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Abstract. In this paper, we apply a hybrid Nonequilibrium Green’s Functions and relaxation rate approximation 

approach to investigate frequency multiplication in the GHz to THz range delivering results in good agreement 

with experimental data for different input frequencies. A discussion of the current limitation of housing designs 

for the superlattices is given, based a simple model for the local electric field and in comparison with measured 

input powers delivered by a backward wave oscillator. 
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1 Introduction 

The generation of high power coherent radiation in the GHz to THz ranges is a very important 

topic of recent research, recently fueled by findings that synchronization between superlattices 

leads to a dramatic increase in output power, with a potential to reach the THz range [1], or to 

be high power input sources for multipliers. Difference frequency generation via resonant 

optical nonlinearities pumped by a mid-infrared (MIR) quantum cascade laser QCL [2] is a 

promising approach for on-chip simultaneous emission from the MIR to the THz range but the 

range of interest here would require GHz resonances, which are difficult to achieve. At 

present, the key high compact solid-state sources that can be designed as oscillators [3] to 

deliver input radiation above 300 GHz for mixers and multipliers are Schottky diodes, Gunn 

devices and superlattice electron devices (SLEDs) [4], which are particularly high-

performance fundamental sources in the 60–220GHz range [5]. InP Gunn devices, from which 
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second and third harmonics can also be extracted, have delivered 85μW at 480 GHz [6, 7]. 

This paper focuses on harmonic generation (or frequency multiplication). Before proceeding 

further, we should point out that wave mixing of different harmonics has been discussed in 

Ref. [8] and the idea of high frequency harmonic generation was developed in Refs. [9-11]. 

2 Outline of the mathematical model  

When a SSL with period �, polarized by a voltage ��� �, is excited by an electromagnetic 

field at frequency �, ��� cos�2����, the nonlinear current-voltage relation leads to harmonic 

current generation. For details of the derivation of the equations summarized next and used to 

deliver the numerical results of Section 3, see Ref. [7]. The harmonic currents in turn generate 

electromagnetic fields. The average power in the l
th

 harmonic emitted by the superlattice is 

calculated from the Poynting vector, ����� = 〈|�����|�〉 ����, where ���� is the waveguide 

transmission factor.  The root-mean-square value 〈|�����|�〉 = ������ + ������ stems from the 

lth components of the expansion of the nonlinear current in harmonics, 

� = ��� + ∑ ��� cos�2���� + ��� sin�2���� �!" ,  
��� = ∑ #$��%�Υ�'�, $!"   

(1) 

��� = ∑ #$�%� (#$)��%� + #$"��%�* Υ�'�, $!"     

��� = ∑ #$�%� (#$)��%� − #$"��%�* Κ�'�, $!"      

where #$ is the Bessel function of the first kind and order -, % = ./01�
23  and 

Υ�'� = 2�4
5 6⁄

8)�5 6⁄ �9, Κ�'� = �:;
8)�5 6⁄ �9.                                                                                    (2)  
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It is a direct outcome of the theory that the total energy drop per period under irradiation is 

given by ' = ���� + -ℎ�.  This is fully consistent with measured current-voltage under 

irradiation [12-14].  The parameters �4 and Γ are obtained by adjusting ���to the calculated 

current voltage (I-V) curve delivered by a microscopic Nonequilibrium Green’s Functions 

(NEGF) approach. In ideal superlattices, the I-V would be perfectly asymmetric. However, 

imperfections distort the curve in actual structures.  One of the fundamental reasons is the fact 

that the interface of GaAs over AlAs is worse than that of AlAs over GaAs. This effect has 

been included in the NEGF calculations of Ref. [7] and it is enough to explain why the flow of 

current from right to left cannot be equal from the value measured from left to right. The 

resulting I-V without illumination can be adjusted in excellent approximation by 

�4 = >�4", ' < 0
�4), ' ≥ 0,      Γ = >Γ", ' < 0

Γ), ' ≥ 0.                                                                                     (3) 

This completes the model used in the simulations presented next in Section 3.       At this 

point, we should point out that space-charge effects can lead to strong non-uniformities, far 

beyond the lack of symmetry due to different interfaces taken into account in this paper, 

which lead to �4) ≠ �4" and Γ) ≠  Γ" . Full consideration of this highly nonlinear and to the 

best of our knowledge unstudied phenomena, are beyond the scope of this paper and will be 

the subject of future investigation. 

              

2  Numerical results and discussions 

The SSL structure used has 18 periods of 6.23 nm each with 18 monolayers GaAs and four 

monolayers AlAs. It was homogeneously doped with silicon and an electron density of 1.5 × 

10
18

 cm
−3

 has been used in the NEGF calculations [7, 15, 16]. Experiments have been 



4 

performed at room temperature and T=300K has been used in the calculations. The SSL was 

placed in a waveguide chamber and the waveguide transmission factor  ����, calculated with 

MICROWAVE OFFICE [17], is shown in the inset of Fig. 1. This blocks the input radiation 

from the backward wave oscillator (BWO) pumps at 130, 141, 150 and 160 GHz from the 

output. The SSL harmonic power was measured with a Fourier transform spectrometer and 

the receiver was a silicon He-cooled bolometer. Details of the experimental setup, equipment 

used and signal to noise ratios are given in Ref. [7]. The experimental setup imposes a number 

of geometric factors that ultimately limit the harmonic power detected and at this point, these 

factors cannot be introduced realistically in the simulations. They are however, the same for 

each harmonic and thus the meaningful way to compare theory and experiments is to 

eliminate the unknown factors by taking the ratios to a reference harmonic power, chosen here 

as the strongest measured, i.e. the third harmonic.  Thus for both experiments (symbols) and 

calculations (solid lines) the Normalized Harmonic Power shown in Fig. 1 is CDE���� =
����� �F���⁄ . The parameters extracted from NEGF calculations and used in Eq. (3) are the 

same as in Ref. [7]. i.e Γ", Γ)= 20, 21 meV and  �4", �4)= 1.94 , 2.14 × 109 A/m2. 
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Fig. 1.  Normalized Harmonic Power  CDE���� = ����� �F���⁄  of the lth harmonic to the 3rd harmonic  

nonlinearly generated by input fields oscillating  respectively at 130, 141, 150 and 160 GHz 

for the black square,  red circle, green diamond and blue triangle curves. The corresponding 

solid lines have been calculated using our theory and assuming incident field powers 

characterized by α=35.2, 28.3, 26.1 and 23.7. See Table 1. The inset shows the normalised 

transmission function of the waveguide structure where the superlattice is inserted. 

 

The present experimental setup does not allow to determine which fraction of the input power 

from the BWO actually reaches the superlattice. A nonlinear least-squares curve-fitting 

algorithm based on the Levenberg-Marquardt method [18] has thus been used to determine α. 

In order to estimate what is the input field power inside the superlattice, based on the value 

found for α, we assume that the field delivered by the BWO at the SSL is a plane wave of 

amplitude ���, and frequency � (in GHz) a vaccum impedance of G4 = 377 a spot size given 
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by the surface of the SSL exposed to the field, J = 112 nm × 2 µm and the SSL period � = 

6.23 nm. The connection between input power (in mW) and % = ./01�
23  is given by  

ELM�NO� = 2.941 × 10"T ��%�.                                                                                           (4) 

Table 1 gives numerical values for the difference frequencies investigated. 

Table 1. Connection between the power delivered by the BWO at frequency ν, BWO (mW) and the estimated 

value of the power that actually reaches the SSL, Pin (μW), using Eq. (4) based on the value found for %. 

ν (GHz) BWO (mW) α Pin (μW) 

130 1.8 35.2 61.6 

141 4.1 28.3 47.0 

150 11.2 26.1 45.2 

160 33.9 23.7 42.2 

It is clear from the results that the theory developed in Ref. [7] is valid for different input 

frequencies and that the experimental setup must be improved to prevent higher frequency 

inputs to be blocked. Note that the whole coupling setup requires a factor of 18.3 more power 

if the input frequency is increased from 130 to 160 GHz.  Once these limitations are solved 

SSL multipliers, integrated e.g with SLEDs can become the prime source for the GHz-THz, 

complementing the dominating role the QCLs have in the Mid Infrared and delivering 

coherent power to extend polaritonic effects to the GHz range [19, 20]. Note that THz QCLs 

can already deliver over 1 W of output power [21]. However, intrinsic limitations will most 

likely always require cryo-cooling, even if lasing without inversion effects concepts can make 

the operating temperatures a bit higher [22-24] and thus different room temperature concepts, 

such as the one discussed in this paper are of definite relevance in the development of 

practical THz sources. 
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4 Conclusion 

In summary, the hybrid NEGF–relaxation rate approximation method for GHz to THz 

multiplication based on nonlinearities in the nonlinear response of the current-voltage relation 

of semiconductor superlattices has been investigated for different frequencies. The good 

qualitative agreement with experiments further support applications of the method to the 

simulation of new frequency multiplication devices and further understanding of the related 

microscopic phenomena. It shows a strong need for novel designs allowing a larger frequency 

range to be multiplied in each housing waveguide and coupling architecture. We hope that this 

paper can be a stimulus for strong progress in the field, not ably in a frequency range where 

quantum cascade lasers cannot efficiently operate. 

Appendix A: Determining Numerical Parameters from Experiments 

In the main part of the text, we have highlighted the fact that the present experimental setup 

does not allow to determine which fraction of the input power from the BWO actually reaches 

the superlattice to calculate the parameter α. This requires a careful analysis of the problem 

which we shall now describe. 

 As usual, one proceeds by introducing an algorithm to compute the value of the measured 

results by making use of analytical and numerical procedures, and then computes the 

difference between the predicted computational results and the experimental ones. Such 

difference is measured in an appropriate norm of a large dimensional weighted Euclidean 

space. The use of appropriate weights avoids the information loss due to the different scales 

involved. The procedure of computing the would-be measurements for a given set of 

parameters is the so-called parameter-to-solution map. In an ideal situation where the model 

would describe perfectly the phenomena and in the absence of noise, or numerical errors, the 
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minimum of the distance between the parameter-to-solution map evaluated at the precise 

parameters for the problem and the data would be zero. However, this is not the case in 

practical situations and one resorts to the minimization of the distance between the data and 

the parameter-to-solution map.  In our case the latter map is far from a linear one and thus 

after the computation of the distance between the predicted data and the measurements leads 

to a rather difficult minimization problem. Indeed, the problem under consideration is not a 

convex one and thus does not possess a global minimum. We thus performed our analysis first 

by approximating the minimum through a simulated annealing approach and then zeroed into 

the actual minimum by the Levenberg-Marquadt algorithm. We recall that simulated 

annealing algorithms are based on a meta heuristic to approximate the global minimum in a 

large search space whereby one mimics the annealing procedure from metallurgy that finds 

the minimal energy of a thermodynamical system [25]. We have calculated the parameters �4", 

�4), Γ"and Γ)per direct comparison between the current without illumination calculated with 

NEGF techniques and Eq. (3) as explained in Ref. [7].  

A possible solution to make the method more accessible to experimentalists that have no 

access to advanced NEGF techniques is to consider not only α, but the full ensemble 

U%, �4", �4), Γ"and Γ)X  as unknowns. In such more complex situation, once again the presence 

of local minima requires the usage of two-step procedure, whereby one first locates the 

general region of the global minimum by means of the simulated annealing technique and 

then refines the solution with a more precise method (such as for example Levenberg-

Marquadt). 
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Fig. 1 Normalized Harmonic Power  CDE���� = ����� �F���⁄  of  the l
th

 harmonic to the 3
rd

 

harmonic  nonlinearly generated by input fields oscillating  respectively at 130, 141, 150 and 

160 GHz for the black square,  red circle, green diamond and and blue triangle curves. The 
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corresponding solid lines have been calculated using our theory and assuming incident field 

powers characterized by α=35.2, 28.3, 26.1 and 23.7. See Table 1. The inset shows the 

normalised transmission function of the waveguide structure where the superlattice is inserted. 


