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Abstract

We tackle the calibration of the so-called Stochastic-Local Volatility (SLV) model.
This is the class of financial models that combines the local and stochastic volatility
features and has been subject of the attention by many researchers recently. More pre-
cisely, given a local volatility surface and a choice of stochastic volatility parameters,
we calibrate the corresponding leverage function. Our approach makes use of regu-
larization techniques from the inverse-problem theory, respecting the integrity of the
data and thus avoiding data interpolation. The result is a stable and robust algorithm
which is resilient to instabilities in the regions of low probability density of the spot
price and of the instantaneous variance. We substantiate our claims with numerical
experiments using simulated as well as real data.

1 Introduction

The search for parsimonious models that would capture the market-observed smile
behavior in the implied volatility surface (IVS) is still one of the main research top-
ics in Mathematical Finance. Among the different models that have been introduced,
perhaps the two most important attempts are the Stochastic Volatility (SV) models,
[Hes93] and [Gat06], and the Local Volatility (LV) model of [Dup94]. While SV models
capture crucial stylized facts of the volatility dynamics, they cannot perfectly calibrate
the IVS, especially for short maturities. On the other hand, the LV model was con-
structed to fit any arbitrage-free IVS. However, it has poor dynamical properties, see
[AN04]. A very important issue when considering these models is their calibration
to the market-observed IVS; we forward the reader to [AAYZ17, Kil11, MN04] and
references therein for different calibration methods of SV and LV models, individually.

The Stochastic-Local Volatility (SLV) model is able to combine the best aspects of
each one of such model classes, see [GHL11, LTZ14, TZL+15]. In the present article
we shall present a stable and effective method to calibrate the SLV model that consists
of adapting the method proposed in [EE05] and [EHN96] to the SLV framework.
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Although, separately, the calibration of SV and LV models has been extensively
discussed in the literature, to the best of our knowledge, there are three approaches to
calibrate an SLV model: [HL09, GHL11] and [TZL+15]. The first two are Monte Carlo
based methods, while the last one relies on the numerical solution of a partial differential
equation (PDE). Since the method we propose here is also based on PDEs, we will use
as benchmark the method presented [TZL+15]. Additionally, [WitH17] uses the same
calibration idea as in this benchmark method, but considers an adjoint method to solve
the related Fokker-Planck equation for the transition probability density, see Section
3.1.1.

In order to exemplify our method, we consider two numerical exercises. One uses
synthetic data generated from a known SLV model and the other uses real option data
from an FX market. These examples corroborate to the theoretical conclusions of the
comparison of the benchmark and our proposed method. In fact, we verify that our
method is more robust against noise and more resilient to instabilities.

The paper is organized as follows. In Section 2, we briefly describe the SLV model.
The benchmark and proposed calibration procedures are outlined in Section 3. Finally,
in Section 4, we test our method with synthetic and real FX data.

2 Model Description

The Stochastic-Local Volatility (SLV) model assumes that, under a risk-neutral mea-
sure, the spot price satisfies

dSt = (r − d)Stdt+
√
VtL(t, St)StdW

S
t ,

dVt = κ(m− Vt)dt+ ξ
√
VtdW

V
t ,

dWS
t dW

V
t = ρdt.

(2.1)

The rates r and d are the risk-free interest rate and the dividend rate, respectively.
In this version of the SLV model, we assume that the stochastic part of the volatil-
ity is following the Heston model, [Hes93]. The parameters κ, m, ξ and ρ have the
same interpretation as in the pure SV model. Moreover, notice that this SLV model
simplifies to the Heston model when L ≡ 1. With respect to our proposed calibration
procedure, the choice of the SV model could have been easily modified. For exam-
ple, we could have considered the SABR model of [HKLW02] or the Inverse Gamma
model of [LLZ16]. Additionally, it is fairly easy to extend the method presented here to
deal with time dependent interest and dividend rates, as we consider in our numerical
examples. However, for cleaner exposition we will consider constant rates.

The function L is called the leverage function and it plays a very important role in
the model above. It is the ingredient that allows the model to perfectly calibrate the
IVS seen in the market. In order to achieve this goal, the function L must satisfy (see
[Gyo86])

σ2
loc(t, S) = E[VtL

2(t, St) | St = S] = L2(t, S)E[Vt | St = S],(2.2)

where σloc is the local volatility function calibrated to the market, see Section 3.1.3.
We define then

Σ(t, S) = E[Vt | St = S].(2.3)
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It is important to notice that Equation (2.2) is an implicit equation for L, since it is
needed for the computation of Σ(t, S).

Note that the parameters of the SV part of the model may be (almost) freely chosen.
Given a reasonable choice of parameters, choosing L to satisfy Equation (2.2) allows
the model to fit any arbitrage-free IVS. The adjectives almost and reasonable used here
refer to the fact that the SDE (2.1) using formula (2.2) for L might not have a solution
for certain choices of parameters, see Remark 3.1.

3 Calibration

In this section we shall discuss two different PDE techniques that can be applied to
calibrate an SLV model, namely the benchmark and our proposed method. For both,
we will assume that the local volatility surface and the SV parameters of the model
have been already computed.

Notice now that we can rewrite Equation (2.3) as

Σ(t, S) = E[Vt | St = S] =

∫ +∞
0 V p(t, S, V )dV∫ +∞
0 p(t, S, V )dV

,(3.1)

where p(t, ·, ·) is the joint density probability (St, Vt) and solves the Fokker-Planck
PDE:

∂p

∂t
+

∂

∂S
((r − d)Sp) +

∂

∂V
(κ(m− V )p)− 1

2

∂2

∂S2
(V L2(t, S)S2p)(3.2)

− 1

2

∂2

∂V 2
(ξ2V p)− ∂2

∂S∂V
(ρξV L(t, S)Sp) = 0,

with initial condition p(0, S, V ) = δ(S − S0)δ(V − V0), i.e. the Dirac mass at (S0, V0).

Remark 3.1 (Existence of Solution for SDE (2.1)). Using Equation (3.1), we may
rewrite the SDE (2.1) as

dSt = (r − d)Stdt+
√
VtσL(t, St)

√ ∫ +∞
0 p(t, St, V )dV∫ +∞

0 V p(t, St, V )dV
StdW

S
t ,

dVt = κ(m− Vt)dt+ ξ
√
VtdW

V
t ,

dWS
t dW

V
t = ρdt.

(3.3)

This is called a McKean SDE, since the diffusion coefficient depends on the law of
(S, V ). The existence of solutions of this SDE is a very challenging problem, and
outside the scope of this paper. For a discussion of this topic, see [GHL11] and [JZ17].
For our work here, we will assume that the SDE has a unique strong solution.

Remark 3.2 (Mixing Fraction). Additional parameters could be considered in order
to calibrate some exotic derivatives (e.g. Barrier or Asian options). In particular, given
some fixed vol-of-vol, ξ, and correlation, ρ, one could define

ξλ = λξ and ρλ = λρ,

for λ ∈ [0, 1]. This parameter is usually called mixing fraction, as it mixes the stochas-
tic and local aspects of the volatility. Notice that λ = 0 implies a pure LV model.
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Moreover, the parameters ξ and ρ could be taken as the calibrated parameters of a
pure SV model. The goal is then to choose λ in order to calibrate a given exotic deriva-
tive price. For instance, if we choose a down-and-out barrier Call option with barrier
B and strike K > B, we could numerically solve the following PDE

∂P

∂t
+ (r − d)S

∂P

∂S
+

1

2
vL2(t, S)S2∂

2P

∂S2
+ κ(m− v)

∂P

∂v
+

1

2
λ2ξ2v

∂2P

∂v2
(3.4)

+ λ2ξρvL(t, S)S
∂2P

∂S∂V
− rP = 0,

for S ∈ [B,+∞), with P (t, B, V ) = 0 and final condition P (T, S, V ) = (S −K)+. It is
straightforward to consider λ time-dependent.

Remark 3.3 (Monte Carlo Methods). For multi-factor SV models, both methods
described in this paper require a high dimensional PDE solver to numerically deal with
the Fokker-Planck equation and therefore suffers from the curse of dimensionality. This
issue would be circumvented using a Monte Carlo method. For instance, in [HL09],
using the Markovian projection technique, an algorithm is proposed to calibrate the
leverage function L. Additionally, in [GHL11], the authors applied the McKean’s
particle method, and developed an algorithm to hybrid models, where the short-term
rate and the volatility are modeled as diffusions.

3.1 Numerical Aspects

There are some common numerical aspects for both benchmark and our calibration
procedures, and we will state them here. Firstly, since the methods considered here
are based on finite difference methods for PDEs, we will consider discrete meshes for
time, spot price and spot volatility. A (uniform) mesh for a variable y depends on a
choice for a finite lower bound ymin, a finite upper bound ymax and a step size ∆y. It
is assumed that Ny = (ymax − ymin)/∆y ∈ N. The mesh for y is then

yi = ymin + i∆y, for i = 0, . . . , Ny.

In our case, we will assume that tmin = Smin = Vmin = 0. We will use the sub-index
n for t, i for S and j for V . One could surely use non-uniform meshes, but we will
present the results here with uniform meshes for clearer illustration.

3.1.1 Numerical Methods for the Fokker-Planck PDE

The Fokker-Planck PDE, shown in Equation (3.2), will have to be numerically solved
given the parameters of the SV model and a fixed leverage function L. That is, discretiz-
ing the Fokker-Planck PDE with any chosen method, we will compute an approxima-
tion for p(tn, Si, Vj). A sensible choice for the discretization method is of Alternating
Direction Implicit (ADI) type, see [itHF10]. Namely, in our numerical example, we
consider the Douglas scheme, which was proposed in [DR56]. Moreover, the choice of
boundary conditions for the numerical method is also very important. We have chosen
the zero flux condition, see for instance [Luc12].

Note that, by using an ADI method to solve for the Fokker-Planck equation,
p(tn, ·, ·) would depend on L(tn, ·) and L(tn−1, ·). However, the benchmark method
assumes that p(tn, ·, ·) only depends on L(tn−1, ·). For more details, see Appendix A.

In a different direction, one could consider adjoint methods to numerically solve
the Fokker-Planck PDE as in [WitH17].
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3.1.2 Approximation of the Initial Condition

The initial condition for our Fokker-Planck PDE is not well-behaved; it is a Dirac
mass at the point (S0, V0). In order to avoid numerical issues arising from this lack of
smoothness, we consider a smooth approximation of this Dirac mass. Specifically, we
use a bivariate normal distribution with small variances to represent the initial density:

p(0, S, V ) =
1

2πσSσV
exp

{
− 1

2σ2
S

(S − S0)2 − 1

2σ2
V

(V − V0)2

}
.(3.5)

In our numerical experiment, we have used σ2
S = σ2

V = 10−3. See, for instance,
[TZL+15] for details.

3.1.3 Numerical Computation of the Local Volatility

The calibration of local volatility surfaces is an important inverse problem in Math-
ematical Finance. In [Dup94], the author has proposed the local volatility model, in
which the European options prices satisfy the PDE of the form

∂C

∂T
+ (r − d)K

∂C

∂K
− 1

2
σ2
loc(T,K)K2 ∂

2C

∂K2
+ dC = 0, T > 0,K > 0,(3.6)

with initial and boundary conditions given by

C(0,K) = (S0 −K)+,(3.7)

lim
K→∞

C(T,K) = 0,

lim
K→0

C(T,K) = S0,

where C = C(T,K) is the value of the European call option with expiration date T
and strike price K. The inverse problem of the local volatility model is that, given
the options prices {C(T,K)}T,K , we want to find a plausible local volatility surface,
{σloc(T,K)}T,K , which can explain these options prices. Two of the challenges of
this inverse problem are the ill-posedness, [CCZ12], and the scarceness of the data of
options prices, [AAYZ17]. To solve an ill-posed inverse problem, one popular method
is to use the Tikhonov regularization [ACZ16, AZ14, CCZ12, CZ15, ACZ17]. We will
briefly introduce this regularization method in Section 3.3. To solve the problem of the
scarceness of the data, one possibility is to interpolate/extrapolate the data of options
prices to all the locations of the mesh, [Kah05]. In this paper, however, we apply the
method discussed in [AAYZ17, AAZ17], where we use a P matrix to map the grid
locations of the estimated options prices to those of real data.

3.2 Benchmark Method

In this section, we will describe the method proposed in [RMQ07] and further developed
in [TZL+15], which is our benchmark method. From Equation (2.2), we have

L(t, S) =
σloc(t, S)√

Σ(t, S)
= σloc(t, S)

√√√√ ∫ +∞
0 p(t, S, V )dV∫ +∞

0 V p(t, S, V )dV
.
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The benchmark calibration procedure is based on the equation above. As we have
previously mentioned, this is an implicit equation for L, since p depends on it. More
precisely, the leverage function is initialized at Si as

LB0,i := σloc(0, Si)

√√√√ ∑NV
j=0 p0,i,j∆V∑NV
j=0 Vjp0,i,j∆V

,(3.8)

with p0,i,j given by Equation (3.5). We are using the superscript B to denote that
this is the leverage function computed by the benchmark method. Assuming we have
computed LB at time tn, we use the numerical method discussed in Section 3.1.1
to solve the Fokker-Planck Equation (3.2) from tn to tn+1 with L(t, Si) = LBn,i, for
t ∈ [tn, tn+1]. Hence, we find an approximation for p(tn+1, Si, Vj), which we will denote
by pBn+1,i,j . Finally, we set

LBn+1,i := σloc(tn+1, Si)

√√√√ ∑NV
j=0 p

B
n+1,i,j∆V∑NV

j=0 Vjp
B
n+1,i,j∆V

,(3.9)

and repeat the procedure above.

Algorithm 1 Benchmark Algorithm of [RMQ07]

1: Set the initial condition of p0,i,j and LB0,i using Equations (3.5) and (3.8), respectively.
2: for n = 0, 1, 2, . . . , Nt − 1 do
3: Set L(t, Si) = LBn,i, for t ∈ [tn, tn+1].

4: Solve the Fokker-Planck PDE (3.2) in t ∈ [tn, tn+1].

5: Update LBn+1,i with Equation (3.9).
6: end for
7: return LBn,i for n = 0, . . . , Nt and i = 0, . . . , NS.

3.3 Proposed Method

The problem under consideration is a classical example of an ill-posed inverse problem.
We shall now provide some background on inverse problems in general and on our
specific problem.

Ill-posed problems have been treated extensively in the literature since they are
relevant in several fields, see [Vog02] and references therein. Amongst the main tech-
niques to address these problems, it is safe to say that one of the most well-known is
the so-called Tikhonov regularization. It consists basically in transforming the problem
under consideration, say that of trying to solve F (x) = y, into a minimization of the
form

arg min ||F (x)− y||2 + α|||x− x0|||2,

where || · || and ||| · ||| are two norms, and x0 incorporates the a priori information
that will allow the regularization of the problem. By changing the scale factor α of the
norm ||| · |||, one would put more or less emphasis on such a priori information. The
optimal choice of α is the subject of intense investigation. Among the more well-known
methods one can cite the discrepancy principle and the L-curve method, see [Vog02].
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Further, developments led to the use of other metrics (or more generally functionals
instead of norms), see [KNS08] and references therein.

Let Ln,i be the leverage function at time tn and spot price Si, where n = 0, 1, . . . , Nt

and i = 0, 1, . . . , NS , computed using our proposed method described below. Then the
density function p(tn+1, ·, ·) is computed by the numerical method discussed in Section
3.1.1 to solve the Fokker-Planck Equation (3.2) from tn to tn+1 with L(t, Si) = Ln,i,
for t ∈ [tn, tn+1]. We denote this approximation by pn+1,i,j . Define G1 the operator

that associates a given {Ln,i}NS
i=0 to the corresponding approximation of this density:

(3.10) {pn+1,i,j}NS ,NV
i,j=0 =: G1({Ln,i}NS

i=0).

The initialization {L0,i}NS
i=0 will be discussed in the sequel.

Fix now {yi}NS
i=0 and let G2 be the operator mapping a choice of leverage function

equals {yi}NS
i=0 to the local volatility function at time tn following Equation (2.2),

G2({yi}NS
i=0, {pn,i,j}

NS ,NV
i,j=0 ) :=

yi
√√√√∑NV

j=0 Vjpn,i,j∆V∑NV
j=0 pn,i,j∆V


NS

i=0

.(3.11)

Notice

G2({yi}NS
i=0, {pn,i,j}

NS ,NV
i,j=0 ) = G2({yi}NS

i=0,G1({Ln−1,i}NS
i=0)) =: G({yi}NS

i=0, {Ln−1,i}NS
i=0)

i.e. G is the operator that takes {Ln−1,i}NS
i=0 and {yi}NS

i=0 to the local volatility at time
tn. Therefore, in order to obtain the surface of the leverage function, we have to solve
the following Tikhonov-type optimization problem for n = 1, 2, . . . , Nt.

{Ln,i}NS
i=0 := arg min

{yi}
NS
i=0

‖σloc(tn, ·)− G({yi}NS
i=0, {Ln−1,i}NS

i=0)‖2Γ−1(3.12)

+ α1‖{yi}NS
i=0 − {Ln−1,i}NS

i=0‖
2
D−1

0
+ α2‖RS{yi}NS

i=0‖
2
D−1

S
,

where Γ, D0 and DS are chosen symmetric positive definite covariance matrices.
We define the vector norm ‖x‖C =

√
xTCx and RS is the matrix representing

the finite-difference approximation of the linear operator ∂S. The initial value
{L0,i}NS

i=0 is chosen by solving the minimization (3.12) with L−1,i = c, for all
i = 0, . . . , NS, for some chosen constant.

Algorithm 2 Proposed Algorithm

1: Set the initial condition of {p0,i,j}NS ,NV
i,j=0 using Equation (3.5) and set {L−1,i}NS

i=0 to a
chosen constant.

2: for n = 0, 1, 2, . . . , Nt do
3: Solve the minimization problem (3.12) for {Ln,i}NS

i=0.

4: If n < Nt solve the finite difference problem in (3.10) for {pn+1,i,j}NS ,NV
i,j=0 .

5: end for
6: return Ln,i for n = 0, . . . , Nt and i = 0, . . . , NS.
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4 Numerical Example

We will now compare the methods described in Sections 3.2 and 3.3 within syn-
thetic and real data examples. The following information is common to both
cases:

Variable Lower Bound Upper Bound Fine Mesh Coarse Mesh

time 0 1 0.001 0.025
log-moneyness -3 3 0.025 0.05
volatility 0 1 0.005 0.01

Table 1: Mesh parameters

The coarse mesh is the one used in the finite difference methods in our nu-
merical examples below.

Figure 1: Domestic and foreign interest rates

4.1 Synthetic Data

In this synthetic data example, we suppose the ground truth leverage function
(see Figure 2) is given by

(4.1) L(t, x) := 1.14 cos(2πxt), where x ∈ [−3, 3], t ∈ [0, 1].

We calculate Σ(t, x) and local volatility surface σloc based on this given L in the
fine mesh. The details of the mesh for maturity, log-moneyness and volatility are
given in the Table 1. We then add a relative noise to the local volatility surface

(4.2) σloc(t, x)η := σloc(t, x)(1 + 0.01ηt,x)

where ηt,x are independent draws from the standard normal distribution N (0, 1).
In order to avoid the so-called inverse crime ([KS06]), we sample the data to a
coarser mesh, which is also given in Table 1. Figure 2 presents the noisy local
volatility surface. The parameters of the SV part of the model are given in Table
2. The Tikhonov parameters are α1 = 0 and α2 = 10−2, see Equation (3.12).
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Parameter Value

V0 0.04
κ 2
m 0.04
ξ 0.25
ρ -0.5

Table 2: SV parameters for the synthetic data example

Figure 2: The ground truth leverage function (left) and the local volatility surface σloc(t, x)η

(right).

4.2 Real Data

In this section we present a real data example. We chose FX options on EURUSD
on March 18th, 2015. They include the typical 25 liquid option contracts, with
5 maturities (1W, 1M, 3M, 6M, 1Y) and 5 strikes (related to 10 and 25 Call and
Put Delta and to ATM) per maturity (see Figure 3). The spot value was 1.0864.
The parameters of the Heston model are calibrated to this data set and given in
Table 3.

Parameter Value

V0 0.013
κ 1.025
m 0.013
ξ 0.161
ρ -0.626

Table 3: SV parameters calibrated to real data

These parameters were required to satisfy the Feller condition. This translates
into more realistic dynamics for the volatility, since it prevents the volatility
process V to reach the zero boundary. The domestic and foreign interest rates
are the same as in Figure 1. We choose the same discretization parameters as in

9



the synthetic data example, see Table 1. In Figure 3, we show the estimated local
volatility surface from option prices. For the description of the methods that we
used to calibrate the local volatility surface, see [AAYZ17]. In Figure 8, we show
the recovered local volatility surface and the leverage function. In Figure 9, we
implemented the benchmark method. The Tikhonov parameters are α1 = 0 and
α2 = 10−3.

Figure 3: EUR-USD local volatility surface and options prices on March 18th, 2015

4.3 Numerical Results

In the figures below we show the recovered leverage function and the local volatil-
ity surface using the benchmark method in Section 3.2 and our proposed method
shown in Section 3.3.

Synthetic Data

Figure 4: Leverage function (left) and the local volatility surface (right) computed with the
benchmark method in the synthetic data example.
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Figure 5: Leverage function (left) and the local volatility surface (right) computed with our
proposed method in the synthetic data example.

Figure 6: The leverage function in the synthetic data example: the ground truth (with stars),
the benchmark method (with squares) and our method (with circles)

Figure 7: The local volatility surface in the synthetic data example: the ground truth (with
stars), the benchmark method (with squares) and our method (with circles)

Real Data

Figure 8: Leverage function (left) and the local volatility surface (right) computed with the
benchmark method in the real data example.
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Figure 9: Leverage function (left) and the local volatility surface (right) computed with our
proposed method in the real data example.

Figure 10: The leverage function in the real data example: the benchmark method (with
squares) and our method (with circles)

Figure 11: The local volatility surface in the real data example: computed from option prices
(with stars), the benchmark method (with squares) and our method (with circles)

4.4 Conclusions

From the figures shown in the previous subsection, it can be seen that

� the benchmark method is not stable and it fails to converge for large log-
moneyness;

� the results of the benchmark method have more noise;

� for larger maturities the proposed method converges to the ground truth
leverage function.

In Figures 6, 7, 10 and 11, we show the recovered leverage function and local
volatility for the two methods at 3 different times. The proposed method and
the benchmark method agree around at-the-money, but for deep in-the-money
and out-of-the money log-moneyness, the corresponding local volatility curve of
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the benchmark method is distant from the market’s local volatility surface. We
have shown three maturities, but this phenomenon can also be observed for the
other maturities. This phenomenon is observed less prominently in the synthetic
data example and the reason is that the local volatility surface is smoother.

Once we estimate the leverage function L, we can recover the local volatility
surface using the Alternating Direction Implicit (ADI) method for the Fokker-
Planck PDE with the leverage function at both times, tn and tn+1, see Section
3.1.1. Comparing with the ground truth of local volatility surface in the synthetic
data example, we can calculate the relative residuals. In Table 4, we present the
relative residuals in two intervals of the log-moneyness, which are [−3, 3] and
[−2, 2]. We also report the relative residuals of the real data example. For both
examples, we see that the proposed method generates better results with relative
errors significantly smaller than the benchmark method. We would like to point
out that this failure of convergence of the benchmark method is not related
to a boundary issue. Indeed, numerical experiments on smaller log-moneyness
intervals have similar results to the truncated version of the results we have found.

Example Benchmark in [−3, 3] (in [−2, 2]) Proposed in [−3, 3] (in [−2, 2])

Synthetic 7.92% (2.07%) 1.40% (1.09%)
Real 27.82% (15.44%) 7.93% (5.44%)

Table 4: Relative residuals

The conclusion from our numerical exercises, that corroborates the theoretical
reasoning, is that, when compared to the benchmark, the proposed method

� is more robust against noise;

� is more resilient to instabilities in the regions of low probability density of
the spot prices and instantaneous variance;

� does not require ad hoc procedures to avoid instabilities due to low proba-
bility regions.

� respects the data in the sense that we do not apply interpolation. More
precisely, the benchmark method requires the knowledge of the local vol on
the same mesh as the one used for the Fokker-Planck Equation (3.2).

5 Concluding Remarks

We have studied the calibration of the Stochastic-Local Volatility model and
proposed a numerical method based on the Tikhonov regularization framework.
We compared this proposed method with a benchmark method based on PDE
techniques defined in [TZL+15] with two different numerical examples. Under
both cases, we have observed that the proposed method is more robust and has
significantly smaller relative error when compared to the benchmark method.

Since our proposed method is aimed to improve the error created by using
Equation (3.9) to updated the leverage function, we would have observed the
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same improvement documented in Section 4.4 if we had used the adjoint method
proposed in [WitH17] to solve the related Fokker-Planck PDE.

Future development could consider the implementation of the online cali-
bration procedure of [AAZ17]. This could not be achieved for the benchmark
method. Another avenue would be to explore the fast mean reversion stochastic
volatility setting conjoined with the local volatility surface estimation as de-
scribed in [NP06].

A Specification of the ADI method

To solve Equation (3.2) numerically, we apply the finite difference Douglas-
Rachford (DR) method [DR56]. For completeness, we shall now give the details
of the implementation.

We suppose (t, S, V ) ∈ [tmin, tmax]× [Smin, Smax]× [Vmin, Vmax]. The discretiza-
tion contains NS + 1 nodes in S direction, NV + 1 nodes in v direction and
Nt + 1 nodes in t direction. By using the central difference for the first-order
differentiation, all partial differentiations could be approximated as follows:

∂(Sp)

∂S
≈ Si+1pn,i+1,j − Si−1pn,i−1,j

2∆S
=:

δSSpn,i,j
2∆S

∂
(
(m− V )p

)
∂V

≈ (m− Vj+1)pn,i,j+1 − (m− Vj−1)pn,i,j−1

2∆V
=:

δm−VV pn,i,j
2∆V

∂2
(
V L2(tn, S)S2p

)
∂S2

≈ 1

(∆S)2
(VjL

2(tn, Si+1)S2
i+1pn,i+1,j

− 2VjL
2(tn, Si)S

2
i pn,i,j + VjL

2(tn, Si−1)S2
i−1pn,i−1,j)

=:
δ
V L2(t,S)S2

SS pn,i,j
(∆S)2

∂2(V p)

∂V 2
≈ Vj+1pn,i,j+1 − 2Vjpn,i,j + Vj−1pn,i,j−1

(∆V )2
=:

δVV V pn,i,j
(∆V )2

∂2
(
V L(tn, S)Sp

)
∂S∂V

≈ 1

4∆S∆V
(Vj+1L(tn, Si+1)Si+1pn,i+1,j+1+

Vj−1L(tn, Si−1)Si−1pn,i−1,j−1 − Vj+1L(tn, Si−1)Si−1pn,i−1,j+1−
Vj−1L(tn, Si+1)Si+1pn,i+1,j−1)

=:
δ
V L(t,S)S
SV pn,i,j
4∆S∆V

We replace the derivative in Equation (3.2) by these finite difference quotients.
We then define the discretized system for the approximation pn,i,j for p(tn, Si, Vj)
given by the θ-scheme:

(1− θA1 − θA2)p(n+1) = [1 + A0 + (1− θ)A1 + (1− θ)A2]p(n) +O(∆t3)

for n = 0, 1, 2, . . . , Nt − 1, where p(n) = {pn,i,j}NS ,NV
i,j=0 , θ ∈ [0, 1] and

A0 :=
1

4
ρξRSV δ

V L(t,S)S
SV ,

14



A1 := RS2δ
V L2(t,S)S2

SS +
1

2
(r − d)RSδ

S
S ,

A2 := ξ2RV 2δ
V
V V +

1

2
κRV δ

m−V
V ,

RS :=
∆t

∆S
, RV :=

∆t

∆V
, RS2 :=

∆t

∆S2
, RV 2 :=

∆t

∆V 2
, RSV :=

∆t

∆S∆V
.

The Douglas-Rachford method (DR method) is then defined as:

(1− θA1)W = [1 + A0 + (1− θ)A1 + A2]p(n)

(1− θA2)p(n+1) = W − θA2p
(n)

Note that, here, for notational reason, we assume the rate r−d is constant. In
our experiment, with a slight modification of A1 and A2, we developed the method
for the case of r−d being time-dependent and also the zero flux condition[Luc12]
.
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