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RESUMO

KOMATSUDANI QUISPE, Midory. Sobre a aplicação Baum-Bott. Rio de Janeiro, 2017.
Tese (Doutorado em Matemática)- Instituto de Matemática Pura e Aplicada, Rio de
Janeiro, 2017.

Os índices de Baum-Bott são invariantes importantes em folheações holomorfas
singulares por curvas com singularidades isoladas. Se a folheação tem uma singularidade
não degenerada então seus índices no ponto singular podem ser fácilmente calculados
usando os autovalores da parte linear de um germe de campo de vetores que induz a
folheação em uma vizinhança da singularidade. A aplicação Baum-Bott está definida
no espaço de folheações holomorfas de dimensão um, em uma variedade complexa e
compacta, com fibrado cotangente a folheação fixado. Esta aplicação associa a uma
folheação seus índices de Baum-Bott em cada ponto singular. Restringimos o estudo a
folheações em espaços projetivos complexos. No caso de folheações de dimensão um no
plano projetivo, o posto genérico é conhecido. Damos uma cota superior para o posto
genérico da aplicação Baum-Bott para folheações em espaçõs projetivos, o qual depende
do grau da folheação e a dimensão do espaço projetivo. Mais ainda, estendemos o
resultado dado para o plano projetivo e determinamos o posto genérico para folheações
de grau dois definidas em espaços projetivos de dimensão par, e também para folheações
de grau máximo oito, no espaço projetivo de dimensão três. Além disso, estudamos o
posto na folheação de Jouanolou.

Palavras–chave: Folheações holomorfas, índice de Baum-Bott, aplicação Baum-
Bott, posto genérico, folheação de Jouanolou.



ABSTRACT

KOMATSUDANI QUISPE, Midory. On the rank of the Baum-Bott map. Rio de Janeiro,
2017- Instituto de Matemática Pura e Aplicada.

The Baum-Bott indexes are important invariants of singular holomorphic foliations
by curves with isolated singularities. If a foliation has a non-degenerate singularity, its
indexes at that point can be easily calculated using the eigenvalues of the linear part of a
germ of a vector field, which defines the foliation at a neighborhood of the singular point.
The Baum-Bott map is defined on the space of one-dimensional holomorphic foliations
on a compact complex manifold with a fixed cotangent bundle to the foliation. This map
associates to a foliation its Baum-Bott indexes at each singular point. We concentrate
on foliations on the complex projective space. The generic rank of this map on the space
of one-dimensional foliations on the projective plane is already known. We give an upper
bound of the generic rank of the Baum-Bott map for foliations on projective spaces,
the number depends on the degree of the foliation and the dimension of the projective
space. Moreover, we extend the known results for the projective plane and determine the
generic rank for degree-two foliations on even-dimensional projective spaces, as well as
for degree up to eight on the three-dimensional projective space. Additionally, we study
the rank at the Jouanolou foliation.

Key words: Holomorphic foliations, Baum-Bott index, Baum-Bott map, generic
rank, Jouanolou foliation.
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Introduction

The Poincaré-Hopf theorem relates the Euler characteristic and the Hopf-indexes of a
vector field defined on a manifold. The theorem asserts that the properly counted number
of zeros of a vector field equals the Euler number of a manifold. Consequently, it relates
a topological concept, the Euler characteristic, and an analytic one, the Hopf-index of a
vector field.

Chern classes can be read as obstructions. On a complex manifold the Euler
characteristic coincides with the top Chern class of the manifold. In this case the top
Chern class gives us an obstruction to construct a vector field without singularities. In
general, the Chern classes give us obstructions to construct linearly independent vector
fields. This concept is generalized to vector bundles, and the Chern classes of a vector
bundle give us obstructions to construct global independent sections.

Baum-Bott indexes are related with Chern classes. A one-dimensional holomorphic
foliation on a complex manifold is given by a section of the tensor product of the tangent
bundle and a line bundle. The Chern classes of the tensor product can be calculated
by some local invariants of the foliation around the singularities. This local invariants
are the Baum-Bott indexes of the holomorphic foliation. So, if we know the Baum-Bott
indexes of a holomorphic foliation, we can know the Chern classes of the tensor product
that defines the foliation.

In some cases, the Baum-Bott indexes are easy to compute. If the foliation has only
non-degenerate singularities, the Baum-Bott indexes can be determined by considering the
symmetric functions of the eigenvalues of a germ of vector field that defines the foliation
near the singularity. Conversely, if we know the Baum-Bott indexes at a singular point,
we can determine the eigenvalues of the linear part of the vector field at the singularity,
up to projectivization of the tuple of eigenvalues.

Since the local behavior of a foliation, near a singular point, is determined in most
cases by its eigenvalues, then the Baum-Bott indexes can give us great information. For
instance, if the eigenvalues of the linear part of a vector field at a singular point are in
the Poincaré domain, then the singularity has a behavior of a local atractor (see [10]),
and if they are also non resonant, then the foliation is linearizable at a neighborhood of
the singularity (see [17]).
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A one-dimensional foliation F, on a compact complex manifold M of dimension n, is
a section of TM ⊗L, where L is a holomorphic line bundle on M and TM is the tangent
bundle of M . The line bundle L is the cotangent bundle T ∗F of the foliation F. The set of
foliations on M with cotangent bundle L is denoted by Fol(M,L) = PH0(M,TM ⊗ L).

The Baum-Bott theorem states that the Chern classes of the vector bundle TM ⊗ L
are the sum of suitable Baum-Bott indexes of a holomorphic foliation which has only
isolated singularities and cotangent bundle L. In the following theorem the i-th Chern
class is denoted by ci and the i-th elementary symmetric function of the eigenvalues by
Ci.

Theorem 1 ([27]). Let M be a compact complex manifold of dimension n, L be a
holomorphic line bundle on M and ξ be a holomorphic section of TM ⊗ L with isolated
zeros. Consider the Chern classes:

cν(TM ⊗ L) = cν11 (TM ⊗ L) . . . cνnn (TM ⊗ L),

ν = (ν1, . . . , νn) ∈ Zn≥0 and ν1 + 2ν2 + . . .+ nνn = n.

Then ∫
M

cν(TM ⊗ L) =
∑

p: ξ(p)=0

Resp
{
Cν(Jξ)dz1 ∧ . . . ∧ dzn

ξ1 . . . ξn

}
,

where Jξ =

(
∂ξi
∂zj

)
is the Jacobian matrix and the Grothendieck residue symbol

Resp
{
Cν(Jξ)dz1 ∧ . . . ∧ dzn

ξ1 . . . ξn

}
is the Baum-Bott index Cν of ξ at p.

The Baum-Bott indexes are easier to estimate at non-degenerate singular points. For
instance, let ν = (ν1, . . . , νn) ∈ Zn≥0 with ν1 + 2ν2 + . . . + nνn = n. If p(F) is a non-
degenerate singularity of a foliation F on M , and XF is a germ of vector field which
defines F around p(F), then the Baum-Bott index Cν of F at p(F) is expressed in terms
of the eigenvalues of the linear part of XF at p(F):

BBν(F, p(F)) =
Cν(DXF(p(F)))

det(DXF(p(F))
.

A one-dimensional foliation on the projective space has tangent bundle O(1 − d), for
some non-negative integer d. This number is called the degree of the foliation. The space
of one-dimensional degree-d foliations on the projective space Pn is denoted by Fol(n, d).
A foliation in that space, with only non-degenerate singularities, hasN = cn(Pn, TPn⊗T ∗F)

singular points. The set of those foliations is denoted by Folred(n, d).
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Now, we associate to each foliation its Baum-Bott indexes in the following way. We
enumerate the set

∆ =
{

(ν1, . . . , νn) ∈ Zn≥0 | ν1 + 2ν2 + . . .+ nνn = n
}

= {N0, N1, . . . , Nk},

where N0 = (0, . . . , 0, 1). Let F0 be a foliation with only non-degenerate singularities
and with singular set Sing(F0) = {p0

1, . . . , p
0
N}. Then, there is an open neighborhood

of F0, U ⊂ Folred(n, d), and holomorphic maps, p1, . . . , pN : U → Pn, such that
Sing(F) = {p1(F), . . . , pN(F)} and pj(F0) = p0

j for j = 1, . . . , N . The local Baum-Bott
map BB : U → (Ck)N is defined by:

F 7→ ((BBN1(p1(F)), . . . , BBNk(p1(F)), . . . , (BBN1(pN(F)), . . . , BBNk(pN(F))).

We extend the domain of the local Baum-Bott map to Folred(n, d) by symmetry. More
specifically, we denote by (Ck)N/SN , the quotient of (Ck)N by the equivalence relation
which identifies the points (z1, . . . , zN) and (zσ(1), . . . , zσ(N)), where σ ∈ SN , zi ∈ Ck

and SN is the group of permutations of N elements. In this way we have the map
BB : Folred(n, d)→ (Ck)N/SN :

F 7→ [(BBN1(p1(F)), . . . , BBNk(p1(F)), . . . , (BBN1(pN(F)), . . . , BBNk(pN(F)))],

where [z1, . . . , zN ] denotes the class of (z1, . . . , zN) in (Ck)N/SN .
The global Baum-Bott map, BB : Fol(n, d) (Pk)N/SN , is the rational map which

extends the Baum-Bott map given above.
The Baum-Bott map, for foliations on the projective plane, is not dominant due to

the Baum-Bott formula. In general, the Baum-Bott formula theorem states that the sum
of the Baum-Bott indexes of a foliation, on complex surfaces, is the autointersection of
the normal bundle of the foliation by itself:

Theorem 2 (Baum-Bott formula [2]). Let F be a holomorphic foliation with only isolated
singularities on a compact surface M , then

NF.NF =
∑

p∈Sing(F)

BB(F, p).

If M = P2 and d is the degree of the foliation F, then we get

(d+ 2)2 =
∑

p∈Sing(F)

BB(F, p).
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Gómez-Mont and Luengo asked in [14], if there are other hidden relations between
the Baum-Bott indexes of a degree-d foliation on the projective plane. This question is
equivalent to finding the generic rank of the Baum-Bott map.

Lins-Neto and Pereira in [22] found the generic rank of the map for one-dimensional
foliations on the projective plane:

Theorem 3 ([22]). If d ≥ 2, then the maximal rank of the Baum-Bott map for degree-d
foliations on P2 is

d2 + d.

In particular, if d ≥ 2 then the dimension of the generic fiber of the map is

3d+ 2.

As a consequense, the unique relation among the Baum-Bott indexes is given by the
Baum-Bott formula.

Lins-Neto, in [21], studies the generic fiber of this map for degree-two foliations on
the projective plane. In this case the dimension of a generic fiber is the dimension of the
automorphism group Aut(P2). Then, a generic fiber is an union of orbits of the action of
Aut(P2) on Fol(2, 2). He finds the exact number of orbits.

Theorem 4 ([21]). The generic fiber of the Baum-Bott map for degree-two foliations
on the projective plane P2 contains exactly 240 orbits of the natural action of the
automorphism group Aut(P2).

We are interested in the generic rank of the Baum-Bott map for foliations on high-
dimensional complex projective spaces. Theorem 1 gives us some relations among the
Baum-Bott indexes of a foliation. We want to know if there are other algebraic interactions
between these indexes, too.

In the case of degree-one foliations, we find the maximal rank:

Proposition 1. If n ≥ 2, then the generic rank of the Baum-Bott map for one-
dimensional foliations on Pn of degree one is

n− 1.

In particular, a generic fiber of this map is an union of orbits of the action of Aut(Pn)

on Fol(n, 1) and it has dimension
n(n+ 1).

We give an upper bound for the generic rank of the Baum-Bott map.
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Proposition 2. For n ≥ 2 and d ≥ 2, the generic rank of the Baum-Bott map for degree-d
foliations on the projective space Pn is at most

min{dimFol(n, d)− dim Aut(Pn), (N − 1)(n− 1)}.

If n = 2, the upper bound given in the proposition above is sharp and it is equal to
the maximal rank given in Theorem 3. Moreover, when n = d = 2, the two numbers given
in the upper bound coincide. Then, we have the following conjecture.

Conjecture 1. For n, d ≥ 2, the generic rank of the Baum-Bott map BB : Fol(n, d)

(Pk)N/SN is
min{dimFol(n, d)− dim Aut(Pn), (N − 1)(n− 1)}.

We prove that the conjecture is true for foliations of low degree on P3:

Theorem 5. If d = 2, . . . , 8, then the generic rank of the Baum-Bott map for degree-d
foliations on P3 is

dimFol(3, d)− dim Aut(P3) =
(d+ 1)(d+ 2)(d+ 4)

2
− 16.

In particular, if N(d) = d3 + d2 + 1, a generic fiber of the map BB : Fol(3, d)

(P2)N(d)/SN(d) is a finite union of orbits of the action of Aut(P3) on Fol(3, d).

In general, finding the rank of the Baum-Bott map at a random foliation is difficult.
We compute the rank of this map at the Jouanolou foliation in terms of some linear
transformations. This foliation, on Pn, is defined in the affine coordinate system
(x1, . . . , xn) ∈ Cn by the vector field

n−1∑
i=1

(xdi+1 − xixd1)∂i + (1− xnxd1)∂n.

We need some notation. Let J = {j1, . . . , jr} be an ordered set and Vj, for j ∈ J , be
vectors of same dimension. We denote [Vj]j∈J = [Vj1 . . . Vjr ], the matrix whose column
vectors are Vj1 , . . . , Vjr . Let n, d ∈ Z, and I = (i1, . . . , in) ∈ Zn≥0, we define the linear
transformation Mn,d(I) : Cn → Cn−1 given by the matrix:

Mn,d(I) =


(ij+1 − ij)d+ (ij+2 − ij+1)(d+ 1)

ij+3 − ij+2

...
ij+n − ij+n−1


1≤j≤n

,

where in+1 = d− 1− (i1 + . . .+ in). We are identifying ij = ij mod (n+1).
We can state:
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Theorem 6. Let n ≥ 3 be an integer number. The rank of the local Baum-Bott map
BB : Folred(n, d)→ (Cn−1)N at the degree d Jouanolou foliation is:

dimFol(n, d) + 1− n(n+ 1)−
∑
I∈Zn≥0

|I|≤d−1

dim ker(Mn,d(I)) , if n is even.

dimFol(n, d) + 1− n(n+ 1)−
∑
I∈Zn≥0

|I|≤d−1

dim ker(Mn,d(I))− (n+ 1)

2
, if n is odd.

We partially prove Conjecture 1 for degree-two foliations:

Theorem 7. Let n ≥ 2 be an even number. The rank of the local Baum-Bott map
BB : Folred(n, 2)→ (Cn−1)N at the degree-2 Jouanolou foliation is

dimFol(n, 2)− dim Aut(Pn) = (n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2.

Corollary 1. Let n ≥ 2 be an even number. A generic fiber of the global Baum-Bott
map, defined on Fol(n, 2), is a finite union of orbits of the action of the automorphism
group Aut(Pn) on the space Fol(n, 2).

The rank at the Jouanolou foliation, in other cases, is stricly less that the upper bound
given in Proposition 2.

Proposition 3. If n ≥ 3, the rank of the local Baum-Bott map BB : Folred(n, d) →
(Cn−1)N at the degree-d Jouanolou foliation, for degree d greater than two, is strictly less
than the upper bound given in Proposition 2. The same holds for degree d = 2 with odd
dimension n.

We are able to explicitly find the rank at the Jouanolou foliation on P3:

Theorem 8. Let d ≥ 2. The rank of the local Baum-Bott map at the degree-d Jouanolou
foliation on the projective space P3 is

• if d is even,

dimFol(3, d)− Aut(P3)−
((

d+ 2

3

)
− 2

)
,

• if d = −1 mod (4),

dimFol(3, d)− Aut(P3)−
((

d+ 2

3

)
+
d− 3

2

)
,

• if d = 1 mod (4),

dimFol(3, d)− Aut(P3)−
((

d+ 2

3

)
+
d− 1

2

)
,
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and the dimension of the space Fol(3, d) is 4
(
d+3

3

)
−
(
d+2

3

)
− 1.

The structure of the thesis is divided into three chapters:
In the First Chapter we give some concepts and results to make easier the

comprehension of the thesis. We give the concept of holomorphic foliation, a glimpse on
Chern classes and we state the Baum-Bott Theorem 1, which relates Baum-Bott indexes
and Chern classes.

In the Second Chapter we define the Baum-Bott map and estimated its rank. We
review the Baum-Bott formula, which is Theorem 2, and the theorems of the Baum-Bott
map, which are Theorems 3 and 4, for foliations on the projective plane P2. Then, we
study the rank at foliations on high-dimensional projective spaces. We state Proposition 1
for degree-one foliations, and Proposition 2, which give us an upper bound for the generic
rank of this map. We prove Theorem 5, which is stated for foliations of low degree on the
projective space P3.

The Third Chapter is dedicated to the Jouanolou foliation. We give some known
results and remarks of this foliation. We study how the space of vector fields, generating
foliations, is decomposed in terms of the automorphisms of the Jouanolou foliation. We
also estimate its Baum-Bott indexes and the rank of the local Baum-Bott map at this
foliation, which is given in Theorem 6. As consequences, we get Theorem 7 and Corollary
1, which estimate the generic rank and fiber of the Baum-Bott map for degree-two foliation
on even-dimensional projective spaces, and Theorem 8, which give us the exact rank of
this map at the Jouanolou foliation on P3.

Finally, at the Appendix, we study the eigenspaces of an operator induced by an
automorphism of the homogeneous Jouanaolou vector field.



Chapter 1

Preliminares

In this chapter we review some fundamental topics. For more information, see [28] and
[29].

1.1 Holomorphic foliations

A non-singular holomorphic foliation of dimension k on a complex manifold M is given
by:

• a covering {Uα}α∈A of M by open sets,

• for each α ∈ A, there is a biholomorphism ψ : Uα → Dk × Dn−k, where D ⊂ C is
the unitary disc at the origin,

• if Uαβ = Uα ∩ Uβ 6= ∅,

ψαβ : ψα(Uαβ) → ψβ(Uαβ)

(z, w) 7→ ψβ ◦ ψ−1
α (z, w) = (ϕ1(z, w), ϕ2(w)).

Each open set Uα is called a trivializing open set of the foliation. A plaque is a set
ψ−1
α (Dk × w0), where w0 ∈ Dn−k. On M we define a relation of equivalence: p ≡ q if

there are plaques P1, . . . , Ps, for some s ∈ N such that p ∈ P1, q ∈ Ps and such that
Pi ∩ Pi+1 6= ∅, for i = 1, . . . , s− 1. The equivalence class of p ∈M is called the leaf by p.

A singular holomorphic foliation of dimension k on a complex manifold M is a
non-singular foliation of dimension k in M\S, where S is an analytic variety on M of
codimension at least two. We ask S to be minimal in the following sense, if S ′ is a proper
analytic subset S ′ ⊂ S, then the foliation on M\S cannot be extended to M\S ′. Under
that condition, S is called the singular set of the foliation F and denoted by Sing(F).

Every one-dimensional foliation is locally defined by a holomorphic vector field. More
precisely, a holomorphic one-dimensional foliation F on M is given by a covering (Uα)α∈A
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of M by open subsets, a collection (Xα)α∈A of holomorphic vector fields, Xα ∈ X(Uα),
and a multiplicative cocycle (gαβ)Uα∩Uβ 6=∅, such that Xα = gαβXβ on Uα ∩ Uβ 6= 0.

In the case of one-dimensional foliations on the projective space, we have the following
proposition:

Proposition 1.1.1 ([28 : Teorema 6.4.1]). Any one dimensional foliation F on the
projective space Pn, n ≥ 2, has cotangent bundle of the form T ∗F = O(k), where k ≥ −1.
The integer number d = k + 1 is called the degree of the foliation F. If the foliation F

has degree d, then it can be defined in an affine coordinate system (Cn, (x1, . . . , xn)) by a
polynomial vector field of the form

X =
n∑
j=1

Qj(x)∂j +GR,

where Q1, . . . , Qn are polynomials of degree at most d, G is a homogeneous polynomial of
degree d and R =

∑n
j=1 xj∂j is the radial vector field.

1.2 Chern classes

Let M be a C∞ manifold and π : E → M be a C∞ complex vector bundle of rank n.
We denote by A0(U) the C-algebra C∞(U,C), and Ap(U) the A0(U)-module of complex
p-forms on U . Let Ap(U,M) be the A0(U)-module C∞(U,

∧p(TMC)∗⊗E), i.e, Ap(U,M)

is the set of C∞ sections of the bundle
∧p(TMC)∗ ⊗E on U , where (TMC)∗ denotes the

dual of the complexification of the real tangent bundle TRM of M .
A connection in E is a C-linear map

∇ : A0(M,E)→ A1(M,E),

satisfying the Leibniz rule:

∇(fs) = df ⊗ s+ f∇(s), for all f ∈ A0(M), s ∈ A0(M,E).

The connection can be extended to a C-linear map

∇ : A1(M,E)→ A2(M,E),

such that

∇(w ⊗ s) = dw ⊗ s− w ∧∇(s), for all w ∈ A1(M) and s ∈ A0(M,E).

The curvature of the connection∇ is defined byK∇ := ∇◦∇ : A0(M,E)→ A2(M,E).
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In order to obtain a local representation of the curvature, let sα = (sα1 , . . . , s
α
n) be a

local frame of E on Uα, this means sαi ∈ A0(Uα, E) and {sα1 (x), . . . , sαn(x)} is a base of
Ex, for every x ∈ Uα, where we suppose that {Uα}α∈A is an open covering of M which
trivializes TMC and E. Then, there exists θαij ∈ A1(Uα) such that

∇sαi =
n∑
j=1

θαjis
α
j .

Then, K∇ is given locally by a n× n matrix of C∞ 2-forms

Θα = dθα − θα ∧ θα,

where Θα
ij = dθαij −

∑
k

θαik ∧ θαkj.

An invariant polynomial over the space of n × n matrices M(n,C) is a function
p : M(n,C)→ C which is a polynomial in the entries of the matrix and

p(g−1Ag) = p(A), for all A ∈M(n,C) and for all g ∈ GL(n,C).

The elementary symmetric functions of the eigenvalues of an n×n matrix are examples
of invariant polynomials, and they are defined by

det(tI + A) =
n∑
j=0

Cn−j(A)tj,

where A is a n × n matrix. The function Cj is called the j-th elementary symmetric
function of the eigenvalues of an n × n matrix. Given ν = (ν1, ν2 . . . , νn) ∈ Zn≥0, we
denote

Cν = Cν1
1 C

ν2
2 . . . Cνn

n .

Let p be an invariant polynomial of degree k. If we define p(K∇|Uα) by p(Θα) for all
α ∈ A, then p(Θα) = p(Θβ) on Uα ∩ Uβ. Hence it defines a global 2k-form p(K∇) on M ,
which does not depend on the trivialization and is closed, i.e., dp(K∇) = 0, [28 : Lemma
3.2.2]. This means that the 2k-form p(K∇) belongs to the de Rham cohomology
H2k
dR(M,C). Indeed, the class [p(K∇)] ∈ H∗dR(M,C) is independent of the connection
∇ over E. This means that it can be defined the class [p(E)] := [p(K∇)], which depends
only on the class of C∞ isomorphism of E. The class [p(E)] is called the characteristic
class of E.

Let Cj, for j = 1, . . . , n be the elementary symmetric polynomials of the eigenvalues
of an n × n matrix. The Chern forms of a curvature K∇ associated to a connection ∇
over E are defined by

cj(K∇) = Cj

(
i

2π
K∇

)
,
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and the Chern classes of E are c0(E) = 1, and

cj(E) =

[
Cj

(
i

2π
K∇

)]
∈ H2j

dR(M,C).

The 2n-form c(E) = 1 + c1(E) + . . .+ cn(E), is called the total Chern class of E.
If M is a complex manifold, then we define ci(M) := ci(TM), where TM denotes the

holomorphic tangent bundle of M . The 2i-th form ci(M) is called the i-th Chern class of
M .

1.3 The Baum-Bott index formula

There is a theorem of Heinz Hopf which asserts that on a compact manifold the properly
counted number of zeros of a vector field equals the Euler number of the manifold. In
the article [4] Bott shows that when a vector field has non-degenerate singularities other
relations appear between the characteristic number of the manifold and the local invariants
of the vector field. If the vector field is holomorphic, then all the characteristic numbers
are determined by the singularities of the vector field.

In [3] Bott generalizes its results to holomorphic vector fields with higher-dimensional
zero sets and to bundles, instead of vector fields.

In the article [2], Baum and Bott extend the results of [4] to meromorphic vector fields,
which is equivalent to give sections of TM ⊗ L, where TM is the holomorphic tangent
bundle of M , and L is a holomorphic line bundle of the manifold. They only assume that
the singularities are isolated. Carrel in [8] gets the same result as a particular case. In [6],
Bruzzo and Rubtsov get localization formulas which contains the Baum-Bott formula of
[2] and Bott’s formula of [4] as a special situation. In [11], Chern proves the theorem given
in the article [2] with differential geometric tools under the assumption of non degeneracy.
Soares in [27] also proves this theorem but without the non-degeneracy assumption using
the relation between Grothendieck residues and the Bochner-Martinelli kernel. Guillot
in [15] works with endomorphism on the projective space and gets as a special case a
Baum-Bott formula like in [2] for homogeneous vector fields.

In 1972, in [1], Baum and Bott give a theorem on singularities of holomorphic foliations
which includes the meromorphic vector-field theorem as a special case. In [13], Dia gives
an improvement of the results. Lehman and Suwa in [19] generalize the Baum-Bott
residues for singular holomorphic foliations on complex manifolds, working with a singular
subvariety of the complex manifold.

Here we are going to state Soares’ result in [27]. For this, we need to define the residue
of a form.

Let fi : V → C, i = 1, . . . , n, be holomorphic functions defined on the open subset
V ⊂ Cn, with 0 ∈ V such that f−1(0) = {0}, and then define f := (f1, . . . , fn). Consider
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Γ to be the real n-cycle defined by Γ = {z ∈ V | |fi(z)| = ε, i = 1, . . . , n} with orientation
d(argf1) ∧ . . . ∧ d(argfn) ≥ 0. Set

w =
g(z)dz1 ∧ . . . ∧ dzn
f1(z) . . . fn(z)

,

be a meromorphic n-form, where g is holomorphic in V . The residue of w on 0 is

Res0w =

(
1

2πi

)n ∫
Γ

g(z)dz1 ∧ . . . ∧ dzn
f1(z) . . . fn(z)

.

Theorem 1.3.1 ([27]). Let M be a compact complex manifold of dimension n, L be a
holomorphic line bundle on M and ξ be a holomorphic section of TM ⊗ L with isolated
zeros. Consider the Chern classes:

cν(TM ⊗ L) = cν11 (TM ⊗ L) . . . cνnn (TM ⊗ L),

ν = (ν1, . . . , νn) ∈ Zn≥0, ν1 + 2ν2 + . . .+ nνn = n.

Then ∫
M

cν(TM ⊗ L) =
∑

p: ξ(p)=0

Resp

{
Cν(Jξ)dz1 ∧ . . . ∧ dzn

ξ1 . . . ξn

}
,

where Jξ =

(
∂ξi
∂zj

)
is the Jacobian matrix, and Resp

{
Cν(Jξ)dz1 ∧ . . . ∧ dzn

ξ1 . . . ξn

}
denotes

the Grothendieck residue symbol and it is called the Baum-Bott index Cν of ξ at p.

If Q is a homogeneous invariant polynomial of degree n, then Q is a linear combination
with complex coefficients of the invariant polynomials Cν , i.e., Q =

∑
ν

λνC
ν , λν ∈ C. If

we denote by q(TM ⊗ L) ∈ H2n
dR(M ;C) the class corresponding to Q, then∫

M

q(TM ⊗ L) =
∑

p: ξ(p)=0

Resp

{
Q(Jξ)dz1 ∧ . . . ∧ dzn

ξ1 . . . ξn

}
.

We are interested in the case where M is the complex projective space Pn, and the
line bundle L is O(d − 1), where d is an integer number with d ≥ 0. In this case,
the holomorphic section ξ of TPn ⊗ O(d− 1) represents a degree-d singular holomorphic
foliation on the projective space Pn.



Chapter 2

The Baum-Bott map

In this chapter we define the Baum-Bott map on the space of one-dimensional foliations
on a compact complex manifold. When the manifold is the projective space Pn we get
and upper bound for the rank of the Baum-Bott map. In some cases we will see that the
bound is sharp.

2.1 The Baum-Bott map

Recall that if X is a compact complex manifold of dimension n, a foliation by curves on X
is a section of TX⊗L, where L is a holomorphic line bundle over X. The line bundle L is
the cotangent bundle T ∗F of the foliation F. We denote by Fol(X,L) = PH0(X,TX ⊗ L)

the set of foliations F on X with cotangent bundle T ∗F = L. It is known that all foliations
in Fol(X,L) with only non-degenerate singularities have the same number of singularities,
N = N(L) = cn(TX ⊗ L).

When a foliation has a non-degenerate singularity, its Baum-Bott indexes can be
easily calculated. Let us denote by Ci the ith-elementary symmetric functions of the
eigenvalues of a n × n matrix and Cα = Cα1

1 Cα2
2 . . . Cαn

n , where α = (α1, . . . , αn) ∈ Zn≥0

and α1 + 2α2 + . . .+ nαn = n. Let F be a foliation with non-degenerate singularity p(F),
and let XF be a germ of vector field around p(F) which defines F around p(F). Then the
Baum-Bott index of F associated to α at p(F) is:

BBα(F, p(F)) =
Cα(DXF(p(F)))

det(DXF(p(F))
.

As we saw in Theorem 1.3.1, the Baum-Bott indexes of a foliation with only isolated
singularities are related with the characteristic classes of the cotangent bundle of the
foliation and the tangent bundle of the manifold.

We associate to each foliation, the projectivization of eigenvalues at each singularity.
Given a foliation F on a compact complex manifold X with only non-degenerate



22

singularities {p1(F), . . . , pN(F)}, let’s choose Xj, a germ of vector field around pj(F)

defining F around the singularity pj(F). We define

spec(F, pj(F)) := [[(λ1(pj(F)), . . . , λn(pj(F)))]]P,

where λi(pj(F)) is an eigenvalue of DXj(pj(F)),

[(x1, . . . , xn)] = {(xσ(1), . . . , xσ(n)) | σ ∈ Sn},

where Sn is the permutation group {1, . . . , n}, and [x]P = {λx | λ ∈ C∗}. Note that,
if the eigenvalues are two by two distinct, then spec(F, pj) can be identified to the
projectivization of the set of eigenvalues of DXj(pj). Also, it does not depend on the
germ of the chosen vector field. Let’s denote by

Folred(X,L) := {F ∈ Fol(X,L)/all the singularities of F are non-degenerate}.

Given F ∈ Folred(X,L) with singularities {p1(F), . . . , pN(F)}, we define

E(F) := (spec(F, p1(F)), . . . , spec(F, pN(F))),

and ξ(F) := [E(F)], where [(x1, . . . , xN)] = {(xσ(1), . . . , xσ(N))/ σ ∈ SN}. Then we a have
the map

ξ : Folred(X,L) → Z := ((P(Cn/Sn))N)/SN

F 7→ [(spec(F, p1(F)), . . . , spec(F, pN(F))].

Note that Z is a complex variety and the map ξ is holomorphic.
The projectivization of the eigenvalues of DXj(pj(F)), where the singularity pj(F)

is non-degenerate, allows us to calculate the Baum-Bott indexes. Conversely, the
projectivization of the eigenvalues associated to a foliation F at a non-degenerate
singularity p(F) can be calculated in terms of BBA1(F, p(F)), . . . , BBAn−1(F, p(F)),
if we choose the sequence (A1, . . . , An−1) in a good way. Here we use the fact
that C1(DXj(pj(F))), . . . , Cn(DXj(pj(F))) determine the characteristic polynomial of
DXj(pj(F)), and the map Λ : U → Λ(U) is a bijection, where U is an open subset
of Pn−1, and identifying λ as a diagonal matrix, then

Λ : U → Pn−1

[λ = (λ1, . . . , λn)]P → [(Cn
1 (λ), Cn−2

1 (λ)C2(λ) . . . , Cn−i
1 (λ)Ci(λ) . . . , Cn(λ))]P

.

Let us concentrate on foliations on the projective space Pn. In this case, the
cotangent bundle is O(d − 1)), where d ≥ 1 is the degree of the foliation. We denote
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by Fol(n, d) = PH0(Pn, TPn ⊗ O(d− 1)). If n ≥ 2 and d ≥ 1, we have

dim(Fol(n, d)) = (n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− 1.

We denote by

Folred(n, d) := {F ∈ Fol(n, d) | all the singularities of F are non-degenerate}.

Remark 2.1.1. Note that Folred(n, d) is a Zariski open and dense subset of Fol(n, d).
Moreover, if a foliation F0 ∈ Folred(n, d) then it has exactly N = dn + dn−1 + . . .+ d+ 1

singularities.

Let us define the local Baum-Bott map. If F0 ∈ Folred(n, d) with singular set
Sing(F0) = {p0

1, . . . , p
0
N}, then there is a neighborhood V of the foliation F0, V ⊂

Folred(n, d), and holomorphic maps, p1, . . . , pN : V → Pn such that pj(F0) = p0
j , and

for any foliation F ∈ V , its singular set is Sing(F) = {p1(F), . . . , pN(F)}. In this case we
define the holomorphic map BB : V → (Ck)N , the local Baum-Bott map, by:

F 7→ (BBN1(F, p1(F)), . . . , BBNk(F, p1(F)), . . . , BBN1(F, pN(F)), . . . , BBNk(F, pN(F))),

where
{

(α1, . . . , αN) ∈ Zn≥0 | α1 + 2α2 + . . .+ nαn = n
}

= {N0, N1 . . . , Nk}, with N0 =

(0, . . . , 0, 1).
Let us extend the domain of the map BB to Folred(n, d), by introducing a symmetry

on the coordinates of the complex vector space (Ck)N with respect to the singularities.
More precisely, let SN be the symmetric group of order N . We denote by (Ck)N/SN the
quotient of (Ck)N by the equivalence relation which identifies two points (z1, . . . , zN)

and (zσ(1), . . . , zσ(N)), where σ ∈ SN and zi ∈ Ck. Then, we can define the map
BB : Folred(n, d)→ (Ck)N/SN :

F 7→ [(BB1(F, p1(F)), . . . , BBk(F, p1(F)), . . . , (BB1(F, pN(F)), . . . , BBk(F, pN(F)))],

where [z1, . . . , zn] denotes the class of (z1, . . . , zN) in (Ck)N/SN and
Sing(F) = {p1(F), . . . , pN(F)}.

This map can be extended to a rational map,

BB : Fol(n, d) (Pk)N/SN ,

which is called the global Baum-Bott map.
By the Baum-Bott Theorem 1.3.1, we see that the Baum-Bott map is not dominant.
In the case of compact surfaces, the Baum-Bott Theorem 1.3.1 give us an explicit

relation between the indexes. Let F be a holomorphic foliation on a compact complex
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surfaceM , and let NF denotes the normal bundle of F. The following result, can be found
in [2] and [5].

Theorem 2.1.1 ([2]). If the foliation F has only isolated singularities, then

NF.NF =
∑

p∈Sing(F)

BB(F, p).

Therefore if the complex surface M is the projctive plane P2 and F is a degree-d foliation,
then we get ∑

p∈Sing(F)

BB(F, p) = (d+ 2)2.

In the above statement the symbol BB(F, p) corresponds to the Baum-Bott index C2
1

of F at p.
Gómez-Mont and Luengo ask in [14], if there are other hidden relations between the

Baum-Bott indexes of a degree d foliation on the projective plane.
In the article [22], Lins-Neto and Pereira give an answer to the question.

Theorem 2.1.2 ([22]). If d ≥ 2, then the maximal rank of the Baum-Bott map for degree-
d foliations on the projective plane P2 is d2 + d. In particular, if the degree d ≥ 2, then
the dimension of a generic fiber of the map is 3d+ 2.

This means that the only relation between the Baum-Bott indexes, in the case of the
projective plane, is the Baum-Bott relation in Theorem 2.1.1.

Lins-Neto in [21], studies the generic fiber of the map for degree-two foliations on
the projective plane. In this case, the dimension of a generic fiber is eight, which is the
dimension of the automorphism group Aut(P2). His result is the following:

Theorem 2.1.3 ([21]). The generic fiber of the Baum-Bott map for degree-two foliations
on the projective plane P2 contains exactly 240 orbits of the natural action of the
automorphism group Aut(P2).

In this work, we study the Baum-Bott map in the case of one-dimensional foliations
on the projective space Pn, of higher dimension.

2.2 An upper bound for the rank of the Baum-Bott

map on the projective space

We denote gr(n, d) the generic rank of the Baum-Bott map for degree-d foliations on the
projective space Pn. In particular, when the degree is zero, gr(n, 0) = 0. This is because
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any foliation of degree zero has only one singularity and in some affine coordinate system

Cn ⊂ Pn is defined by the radial vector field R =
n∑
j=1

xj∂j.

Let us see what happens when the degree is greater than zero. First, let us find a
lower bound for the dimension of a generic fiber of the Baum-Bott map.

If F is a fiber of the Baum-Bott map BB, then

dimF ≥ dimFol(n, d)− gr(n, d).

There exist a Zariski open and dense subset U ⊂ Fol(n, d) such that

dimF = dimFol(n, d)− gr(n, d), (2.2.1)

for all fibers F in the open set U .
We have a natural action Aut(Pn) on Fol(n, d). Recall that:

Aut(Pn) = {[A]/A ∈ GL(n+ 1,C)} = PGL(n+ 1,C),

where [A] is the projectivization of A. Then, Aut(Pn) acts on Fol(n, d) by:

Aut(Pn) × Fol(n, d) → Fol(n, d)

(T , F) 7→ T ∗F.

The orbit of a foliation F0 ∈ Fol(n, d) will be denoted by:

O(F0) := {F ∈ Fol(n, d) | there exists T ∈ Aut(Pn) such that T ∗F0 = F}

= {T ∗F0 | T ∈ Aut(Pn)}.

Since the Baum-Bott map is invariant by the action of the automorphism group Aut(Pn),
we have O(F0) ⊂ BB−1{BB(F0)}. Thus for a fiber F and for a foliation F0 ∈ F , we get:

dimF ≥ dimO(F0).

We replace this last inequality in (2.2.1), then for a generic foliation F0,

dimO(F0) ≤ dimFol(n, d)− gr(n, d). (2.2.2)

Let us find the dimension of the orbit O(F0), for a generic foliation F0. We know that the

orbit O(F0) =
Aut(Pn)

Stab(F0)
, where Stab(F0) = {T ∈ Aut(Pn) | T ∗F0 = F0} is the stabilizer

of F0. Therefore we focus on the stabilizer. We study the cases degree d = 1 and d ≥ 2,
separately.
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In the case of degree-one foliations on the projective space Pn, the foliation F0 can
be given by a linear vector field in Cn+1. Suppose that all eigenvalues of this vector field
are non-zero and two by two different. In some homogeneous coordinates, the foliation is
defined by the linear vector field

X(x0, . . . , xn) =
n∑
j=0

λjxj∂j,

where λi ∈ C and λi 6= λj, λi 6= 0, for i, j = 0, . . . , n . Suppose that [A] is an automorphism
in Stab(F0). Since the foliation F0 is given by the vector field X, we have

A−1 ·X ◦ A = µX, (2.2.3)

for some µ ∈ C with µ 6= 0. If the matrix A is given by A = [aij]0≤i,j≤n, replacing in
(2.2.3) we have:

aij(λi − µλj) = 0, for i, j = 0, . . . , n. (2.2.4)

Since [A] ∈ Aut(Pn), there are indexes i0, j0 ∈ {0, . . . , n} such that ai0j0 6= 0; replacing
in (2.2.4), we have λi0 = µλj0 , and ai0j = aij0 = 0, for i 6= i0 and j 6= j0. Once
again, there are indexes i1 6= i0 and j1 6= j0 such that ai1j1 6= 0. We replace in
(2.2.4), and we have λi1 = µλj1 , ai1j = aij1 = 0, for i 6= i1 and j 6= j1. Doing
so, there are indexes i0, . . . , in ∈ {0, . . . , n} all different, and indexes j0, . . . , jn with

the same property such that aikjk 6= 0 and µ =
λik
λjk

, for k = 0, . . . , n. We can

suppose that λi 6= ξλj, for all i, j = 0, . . . , n, where ξ is a k-th root of the unity, for
k = 1, . . . , n + 1. Then ik = jk, for all k = 0, . . . , n and µ = 1. Hence A is a diagonal
matrix. Therefore, the stabilizer for a generic degree-one foliation on the projective space
Pn is Stab(F0) = {[A] ∈ Aut(Pn) | A is a diagonal matrix}.

Consequently, for a generic degree-one foliation F0:

O(F0) =
Aut(Pn)

{[A] ∈ Aut(Pn) | A is a diagonal matrix}
,

and dimO(F0) = (n+ 1)2 − 1− n = n2 + n. We know that dimFol(n, 1) = n(n+ 2)− 1,
and replacing this information in (2.2.2):

gr(n, 1) ≤ n− 1. (2.2.5)

In the case of generic foliations of degree d ≥ 2, the stabilizer is the identity. For
instance, a foliation F0 can be represented by a homogeneous vector field X in Cn+1.
Let [A] be an automorphism in Stab(F0), then A∗X = µX, for some µ ∈ C∗, hence
X ◦ A = µA ◦ X. The singularities of the foliation F0 are points [(pi0, . . . , p

i
n)]P ∈ Pn,
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such that X(pi0, . . . , p
i
n) = λi(p

i
0, . . . , p

i
n), for some λi ∈ C, and generically there are

dn + . . . + d + 1 of such points. The set of singular points of the foliation is invariant by
the automorphism [A]. We know that an automorphism is uniquely determined by n+ 2

points in generic position, and the automorphism [A] fixes a subset of the projective space
Pn that has more than n + 2 points. Hence for a generic foliation F0 the automorphism
[A] must be the identity. Therefore, generically, for a generic foliation F0 of degree d ≥ 2:

O(F0) =
Aut(Pn)

{[Id]}
∼= Aut(Pn).

Replacing this information in 2.2.2, we get

gr(n, d) ≤ (n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2. (2.2.6)

Let us estimate another bound in terms of some Baum-Bott indexes. Let F be a
foliation with non-degenerate singularity p(F), and let XF be a germ of vector field around
p(F) which defines the foliation F around the singularity p(F). The Baum-Bott index of
the foliation F associated to α = (α1, . . . , αn) ∈ Zn≥0, with α1 + 2α2 + . . . + nαn = n, at
the singularity p(F) is:

BBα(F, p(F)) =
Cα(DXF(p(F)))

det(DXF(p(F))
,

where Cα = Cα1
1 . . . Cαn

n . Let us denote BB1 = BB(n,0,0,...,0), BB2 = BB(n−2,1,0,...,0),...,
BBn−2 = BB(2,0,...,0,1,0,0) and BBn−1 = BB(1,0,...,0,1,0). Observe that for α 6= (0, . . . , 0, 1),
we have

BBα(F, p(F)) = (BB
1−(α2+...+αn−1)
1 BBα2

2 BBα3
3 . . . BB

αn−1

n−1 )(F, p(F)).

Then the Baum-Bott map, at a generic foliation F, depends on those n − 1 indexes, at
each singularity. Also, the Baum-Bott Theorem 1.3.1, tell us that we have at least (n−1)

relations between those n− 1 indexes and this means

gr(n, d) ≤ (n− 1)N − (n− 1) = (N − 1)(n− 1). (2.2.7)

From 2.2.5, 2.2.6 and 2.2.7, we get an upper bound for the generic rank of the Baum-
Bott map.

Proposition 2.2.1. Let gr(n, d) denote the generic rank of the Baum-Bott map for
one-dimensional degree-d foliations on the projective space Pn with n ≥ 2, and N =

dn + . . .+ d+ 1. Then we have:

1. For degree-one foliations,
gr(n, 1) = n− 1.
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2. For d ≥ 2

gr(n, d) = d2 + d , if n = 2,

gr(n, d) ≤ min {dimFol(n, d)− dim Aut(Pn), (N − 1)(n− 1)} , if n ≥ 3,

where dimFol(n, d) = (n+ 1)
(
n+d
n

)
−
(
n+d−1
n

)
− 1.

Proof. For degree one, we already have gr(n, 1) ≤ n − 1 from (2.2.5). If we find a
foliation such that its rank at the Baum-Bott map is n − 1, we have the result. In fact,
observe that the map [λ = (λ1, . . . , λn)]P 7→ [Cn

1 (λ), . . . , Cn−i
1 (λ)Ci(λ), . . . , Cn(λ)]P defined

on some open subset of Pn−1 is a bijection. Since a degree-one foliation on the projective
space Pn is generated in the affine coordinate system Cn by the vector field:

X = λ1x1∂1 + λ2x2∂2 + . . .+ λnxn∂n,

for some λ1, λ2, . . . , λn ∈ C∗, then the result follows.
For n, d ≥ 2, from (2.2.6) and (2.2.7), we have

gr(n, d) ≤ min

{
(n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2, (N − 1)(n− 1)

}
.

If n = 2, we have

3

(
2 + d

2

)
−
(

2 + d− 1

2

)
− 32 = d2 + d+ 3(d− 2),

and,
gr(2, d) ≤ min

{
d2 + d+ 3(d− 2), (d2 + d)(1)

}
= d2 + d.

For degree-d foliations on the projective space P2, with d ≥ 2, by Theorem 2.1.2, the
maximum rank is d2 + d. Then

gr(2, d) = d2 + d.

For n ≥ 3, we will show that

(N − 1)(n− 1)−
(

(n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2

)
> 0. (2.2.8)
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For instance, for n = 3, the difference (2.2.8) is

(d3 + d2 + d)(3− 1)−
(

4

(
3 + d

3

)
−
(

3 + d− 1

3

)
− 42

)
= 2(d3 + d2 + d)−

(
(d+ 1)(d+ 2)(d+ 4)

2
− 16

)
=

3(d− 2)2 + 15(d− 2)2 + 14(d− 2) + 16

2
> 0.

If n ≥ 4,
d+ n+ 1

n− 1
≤ d+ 5

3
, and

d+ k

k − 1
≤ d, for k ≥ 4,

we replace in the difference (2.2.8),

(n− 1)(dn+dn−1 + dn−2 + . . .+ d)+

−
(

(n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2

)
≥(n− 1)dn−4(d4 + d3 + d2 + d)+

−
(

(d+ 1)(d+ 2)(d+ 3)

2

(
(d+ 4)

3
. . .

(d+ n− 1)

n− 2

)
(d+ n+ 1)

n− 1
− 25

)
≥3(d4 + d3 + d2 + d)− (d+ 1)(d+ 2)(d+ 3)(d+ 5)

6
+ 25

=
17(d− 2)4 + 143(d− 2)3 + 42(d− 2)2 + 427(d− 2) + 270

6
> 0.

Remark 2.2.1. Observe that min {dimFol(n, d)− dim Aut(Pn), (N − 1)(n− 1)} is

(N − 1)(n− 1) = d2 + d , if n = 2.

dimFol(n, d)− dim Aut(Pn) , if n ≥ 3.

Remark 2.2.2. We have g(2, 1) = 1. The Camacho-Sad index over an invariant line
gives the extra condition.

We would like to know if the upper bound of the Proposition 2.2.1 is sharp for n ≥ 3.

Remark 2.2.3. If n ≥ 3 and d ≥ 2, the upper bound of Proposition 2.2.1 is sharp if, and
only if, the generic fiber of the Baum-Bott map is a finite union of orbits of the action of
Aut(Pn) on the space Fol(n, d).
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2.3 The generic rank of the Baum-Bott map for

foliations of low degree on P3

Let F be a degree-d foliation on the projective space P3 with only isolated and non-
degenerate singularities. If p(F) is a singularity of F, then there is a germ of vector field
XF, given in some affine coordinate system, such that p(F) is its singularity and it is
non-degenerate. Its Baum-Bott indexes can be calculated in terms of the indexes BB1

and BB2, which are defined by:

BB1(F, pi(F)) =
(C1(DXF(pi(F))))3

C3(DXF(pi(F)))
,

BB2(F, pi(F)) =
(C1(DXF(pi(F)))C2(DXF(pi(F)))

C3(DXF(pi(F)))
.

Then, we are interested in the rank of the following map:

BB Folred(3, d) → (C2)N

F 7→ (BB1(F, p1(F)), BB2(F, p1(F)), . . . , BB1(F, pN(F)), BB2(F, pN(F))),

where Folred(3, d) ⊂ Fol(3, d) is the open and dense set of foliations in which each element
has only isolated and non-degenerate singularities. In this case, the number of singularities
is N = 1 + d + d2 + d3. Observe that this map and the Baum-Bott map have the same
rank. We will call this map also the Baum-Bott map and denote it by BB.

By proposition 2.2.1, the generic rank of the Baum-Bott map for d ≥ 2 has the upper
bound,

gr(3, d) ≤ 4

(
3 + d

3

)
−

(
2 + d

3

)
− (4)2 =

(d+ 1)(d+ 2)(d+ 4)

2
− 16.

If 2 ≤ d ≤ 9, we will see that

gr(3, d) =
(d+ 1)(d+ 2)(d+ 4)

2
− 16.

We fix d ≥ 2. To show that the upper bound given in Proposition 2.2.1 is sharp, it is
enough to find a foliation such that its rank is that number. Therefore, we are interested
in computing the rank of the derivative of the Baum-Bott map at a given foliation which
has only isolated and non-degenerate singularities. We show first for 3 ≤ d ≤ 9.

We know that a degree-d foliation on the projective space P3 can be defined in the affine
coordinate system C3 by a polynomial vector field of the form Q1∂x +Q2∂y +Q3∂z +GR,
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where Q1, Q2, Q3 are polynomials in three variables of degree at most d, G is a
homogeneous polynomial of degree d and R is the radial vector field, then

Bd = {xiyjzk∂x, xlymzn∂y, xpyqzr∂z, xsytzuR | R is the radial vector field,

i+ j + k, l +m+ n, r + s+ t ≤ d, s+ t+ u = d and

i, j, k, l,m, n, p, q, r, s, t, u ∈ Z≥0},

is a C-basis of the space of degree-d foliations on the projective space P3.
We are going to see how the derivative matrix DBB(F0) can be calculated in terms

of the basis Bd, at some foliation F0. Let X0 = X∂x + Y ∂y + Z∂z be a vector
field in C3 which generates a degree-d foliation on the projective space P3 and let
V = V1∂x + V2∂y + V3∂z be a vector field in C3 generated by the monomial vector fields
of the basis Bd. Fixing p0 a non-degenerate singularity of X0, we want to calculate
∂tBB1(X0 + tV, ρ(t)), ∂tBB2(X0 + tV, ρ(t)), at t = 0, where ρ is the curve of singularities
of the vector field X0 + tV with ρ(0) = p0.

Recall that if A = [aij] is a 3 × 3 matrix, then its elementary symmetric functions of
the eigenvalues are:

C1(A) = tr(A) = a11 + a22 + a33,

C2(A) = a11a22 − a12a21 + a11a33 − a13a31 + a22a33 − a23a32,

C3(A) = det(A) = a11(a22a33 − a32a23)− a12(a21a33 − a23a31)− a13(a21a32 − a22a31).

Then, the Baum Bott indexes of X0 + tV are:

BB1(X0 + tV, ρ(t)) =
C3

1(D(X0 + tV )(ρ(t)))

C3(D(X0 + tV )(ρ(t)))
,

BB2(X0 + tV, ρ(t)) =
C1(D(X0 + tV )(ρ(t)))C2(D(X0 + tV )(ρ(t)))

C3(D(X0 + tV )(ρ(t)))
.

We denote, for simplicity, Ci(t) := Ci(D(X0+tV )(ρ(t))) and BBi(t) := BBi(X0+tV, ρ(t)),
then

BB′1(0) =
3C1(0)2C ′1(0)C3(0)− C1(0)3C ′3(0)

C3(0)2

BB′2(0) =
C ′1(0)C2(0)C3(0) + C1(0)C ′2(0)C3(0)− C1(0)C2(0)C ′3(0)

C3(0)2
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We denote | . | = det( . ). For computing BB′1(0), BB′2(0), we need the following
equations:

C1(0) = tr(DX0(p0)) (2.3.9)

C2(0) =

(∣∣∣∣∂(X, Y )

∂(x, y)

∣∣∣∣+

∣∣∣∣∂(X,Z)

∂(x, z)

∣∣∣∣+

∣∣∣∣∂(Y, Z)

∂(y, z)

∣∣∣∣) (p0) (2.3.10)

C3(0) = det(DX0(p0)) (2.3.11)

ρ′(0) = −[DX0(p0)]−1V (p0) (2.3.12)

C ′1(0) =∇(tr(DX0))(p0) · ρ′(0) + tr(DV (p0)). (2.3.13)

C ′2(0) =∇
(∣∣∣∣∂(X, Y )

∂(x, y)

∣∣∣∣+

∣∣∣∣∂(X,Z)

∂(x, z)

∣∣∣∣+

∣∣∣∣∂(Y, Z)

∂(y, z)

∣∣∣∣) (p0) · ρ′(0)+

+

(∣∣∣∣∂(X, V2)

∂(x, y)

∣∣∣∣+

∣∣∣∣∂(X, V3)

∂(x, z)

∣∣∣∣+

∣∣∣∣∂(Y, V3)

∂(y, z)

∣∣∣∣) (p0)+

+

(∣∣∣∣∂(V1, Y )

∂(x, y)

∣∣∣∣+

∣∣∣∣∂(V1, Z)

∂(x, z)

∣∣∣∣+

∣∣∣∣∂(V2, Z)

∂(y, z)

∣∣∣∣) (p0). (2.3.14)

C ′3(0) =∇(det(DX0))(p0) · ρ′(0)+

+

(∣∣∣∣∂(V1, Y, Z)

∂(x, y, z)

∣∣∣∣+

∣∣∣∣∂(X, V2, Z)

∂(x, y, z)

∣∣∣∣+

∣∣∣∣∂(X, Y, V3)

∂(x, y, z)

∣∣∣∣) (p0) (2.3.15)

We see that to calculate the rank of the Baum-Bott map at a specific vector field with
only non-degenerate singularities we can use the formulas (2.3.12)-(2.3.15) and implement
it in an algorithm.

ALGORITHM: Calculates the rank of the Baum-Bott map at a degree d-foliation
on the projective space P3, for foliations with non-degenerate singularities.
INPUT: Vector field (X,Y,Z) in the vector space C3 which generates a degree d-foliations
on the projective space P3.
OUTPUT: The rank of the derivative of the Baum-Bott map at the foliation generated
by the given vector field.

Step 1 Define a matrix MV whose set of rows, MV [j], forms the basis Bd.

Step 2 Define MS a matrix whose rows, MS[i], are the singularities of (X, Y, Z), which
are the solutions of (X, Y, Z)(x, y, z) = (0, 0, 0).
k ← 0, this constant will count all the singularities that are going to be found by
subsequently change of coordinates.

Step3 Verify that the singularities are non-degenerate, if there is one that is degenerate,
exit.
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Step 4 Calculate the matrix DBB, the derivative matrix of the Baum-Bott map with
respect to the basis MV :
For j : 1, to the dimension row of MV

For i : k + 1, to the dimension row of MS +k

Let dS be the solution of the matrix equation D(X, Y, Z)(MS[i])(dS) =

MV [j](MS[i]), dS is the derivative of a parametrization of the singular points of
(X, Y, Z) + tMV [j], around MS[i].
The derivative of the Baum-Bott indexes BB1, BB2 atMS[i] in the directionMV [j]:
DBB(2i− 1, j)← DBB1(MS[i])(MV [j]).

DBB(2i, j)← DBB2(MS[i])(MV [j]).
k ← dimension row of MS +k.

Step 5 If we can make another change of coordinates to another affine coordinate system:
Redefine (X, Y, Z) and MV in this new affine coordinate system.
Else Go to Step 7

Step 6 If there are new singularities of the foliation:
Redefine MS with only new singularities.
Go to Step 3.
Else Go to Step 5.

Step 7 Calculate the rank of DBB.

First, we study foliations on the projective space P3 of degree d ≥ 3. In the next
section we will focus on d = 2.

We consider the degree-three foliation F0 on the projective space P3, generated by the
vector field (X,Y,Z) in the affine coordinate system C3:

X = (x+
1

2
y +

1

3
z +

1

4
)(

1

5
x+

1

6
y +

1

7
z +

1

8
)(

1

9
x+

1

10
y +

1

11
z +

1

12
),

Y = (
1

2
x+

1

3
y +

1

4
z +

1

5
)(

1

6
x+

1

7
y +

1

8
z +

1

9
)(

1

10
x+

1

11
y +

1

12
z +

1

13
),

Z = (
1

3
x+

1

4
y +

1

5
z +

1

6
)(

1

7
x+

1

8
y +

1

9
z +

1

10
)(

1

11
x+

1

12
y +

1

13
z +

1

14
).

This vector field has 27 singularities in the affine space C3. We use the Algorithm and
find that the rank of the Baum-Bott map restricted to these singularities is 54, the rank
we were looking for in the case d = 3, which is the upper bound given in Proposition
2.2.1.
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Let Fd be the degree-d foliation on the projective space P3, generated by the vector
field Xd = (X, Y, Z) in the affine coordinate system C3:

X =
d∏

k=1

(
1

4k − 3
x+

1

4k − 2
y +

1

4k − 1
z +

1

4k
),

Y =
d∏

k=1

(
1

4k − 2
x+

1

4k − 1
y +

1

4k
z +

1

4k + 1
),

Z =
d∏

k=1

(
1

4k − 1
x+

1

4k
y +

1

4k + 1
z +

1

4k + 2
).

To find the singularities of the vector field, we solve the system:
1

4k − 3

1

4k − 2

1

4k − 1
1

4m− 2

1

4m− 1

1

4m
1

4n− 1

1

4n

1

4n+ 1


 x

y

z

 =


− 1

4k

− 1

4m+ 1

− 1

4n+ 2

 ,

where k,m, n are natural numbers and 1 ≤ k,m, n ≤ d. We see that the determinant of
that matrix is

− (4(k −m)− 1)(4(m− n)− 1)(2(k − n)− 1)

16(2k − 1)(4k − 3)(4k − 1)m(2m− 1)(4m− 1)n(4n− 1)(4n+ 1)
6= 0.

Hence the singularities of the vector field Xd are (x(k,m, n), y(k,m, n), z(k,m, n)), where
1 ≤ k,m, n ≤ d are natural numbers, and

x(k,m, n) = −(4n− 1)(2m− 1)(4k − 3)

4k(4m+ 1)(2n+ 1)
,

y(k,m, n) =
3(2k − 1)(4m− 1)n

k(4m+ 1)(2n+ 1)
,

z(k,m, n) = −3(4k − 1)m(4n+ 1)

2k(4m+ 1)(2n+ 1)
.

The singularies are all different. In fact, two singularities

(x(k,m, n), y(k,m, n), z(k,m, n)), (x(r, s, t), y(r, s, t), z(r, s, t))

with
(x(k,m, n), y(k,m, n), z(k,m, n)) = (x(r, s, t), y(r, s, t), z(r, s, t))

must fulfill one of the following conditions:

1. k = r, m = s, n = t,
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2. k = r, m =
1

4
(1 + 4t), n =

1

4
(−1 + 4s),

3. k =
1

4
(1 + 4s), m =

1

4
(−1 + 4r), n = t,

4. k =
1

4
(1 + 4s), m =

1

4
(1 + 4t), n =

1

2
(−1 + 2r),

5. k =
1

2
(1 + 2t), m =

1

4
(−1 + 4r), n =

1

4
(−1 + 4s),

6. k =
1

2
(1 + 2t), m = s, n =

1

2
(−1 + 2r).

Since k,m, n, r, s, t are natural numbers, we get k = r,m = s, n = t. Therefore the vector
field has d3 different singularities. The singularities are non-degenerate. In fact, we have:

DXd(x(r, s, t), y(r, s, t), z(r, s, t)) = a 0 0

0 b 0

0 0 c




1
4r−3

1
4r−2

1
4r−1

1
4s−2

1
4s−1

1
4s

1
4t−1

1
4t

1
4t+1

 ,
where

a =
d∏

k=1,k 6=r

(
1

4k − 3
x(r, s, t) +

1

4k − 2
y(r, s, t) +

1

4k − 1
z(r, s, t) +

1

4k
),

b =
d∏

m=1,m 6=s

(
1

4m− 2
x(r, s, t) +

1

4m− 1
y(r, s, t) +

1

4m
z(r, s, t) +

1

4m+ 1
),

c =
d∏

n=1,n 6=t

(
1

4n− 1
x(r, s, t) +

1

4n
y(r, s, t) +

1

4n+ 1
z(r, s, t) +

1

4n+ 2
).

If we show abc 6= 0, then the singularity (x(r, s, t), y(r, s, t), z(r, s, t)) is non-degenerate.
Otherwise, if for some k we have

1

4k − 3
x(r, s, t) +

1

4k − 2
y(r, s, t) +

1

4k − 1
z(r, s, t) +

1

4k
= 0,

then
3(k − r)(4k − 4r − 1)(2k − 2t− 1)

4k(2k − 1)(4k − 3)(4k − 1)r(4r + 1)(2t+ 1)
= 0,

which implies k = r. If for some m we have

1

4m− 2
x(r, s, t) +

1

4m− 1
y(r, s, t) +

1

4m
z(r, s, t) +

1

4m+ 1
= 0,

then
3(4m− 4r + 1)(m− s)(4m− 4t− 1)

8m(2m− 1)(4m− 1)(4m+ 1)r(4s+ 1)(2t+ 1)
= 0,
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from what we get m = s. Analogously, if for some n we have

1

4n− 1
x(r, s, t) +

1

4n
y(r, s, t) +

1

4n+ 1
z(r, s, t) +

1

4n+ 2
= 0,

then
3(2n− 2r + 1)(4n− 4s+ 1)(n− t)

4n(2n+ 1)(4n− 1)(4n+ 1)r(4s+ 1)(2t+ 1)
= 0,

and we get n = t. In conclusion, abc 6= 0.
We restrict the derivative of the Baum-Bott map at the foliation generated by the

vector field Xd to these d3 singularities. We calculate its rank with the Algorithm, and we
get that the upper bound given in the Proposition 2.2.1 is sharp, for degree d = 4, . . . , 9.

Thus, we have proved the following theorem.

Theorem 2.3.1. If 3 ≤ d ≤ 9, the generic rank of the Baum-Bott map for degree-d
foliations on the projective space P3 is

dimFol(3, d)− dim Aut(P3) =
(d+ 1)(d+ 2)(d+ 4)

2
− 16.

In other words, a generic fiber of the Baum-Bott map has dimension dimAut(P3) and is
a finite union of orbits of the action of the automorphism group Aut(P3) on the space of
one-dimensional degree-d foliations on the projective space P3.

2.4 The generic rank of the Baum-Bott map for degree-

two foliations on P3 and P4

For the case of degree-two foliations on the projective plane P2, Guillot gives an example
of a foliation with maximum rank for the Baum-Bott map in his article [16]. We would
like to have explicit examples for degree-two foliations in higher dimensions.

We saw in Section 2.2 that the Baum-Bott map can be restricted to the study of the
n− 1 Baum-Bott indexes BB1, . . . , BBn−1 with

BBi(F, p(F)) =
(Cn−i

1 Ci)(DXF(p(F)))

Cn(DXF(p(F)))
, for i = 1, . . . , n− 1,

where p(F) is a non-degenerate singular point of the foliation F, XF is a germ of vector
field which defines the foliation around the singular point p(F). Hence, we consider
BB = (BB1, . . . , BBn−1).
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Let us focus on a particular degree-two foliation F0 on the projective space Pn, defined
in Cn+1 by the following homogeneous vector field X0 = (X0

0, . . . ,X0
n):

X0
0 = x0(x1 − x2 − x3 − . . .− xn),

X0
1 = x1(x2 − x3 − . . .− xn − x0),

X0
i = xi(xi+1 − xi+2 − . . .− xn − x0 − . . .− xi−1), for i = 2, . . . , n− 1,

X0
n = xn(x0 − x1 − . . .− xn−1). (2.4.16)

We want to express the derivative of the Baum-Bott map at this foliation in easier terms.
The stabilizer of the foliation F0 is

Stab(F0) = {Ti ∈ Aut(Pn) | i = 0, 1, . . . , n},

where T is the automorphism on the projective space Pn defined by

T(x0, x1, . . . , xn) = (x1, x2 . . . , xn, x0). (2.4.17)

If p ∈ Sing(F0), then T−i(p) ∈ Sing(F0), for i = 0, . . . , n.
Given I = (i0, . . . , in) ∈ Zn+1

≥0 , we set xI = xi00 . . . x
in
n , |I| = i0 + . . .+ in. Let B be the

set
B = {xI∂j | I ∈ Zn+1

≥0 , |I| = 2 and j = 0, . . . , n}.

We can consider B as a generator for the space of degree-two foliations on the projective
space Pn by homogeneous polynomial vector fields on Cn+1. Suppose p0 ∈ Pn is a non-
degenerate singular point of F0 and let V be an homogeneous vector field in Cn+1. In the
next equations, we identify an homogeneous vector field in Cn+1 with its corresponding
vector field in affine coordinate systems. If p(t) is the singularity of X0 + tV such that
p(0) = p0, then

BBj(X0 + tV, p(t)) = BBj(T∗(X0 + tV),T−1(p(t))) = BBj(X0 + tT∗V,T−1(p(t))).

Consequently, if I ∈ Zn+1
≥0 , we have

BBj(X0 + txI∂0, p(t)) = BBj(X0 + txT
−1(I)∂1,T−1(p(t)))

= BBj(X0 + txT
−2(I)∂2,T−2(p(t)))

...

= BBj(X0 + txT
−n(I)∂n,T−n(p(t))) (2.4.18)

To find the rank of the Baum-Bott map at the foliation F0 we can just consider the
Baum-Bott indexes at the points whose orbits generate the singular set of the foliation
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F0. Let p1, . . . , pkn be those generators and suppose they are all non-degenerate. Let
B0 = {xI∂0 | I ∈ Zn+1

≥0 and |I| = 2} be given an order, and B1 = T∗(B0), ...,
Bn = (Tn)∗(B0). In this way, B = B0 ∪ B1 ∪ . . . ∪ Bn. Now, for each j = 0, . . . , n,
let’s denote

DBB(p1)|Bj =


DBB1(p1)|Bj

...
DBBn−1(p1)|Bj

 , . . . , DBB(pkn)|Bj =


DBB1(pkn)|Bj

...
DBBn−1(pkn)|Bj

 ,

D0 =


DBB(p1)|B0

...
DBB(pkn)|B0

 , . . . , Dn =


DBB(p1)|Bn

...
DBB(pkn)|Bn

 .
Then

rankDBB(F) = rank



D0 D1 D2 . . . Dn−2 Dn−1 Dn

Dn D0 D1 . . . Dn−3 Dn−2 Dn−1

Dn−1 Dn D0 . . . Dn−4 Dn−3 Dn−2

. . . . . . . . . . . . . . . . . . . . .

D2 D3 D4 . . . Dn D0 D1

D1 D2 D3 . . . Dn−1 Dn D0


.

We can choose the generators of the set Sing(F0) that are in the affine coordinate
system (Cn, (x1, . . . , xn)). In this way, the sets B0, . . . ,Bn in this affine coordinate system
become B0, . . . , Bn, with the inherited order: B0 = {xI∂1 | I ∈ Zn≥0 and |I| ≤ 2},
B1 = T̃ ∗(B1),..., Bn = (T̃ ∗)n(B1), where T̃ ∗(·) = x1T

∗(·) and

T (x1, . . . , xn) = (
x2

x1

, . . . ,
xn
x1

,
1

x1

).

The homogeneous vector field X0, in this affine coordinate system, is given by the vector
field X0 = (X0

1 , . . . , X
0
n):

X0
1 = x1(−x1 + 2x2 − 1),

X0
2 = x2(−2x1 + x2 + 2x3 − 1),

X0
i = xi(−2x1 + xi + 2xi+1 − 1), for i = 3, . . . , n− 1,

X0
n = xn(−2x1 + xn + 1).

(2.4.19)

For the case n = 3, the vector field X0 in the affine coordinate system C3 is given by

(X, Y, Z) = (−x(1 + x− 2y), y(−1− 2x+ y + 2z), z(1− 2x+ z)).
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This vector field generates a degree two-foliation on the projective space P3. Its singular
set is generated by

{(1, 1, 1), (−1, 0, 3), (−1, 0, 0), (0, 1, 0), (0, 0, 0)}.

They are non-degenerate singularities and we can find D0, . . . , D3. The rank of the matrix
DBB(F0) is 20, which is the upper bound given in Proposition 2.2.1.

For n = 4, let’s see with more details the Baum-Bott map. Let F be a degree-d
foliation on the projective space P4 with only isolated and non-degenerate singularities.
Let p(F) be a singularity of F, there is a germ of vector field, XF, given in some affine
coordinate system, such that p(F) is its singularity, and it is non-degenerate. We are
interested in the following Baum-Bott indexes:

BB1(F, pi(F)) =
C4

1(DXF(pi(F)))

C4(DXF(pi(F)))

BB2(F, pi(F)) =
(C2

1(DXF(pi(F)))C2(DXF(pi(F)))

C4(DXF(pi(F)))

BB3(F, pi(F)) =
(C1(DXF(pi(F)))C3(DXF(pi(F)))

C4(DXF(pi(F)))
.

In this case, we have to study the rank of the following map BB : Folred(4, d)→ (C3)N ,
defined by

F 7→ (BB1(F, pi(F)), BB2(F, pi(F)), BB3(F, pi(F))){i=1,...,N},

where Folred(4, d) ⊂ Fol(4, d) is the open and dense set of foliations in which each element
has only isolated and non-degenerate singularities. In this case, the number of singularities
is N = 1 + d+ d2 + d3 + d4.

Now, we calculate the Baum Bott indexes. Let X = (X1, X2, X3, X4) and V =

(V1, V2, V3, V4) be vector fields, then the elementary symmetric functions of the eigenvalues
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are

C1(DX) = ∂1X1 + ∂2X2 + ∂3X3 + ∂4X4,

C2(DX) =

∣∣∣∣∂(X1, X2)

∂(x1, x2)

∣∣∣∣+

∣∣∣∣∂(X1, X3)

∂(x1, x3)

∣∣∣∣+

∣∣∣∣∂(X1, X4)

∂(x1, x4)

∣∣∣∣+
+

∣∣∣∣∂(X2, X3)

∂(x2, x3)

∣∣∣∣+

∣∣∣∣∂(X2, X4)

∂(x2, x4)

∣∣∣∣+

∣∣∣∣∂(X3, X4)

∂(x3, x4)

∣∣∣∣ ,
C3(DX) =

∣∣∣∣∂(X1, X2, X3)

∂(x1, x2, x3)

∣∣∣∣+

∣∣∣∣∂(X1, X2, X4)

∂(x1, x2, x4)

∣∣∣∣+

∣∣∣∣∂(X1, X3, X4)

∂(x1, x3, x4)

∣∣∣∣+

∣∣∣∣∂(X2, X3, X4)

∂(x2, x3, x4)

∣∣∣∣ ,
C4(DX) =

∣∣∣∣∂(X1, X2, X3, X4)

∂(x1, x2, x3, x4)

∣∣∣∣ .
Let’s denote Ci(t) = Ci(D(X + tV ))(ρ(t)), where ρ(t) is the singularity of the vector field
X+ tV . If the vector field X has non-degenerate singularities, then DBBi(X, ρ(0))(V ) =

∂tBBi(X + tV, ρ(t))|t=0 , and

DBB1(X, ρ(0))(V ) = 4
C3

1(0)

C4(0)
C ′1(0)− C4

1(0)

C2
4(0)

C ′4(0),

DBB2(X, ρ(0))(V ) = 2
C1(0)C2(0)

C4(0)
C ′1(0) +

C2
1(0)

C4(0)
C ′2(0)− C2

1(0)C2(0)

C2
4(0)

C ′4(0),

DBB3(X, ρ(0))(V ) =
C3(0)

C4(0)
C ′1(0) +

C1(0)

C4(0)
C ′3(0)− C1(0)C3(0)

C2
4(0)

C ′4(0).

For the case n = 4, the vector field X0 = (X0
1 , X

0
2 , X

0
3 , X

0
4 ) in the affine coordinate

system C4 is given by

X0
1 = x1(−x1 + 2x2 − 1),

X0
2 = x2(−2x1 − x2 + 2x3 − 1),

X0
3 = x4(−2x1 + x3 + 2x4 − 1),

X0
4 = x4(−2x1 + x4 + 1).

There are seven points which generate the set Sing(F), in the affine coordinate system,
these points are

{(0, 0, 0, 0), (0, 0, 0,−1), (0, 0, 1, 0), (0, 0, 3,−1), (0, 1, 0,−1), (0,−5, 3,−1), (1, 1, 1, 1)}.

The generators of the singular set are non-degenerate and we can use this points to find
D0, . . . , D4. Then we can calculate the rank.

By these two examples we can state the following theorem.

Theorem 2.4.1. The Baum-Bott map for degree-two foliations on the projective space
P3 and P4 has generic rank 20 and 45, respectively.
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Corollary 1. A generic fiber of the Baum-Bott map for degree-two foliations on the
projective space P3 and P4 is a finite union of orbits of the action of the automorphism
group on the projective space on the space of one-dimensional degree-two foliations on the
projective space of same dimension.



Chapter 3

The example of the Jouanolou foliation

In this chapter we study the Jouanolou foliation and its rank at the local Baum-Bott map.

3.1 The Jouanolou foliation

The Jouanolou foliation is the first example of a one-dimensional foliation on the
projective plane P2 without invariant algebraic curves. In [18] Jouanolou showed that
the holomorphic foliation on P2 defined in the affine plane by the vector field:

x′ = 1− xyd, y′ = xd − yd+1, d ≥ 2, (3.1.1)

does not have any algebraic leaf.
Algebraic solutions of differential equations were studied in 1878 by Darboux. He

focused on equations of first order and first degree over the complex projective plane P2.
He showed in [12] that if an equation of this kind has enough algebraic solutions, then it
must have a first integral. Then, Poincaré in 1891 showed in [25] that in order to find an
explicit algebraic solution to a particular equation it would be enough to find an upper
bound on the degree of the solution in terms of the polynomials that define the equation.
Indeed, if the equation is defined by polynomials of degree less than or equal to two, then
it always has solutions of degree one in the projective plane.

The study focused on the search for bounds on the degree of the solution, which is
known as Poincaré’s Problem, and many such bounds have been found; for example see [9]
from Carnicer, [7] from Cerveau and Lins-Neto. However, Jouanolou in [18], showed that
these turned out to be of limited use in solving differential equations due to his following
result:

Theorem 3.1.1 ([18]). A generic foliation on the projective plane P2 of degree greater
than or equal to two does not have any algebraic solution.
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As part of the proof of this theorem, Jouanolou gave an explicit example of a family
of foliations with no algebraic solution, which is equation (3.1.1). Later, Lins-Neto in [20]
proved that the set of foliations on the projective plane P2 of degree greater than or equal
to two without algebraic leaves contains an open and dense set.

Another family of examples is presented by Żołądek in [30]. He presents a series of
polynomial planar vector fields without invariant algebraic curves in the projective plane
P2.

Theorem 3.1.2 ([30 : Theorem 1]). Let the integer exponents a, b, c, d satisfy the
assumptions

• a ≤ d ≤ b+ c,

• (b+ c+ 2)2 − 4N < 0 and 2(b+ c+ 1) < N + 1;

• gcd(a+ 1, d+ 1) = 1, gcd(c+ 1, b+ c− d+ 1) = 1, gcd(b+ 1, b+ c− a+ 1) = 1

where N = (b+ 1)(c+ 1)− (a− c)(d− b) and gcd stands for the greatest common divisor.
Then the system

x′ = ya − xb+1yc, y′ = xd − xbyc+1

does not have invariant algebraic curves in the complex projective plane P2.

Jouanolou’s result was extended by Soares to the projective space P3:

Theorem 3.1.3 ([26]). Let Xµ, µ ∈ C, be the vector field

Xµ = (µx+ yd − xd+1)∂x + (µy + zd − yxd)∂y + (µz + 1− zxd)∂z

and let Fµ be the foliation on the projective space P3 represented by the vector field Xµ.
Then, for 0 < |µ| << 1 and degree d ≥ 2, the foliation Fµ has no invariant algebraic set,
meaning either an algebraic solution or an algebraic surface invariant by the solution.

Theorem 3.1.4 ([26]). Let Fol(3, d) denote the space of one-dimensional foliations of
degree d on the projective space P3. For each d ≥ 2 there is a dense subset Fd ⊂ Fol(3, d)

such that any foliation in Fd has no invariant algebraic set.

On higher dimensions, Lins-Neto and Soares in [23], generalized the above results for
the projective space Pn. In this case, the multidimensional Jouanolou system is defined
by

x′0 = xd1, x
′
1 = xd2, . . . , x

′
n = xd0. (3.1.2)

For n even the Jouanolou foliation doesn’t have invariant algebraic curves, and for n
odd, perturbed Jouanolou foliation doesn’t have invariant algebraic curves. With these
examples it is proven that the set of foliations on the projective space Pn of a given degree
and without algebraic curves contains an open and dense set:
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Theorem 3.1.5 ([23]). Consider the vector field

Xd
0 =

n−1∑
i=1

(xdi+1 − xixd1)∂i + (1− xnxd1)∂n, (3.1.3)

and
Xd
µ = Xd

0 + µR, µ ∈ C,

where R is the radial vector field R =
∑n

i=1 xi∂i, and let Fd0, Fdµ be the foliations on the
projective space Pn, n ≥ 2 represented, by the vector fields Xd

0 and Xd
µ respectively. Then,

for degree d ≥ 2 and n even, the foliation Fd0 has no algebraic solution and, for degree
d ≥ 2 and n odd, the foliation Fdµ has no algebraic solution provided 0 < |µ| << 1.

Theorem 3.1.6 ([23]). Let Fol(n, d) denote the space of one-dimensional holomorphic
foliations of degree d on the projective space Pn, n ≥ 2. For each d ≥ 2, there is an open
and dense subset Fd ⊂ Fol(n, d) such that any foliation in Fd has no algebraic solution.

In fact, they show that the foliation Fd0 has no algebraic solution of geometric genus

greather than zero, whether n is even or odd. If n is odd, there are
(dn+1 − 1)

(d2 − 1)
invariant

projective lines and they are the only invariant algebraic curves. But when one adds a
perturbation µR, 0 < |µ| << 1, then there are no invariant algebraic curves at all.

The study then focus on invariant algebraic hypersurfaces. In [24], Maciejewski,
Moulin, Nowicki and Strelcyn, stated that if n+ 1 ≥ 3 is prime and d > 2

n

n− 1
, then the

foliation given by the equation (3.1.2) does not have invariant algebraic hypersurfaces. In
particular, this holds for the primes n + 1 ≥ 5 and d ≥ 3 and for n + 1 = 3 and d ≥ 5.
Żołądek, in [31], generalized this and Theorem 3.1.3 of Soares with the following theorem.

Theorem 3.1.7 ([31]). If n ≥ 2 and d ≥ 2, then the Jouanolou foliation given by (3.1.2)
has no invariant algebraic hypersurfaces. This implies that the space of foliations on the
projective space Pn without invariant algebraic hypersurfaces is dense in the space of all
foliations of given degree.

Let us see some interesting facts about the Jouanolou foliation. As we have seen, the
generalized degree-d Jouanolou foliation Jd, d ≥ 2, on Pn can be defined in homogeneous
coordinates by the radial vector field in Cn+1 and the homogeneous vector field (3.1.2). In
affine coordinates (x1, . . . , xn, 1), it is induced by the vector field (3.1.3). All singularities
of the foliation are contained in this affine coordinate system Cn and are the solutions of
the system

xN1 = 1, xn−j = x−d
j+1−dj ...−d

1 , 0 ≤ j ≤ n− 2,

where N = dn+dn−1 + . . .+d+ 1. If ξ is a primitive N -th root of unity, then the singular
set is:

Sing(Jd) =
{
pi = (ξi, ξ−i(d

n−1+...+d), . . . , ξ−id) : 1 ≤ i ≤ N)
}
.
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For each i, the set of eigenvalues of the linear part of the vector field at the singular point
pi is Spec(Jd, pi) = {λji = (−1 + dωj)ξid | 1 ≤ j ≤ n}, where ω is a primitive (n + 1)-th
root of unity.

Let [α0, . . . , αn] ∈ PGL(n+ 1,C) denote the class of the automorphism (x0, . . . , xn) 7→
(α0x0, . . . , αnxn). Define

H = {[α0, . . . , αn] :
αi
αi+1

=
αdi+1

αdi+2

, 0 ≤ i ≤ n− 2,
αn−1

αn
=
αdn
αd0
}

The subgroup H ⊂ PGL(n+ 1,C) is cyclic of order N and is generated by the class

[ξ, ξ−(dn−1+...+d), . . . , ξ−(d2+d), ξ−d, 1]

where ξ is a primitive N -th root of unity. Moreover, H acts freely and transitively on the
singular set of the foliation Sing(Jd). This group leaves invariant the Jouanolou foliation.
Moreover, the vector field in Cn+1, which generates the Jouanolou foliation on Pn, admits

the symmetry groups: Z/2Z, Z/(n+ 1)Z and Z/NZ for N =
dn+1 − 1

d− 1
.

In some cases, the Jouanolou foliation admits invariant algebraic curves. From [23], by

Lins-Neto and Soares, the degree-d Jouanolou foliation Jd, d ≥ 2 and n odd, has
dn+1 − 1

d2 − 1
invariant lines. Every invariant line has d+ 1 singular points, and the direction of such a
projective line at pi is the eigendirection associated to the eigenvalue −(1 + dωj)ξid, with
ωj = −1. See figure 3.1.

Figure 3.1: Tangent projective line is an eigendirection for the Jouanolou foliation on P3.

3.2 Eigenspaces associated to the Jouanolou foliation

In this section we will decompose the space of vector fields in Cn, which generates foliations
on Pn of given degree, into eigenspaces of an operator derived from an automorphism
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leaving the Jouanolou foliation invariant. This will help us to find the rank of the Baum-
Bott map at the Jouanolou foliation, we will see this in Section 3.4. Some proofs of this
section are in Appendix A.

The degree-d Jouanolou foliation Jd on the projective space Pn is defined by the
homogeneous vector field in Cn+1:

XJd = (xd2, x
d
3, . . . , x

d
n+1, x

d
1).

This foliation is invariant by the automorphisms A,S ∈ Aut(Pn), which are defined by:

A(x1, . . . , xn+1) = (α1x1, . . . , αnxn, αn+1xn+1),

S(x1, . . . , xn+1) = (xn+1, x1, . . . , xn),

where α1 = ξ = ξ−(dn+...+d), α2 = ξ−(dn−1+dn−2+...+d),..., αj = ξ−(dn+1−j+...+d),..., αn = ξ−d,
αn+1 = 1, ξ is a primitive N -th root of unity and N = dn + dn−1 + . . . + d + 1. The
automorphisms A and S generate cyclic subgroups of Aut(Pn) of order N and n + 1,
respectively. The invariance of Jd by these automorphisms follows from:

A∗(XJd) = ξdXJd , S∗(XJd) = XJd .

In the affine coordinate system (x1, . . . , xn) the Jouanolou foliation is defined by the
vector field:

XJd =
n−1∑
i=1

(xdi+1 − xixd1)∂i + (1− xnxd1)∂n,

and the automorphisms A, S are defined by the maps A and S, respectively:

A : Cn → Cn, A(x1, . . . , xn) = (α1x1, . . . , αn−1xn−1, αnxn),

S : Cn 99K Cn, S(x1, . . . , xn) =
1

xn
(1, x1, . . . , xn−1).

Recall that a degree-d foliation F on the projective space Pn is defined by a non-zero
section of the twisted tangent bundle TPn⊗OPn(d−1) modulo non-zero complex multiple.
The family of such foliations is parametrized by the projective space

Fol(n, d) := P(H0(Pn, TPn ⊗ OPn(d− 1))).

A foliation F is represented in the affine coordinate system (x1, . . . , xn) by a vector field
of the form

X = Q+GR,
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where R is the radial vector field R = x1∂1 + . . .+xn∂n, G is a homogeneous polynomial of
degree d and Q is a polynomial vector field of degree at most d. Given I = (i1, . . . , in) ∈
Zn≥0, we set xI = xi11 . . . x

in
n and |I| = i1+. . .+in. The spaceVd = H0(Pn, TPn⊗OPn(d−1)),

considered as a C-vector space, is generated by

Bd = {xI∂k, xRR | I, R ∈ Zn≥0, |I| ≤ d, |R| = d, and k = 1, . . . , n}.

The pull-back maps associated to A and S, A∗ : Vd → Vd and S∗ : Vd → S∗(Vd), are
defined by A∗(X) = DA−1.X ◦ A and S∗(X) = DS−1.X ◦ S.

We would like to observe that Bd is a basis of eigenvectors of A∗. The eigenvalues are
N -th roots of unity. Let Ej = {V ∈ Vd | A∗V = ξjV } denotes the eigenspace of the
operator A∗ associated to the eigenvalue ξj. We have the following lemma:

Lemma 3.2.1. Every vector in Bd is an eigenvector of A∗ : Vd → Vd and Vd =
N⊕
j=1

Ej.

Moreover, if xI∂k, xRR ∈ Bd then

A∗(xI∂k) = α−1
k αIxI∂k and A∗(xRR) = αRxRR,

where αI = αi11 . . . α
in
n .

Next, we will study how the map S∗ acts in Vd.

Lemma 3.2.2. Let Q be a polynomial with deg(Q) ≤ d in n variables. Then

S∗(Q∂1) = −xnQ(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)R (3.2.4)

S∗(Q∂k) = xnQ(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)∂k−1, for 2 ≤ k ≤ n (3.2.5)

S∗(QR) = −xnQ(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)∂n (3.2.6)

We see that the vector fields in (3.2.4), (3.2.5) and (3.2.6) in general have a pole divisor
xd−1
n . Therefore, we define

S̃∗ : Vd → Vd, S̃∗ := xd−1
n S∗.

Let’s see how it acts on Vd:

Lemma 3.2.3. Let I = (i1, . . . , in) ∈ Zn≥0 such that |I| ≤ d. If in+1 = d− |I|, then

S̃∗(xI∂1) = −xi21 . . . xinn−1x
in+1
n R (3.2.7)

S̃∗(xI∂k) = xi21 . . . x
in
n−1x

in+1
n ∂k−1, for 2 ≤ k ≤ n (3.2.8)

S̃∗(xIR) = −xi21 . . . xinn−1x
in+1
n ∂n (3.2.9)
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This operator maps eigenspaces into eigenspaces, more specifically, we have the
following lemma.

Lemma 3.2.4. We have S̃∗(XJd) = XJd and S̃∗(Ek) = Ef(k), where

f(k) = (dk − d2 + d) mod (N). (3.2.10)

Moreover,

XJd =
n∑
j=0

(S̃∗)j(∂n). (3.2.11)

Proof. The following relation holds: S−1 ◦ A ◦ S = Ad
n . It yields:

S−1 ◦ Ad ◦ S = Ad
n+1

= A.

The above relation implies: S ◦ A = Ad ◦ S, A∗ ◦ S∗ = S∗ ◦ (A∗)d, xd−1
n A∗ ◦ S∗ =

xd−1
n S∗ ◦ (A∗)d = S̃∗ ◦ (A∗)d. Since A∗ ◦ (xnS

∗) = ξ−dxnA
∗ ◦ S∗, we have xd−1

n A∗ ◦ S∗ =

A∗ ◦ (ξd(d−1)xd−1
n S∗) = A∗(ξd(d−1)S̃∗) = ξd(d−1)A∗ ◦ S̃∗. Hence, A∗ ◦ S̃∗ = ξ−d(d−1)S̃∗ ◦ (A∗)d.

If V ∈ Ek, then (A∗)dV = ξdkV and A∗(S̃∗(V )) = ξ−d(d−1)S̃∗(ξdkV ) = ξdk−d
2+dV , which

proves (3.2.10). In particular, we get S̃∗(Ed) = Ed. Finally S̃∗(XJd) = XJd and (3.2.11)
follows from (3.2.7), (3.2.8) and (3.2.9).

The automorphisms A and S induce operators A∗,S∗ : Vd → Vd, where Vd is the
space of homogeneous vector fields in Cn+1 of degree d. Let us compare Lemmas 3.2.1
and A.1, of Appendix A. Observe that the eigenvalue of the operator A∗ on the vector
xi11 . . . x

in
n x

in+1

n+1∂k is the same as the eigenvalue of the operator A∗ on the vector xi11 . . . xinn ∂k,
if k ≤ n, and −xi11 . . . xinn R, if k = n + 1. Also, from Lemma 3.2.3 and Lemma A.2, S∗

evaluated in xi11 . . . x
in+1

n+1∂k has the same image in Vd as S̃∗ at xi11 . . . xinn ∂k, if k ≤ n,
and −xi11 . . . xinn ∂kR, if k = n + 1. Also, we can identify the monomials of degree d in
n+ 1 variables with the monomials in n variables of degree at most d with the following
correspondence:

xi11 . . . x
in
n x

in+1

n+1 7→ xi11 . . . x
in
n , where i1 + . . .+ in + in+1 = d.

These identifications are summarized in the following lemma:

Lemma 3.2.5. Let I = (i1, . . . , in, in+1) ∈ Zn+1
≥0 and I ′ = (i1, . . . , in). If we identify xI∂k

with xI′∂k, for k = 1, . . . , n, and xI∂n+1 with −xI′R, then

A∗(xI
′
∂k) = A∗(xI∂k), A∗(−xI′R) = A∗(xI∂n+1),

S̃∗(xI′∂k) = S∗(xI∂k), S̃∗(−xI′R) = S∗(xI∂n+1).

Now we are able to know how many eigenspaces of each dimension exist:
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Theorem 3.2.1. The operator A∗ : Vd → Vd has
(
n+d
n

)
+ n

(
n+d−1
n−1

)
− (n − 1)

3n+ 4

2
non-trivial eigenspaces. More precisely:

1. There is one eigenspace of dimension n+ 1:

Ed =< xd2∂1, . . . , x
d
n∂n−1, ∂n, x

d
1R > .

2. There are
(
n+d−1
n

)
eigenspaces of dimension n, and they are:

< x1x
I∂1, . . . , xnx

I∂n >,

where I ∈ Zn≥0 and |I| ≤ d− 1.

3. There are
(3n− 4)(n+ 1)

2
eigenspaces of dimension two, which are:

(a) (S̃∗)k(< xd−1
2 xn∂1, ∂2 >), (S̃∗)k(< xd−1

2 ∂1, x
d
1∂2 >), (S̃∗)k(< xd−1

2 xj∂1, x
d
1+j∂2 >

), for 3 ≤ j ≤ n− 1, k = 0, . . . , n and,

(b) if n is even: (S̃∗)k(< xd−1
2+j∂1, x

d−1
1 x1+j∂2+j >), for 1 ≤ j ≤ n

2
− 1 and

k = 0, . . . , n,

if n is odd: (S̃∗)k(< xd−1
2+j∂1, x

d−1
1 x1+j∂2+j >), for 1 ≤ j ≤ n− 3

2
, k = 0, . . . , n

and for j =
n− 1

2
, then k = 0, . . . ,

n− 1

2
.

4. There are (n + 1)
[(
n+d−1
n−1

)
− 3(n− 1)

]
eigenspaces of dimension 1, which are

generated by: (S̃∗)k(xI∂1), where xI∂1 ∈ Bd, with i1 = 0, k = 0, . . . , n and
xI 6= 1, xd−1

2 xj, x
d−1
j , xdj , for j = 2, . . . , n.

The list is complete and each eigenspace of A∗ corresponds to exactly one of the spaces
given in the above items.

Proof. Let E be an eigenspace of A∗. Then by the identification given in Lemma
3.2.5, E is contained in an eigenspace E of A∗. The spaces E and E are equal, after the
identification, if and only if E does not contain a monomial xI∂n+1, with in+1 > 0, since
this kind of vector does not belong to Bd. Theorem A.1 gives the list of eigenspaces of
A∗. We see that the eigenspaces of A∗ of dimensions 1 and 2, and the eigenspace Ed are
eigenspaces of A∗, since xI∂n+1 with in+1 > 0 is not a monomial in those eigenspaces.
Lemma A.7 and Theorem A.1 give the complete list of eigenspaces of those kinds, and
we get Items 1,3 and 4. We observe from Item 1 of Theorem A.1 that xI∂n+1 ∈ E,
with in+1 > 0, precisely for eigenspaces generated by < x1x

Ĩ∂1, . . . , xn+1x
Ĩ∂n+1 >, where

xI = xn+1x
Ĩ . Since E ⊂ E, then E =< x1x

Ĩ∂1, . . . , xnx
Ĩ∂n >, and we conclude the proof.
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In the case of the space of polynomial vector fields in C3 generating degree d foliations
on P3, we are able to identify each eigenspace of dimension two, three and four. We
identify x = x1, y = x2 and z = x3.

Lemma 3.2.6. Let Vd be the space of polynomial vectors fields defined in C3 generating
degree-d foliations on the projective space P3. Then the linear operator A∗ : Vd → Vd has
the following list of eigenvalues and eigenvectors which generate eigenspaces of dimension
two, three and four (see Table 3.1):

Eigenvalue
Eigenvector in

P(∂x) P(∂y) P(∂z) P(R)

ξd yd∂x zd∂y ∂z xdR

ξd
3+d2+d ∂x zxd−1R

ξd
3+d zd∂x yxd−1R

ξd
2+d zyd−1∂x ∂y

ξd
2+2d yd−1∂x xd∂y
ξ2d zd−1∂y xd∂z
ξ2d+1 xzd−1∂y yd∂z
ξd+1 x∂z ydR

ξd
3+d+1 y∂z zdR

ξd
3+2d zd−1∂x yxd−1∂z

ξd
2+d+1 x∂y zyd−1R

ξi−j(d
2+d)−kd xi+1yjzk∂x xiyj+1zk∂y xiyjzk+1∂z

Table 3.1: Eigenvectors and eigenvalues of A∗, for n = 3, where P(V ) = {xIV ∈ Bd}.

In the case of the space of polynomial vector fields in C4 generating degree-d foliations
on P4, we are able to identify each eigenspace of dimension two, four and five.

Lemma 3.2.7. Let Vd be the space of polynomial vector fields in C4 generating degree-d
foliations on the projective space P4. Then the linear operator A∗ : Vd → Vd has one
eigenspace of dimension five, 20 eigenspaces of dimension two and

(
d+3

4

)
of dimension

four (see Table 3.2).

3.3 The Baum-Bott indexes of the Jouanolou foliation

In this section we want to calculate the Baum-Bott indexes of the Jouanolou foliaton.
Recall that the Jouanolou foliation is defined in the affine coordinate system Cn by the
vector field

XJd =
n−1∑
i=1

(xdi+1 − xixd1)∂i + (1− xnxd1)∂n.
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P (∂1) P(∂2) P(∂3) P(∂4) P(R)
xd2∂1 xd3∂2 xd4∂3 ∂4 x1R

xd−1
2 ∂1 xd1∂2

x4x
d−1
2 ∂1 ∂2

x3x
d−1
2 ∂1 xd4∂2

xd−1
3 ∂1 x2x

d−1
1 ∂3

xd−1
4 ∂1 x3x

d−1
1 ∂4

∂1 x4x
d−1
1 R

xd4∂1 x3x
d−1
1 R

xd3∂1 x2x
d−1
1 R

x1x
d−1
3 ∂2 xd2∂3

xd−1
3 ∂2 xd1∂3

x4x
d−1
3 ∂2 ∂3

x1x
d−1
4 ∂2 x3x

d−1
2 ∂4

x1∂2 x4x
d−1
2 R

x2x
d−1
4 ∂3 xd3∂4

x1x
d−1
4 ∂3 xd2∂4

xd−1
4 ∂3 xd1∂4

x2∂3 x4x
d−1
3 R

x3∂4 xd4R
x2∂4 xd3R
x1∂4 xd2R

xi1+1
1 xi22 x

i3
3 x

i4
4 ∂1 xi11 x

i2+1
2 xi33 x

i4
4 ∂2 xi11 x

i2
2 x

i3+1
3 xi44 ∂3 xi11 x

i2
2 x

i3
3 x

i4+1
4 ∂4

Table 3.2: Eigenvectors of the linear map A∗ : Vd → Vd, for n = 4.

In the above table, each row contains the generators of the same eigenspace.

The operator A : Cn → Cn is given by A(x1, . . . , xn) = (α1x1, . . . , αn−1xn−1, αnxn), where
αj = ξ−(dn+1−j+dn−j+...+d), j = 1, . . . , n, and ξ is a primitive N -th root of unity. The points
pi = Ai−1(1, . . . , 1), for i = 1, . . . , N give all the singular points of the foliation Jd. Since
A∗(XJd) = ξd XJd , we have:

BB(XJd , pi) = BB(A∗(XJd), A−1(pi)) = BB(XJd , p1).

Then, it is enough to calculate the indexes at the point (1, . . . , 1) ∈ Cn.
In order to know the Baum-Bott indexes of the foliation, we must find the elementary

symmetric functions of the eigenvalues of the matrix DXJd(1, . . . , 1). We have that

DXJd(1, . . . , 1) = − Id +dB,
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where B is: 

−1 1 0 . . . 0 0

−1 0 1 . . . 0 0

−1 0 0
. . . 0 0

...
...

... . . . . . . ...
−1 0 0 . . . 0 1

−1 0 0 . . . 0 0


.

Observe that Bn+1 = Id and its characteristic polynomial is pB(λ) = λn + λn−1 + . . .+ 1.
Then the characteristic polynomial of DXJd(1, . . . , 1) is

pJd(λ) =
n∑
i=0

dn−i(λ+ 1)i.

Therefore the elementary symmetric functions of the eigenvalues of DXJd(1, . . . , 1) are:

Ci(DXJd(1, . . . , 1)) = (−1)i
i∑

k=0

(
n− i+ k

k

)
di−k. (3.3.12)

In particular, the Baum-Bott indexes are determined by:

BBi(Jd, (1, . . . , 1)) =
Cn−i

1 (DXJd(1, . . . , 1))Ci(DXJd(1, . . . , 1))

Cn(DXJd(1, . . . , 1))

=

(d+ n)n−i
(

i∑
k=0

(
n−i+k
k

)
di−k

)
dn + dn−1 + . . .+ d+ 1

, i = 1, . . . , n− 1.

We conclude the following proposition.

Proposition 3.3.1. Consider the degree d ≥ 2 Jouanolou foliation Jd on the projective
space Pn. If p(Jd) ∈ Sing(Jd), then for j = 1, . . . , n− 1, we have:

BBj(Jd, p(Jd)) =

(d+ n)n−j
(

j∑
k=0

(
n−j+k

k

)
dj−k

)
dn + dn−1 + . . .+ d+ 1

.

In general,

∑
p(F)∈Sing(F)

BBj(F, p(F)) = (d+ n)n−j(

j∑
k=0

(
n− j + k

k

)
dj−k),

for any one dimensional degree-d foliation F on the projective space Pn with only isolated
singularities.
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3.4 The rank of the local Baum-Bott map at the

Jouanolou foliation

Our goal in this section is to estimate the rank of the local Baum-Bott map at the
Jouanolou foliation.

In [22], Lins-Neto and Pereira study the rank of the Baum-Bott map at the Jouanolou
foliation on the projective plane P2. They stated the following theorem.

Theorem 3.4.1 ([22 : Theorem 2]). For any d ≥ 2, the rank of the local Baum-Bott map
at the Jouanolou foliation Jd on the projective space P2 is at most

d2 + 7d− 6

2
.

In particular, if d = 2, 3, then rank(BB, Jd) = d2 + d, and if d ≥ 4, then rank(BB, Jd) <

d2 + d.

We see that for n = 2 the rank of the local Baum-Bott map at Jd is strictly less than
the generic rank of the local Baum-Bott, if d ≥ 4.

From now on, let us consider n ≥ 3. We will consider the Baum-Bott map defined on
Vd = H0(Pn, TPn ⊗ OPn(d− 1)), which is generated as a C-vector space by

Bd = {xI∂k, xRR | k = 1, . . . , n, I = (i1, . . . , in), R = (r1, . . . , rn) ∈ Zn≥0,

|I| ≤ d and |R| = d}.

Since the singularities of XJd are non-degenerate, there exists a neighborhood U of XJd

in Vd and holomorphic maps γj : U → Cn, j = 1, . . . , N , such that γj(XJd) = pj and
Sing(X) = {γ1(X), . . . , γN(X)}, for all X ∈ U . The local Baum-Bott map can be written
on U as

BB(X) =(BB1(X, γ1(X)), . . . , Bn−1(X, γ1(X)), . . .

. . . , BB1(X, γN(X)), . . . , BBn−1(X, γN(X)))

In this way, we want to compute the rank of the linear map

DBB(XJd) : Vd → C(n−1)N .

In the following lemma, we will see that DBB(XJd) can be encoded in one of the
singular points of XJd :

Lemma 3.4.1. For any V ∈ Vd, k ∈ {1, . . . , n− 1} and j ∈ {1, . . . , N}, we have:

DBBk(XJd , pj+1).V = ξ−dDBBk(XJd , pj).A
∗(V ),
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where in the above formula pN+1 = p1.

Proof. Let r > 0 be such that XJd +tV ∈ U , for all |t| < r. Set ρj(t) := γj(XJd +tV ),
|t| < r (see Figure 3.2). Since A∗XJd = ξd XJd and BBk(A

∗X, p) = BBk(X,A
−1(p)), for

all p ∈ Sing(X), we have BBk(XJd +tV, ρj+1(t)) = BBk(ξ
d XJd +tA∗(V ), A−1(ρj+1(t))) =

BBk(XJd +tξ−dA∗(V ), A−1(ρj+1(t))).

Figure 3.2: The maps γj−1 and γj, where Y = tV .

Taking the derivative with respect to t at t = 0 in the above formula, we get

DBBk(XJd , pj+1).V = DBBk(XJd , pj).ξ
−dA∗(V ) = ξ−dDBBk(XJd , pj).A

∗(V ).

For simplicity we denote by Tj := (DBB1(XJd , pj), . . . , DBBn−1(XJd , pj)) : Vd →
Cn−1, 1 ≤ j ≤ N , and DBB(XJd) = T := (T1, . . . , TN).

As a consequence of Lemma 3.4.1, T can be factorized into a product of a nonsingular
matrix and a block diagonal matrix. More specifically, we have:

Corollary 2. For any j ∈ {1, . . . , N} and V ∈ Vd we have:

Tj+1(V ) = ξ−dTj(A
∗(V )).

In particular:

a) A∗(ker(T )) = ker(T ),

b) if we set Ki = Ei ∩ ker(T ), i ∈ {1, . . . , N}, then ker(T ) =
N⊕
i=1

Ki,

c) Ei ∩ ker(T1) = Ki, for all j = 1, . . . , N .
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d) dim(ker(T )) =
N∑
i=1

dim(Ei ∩ ker(T1)) or equivalently

rankT =
∑
Ei 6=∅

rankT1|Ei .

Proof. Items a) and b) follow from Lemma 3.4.1.
For item c), observe that V ∈ Ei ∩ ker(T1) if, and only if, A∗(V ) = ξiV and

0 = T1(ξijV ) = T1((A∗)j(V )) = ξjdT1+j(V ), for j = 1, . . . , n − 1, which is equivalent
to V ∈ Ei ∩ ker(T ).

For item d), let’s consider V an eigenvector of the operator A∗ associated to the
eigenvalue ξi, from Lemma 3.4.1:

Tj(V ) = ξ(j−1)(i−d)T1(V ).

Choosing a base for each eigenspace Ei associated to the eigenvalue ξi, the derivative of
the Baum-Bott map at the Jouanolou foliation is:

T =


T1|E1 T1|E2 . . . T1|EN
T2|E1 T2|E2 . . . T2|EN
...

...
...

...
TN |E1 TN |E2 . . . TN |EN



=


T1|E1 T1|E2 . . . T1|EN

ξ(1−d)T1|E1 ξ2−dT1|E2 . . . ξN−dT1|EN
...

...
...

...
ξ(N−1)(1−d)T1|E1 ξ(N−1)(2−d)T1|E2 . . . ξ(N−1)(N−d)T1|EN



= M


T1|E1 0 . . . 0

0 T1|E2 0 0

0 0
. . . 0

0 0 0 T1|EN

 , (3.4.13)

where the matrix M ∈M(C, (n− 1)N):

M =


Id Id . . . Id

ξ(1−d) Id ξ2−d Id . . . ξN−d Id
...

...
...

...
ξ(N−1)(1−d) Id ξ(N−1)(2−d) Id . . . ξ(N−1)(N−d) Id

 .

and Id is the (n − 1) × (n − 1) identity matrix. Since det(M) 6= 0, we can calculate the
rank of the linear map T in terms of the rank of the linear map T1, which proves (d).
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Corollary 2 tell us that in order to calculate the rank of T , it is enough to calculate T1

in each eigenspace of A∗. Recall that S̃∗ : Vd → Vd, given by (3.2.7), (3.2.8) and (3.2.9),
maps eigenspaces of A∗ into eigenspaces (see Lemma 3.2.4). As a consequence of this fact,
it is enough to study T at some convenient eigenspaces:

Corollary 3. We have T (S̃∗(V )) = T (V ), for all V ∈ Vd. Moreover, Ed ⊂ ker(T ).

Remark 3.4.1. Note that xd2∂1, . . . , x
d
n∂n−1, ∂n, x

d
1R ∈ Ed are the monomials of the vector

field XJd.

Proof. By equations (3.2.4), (3.2.5) and (3.2.6), if Q is a polynomial in n variables of
degree at most d, then we get:

xd−1
n S∗(XJd + tQ∂1) = XJd − tQ(

1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdnR,

xd−1
n S∗(XJd + tQ∂k) = XJd + tQ(

1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdn∂k−1, for k ≥ 2, and

xd−1
n S∗(XJd − tQR) = XJd + tQ(

1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdn∂n,

and the singularity S−1ρ1(t) goes to p1 as t goes to zero. This implies

T (Q∂1) = T (−Q(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdnR),

T (Q∂k) = T (Q(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdn∂k−1), for 2 ≤ k ≤ n,

T (−QR) = T (Q(
1

xn
,
x1

xn
, . . . ,

xn−1

xn
)xdn∂n),

and the first part of the corollary follows. Finally, since BB(XJd +tXJd , ρ1(t)) =

BB(XJd , p1), we get T (XJd) = 0. From (3.2.11), we have

T (XJd) = T (
n∑
k=0

(S̃∗)k(∂n)) = (n+ 1)T (∂n),

then T (∂n) = 0 and Ed ⊂ ker(T ).
From now on, we are going to use the identifications made in Lemma 3.2.5. We denote

∂k = ∂k mod (n+1). Then, the corollary above is read as:

Lemma 3.4.2. Given I ∈ Zn+1
≥0 , we have:

T1(xI∂k) = T1(xJ∂k−1), for k = 1, . . . , n+ 1, (3.4.14)

where J = S−1(I).

Given a polynomial vector field V , define P(V ) = {xIV ∈ Bd | I ∈ Zn≥0 and |I| ≤ d}.
By the relation above, to calculate the map T1 on a vector, we can compute it on a more
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convenient one, at some vector in P(∂1). In order to find the rank of the linear map T1

at vectors in P(∂1), we need to find the derivative of the elementary symmetric function
of the eigenvalues with respect to those vectors. The calculations are easier if the vector
is zero at the singular point p1. Let us see it in the following lemma:

Lemma 3.4.3. Let Q be a polynomial in n variables such that Q(p1) = 0 and let t be
a complex number, small enough. Let X(t) = XJd +tQ∂1, with singularity at p1, for all
t ∈ C, and set Ci(t) = Ci(DX(t)(p1)). Then, we have:

C ′1(0) =∂1Q(p1),

C ′i(0) =(−1)i
(
−
(
n− 1

i− 1

)
∂1Q(p1)+

+
i−2∑
k=0

(
n− i+ k

k

)
(∂2Q(p1) + . . .+ ∂n−i+k+2Q(p1))di−k−1

)
, (3.4.15)

for i = 2, . . . , n.

Proof. Let P (λ) = det(λId−DX(t)(p1)) be the characteristic polynomial of the matrix
DX(t)(p1), then it is equal to the following determinant:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(λ+ (d+ 1)− t∂1Q) (−d− t∂2Q) −t∂3Q −t∂4Q . . . −t∂n−1Q −t∂nQ
d (λ+ 1) −d 0 . . . 0 0

d 0 (λ+ 1) −d . . . 0 0
...

... . . . . . . . . . . . . ...
d 0 0 0 . . . −d 0

d 0 0 0 . . . (λ+ 1) −d
d 0 0 0 . . . 0 (λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where each ∂iQ is evaluated at p1, for i = 1, . . . , n. Let us denoteW1 = λ+(d+1)− t∂1Q,
W2 = −d − t∂2Q, and Wi = −t∂iQ, for i = 3, . . . , n. We divide the last row by λ + 1,
hence we have

P (λ) = (λ+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

W1 W2 W3 W4 . . . Wn−1 Wn

d (λ+ 1) −d 0 . . . 0 0

d 0 (λ+ 1) −d . . . 0 0
...

... . . . . . . . . . . . . ...
d 0 0 0 . . . −d 0

d 0 0 0 . . . (λ+ 1) −d(
d

λ+ 1

)1

0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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We add to the first row the n-th row multiplied by −Wn, and to the (n − 1)-th row we
add the last row times d, then to the resulting (n−1)-th row, we divide it by λ+ 1. Then

P (λ) = (λ+ 1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
W1 −

(
d

λ+ 1

)
Wn

)
W2 W3 W4 . . . Wn−2 Wn−1

d (λ+ 1) −d 0 . . . 0 0

d 0 (λ+ 1) −d . . . 0 0
...

... . . . . . . . . . . . . ...
d 0 0 0 . . . (λ+ 1) −d(

d

λ+ 1
+

(
d

λ+ 1

)2
)

0 0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Doing so, we arrive to the expression

P (λ) =(λ+ 1)n−1

∣∣∣∣∣∣∣∣∣∣

(
W1 −

(
d

λ+ 1

)
Wn − . . .−

(
d

λ+ 1

)n−2

W3

)
W2(

d

λ+ 1
+ . . .+

(
d

λ+ 1

)n−1
)

1

∣∣∣∣∣∣∣∣∣∣
=(λ+ 1)n−1W1 − d(λ+ 1)n−2Wn + . . .+

−
(
d(λ+ 1)n−2 + d2(λ+ 1)n−3 + . . .+ dn−2(λ+ 1)

)
W3+

−
(
d(λ+ 1)n−2 + d2(λ+ 1)n−3 + . . .+ dn−2(λ+ 1) + dn−1

)
W2.

Therefore

P (λ) =(λ+ 1)n + (λ+ 1)n−1(d− t∂1Q) + d(λ+ 1)n−2(d+ t(∂2Q . . .+ ∂nQ))+

+ d2(λ+ 1)n−3(d+ t(∂2Q . . .+ ∂n−1Q)) + . . .+

+ dn−2(λ+ 1)(d+ t(∂2Q+ ∂3Q)) + dn−1(d+ t∂2Q).

It follows that,

∂tP (λ)|t=0 =(λ+ 1)n−1(−∂1Q(p1)) + d(λ+ 1)n−2(∂2Q(p1) + . . .+ ∂nQ(p1))+

+ d2(λ+ 1)n−3(∂2Q(p1) + . . .+ ∂n−1Q(p1)) + . . .+

+ dn−2(λ+ 1)(∂2Q(p1) + ∂3Q(p1)) + dn−1∂2Q(p1).

We know that P (λ) =
n∑
i=0

(−1)iλn−iCi(t), then ∂tP (λ)|t=0 =
n∑
i=1

(−1)iλn−iC ′i(0), and we

obtain the formulas (3.4.15).
Now we can identify which vectors are not in the kernel of the linear map T1:
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Lemma 3.4.4. Let d and n be integer numbers with d ≥ 2, and n ≥ 3. Let Q be
the monomial Q = xi11 . . . x

in
n of degree at most d. If Q /∈ {xd2 , xr+1

1 xr2 . . . x
r
n}, then

Q∂1 /∈ ker(T1). The number r is the solution of d = (n+ 1)r + 1.

Proof. By contradiction, suppose that Q∂1 ∈ ker(T1). Then (Q − xd2)∂1 ∈ ker(T1). Let
Ci(t) = Ci(D(XJd + t(Q− xd2)∂1)(p1)). Observe that p1 ∈ Sing(XJd + t(Q− xd2)∂1). The
following relations hold:

i
C ′1(0)

C1(0)
− C ′i(0)

Ci(0)
= 0, for i = 2, . . . , n.

Denote in+1 = d − (i1 + . . . + in), then i2 = d − i1 − (i3 + . . . + in+1). We use equations
(3.4.15) and (3.3.12). We have:

(in+1 − i1)d+ n(i1 + in+1)− i1(n− 1) = 0,

and for i = 3, . . . , n:

(i1(1− i) + in−i+3 + . . .+ in+1)di−1 +
i−2∑
k=1

(

(
n− i+ k

k

)
((1− i)i1 + in−i+3+k + . . .+ in+1)+

+n

(
n− i+ k − 1

k − 1

)
(i1 + in−i+2+k + . . .+ in+1)

)
di−k−1 +

(
n− 2

i− 2

)
(nin+1 + i1) = 0.

(3.4.16)

From the first equation,

i1 + nin+1 = (i1 − in+1)d ≥ 0, (3.4.17)

i1(d− 1) = in+1(d+ n) (3.4.18)

For i = 3, we replace (3.4.17) in (3.4.16), and we get

(−2i1 + in + in+1)d+ (2i1 + n(in + in+1)) = 0.

This is equivalent to 2i1(d− 1) = (in + in+1)(d+ n), and using (3.4.18) give us in = in+1.
For i = 4, we replace in by in+1. From (3.4.17) and (3.4.18) we conclude that in−1 = in+1.
Doing so, we get i3 = . . . = in+1. Now, from (3.4.17) we obtain (i1 − in+1)(d − 1) =

(n+ 1)in+1. We know that d = i1 + i2 + . . .+ in+1, hence d = (i1 − in+1)d+ i2 − in+1. If
i1 = in+1, then i2 = d. If i1 > in+1, then i1 = in+1+1 and i2 = in+1, thus d = (n+1)in+1+1.

Let us compute the rank of T1 restricted to the eigenspaces of dimension one.
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Lemma 3.4.5. The total rank of T1 at the eigenspaces of dimension one of A∗ : Vd → Vd

is: ∑
dimEi=1

rank(T1|Ei) = (n+ 1)

[(
n+ d− 1

n− 1

)
− 3(n− 1)

]
.

Proof. Item 4 of Theorem 3.2.1 gives us the structure of the eigenspaces of dimension
one. We use Corollary 3, and we have the following equality:∑

dimEi=1

rank(T1|Ei) = (n+ 1)
∑
xI /∈D

rank(T1(xI∂1)),

where xI∂1 ∈ Bd, D = {xI , 1, xd−1
2 xj, x

d−1
j , xdj | I = (i1, . . . , in) ∈ Zn≥0 with i1 >

0, and j = 2, . . . , n}. Since xd2, x
r+1
1 xr2 . . . x

r
n ∈ D, then (n + 1)

∑
xI /∈D

rank(T1(xI∂1)) is

the number of eigenspaces of dimension 1.
We will calculate the rank of the linear map T1 restricted to eigenspaces of dimension

two.
From Item 3 of Theorem 3.2.1 and Corollary 3, we have:

Lemma 3.4.6. Consider the eigenspaces of dimension two of the operator A∗ : Vd → Vd.
If n is even, then

N∑
j=1

dimEj=2

rankT1|Ej =(n+ 1)


n
2∑

r=2

rankT1[xn+1x
d−1
r+1∂1, xrx

d−1
1 ∂r+1]

+
n+1∑
r=3

rankT1[xrx
d−1
2 ∂1, x

d
r+1∂2]

}
.

If n is odd, then

N∑
j=1

dimEj=2

rankT1|Ej =(n+ 1)


n−1
2∑

r=2

rankT1[xn+1x
d−1
r+1∂1, xrx

d−1
1 ∂r+1]+

+
n+1∑
r=3

rankT1[xrx
d−1
2 ∂1, x

d
r+1∂2]

}
+
n+ 1

2
rankT1[xn+1x

d−1
n+3
2

∂1].

In the above formulas T1[·, ·] denotes the restriction of T1 to the space < ·, · >.

Now, let us analize the rank of the linear map T1 restricted to the eigenspaces of
dimension two of the form < xrx

d−1
2 ∂1, x

d
r+1∂2 >:

Lemma 3.4.7. For r = 3, . . . , n + 1, the rank of T1 restricted to the space generated by
xrx

d−1
2 ∂1, x

d
r+1∂2 is one.
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Proof. Lemma 3.4.14 tells us that

rankT1[xrx
d−1
2 ∂1, x

d
r+1∂2] = rankT1[xrx

d−1
2 ∂1, x

d
r∂1].

Let us defineQ(x1, . . . , xn) = dxrx
d−1
2 −xdr−(d−1)xd2, for r = 3, . . . , n, andQ(x1, . . . , xn) =

dxd−1
2 − 1 − (d − 1)xd2, in the case r = n + 1. Observe that p1 ∈ Sing(XJd +tQ∂1),

for all t ∈ C. Then, det(λ Id +D(XJd +tQ∂1)(p1)) = det(λ Id +DXJd(p1)), this implies
that BB(XJd +tQ∂1, p1) = BB(XJd , p1), for all t ∈ C, hence Q∂1 ∈ ker(T1). Therefore,
rankT1[xrx

d−1
2 ∂1, x

d
r+1∂2] ≤ 1, for r = 3, . . . , n+ 1. From Lemma 3.4.4, we conclude that

rankT1[xrx
d−1
2 ∂1, x

d
r+1∂2] = 1.

We can recognize which eigenspaces of dimension two have maximum rank:

Lemma 3.4.8. Let n ≥ 3. If n = 2K + 1, or n = 2K, for some positive integer K, then

rankT1[xd−1
r+1xn+1∂1, xrx

d−1
1 ∂r+1] = 2, for r = 2, . . . , K.

Proof. By relation (3.4.14), T1(xrx
d−1
1 ∂r+1) = T1(xd−1

n−r+2xn+1∂1). Since 2 ≤ r ≤ K,
xd−1
n−r+2xn+1 and xd−1

r+1xn+1 are different polynomials. We realize that r + 1 < n − r + 2.
Suppose there exist some α ∈ C such that T1(xd−1

r+1xn+1∂1) = αT1(xd−1
n−r+2xn+1∂1). Let

Q1 = xd−1
r+1xn+1 − xd2, and Q2 = xd−1

n−r+2xn+1 − xd2. Then ∂2Q1 = −d, ∂r+1Q1 = d − 1,
∂2Q2 = −d, ∂n−r+2Q2 = d− 1. It follows that T1(Q1∂1) = αT1(Q2∂1). Observe that p1 ∈
Sing(XJd +tQj∂1), for j = 1, 2, t ∈ C. Let us denote Ci,Qj(t) = Ci(D(XJd + tQj∂1)(p1)).
We use (3.4.15) to get C ′i,Q1

(0) = αC ′i,Q2
(0), for i = 2, . . . , n. If i = 2, then

C ′2,Q1
(0) = d(∂2Q1 + . . . + ∂nQ1) = −d = C ′2,Q2

(0), hence α = 1. If i = r + 1, then
C ′r+1,Q1

(0)− C ′r+1,Q2
(0) = (−1)r+2(d+ 1)dr, which give us a contradiction.

We conclude the study of eigenspaces of dimension 2 with the following lemma:

Lemma 3.4.9. The total rank at the eigenspaces of dimension 2 of A∗ is:

N∑
j=1

dimEj=2

rankT1|Ej =

 (n+ 1)(2n− 3) , if n is even.

(n+ 1)(2n− 4) +
n+ 1

2
, if n is odd.

Proof. We replace Lemma 3.4.7 and Lemma 3.4.8 in Lemma 3.4.6.
Finally, let us study T1 at eigenspaces of dimension n. We will need some notations.

Let J = {j1, . . . , jr} be an ordered set and Vj, for j ∈ J , be vectors of same dimension. We
denote [Vj]j∈J = [Vj1 . . . Vjr ], the matrix whose column vectors are Vj1 , . . . , Vjr . If n, d ∈ Z,
and I = (i1, . . . , in) ∈ Zn≥0, we define the linear transformationMn,d(I) : Cn → Cn−1 given
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by the matrix:

Mn,d(I) =


(ij+1 − ij)d+ (ij+2 − ij+1)(d+ 1)

ij+3 − ij+2

...
ij+n − ij+n−1


1≤j≤n

,

where in+1 = d− 1− (i1 + . . .+ in). We are identifying ij = ij mod (n+1).
We can relate the rank of the linear map T1 restricted to an eigenspace of dimension

n with the exponents of the monomial that defines the eigenspace.

Lemma 3.4.10. Let n, d be integer numbers such that d ≥ 2 and n ≥ 3. Then for all
monomials xI = xi11 . . . x

in
n of degree at most d− 1, we have

rankT1|{xjxI∂j |j=1,...,n} = rankMn,d(I),

Proof. Let i1, . . . , in be non-negative integer numbers such that i1 + . . .+ in ≤ d−1. Let
xI = xi11 . . . x

in
n be the monomial and let in+1 = d− 11− (i1 + . . .+ in). By identification

(3.4.14), we have

T1(x2x
I∂2) = T1(xi2+1

1 xi32 . . . x
in+1
n xi1n+1∂1),

T1(x3x
I∂3) = T1(xi3+1

1 xi42 . . . x
i1
n x

i2
n+1∂1), . . . ,

T1(xnx
I∂n) = T1(xin+1

1 x
in+1

2 . . . x
in−1

n+1 ∂1).

Let us still denote ij = ij mod (n+1), and let Qj be the polynomial Qj(x1, . . . , xn+1) =

x
ij+1
1 x

ij+1

2 . . . x
ij+n−1
n x

ij+n
n+1 − xd2, Ci(0) = Ci(D(XJd(p1)), and Ci,Qj(t) = Ci(D(XJd +

tQj∂1)(p1)). Observe that p1 ∈ Sing(XJd +tQj∂1), for i = 1, . . . , n − 1, j = 1, . . . , n

and t ∈ C.
We see that the linear transformation T1 restricted to space generated by the set of

eigenvectors {xjxI∂j | j = 1, . . . , n} has the same rank as the following matrix

(
2
C ′1,Q1

(0)

C1(0)
−
C ′2,Q1

(0)

C2(0)

) (
2
C ′1,Q2

(0)

C1(0)
−
C ′2,Q2

(0)

C2(0)

)
. . .

(
2
C ′1,Qn(0)

C1(0)
−
C ′2,Qn(0)

C2(0)

)
(

3
C ′1,Q1

(0)

C1(0)
−
C ′3,Q1

(0)

C3(0)

) (
3
C ′1,Q2

(0)

C1(0)
−
C ′3,Q2

(0)

C3(0)

)
. . .

(
3
C ′1,Qn(0)

C1(0)
−
C ′3,Qn(0)

C3(0)

)
...

...
...

...(
n
C ′1,Q1

(0)

C1(0)
−
C ′n,Q1

(0)

Cn(0)

) (
n
C ′1,Q2

(0)

C1(0)
−
C ′n,Q2

(0)

Cn(0)

)
. . .

(
n
C ′1,Qn(0)

C1(0)
−
C ′n,Qn(0)

Cn(0)

)


.

(3.4.19)



63

Since Qj(p1) = 0, we can use the formulas given by (3.4.15):

∂1Qj = ij + 1, ∂2Qj = ij+1 − d, ∂kQj = ij+k−1, for k = 3, . . . , n+ 1, and j = 1, . . . , n.

Therefore for i = 2, . . . , n and j = 1, . . . , n, we get

iCi(0)C ′1,Qj(0)− C1(0)C ′i,Qj(0) = i(ij + 1)
i∑

k=0

(
n− i+ k

k

)
di−k+

+ (d+ n)

(
i−2∑
k=0

(
n− i+ k

k

)
(ij+1 − d+ ij+2 + . . .+ ij+n+k−i+1)di−k−1 −

(
n− 1

i− 1

)
(ij + 1)

)
.

We replace ij+1 − d+ ij+2 + . . .+ ij+n+k−i+1 by −(ij + 1 + ij+n+k−i+2 + . . .+ ij+n) in the
above expression, hence we get

2C2(0)C ′1,Qj(0)− C1(0)C ′2,Qj(0) = d((ij + 1− ij+n)d− (ij + 1 + nij+n)),

iCi(0)C ′1,Qj(0)− C1(0)C ′i,Qj(0) = d(((i− 1)(ij + 1)− (ij+n−i+2 + . . .+ ij+n))di−1+

+
i−2∑
k=1

((
n− i+ k

k

)
((i− 1)(ij + 1)− (ij+n+k−i+2 + . . .+ ij+n))+

−n
(
n− i+ k − 1

k − 1

)
(ij + 1 + ij+n+k−i+1 + . . .+ ij+n)

)
di−k−1+

− (ij + 1 + nij+n)

(
n− 2

i− 2

)
). (3.4.20)

We observe that we have to calculate the rank of the matrix:



(ij + 1− ij+n)d− (ij + 1 + nij+n)

(2(ij + 1)− (ij+n−1 + ij+n))d2 + ((n− 2)(2(ij + 1)− ij+n)− n(ij + 1 + ij+n−1 + ij+n))d− (ij + 1 + nij+n)(n− 2)
1

d
(3C3(0)C ′1,Qj(0)− C1(0)C ′3,Qj(0))

...
1

d
(nCn(0)C ′1,Qj(0)− C1(0)C ′n,Qj(0))


1≤j≤n

.

To the second row, we add the first row multiplied by −(n − 2). The resulting second
row, we divide it by d, so the matrix is similar to



d(ij + 1− ij+n)− (ij + 1 + nij+n)

(2(ij + 1)− (ij+n−1 + ij+n))d− (2(ij + 1) + n(ij+n−1 + ij+n))
1

d
(3C3(0)C ′1,Qj(0)− C1(0)C ′3,Qj(0))

...
1

d
(nCn(0)C ′1,Qj(0)− C1(0)C ′n,Qj(0))


1≤j≤n

.
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To the second row, we add the first row multiplied by −2. The resulting second row we
divide it by (d+ n), so the matrix is similar to



(ij + 1− ij+n)d− (ij + 1 + nij+n)

ij+n − ij+n−1

1

d
(3C3(0)C ′1,Qj(0)− C1(0)C ′3,Qj(0))

...
1

d
(nCn(0)C ′1,Qj(0)− C1(0)C ′n,Qj(0))


1≤j≤n

.

The third row of the matrix is:

3(ij + 1)− (ij+n−2 + ij+n−1 + ij+n))d3+

+ ((n− 3)(3(ij + 1)− (ij+n−1 + ij+n−1 + ij+n))− n(ij + 1 + ij+n−2 + ij+n−1 + ij+n))d2+

+ (

(
n− 2

2

)
(3(ij + 1)− ij+n)− n(n− 3)(ij + 1 + ij+n−1 + ij+n))d+

− (ij + 1 + nij+n)

(
n− 2

2

)
.

We add −(d3 + (2n − 3)d2 + n(n − 3)d) times the second row to the third one, then we
add −

(
n−2

2

)
times the first row to the third one, the resulting row we divide it by d. So

the third row becomes

(3(ij + 1)− (ij+n−2 + 2ij+n))d2+

+ ((n− 3)(3(ij + 1)− 2ij+n)− n(ij + 1 + ij+n−2 + 2ij+n))d− 2(n− 3)(ij + 1 + nij+n).

We add −2(n − 3) times the first row to the third one, divide the resulting row by d,
then add −3 times the firts row to the third one. The resulting third row we divide it by
(d+ n) and becomes

ij+n − ij+n−2.

In this way, the matrix 3.4.19 is similar to

(ij + 1− ij+n)d− (ij + 1 + nij+n)

ij+n − ij+n−1

ij+n − ij+n−2

1

d
(4C4(0)C ′1,Qj(0)− C1(0)C ′4,Qj(0))

...
1

d
(nCn(0)C ′1,Qj(0)− C1(0)C ′n,Qj(0))


1≤j≤n

.
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We proceed analogously with the following rows and realize that the matrix (3.4.19) is
similar to 

(ij − ij+n)(d− 1) + d− 1− (n+ 1)ij+n

ij+n − ij+n−1

. . .

ij+n − ij+2


1≤j≤n

.

Since d− 1 = ij − ij+n + ij+1 − ij+n + . . . + ij+n−1 − ij+n + (n + 1)ij+n, then the matrix
(3.4.19) is similar to 

(ij+1 − ij)d+ (ij+2 − ij+1)(d+ 1)

ij+3 − ij+2

...
ij+n − ij+n−1


1≤j≤n

.

By the preceding lemma, in some cases appears another eigenspace that is in the kernel
of the linear map T1.

Lemma 3.4.11. Let n be a integer number such that n ≥ 3 and d = (n + 1)r + 1, for
some positive integer r. Then xjx

r
1x

r
2 . . . x

r
n∂j is in the kernel of T1 : Vd → Cn−1, for

j = 1, . . . , n.

In the case d = 2, the linear map T1 restricted to eigenspaces of dimension n has
maximum possible rank, more specifically:

Lemma 3.4.12. Let n ≥ 3, d = 2 and E an eigenspace of dimension n of A∗ : V2 → V2.
Then:

rankT1|E = n− 1.

Proof. Let E be an eigenspace of dimension n of A∗. Then by Item 2 of Theorem 3.2.1
E =< {xjxI∂j | j = 1, . . . , n} >, for some I ∈ Zn≥0 with |I| ≤ d − 1. Lemma 3.4.10 tells
us that rankT1|{xjxI∂j |j=1,...,n} is the same as


(ij+1 − ij)d+ (ij+2 − ij+1)(d+ 1)

ij+3 − ij+2

...
ij+n − ij+n−1


1≤j≤n

=

[
d+ 1 d 01×(n−2)

0(n−2)×1 0(n−2)×1 Idn−2

]
ij+1 − ij
ij+2 − ij+1

...
ij+n − ij+n−1


1≤j≤n

,

where i1+. . .+in+1 = d−1. If we demonstrate that det[(ij+i−ij+i−1)]1≤i,j≤n 6= 0, then the
lemma is proved. In fact, we see that the determinant of the matrix [(ij+i− ij+i−1)]1≤i,j≤n

is:
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(−1)
(n−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

in+1 − in in − in−1 in−1 − in−2 . . . i4 − i3 i3 − i2 i2 − i1
i1 − in+1 in+1 − in in − in−1 . . . i5 − i4 i4 − i3 i3 − i2
i2 − i1 i1 − in+1 in+1 − in . . . i6 − i5 i5 − i4 i4 − i3
. . . . . . . . . . . . . . . . . .

in−3 − in−4 in−4 − in−5 in−5 − in−6 . . . in+1 − in in − in−1 in−1 − in−2

in−2 − in−3 in−3 − in−4 in−4 − in−5 . . . i1 − in+1 in+1 − in in − in−1

in−1 − in−2 in−2 − in−3 in−3 − in−4 . . . i2 − i1 i1 − in+1 in+1 − in

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since d = 2, i1 + . . .+ in+1 = 1. Let’s analize all possible subcases:

• If in+1 = 1, then

det[(ij+i − ij+i−1)]1≤i,j≤n = (−1)
(n−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0 0 0

−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0 0

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

• If in = 1:

det[(ij+i − ij+i−1)]1≤i,j≤n = (−1)
(n−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0

0 0 −1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1

0 0 0 . . . 0 0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

• If i1 = 1:

det[(ij+i − ij+i−1)]1≤i,j≤n = (−1)
(n−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 . . . 0 0 −1

1 0 0 . . . 0 0 0

−1 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 0 0

0 0 0 . . . −1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.
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• If in−1 = 1:

det[(ij+i − ij+i−1)]1≤i,j≤n = (−1)
(n−1)n

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 1 . . . 0 0 0

0 0 −1 . . . 0 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 −1 1

0 0 0 . . . 0 0 −1

1 0 0 . . . 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

• If ik = 1, 2 ≤ k ≤ n− 2. Let’s denote:

Mk =



−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

0 0 0 . . . 0 −1


k×k

.

Then

det[(ij+i − ij+i−1)]1≤i,j≤n = (−1)
(n−1)n

2

∣∣∣∣∣ 0k×n−k Mk

−MT
n−k 0(n−k)×k

∣∣∣∣∣ 6= 0,

where MT
n−k denotes the transpose of the matrix Mn−k.

Gathering all the information, we can estimate the rank of the local Baum-Bott map
at the Jouanolou foliation:

Theorem 3.4.2. The rank of the local Baum-Bott map BB : Folred(n, d)→ (Cn−1)N at
the degree-d Jouanolou foliation is:

dimVd − n(n+ 1)−
∑
I∈Zn≥0

|I|≤d−1

dim ker(Mn,d(I)) , if n is even.

dimVd − n(n+ 1)−
∑
I∈Zn≥0

|I|≤d−1

dim ker(Mn,d(I))− (n+ 1)

2
, if n is odd.

Proof. By Corollary 2, the rank of the Baum-Bott map at the Jouanolou foliation
is the sum of ranks of the linear transformation T1 : Vd → Cn−1 restricted to the
eigenspaces of the linear operator A∗ : Vd → Vd. By Theorem 3.2.1, there are only
eigenspaces of dimension one, two, n and n + 1, and we know how many there are of
each dimension. There is only one eigenspace of dimension n + 1, which is Ed, and by
Corollary 3 it is contained in the kernel of T1. Each eigenspace of dimension n is generated
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by {xjxI∂j | j = 1, . . . , n}, where I ∈ Zn≥0 and |I| ≤ d − 1. We use Lemma 3.4.10 to
calculate the rank of T1 restricted to those eigenspaces. Lemma 3.4.9 tell us the total
rank of T1 restricted to eigenspaces of dimension 2. Finally, for eigenspaces of dimension
1, we use Lemma 3.4.5. Then:

rank(T ) =
∑

dimEj=1

rankT1|Ej+
∑

dimEj=2

rankT1|Ej+
∑

dimEj=n

rankT1|Ej+
∑

dimEj=n+1

rankT1|Ej .

We add and substract dimVd on the right side of the equality and we conclude the proof.

The difference of the dimension of the space of foliations and the dimension of the
automorphism group, which is given by Proposition 2.2.1, in general, is greater than the
rank of the local Baum-Bott map at the Jouanolou foliation, as we see in the following
proposition:

Proposition 3.4.3. The rank of the local Baum-Bott map BB : Folred(n, d)→ (Cn−1)N

at the degree-d Jouanolou foliation, for degree d greater than two, is strictly less than
the upper bound given in Proposition 2.2.1. The same holds for degree d = 2 with odd
dimension n.

Proof. By Theorem 3.2.1, there are
(
n+d−1
n

)
eigenspaces of dimension n, these are

generated by {xjxI∂j | j = 1, . . . , n}, where I ∈ Zn≥0 and |I| ≤ d− 1. Lemma 3.4.10 gives
us the rankT1|{xjxI∂j |j=1,...,n} in terms of I. Observe that rankT1|{xjxI∂j |j=1,...,n} ≤ n − 1.
Then, in Theorem 3.4.2, we have:
if n is even:

rankT ≤ dimVd − (n+ 1)n−
(
n+ d− 1

n

)
,

if n is odd:
rankT ≤ dimVd − (n+ 1)n− n+ 1

2
−
(
n+ d− 1

n

)
.

In any case

rankT ≤ dimVd − (n+ 1)n−
(
n+ d− 1

n

)
.

We have (n + 1)2 < (n + 1)n +
(
n+d−1
n

)
, for d ≥ 3, and if d = 2, then (n + 1)2 =

(n+ 1)n+
(
n+d−1
n

)
. Hence we conclude:

If n is even and d ≥ 3: rankT < dimVd − (n+ 1)2.

If n is odd and d ≥ 2: rankT < dimVd − (n+ 1)2 − n+ 1

2
.

When the dimension of the projective space is even and we are in the case of degree
two foliations, we know the generic rank of the Baum-Bott map because of the Jouanolou
foliation.

Theorem 3.4.4. Let n ≥ 2 be an even number. The rank of the local Baum-Bott map
BB : Folred(n, 2) → (Cn−1)N at the degree-2 Jouanolou foliation is equal to the upper
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bound given by Proposition 2.2.1. Then, the generic rank of the Baum-Bott map for
degree-2 foliations on the projective space Pn is

dimFol(n, 2)− dim Aut(Pn) = (n+ 1)

(
n+ d

n

)
−
(
n+ d− 1

n

)
− (n+ 1)2.

In particular a generic fiber of the Baum-Bott map is a finite union of orbits of the action
of the automorphism group Aut(Pn) on the space Fol(n, 2).

Proof. By Lemma 3.4.12, the rank of the linear map T1 at eigenspaces of dimension
n is n − 1. Theorem 3.2.1 states that there are

(
n+d−1
n

)
of these eigenspaces which are

generated by {xjxI∂j | j = 1, . . . , n}, I ∈ Zn≥0 with |I| ≤ d−1. Lemma 3.4.10 tells us how
to calculate rankT1|{xjxI∂j |j=1,...,n} in terms of I. We replace this information in Theorem
3.4.2 and the theorem is proved.

On P3, we can estimate the rank of the local Baum-Bott map at the Jouanolou
foliation:

Theorem 3.4.5. Let d ≥ 2. The rank of the local Baum-Bott map at the degree-d
Jouanolou foliation Jd on the projective space P3 is

• if d is even,

rank(T ) = dimVd − 16−
((

d+ 2

3

)
− 2

)
,

• if d = −1 mod (4),

rank(T ) = dimVd − 16−
((

d+ 2

3

)
+
d− 3

2

)
,

• if d = 1 mod (4),

rank(T ) = dimVd − 16−
((

d+ 2

3

)
+
d− 1

2

)
,

and the dimension of the space Vd is 4
(
d+3

3

)
−
(
d+2

3

)
.

Proof. By Lemma 3.4.2, we have to estimate the rank of the matrices

[
(ij+1 − ij)d+ (ij+2 − ij+1)(d+ 1)

ij+3 − ij+2

]
1≤j≤3

=

[
d+ 1 d 0

0 0 1

] ij+1 − ij
ij+2 − ij+1

ij+3 − ij+2


1≤j≤3

,
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where ij
′s are integer numbers with ij ≥ 0, where ij = ij mod (n+1) and i1+i2+i3+i4 = d−1.

Let us analize the determinant of the matrix∣∣∣∣∣∣∣
i2 − i1 i3 − i2 i4 − i3
i3 − i2 i4 − i3 i1 − i4
i4 − i3 i1 − i4 i2 − i1

∣∣∣∣∣∣∣
We denote a = i3 − i1, b = i4 − i2, c = i3 − i2, then the determinant is∣∣∣∣∣∣∣

a− b c b− c
c b− c −a− b+ c

b− c −a− b+ c a− c

∣∣∣∣∣∣∣
We add the second row to the last one, then we add the first column to the last one, and
finally we add the fist row to the second one, then the determinat is −(a+b−2c)(a2 +b2).
If the determinant is equal to zero, we have two cases.
First case: a = b = 0. This implies i3 = i1, i4 = i2 and the matrix:[

(d+ 1)(i2 − i1) + d(i1 − i2) (d+ 1)(i1 − i2) + d(i2 − i1) (d+ 1)(i2 − i1) + d(i1 − i2)

i2 − i1 i1 − i2 i2 − i1

]

can have rank one if d = 2r + 1, where r = i1 + i2, i1 6= i2, i1 = i3 and i2 = i4, or it can
have rank zero if d = 4r + 1 and r = i1 = i2 = i3 = i4.
Second case: a+ b− 2c = 0. This means that i4 = i3 − i2 + i1 and the matrix:[

(d+ 1)(i2 − i1) + d(i3 − i2) (d+ 1)(i3 − i2) + d(i1 − i2) (d+ 1)(i1 − i2) + d(i2 − i3)

i1 − i2 i2 − i3 i2 − i1

]

has rank less than two if (i3 − i2)2 + (i1 − i2)2 = 0. This yields d = 4r + 1,
i1 = i2 = i3 = i4 = r and the rank is zero.

In view of the results, if d = 4r+ 1, there are 2r eigenspaces of dimension 3 such that
the rank of the linear mapDBB(XJd , p1) restricted to each of those eigenspaces is one, and
one eigenspace of dimension three that is in the kernel of the linear map DBB(XJd , p1).
If d = 4r+ 3, there are 2r+ 2 eigenspaces of dimension 3 such that the rank of the linear
map T1 restricted to each of those eigenspaces is one. We replace this information in
Theorem 3.4.2:
if d = 4r + 1:

rankT = dimVd − 3× 4− 4

2
−
∑
I∈Z3

≥0

|I|≤d−1

1− 2r − 2,
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if d = 4r + 3

rankT = dimVd − 3× 4− 4

2
−
∑
I∈Z3

≥0

|I|≤d−1

1− (2r + 2),

if d = 2r,

rankT = dimVd − 3× 4− 4

2
−
∑
I∈Z3

≥0

|I|≤d−1

1,

and this finishes the proof of the theorem.

Remark 3.4.2. When n = 3, we observe that the rank of the local Baum-Bott map at the
Jouanolou foliation is strictly less than the generic rank of the Baum-Bott map, at least
for degree 2, . . . , 8.



Appendix

72



Appendix A

Eigenspaces and the Jouanolou foliation

In this appendix, we identify the eigenspaces associated to an automorphism, which leaves
invariant the Jouanolou homogeneous equation, in the space of homogeneous vector fields
of fixed degree.

The degree-d Jouanolou foliation Jd on the projective space Pn is defined by the
homogeneous vector field in Cn+1:

XJd = (xd2, x
d
3, . . . , x

d
n+1, x

d
1). (A.1)

This foliation is invariant by some automorphisms. For instance, let ξ be a primitive
N -th root of unity and A(x1, . . . , xn+1) = (α1x1, . . . , αnxn, αn+1xn+1), where α1 = ξ =

ξ−(dn+...+d), α2 = ξ−(dn−1+dn−1+...+d),..., αj = ξ−(dn+1−j+...+d),..., αn = ξ−d, αn+1 = 1, and
N = dn + dn−1 + . . .+ d+ 1. This automorphism generates a subgroup of order N of the
automorphism group Aut(Pn) and the Jouanolou foliation is invariant by this subgroup,
since:

A∗XJd = ξdXJd .

The singular set of the Jouanolou foliation is determined by this automorphism:

Sing(Jd) = {Ai−1[1, 1, . . . , 1] | i = 1, . . . , N}.

Let us fix some notations. From now on, n ≥ 3. Given I = (i1, . . . , in+1) ∈ Zn+1
≥0 , we

set xI = xi11 . . . x
in+1

n+1 , |I| = i1 + . . . + in+1. Let Vd be the space of homogeneous vector
fields of degree d in the complex vector space Cn+1 and Bd = {xI∂k ∈ Vd | |I| = d, k =

1, . . . , n+ 1}.
The space of homogenous vector fields of fixed degree can be decomposed into smaller

subspaces determined by A:

Lemma A.1. Every vector in Bd is an eigenvector of A∗ : Vd → Vd, with eigenvalue
some N th rooth of unity. The space Vd is the sum of the eigenspaces Ej = {V ∈ Vd |

73
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A∗V = ξjV }, for j = 0, 1, . . . , N − 1. Moreover, if xI∂k ∈ Bd then

A∗(xI∂k) = αIα−1
k xI∂k, (A.2)

where αI = αi11 . . . α
in+1

n+1 = ξρ(I) and ρ(I) = −i1(dn+ . . .+d)− i2(dn−1 + . . .+d)− i3(dn−2 +

. . .+ d)− ij(dn−j+1 + . . .+ d)−−in−1(d2 + d)− ind.

We have another subgroup which leaves invariant the Jouanolou foliation. Let S be
the automorphism of the projective space Pn defined by

S[x1, x2 . . . , xn+1] = [xn+1, x1, . . . , xn]. (A.3)

This automorphism generates a cyclic subgroup of Aut(Pn) of order (n+1), this map also
leaves invariant the Jouanolou foliation since S∗XJd = XJd .

The operator S∗ sends an eigenspace of A∗ in another eigenspace, except one, the
eigenspace corresponding to the eigenvalue ξd. This eigenspace is sent to itself. We can
see it in the following lemma.

Lemma A.2. The operator S∗ : Vd → Vd maps eigenspaces of A∗ to eigenspaces of A∗

and S∗(xI∂k) = xS
−1(I)∂k−1, where xI∂k ∈ Bd and ∂0 = ∂n+1.

Proof. Let xI∂k, xJ∂k+r ∈ Bd with r a positive integer number. Suppose 1 < k < k+r ≤
n. If the vectors belong to the same eigenspace, then by the equation (A.2) there exists
an integer number K such that

(i1 − j1)dn−1 + . . .+ (i1 + . . .+ ik−1 − (j1 + . . .+ jk−1))dn−k+1+

(i1 + . . .+ ik − 1− (j1 + . . .+ jk))d
n−k+

+ (i1 + . . .+ ik+r−1 − 1− (j1 + . . .+ jk+r−1))dn−(k+r)+1+

+ (i1 + . . .+ ik+r − (j1 + . . .+ jk+r))d
n−(k+r)+

+ (i1 + . . .+ in − (j1 + . . .+ jn)) = KN.

We multiply by d the equation above, and this yields to the following expression:

(i2 − j2)dn−1 + . . .+ (i2 + . . .+ ik−1 − (j2 + . . .+ jk−1))dn−k+2+

(i2 + . . .+ ik − 1− (j2 + . . .+ jk))d
n−k+1+

+ (i2 + . . .+ ik+r−1 − 1− (j2 + . . .+ jk+r−1))dn−(k+r)+2+

+ (i2 + . . .+ ik+r − (j2 + . . .+ jk+r))d
n−(k+r)+1+

+ (i2 + . . .+ in+1 − (j2 + . . .+ jn+1)) = (dK − (i1 − j1))N.
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This implies that the vectors xi21 . . . xin+1
n xi1n+1∂k−1 and xj21 . . . x

jn+1
n xj1n+1∂k+r−1 have the

same eigenvalue, and these vectors are the image by the operator S∗ of the vectors
considered at the beginning.

The proofs for the other cases are similar.
Consequently, two eigenvectors correspond to the same eigenvalue if and only if the

image of these eigenvectors by the operator S∗ is contained in another eigenspace of the
space Vd. We can subsequently apply S∗ to a fixed eigenspace until one eigenvector is of
the form xI∂1. Then, it is enough to study the eigenspaces that contain an eigenvector
xI∂1 ∈ Bd. We are going to do this in the following lemmas.

Lemma A.3. Let xI∂1, x
J∂1 ∈ Bd belong to the same eigenspace. Then I = J .

Proof. Suppose by contradiction that I 6= J . By equation (A.2), since they belong to the
same eigenspace, we have ρ(I)− ρ(J) = 0 mod (N). This means that ρ(J)−ρ(I) = KN ,
for some K ∈ Z. In particular,

KN =(i1 − j1)dn + (i1 + i2 − (j1 + j2))dn−1 + . . .+

+ (i1 + . . .+ in−1 − (j1 + . . .+ jn−1))d2 + (i1 + . . .+ in − (j1 + . . .+ jn))d.

(A.4)

The above relation implies that d divides K because N = 1 mod (d). Since
∑t

r=1 ir ≤
d,
∑t

r=1 jr ≤ d, for t = 1, . . . , n, we have −dN < KN < dN . This yields −d < K < d.
Since d divides K, we have K = 0. Therefore,

0 =(i1 − j1)dn−1 + (i1 + i2 − (j1 + j2))dn−2 + . . .+

+ (i1 + . . .+ in−1 − (j1 + . . .+ jn−1))d+ (i1 + . . .+ in − (j1 + . . .+ jn)). (A.5)

Hence, (i1 + . . .+ in − (j1 + . . .+ jn)) = 0mod(d). We have three cases.
First case: If i1 + . . . + in = (j1 + . . . + jn) + d, then j1 = . . . = jn = 0. If we replace in
A.5, we get: i1dn−1 + (i1 + i2)dn−2 + . . . + (i1 + . . . + in−1)d + (i1 + . . . + in) = 0, then
i1 = . . . = in = 0, which is a contradiction.
Second case: If i1 + . . . + in = j1 + . . . + jn − d. It is analogous to the first case, and it
leads us a contradiction.
Third case: If i1 + . . .+ in = j1 + . . .+ jn, we have

0 =(i1 − j1)dn−2 + (i1 + i2 − (j1 + j2))dn−3 + . . .+

+ (i1 + . . .+ in−2 − (j1 + . . .+ jn−2))d+ (i1 + . . .+ in−1 − (j1 + . . .+ jn−1)), (A.6)

then ((i1 + . . .+ in−1)− (j1 + . . .+ jn−1)) = 0mod(d), again we have three possibilities, but
working analogously as before, i1 + . . .+ in−1 = j1 + . . .+ jn−1. Continuing this proccess,
we get i1 = j1, and we conclude that I = J .
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Lemma A.4. Let xI∂1, x
J∂2 ∈ Bd belong to the same eigenspace.

1. If i1 > 0, then xI = x1x
Ĩ , xJ = x2x

Ĩ , where Ĩ ∈ Zn+1
≥0 and |Ĩ| = d− 1.

2. If i1 = 0, then xI = xd−1
2 xk and xJ = xdk+1, where 2 ≤ k ≤ n + 1 and

xk = xk mod (n+1).

Proof. Let i1 > 0, we have that xI = x1x
Ĩ , for some Ĩ ∈ Zn+1

≥0 . We can proof that
x1x

Ĩ∂1, x2x
Ĩ∂2 belong to the same eigenspace, and using Lemmas A.2 and A.3, we get

xJ = x2x
Ĩ∂2.

Let i1 = 0, if j2 > 0, we follow the arguments given above and we get a contradiction.
Therefore, i1 = j2 = 0. By equation (A.2), there is some integer K such that

d((−j1 − 1)dn−1 + (i2 − j1)dn−2 + (i2 + i3 − (j1 + j3))dn−3+

+ . . . (i2 + . . .+ in − (j1 + j3 + . . .+ jn)) = KN. (A.7)

If K = −d, equation (A.7) becomes

dn−1(d− j1 − 1) + dn−2(d− j1 + i2) + dn−3(d− (j1 + j3) + i2 + i3)+

+ . . .+ d− (j1 + j3 + . . .+ jn + i2 + . . .+ in) + 1 = 0, (A.8)

then d = j1 because
n∑
r=2

dn−r((d−
r∑

k=1

jk) +
r∑

k=2

ik)) + 1 > 0, and replacing in the equation

above, we get i2 = d− 1, and the solution is xd−1
2 xn+1∂1, x

d
1∂2.

If K = 0, equation (A.7) yields

(−1− j1)dn−1 + (i2 − j1)dn−2 + (i2 + i3 − (j1 + j3))dn−3+

+ . . . (i2 + . . .+ in − (j1 + j3 + . . .+ jn)) = 0, (A.9)

and i2 + . . .+ in − (j1 + j3 + . . .+ jn) = 0mod(d). We have two subcases:
If i2 + . . . + in = d + j1 + j3 + . . . + jn: Replacing in the equation (A.9) and dividing
by d, we must have i2 + . . . + in−1 + 1 = d, we subsequently divide by d the equation
(A.9), until we get the exprexion −d2 + i2d + i2 + i3 + 1 = 0, hence the eigenvectors are
xd−1

2 xn∂1, x
d
n+1∂2.

If i2+. . .+in = j1+j3+. . .+jn: In equation (A.9) we get i2+. . .+in−1−(j1+j3+. . .+jn−1) =

0mod(d). We procede as before, and we get the other eigenvectors.

Lemma A.5. Let r ∈ N such that 2 ≤ r ≤ n − 1. Let xI∂1, x
J∂r+1 ∈ Bd have the same

eigenvalue, then

1. if i1 > 0: xI = x1x
Ĩ , xJ = xr+1x

Ĩ , where Ĩ ∈ Zn+1
≥0 and |Ĩ| = d− 1.

2. if i1 = 0: xI = xd−1
r+1xn+1, x

J = xd−1
1 xr or xI = xd2, x

J = xdr+2.
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Proof. Let i1 > 0, we follow the same arguments given for the proof of Item 1 of Lemma
A.4, and we get the result.

Let i1 = 0. If r ≤ n− 2, by the equation (A.2) there is some integer K such that

d((−j1 − 1)dn−1 + (i2 − (j1 + j2)− 1)dn−2+

+ (i2 + . . .+ ir − (j1 + . . .+ jr)− 1)dn−r+

+ (i2 + . . .+ ir+1 − (j1 + . . .+ jr))d
n−r−1+

+ (i2 + . . .+ ir+2 − (j1 + . . .+ jr + jr+2))dn−r−2 + . . .+

+ (i2 + . . .+ in − (j1 + . . .+ jr + jr+2 + . . .+ jn)) = KN. (A.10)

We have two cases:
First case: If K = −d, the equation (A.10) becomes

dn−1(d− j1 − 1) + dn−2(d− (j1 + j2) + i2 − 1) + . . .+

+ dn−r(d− (j1 + . . .+ jr) + i2 . . .+ ir − 1) + dn−r−1(d− (j1 + . . .+ jr) + i2 . . .+ ir+1)+

+ dn−r−2(d− (j1 + . . .+ jr + jr+2) + i2 . . .+ ir+2) + . . .+

+ d− (j1 + . . .+ jr + jr+2 + . . .+ jn) + i2 + . . .+ in + 1 = 0, (A.11)

if d = j1, we must have i2+. . .+in = d−1, we replace in the equation (A.11), subsequently
divide by d, and we get a contradiction. So d = j1 + . . . + jr and i2 = 0. We replace in
equation (A.11), we get i3 + . . . + in = d− 1, we subsequently divide by d the expresion
A.11, and we find that ir+1 = d− 1, in+1 = 1, we replace in equation (A.11) and simplify.
We arrive at the expression

dr−2(d− j1 − 1) + . . .+ d(d− (j1 + . . .+ jr−2)− 1) + (d− (j1 + . . .+ jr−1)− 1) = 0,

then d− 1 = j1 + . . . + jr−1, we replace in the equation above, divide by d, we find that
the indexes are j1 = d− 1, jr = 1, and the vectors are xd−1

r+1xn+1∂1, x
d−1
1 xr∂r+1.

Second case: If K = 0, the equation (A.10) becomes

(−j1 − 1)dn−1 + (i2 − (j1 + j2)− 1)dn−2 + (i2 + . . .+ ir − (j1 + . . .+ jr)− 1)dn−r+

+ (i2 + . . .+ ir+1 − (j1 + . . .+ jr))d
n−r−1+

+ (i2 + . . .+ ir+2 − (j1 + . . .+ jr + jr+2))dn−r−2+

+ . . .+ (i2 + . . .+ in − (j1 + . . .+ jr + jr+2 + . . .+ jn) = 0, (A.12)

then i2 + . . .+ in − (j1 + . . . jr + jr+2 + . . .+ jn) = 0mod(d). We have two subcases:
1st subcase: If i2 + . . .+ in = d+ j1 + . . . jr + jr+2 + . . .+ jn: we replace in equation (A.12)
and divide by d, we must have i2 + . . .+ ir = 0, we subsequently divide by d the equation
(A.12), and we get a contradiction.
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2nd subcase: If i2 + . . . + in = j1 + . . . jr + jr+2 + . . . + jn: in equation A.12 we get
i2 + . . .+ ir+2 = j1 + . . . jr + jr+2, and the equation becomes

(−j1 − 1)dn−1 + (i2 − (j1 + j2)− 1)dn−2 + (i2 + . . .+ ir − (j1 + . . .+ jr)− 1)dn−r+

+ (i2 + . . .+ ir+1 − (j1 + . . .+ jr))d
n−r−1 = 0. (A.13)

We have two possible cases:
a) If i2 + . . .+ ir+1 − (j1 + . . .+ jr) = d, we replace in (A.13) and we get i2 = d, then the
eigenvectors are xd2∂1, x

d
r+2∂r+1.

b) If i2 + . . .+ ir+1 = j1 + . . .+ jr, we replace in (A.13), this yields the equation

−ir+1 − 1 = i2 + . . .+ ir − (j1 + . . .+ jr)− 1 = −d,

which means that i2 + . . . + ik − 1 ≤ 0, for k = 2, . . . , r, then the exprexion on the left
side of the equation (A.13) would be negative, which is a contradiction.

The case r = n− 1 is analogous.

Lemma A.6. Let xI∂1, x
J∂n+1 ∈ Bd belong to the same eigenspace.

1. If i1 > 0, then xI = x1x
Ĩ , xJ = xn+1x

Ĩ , where Ĩ ∈ Zn+1
≥0 and |Ĩ| = d− 1.

2. If i1 = 0, then xI = xdk+1 and xJ = xd−1
1 xk, where k ∈ {1, . . . , n}.

Proof. Suppose i1 = 0. If xi22 x
i3
3 . . . x

in
n ∂1 and xj11 x

j2
2 . . . x

jn
n ∂n+1 belong to the same

eigenspace, then j1 + . . .+ jn = d, and for some integer K:

(j1 + 1)dn + (j1 + j2 + 1− i2)dn−1 + . . .+ (j1 + . . . jn + 1− (i2 + . . .+ in))d = KN. (A.14)

Then 0 < K < d+ 1 and K = 0mod(d), therefore K = d and we get the equation

j1d
n−1 + (j1 + j2 − i2)dn−2 + . . .+ (j1 + . . . jn − (i2 + . . .+ in)) = dn. (A.15)

We have two cases.
First case: If j1 + . . .+ jn = d+ i2 + . . .+ in:

j1d
n−2 + (j1 + j2)dn−3 + . . .+ (j1 + . . . jn−1) + 1 = dn−1,

this implies j1 + . . . + jn−1 = d − 1, doing so, the solution is j1 = d − 1, jn = 1. The
eigenvectors are ∂1, xd−1

1 xn∂n+1.
Second case: If j1 + . . .+ jn = i2 + . . .+ in = d:

j1d
n−2 + (j1 + j2 − i2)dn−3 + . . .+ j1 + . . . jn−1 − (i2 + . . .+ in−1) = dn−1.
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• If j1 + . . .+ jn−1 = i2 + . . . in−1 + d, we have in = d and

j1d
n−3 + (j1 + j2)dn−4 + . . .+ j1 + . . . jn−2 + 1 = dn−2,

then j1 + . . .+jn−2 = d−1. The solution is j1 = d−1, jn−1 = 1 and the eigenvectors
are xdn∂1, xd−1

1 xn−1∂n+1

• If j1 + . . .+ jn−1 = i2 + . . . in−1:

j1d
n−3 + (j1 + j2)dn−4 + . . .+ j1 + . . . jn−2 − (i2 + . . .+ in−2) = dn−2.

Doing so, we get
- If j1 + . . . + jk = i2 + . . . ik + d, the solutions are xdk+1∂1, xd−1

1 xk∂n+1, for
k = 3, . . . , n− 2.
- If j1 + j2 + j3 = i2 + i3:

j1d+ j1 + j2 − i2 = d2.

If j1 + j2 = i2 + d, the solution is xd3∂1, xd−1
1 xn−1∂n+1.

If j1 + j2 = i2, then j1 = d and i2 = d, the solution is xd2∂1, xd1∂n+1.

From now on, we will identify xn+1+k with xk and ∂n+1+k with ∂k.
Let’s identify the eigenspaces of dimension 2.

Lemma A.7. An eigenspace of dimension 2 of A∗ : Vd → Vd has only one of the following
forms:

1. (S∗)k(< xd−1
2 xj∂1, x

d
1+j∂2 >), for 3 ≤ j ≤ n+ 1, k = 0, . . . , n and

2. if n is even: (S∗)k(< xd−1
2+jxn+1∂1, x

d−1
1 x1+j∂2+j >), for 1 ≤ j ≤ n

2
− 1 and

k = 0, . . . , n,

if n is odd: (S∗)k(< xd−1
2+jxn+1∂1, x

d−1
1 x1+j∂2+j >), for 1 ≤ j ≤ n− 3

2
, k = 0, . . . , n

and for j =
n− 1

2
, then k = 0, . . . ,

n− 1

2
.

The list is complete, those are all the possible forms. In fact, there are
(3n− 4)(n+ 1)

2
eigenspaces of dimension 2.

Proof. Let E be and eigenspace of dimension 2, there is some k such that (S∗)k(E) =<

xI∂1, x
J∂1+j > for some I, J ∈ Zn+1

≥0 and 0 ≤ j < n. Then E = (S∗)n+1−k(<

xI∂1, x
J∂1 + j >). From Lemma A.3, j > 0. The second item of Lemmas A.4 and

A.5 give us the complete list of possible vectors xI∂1, x
J∂1 + j. Therefore, the eigenspaces

of dimension 2 are (S∗)k(< xd−1
2 xj∂1, x

d
1+j∂2 >), for 3 ≤ j ≤ n + 1, k = 0, . . . , n, and

(S∗)k(< xd−1
2+jxn+1∂1, x

d−1
1 x1+j∂2+j >), for 1 ≤ j ≤ n − 2, k = 0, . . . , n. Now we want to

exclude the repeted cases:
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a) If (S∗)k(< xd−1
2 xj∂1, x

d
1+j∂2 >) =< xd−1

2 xr∂1, x
d
1+r∂2 >), for some 3 ≤ j < r ≤

n + 1, k = 1, . . . , n. Then < xd−2
2−kxj−k∂1−k, x1+j−k∂2−k >=< xd−1

2 xr∂1, x
d
1+r∂2 >,

but it it not possible, and Item 1 follows.

b) If (S∗)k(< xd−1
2+jxn+1∂1, x

d−1
1 x1+j∂2+j >) =< xd−1

2+rxn+1∂1, x
d−1
1 x1+r∂2+r >), for

1 ≤ j < r ≤ n − 2 and k = 1, . . . , n. Then xd−1
2+j−kxn+1−k∂1−k = xd−1

1 x1+r∂2+r,
xd−1

1−kx1+j−k∂2+j−k = xd−1
2+rxn+1∂1. We realized that k = j+ 1, r = n− j−1. We have

(S∗)j+1(< xd−1
2+jxn+1∂1, x

d−1
1 x1+j∂2+j >) =< xd−1

n−j+1xn+1∂1, x
d−1
1 xn−j∂2+(n−j−1) > and

1 ≤ j ≤ n− 1

2
. Then if n is even, j = 1, . . . ,

n− 2

2
and k = 0, . . . , n give

us different eigenspaces. When n is odd: j = 1, . . . ,
n− 3

2
, k = 0, . . . , n and

j =
n− 1

2
, k = 0, . . . ,

n− 1

2
, those cases generate different eigenspaces.

According to Lemma Lemmas A.4, there are n−1 eigenspaces of the form < xI∂1, x
J∂2 >

and by Lemma A.5 one of the form < xI∂1, x
J∂2+r >, for each r = 1, . . . , n− 2. We can

apply (S∗) subsequently to those eigenspaces to get all the eigenspaces of dimension 2 and
we get Table A.1, and the result follows.

P(∂k)
P(∂k+r) P(∂1) P(∂2) P(∂3) . . . P(∂n) P(∂n+1)

P(∂1) n− 1 1 . . . 1 n− 1

P(∂2) n− 1
. . . 1 1

... . . . . . . 1
P(∂n−1) n− 1 1
P(∂n) n− 1

P(∂k) = {xI∂k | I ∈ Zn+1
≥0 , |I| = d}

Table A.1: Number of eigenspaces of dimension two with vectors in P(∂k) and in P(∂k+r).

We gather all the information above and count the number of eigenspaces of each
positive dimension.

Theorem A.1. The operator A∗ : Vd → Vd has
(
n+d
n

)
+ n
(
n+d−1
n−1

)
− (n− 1)

3n+ 4

2
non-

trivial eigenspaces. More precisely:

1. There are
(
n+d−1
n

)
+ 1 eigenspaces of dimension n+ 1, and they are:

• Ed =< xd2∂1, . . . , x
d
n+1∂n, x

d
1∂n+1 >,

• < x1x
I∂1, . . . , xn+1x

I∂n+1 >, where I ∈ Zn+1
≥0 and |I| = d− 1.

2. There are
(3n− 4)(n+ 1)

2
eigenspaces of dimension two, which are:
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• < xi−1x
d−1
k+1∂k, x

d
i ∂k+1 >, for 1 ≤ i, k ≤ n+ 1 and i 6= k + 1, k + 2,

• < xk−1x
d−1
k+r∂k, xk+r−1x

d−1
k ∂k+r >, for 1 ≤ k ≤ n+ 1 and 2 ≤ r ≤ n− 1

3. There are (n + 1)
[(
n+d−1
n−1

)
− 3(n− 1)

]
eigenspaces of dimension 1, which are:

(S∗)k(xI∂1), where xI∂k ∈ Bd, with i1 = 0, k = 0, . . . , n and xI 6=
xjx

d−1
2 , xdj , x

d−1
r xn+1, for j = 3, . . . , n+ 1 and r = 3, . . . , n.

Proof. From the first items of Lemmas A.4, A.5 and A.6, we identify for each fixed
I ∈ Zn+1

≥0 , with |I| = d − 1, the vectors xjxI∂j, j = 1, . . . , n + 1 belong to the same
eigenspace. There are

(
n+d−1
n

)
of this kind.

From the second items of the same Lemmas, we realized that xd2∂1 is in the same
eigenspace as xdk+1∂k, for k = 2, . . . , n + 1, the corresponding eigenvalue is d. These are
all the eigenspaces of dimension n+ 1.

The eigenspaces of dimension 2 are given by Lemma A.7.
The eigenspaces of dimension 1 are given by (S∗)k(xI∂1), for k = 0, . . . , n, where

xI∂1 ∈ Bd generates an eigenspace of dimension 1, then i1 = 0. Let’s identify which
xI∂1, with i1 = 0, belong to eigenspaces of dimension greater than one. The first items
of Lemmas A.4, A.5 and A.6 tell us that there are (n − 1) eigenspaces of the form
< xI∂1, x

J∂2 >, n − 1 of the form < xI∂1, x
J∂n+1 >, one < xI∂1, x

J∂2+r >, for each
r = 1, . . . , n− 2 and < xd2∂1, . . . , x

d
1∂n+1 >= Ed. Thus, we can conclude 3.
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