. A convergence proof in the case of exact data is provided.

An algorithmic implementation of the rrNIT method is proposed (Algorithm 3, where
the computation of Lagrange multipliers are accomplished using an over relaxed Newton-like
method, with appropriate choice of the initial guess. The resulting rrNIT method is competitive
with gNIT and also with other commonly used a posteriori method ; not only from the point of
view of the total number of iterations, but also from the point of view of the overall numerical
effort required.

Our algorithm is tested for two well known applications with three noise levels: the in-
verse potential problem, and the image deblurring problem. The results obtained validate the
efficiency of our method.
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Figure 8: Inverse potential problem: second scenario δ = 10−3%.

Appendix A

In what follows we present a detailed algorithm for the rrNIT method, which takes into account
the above discussed strategies, namely: initial guess choice and over-relaxation.

Algorithm 3, an implementable rrNIT method for solving ill-posed linear problems, is
written in a tutorial way.6 Presented in this form, one recognizes that the major computational
effort in each iteration consists in the computation of the Mλ operators. In the first iteration
(k = 1) this task is solved in steps [3.3] and [3.7]; in the subsequent iterations it is solved in
the Newton-method [3.7].

The above discussed choice of the initial guess λk,0 for the Newton-method (20) is evaluated
in step [3.3]. Moreover, the computation of the over-relaxation parameters ωj is implemented
in loop [3.7].

6Indeed, the inversion of (I + λA∗A) is not always possible.
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[1] choose an initial guess x0 ∈ X;

[2] choose p ∈ (0, 1), τ > 1 and set k := 0;

[3] while
(
‖Axk − yδ‖Y > τδ

)
do

[3.1] k := k + 1;

[3.2] θk := p‖Axδk−1 − yδ‖Y + (1− p)δ;
[3.3] if (k = 1) then

λk,0 := ‖Axδk−1 − yδ‖
(
‖Axδk−1 − yδ‖ − θk

)
/ ‖A∗(Axδk−1 − yδ)‖2;

Mλk,0 := (I + λk,0A
∗A)−1;

else
λk,0 := λk−1;
Mλk,0 := Mλk−1,1

;
endif

[3.4] xλk,0 := xδk−1 − λk,0Mλk,0 A
∗(Axδk−1 − yδ);

[3.5] compute Gk(λk,0) = ‖Axλk,0 − yδ‖2;

[3.6] j := 0; ω0 := 1;

[3.7] while
(
Gk(λk,j) > θ2

k

)
do

compute DGk(λk,j) =
〈
A∗(Axλk,j − yδ) , Mλk,j A

∗(Axλk,j − yδ)
〉
;

j := j + 1;

λk,j := λk,j−1 − ωj−1Gk(λk,j−1)/DGk(λk,j−1);

Mλk,j := (I + λk,jA
∗A)−1;

xλk,j := xδk−1 − λk,jMλk,j A
∗(Axδk−1 − yδ);

compute Gk(λk,j) = ‖Axλk,j − yδ‖2;

update over-relaxation parameter ωj ;
end of while [3.7]

[3.8] xδk := xλk,j ; λk := λk,j ;

end of while [3]

Algorithm 3: Numerical algorithm for the rrNIT method.
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