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Abstract

In this report, we analyze the liquidation process of a given portfolio in the context of

static strategies. By a static strategy we mean, one that does not take into account the

flow of information on price changes during the control process. It tries to perform in

some optimal sense to minimize losses. We seek for static strategies because those are

typically the one used in situations of stress in the case of a fund collapse. Thus, we want

to study the risk associated to the portfolio under a liquidation process more than the

optimal strategy itself.

We observe that the classical models might lead to instabilities and display lack of

robustness. We propose an improvement of the variance model which tackles the effects of

the intra-day changes and impact price. We then present a model that reduces the condi-

tional value at risk (CVaR) and the variance at the same time. We do this by performing a

Cholesky decomposition of the covariance matrix and adding to it a Tikhonov regulariza-

tion term. Although this report presents an optimal liquidation of portfolio point of view,

we can apply the concepts presented herein to a problem of optimal allocation of portfolios.

The present study may be of interest to risk management of central counterparties and

clearing houses. In particular, it could be used for the computation of margins associated

to portfolios.

Keywords: Liquidation Strategies, Monte-Carlo, Derivatives, Tikhonov Regularization,

Price Impact, Intra-day Price.
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1. Introduction

Collateral warranty is highly used in financial transactions to reduce credit and liquidity

risk, in case one of the parties involved does not fulfill his obligations. It does not neces-
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sarily have being presented as cash. There are several financial instruments that can be

used as collateral, such as bonds, shares of stock, derivatives, etc. Therefore, it is essential

to be able to determine the value and the risk of a portfolio as a whole in a situation that

requires being liquidated in a short period, focusing on reducing capital loss.

Sometimes, a third party like a clearing house takes the position of managing the risk on a

trade. For that, the participants have to deposit margins at the clearing house, which needs

to monitor those margin levels to be sure they can cover losses in the case of settlement

failure. In this scenario, it is also essential to be able to understand the risk of a portfolio

in the event one of the parties falls in default.

The value of a portfolio can be determined by the market value (mark to market) of the as-

sets, that could be calculated using some available models or historical data. Nevertheless,

this might not be a good approximation of the real value, because, after the liquidation

process, there is a good chance of not obtaining the full market value of the assets. This

mismatch between the market value and the final price may be caused by, intra-day price

variations, poor market, liquidity and size of the portfolio. Also, often such liquidation pro-

cedures occur during market stress events, and sizable transactions can negatively impact

the market and produce further losses. Furthermore, the bigger the portfolio, the harder

it is to find suitable buyers. We can also find different restrictions for each asset of the

starting day of the process and other limitations that the portfolio’s owner may encounter.

Searching for efficient strategies to liquidate a portfolio is fundamental for determining

its real value and its risk. In this report, we focus our interest in studying the risk of a

portfolio under a liquidation strategy more than the strategy itself.

The standard practice in financial institutions, as far as margin calculations are concerned,

is to consider static liquidation strategies. See [11, 10, 2]. For this reason, we shall con-

centrate on such strategies in this report.

The plan for this report goes as follows: In Section 2 we review basic definitions and con-

cepts of portfolio management and risk measures. In Section 3 we discuss some liquidation-

strategy models and in Section 4 we compare such models 4. We provide in Section 5 some

illustrative examples of such models. In Section 6 we disscuss the issue of the execution

price during the liquidation. In Section 7 we propose the use of Tikhonov-type regular-

ization in order to improve the robustness of the liquidation process and interpret such

proposal in financial terms.Section 8 presents some illustrative examples and comparisons.
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2. Definitions and Basic Concepts

2.1. Definitions

Let us consider a portfolio P with Na assets that have mi shares of an asset i, such that

at the time t = 0 it has a mark to market (MtM) value of ϕ0
i . This portfolio may includes

derivatives as an asset i, in which the value of ϕi depends on the price of the underlying

asset Si.

We want to find a strategy to liquidate this portfolio within T days starting at day t = 1.

The value of the portfolio at the time t = 0 will be P0 :=
∑Na

i=1miϕ
0
i .

We define the vector q ∈ [0, 1]Na×T where qti represents the fraction of the wealth invested

asset i that will be liquidated at the time t. Also, we define the set

I := {(i, t) ∈ {1, ..., Na} × {1, ..., T}}.

Without loss of generality, we assume that the asset i depends only on one risk factor

Si that represents the price of one underlying share for the asset i. Assuming that we

know the distributions of the price of the asset Sti for all time t ∈ {1, . . . , T}, we define

ψti(S
t
i ) := mi(ϕ

t
i(S

t
i )e
−rt − ϕ0

i ), where ψti is the present value of loss or gain of the asset i

at the time t. We are not making any assumption on the random variables Sti other than

it is a real random variable and belongs to some probability space L2(Ω,F ,P).

Besides the restrictions of liquidating by the time T , we have other restrictions like the

amount of the asset we can liquidate per day and the day we can start the liquidation.

Under these hypotheses, we define the set:

Q :=
{
q ∈ [0, 1]Na×T | qti ≤ kti , ∀(i, t) ∈ I,

T∑
t=1

qti = 1, ∀i ∈ {1, ..., Na}
}
,

where Q is a linear bounded set and

T∑
t=1

kti ≥ 1 ∀i ∈ {1, ..., Na}.

Observation 2.1. We use a matrix notation for the vectors ψti and qti where (·)ti is a
reshaping of the vector (·)t+(i−1)T .

The loss or gain obtained by liquidating the portfolio using strategy q is represented by∑
(i,t)∈I q

t
iψ

t
i . So, given a multivariate random variable S ∈ Π(i,t)∈IL2(Ω,F ,P) we define
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the functional:

Q −→ L2(Ω,F ,P) q −→Mψ(q) :=
∑
(i,t)∈I

qtiψ
t
i(S

t
i ) = 〈q, ψ〉, (1)

where Mψ(q) represents the loss-gain value of the portfolio liquidated using strategy q.

Whenever we choose Ns samples of the multivariate random variable ψ, we shall write ψk

or ψti(k) for every k ∈ {1, . . . , Ns}.

2.2. The Liquidation Problem

We wish to study the risk of a portfolio under a liquidation process. Every portfolio

has its own risk derived from the combination of its assets, however, in the process of

clearance of a portfolio, there are other risks involved. The fact that we cannot liquidate

instantly at the time zero will produce a temporal exposition of the portfolio. Also, buying

and selling at the initial time can cause impacts on the prices, consequently increasing the

cost. Moreover, if the portfolio has a derivative, it might include special rules for selling

and buying. All of these factors may result in the selection of an unsuitable strategy for

liquidation, causing unnecessary exposure and expenses.

The first action when choosing a strategy is to define what type of risk the holder wants to

avoid. As will be seen in the course of this report, there are different risk concepts, and each

one can provide us with extremely different strategies. In the literature, there are several

models that have been used to find an optimal allocation subject to reducing the defined

risk [15]. These models can be easily be reformulated to reflect strategies of liquidation

instead of allocation. In this section, we will review two of the classical formulations applied

to our particular problem: the Variance Model and the Expected Shortfall Model.

We concentrate on static strategies rather than dynamic strategies of liquidation as our

focus is to understand the risk of the portfolio in the event of mandatory liquidation, see

[11, 10, 2].

2.3. Optimization Problem

Suppose that we set up our definition of risk, our problem is to find how to liquidate our

portfolio P optimally to be defined below. For that, we define an optimization functional

F which is not necessarily a risk measure. Since we know the distribution of S and hence

the distribution of ψ, we can define a stochastic control problem:

min
q∈Q

F (Mψ(q)) (2)
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3. Liquidation Strategy Models

In this section, we present three models: the Simpleminded Model, the Variance Model

and the Expected Short all of the Loss Model. The first is a naive model and the other

two have been used in allocation theory (see [7]) and that we will adapt for our purpose.

Notice that we are focusing on the risk of losing not on increasing the expected returns, so

we will not consider in the objective function or the restrictions the expected returns.

3.1. Simpleminded Model

A simple, naive strategy is to try to liquidate all the assets independently and to think

that the faster you sell or buy them, the better it is.

Let us write this strategy as an optimization problem:

max
q∈Q

Na∑
i=1

T∑
t=1

(T + 1− t)qti (3)

Note that for this strategy, we do not consider the value of Mψ(q). This strategy is very

elementary, and it does not need to be written as an optimization problem. This model is

based on the principle that liquidating your asset faster you would reduce the exposition

and supposedly reduce the risk of losing. However, we are going to see that this idea is not

necessarily a good one, especially if every asset has different rules for selling (starting day,

the maximum amount per day) and there is hedging or correlation between them.

3.2. Variance Model

The standard deviation is a deviation risk measure (see [20]). A commonly used model

is the approach presented by Markovitz (1952) in [24] that consist of finding an optimal

liquidation strategy for a portfolio minimizing the variance:

min
q∈Q

σ2(Mψ(q)) = min
q∈Q
〈q,Σq〉 . (4)

Here, Σ is the covariance matrix of ψ and as we said before, we eliminate the expected value

constraint of the classical model. The Problem 4 is a quadratic problem in a convex and

compact setting, so the problem has always a solution, which is not necessarily unique. An

advantage and feature of this model is that the calculus of the covariance matrix Σ can be

very accurate and the quantity of scenarios that we take to solve the Variance Model will

not affect the performance of the optimization. In practice, we can simulate a considerable
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number of samples and calculate the covariance matrix with them (the calculus is just a

process of matrices multiplication). This attribute of the model is advantageous for two

reasons. The first is that, even if Equation 4 defines a quadratic model, it is in practice a

fast model to solve. The second reason is that this model is very stable and robust.

One of the biggest disadvantages is that, since it reduces the variance on both directions,

loss and gain are treated in the same way. Also it does not handle the extreme loss.

Furthermore, if the problem becomes degenerate several numerical issues may arise.

3.3. Expected Shortfall of the Loss Model

The Expected Shortfall Measure (also called the Conditional Value at Risk, Average

Value at Risk or Expected Tail Loss) is a coherent risk measure (See [28, 29, 27]). It can be

interpreted as the expected loss of a given α-quantile. A formal definition, given a random

variable X ∈ Lp and α ∈ (0, 1)

ESα(X) :=

∫ α

0

V aRγ(X)dγ,

where V aRγ(X) is the Value at Risk of X with confidence level γ.

The fact that the Expected Shortfall is a coherent measure implies that it is a convex

function of q ∈ Q. Rockafellar(2000) [23] presented a linear formulation that seeks the

optimal allocation that minimizes the Conditional Value at Risk and necessarily reduces

the Value at Risk.

In the article [23], they introduced the functional

Fβ(q, v) = v +
1

1− β

∫
y∈RTxNa

(−Mψ(q)− v)+ p(y)dy,

where the solution (q∗, v∗) of

min
(q,v)∈Q×R

Fβ(q, v) (5)

is such that v∗ = V aRβ(−M(q∗, ψ)) and Fβ(q∗, v∗) = ESβ(−M(q∗, ψ)). Instead of solving

the Problem 5, they take Ns sample of ψ and approximate Fβ as

Fβ(q, v) ≈ F̂β(q, v) := v +
1

Ns(1− β)

Ns∑
k=1

(−M(q, ψk)− v)+
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and solve

min
(q,v)∈Q×R

F̂β(q, v). (6)

Using some auxiliary variables, we get the following linear problem:

min
(q,α,v,λ)

v +
1

Ns(1− β)

Ns∑
k=1

uk

s. t. q ∈ Q, v ∈ R,

−Mψk
(q)− v ≤ uk, ∀k ∈ {1, . . . , Ns},

uk ≥ 0, ∀k ∈ {1, . . . , Ns}.

(7)

As mentioned before, ideally we are looking for strategies that reduce the risk of loss,

in other words just the risk of the negative part of Mψ(q). So, in Cont (2013)(see [18]) a

loss-based risk measure was introduced where they consider measures that focus only on

the loss part. The conditional value of the loss is an example of this measure. Hence, we

can easily extend the linear model in [23] for the Expected Shortfall to a model for the

Expected Shortfall of the Loss (ESL). Remembering that Mψ(q)− = max{−Mψ(q), 0},

F̂β(q, v) := v +
1

Ns(1− β)

Ns∑
k=1

(
Mψk

(q)− − v
)+
.

The problem can be written as a linear programming introducing a new auxiliary variable

γ ∈ {1, . . . , Ns}

min
(q,α,v,λ)

v +
1

Ns(1− β)

Ns∑
k=1

uk,

s. t. q ∈ Q, v ∈ R,

γk − v ≤ uk, ∀k ∈ {1, . . . , Ns},

γk ≥ −Mψk
(q), ∀k ∈ {1, . . . , Ns},

uk ≥ 0, γk ≥ 0, ∀k ∈ {1, . . . , Ns}.

(8)

Among the advantages, the ESL is a convenient representation of risks, as it measures the

downside risk. Also, it is applicable to non-symmetric loss distribution. Another properties

are that is a convex model respect the portfolio position and it is a loss-based risk measure

which can be used a linear programming approach to solve the minimization.

Among the disadvantages, we can cite that the size of the LP increases when we increase
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the number of scenarios and it focuses only on the tail of the loss, do not reduce more

general risk as the expected of the loss.

4. Model Comparison

Choosing one model over the other will depend on the investor profile. However, it is

important to make a comparison between them to have a better understanding of their

properties. The first thing we are going to compare is the computational cost of each

model. Second, as we are working with risk estimates for solving the optimization, we

need to evaluate how robust are these estimations. So, we will define two measures that

will help us to study the stability of the models reviewed.

4.1. Computational efficiency

Let us write Rq := Na(1 + 2T ), Table 4.1 shows the numbers of the constraints and

variables for each model. A first observation is that the Simpleminded Model has the same

number of constraints and variables than the Variance model, besides that fact that one is

linear and the other quadratic, the difference comes from the fact that the Simpleminded

Model does not have any information about the behavior of the portfolio. In the Variance

Model, although the model is non-linear the fact that the optimization does not depend on

the amount of scenarios (the input is just the covariance matrix), makes this model faster

than the ESL Models when the number of simulations is big. Because the ESL Model

depends on the number of scenarios, we need to choose an appropriate set of scenarios that

are representative of the distribution ψ but not so big that the optimization algorithm

could not converge in a reasonable time.

Model Variables Constraints Problem Type

Simpleminded TNa Rq Linear
Variance TNa Rq Quadratic Convex
Ex. Sh. Loss TNa + 1 + 2Ns Rq + 2Ns Linear

Observation 4.1. We are going to refer to the order of the optimization problem as O(n),
which means that the computational time of the model depends linearly of n. There, we
write O(Ns) when the optimization problem depends linearly on the size of the sample, and
we write O(NaT ) when it depends on the number of asset and time step T . When it depends
on the size of the sample Ns and the number of asset and time step NaT independently,
we write only O(Ns) because in practice Ns � NaT .
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4.2. Robustness

In practice, we can not work directly with the process ψ because of its complexity and

because we do not want to make any assumption about it. Because every process could be

very complex independently and combine, we are going to use Monte-Carlo simulations to

compute an approximation of the risk measures.

Consider that we have a risk functional F and q∗ ∈ Q solution of Equation 2 and suppose

that Ω is a huge finite set of all possible scenarios of ψ. To solve Problem 2, we use the

linear models taking a sample with K scenarios of Ω and using an approximation F̂ of F

to solve

min
q∈Q

F̂ ({Mψk
(q)}k∈K). (9)

We are going to denote qK the solution of Problem 9. We want to study how close is

Mψ(qK) from Mψ(q∗).

There is a trade-off between the computational time and the quality of the solution if

we increase the number of scenarios we are going to have a better solution but with an

efficiency cost. We need to study the size of a representative number of scenarios. For this

reason, we are going to use two tests for the robustness. They are going to be called a Risk

Functional (RF) Robustness and Cumulative Distribution Function (CDF) Robustness.

The RF Robustness concerns how the risk value used in the optimization is behaving when

the numbers of scenarios are increasing. The CFR studies the L∞ norm of the cumulative

function CF of Mψ(q).

Definition 4.1. The Risk Functional Robustness is the study of the behavior of

|F (Mψ(qK))− F (Mψ(qK
′
))|

F (Mψ(qK))
, (10)

when |K|, |K ′| → |Ω|.

Definition 4.2. The Cumulative Distribution Function Robustness is the study of the be-
havior of

‖CF (Mψ(qK))− CF (Mψ(qK
′
))‖∞, (11)

when |K|, |K ′| → |Ω|.

5. Illustrative Example

Let us consider a a simple and fictional portfolio formed by

We simulated 1, 000, 000 scenarios for the share S using a Brownian motion (see [26]) with
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Asset Product Position Exp Strike Max Initial
Day p/ Day Day

1 Option Call -4000 60 1.2 2000 5
2 Option Put 1000 60 1.2 1000 5
3 Forward 1000 60 1.2 1000 2
4 Share 1000 N/A N/A 1000 1

Table 1: Portfolio

annual volatility of 0.25 and annual drift 9.00%. The annualized risk-free interest rate was

8.00%. The three derivatives are associated with the same share S of the first asset with

initial value S0 = 1, and the mark-to-market values of the options were calculated using

the Black-Scholes formula (see [25]). The initial value of the portfolio P0 is 931.3.

The Simpleminded Model did not need the simulations, for the Variance Model, we used

all the scenarios to calculate the covariance matrix, for the ESL Model, we choose 6, 500

random scenarios from the 1, 000, 000 scenarios simulated. Finally, for the ESL Model we

used the confidence level β = 0.05.1

Table 2 shows the risk statistics of the solution of the different models.

Models Std. Des. CV aR0.05 V aR0.05 E(X−) Op. Time (s)

Simpleminded 83.2 213.0 137.5 65.4 9.4
Variance 19.2 49.8 26.2 14.8 5.5
Ex. Sh. Loss 19.6 49.7 25.3 13.9 22.9

Table 2: Statistics of Mψ(q).

An important question is how the holder of the portfolio will value it in a liquidation

Models CV aR0.05 V aR0.05 E(X−)

Simpleminded 77.1 85.2 93.0
Variance 94.6 97.2 98.4
Ex. Sh. Loss 94.7 97.3 98.5

Table 3: Percentage of the value the initial portfolio that the holder will consider for warranty.

condition. In this example, the initial value of the portfolio is 931.3, however as we showed

1The optimization problems were run using Gurobi Optimizer, see [1]. We choose to use it due to its
satisfactory handling of sparsity.

10



in Table 2 different strategies give different risks. For example, use the strategy from the

Simpleminded Model and the holder has a very adverse risk profile, he should consider the

CV aR value, i.e., price the warranty as 77.1% of the original value, however if the holder

does not have a very risk aversion he may use the percentage of the expected of the loss,

which is 93.0%, see Table 3. On the other hand, if the holder consider the strategy of

the Variance Model or the ESL Model, and he has a very adverse risk profile, he is going

to price the warranty with a bigger value, 94.6% and 94.7% respectively, than using the

strategy from the Simpleminded Model and having a small adverse risk profile. Table 3

shows us the advantage of using strategies that focus in reducing the risk, for example, the

holder could ask for less collateral, or the owner will have more margin before the holder

asks for more collateral.

Even more, Figures 1, 2 and 3 show the optimal strategies q and the histograms of Mψ(q),

where they present that the Simpleminded Model is much risky than the others. In figures

2 and 3 we can see that it does not matter if we can liquidate an asset at the initial time,

is more important to reduce the general risk. Also, in these figures, we can observe that

although the solutions q are different for the Variance Model and the ESL Model, the risks

are similar (see also Table 2 and Table 3). We will see later that these risks will differ

when we incorporate the intra-day variations.

Remark 5.1. Notice that the histograms and the calculus of the statistics were made using
all the scenarios. It does not matter if we took a few scenarios to find q for the optimization
problem, as we want to study the behavior of the random variable Mψ(q).

Figure 1: Strategy q and distribution of Mψ(q) for the Simpleminded Model.
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Figure 2: Strategy q and distribution of Mψ(q) for the Variance Model.

Figure 3: Strategy q and distribution of Mψ(q) for the Expected Shortfall Model.

5.1. Robustness of the ESL Model

We are going to study the behavior of the solution using the robustness defined above

for the ESL model, which depends on the number of samples.

We ran the model with 1, 000 scenarios, then with other 1, 500 different scenarios and so

on until 6, 500 scenarios. The graphics on the left side of Figures 4 and 5 show that the

ESL Model is very robust, as it did not take more than 4, 000 scenarios to become very

stable. See the graphics on the right side of Figures 4 and 5.
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Figure 4: CDF Robustness.

Figure 5: RF Robustness.

6. Execution Price

In almost every sell or buy process of an asset, the final execution price will differ from

the market value. This discrepancy is due to liquidation issues in the market, the alteration

of the price caused by the transaction itself or transaction costs, the bid/offer price and

the lack of market depth.

In the previous section, we reviewed some essential risk aversion models to find discrete

strategies. Nevertheless, the strategy qit can be executed at any time during the interval

(t − 1, t], not necessarily at a fixed time t. Thus, this discretization causes a loss of

information of the price between periods (intra-day price), besides these models do not

consider the issues mentioned above. Motivated by these issues, different models have

been introduced. Two models we should highlight are the articles of Bertsimas & Low
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(1998) (see [17]) and Almgren & Chriss (2000) (see [12]).

We will briefly review the models in [17] and [12]. As a consequence of their work, we

will present a simplified model, where this simplification makes it easier to incorporate the

perturbation effect in the liquidation models.

6.1. Basic Concepts and Models’ Review

6.1.1. Intra-day Price

The models we discussed in Section 2 lead to optimal discrete strategies of the amount

we should liquidate every day until the day T . The problem with such approach is that it

assumes that the liquidation of the asset i will be at the end of the period or during an

exact time. However in practice, the execution takes place all along caused by the lack of

liquidity of the market or by trader’s decision. Thus, being exposed to intra-day variations.

In Figure 6, we show the effect of time discretization, for each day and only one sample, it

shows we may be subject to a lot of possible prices.

Figure 6: Up: One sample for 10 days with time steps of 30 minutes. Down: The box-plot for the daily
price variation.
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6.1.2. Price Impact

Bertsimas and Low (1998) (see [17]) present optimal dynamic strategies to minimize

the expected cost of trading a large block of equities over a fixed time horizon. Moreover,

they present a model for the price of an asset affected by the impact of the amount of the

asset.

One such model is the one called ’linear-percentage temporary’ (LPT). Another model is

presented in Almgren and Chriss (2000) (see [12]), it is based on the idea of [17]. Never-

theless, it aims to find static strategies that minimize not only the expected cost but also

the volatility risk. They suppose that they have a permanent impact on the price and a

temporary impact on the price

6.2. Execution Price Model

Recall that we are seeking strategies that minimize the risk of Mψ(q), where

Mψ(q) =
∑
(i,t)∈I

ψtiq
t
i

and

ψti = mi(ϕ
t
ie
−rt − ϕ0

i ).

Hence, if we consider that we have a permanent impact over ϕ that depends on q ∈ Q,

Mψ would lose the linearity concerning q ∈ Q. Thus, in the minimization problems, the

objective function would lose the quadratic behavior in the Variance Model and the linearity

in the ESL Model. Another difficulty is to find good estimations for the parameters of the

models.

The issues presented above motivate us to simplify the model, instead of supposing that

we know the behavior of any impact function, we consider that the price for each asset i

has only temporary perturbation δ. With this, we write,

ϕ̃ti := ϕti(1 + δti), (12)

where ϕ̃ti is the execution price, ϕti is the expected price at the time t with no-impact and

δti is the perturbation caused by the intra-day variations and the price impact. Notice that

Equation 12 is a simplification of the LPT model presented in (see [17]) with the difference

that we do not make any a priori hypothesis from the behavior of the random variable δ.

Also, δ could incorporate some transaction costs.
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Observation 6.1. Hereafter, we will refer as intra-day price both the effect of the intra-
day price and the price impact.

Therefore, we define the execution loss/gain ψ̃ for the asset i at the time t:

ψ̃ti =mi(e
−rtϕti(1 + δti)− ϕ0

i )

=ψti(1 + δti) +miϕ
0
i δ
t
i .

(13)

And following the idea of [12], we are going to focus on reducing the variance of Mψ̃(q),

changing ψ by ψ̃. We now introduce some hypothesis on {δti}(i,t)∈I ,

1. {δti}(i,t)∈I is a set of independent random variables for all (i, t) ∈ I and {δti}Tt=1 are

identically distributed for all i ∈ {1, . . . , Na}.
2. δsj is independent of ψti for all (j, s) ∈ I and (i, t) ∈ I.

We recall the following properties for two independently random variables X and Y :

1. cov(X, Y ) = 0,

2. σ2(XY ) = σ2(X)σ2(Y ) + E2(Y )σ2(X) + E2(X)σ2(Y ),

3. cov(X,XY ) = E(Y )σ2(X).

With these, we calculate the variance of only ψ̃ti :

σ2(ψ̃ti) =σ2(ψti(1 + δti)) + (miϕ
0
i )

2σ2(δti) + 2miϕ
0
i cov(ψti(1 + δti), δ

t
i)

=σ2(ψti) + σ2(ψtiδ
t
i) + 2 cov(ψti , ψ

t
iδ
t
i) + (miϕ

0
i )

2σ2(δti) + 2miϕ
0
i (cov(ψti , δ

t
i) + cov(ψtiδ

t
i , δ

t
i))

=σ2(ψti) + σ2(ψti)σ
2(δti) + E2(ψti)σ

2(δti) + E2(δti)σ
2(ψti)

+ 2E(δti)σ
2(ψti) + (miϕ

0
i )

2σ2(δti) + 2miϕ
0
iσ

2(δti)E(ψti)

=σ2(ψti)(1 + 2E(δti) + E2(δti)) + σ2(δti)(σ
2(ψti) + (miϕ

0
i )

2 + E2(ψti) + 2φ0
iE(ψti))

=σ2(ψti)(1 + E(δti))
2 + σ2(δti)(σ

2(ψti) + (miϕ
0
i + E(ψti))

2).

(14)

Using that the perturbations δti are independent, we conclude that the covariance of ψ̃ti

and ψ̃t
′

i′ where (i, t) 6= (i′, t′) is

cov(ψ̃ti , ψ̃
t′

i′ ) = cov(ψti , ψ
t′

i′ ). (15)

Hence we can write the covariance matrix for ψ̃ as

Σ̃ := Σ(ψ̃) = Σ(ψ) + ∆(ψ, δ), (16)
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where ∆(ψ, δ) is a diagonal matrix with σ2(ψti)((1 +E(δti))
2− 1) +σ2(δti)(σ

2(ψti) + (miϕ
0
i +

E(ψti))
2) in the diagonal.

Therefore, if we want to reduce the effect of the intra-day price in the liquidation process,

we can solve the Variance Model considering the covariance matrix Σ(ψ̃) instead of Σ(ψ).

min
q∈Q
〈q, Σ̃q〉. (17)

Observation 6.2. A simple idea to incorporate the perturbation in the ESL Model is to
produce samples not only for Sti but also of δti and solve the optimization adding these
samples. However, this approach significantly affects the performance of the models because
the linear problems depend directly on the amount of scenarios. In the next section, we
will introduce a technique to treat the intra-day price in the linear models without affecting
their performances.

Proposition 6.1. Assume that E[δti ] = 0 and σ2(δti) = σ2
δi

, ∀(i, t) ∈ I, and that the daily
limitation for liquidation is kti = 1, ∀(i, t) ∈ I. Then the solution of

min
q∈Q

1

2
〈q,∆(ψ, δ)q〉 (18)

is

(qti)
∗ =

1

(dt)2

(
T∑
t=1

1

(dt)2

)−1
,

where (dti)
2 := σ2(ψti) + (φ0

i + E(ψti))
2 and is independently of σ2(δti).

Proof. First, notice that (dti)
2 > 0, because σ2(ψti) = 0 and

miϕ
0
i + E(ψti) = miE(ϕtie

−rt) = miϕ
t
ie
−rt = 0

means that certainly the asset i is going to loose everything at the time t > 0. Problem 18

is then equivalent to

min
q

1

2

∑
(i,t)∈I

(qtiσ
2
δi
dti)

2,

s. t.
T∑
t=1

qti = 1, ∀i ∈ {1, . . . , Na},

qti ≥ 0, ∀(i, t) ∈ I.

(19)

Then, if σ2
δi

does not depend on t and the Problem 19 can be solved independently for
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each asset i, then without loss of generality we can write:

min
q

1

2

T∑
t=1

(qtdt)2

s. t.
T∑
t=1

qt = 1, qt ≥ 0, ∀t ∈ {1, . . . , T}.

(20)

The optimization problem in Equation 20 has a strictly convex objective function in a

compact space, hence it has a unique solution, and we can use the Karush-Kuhn-Tucker

(KKT) conditions (see [8]) to find it. Therefore

qt∗ =
1

(dt)2

(
T∑
t=1

1

(dt)2

)−1
. (21)

Observation 6.3. The model presented in this section is not far away from the model
of [12]. Despite not assuming a dependence on q of the price impact, we obtain that the
variance of the intra-day price in our model is

T∑
t=1

(qt)2(dt)2.

Therefore, we also obtain a quadratic minimization over q in function of the variance.

7. A Tikhonov Type Regularization to Reduce Both Risks Simultaneously

Reviewing Section 2 and 6 we can find some relevant properties of the Variance Model.

In Section 2 we showed that the Variance Model is a robust model and it could be solved

within at a reasonable computational time. Furthermore, in Section 6 we showed that it

can incorporate intra-day risk without altering its efficiency. The idea consists in replacing

the covariance matrix Σ by Σ + ∆ and proceed exactly as before.

On the other hand, the Expected Shortfall of the Loss (ESL) Model seems to be more effec-

tive controlling losses. However, as we studied in Section 5, these linear models present a

trade-off between robustness and computational efficiency, caused by the need of numerous

scenarios for the estimation of the functional to represent well uncertainty. Computational

limitations preclude an arbitrary choice of a number of the sample. For the same reason,

we do not recommend simulating the intra-day perturbations while generating the asset
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sample as we showed in the Remark 6.2.

In this section, we shall present a formulation that takes the advantages of the VM and used

to increase the robustness of the ESL Model. Furthermore, we incorporate the intra-day

risk without increasing the numerical complexity. This technique will also help to control

for one side the risk of large losses and on the other side to control a more global risk as

is the variance.

7.1. Preliminaries

Consider the linear formulation F̃ of the Expected Shortfall of the Loss (ESL) Model.

As we remark in Observation 6.2, an idea is to incorporate the effect of the intra-day price

is to minimize the linear models using ψ̃ instead of ψ, i.e.

min
q∈Q

F̃ (Mψ̃(q)), (22)

where ψ̃ti depends on the underlying share Sti and the perturbation δti as in Equation 13.

Then, to solve Problem 22, we need not only to simulate scenarios for all Sti but also for

all δti . This means that for every simulation k ∈ {1, . . . , Ns} we will have Nδ simulations,

where Nδ represent the number of simulations of δti . Hence, the linear problem becomes a

model of order O(NsNδ). Which leads us to conclude that this idea will bring operational

issues because the runtime is going to be extremely high.

Another approach is to reduce the variance of Mψ̃(q) at the same time we minimize

F̃ (Mψ(q)), we do this adding Var(Mψ̃(q)) = 〈q, Σ̃q〉 to the objective function as in [4, 3].

Thus, we now consider the problem

min
q∈Q

γF̃ (Mψ(q)) + (1− γ)〈q, Σ̃q〉, (23)

where γ ∈ (0, 1) is a parameter.

Recalling that Σ̃ is a covariance matrix we can rewrite Problem 23. Indeed, since Σ̃ is a

covariance matrix, it is a symmetric and positive semi-definite matrix. Hence, we can use

an eigenvector decomposition to write

Σ̃V = V D,

where V is an orthonormal matrix with the eigenvector of Σ̃ in the columns and D is diago-

nal, with nonnegative eigenvalues. Let W := V D
1
2 and use it as a Cholesky decomposition
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for Σ̃,

Σ̃ = V DV ′ = V D
1
2D

1
2V ′ = (V D

1
2 )(V D

1
2 )′ = WW ′.

Hence,

〈q, Σ̃q〉 = 〈q,WW ′q〉 = 〈W ′q,W ′q〉 = ‖W ′q‖22,

and Problem 23 becomes

min
q∈Q

γF̃ (Mψ(q)) + (1− γ)‖W ′q‖22, (24)

where the right hand side of the term in Equation 24 is a Tikhonov regularization with

term W (see [5]) for the Linear Model using an L2 semi-norm respect to q.

The benefits of adding the regularization terms are several. First of all, as we will show

in the next examples the model becomes more stable. Secondly, it is a simple tool for

intra-day-risk control. On the other hand, one of the disadvantages of the quadratic regu-

larization is that the models become harder to solve computationally. Table 4.1 shows that

ESL Model has O(Ns) variables and O(Ns) constraints, hence Problem 23 is a quadratic

problem with O(Ns) variables and O(Ns) constraints. Nevertheless, avoiding computa-

tional complexity is one of our goals. Thus this approach will not help us to keep the

model simple and fast.

7.2. The Semi-Norms ‖ · ‖W 1 and ‖ · ‖W 2

We remark that the regularization term is just the semi-norm computed according to

the structure defined by W . Then, we are going to write ‖ · ‖W 2 to refer to this semi-norm,

‖q‖W 2 := ‖W ′q‖2 =

 ∑
(j,s)∈I

〈q, wsj〉2
 1

2

. (25)

Remembering that ‖ · ‖W is a semi-norm if:

• ‖aq‖W = |a|‖q‖W , ∀a ∈ R.

• ‖q + p‖W ≤ ‖q‖W + ‖p‖W .

Considering that the semi-norm ‖·‖2W2 is as a quadratic regularization term and on the other

hand we are trying to avoid the issues of adding this term in large-scale linear problem, it
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is natural to ask if we can replace the L2 norm of W ′q for an L1 norm in Equation 24, i.e.,

min
q∈Q

γF̃ (Mψ(q)) + (1− γ)‖W ′q‖1. (26)

Observation 7.1. The idea of changing the L2 norm to the L1 norm was motivated by
the work in [16] applied to an inverse problem. The objective of this change of the norm is
different from our case. However, it inspired us to take this direction.

To study the implications of this change, let us first define

‖q‖W 1 := ‖W ′q‖1 =
∑

(j,s)∈I

|〈q, wsj〉|. (27)

And recall the following relationship between the norms L1 and L2,

‖q‖L2 ≤ ‖q‖L1 ≤ (NaT )
1
2‖q‖L2 . (28)

This property is easy to check using the definition of the norm, and it will help us to prove

Proposition 7.1, which it is a result that assures us that the semi-norm W 1 will keep q

close to the optimal variance. In practice, the optimal variance could not be zero, so if we

minimize the term ‖q‖W 1 , we can not be sure that we are close to minimum variance. To

avoid this problem, we first solve

qa := argmin
q∈Q

〈q, Σ̃q〉. (29)

And we use this as a priori term in Problem 26. Therefore, we solve

min
q∈Q

{
γF̃ (Mψ(q)) + (1− γ)‖(q − qa)‖W 1

}
. (30)

Proposition 7.1. If qa ∈ Q solves the Problem 29 and {qn} ⊆ Q is such that ‖qn −
qa‖W 1

n→∞−−−→ 0, then Var(Mψ̃(qn))
n→∞−−−→ Var(Mψ̃(qa)).

Proof. Take qa ∈ Q solution of Problem 29 and qn ∈ Q, then

Var(Mψ̃(qa)) ≤ Var(Mψ̃(qn))⇒ ‖W ′qa‖22 ≤ ‖W ′qn‖22,

then

‖qa‖W 2 ≤ ‖qn‖W 2 ,
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by the definition of semi-norm,

‖qn‖W 2 ≤ ‖qn − qa‖W 2 + ‖qa‖W 2

and using the inequality for the norms in Equation 28

‖qn − qa‖W 2 ≤ ‖qn − qa‖W 1 .

Therefore,

‖qa‖W 2 ≤ ‖qn‖W 2 ≤ ‖qn − qa‖W 1 + ‖qa‖W 2 . (31)

Letting ‖qn−qa‖W 1
n→∞−−−→ 0 Equation 31, then ‖qn‖W 2

n→∞−−−→ ‖qa‖W 2 . Finally, remembering

that ‖q‖2W 2 = 〈q, Σ̃q〉 = Var(Mψ̃(q)) we conclude the result.

Remark 7.1. The last result shows the importance of using the a priori qa. Without it,
we could not be close to the optimal variance whenever we add the semi-norm W 1 to the
linear model.

Remark 7.2. The used of an L1 norm is not to obtain a spare solution of q. In fact,
because we are using an a priori solution qa that comes from a quadratic minimization
we cannot guarantee a spare solution. The change of norm is to write the minimization
problem as a linear programming problem as we will show in Lemma 7.1.

7.3. Linearization of ‖ · ‖W 1

Proposition 7.1 shows that if we seek strategies q ∈ Q close in the semi-norm ‖ · ‖W1

to a solution qa of Problem 29, the variance of Mψ̃(q) will be near the optimal. Moreover,

the change of the norm leads us to an equivalent linear model for Problem 30, as we prove

in the following lemma.

Lemma 7.1. Consider qa ∈ Q a solution of Equation 29 and γ ∈ (0, 1). The minimization
problem

min
q∈Q

{
γF̃ (Mψ(q)) + (1− γ)‖q − qa‖W 1

}
(32)

is equivalent to the linear problem

min
(q,µ,η)

γF̃ (Mψ(q)) + (1− γ)
∑

(j,s)∈I

(µsj + ηsj )

s. t. q ∈ Q,
µsj − 〈q, ωsj 〉 ≥ −〈qa, ωsj 〉, ∀(j, s) ∈ I,
ηsj + 〈q, ωsj 〉 ≥ 〈qa, ωsj 〉, ∀(j, s) ∈ I,

µsj ≥ 0, ηsj ≥ 0, ∀(j, s) ∈ I.

(33)
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Proof. Let (q̂, µ̂, η̂) be a solution of Problem 33. So, µ̂ must satisfy

µ̂sj = max{〈q̂ − qa, ωsj 〉, 0}, ∀(j, s) ∈ I,

because if we fix q̂ we are minimizing µsj with the constraints µsj ≥ 0 and µsj ≥ 〈q̂− qa, ωsj 〉.
The same argument leads to

η̂sj = max{−〈q̂ − qa, ωsj 〉, 0}, ∀(j, s) ∈ I.

Now, suppose that q∗ is a solution of Problem 32 but not a solution of Problem 33. Then,

min
q

{
γF (Mψ(q)) + (1− γ)‖q − qa‖W 1

}
= γF (Mψ(q∗)) + (1− γ)‖q∗ − qa‖W 1

= γF (Mψ(q∗)) + (1− γ)
∑

(j,s)∈I

|〈q̂∗ − qa, ωsj 〉|

= γF (Mψ(q∗)) + (1− γ)
∑

(j,s)∈I

(
〈q∗ − qa, ωsj 〉+ + 〈q∗ − qa, ωsj 〉−

)
.

If we define (µ∗, η∗) as

(µ∗)sj := max{〈q∗ − qa, ωsj 〉, 0}, ∀(j, s) ∈ I

and

(η∗)sj := max{−〈q∗ − qa, ωsj 〉, 0}, ∀(j, s) ∈ I,

we have that (q∗, µ∗, η∗) satisfies the constraints of Problem 33. Hence, we can write

min
q

{
γF (Mψ(q)) + (1− γ)‖q − qa‖W 1

}
= γF (Mψ(q∗)) + (1− γ)

∑
(j,s)∈I

(
(µ∗)sj + (η∗)sj

)

> γF (Mψ(q̂))+(1−γ)
∑

(j,s)∈I

(
µ̂sj + η̂sj

)
= γF (Mψ(q̂))+(1−γ)

∑
(j,s)∈I

(
〈q̂ − qa, ωsj 〉+ + 〈q̂ − qa, ωsj 〉−

)
= γF (Mψ(q̂)) + (1− γ)‖q̂ − qa‖W 1 .

This is a contradiction. A very similar argument proves that if (q̂, µ̂, η̂) is a solution of

Problem 33, q̂ must be solution of Problem 32.

Remark 7.3. Instead of Σ̃ we can use a different covariance matrix. For example, if we
do not have information on the intra-day price we can just use the covariance matrix of ψ.
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Nevertheless, it is recommended to use the covariance matrix Σ̃ = Σ(ψ) + ∆(ψ, δ), because
Σ̃ is a positive define matrix, i.e. 〈q, Σ̃q〉 > 0 for all q ∈ Q.

Thus we are led to the following algorithm:

Algorithm 7.1. 1. Solve
min
q∈Q
〈q, Σ̃q〉

and choose a solution qa.

2. Perform a Cholesky decomposition of Σ̃ = WW ′.

3. Solve
min
q∈Q

{
γF̃ (Mψ(q)) + (1− γ)‖q − qa‖W 1

}
.

7.4. Numerical Issues

In practice, solving this two-step problem does not add a significant complexity to

the problem of minimizing F̃ (Mψ(q)). We confirm in Table 4.1 that the ESL Model has

O(Ns) variables and O(Ns) constraints. The problem 26 is a linear programming problem

with NaT more variables and 4NaT more constraints. However Ns � TNa, and thus the

operational time of the optimization with regularization will be of the same order of the

optimization without it. Additionally, despite the fact that we are solving a quadratic

model before Problem 26, the operational time of the whole model will not be affected

because this time for the Variance Model is significantly less than the that ESL Model.

7.5. Regularization in Optimal Allocation

In Section 3 we reformulated the allocation models to use them to reflect liquidation

strategies. Now, we reformulate the liquidation strategy with the regularization term to

use it in the allocation context. There are several alternatives to deal with allocation when

we have a multi-objective optimization problem, see [7, 24, 4, 3]. Although, it will depend

on the investor profile which is better for his purposes.

The approach that we are going to present takes into account our principle of keeping

controlled the operational costs. Thus, consider a linear formulation F̃ of the ESL Model.

We assume that we have an initial investment of I0 and that we want to compose a

portfolio with the restriction of having an expected value of at least ε of the maximum

value. However, minimizing the risk F̃ and the variance at the same time. To simplify we

are going to suppose that T = 1. Therefore, we present a formulation that proceeds as

follow,
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Algorithm 7.2. 1. Solve
max
q

〈E(ψ), q〉

s. t. q ≥ 0,

Na∑
i=1

qimiϕ
0
i = I0.

(34)

and choose a solution qe.

2. Solve
min
q

〈q, Σ̃q〉

s. t. q ≥ 0,

〈E(ψ), q〉 ≥ ε〈E(ψ), qe〉,
Na∑
i=1

qimiϕ
0
i = I0.

(35)

and choose a solution qa.

3. Perform a Cholesky decomposition of Σ̃ = WW ′.

4. Solve
min
q

{
γF̃ (Mψ(q)) + (1− γ)‖q − qa‖W 1

}
s. t. q ≥ 0,

〈E(ψ), q〉 ≥ ε〈E(ψ), qe〉,
Na∑
i=1

qimiϕ
0
i = I0.

(36)

In conclusion, there are several applications that can be given to the ‖ · ‖W 1 , depending

on the focus of the problem. For example, we can use it as a constraint if we wanted

to impose a maximum value of variance. Also, we can use it in the context of allocation

problems.

8. Illustrative Examples

This section presents a few examples that illustrate the claims of Section 7. The first

one in Section 8.1 concerns the same portfolio used in Section 5 but using real data of the

underlying asset; we are going to study the effect of using ‖ · ‖W 1 for different covariance

matrices. The second one in Section 8.2, wherein in a new portfolio we will remove the

restriction of sales by day and also consider the operational implications of using the ‖·‖W 2

semi-norm instead of ‖ · ‖W 1 . Also, we will use the ‖ · ‖W 1 semi-norm as a constraint rather

than as an objective function.

25



Figure 7: Daily Prices for SCTY.

The upshot is that the use of regularization in the objective function can help improve

the robustness of the liquidation strategies without significant increase in the complexity.

Furthermore, this is done while still keeping the financial interpretation and relevance of

the model.

8.1. Changing the Covariance Matrix

Consider the same portfolio like the one illustrated in Section 5. However, instead of

using a fictitious asset, we shall use the SolarCity Corp (SCTY)2 share as the underlying

asset. Hence, we fit an ARMA-GARCH model (see [6]) to the log-returns of the historical

data. Figure 7 shows the historical prices of SCTY and Figure 8 shows the histogram of

the log-return. Then, we simulate 500, 000 scenarios.

To simplify the analysis, in this example we will not run the Simpleminded Model. For

the Variance Model, we use all the scenarios to calculate the covariance matrix. Also,

motivated by the robustness of the Example in Section 5, we use 7, 000 scenarios in the

ESL Model. Finally, in the ESL Model, we use the confidence level of β = 0.053.

Table 4 shows the statistics for Mψ(q). There we can see that the results are similar to

the results of Example 5. Indeed, the Variance and ESL models have the best results in

general.

Moreover, let us add a perturbation of ϕ as in Section 6, i.e., instead of using ψ we used

ψ̃t = ψt(1 + δt) +mϕ0δt and simulated the perturbation δ using the intra-day information

2Prices were provided by the TradeStation Academic Program through the TradeStation platform.
3The optimization problems were run using Gurobi Optimizer, see [1].
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Figure 8: Log Returns for SCTY.

Models Std. Des. Min CV aR0.05 V aR0.05

Variance 1,379 42,240 5,710 3,879
Ex. Sh. Loss 1,526 44,290 5,639 3,874

Table 4: Statistics of Mψ(q) for Example 8.1.

Models Std. Des. Min CV aR0.05 V aR0.05

Variance 1,407 45,540 5,744 3,914
Ex. Sh. Loss 1,562 47,690 5,698 3,903

Table 5: Statistics of Mψ̃(q) for Example 8.1.
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Models Std. Des. Min CV aR0.05 V aR0.05

Ex. Sh. Loss γ = 0.90 1,612 47,800 5,953 3,997

Table 6: Statistics of Mψ̃(q) with ‖ · ‖W1 for Ex. 8.1, with W s. t. Σ = WW ′.

Models Std. Des. Min CV aR0.05 V aR0.05

Ex. Sh. Loss γ = 0.90 1,412 46,900 5,674 3,881

Table 7: Statistics of Mψ̃(q) with ‖ · ‖W1 for Ex. 8.1, with W s. t. Σ + ∆ = WW ′.

of SCTY. The intra-day prices were taken with intervals of one minute during 60 days,

and we fitted a non-parametric distribution (see [7]). So, Table 5 shows the statistics of

Mψ̃(q) for the different models. Although the risks do not change significantly, they get

worse when we compared it with the results of the same model in Table 4.

Furthermore, we ran the ESL model adding the regularization term ‖·‖W 1 as in Equation 32

using a Cholesky decomposition. We do this for two covariance matrices Σ(ψ), Σ(ψ) +

∆(ψ, δ), the results are displayed in Table 6 and Table 7, respectively. We can infer that

Σ(ψ) + ∆(ψ, δ) is the appropriate covariance matrix to use because it reduces almost all

the risk factors as compared with Table 5. Indeed, when we use Σ, we are not adding any

information to the intra-day risk, we are just controlling the variance.

In the case of the ESL Model, as we saw in Section 2, it seems to be very stable.

Nevertheless adding the regularization, especially Σ+∆, it helps to improve the robustness

(see Figure 10) and reduce the risk (CVaR) without increasing the operational time as we

show in Figure 9.

8.2. An Example without Daily Limitation

Now we have a simpler portfolio using the same underlying asset STCY of Example 8.1

however we eliminate the restrictions for the maximum we can sell or buy per day. The

purpose of this example is to see the effect of the regularization when we did not use a daily

limit to the sale or purchase of the assets. Also, we will analyze the problem of adding the

quadratic term as regularization as Equation 31 instead of linear regularization. As a refer-

ence, we show in Table 9 the results of the Simpleminded Model and the Variance Model.

For an additional analysis, we add the expected value of the loss of Mψ̃(q), Ê(M−
ψ̃

(q)),

in all statistical tables. Also, from now on, we are going to use only the regularization

term in Σ̃ = Σ + ∆. We ran the ESL Model for different values of γ between 0.9 and
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Figure 9: ESL Model for Example 8.1. Left: CVaR of the loss of Mψ̃(q). Right: Operational Time.

Figure 10: Robustness of ESL Model for Example 8.1. Left: RF Robustness. Right: CDF
Robustness.
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Asset Product Position Exp Strike Max Initial
Day p/ Day Day

1 Option Call -2200 60 70 N/A 5
2 Option Put 2000 60 70 N/A 5
3 Forward 2000 60 70 N/A 2

Table 8: Portfolio for Example 8.2.

Models Std. Des. Min CV aR0.05 V aR0.05 Ê(X−)

Simpleminded 15,938 262,680 39,686 29,453 13,674
Variance 1,182 25,550 3,515 2,522 1,098

Table 9: Statistics of Mψ̃(q) for Ex. 8.2.

1.0, with a sample size of 7, 000. Remembering that γ = 1.0 means that the model does

not have regularization. In Table 10 we observe the effect of adding the regularization.

Models Std. Des. Min CV aR0.05 V aR0.05 Ê(X−)

ESL γ = 1.00 1,618 39,181 3,493 2,462 1,214
ESL γ = 0.99 1,559 34,945 3,420 2,437 1,211
ESL γ = 0.98 1,514 39,659 3,476 2,424 1,168
ESL γ = 0.97 1,491 36,373 3,426 2,392 1,125
ESL γ = 0.96 1,245 30,786 3,459 2,460 1,048
ESL γ = 0.95 1,224 29,744 3,470 2,466 1,053
ESL γ = 0.94 1,258 31,595 3,464 2,447 1,037
ESL γ = 0.93 1,229 29,193 3,477 2,468 1,048
ESL γ = 0.92 1,193 28,301 3,497 2,483 1,078
ESL γ = 0.91 1,183 25,612 3,506 2,525 1,096
ESL γ = 0.90 1,182 25,692 3,513 2,516 1,095

Table 10: ESL Model. Statistics of Mψ̃(q) for ESL with ‖ · ‖W1 for Ex. 8.2.

By reducing the value of γ until 0.97, we reduce four of the five risk measures includ-

ing the Expected Shortfall (CVaR). This reduction is caused by the objective function

γFESL(Mψ(q))+(1−γ)‖q−qa‖W1. On one side it seeks to minimize the expected shortfall

of the loss of 〈ψ, q〉 that does not see the intra-day variations. On the other one, the term

on the right hand side minimize the variance of 〈ψ̃, q〉, hence to control (not minimize)

its expected shortfall. Therefore, the combination of minimizing the Expected Shortfall of

Mψ(q) and controlling the Expected Shortfall of Mψ̃(q) produces a strategy that is better
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Figure 11: Strategy q and distribution of Mψ̃(q) for the ESL Model for Ex. 8.2.

Figure 12: Strategy q and distribution of Mψ̃(q) for the ESL Model with γ = 0.8 for Ex. 8.2.

than only minimizing the Expected Shortfall.

Figures 11 and 12 show the difference of using the regularization term. We can see that

using just γ = 0.98 the solution is better distributed in time giving an improvement of the

risk measure.

To study the robustness, we will also consider the model with the quadratic regularization,

i. e.,

γFESL(Mψ(q)) + (1− γ)‖q − qa‖2W 2 .

Thus, we run the three ESL models, without regularization, with ‖·‖W 1 regularization and

with ‖ · ‖W 2 regularization for 5, 000 to 7, 000 scenarios increasing by 200. In all those, we

set γ = 0.9.
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Figure 13: ESL Model for Example 8.2. Left: CVaR of the loss of Mψ̃(q). Right: Operational Time.

Figure 14: Robustness of ESL Model for Example 8.2.Left: RF Robustness. Right: CDF Robust-
ness.

In Figures 13 and 14 it looks like using the linear term we can reduce the ESL and

improve the stability without affecting the runtime. On the other hand, the fact that with

‖ · ‖2W 2 the model is extremely stable is due to the fact the quadratic norm weighs too

much close to compared with the ESL, hence the optimization leads to using only the

variance. Moreover, using the quadratic term takes significantly longer than not using

the regularization or using it with ‖ · ‖W 1 . Consequently, the results in Table 11 confirm

our conclusions, namely, that using ‖ · ‖2W 2 the solution is almost exactly the solution for

variance (see Table 9). However, using ‖ · ‖W 1 keeps the standard deviation close to the

minimum value but also reduce the conditional VaR.
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Models Std. Des. Min CV aR0.05 V aR0.05 Ê(X−)

ESL 1,634 44,638 3,579 2,482 1,212
ESL w W 1, γ = 0.9 1,182 25,830 3,510 2,514 1,095
ESL w W 2, γ = 0.9 1,182 25,571 3,515 2,521 1,097

Table 11: ESL Model. Statistics of Mψ̃(q) for ESL in Ex. 8.2.

9. Conclusions

We have reviewed two of the most important risk measures and their optimization

models. We introduced a technique which incorporates the advantages of the Variance

Model to this linear model. We did this by performing a Cholesky decomposition of the

covariance matrix and adding to a Tikhonov regularization term. This regularization term

is used as an L1 semi-norm which added to the linear model has several practical properties.

Indeed, we can control the price perturbation caused by the impact on the price as the

result of the liquidation process or the intra-day variations, improve the robustness and

control the variance. All of these without further computational cost.
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