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ABSTRACT

In this thesis we work on two different problems. First, we prove de-
coupling estimates for one-dimensional conservative particle systems. The
second class of problems is related to noise sensitivity and sharp thresholds
for percolation models.

In our setting, a decoupling is a type of correlation estimate for mono-
tone functions of the space-time configurations with far enough supports.
We prove these estimates for two models: The exclusion process and the
zero range process. These estimates are used to study processes evolving
on top of these particle systems.

For the exclusion process, we consider a detection model: At time zero,
place nodes on each site independently with probability p € [0,1) and let
they evolve as a simple symmetric exclusion process. Also at time zero, a
target is placed at the origin. The target moves only at integer times, and
can move to any site that is within distance R from its current position.
Assume also that the target can predict the future movement of all nodes.
We prove that, for R large enough it is possible for the target to avoid
detection forever with positive probability.

As for the decoupling of the zero range process, we use it to study the
spread of an infection on top of this particle system. At time zero, the set
of infected particles is composed by those which are in the negative axis,
while particles at the right of the origin are considered healthy. A healthy
particle immediately becomes infected if it shares a site with an infected
particle. We prove that the front of the infection wave travels to the right
with positive and finite velocities.

In the context of Boolean functions, noise sensitivity measures whether
the outcome of such function can be predicted when one is given its value
on a perturbation of the original configuration while threshold phenomena
describes abrupt changes in the behavior of these functions.

We consider Poisson Voronoi percolation on IR? and prove that box-
crossing events in this model are noise sensitive and present a threshold
phenomena with polynomial window.
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INTRODUCTION

Games of chance have always been part of the human nature and clas-
sical probability theory from before the second half of the 19th century
revolved around these games. The toss of a die or a coin are examples
of objects of study. The main concerns were in understanding trials from
a finite number of equally likely outcomes. Ars Conjectandi, a book from
Jacob Bernoulli published in 1713, contains a partial version of what is
now known as weak law of large numbers, a good illustration of classical
probability theory.

It is no secret that, many times, the development of mathematics is
given by its necessity in other areas of science. And this is the case with
modern probability theory. In physics, the idea that the atomic structure
should help to understand the macroscopic properties of a material started
gaining ground around 1850. However, assuming that the atomic structure
could be completely understood by the laws of classical mechanics was not
satisfactory, since this would end up contradicting the second law of ther-
modynamics. New tools where necessary to surpass these problems and
this is where probability theory enters the scene. Maxwell, around 1860,
was the first to assume molecules move randomly and derived his velocity
distribution function. Later on, Boltzmann concluded that the second law
of thermodynamics could be explained if one assumes random collisions
between the molecules. From a mathematical point of view, this led to the
development of Markov chains and diffusion processes.

The idea of indeterminism was seen by many scientists as ignorance,
that the randomness actually came from the lack of complete informa-
tion. Meanwhile, in the first half of the 20th century, quantum mechan-
ics received great attention in the physics literature. The development of
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quantum mechanics explained the behavior of systems at atomic scales.
Schrodinger’s equation and Heisenberg’s uncertainty principle once more
contested absolute determinism. This gave even more importance to prob-
ability theory, since positions and velocities were now viewed as distribu-
tions and not exact values.

However, a complete axiomatization of probability theory was not yet
complete. In fact, this was part of Hilbert’s sixth problem, proposed in 1900.
Kolmogorov, in 1933, founded what is now accepted as modern probability
theory.

Nowadays, probability theory is a well established area of mathematics.
It has developed many different branches and their applications go way
beyond physics, touching biology, economy, political and social sciences.

In this thesis, we choose to work on two different aspects of the theory.
First, we adapt a technique of decoupling to conservative interacting par-
ticle systems. These decouplings are also used to study processes on top
of the particle systems considered. In the second part, a extensive study
of noise sensitivity and sharp thresholds for planar Voronoi percolation is
conducted. This thesis is based on the papers [11], [10] and [1]. In the
following, we describe more precisely each of these two parts.

1.1 DECOUPLING OF INTERACTING PARTICLE SYSTEMS

Percolation theory, whose first appearance dates back to 1956 in Broad-
bent and Hammersley [16], is a branch of probability theory motivated by
physics. It was originally a model for the spread of a fluid in a random
medium. Unlike diffusion process, that assume the randomness comes
from the behavior of the fluid, percolation models work with the premise
that the randomness is intrinsic to the medium and not the fluid.

Since its introduction, many modifications of the model have been con-
sidered and the techniques used to understand such models improved
greatly. Today, not only many robust techniques are available and can be
used to understand other kinds of problems, but also the possible applica-
tions of these models are very wide, ranging from the study of epidemics
to the understanding of social networks.
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Arguably, the bond percolation model is the simplest and most stud-
ied among all percolation models. In it, the medium has an underlying
graph structure and each edge of this graph receives an associated indepen-
dent random variable that controls whether the passage of fluid through
the edge is allowed or not. Usually, the underlying structures are infinite
regular graphs and, in this case, the behavior of this model is very well
understood.

The assumption of independence is a facilitating factor in the study of
the bond percolation model and many of the classical proofs for central
theorems rely on it. Decoupling techniques appear when one tries to drop
this assumption. A decoupling is nothing more than a correlation estimate.
It bounds the correlation of functions that depend on far enough subsets
of the underlying structure. These estimates are central tools in the un-
derstanding of dependent percolation. Their strength is highlighted when
combined with multiscale renormalisation using cascade events.

Models that lack independence are numerous in the literature and de-
couplings techniques have been used in many of them. The dependency in
each model can present many different characteristics and the complexity
of the decoupling depends on the model: For finite range percolation, func-
tions that depend on far enough subsets have independent outcomes and
Liggett, Schonmann and Stacey [34] studied this case. Some models with
infinite range were also already considered in the literature: Voronoi perco-
lation in Bollobds and Riordan [14], and Boolean percolation with random
radii in the book [35], and in Ahlberg, Tassion and Teixeira [5].

In some models, different aspects of the dependency make the construc-
tion of a decoupling harder. This is the case of random interlacements,
introduced by Sznitman [47]. This model consists of a Poissonian soup
of random walks and decouplings were studied in this context, see Popov
and Teixeira [39]. This is one of the first models where a sprinkling is used
to blur the dependencies and obtain good decay bounds.

Interacting particle systems are another example of stochastic processes
with non-trivial dependencies. Once again, the dependencies can have
many different effects in the evolution of the process. Understanding con-
servative models is a challenging endeavor due to the nature of its depen-
dency. Here, we focus on decoupling for conservative interacting particle
systems on the integer lattice. We prove decouplings for two models intro-
duced in Spitzer [45]: The exclusion process and for the zero range process.
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THE EXCLUSION PROCESS. The exclusion process is defined as follows.
Fix p € [0,1] and place a particle in each integer site independently with
probability p. Each particle moves as a continuous time random walk obey-
ing the exclusion rule, that says two particles cannot occupy the same site
at the same time. This means that, when a particle tries to jump to an occu-
pied site, this jump is suppressed. Our initial distribution for the particles
is, for every value of p, stationary to this evolution and the parameter p is
the density of the process.

THE ZERO RANGE PROCESS. The zero range process in Z is a particle
system where particles interact only when they are at the same site. The
dependency is on the rate with which particles leave the site and it is con-
trolled by a function g : Ny — R, of the number of particles with g(0) = 0.
Particles jump to a uniformly chosen nearest neighbor.

We assume that there exist positive constants I < 1 < Iy such that

- <glk)—gk—1) <Ty, for all k € IN. (1.1.1)

There exist explicit formulas for some invariant measures of the zero
range process, see [32]. In fact, Assumption (1.1.1) implies that, for every
p € Ry, there exists an associated invariant product measure with density
p. This collection does not contain all the invariant measures for the zero
range process, as observed in [32].

We now start to discuss the decoupling inequalities we prove here and
that compound half of this thesis. The state space of the exclusion process
and the zero range process are, respectively, {0,114 and NZ. In both pro-
cess, the state space has a natural partial order that allows to define when
a function of the trajectories is monotone. Besides, we say that a function
of the trajectories f has support on the space-time box B C Z x R if

ne(x) = &(x), for all (x,t) € B, implies f(n) = f(&). (1.1.2)

We will prove that, if f; and f; are positive bounded non-decreasing
functions of the space-time with respective supports in By and B, and the
boxes are sufficiently far away, then

]Ep(fl fZ) < 1Ep+e(f1 )]Ep+€(f2) + H(dz €, p)/ (1-1-3)
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where [E, denotes the expectation with respect to an exclusion process or
a zero range process with density p, H is an error function, and d is used
for the distance between the two boxes.

It is important to notice that the estimate above is not a correlation es-
timate. This is due to the increase of the density from p to p + €. This
sprinkling blurs the dependency caused by conservation and helps to en-
sure that the decay rate of the error function H is stretched exponential. In
fact, we will see that, if € =0, then H decays at most polynomially with d.

The proofs of both results follow the same lines. The main step is to
construct a coupling between two processes with densities p and p+ € in a
way that the process with larger density dominates the other process in a
tixed interval and some large time with high probability.

To illustrate the power of these decouplings, we provide two applica-
tions. We first work on a detection problem for the exclusion process. As
for the zero range process decoupling, it is used to study an infection pro-
cess on top of the particle system. We prove bounds for the velocity with
which the infection process spreads.

1.1.1 Detection

In a detection model, we are given a random set of moving points,
called nodes. We think of these nodes as detectors. Suppose we also have
a target that can be mobile or not. We are interested in knowing whether
any of the nodes will detect the target in finite time, and if so, what are the
properties of the detection time. Of course the answer to these problems
depend on the specific model in question.

There exists a rich literature concerning this class of problems. The mo-
bile geometric graph model is an example of structure where this has been
studied. In this model, the starting positions of the nodes is given by a
Poisson point process in the plane with intensity A > 0 and they evolve as
independent Brownian Motions. A node detects everything that is within
distance at most one from it. This model has been studied under different
aspects. When the target is non-mobile, detection occurs in finite time al-
most surely. In this case, Kesidis, Konstantopoulos and Phoha [29] derive
bounds on the tail distribution of the detection time (the first time a node
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detects the target). One can also consider a target that moves indepen-
dently from the nodes, as in Peres, Sinclair, Sousi and Stauffer [38]. They
also study the tail of the detection time, and which distributions for the
movement of the target allows it to avoid detection for the longest time.
They prove that, in dimension two, there are two equally good possibilities
for it: Stay put or move as an independent Brownian Motion.

In the literature presented above, a central assumption is that the target
moves independently from the nodes. It is also interesting to treat the case
when we drop this assumption. We can suppose that the target is able to
predict the future trajectories of all the nodes and moves cleverly trying
to avoid detection. In Stauffer [46], this possibility is considered for the
mobile geometric graph for dimensions d > 2. In this case, they prove a
phase transition on the probability of detection as the value of A changes.
For dimension one, detection always occurs in finite time for this model.

DESCRIPTION OF RESULTS. In the model we consider here, the nodes
follow an exclusion process with density p € (0,1). As for the target, it
starts at the origin and, unlike the nodes, moves only at integer times. On
the other hand, we allow the target to jump to any site within distance at
most R > 0 from its current position. The target is detected if it stays on
top of some node. We assume that the target knows the future movement
of all nodes, and we ask if it can escape detection with positive probability.

We will prove that, for fixed p € (0, 1), there exists a phase transition in
the probability of detection in finite time, as we vary the value of R.

Theorem 1.1.1. Suppose p € [0,1). There exists Ry = Ry(p) such that, if R > Ry,
then the probability that the target is never detected by some node is positive.

Remark 1.1.2. It is not true that, for all values of R, the target can escape
with positive probability. If we take any p > 0 and R = 1 it is possible to
find two nodes at time zero, one at each side of the origin. Using a suitable
construction of the exclusion process, we conclude that these nodes (as well
as the empty sites) move as random walks. This implies that the two nodes
we found will eventually meet and strangle the target, who is discovered.

Sidoravicius and Stauffer [44] consider a model in Z4 d > 2, where
nodes are placed according to a Poisson point process with intensity A and
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move as independent random walks. The target also moves in continuous
time, but with bounded speed. They compare this process with oriented
percolation to prove a phase transition in the probability of detection as
the value of A changes. One may wonder if the techniques from [44] can be
used to prove survival in our setting. There, the authors use a well-chosen
subspace of Z4*! and prove that each node only influences a small area of
this subspace. Hence, they can remove the forbidden sites and disregard
the trajectory of the node. However, when d = 1, this fails because, since
each node intersects a fixed subspace infinitely many times, the area of
influence of each node extends infinitely and can not be disregarded so
easily. This makes the proof in dimension one more intricate, and requires
some different machinery. We expect, however, that the proof presented in
[44] can be adapted to our case for larger dimensions.

An additional difficulty comes from the choice of the exclusion process
as an underlying dynamic due to its lack of good mixing properties. For
this reason, the usual techniques do not apply in a straightforward way and
this is where our decoupling comes in play. The existence of dependence
among the movement of the particles is also a complicating factor.

PROOF OVERVIEW. We use multiscale renormalisation to prove the ex-
istence of oriented percolation in dependent models. This allows us to
perform some comparison, in a similar flavor of [44]. The main advantage
is that our renormalisation does not rely on the specifics of the model and
can be used in other contexts.

Stauffer [46] uses a multiscale renormalisation to prove the existence of
a phase where detection always occurs. Our theorem goes in the opposite
direction. It gives sufficient conditions to the existence of percolation, and
we use it to prove that, in our model, detection may not happen. To prove
that detection may fail, it is necessary to compare the process with oriented
percolation, instead of looking into non-oriented models. This adds a new
complicating factor, since oriented paths are harder to exhibit.

The renormalisation scheme we develop is a general statement about
percolation in oriented models. It proves percolation using a fixed set of
oriented paths. The main advantage of this technique is that it does not
require independence. Instead, we only need to take care of the decay of
correlations on the environment. We will focus here in site percolation in
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dimension 1+ 1, but the proof techniques can be adapted to more general
models.
We present a particular case of the percolation models we are interested
in. Let J C Z? be a random subset of the integer lattice with distribution P
that is translation invariant. Fix also S as the set of paths f: Ny — Z? that
satisfy
fln+1)—~f(n) €{(0,1),(1,0)}, for all n € IN,. (1.1.4)

We look for conditions over IP that ensure the existence of an infinite open
path, i.e., a infinite path of S contained in J.

When P is obtained by independently declaring each vertex open with
probability p, one can easily prove that percolation occurs for large values
of p, see [25]. Our objective here is to drop the independence assumption.
We will assume instead a good decay on the correlations of the environ-
ment.

Our theorem states that, under the right correlation decay on the envi-
ronment, if the probability that a site is open is big enough, then

“the probability that there exists a path

. . . e 1.1.
in S that is open is positive. (1.1.5)

Combining this result with the exclusion process decoupling will easily
imply the existence of a phase where detection may not occur.

1.1.2  Infection

Infection processes model the evolution of a population divided into
two groups: The healthy individuals and the infected ones. The interest
lies in understanding what happens with the infected set in the long run.

DESCRIPTION OF RESULTS. The model we consider here is defined as
follows. Given an initial configuration 1y for the zero range process, we
declare all particles to the left of zero, &y, infected. Define also (yp =19 — &o
as the configuration of healthy particles.

We assume that the process & + ¢ evolves as a zero range process with
rate function g. Besides, a healthy particle becomes immediately infected
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when it shares a site with some already infected particle. In particular,
in any non-empty site, either all particles are healthy or all particles are
infected.

We define the front of the infection wave as

T = sup{x : &(x) > OL (1.1.6)

If we choose ng according to the invariant product measure with density
p > 0, then vy € Z for all t > 0 almost surely. We prove two theorems
regarding the behavior of r¢. We obtain uniform upper and lower bounds
for the quantities v+/t.

The first result states that r; goes to the right with finite speed.

Theorem 1.1.3. For any p > 0, there exist v, > 0 such that, for all L > 0,

, (1.1.7)

TL = vit+ L, <c e_C:1 10g5/4 L
°| forsomet>0 | =

for some positive constant c, that depends only on the density p and the rate
function g.

Our second result states that the velocity is also positive.

Theorem 1.1.4. For any p > 0, there exist v_ > O such that, for all L > 0,

[ e <v_t—L,
P

e log”/
for some t >0 ] e e (118)
=

for some positive constant c, that depends only on the density p and the rate
function g.

The process 1t increases by one whenever an infected particle at position
T¢ jumps to r¢ + 1. However, in order for r; to decrease, it is necessary that
all infected particles at vy jump to ry — 1. This suggests that the process r¢
should have a tendency to go to the right. Turning this heuristics into a
proof may seem easy at first sight. An indicative that this is not the case
is the collection of works Ramirez and Sidoravicius [41], Comets, Quastel
and Ramirez [18], and Bérard and Ramirez [13] where a similar model is
considered. There, healthy particles remain still until they become infected.
Besides, infected particles move independently from each other. These

11
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works establish a law of large numbers, central limit theorem and large
deviations for the model.

Our theorem is a first step in understanding how influences spread in
the zero range process: As a corollary, we obtain a correlation estimate for
functions that depend only on sets that are far enough in space.

PROOF OVERVIEW. First, we prove that 7 travels to the right with finite
velocity. We use multiscale renormalisation to bound the probability of
events where 1 travels fast to the right at some fixed times. When we
have a good bound for this fixed sequence of times, all the work remaining
is to do an interpolation argument to conclude that the statement holds
uniformly in time.

The proof of the second theorem is also based in multiscale renormali-
sation. However, we cannot apply the same argument using events where
the front does not travel with some small but positive speed. We use an
alternative strategy considering a broad class of paths and prove that, for
each of these paths, there is a positive fraction of time where at least two
particles are close to it. We observe that the front wave is one such path
and, when two particles are close to it, there is a positive chance that these
particles will meet in the front and produce a drift to the right. A central
step in both proofs is the decoupling for the zero range process.

RELATED WORKS. There exists a rich literature concerning infection pro-
cesses. Giacomelli [24] proves that, for our model, in the independent case,
i.e., when the rate function g equals the identity, the velocity of the infec-
tion wave is greater than one.

Jara, Moreno and Ramirez [27] consider an infection process evolving
on top of the exclusion process. Based on a regeneration argument, they
prove a law of large numbers and central limit theorem for this model.

Higher dimensional modes have also been considered. Popov [40] con-
tains a detailed review of the so-called frog model. An extensive estudy of
this model is conducted in Alves, Machado and Popov [8, 6], and Alves,
Machado, Popov and Ravishankar [7].

In Kesten and Sidoravicius [31], the authors consider a model that is
similar to ours, but for any dimension: Particles evolve as independent
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random walks and only the origin begins infected. In this case, they prove
a shape theorem.

1.2 NOISE SENSITIVITY FOR VORONOI PERCOLATION

The concept of a Boolean function, f : {0, 1} — {0, 1}, is of fundamental
importance in theoretical computer science. Moreover, many of the most
well-studied problems in the intersection between combinatorics and prob-
ability theory may be phrased in terms of (often monotone) Boolean func-
tions. One is, in this context, interested in the typical behavior of a Boolean
function for an element in {0, 1}™ chosen according to product measure
with marginal density p, henceforth denoted by IP,. The study of Boolean
functions has led to a vast literature on a range of fascinating phenomena,
such as the existence of thresholds and the effect of small perturbations,
see e.g. [23, 36]. The second kind of problems we consider in this thesis
consists in understanding these concepts in the context of Voronoi percola-
tion.

Threshold phenomena of monotone Boolean functions was first discov-
ered by Erd6s and Rényi [20] in their pioneering study of random graphs.
The existence of a sharp threshold is the essence of Kesten’s celebrated 1980
proof that the critical probability for the existence of an infinite connected
component in bond percolation on 7?2 equals /2 [30].

A sequence (fn)n>1 of monotone® Boolean functions fy, : {0, 1} — {0, 1}
is said to have a threshold at p € (0, 1) if, for every e > 0, we have

lim P, _e[fp =11=0 and lim Py e[fn=1=1.

n—oo n—oo

The understanding of thresholds has increased with works by Russo [42],
Kahn, Kalai and Linial [28], Friedgut and Kalai [21], and Talagrand [48].
The notion of noise sensitivity was introduced in a seminal paper by
Benjamini, Kalai and Schramm [12]. Given w € {0,1}", we obtain an e-
perturbation w® of w by resampling each bit of w independently with
probability €. A sequence (fn)n>1 of functions fy, : {0, T}™ — {0, 1} is said to

1 A Boolean function is monotone if f (w’) > fn(w) whenever w’ > w coordinate-wise.

13
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be noise sensitive at level p (NS, for short) if f,(w) and f,,(w*) are asymp-
totically uncorrelated, i.e., if

Ep[fn(w)fn(w®)] — Eplfn(w)? =0, asn — oco. (1.2.1)

The study of noise sensitivity has led to a detailed understanding of certain
planar percolation models, both in the discrete setting: Benjamini, Kalai
and Schramm [12], Schramm and Steif [43], Garban, Pete and Schramm [22],
and in the continuum: Ahlberg, Broman, Griffiths and Morris [2], and
Ahlberg, Griffiths, Morris and Tassion [3].

We study threshold phenomena and the effect of small perturbations
in the context of Poisson Voronoi percolation on R?. Our contributions in
this direction are two-fold. First, we describe the discretization method de-
veloped in [2], by which we reduce the continuum problem to its discrete
counterpart, and emphasize the close relation between threshold phenom-
ena and noise sensitivity of Boolean functions via the study of random-
ized algorithms. Combining the two techniques we derive quantitative
estimates on the width of the threshold window and the rate of decorrela-
tion in (1.2.1). Second, we discuss a range of different but related notions
of perturbations in the context of Voronoi percolation.

We remark that the application of the discretization approach is here
somewhat simpler than as originally developed in [2]. Moreover, the tech-
niques we use apply to a range of continuum percolation models such as
Poisson Boolean percolation and confetti percolation, as opposed to the
approach in [3] that exploits color-switching tricks. For self-dual models,
such as Voronoi and confetti percolation, our approach offers an alternative
proof that the critical probability for percolation equals /2, as originally
proved by Bollobas and Riordan [14].

DESCRIPTION OF VORONOI PERCOLATION. Poisson Voronoi percola-
tion is a model for the study of long-range connections in a two-coloring
of R? based on a tessellation. The large-scale behavior in models of this
kind is well-known to be governed by its behavior in finite regions, and
we shall for this reason work with the restriction of the model to the unit
square. Let, hence, S := [0, 11?2 and let Q denote the space of finite subsets
of S x{0,1}, equipped with the Borel o-algebra. Formally we construct a
Voronoi configuration on S based on a Poisson point process 1 on QO with
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intensity measure nAs ® [pd; + (1 —p)dol, where Ag denotes the Lebesgue
measure on S.
Given 1 € Q, we define the Voronoi cell associated to (x,u) € nj as

V(x):={y € S:d(y,x) <d(y,x') forall (x',u') en},

where d denotes the Euclidean distance. Based on the tessellation we de-
clare a point in S red or blue depending on whether it is contained in the
cell corresponding to a point in 1} with u-coordinate o or 1, respectively.? To
rule out degenerate cases, we color all points in S red in the case thatn = ().
We shall denote the associated measure by Py, ,, and we will occasionally
suppress the subscript to ease the notation.

Given a rectangle R C §, let Hr denote the event defined by the existence
of a continuous blue path crossing R horizontally, and let fg : Q — {0, 1}
denote the indicator of the event Hg. Conditioned onn # 0, at p = 1/2
the model is self-dual, meaning that the red and blue components are equi-
distributed. Since any rectangle R C § is either crossed horizontally by a
blue path or vertically by a red path, it follows by symmetry that3

]Pn,‘/z[fS = 1] — ]/2.

Besides, the function fg is non-degenerate at p = 1/2 for any rectangle
R C S: There exists a constant ¢, > 0, depending only on the aspect ratio
of R, such that

¢, <Phiplfr=1<1—c, (1.2.2)

uniformly in n. This was first proved by Tassion [49] for Voronoi perco-
lation on R?, and later extended in [3] to subsets of R? with boundary.
The box-crossing property in (1.2.2) is a typical critical phenomenon and
a suggestive indication that the critical threshold for the existence of an
unbounded connected blue component in Poisson Voronoi percolation on
R? equals 1/2.

2It is not hard to see that, with probability one, every Voronoi cell is a closed bounded
convex set. A point on the boundary of some set may belong to more than one cell, but
no point of S can belong to more than three cells. Besides, if two cells share a vertex, they
share an entire edge. We can therefore ignore the fact that points on the boundary of two
cells may be declared both red and blue.

3 Would it not be for the possibility that 1 may be empty, equality would hold here.
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DESCRIPTION OF RESULTS. In the continuum setting, a natural notion
of perturbation of a Voronoi configuration is obtained as follows. For e €
(0,1) let n(e) be obtained from n by first thinning n by a factor 1 — € and
then sprinkling an independent density of en points to regain the initial
density n. The proportion p of blue points are in each step kept constant.
We shall say that the function fg : Q — {0, 1}, encoding the existence of
a blue crossing of the rectangle R, is noise sensitive at level p if, for every
€ > 0, we have

Enp [frM)fr(M(€)] — Bnp[frm)]® =0, asn — . (1.2.3)

Moreover, we say that fg has positive noise sensitivity exponent if (1.2.3)
holds with e replaced by e, = n™* for some « > 0.

Notice that in (1.2.3) we have defined what it means for a single function
to be noise sensitive, contrary to the discrete setting, where a sequence of
functions was considered. The two definitions are the natural analogues of
one another, and the reason for the difference lies in how dimensionality is
expressed differently in the two settings.

Our first theorem shows that box crossings in Poisson Voronoi perco-
lation are noise sensitive at the critical parameter p = 1/2, and that the
probability of a horizontal blue crossing of a rectangle R tends to either o
or 1 outside of a polynomial-sized window around 1/2.

Theorem 1.2.1. For every rectangle R C S, the function fy is noise sensitive at
level p = 1/2 with a positive noise sensitivity exponent. Moreover, there exists a
constant y > 0 such that

nlgl(’)lo H)n,]/z_n—y [fR = ]] =0 and nlgglo ]Pn,1/z+n—Y [fR = 1] =1.

We remark the fact that IP,[fg = 1] converges to either zero or one for
p # 1/2, together with Cauchy-Schwarz inequality, implies that Voronoi
percolation is trivially noise sensitive for p # 1/2. In addition, the above
provides an alternative proof of Bollobas and Riordan’s theorem that the
critical probability for Poisson Voronoi percolation on R? equals /2.

One way to think of the perturbation in (1.2.3) is as the following dy-
namical process evolving in time: Let points appear in S x {0, 1} at rate n,
where they remain for an exponentially distributed time before disappear-
ing. The measure IP,, 1/, is stationary for this process, and for e = 1—e™*
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the pair (1,1(e)) corresponds to the dynamical process observed at times
0 and t.

In greater generality we may think of a perturbation as a reversible time-
homogeneous Markov process (11(t))t>p on Q evolving in equilibrium. For
each such process, the Markov property and reversibility together give that

E[fr(n(0))fr(n(t))] — E[fe(n(0))]"
= E|[E[fr(0))n(/2)] E[frn(t)n(/2)] | - E[fr(n(0))]*

= Var (]E [fR(ﬂ(t/Z))’n(O)D'

Hence, for each dynamical process of this kind, the correlation between
two points in time measures the amount of information in some o-algebra
J — the o-algebra generated by the glimpse of the process in one of the time
points — and being sensitive with respect to this information is equivalent
to

Var, 1, (E[fg(n)|F]) — 0, asn — oo.

Clearly, the more information contained in J the larger the variance. This
indicates, in particular, that more conservative dynamics tend to affect a
system to a lesser extent. Two natural notions of perturbations that con-
serve the number of points are

¢ re-randomize colors of a small proportion of points;
* re-randomize locations of a small proportion of points.

The former of these two notions was studied in [3], where the authors
showed that the existence of crossings in Voronoi percolation are sensitive
with respect to resampling a small proportion of the colors. The latter we
study here, and show that Voronoi crossings are sensitive also with respect
to relocation of points within S.

Theorem 1.2.2. Let n* be obtained from 1 by re-randomizing the location of each
point in 1 independently and uniformly within S with probability e > 0. For
every € > 0 and rectangle R C S, we have

By [frR)fR(M7)] = B [frm)]” =0, asn — oo.

17
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PROOF OVERVIEW. We will follow the approach developed in [2], and
revisited in [5], by which the continuum problem is reduced to its discrete
counterpart via a two-stage construction. The central idea is to consider a
Poisson point process n on Q chosen according to Py, , for some k > 1,
and obtain a configuration n from 1y via thinning. Conditional on n;, we
may think of 1 as an element in, and fg as a function on, {0, 1}"<. This
will allow us to study the behavior of fg via techniques developed for the
analysis of Boolean functions.

Russo’s approximate o-1 law [42] says that any sequence of monotone
Boolean functions for which the influence of each bit tends to zero exhibits
a threshold behavior. A more modern approach to threshold phenomena
comes from randomized algorithms via the OSSS inequality [37]. That
randomized algorithms can be used to study threshold phenomena has
previously been observed by Gady Kozma (see the Appendix of [4]) and
in a recent paper by Duminil-Copin, Raoufi and Tassion [19]. The latter
also gives an alternative proof of the result due to Bollobas and Riordan
that p. = 1/2 for Voronoi percolation on R?. Randomized algorithms are
also connected to noise sensitivity via the Schramm-Steif revealment Theo-
rem [43]. In order to prove Theorem 1.2.1 we shall thus devise an algorithm
that, conditional on 1y, queries points in 1 sequentially until the outcome
of fr(n) is determined. If, with high probability, the algorithm has low
revealment, that is, it is unlikely to query any specific point in 1y, then the
result will follow.

The proof of Theorem 1.2.2 will also rely on the reduction to a dis-
crete setting. The dynamical process studied there is conservative, and in
that sense related to the concept of exclusion sensitivity studied by Bro-
man, Garban and Steif [17]. We shall follow their approach, and instead
of a direct study of the conservative dynamics, we shall show that there
is a coupling between (n,mn(e)) and (n,n*) such that (fr(n), fr(n(e))) and
(fr(n), fr(n*)) agree with high probability. This will be possible due to a
result in [17] which says that any noise sensitive sequence of Boolean func-
tions (fn)n>1 is unlikely to change when resampling up to order y/n of the
variables. The result then follows by Theorem 1.2.1 and the observation
that

Enp [fr()fr((e))] — Enp [fr)fR(1)]| < Prp[fr(nle)) # frn')].



DECOUPLING FOR THE EXCLUSION PROCESS AND
DETECTION

Apart from independent random walks, the exclusion process is among
the simplest conservative interacting particle systems. Therefore, to obtain
a general decoupling for conservative systems, it is natural to begin the
study by proving such estimates for this model. In this chapter, we develop
a decoupling for the exclusion process. As an application, we study a
detection model evolving on top of this particle system.

We split our discussion in two sections. First, we prove the decoupling
for the exclusion process. The second section is devoted to the study of the
detection model and the proof of Theorem 1.1.1.

2.1 THE DECOUPLING

In this section, we prove a decoupling for the exclusion process. This
particle system is conservative and particles move as random walks. In this
case, the major difficulty is to overcome the slow mixing of the process and
this is done using a sprinkling.

In the next subsection, we present some preliminary results about the
process. The remaining of the section is devoted to the proof of the decou-

pling.

2.1.1 A brief review of the exclusion process
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The exclusion process (nt)t>0 on Z is a Markov process with state space
{0,112 and generator given by

L) =3 Y Y e —nte+ ) [ —f)], @)

xeZ h==+1

where f : {0,1}¥ — R is any local function and n*V is the configuration
given by
n(y), if z=x,
nY(z) ={ nlx), if z=y,
Nn(z), otherwise.

For each p € [0,1], define p, as the product measure on (0,1} with
marginals given by

won:m(k) =1} =1—ppn:n(k) =0}=p, forall k € Z. (2.1.2)

It is a well known fact that the process (1)t is reversible with respect
to the measure p,. We call the parameter p the density of the process if its
starting configuration is distributed as p,. Denote by IP, the distribution
of the exclusion process (1t)¢>o with density p.

We also recall a classical graphical construction of the exclusion pro-
cess that will be useful. This construction is made with the help of the
interchange process, that we denote by y. First consider an independent
Poisson process of rate 1/2 for each edge (x,x + 1) of Z. We will represent
the Poisson processes in the edges by arrows (as in Figure 2.1). Observe
that, for each site x € Z and t > 0, there exists an almost sure unique
path that starts at (x,t), ends in Z x {0}, goes downwards and is forced to
cross all arrows it encounters. We denote the end position of this path by
Yi(x) € Z, the label of the interchange process in site x at time t (see Figure
2.1).

Given an initial configuration 1y for the exclusion process, we obtain
the configuration at time t by setting

Mt(x) =nolve(x)), forall x € Z. (2.1.3)

This construction results in the Markov process with generator given
by (2.1.1). Observe that each particle as well as each hole in 1y performs a
continuous time random walk.
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Yi(x)

Figure 2.1: The points x and y(x).

The space of configurations {0, 1} has a partial order given by
n = &if, and only if, n(x) < &(x), forall x € Z. (2.1.4)

If we use the same Poisson clocks in the graphical construction presented
above for two different initial conditions, this partial order is preserved.

When the starting configuration of the exclusion process is distributed
as W,, by reversibility it is possible to use the graphic construction pre-
sented above to construct the exclusion process for negative times: Simply
consider an independent copy of the graphical construction, that gives rise
to a process fj, and define n_¢(x) =fj¢(x), forall t < 0 and x € Z.

Using a coupling of the measures (u,),c(0,1) that is increasing in the
partial order of {0, 114, all the processes (n! )teR pel0,1] can be constructed in
the same probability space in a way that

1. (M)ier is an exclusion process with density p;

2. if p < p/, then ! < n.‘g/, for all t € R.

2.1.2  Decoupling

In this subsection, the exclusion process decoupling is proved. In the
proof we will assume the existence of the coupling stated in Proposition
2.1.5.

We will work with functions defined in the space of cadlag trajectories
S = Dgr{0, 1}£ of the exclusion process. It will be useful to think of the

21
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domain of the functions as the set {0, 1}*R If B c R?isa rectangular box,
we denote by per(B) its perimeter. We are ready to state our decoupling.

Theorem 2.1.1 (Exclusion process decoupling). There exist positive constants
c, and C, such that, if f1,f : {0, 142*R s 10,1] are two non-decreasing functions
with respective supports on space-time boxes By and B, satisfying

d =d(By,B;) > 6(per(B1) + per(B;)) + C,, (2.1.5)

then, for any densities p < p’ € [0,1],
E,(f1f2) < Epr(f1)Ey(f2) + . d?exp {—¢ (0 = p)2d "}, (216)

Remark 2.1.2. We can also take fy and f; to be two non-increasing functions
and assume that p’ < p € [0, 1]. The proof carries out in the same way in
this case.

Remark 2.1.3. Observe that (2.1.6) is not a correlation estimate, since we
need to add the sprinkling in order to have this bound on the error func-
tion.

Remark 2.1.4. Recall the construction of the exclusion process from the
interchange process in (2.1.3). Using the independence between the config-
uration 1y and the interchange process vy, we compute

Covy(1:(0),10(0)) = Ep(ne(0)no(0)) —
= E,(n (O)no(omt —0) + Tpyi(0120)) — 07
— p?Pyi(0) # 0] + pPly¢(0) = 0] — p?
= (p— p*)Ply¢(0) = 0]
C5
Eﬁ-

The last inequality is a consequence of the fact that y¢(0) has the distribu-
tion of a continuous time random walk. In particular, this example implies
that the sprinkling is necessary to obtain a rapidly decaying error function
in (2.1.6).
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For the proof of Theorem 2.1.1, there are two different cases to take
care of: Either the horizontal distance between the boxes is large or the
vertical distance is. In the first case, we only need to use some moderate
deviation estimates to get the bounds we need. In the second case, we use
a coupling between two exclusion processes with densities p < p’. This
coupling ensures us that the process with density p is dominated by the
process with higher density in an interval I if the time is large enough. The
existence of this coupling is the content of the following proposition.

Proposition 2.1.5. There exist positive constants c, and C, such that the following
holds. For p < p’ € [0,1], any given interval I = [c,d] C R with ¢,d € Z and
time t > C,, there exists a coupling IP of two exclusion processes with independent
initial conditions Mg ~ Wy and fp ~ Wy in a way that (As)s>o is independent of no
and

IP[EIX elNZ :ni(x) > ﬁt(x)} < cet(t+ 1) exp {—c;](p’ — p)2t1/4}.

The proof of this Proposition is contained in the next subsection. We
now use it to conclude Theorem 2.1.1.

Proof of Theorem 2.1.1. Let dy and dy denote the horizontal and vertical dis-
tances between the boxes B; and Bj:

dy = inf{lx —y| : (x,t) € By and (y,s) € By}, (2.1.7)
and
dvy =inf{|{t —s|: (x,t) € By and (y,s) € B} (2.1.8)

Assume first that
dy = 3(per(By) + per(B;) + dy). (2.1.9)

In this case, observe that, if a particle (or a hole) of the exclusion pro-
cess touched both boxes, it jumped at least dy times in at most per(By) +
per(B;) + dy units of time. Since these particles (as well as the empty sites)
move as random walks, the number of jumps in a given period of time has
Poisson distribution. This implies that

a fixed particle (or hole)
touches both boxes

< IP [Poisson(per(B1) + per(B,) + dy) > dnl < e Coldvtdn) (2.1.10)

23
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with c¢,, > 0 given by Lemma A.o.5 in the Appendix.

Now we only need to count how many particles can touch both boxes.
Fix an arbitrary site between the two boxes. Each particle that touches
both boxes must cross this fixed site. This implies that we can bound the
number of particles by the number of clocks that ring in the neighboring
edges of this site. It turns out that this also has Poisson distribution with
parameter at most per(By) + per(B;) 4+ dy. Hence, with probability at least
1 — e CeoldvHtdr) there are at most dy particles that can cross this site. Using
a union bound, we get

some particle (or hole) < more than dy clocks ring in the
touches both boxes neighboring edges of the fixed site

duP { a fixed particle (or hole) ]
H

touches both boxes

<(1+ dH)e_C3O(dV+dH)-

Now, if we condition on the trajectories inside B, we can split the expec-
tation below according to the existence of particles that touch both boxes
and conclude that

IEP(ﬁfZ) < ]Ep(f])IEp(fz) —+ (1 + dH)e_c30(dV+dH),

a stronger estimate than (2.1.6).

Assume now that (2.1.9) does not hold, i.e., assume that dy < 3(per(B7) +
per(B2) + dv). This, combined with Equation (2.1.5), implies that

dy > % (2.1.11)

If we take C, > 4C,, the equation above allows us to use Proposition 2.1.5.
In this case we use a different approach.
We will assume that the boxes have the form

B] - [d/ 6] X [_{/ 0]/
B, =[a,b] x [t,t+s].

Figure 2.2 can be used as a reference in this part of the proof.
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Bz S
I : I : 1
I t I
dia b Eb
B i

Figure 2.2: The boxes By, B, and the interval I (used in the proof of Theo-
rem 2.1.1).

Let .# = o (Nw,u < 0) and use the Markov property to get

E,(f112) = B (Ep (f121F))
=E,(f1E,(f219)) (2.1.12)
- E,

(f1E,(f2o)).

To estimate the conditional expectation above, we apply Proposition 2.1.5
with [ = [a —2s —t,b + 25 + t] (see Figure 2.2) and define the event

A _ all particles of n that pass through
- the box B, are inside I at time t '

We now split the conditional expectation in Estimate (2.1.12), use Propo-
sition 2.1.5, and the fact that both functions f; and f; are positive, bounded
by one and non-decreasing to get

Eo(fi1f2) = Ep <f1 (m)E, <fz(n) ’ﬂo))

< E (fl m)E <fz(ﬁ)I{VXelmZ:nt(x)gﬁt(x}}lA’ﬂo))
+P[A]+P[Ex € INZ :n(x) > A (x)]
S Ep(f1)Ey (f2) +P[A]+ P [Ix € INZ :ne(x) > Ae(x)].
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To bound the last probability above we use Proposition 2.1.5. Now all
we need to do is estimate the probability of A°. We use a similar argument
to the one used in the first part of the proof. Begin by observing that, in
order for a particle that is at the k-th site at the right of I at time t to enter
the box B;, it is necessary that it jumps more than 2s + t + k times before
time t +s. We also know that the number of jumps of a particle during
the time interval [t, t + s] has Poisson distribution with parameter s. This
allows us to estimate

+00 +00
PIAS] <2 Z IP[Poisson(s) > 2s +t+k] < 2 Z e Caslttk) — cecast
k=0 k=0

where in the second inequality we used a simple large deviation estimate
given by Lemma A.0.3 in the Appendix.
If we combine all of this, we get

E(fif2) < Ep(f1)Ey (f) + ce™
+ cot(t+ 1)) exp {—c;] (p' — p)zt]/4} (2.1.13)

< By (F)Eg(f2) +cit(t+ I exp { = (0" — )2t |,

by possibly changing the constants in the last estimate.
Now, since t = dy and dy < 3(per(B1) + per(B2) + dv), we have

d < V2(dy + dv) < V2 (4dy + 3(per(B1) + per(B;)) < V2 <% +4dv) ,

—1
and hence d < 4 (1 — 4) dy. Substituting this on estimate (2.1.13) con-
cludes the proof. O

2.1.3 Coupling

To conclude the proof of the exclusion process decoupling, we only
need to prove Proposition 2.1.5, the content of this subsection. We begin by
giving an informal description of the coupling and then we make all the
estimates needed to get the domination.



2.1 THE DECOUPLING

Consider two independent initial configurations 1o ~ p, and fp ~ pp
with p < p’. In our coupling, we want to obtain domination in an interval
I for a large time t. Due to the bounded velocity that particles have, we
only need to look at particles that at time zero are inside a sufficiently
large interval H that contains I. Once we have a bound on the probability
that some particle spends time outside H and is inside I at time t, we can
restrict ourselves to particles that stay inside the interval H for all times
before time t.

We know that each particle, in both processes, performs a random walk.
We want our coupling to behave in a way that, if two particles of different
process are in the same site of H at some time s < t, then they move
together from this time on.

With this greedy strategy it is not possible to get good bounds on the
probabilities we need. To get around this problem, at time zero we will
match the particles in pairs that will stay together if they meet.

We would like that these particles do not take a long time to do so and
to control this we need to ensure that they are close at time zero. Therefore,
we introduce a partition of the interval H with intervals (I; )]N: ; of controlled
length. Due to the difference of densities, we expect that, with high prob-
ability, each of the intervals I; has more particles of the configuration fjg
than particles of ng. When this happens, we can match all the particles of
Mo to some particle of 7y in a way that they belong to the same interval of
the covering at time zero.

Once we have the couples at time zero we need to set the evolution. We
will make use of two independent copies of the graphical construction of
the exclusion process presented in Subsection 2.1.1. We make the process
7l follow one of them and the evolution of the process 1 will alternate
between the two graphical constructions in order to obtain the property
that coupled particles stay together.

We can get bounds on the probability that two particles do not meet up
to time t, but the decay is not as good as the one in Proposition 2.1.5. To
get the desired bound we have to repeat the same procedure more than
one time. So we split the time interval [0, t] into smaller intervals [ti_1, t;),
where 0 =ty < t1 < --- < tx = t, and set the evolution on these intervals.
When we reach the end point t;, we take another matching (this is done
in a way that couples that already met stay together) and let the system
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evolve once again. This will allow us to get stretched exponential bounds
as claimed in Proposition 2.1.5.

We now present the rigorous construction of this coupling. First we
introduce the intervals we will consider and the matching that we need.
The second step is to set the evolution of the coupled process and the last
step is to repeat this procedure.

Given the interval I = [a,b], we define H = [a — [3t],b + [3t]] and
cover it with disjoint subintervals with length L = [t"*]. Let us call (J; )]N: 1
these intervals. Observe that we have at most |H| intervals in the covering.
Figure 2.3 can be used to keep track of the notation. It may be necessary
to increase the size of H to make sure that every interval of the covering
(Ij)}\‘: 1 has exactly L integer points. We need, however, to increase the size
of H by at most L.

Figure 2.3: The grid is the interval H, the thicker line is the interval I and
the covering (I; )]N: | is represented by the gray rectangles.

We want to match particles that are inside the same interval of the
partition (Ij)]N: ;- It is necessary to control the number of particles inside
each one of these intervals for the given configurations. This leads us to
define oj(n) = erlj n(x), the number of particles inside the interval I; for
the configuration 1.

Claim 2.1.6. If ng ~ Yo, flo ~ W are initial configurations with p < p’ and
p="1/2(p+p') then

L ! 2
P |min{oj(fo)} < pL| < IHIexP{—M},
[j€N] 8

and

I 2
P | max{o; (o)} > pL <|H|eXp{—M}-
Lj€N] 8

Proof. Since the invariant measures are product measures, the number of
particles in a given interval has the distribution of a sum of i.i.d. random
variables that assume only value o and 1. This claim is a consequence of a
simple large deviation bound, see Corollary A.o.2 in Appendix. O
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Remark 2.1.7. Notice that the last claim implies

P [3j < N:oj(no) > oj(fio)] <P [min{(fj(ﬁo)} < ﬁL}

jeN]
. L L(p'—p)?
+1P [3j < N:oj(no) > 0j(fio) = pL| < 2[H|exp —— 5 [ (2.1.14)

It is really important to notice also that, in the estimate above, we do not
need to assume independence between the configurations 1y and .

When two configurations (1,1]) are not in the event above, we call it
a good pair of configurations and denote this by 1 <1 f. In a good pair of
configurations, the matching is possible.

This matching must satisfy two important properties. The first condi-
tion is that, if two particles are in the same site, they are paired. The other
property we need is that two matched particles are in the same interval of
the partition (Ij)}\’: 1

Suppose we are given a pair (1,1]) of good configurations. It is easy to
construct a deterministic pairing of the particles inside each of the intervals
(L )]N: 1 satisfying the properties listed above. We fix from now on any deter-
ministic construction. Figure 2.4 shows an example of a matching between

two configurations.

|:|ﬁ|:"ﬁu': :'”ﬁ:”:'ﬁ:':":': :':l

Figure 2.4: A matching of two configurations. Balls represent the process
1 and squares represent the configuration 7.

Now that we have the matching, it is possible to set the evolution in our
coupling. Keep in mind that we start with two independent configurations
Mo ~ Hp and fip ~ 1,y on Z, with p < p’. We need auxiliary random variables
for the evolution: Consider two families of independent Poisson processes
(Nzgc/i)t20,x€Z,i:1,2 with rate 1/2. Assume also that the Poisson processes are
independent of the configurations ng and .

For the process 1, associate each edge (x, x + 1) with the Poisson process
(N’t"z)@o and use the graphical construction given in (2.1.3) of Subsection
2.1.1. The matching is used to evolve the process 1. If 1y, Tjp) is not a good
pair of configurations, we use (N?’] )t>0xez for n in the same way we did
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with the process fi. Suppose now that g <1 fp and fix an edge (x,x + 1).
The occupations for the process 11 in the sites x and x + 1 are exchanged
according to N*? if one of these sites has a pair of matched particles. Oth-
erwise, the occupation changes in these sites for the process n obey the
exponential times given by N*!. Figure 2.5 presents some examples of
evolutions.

o [ou Moo "5

Figure 2.5: Some cases of the evolution in our coupling. We use the same
conventions of Figure 2.4. The Poisson process N' is represented by the
lines and N? is represented by the dashed lines.

By construction, 1] performs an exclusion process. We need to see that
the same happens for the process 1.

Claim 2.1.8. The process 1 in this coupling is an exclusion process.

Proof. We will prove that, up to time T > 0, the process 1 is an exclusion
process. Notice that, by Borel-Cantelli Lemma, there exist infinitely many
edges whose both clocks do not ring up to time T. This implies that we
can split the integer lattice into intervals that do not exchange particles
until time T. It is not hard to see that in each one of these intervals the
process 1 behaves like an exclusion process: Simply wait until the first of
the clocks we are using rings and then, if necessary, update the clocks to
mark the next interchange time, according to the coupling. This is exactly
an exclusion process in a finite set. This observation implies the claim. [

There are some features about this construction that are important to
mention. Observe that, for positive times, it is possible to have two particles



2.1 THE DECOUPLING

on the same site (one from each process) that are not matched. The second
observation is that the process 1j is independent of n, since its evolution
depends only on the Poisson processes and its own initial condition.

Finally, observe that the distance between a pair of matched particles
(that we call (Zs)s>0) follows the law of a continuous time symmetric ran-
dom walk (X;)s>0 sped up by a factor of 2 that dies when it reaches the
origin. Besides, since the matched particles lie in the same interval of the
partition (Ij)}\’: 1, the initial position of Z; is at most L. Using the reflection
principle for random walks and also the heat kernel estimates presented in
Appendix B we obtain:

P [ a fixed pair matched of particles } < max Py [inf Z, > O}

do not meet before time t 0<k<L u<t

< i = 1.
< g P g 0] = g o o < k] )
=Py [sup Xy <L| =1—-Pg |sup Xy > L

u2t u<2t
< 1—=2P Xyt > L] =Py [[Xo¢| < L]

L
c,(2L+1) -1
=) PolXp=kK< 2=t 5
k;]_ 0 2t m

if t is large enough, since L = [t"/*].

The decay obtained in the last estimate is not good enough to get the
bounds we need in the error term. To improve this, we change the pairs at
some fixed times, obeying the same matching rule. This implies that the
particles that already met remain together and give a new chance for those
that did not meet their pair yet.

Let the coupling times be the sequence (kt* )E::AJ. At these times, we
remake the pairing and continue the evolution as explained before. Notice
that, if a particle has met its couple before some coupling time, then, in the
new pairing, this particle receives the same partner, since they are at the
same site.

Let us now list all the possible ways that domination might fail to hold.
First, since all the pairings are made inside the interval H, we must consider
the case where some particle of the process 1 spends time outside H and
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at time t is inside the interval I. To bound this probability, we can simply
observe that the endpoints of the interval H are at linear distance from the
interval I and use concentration on the number of particles that can make
such journey.

Once we know all the particles remain inside H all the time up to time
t, we look at the coupling times. At these times, the matching is remade.
Hence, if the configurations are not good for any of them, our coupling
fails. To bound this probability we will make use of Remark 2.1.7.

Now, if we ensure also that in all coupling times the configurations are
good, the only possibility is that a particle of the process n does not find
its couple in any of its allowed attempts. With the aid of (2.1.15) we can
bound this last probability. Our task now is to estimate the probability of
all events described above.

We begin by setting

there are particles of the process n that spend time
A= . . o .
outside H before time t and are inside I at time t

}. (2.1.16)

Figure 2.6: The interval H and the points z; and z;.

Let z; be the rightmost site at the left of H and z, the leftmost site at
the right of H (see Figure 2.6). If a particle makes an excursion outside
H, it must necessarily pass through z; or z;. Since the number of clocks
that ring up to time t in the neighboring edges of each of these points is
a random variable with Poisson distribution with parameter t, we have a
good control on the number of particles that spend some time in z;. Now,
if a particle passes through z; (or z;, by symmetry) and at time t it is in the
interval I, it necessarily jumped at least [3t] steps in time at most t. Since
we also know that all particles evolve as random walks, we conclude that
in time t, the number of jumps that a given particle performs is distributed
as Poisson with parameter t. Since the particle has at most time t to travel
from outside H to I we can estimate:
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P[A] < 2P { the number of clocks in the neighbouring edges of z; ]

that ring before time t is bigger than 3t

4P [ there are at most 3t particles that passes through z; ]

before time t and at least one of them is inside I at time t
(2.1.17)
< 2(PIPo(t) > 3t] + 3tP[Po(t )>3t]>
<2et+ 3te_t) (6t+2)e
Now we focus on the second probability we need to bound. Define

B { there exists k < [t'/*| such that }

. . .1.18
the pair (1,3/4, fiyy3/4) is not good (2.1.18)

Notice that the initial law is invariant, as pointed out in (2.1.2), but the con-
figurations (1,,3/1,M,4/s) are not independent. Combining union bounds
with estimate (2.1.14), that also holds for non-independent configurations,
gives us

I 2
P[B] < 2t|H| exp {—M} (2.1.19)

Assume now that we are on the event A® N B¢ and let
C = {there exists x € N Z such that n¢(x) > fj¢(x)}. (2.1.20)

In order for CNA°N B¢ to hold, it is necessary that in all attempts, a particle
fails to meet its couple. Since each attempt takes time t**, we can use the
same computations of estimate (2.1.15) (notice that the value of L does not
change) to get

a fixed pair of particles < 6,

. 2.1.21
do not meet before time t*/* ( )

To obtain better bounds we use the fact that the matching is remade. We
can use union bounds and the fact that our coupling is Markovian to obtain

a fixed particle of the process 1
P[CNA°NBC] < [H|sup ¢ P that starts at x does not find
xeH any of its couples before time t, A° N B¢

_1t'/4) t1/4
< [Ht 76 < [Hlexp ) logt (2.1.22)
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Recall the events (2.1.16), (2.1.18) and (2.1.20). We use estimates (2.1.17),
(2.1.19) and (2.1.22) to get our final bound

P[Ex € INZ :ni(x) > it (x)] < P[CNA°NB +P[A] + P[B]

Lo — 2 1/4
< (6t +2)e~t + 2t/H]| exp {_%} + [H|exp {_t3_2 logt} . (2.1.23)

We can further simplify Equation (2.1.23) by increasing if necessary the
value of C, and get

P[3x € INZ:mi(x) > Mlx)] < cot(t+ M exp {—c; (o~ p)"},
which concludes the proof of Proposition 2.1.5.

2.2 DETECTION

We now consider our detection problem. Recall we let the nodes evolve
as an exclusion process with density p € (0,1). The target starts at the
origin, moves only at integer times and it can jump to any site within
distance R from its current position. Besides, a node detects a target if it
shares the same site with it.

Our main theorem states that the detection probability suffers a phase
transition as the value of R increases. The proof uses multiscale renormali-
sation and a comparison of the model with oriented percolation on Z2. We
work with a probability distribution P of subsets J € Z? and a set S of
paths. Our objective is to find conditions on IP and S that ensure that

there exists a path in S =0
whose image is completely contained in J
In the next two subsections, we describe all the necessary hypothesis
we need for S and IP. The third and fourth subsections are devoted to the
construction of a renormalisation scheme for oriented percolation. Finally,
in Subsection 2.2.5, we prove Theorem 1.1.1.
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2.2.1 Theset S

In this subsection, we discuss the properties we need for the set of paths.
Fix a convex set € C R x [0, 1] with 0 € 0C. We will assume that S is
formed by all the functions f : Ny — Z? such that

fin+1)—f(n) € €\ {0} (2.2.1)

We also need to ensure the set S is rich enough to allow us to construct
crossings of boxes. Hence, we assume

Hi. (0,1) € G
H2. either (1,0) or (3,1) is in C.

These hypothesis allow the construction of horizontal crossings in boxes
of the form [0, 3L] x [0, L] and vertical crossings in boxes of the form [0, L] x
[0,3L], for L € IN.

One of the main reasons why the set S is constructed in this way is a
concatenating property we will make use of. For f € S, define f: R, — R?
as the linear interpolation of f:

f(t) = ([t] + 1 =t)F([t]) + (t— [tF([t] +T). (2.2.2)

Suppose we are given f,g € S and that there exist s,t € R such that
f(s) = §(t). Then the concatenation of f and g, given by h : Ny — Z? as

him) — {f(n) ifn<s, (22.3)

g([t]—[s]+n) ifn>s,
is also in S. This is easily verified by observing that

gt/ +1)—f([s]) € C (2.2.4)

We end this subsection with examples of sets that can be considered as
the possible paths in our oriented model.

Example 2.2.1. Notice that the set defined in (1.1.4) clearly satisfy all hy-
pothesis above, if we consider the convex set C to be the convex hull of the
points (0,0), (0,1) and (1,0).
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Example 2.2.2. The second example is important for the proof of Theorem
1.1.1. Fix R > 3 and define Sy to be the set of paths obtained by using the
set Cr given by the convex hull of (—R, 1), (0,0) and (R, 1). It is easy to see
that these sets also satisfy all the hypothesis above.

2.2.2  The probability measure IP

In this subsection we state the necessary hypothesis on the measure .

It will be useful to think of IP as a measure on {0, 1}22 and write 1 :
{0, 1}22 — {0, 1} for the (random) characteristic function given by the (also
random) set J.

We require the probability IP to satisfy two conditions that will be dis-
cussed in the following.

First we assume that

IP is translation invariant. (2.2.5)

The second condition deals with the decay of correlations. To state this
precisely we need some additional notation.

Observe that the set {0,1}2” has a partial order given by
n < & if and only if n(x) < &(x), forall x € 72, (2.2.6)
This allows us to say that a function f : {0, 12" 5 Ris non-increasing if
n = & implies f(n) > f(&). (2.2.7)

We also say that f : {0, 1}22 — R has support on the box B = [a, b] x
[c,d] C R? if for every pair of configurations nj and &

Nlgrz2 = &lgqz2 implies f(n) = f(&). (2.2.8)

We set per(B) = 2(|b — a| + [d —c|).

We are now ready to state our second assumption on IP. It says that
there exist constants C,, C, > 0 such that for any non-increasing functions
f,g: {0,13%* — [0,1] with respective supports on boxes By and B, that
satisfy

d(Bs,B2) > C,(per(Bq) + per(B2)) + C,, (2.2.9)
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we have
E(fn)gm)) < E(fMm))E(gn)) +H(d(By,B2)), (2.2.10)

where the error term H : R — [0, +00) is a non-increasing function satisfy-
ing

limsupx’H(x) < =—. (2.2.11)
NV 200
Remark 2.2.3. In Equation (2.2.9) above, we will assume that C, > 1. This
does not weaken our hypothesis, it just simplifies some computations.

2.2.3 The box notation

Before stating precisely our theorem we need some notation. We begin
by the scale notation that will be used in our renormalisation scheme.
First we define the sequence of scales as

3 1
lo=10"°, Lip1 = UL/zj lk and L= {(z + E) 1kJ . (2.2.12)

3/2
Observe that lkz <l < li/ > and that |, < L <2l if kis large enough.

This allows us to define the sequence of sets (see Figure 2.7)

Ay = 0, lk] x [0, Lk] U “—k/ g + Lk] X [Lk + L, W+ Lk]. (2.2.13)
We also set the box of Ay as
By = [0, L + Ly x [0, i + Ly J. (2.2.14)

Recall the linear interpolation of a function f € S, defined in (2.2.2). We
say that f € S is a crossing of Ay (see Figure 2.7) if there exists Tr € Ry
such that

f(0) = f(0) € [0, L] x {0}
f(Te) € {l + Lid x Ly, ke + Li;

f(n) € Ay, forall n € [0, Ts] N INy.
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Ly

L
Figure 2.7: The set Ay and a crossing of it.

We say that a crossing f of Ay is open if n(f(n)) =1, for alln € [0, T¢] N
INy. Define the events

Dy = {there exists no open crossing f of Ay}. (2.2.15)

These are the events whose probability we are interested in bounding. We
also define
Pk(S) = P[Dyl. (2.2.16)

Although the probabilities py(S) depend on the set S, we will usually
omit this dependence and write only py.

An important observation is that the event Dy has support in the box
By, in the sense of (2.2.8). Notice also that the characteristic function of Dy
is a non-increasing function.

For x € Z?2, define the translated sets Ay (x), Bx(x) and write Dy(x) for
the event in (2.2.15), when replacing Ay by Ay(x) in its definition.

2.2.4 Planar oriented percolation

We begin by stating the theorem we prove in this subsection

Theorem 2.2.4. Suppose IP satisfy all the hypothesis in Subsection 2.2.2. There
exists a k € N such that, for any set S satisfying the hypothesis in Subsection
2.2.1, if

Px < 1;4, for some k >k, (2.2.17)

then
Pn < 17_14, foralln > k. (2.2.18)
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Besides,
[P[there exists an infinite open path f € S] > 0. (2.2.19)

Remark 2.2.5. The value of k does not depend on the set S. In fact, its de-
pendence on the probability measure IP is only through the error function
H in (2.2.10).

The proof of this theorem begins with a lemma that relates the events
Dy and Dy_;. We will prove that if Dy holds, then there exists two events
in the scale k — 1 that hold and are far apart, in the sense of (2.2.9).

Lemma 2.2.6. There exists kg € IN such that for each k > ko, there exists
My C Z? satisfying
1. Myl < 10477
2. If Dy happens, there exists x,y € My such that Dy_1(x) and Dy_1(y)
happen and

d(Bk-1(x), Bk-1(y)) = C,(per(Bk_1(x)) + per(Bx_1(y))) + C,, (2.2.20)
with the constants C, and C, as in (2.2.9).

Proof. We will look into the event Dy for fixed k. The idea of the proof is to
construct two chains of events in the scale k — 1 in a way that, if Dy holds,
then one event in each chain necessarily holds.

We will construct a chain of sets of the form A;_; and take the corre-
sponding events Dy_. First, define

Ly +

X = j(lk—1, k1), 0<j< T
K1

(2.2.21)

0j< Ll CTOSSEs the set Ay from the bottom to the
ST

top, as in Figure 2.8. Notice that the sequence (Ay_1(x;))

Observe that (Ayx_1(x;))

does not
O<j<LLk+lk oes (@)
k—1

touch the point (1, Ly). This is a simple consequence of

L
L1 L_k 4+ Ly—1 < Ly (2.2.22)
k—1
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Figure 2.8: The first collection of sets and its reflection.

Reflecting this construction across the diagonal of the set Ay it is pos-
sible to find a sequence that connects the left boundary of Ay to its upper
right boundary (see Figure 2.8).

We now take the first chain of events to be the corresponding events
Dy_1, i.e., take Dy_1(x) for the values of x in (2.2.21) or in its reflection.
This concludes the construction of the first chain.

For the second chain we consider

. ) L
Yj = (Lo L) = (L1, Lx1), 7<) < ﬁ (2.2.23)

Again in this case we use a reflection argument and construct the events as
in the first chain (see Figure 2.9).

Figure 2.9: The second chain constructed.

Take My to be the set of all points x € Z? such that Ay_(x) is in some
of the two chains described above. Observe that, by (2.2.21) and (2.2.23),

Ly + Lk Ly 1/2
< 10,75,
Lx—1 " Ly—1 ) b

Myl <z(
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that is exactly the first conclusion of the lemma.

Now, suppose that Dy holds. We will prove that one event in each
of the two chains necessarily occurs. Suppose not, and assume, without
loss of generality, that all events in the second chain do not happen. In
this case, every set Ay_(x) with x as in (2.2.23) or in its reflection, has an
open crossing by some function of S. If we concatenate these open paths
(see Equation (2.2.3)), we obtain an open crossing of Ay, contradicting out
assumption that Dy holds.

Figure 2.10: The strip, the point Y and the line r. The hashed areas corre-
spond to the space used by both chains of events in the smaller scale and
they contain the whole boxes By_1. The line r is defined by the bottom-
right vertices of these boxes.

To get the distance estimate in Equation (2.2.20) observe that there is a
strip (see Figure 2.10) that splits the two chains. As a consequence, we can
bound the distance in (2.2.20) by the distance between the line r and the
point Y of Figure 2.10. Since the line T has equation

Ty (x —Li—1), (2.2.24)
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a simple computations yields

d(By—1(x),Bx_1(y)) = d(r,Y)
B ILeoile — Ll — b Le— 1B — L

\/ G+
2

L
[I—k_uk/1“—k ]—|—Lk ]—l-lk ]+ﬁ

>1 L
=z k—1 \/glk_1

wAl 1
2 L el
V5 \k k-1
for k large enough.

Now, since i has super-exponential growth (see (2.2.12)), it is easy to
conclude that

(2.2.25)

lim Ll:(/_zd (l — L) = +o00 (2.2.26)

k—o0

If we combine equations (2.2.25) and (2.2.26) and use that per(By_1) <
1211, it is easy to conclude that for k large enough we have

d(Bk—1(x), Bk-1(y)) = C,(per(Bk_1(x)) + per(Bx-1(y))) + C,,
which is exactly Estimate (2.2.20). O

The lemma above provides us with a way to estimate the probability py
in terms of py_y, if k is large. Since we know the realisation of Dy implies
that two events of order k — 1 with indices in My hold, and that they satisty
(2.2.20), we can use (2.2.10) with an union bound to obtain

Px+1 < ’Mk|2(Pﬁ +H(C L)), (2.2.27)

since the distance between the boxes is at least C,li and the error function
H is non-increasing. This will help us to conclude the proof of Theorem
2.2.4, our next goal.

Proof of Theorem 2.2.4. Take k > kg so that, for all k >

(r H(C lk)) <1, (2.2.28)
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where H is the error function in (2.2.10) and C, is the constant in (2.2.9).
Observe that this is possible by (2.2.11), since i, — +o00 as k — 0.

Suppose now that (2.2.17) holds, i.e., for some k > k, Pk < 11:4. Induc-
tively, using (2.2.27) we get

Ly 1Pner < 10007 1n (Pi + H(C31n))
< 100U, (1;8 +H(C31n)> <1,

which concludes the proof of (2.2.18).

Let us now verify that percolation occurs with positive probability. We
will use an adaptation of the construction in the proof of Lemma 2.2.6.
Begin by observing that

o0

1/2
Z 101k/ Pr < 00. (2.2.29)
k=1

For each k, let Uy C My to be the set of points x € Z? such that Dy_;(x)
is in the second chain constructed in the proof of Lemma 2.2.6. By Borel-
Cantelli Lemma, (2.2.29) implies that only finitely many events in the collec-
tion {Dy_1(x),x € Uy, k € N} can hold. Thus, we may assume that Dy_(x)
does not hold for all x € Uy and all sufficiently large k. This implies that
for each of these points x it is possible to find an open crossing of Ay_1(x)
by some function of S. We use a concatenation of the crossings to find an
infinite open path f € S, which concludes the proof. O

Remark 2.2.7. If one is interested in the vacant set, the verification of Equa-
tion (2.2.10) for non-decreasing functions allows to prove an analogous
result from Theorem 2.2.4, but looking for closed paths in S.

It may be the case that the probability measure IP allows us to construct
a family (Jy)yey, with either U = [0,1] or U = R4, of increasing subsets
of Z?. In this case we can replace the correlation decay (2.2.10) by the
inequality

Ey(fg) < Eyq—¢)(f)Eyq—¢)(g) + H(e, d(By, B2)), (2.2.30)

with error function H : Ry x R; — Ry that is non-increasing in each of
the variables and satisfies that, for some & > 0,

: T (~—0 +)
XETOOX H(x™°,x) =0. (2.2.31)
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Theorem 2.2.4 can be extended for such values of u € U. Fix uy € U,
set

ad _ u
Uy = Ueo H(] —1.%), W = —kfé, (2.2.32)
0 (1-1"°)
and define
P = Py, [Dyl. (2.2.33)

With these definitions, the proof of Theorem 2.2.4 carries on in the same
way. In (2.2.29), we can replace py by P, (Dy) just by noticing that IP;,(Dy)
is non-increasing in u € U.

This generalization states that in order to conclude the existence of per-
colation for the density u,, one needs to understand the probability of the
existence of crossings in smaller densities.

Remark 2.2.8. The error decay on (2.2.31) is not sharp and may be modified
to fit in other cases. Sometimes, for example, it may be the case that the
error depends also on u and not on ¢ as in (2.2.30). In these cases, we only
need to find k large enough so that (2.2.28) holds for all k > k. To do so,
one can change the scales uy, but not the ones in (2.2.12), since the proof
of Lemma 2.2.6 strongly uses their growth rate.

2.2.5 Proof of Theorem 1.1.1

Here we use all the tools constructed so far to conclude the proof of
Theorem 1.1.1. The first step is to modify the problem to fit the hypothesis
in our percolation model. The decoupling in the exclusion process will be
used to verify the decay correlation on our percolation model.

We begin by simply observing that, since the empty spaces of the exclu-
sion process with density p also perform an exclusion process with density
1 — p, we can prove that it is possible for our target to stay always on top
of the exclusion process. This is what we will prove here.

Suppose we constructed in the same probability space the collection
(m? )teRr,pelo,1] Of exclusion processes with all possible densities in a way

that if p < p’, thenn} <n} ' for all real times t.
We will construct the family of sets (J,),¢(0,1) as described above Equa-
tion (2.2.30). We say that a point (x,t) € Z? is closed for the density p if
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there exists some time s € [t,t + 1) such that n§(x) = 0. A point is open
if it is not closed. Define the set J, as the collection of open points for the
density p. This set is exactly the places where our target is not detected by
a hole of the exclusion process 1° for a period of time of size one. An im-
portant observation is that, if there exists § € Sg (see Example 2.2.2) such
that

Range(§) C Jp, (2.2.34)
then the projection g on the first coordinate axis of § satisfies
ne(g([t])) =1, forall t € Ry. (2.2.35)

This implies that non-detection is equivalent to percolation of the set J,
using the set of paths given by Example 2.2.2.

Let us verify that the sets (J,),¢[0,1] satisfy all the necessary hypothesis.
First observe that these sets have a translation invariant distribution, since
the same is true for the exclusion process. The decay correlation in (2.2.30)
is a direct consequence of Theorem 2.1.1, the decoupling for the exclusion
process. Fix ps, > 0 and define (py)k>o as in (2.2.32). Observe that py > 0

Hence, to conclude Theorem 1.1.1, it is suffice to verify (2.2.17) for some
large value of k. We now take Ry = 1y + Ly + 1. This implies that Dy holds
for the set Sg, if and only if there is no open vertical crossing of the set
[0, I x [0, Ly]. To estimate the probability of this event we define

} . (2.2.36)

There are two important observations about the events (J(x))xez: First,
observe that Py(J(x)) =1— pe~!. The second fact is that if [x —y| > 2, then
J(x) and J(y) are independent.

The choice of Ry = lx + Lk + 1 helps us to estimate

0, L] x [0, Ly] does not
have a vertical open crossing

(x) = Mo(x) = 0 or there is a poisson clock in a
| neighboring edge of x that rings before time 1

Pk = Py, {

_p there exists u € [0, L) such that for all x € [0, ;]
P there exists t € [u,u+ 1) such that ni(x) =0

<Ll | () T ] <Ll | [)] T&
x€[0,li] x€[0,11 ]JN2IN

<Ll —pre ™2 < U2(1— poe )2,
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Now, if we take k large enough, we conclude that ljpy < 1 for Ry =
Ly + Ik + 1. For such a choice of k, and fixing Ry from now on, we can
apply Theorem 2.2.4 to conclude the proof of Theorem 1.1.1.



ZERO RANGE PROCESS DECOUPLING AND SPREAD OF
INFECTIONS

Another conservative interacting particle system that is natural to con-
sider is the zero range process. In this chapter, we prove a decoupling for
this model and, as an application, study an infection process evolving on
top of this particle system.

Our discussion is split in four section. The first section contains a brief
review of the zero range process and the proof of the decoupling. Sec-
tion 3.2 contains the precise definition of the infection process and some
preliminary results about it. Sections 3.3 and 3.4 contain the proofs of
Theorems 1.1.3 and 1.1.4, respectively.

3.1 THE DECOUPLING

The decoupling we prove in this section is similar to the exclusion pro-
cess decoupling proved in the last chapter. However, we consider only the
case when the boxes are far away in time. The case where the boxes are
distant in the space coordinate will be obtained later on as a consequence
of our study of the infection process.

In this section, we first review some basic facts about the zero range
process and then focus on the proof of the decoupling.

3.1.1 The zero range process
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In this subsection we define and recall some properties of the zero range
process.

The zero range process in Z is a particle system where particles interact
only when they are at the same site. This interaction alters the jump rate
of a particle according to the number of particles that share its site.

Fix a non-negative function g : INyo — R, with g(0) = 0 and a trans-
lation invariant transition probability p(-,-) on Z. The zero range process
with rate function g, transition probability p and initial state np € ZNo is
the particle system on INZ with infinitesimal generator given by

Lfm) = Y g(x) Y pley) [fn¥) —f(m)],

XEZ yezZ

where ™V is the configuration obtained from n by taking one particle from
site x and placing it at site y and f is any bounded local function. We will
provide soon classical conditions for the existence of the process.

In this process, particles interact only when they are at the same site.
The interaction is given by the function g that controls the jump rate.

We are interested in the case where p is the nearest-neighbor symmetric
transition probability, p(0,1) =p(0,—1) = 1/2, and g satisfies (1.1.1).

For ¢ € R4, consider the product measure with marginals v¢, given by

1 ¢k
Vg (k) = =————, for all k € N, 1.1
o) = 27 gekn : 619
where g(k)! = g(k) - g(k—1)---g(1), g(0)! =1 and Z(¢) is a normalizing
constant:

© Lk
Z(p) = Z % (3.1.2)
k=0

Observe that the lower bound in Assumption (1.1.1) implies that, for all
¢ € Ry, Z(Pp) < oo and hence vy, is well-defined for all values of ¢ € R.
These probabilities measures are invariant and compose the collection of
invariant measures for the zero range process that we consider. We remark
however that these are not a complete set of invariant measures for the
zero range process, as proved in [9].

Remark 3.1.1. We will use a slight abuse of notation, by denoting the prod-
uct measure and its marginals by the same symbols.
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In general, the parameter ¢ is not the density of the process. In fact, for
the measure v, the expected number of particles in each site is given by

1 & kek _ Z(9)
R(®) =707 & g1 ~ * 7101 G13)

The function R : Ry — R} is an increasing bijection. This implies that
we can parametrize the measures in (3.1.1) by density:

Hp = VR-1(p): (3.14)

We refer to Section 2.3 of [32] for further information about these mea-
sures.

Theorem 1.4 from [9] implies that the process starting from any measure
Ko exists with probability one.

In order to prove our decoupling, an important ingredient is concentra-
tion of the invariant measures. This is the content of the next proposition.

Proposition 3.1.2. Assume Xy ~ u,, for k < n, are independent and fix € €
(0,1]. Then

P, Z Xk = (p+e)n| < e_c(p)ezn, (3.1.5)

Lk=1 i

and - -
Py Y Xc<(p—en| <e e, (3.1.6)

Lk=1 i

where c(p) is a constant that depends on p and is uniformly bounded on compact
intervals of [0, 00).

We defer the proof of this proposition to the Appendix.
For future reference, we introduce a constant c, > 0 defined by the fact
that
Z(eR"'(p))
Z(R"1(p))

This constant satisfies that, for all p € [0, p-],

e P <1, forall pe[0,pi]. (3.1.7)

P, <e (3.1.8)

n
Z Xk =z con+t
k=1
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3.1.2 A graphical construction for the zero range process

This subsection is devoted to a graphical construction for the zero range
process. This construction will be used in the coupling presented in Sub-
section 3.1.4.

In this construction of the process, every site x € Z has an associated
Poisson point process P(x) that will control the jumps on its corresponding
site. The points of the process have the form (t,n,u, h), where t describes
the time of a jump, n describes the height of the particle that is moved,
u is an uniformly distributed auxiliary random variable that will help in
controlling the jump rate, and h is the direction of the jump. Each Poisson
point process takes values in Ry x IN x [0, 1] x {—1,+1} and has intensity
measure MA@ U AR® 1/2(8_1 + 041), where I} is the constant defined in
(1.1.1), p is the counting measure and A is the usual Lebesgue measure.

The evolution is set in the following way. Suppose that, at some site x,
we have a point from the Poisson point process of the form (t,n,u, h) and
that the configuration, at this time, has at least n particles at x. The particle
at height n will perform a jump directed according to h if

g(n)—gn—1)

u < r . (3-1.9)

If the jump is allowed, all particles that are above the selected particle at
site x go down one position and the particle that jumps lands at the top of
its next pile.

Whenever (3.1.9) does not hold or the pile contains less than n particles,
the jump is simply suppressed.

This construction allows us to bound the probability that a site has
many particles at some time in [0, t], as stated in the next lemma.

Lemma 3.1.3. Let A(u,t) = 2u+4r t+1)(p+ 1)+ 1. There exists ¢ > 0
such that, for all p € [0, p],

ns(0) = A, t),

1
< G U 1.
| forsomes e [0,t] | = cs(t+1)e™ (3.1.10)

This lemma is not sharp and can be regarded as a rough estimate that
will be used to obtain some bounds later in the text. The quantity A(u,t) is
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chosen so that we can use concentration of the invariant measure in a large
interval around the origin. The strategy of the proof is to observe that if
the event in the lemma holds, either some large interval has many particles
or some particle reaches the origin from very far away.

Proof. Let B be the event described in the lemma. Observe that, if B
holds, either the interval J; = [—|2I"yt +u], |2+t 4+ u|] contains more that
A(u,t) — 1 particles at time zero or some particle that started outside J;
reaches zero before time t. Since each particle jumps at most Poisson(I';t)
times, Proposition 3.1.2, and Equation (3.1.8) can be used to bound

P[B] <P[)_mo(k) > Alw,t)—1]

kE]t
+2 Z Po(y) = c,p +yl + (c,p +y)P[Poisson(I'1 t) > y]
y=22lt+u
<e w12 Y eVialeptyled Ccoltrle Y,
y=>2l t+u
(3.1.11)
concluding the proof. O

3.1.3 Vertical decoupling

This subsection contains the proof of the vertical decoupling for the zero
range process. The techniques are similar to the ones used in the proof of
the decoupling for the exclusion process.

Given two space-time boxes By, B, C Z x Ry, recall that the definition
of vertical distance between them given in (2.1.8) is

dy = inf{|t —s|: (x,t) € By and (y, s) € B,}. (3.1.12)

Our decoupling considers functions whose vertical distance between the
supports is large.

Theorem 3.1.4. Fix py > 0. There exist positive constants C, and c, such that,
for any two square boxes By and B, of side-length s satisfying

dyv =dv(By,B;) > C,, (3.1.13)

51



52

ZERO RANGE PROCESS DECOUPLING AND SPREAD OF INFECTIONS

and any two non-decreasing functions of the space-time configurations f1,f; :

INZ®+ [0, 1] with respective supports in By and By, we have, for any p €
[0, p4] and € € (0,1],

_ 1/4
Eo[f1f2] < Eppelf1Ep elfa] + ¢, dy(dy +s+1)e % €V (3.1.14)

Remark 3.1.5. One can also take f; and f; non-increasing and assume that
€ € [—1,0). The proof carries out in the same way in this case.

Remark 3.1.6. As in the case of the exclusion process, (3.1.14) is not a cor-
relation estimate, since we need to add a sprinkling in order to have this
bound on the error function. A question that rises naturally from the the-
orem above is if it is possible to take € = 0, and do not use the sprinkling.
In [26], the authors consider a particle system composed by independent
random walks evolving in discrete time. The continuous version of their
model corresponds to a zero range process with rate funciton g(n) = n.
They prove that the correlations do not decay as fast as the bound given in
our theorem. In fact, Equation (2.11) from [26] provides an example where
the correlations decay polynomially.

The next proposition is a central tool used in the proof of the vertical
decoupling. It provides a coupling between two zero range processes with
densities p and p + € in a way that the process with larger density domi-
nates the other in a fixed interval for some large time t.

Proposition 3.1.7. Given p > O, there exist positive constants c,, and C, such
that, for any t > C,,, interval I C R, density p € [0,p4] and € € (0,1], there
exists a coupling between two zero range processes (Ms)s>o and (fis)s>o such that

1. (Ms)s>o has density p and (fis)s>o has density p + €;

2. (fis)s0 is independent from no;

3.
there exists x € 1 1.241/4

—C, €t
such that ny(x) > A¢(x) < et +t)e ™ (3.1.15)

We postpone the proof of this proposition to the next subsection. As-
suming it, we are in position to prove the decoupling for the zero range
process.
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Proof of Theorem 3.1.4. In the proof, it is useful to keep Figure 3.1 in mind.

Without loss of generality, we assume that the boxes have the form

By = [—5/2,5/2] x [—s,0],
By = [a,a+s] x [dy,dy +s],

where s/2 and a are positive integer numbers.

Bz S

Figure 3.1: The boxes By, B; and the interval 1.

Let [ = [—[2't s +dy]| —s/2,5/2+ [2' s + dy|] and define the event

E { some particle of ) is outside I } . (3.1.16)

at time dy and enters the box B,

If dy > C,, we can use the coupling of Proposition 3.1.7 with the interval
I. Define the bad event for the coupling

there exists x € 1
F= { } . (3.1.17)

such that ng,, (x) > g, (x)

Markov’s property, Proposition 3.1.7 and the fact that the functions f;
and f, are non-decreasing can be used to obtain

E,[f1f3] f1E,[f2moll
f1E[f,(n) (1peqre + 18 + 15)Mol]
f1E[f2(A)1Ecqre Mol] + P[E] 4 IP[F]

f1lEp+c[f2] + IP[E] + IP[F].

p

b (3.1.18)

<
<
S Ep
<

B & & &

p
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Proposition 3.1.7 implies, by possibly increasing constants, that

_ 1/4
P[F] < c,,dy(dy +s)e*‘:w1€2dv , (3.1.19)

It remains to bound the probability of E. Here, we apply the same ideas
from the proof of Lemma 3.1.3. We use symmetry and the fact that, in
order for a particle that is at site y + |2y s + dy/] at time dy to enter B, it is
necessary for it to jump at least [2I";s + dy/| times before time dy +s. Since
the number of jumps a particle performs between times dy and dy +s is
bounded by a Poisson(I"; s) random variable, we obtain

PE] <2) Pho(y+ [2Mys+dv]) = c,p+dy+1+y]
y>0
+2 Z(c7p +dy +1+y)P[Poisson(lys) >y + [2Iy s +dy]]
y>0
<2) eV Ni(cptdy+ltyle v
y=0
< c(dy+1)edv.
(3.1.20)

Combining Equations (3.1.18), (3.1.19), (3.1.20), and possibly changing
constants concludes the proof. O

3.1.4 The coupling

This subsection is devoted to the construction of the coupling stated
in Proposition 3.1.7. The construction is similar to the one used for the
exclusion process. However, since the number of particles in each site is
not necessarily bounded, we need to be more careful in the estimates. We
begin this section with an informal description of the coupling and then
proceed to the estimates we need.

Fix two initial independent configurations g ~ p, and fp ~ pp+e. The
strategy is to match the particles of the configuration 1y to particles of
the configuration p. Once this matching is constructed, we set the joint
evolution of the pair (1, ).
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The pair evolves in such a way that, if two matched particles stay at any
time at the same site, they keep moving together. This will help to assure
that n¢(x) < fjt(x), for every x € I, with high probability.

The correct construction of the matching is important to ensure that
each pair meets fast enough with large probability. This is done by restrict-
ing the distance between two particles that are matched.

For the evolution, we use the matching and two independent copies of
the graphical construction presented in Subsection 3.1.2. This will help to
evolve both processes in a way that particles that have met their pairs do
not disturb the particles that still did not and hence do not decrease the
probability of this event.

However, this construction is not enough, since, as we will see, the de-
cay of the probability that two matched particles do not meet is related with
the probability that a random walk does not reach zero. We improve this
bound by remaking the matching at some fixed times, allowing particles to
have new pairs and new chances to meet.

We now begin the construction of the coupling.

Remark 3.1.8. All constants that appear in the remaining of this subsection
are uniformly bounded for any p € [0, p;] and may depend also on I'_ and
I'y. We will omit these dependencies.

The first step is to fix an interval H that contains I = [a,b]. In our
case, we set H = [a — [3T+t], b+ [3T+t]]. Now, split H into a collection of
subintervals (Ij)}L. We will assume that all intervals Ij have the same size

L = [t"/*]. Tt is possible to ensure this if we increase the size of H by at
most L. Besides, the number of intervals N is clearly bounded by [H|.

For any configuration 7, denote by oj(fj) = erlj fi(x) the number of
particles of 7] inside the interval I;. We have the following claim.

Claim 3.1.9. If N ~ yp and 7j ~ Wore, with € € (0, 1], then
P[Ej < N:ojm) > o5(7)] < 2Ne et/ (3.1.21)
even if the configurations are not independent.

Proof. It follows directly from Proposition 3.1.2. ]
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We now sample independently two configurations g ~ p, and fjp ~
Ho+e and assume that the event in (3.1.21) does not hold.

The next step is to match the two configurations inside each of the in-
tervals of the partition. In this matching, each particle of the configuration
Mo that lies inside the interval I; will be paired to a particle of the config-
uration 7jy that is inside the same interval, but this construction is done in
a special way. In the first step, for each site x € I;, we match the largest
number possible of particles of 1y at x to particles of fj that are at the same
site (see Figure 3.2). Once this is done we can finish. There are many ways
to match the remaining particles in a deterministic way. We fix an arbitrary
one from now on.

B BOQ.
-

Figure 3.2: The construction of a matching between two configurations.
Balls represent the process n and squares represent the configuration 7.
First, pair as many particles of n to particles of 1] that are at the same site as
possible, and then complete the construction in an arbitrary deterministic
way.

Once we have this matching, it is time to set the evolution. We proceed
as follows. Let #1 = (P1(x))xez and &, = (P2(x))xez be two independent
copies of the graphical construction described in Subsection 3.1.2. We use
the clocks from &7 to evolve the process (fis)s>0. The process (1s)s>0 will
alternate between both constructions: If a particle of 1 has met its pair, it
uses the clocks from &7;. Otherwise, it moves with the graphical construc-
tion &,.

Observe however that, if a particle always jumps to the top of its new
pile, then it is not necessarily true that particles that meet jump together.
This is fixed by updating the matching after each jump. If a pair of matched
particles jumps together, they will land at the bottom of the pile. Whenever
a particle jumps alone, it will look for its matching particle at the next pile:
If the particle and its pair are at the same site, they will both move to the
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bottom of the pile. Otherwise, the new particle will land on the top of its
new corresponding pile.

This construction ensures that, if two particles have met, they remain
together, and allows for pairs of particles that did not meet to do so.

Since the process (fis)s>o follows the original graphical construction up
to changing heights of particles in the piles, it clearly behaves like a zero
range process. It remains to prove that the same is true for the process
(ns)s>o0, stated as a claim and proved in Appendix D.

Claim 3.1.10. The process (ns)s>0 IS a zero range process.

We now have the main part of the coupling, we work the details in order
to obtain the bound in (3.1.15). We introduce the coupling times (tk)]igJ
defined by t, = kt*. At these times, the matching is remade preserving
the couples already formed. This procedure will help the particles that still
have not found their couples by giving them new pairs that are hopefully
closer to them than their old partners were.

We now need to bound the probability that some particle that lies inside
the interval I at time t did not find a couple during the time interval [0, t].

Let
there exists a particle from 1 that

A =< isinside I at time t and did not find ;. (3.1.22)
a couple in any of its attempts

To bound the probability of A, we begin by bounding the probability of
some bad events. The first event we introduce is related to the possibility
that some particle that ends up in the interval I at time t does not find a
couple because it is outside the interval H at some time where the matching
is remade. We consider

there exists a particle fromn
B = that spends time outside H . (3.1.23)
and is inside I at time t

The second event deals with the possibility that, for some coupling time,
it is not possible to construct the matching. Recall that oj(f) = erlj (x)
and define the event

there exist a coupling time ty and j € [N]
C= { ping k ) } . (3.1.24)

such that oj(n,) > 05(fit,.)
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The bound in the probability of C follows from Claim 3.1.9 and union
bound. We obtain

P[C] < 2(t"* + 1)Ne*°“€2t]/4. (3.1.25)

The bound on the probability of B is more delicate, and we state it as a
claim.

Claim 3.1.11. There exists a constant c,, > O such that, if t is large enough,
P[B] < cutze*";]t. (3.1.26)

Proof. Denote by x the leftmost site at the right of H. By symmetry, we only
need to bound the probability that there exists a particle that spends some
time at x and is inside I at time t.

To bound the probability of B, let A(t, t) as in Lemma 3.1.3 and consider

s [ ms(x) = A(tt),
A= { for some s € [0,t] |~ (3.1.27)
and
= | more than 3l A(t, t)t clocks
B= { ring at x before time t } ' (3.1.28)

Since the number of jumps a fixed particle performs before time t is
bounded by a Poisson random variable with mean I'; t, union bounds gives

IP[B] < 2 (P[A] +P[B N A°] + 3T, A(t, t)tIP[Poisson(I'y t) > 3T 1])

- L 1.2
<2 (PIA]+ PBNAT +3M AL e+ (3.1.29)

It remains to bound the probability of the events A and B N A¢. For the
later, observe that, in A, the number of clocks that ring at site x before
time t is dominated by a Poisson random variable with mean 'L A(t, t)t.
This implies

P[B N A < P[Poisson (T A(t, t)t) = 3TLA(t, t)t] < e T+ (3.1.30)

A bound on the probability of A is obtained in Lemma 3.1.3. Combining
Equations (3.1.10), (3.1.29), (3.1.30) and increasing, if necessary, the value
of t, we conclude the claim. O
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Assume we are in the event B¢ N C¢. The next step is to bound the
probability that a fixed particle that lies inside I at time t do not find a
couple.

First, observe that, since particles of both process move faster than ran-
dom walks with jump rate I'_, the probability that two particles do not
meet between two coupling times is at most the probability that a random
walk with jump rate 2I'_ and starting somewhere in the interval [0, L] do
not reach zero before time t;. Since the initial distance between the pair is
at most L, if (X;)s>0 is a random walk that jumps with rate one, standard
heat-kernel bounds allows us to estimate

a fixed pair matched of particles .
P P ) P 3/4 < max Py inf- Xy >0
do not meet before time t 0<k<L u<2r_t3/4
= max [Py sup Xy <k| =Py sup Xy < L]
O<k<L u<2r_t*/4 u2r_t*/4
=1—-Py| sup Xu>L]
u<2r_t*/4

<1=2Pg Xy o > L =Po Xyl < L]

L
C2L+1) ) .
-y [x M:k} <t s,
k—ZL e V2Tt
(3-1.31)
if t is large enough.
Since we are assuming we are in the event B N C¢, we bound

a particle that is inside I . L
P | attime t do not meet <t Tz e 3zt logt (3.1.32)
any of its pairs, B¢ N C¢

B

The last step is to bound the number of particles inside I at time t. We
choose c, as in (3.1.8) and bound

there is more than c p|I| +t
P particles from <
inside I at time t

Z(eR7'(p)) R o

Z(R"(p))
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Finally, combining Equations (3.1.25), (3.1.26), (3.1.32) and (3.1.33), we
obtain

there is more than c,p|I| +t
P[A] < PB]+P[CI+ P particles from n
inside I at time t

a particle that is inside I (3.1.34)
+ (c,pll| +t)P at time t do not meet
any of its pairs, BN C°©

a1 .2.7/4
< ct(l+t)e % <7,

for some large enough c, and all t large. This finishes the proof of Proposi-
tion 3.1.7.

3.2 THE INFECTION PROCESS

Now that we concluded the decoupling for the zero range process, we
consider our infection process. We first precisely define our model and
prove some preliminary results.

Given the initial configuration 1 for the zero range process with density
p, define the set of infected particles &y as

_molx), ifx <0,
Eo(x) = {O, x>0, (3.2.1)

Let (o = no — & be the collection of healthy particles. The process & + C
evolves as a zero range process with rate function g. Besides, a healthy
particle becomes immediately infected when it shares a site with some
already infected particle.

Observe that this construction satisfies

min{&;(x), (t(x)} =0 forallx € Z and t > 0. (3.2.2)

This means that, in any non-empty site, either all particles are healthy or
all particles are infected.
Define the front of the infection wave as

Ty = sup{x : & (x) > 0}. (3-2.3)
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We now prove some preliminary lemmas regarding the behavior of ;.

These estimates are uniform over compact sets of positive densities. For
the remaining of the section, we fix 0 < p_ < p4 < o0.

First, we prove a crude estimate saying that it is unlikely for 7 to travel
a distance of order t? in time t. Let A(t, t) be as in Lemma 3.1.3 and observe
that there exists a positive constant such that 3l A(t,t) < c,t, for t > 1
and p € [p—, p+].

Lemma 3.2.1. There exists a positive constant c,, such that

Py

0<s<t

_ 1
sup {rs} —1o > CB’CZ] <c,e ut, (3.2.4)

forallt > Oandall p € [p_, p4].

Proof. By increasing the value of the constant c,,, we may assume t > 1.
Write | = [ro, 10 + c13t2] and observe that, in the event of the statement,
either there exists x € ] such that

ns(x) > A(t, t), for some s < t, (3.2.5)

or this does not happen and, in order for the infection to cross J, it must
travel through a region that is not dense in particles. This allows us to
bound the number of jumps the front of the wave infection can make. We
obtain, by possibly increasing the values of the constants,

>
TR i C”tzl et { forscare 0 & 0.4 1
+1P [Poisson(FthA(t,t)) > C]3t2} (3.2.6)
<o (B 4+T)e s tpet<e e,
and the statement follows. -

Our next lemma is similar to the last one, but we consider a slightly
different event, illustrated in Figure 3.3.

Lemma 3.2.2. Forany t > 0,

P, |19 — inf {rg} > (2I +1)t| <e . (3.2.7)

0<s<t

SR

61



62 ZERO RANGE PROCESS DECOUPLING AND SPREAD OF INFECTIONS

Tt

I
I
I
I
I
I
1

infocs<e{rs) 7O

Figure 3.3: The infimum considered in Lemma 3.2.2.

Proof. Simply notice that, on the event above, it is necessary that the first
particle on ry jumps more than (2I'y + 1)t times before time t. This gives

the bound
P, [to— inf {rs} > (2I'y +1)t| < Py[Poisson(Tt) > (2 +1)t] < e !,
\S\
(3.2.8)
and the proof is complete. O

We can also bound the probability that the front of the infection has a
big displacement to the right.

Lemma 3.2.3. There exists a positive constant c,, such that

o't

P, [sup{rs}—1¢ = 2[4+ 1)t <c.e 55, (3.2.9)

s<t

forall p € [p—, p4].
Figure 3.4 helps to illustrate the event in Lemma 3.2.3.

Proof. Let B denote the event in the statement of the lemma, write I =
(—(2I"y + 2)t, clatz] and notice that

Py[B] < Py o ¢ [, 011 + P {ig{rs < —(2My +2)t,mo > —t
S

(3.2.10)

suprs = 013t2
s<t

+ P, + P, [B,rs €1, forall s < t].




3.2 THE INFECTION PROCESS
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Figure 3.4: The supremum in the event considered in Lemma 3.2.3.

Combining Lemmas 3.2.1 and 3.2.2, we easily obtain that
IP,[B] < ce ¢ 't + P, [B,rs €1, forall s < t]. (3.2.11)

To bound the last probability of the last event above, observe that, if
it holds, then either there exists some particle from outside H = [—(5 +
2)t, 013’(2 + 311 t] enters the interval I before time t, or some particle that
starts inside H jumps many times before time t. Using the same strategy
as in Lemma 3.1.3, concentration of the number of particles inside H and
the fact that each particle jumps at most Poisson(I';t) times before time t
we obtain

P, (B, c I, forall's <t <P, [ some particle that starts outside ]

I enters H before time t

some particle inside I jumps more
+ 1Py

than (2I'; + 1)t times before time t
e +t+l)ee 't
(3.2.12)

Combining the last expression above with (3.2.10) and]3.2.11 completes the
proof. O

To finish this section, we introduce the space-time translated infection
process. Fix m = (x,t) € Z x [0,00) and define the collection of infected
particles as

,ify <x,
E.Bn(y) _ {nt(y) Iy <X (3213)

0, ify>x.
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As before, (§* = n¢ — &' denotes the collection of healthy particles. The
evolution of the infection is the same, and the front of the infection wave is

rs(m) =sup{y € Z: EM(y) > O} (3.2.14)

3.3 FINITE VELOCITY

We now begin a more in depth study of our infection process. This sec-
tion aims to prove Theorem 1.1.3. We split the discussion in three subsec-
tions. The first subsection contains some notation we will need to develop
our multiscale renormalisation, which can be found in Subsection 3.3.2.
Subsection 3.3.3 contains the proof of Theorem 1.1.3.

3.3.1 The box notation

We begin by introducing the sequence of scales (Ly)xen, as
Lo =100 and Ly =L3. (3.3.1)

We will also write {} = U_L/ ?].
For k € Ny, define the box

By = [—4LE, 6 LE] x [0, L], (3.3-2)

and, for m € Z x LxINy, let Bx(m) denote the translated box By(m) =
m+ Bk.
Define also the sequence of velocities

1
(k+1)%’

vo=v>0 and Vi =Vt (3-3.3)
where v is a positive value that will be chosen afterwards to be sufficiently
large.

We want to bound the probability of the events where 7 travels fast to
the right. However, the continuous time nature of the process implies that
events of this form do not have a bounded support. Therefore, we will
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/t:vkx

Ry

d

Figure 3.5: The box By, the set Ry and the event Ey.

introduce a well chosen event that treats the possibility that either 1, leaves
the box By before time Ly or it is far to the right at time L. For k € N,
define the set

Ry = {612} x [0, L] U [vicLy, 6 L2 x {Ly). (3-3-4)

Figure 3.5 contains a representation of By and Rx. For m € Z x LNy,
define Ry (m) = m + Ry.
The event we consider is defined as follows. For m = (x,sly) € Z x
[Ny, consider
[ ro(m) =xand (r¢(m))¢so first touches
Bx(m) = { the boundary of By (m) in Rg(m) ' (3.3.5)

See Figure 3.5 for a representation of the event Ey. Observe that the events
Ex(m) are non-decreasing and have support in By(m). When m = (0,0),
we will omit it and denote Ey(0,0) simply by Ey.

We introduce the sequence of densities. Fix py > 0 and define

—1/16
Pk = Pr1(T =L 7). (3-3:6)

The sequence (py)xenN, is decreasing and ps, = lim py is positive.

Define, for m € Z x LNy, the probability of the bad events as

px = Py, [Ex(m)]. (3-3-7)

By translation invariance, the probability above does not depend on the
value of m.
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Remark 3.3.1. Even though py also depends on the value of vy which are
determined by the fixed value of vo = v, we omit these dependencies.

We also introduce the event
Dy(m) ={r¢(m) € Bx(m), forall t € [0, Ly]}. (3.3.8)

Lemmas 3.2.1 and 3.2.2 imply that, given 0 < p_ < p, there exists ¢,, > 0
such that B
IP,[D] < c e O %, (3-3.9)

forallk € Ngand p € [p_, p].
Finally, let My denote the set of values m for which the translated box
By (m) still intersects the larger box By 1, more precisely,

My ={m € Z x LiINp : Bi(m) N By # 0}, (3-3.10)

and observe that
IMil < e, L (3.3.11)

3.3.2 Estimates on py

Our next step is to prove that py decreases very fast when vy is chosen
large enough. This is done in three lemmas, proved in this subsection.
The first lemma we prove is a recursive inequality that relates py to

Pr+1-

Lemma 3.3.2. There exists K¢ such that, for all choice of vy and k > ko,

1,211/
Pr1 < sl [py + e s Pl ], (3.3.12)
Proof. Fix ko € Ny such that, for all k > ko,

1 1
6k+12 a

(3-3.13)

Fix k > ko and assume we are in the event Ey, 1 N Dy 1. We claim that

either Dy (m)€ holds for some m € My or there are
seven elements m; = (xi,8i) € My, 1 <1i <7, with
si # sj, if 1 #j, such that Ex(m) holds.
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The proof follows by contradiction. Assume we are in the event Ey 1 N
Dy 1, that Di(m) holds for all m € My, and that Ex(m) holds for at most
six values of m € My with different time coordinates.

Observe that, if Ex(m) N Dy(m) holds, r¢{(m) has a maximum displace-
ment of EkLﬁ before time Ly. Thus, we have

2
121

T —T0 = Z TI—k(Tij) Tl
j=0

2
< 61—? + (L§ — 6)viLy (3.3.14)
1 1
< 6L — L
k41 (LL/z 6(k+1)2> + L1 Vit
< Ly1vis-

This implies that we are in E{_; UDj}_;, a contradiction.

Thus, on the event Ey,1 N Dy, either some Dy(m)¢ with m € My
occurs, or there are seven elements m; = (xi,8i) € My, 1 < i < 7, with
si # sj, if 1 # j, such that Ey(m;) occurs.

Assume we are in the last case described above and that Ly < sij12—s; <
Lysq, for T <i<5.

We now apply Theorem 3.1.4 considering the event Ey(m;) and the
intersection N3<i<7Ex(mi), as in Figure 3.6: We can use boxes of side length

L /e .
50 1Ly 1. Set e = %(pk — Pr+1) = Pky1—3— and estimate
7 7
Py, ﬂ Ex(my) | <Py, ve [Ex(mi)] Py, 1e [ﬂ Ek(mi)]
i=1 i=3
_ 1/8
el e To% Ly
7
_—1.27/8
< ]I)pk [Ek(m1 )] ]]-jpk+]+€ [ﬂ Ek(mi) + CqLi-i-]e Cg pOOLk .
i=3

(3-3-15)

We apply Theorem 3.1.4 two more times: In the first use, we consider

the events Ey(m3) and ﬂzzs Ex(my). The last time uses the events Ey(ms)
and Ex(my). These computations yield the bound

7

() Ex(my)

i=1

=127/
Py, < I[)pk[Ek]4+3C9Li+]e € Poobic (3.3.16)
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Figure 3.6: The boxes in the cascading event and the supports of the func-
tions in the first application of Theorem 3.1.4.

By changing constants, it is easy to conclude that

Pr+1 < Po, [By1 N D] + o, [Dy 4]

1/8
< Myl (P, [EJ* + 3¢, L3, e Pl (33.17)
.3.17
+ [MkIPp, , , [Dy] + Py, [Dy 4]
1/8
< el lpy +e o R,
and the statement follows. O]

We now prove a recursive estimate on py.
Lemma 3.3.3. There exists ky > kg such that, for k > k; and any choice of vy, if

— logs/4 Ly
7

Px <e (3318)

then

—log™/" Lic 1

Prit <e (3.3.19)

Proof. Observe that 3" < 4.
Assume that (3.3.18) holds for some k > kq. Recall that L1 = L} and
use Lemma 3.3.2 to conclude that

log”/* L 28 .4 log”/* L
eog k+1pk+] < C18Lk+] [pk+e 8 poo ] 0og k+1

— 5/4 _ /8 5/4 5/
< C18Lk+] [ 410g Lk —|— C18 pooL ] 3 log Lk
—443°%/4Y1 /4]_ L/s 5/41 5/4L
g ISLk+] [ ( +3 ) 08 k + 18 poo +3 og k]
(3.3.20)



3.3 FINITE VELOCITY

Now simply choose k; > k¢ such that, if k > k;, then

_ 5/a 5/4 1. 21/8 5/a 5/4
CISLii—] [e( 44-37/%)log Lk—i—e Cg Pl +37/*log Lk]

<1
This concludes the proof. O

The last step is to verify that, if vy is chosen large enough, (3.3.18) holds
for some k > k;.

5/4
Lemma 3.3.4. There exist vy and K, > kq such that py, < e~ log " Ly
Proof. For k > k;, set ¥y = {Ly, and observe that for this velocity,

Ex C {sup{rs}—ro > cULi} . (3.3.21)

sng

Now, Lemma 3.2.1 implies that

pk ({)k) g ]ljpk

-1
sup{rs} —10 > clsLﬁl <c,e L, (3.3.22)
Sgl_k

Increasing the value of k if necessary gives the desired bound. Now
simply choose the corresponding value of vy according to (3.3.3). O

3.3.3 Proof of Theorem 1.1.3

In this section, we conclude the proof of Theorem 1.1.3. We use the mul-
tiscale renormalisation scheme developed in the last subsection to prove
that ¢ has finite speed.

Define the space-time cone

I ={(x,t) e Zx Ry :x > tv+ 1L} (3-3.23)

We will prove that the probability that ry € J%, 1, for some t > 0, decays
fast with L when v is large enough. We already have information about 7y
for the times Ly. All that is necessary now is to interpolate between these
times.
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Fix vo and k; as in Lemma 3.3.4 and define

V="V = lim wy. (3.3.24)
k—o0

Define the events Ex(m) as in (3.3.5) but with vy replaced by v. Observe
that we have

P, [E(m)] <Py [E(m)] <e 8" B, forallk >ks.  (3.3.25)
Proof of Theorem 1.1.3. Notice that, if

Ty € J1, for somet > 0, e Toe® M L
P ’ <ce & 08T .3.26
pm[ and 1o = 0 SG (3-3.26)
then
Ty € 51, > Ty € 51, for some t > 0,
I[)poo I ]Ppoo '
forsomet >0 - and rop = —y
y:
o (3-3-27)
—1 _~—1 5/a
< ZQe log™* (L+y) <ce @ log™ " L.

0

=
I

Hence, we may condition on the event {ro = 0}.
By changing constants, we may assume that L > Ly,. Choose k > k
such that
Ly <L <Ly, (3.3.28)

For m = (x,s) € Z x LNy, we define the event where r(m) does not
travel very far in time Ly, more precisely,

SUPycicr, TtM) —x < (V4 1)Lk
Hy(m) = and , (3-3-29)
x —infoci<r, Te(m) < 2(14 + 1)L

and observe that Lemmas 3.2.3 and 3.2.2 imply, by possibly changing the
value of the constant and increasing the value of v,
L1
Py [Ef NHE] < Z Py [ro = =, E§(—,0) N H{] + P[Ey(—j, 0)]

(3-3-30)
+ Py [ro < —Ll

—loe /4 L
< clSLke 08 k,
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We will define an event where r¢ is well-behaved. Recall (3.3.10) and
consider

By = ﬂ ﬂ Ex(m)® N Hy(m). (3-3-31)

k>k meMy

In the event above, we have bounds for r; at the times L, and we also know

that the front does not travel far away during the time intervals of length
Ly.
Observe that Equations (3.3.25) and (3.3.30) imply that

Pp Bl <) D Py [Bx(m)]+Pp [Ex(m)° N Hi(m) ]

k>k meMy
—loo/* —loe /41 -
<C1¢;ZL]L43 log™* L <C19L]1~<4e log™* L (3.3.32)
k>k

14— log™" L
<c,L' e o 08

7

where the tail bound in the second line above is proved in an analogous
way as Lemma D.1 of [26].
We now study the event By. Consider

L/,
=1 U (33.33)
k>k =0
We claim that, on BE N{ro =0},
Tt < Vt, forall t € J;. (3-3-34)

To see why this is true, fix k > k and use induction on {. The claim is
clearly true for { = 0. Suppose it is true for some { < Li+1/L,. Observe that,
since we are in Hy(m), for m € My, (¢, {Lyx) belongs to By . Using that
Ex(rer, )€ holds, we have

T, = (o (v ) — Tery ) + ey,

<L + 9L = V(L + 1)L (3:3.35)

It remains to interpolate the relation in (3.3.34) for the remaining values
oft > 0.
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Initially, consider t > L. Let k be the smallest k > k such that

Ly
(L <t < (E+T)L, for some { < L+1 . (3-3.36)
Let { denote the unique value of { and observe that { > 1.
We compute
Tt = (th@LK(rELK) — TELK) + T, (3:3.37)

<@+ DL+ < (2v+ 1)t

We now consider t < L. Observe that, on BE N{ry = 0}, we have 1 <
(2v+1)L. Lemma 3.2.3 implies

Py, [suprs = 2(V+Ty + 1)L, By N{rg = O}]
s<L

(3:338)

<P, |rL—suprs > (2T +1)L| < c.e st

s<L
Combining the last expression above with (3.3.32), we obtain
Tt € Hr9 41 2(94T, +1)Ls e og L
’ < S 3.

Peo [forsomet}O, and 19 =0 S G (3.339)
By changing constants, the proof is complete. O

3.4 POSITIVE VELOCITY

This section contains the proof of Theorem 1.1.4. This proof is also
based on multiscale renormalisation, but we need to use a different ap-
proach to the problem, since the events in the renormalisation are not so
well-behaved as in the proof of Theorem 1.1.3.

3.4.1 Simultaneous decoupling

For the proof of positive velocity, it is not possible to apply the decou-
pling stated in Therorem 3.1.4 for the class of events we consider in the
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renormalisaton. In this subsection we provide a stronger version the the
decoupling.

For p < p’, we construct the measure PP, ,; in the following way. Begin
with two initial configurations of the zero range process that satisfy ng(x) <
ng(x) (this can be done using the usual monotone coupling) and use one
copy of the graphical construction presented in Subsection 3.1.2 to evolve
both processes at the same time. Whenever a particle jumps, it goes on
top of its respective pile and particles of 1 are also seen as particles of the
process n’.

The probability measure P, . provides the construction of two zero
range processes, 1 and n’, with respective densities p and p’ and that satisfy
Nt(x) < n{(x), for all (x,t) € Z x Ry.

We prove a decoupling for the collection of measures IP, ;.

Proposition 3.4.1. Fix 0 < p_ < p4. There exist positive constants c,, and C,
such that, for any two boxes By and B, with side-length s that satisfy

dy =dv(By,B2) > C, (3.4.1)
and any two functions f1(n,n’) and f,(n, ') satisfying
1. fy is supported in By,
2. 0 < fi(n,m’) < 1 almost surely;
3. fi is non-increasing in n and non-decreasing in m’;

we have the following. For any p < p’ € [p—_ps] and € € (0,1] such that
p—e€=p-,

1.2 41/4
]Ep,p/[ﬁ ] < ]Epfe,p’+e[f1]]Ep7e,p’+e[fZ] +c,,dy(dy +s+1)e o € dy
(3.4-2)

The proof follows exactly the same steps of the proof of Theorem 3.1.4.

The existence of a coupling with the same characteristics of the one in
Proposition 3.1.7 is guaranteed by the next result.

Proposition 3.4.2. Fix 0 < p_ < p4. There exist positive constants c,, and
C; such that, for any t > C,, interval 1 C R, densities p < p’ € [p—, p+] and
€ € (0,1] such that p — e > p_, there exists a coupling between two pairs of zero
range processes (Ns,Mi)s>o and (fis,Me)s>o such that
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1. (Ms,M¢)s>o0 is distributed as P, o and (s, TiL)s>o is distributed as Pp_c o ye;
2. (fis, M4)s>0 is independent from (no,mp);
3.

there exists x € 1 such that —1¢2¢'/4

~ - <t +t)e S € (3.4.

nelx) < Melx) orn{(x) > i (x) 643
The construction of the coupling stated in the proposition above is sim-

ilar to the one in Proposition 3.1.7. Hence, in the proof presented here we

only point out the main differences between the constructions.

Proof. We want to couple two pairs (1s,14)s>0 and (fs, Ti{)s>0 with respec-
tive densities (p,p’) and (p — €, p’ + €). We also start with two independent
pairs of configurations and two copies of the graphical construction of Sub-
section 3.1.2, Z1 = (P1(x))xez and ) = (P2(x))xez-

The pair (fs,7i{)s>0 Will evolve with the second copy of the graphical
construction 4. It remains to set the evolution of (1s,M¢)s>o. This coupling
also uses the pairing between the configuration and the coupling times. For
the first half of the coupling times, we only pair 7] to ) and use the evolution
of the coupling from Proposition 3.1.7.

For the second half of the coupling times, the matching includes the
particles from the processes 1" and 7. This part of the coupling is a little bit
more delicate, due to the existence of the particles from n and 7. Whenever
a particle jumps to a new site, we may need to perform a change of the
matching. We update the pairing to obey the rule that particles from n
(resp., 17) are always below particles of n’ (resp., i’). When a particle jumps,
it goes to its correct place in the new pile. If it meets its pair or it is a particle
from n or 7, we update the matching just by changing the heights of the
matched particles to obey that particles that already meet stay together.
Figure 3.7 gives an example where an update is necessary.

It is easy to verify that all the estimates in the proof from Proposi-
tion 3.1.7 remain valid in this case, up to a change of constants. O

3.4.2 The box notation
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Figure 3.7: A pairing where an update is necessary. Notice that, after the
jump, in order to obey that particles from density p stay always below
particles from the configuration with density p’, we change the pairing in
the pile.
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We now begin to introduce the notation for the proof of Theorem 1.1.4.
Some notation has already been introduced in Subsection 3.3.1 and we
recall it here too.

In this section we write I, = [—%Lﬁ,%l_ﬁ] and, for m = (x,sLy) €
Z. X LkNo, let Ik(m) =x+ Ik.

We say that a path v : [0, Ly] — Z is n-allowed (for the scale k) if

2. y(t) € Iy, for all t € [0, L];
3. v is a nearest-neighbor path;
4. Y only moves when a particle of n jumps from that site.

Being n-allowed is a non-decreasing property. This means that if vy is 1-
allowed and 1 < 7}, then v is also f]-allowed.

With high probability, the front of the infection, ¢, is an n-allowed path.
In order to prove that it moves to the right with positive speed, we will
verify that it shares a site with two or more particles a positive proportion
of time. In these times, r; has a drift to the right. However, instead of
investigating directly these times, we introduce a quantity that measures
the amount of time a path is within distance R from at least two particles.
For R > 0,t > 0 and a cadlag path vy : [0,t] — Z,

Y(s)+R

Vﬁ't(y) = % sc[0,t]: Z Ns(x) =2 3]. (3-4-4)

75



76

ZERO RANGE PROCESS DECOUPLING AND SPREAD OF INFECTIONS

The bad event we are interested in here deals with the existence of a
n-allowed path y with VT? L (v) small.

Observe that, if 1 < 1, then Vﬁ’k(y) < Vf'f’k(y). This will allow us to
use the stronger version of the zero range process decoupling, Proposi-
tion 3.4.1.

In a similar flavor of (3.3.3), we introduce the sequence

1

€) — € > 0 and €x+1 — €k <1 — m) . (345)

Observe that the sequence above is non-increasing and €., = limey is
positive. Consider the sequence of events

(3-4-6)

there exists a path y that is
= {(n,n’) : P }

n’-allowed and Vﬁ Tely) < ex

The events FE are non-increasing in n and non-decreasing in n’. Besides,
when R < 3f%l_k the event FR has support in By.
For some fixed py > 0, recall we defined the sequence (py)xen, in (3.3.6)

by setting px = px41(1 — L;/m). We set p) = pp and define

1
oL =peL(1+1,. 7). (3.4.7)

In this case, (p; )kenN, is increasing and p/, = lim p; exists and is finite.
Finally, define the probabilities

qx =Py, o [FE. (3.4.8)

3.4.3 Estimates on qy

We now focus on the bounds of qi. This will be done in a similar way
as in Subsection 3.3.2, and hence some proofs are omitted.

The first thing we need to do is to relate the properties of being 1'-
allowed for different scales. We prove a lemma that bounds the probability
of the following event

(3-4-9)

G — all paths y that are n-allowed for the escale
k= k + 1 do not leave Iy before time L; '
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Lemma 3.4.3. There exists a positive constant c,, such that, for all p € [peo, L]
and k > 0, we have ]
P,[Gy] < c..e” = L, (3.4.10)

Proof. We consider two special paths that are n-allowed in the scale k + 1:
Y+, that always jumps to the right, and y_, that always jumps to the left.

Observe that, for all k large,

v or y_ leaves Iy
1
PGyl < Py { before time Ly ]

n (O) Z A(Lk/ Lk)/
<3P, { *

for some s € [0, Ly] (3.4.11)

¢
+ 2P [Poisson(FJrLkA(Lk’ L) > Zkl-i]
e+ e s Mepet <ot

By possibly increasing the value of c,,, we obtain that the estimate above is
true for all k > 0 and conclude the proof. O

For m € Z x [N, if we define the translation

all paths y that are n-allowed for scale k 4+ 1 and touch m
Gk(m) = ’

satisfy that y|, (s+1)1,) does not leave Iy (m)
(3.4.12)
we easily obtain the bound P,[Gy(m)] < IPy[Gyl.
We now focus on the probabilities qx. As before, the first step is to
obtain a recursive inequality that relates qi and qy.

Lemma 3.4.4. There exists kg such that, for all k > ko and 1 < R < 3f%l_k,

=127/
Qi1 < L83 [qp + e P, (3-4.13)

Proof. The proof very similar as the one of Lemma 3.3.2, but we use the
stronger version of the decoupling in this case. Here, we only prove that
the events F{ are cascading.

Choose kg € INj such that, for all k > kg

1 1

—_— > . 4.
k12 12 (3-4-14)
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Fix k > ko, a value 1 < R < %“Lk and assume we are in FE 1. We claim

that
either Gy (m)¢ holds for some m € My or there are

seven elements m; = (xi, i) € My, 1 <1i <7, with
si # sj, if 1 #j, such that FE( ) holds.
Once again, the proof follows by contradiction. Assume we are in the
event FE 1, that Gx(m) holds for all m € My, and that FE(m) holds for at
most six values of m € My with different time coordinates.

Observe that, if FE 47 holds, there exists an M ,y-allowed path y with

R, L1
Vﬂ k+1

path ys = V|1, (s+1)1,) is Ny-allowed and VT];;L“ (vs) > €x. Observe now that

(v) < exy1. Besides, for all but at most six values of 0 < s < Lﬁ, the

121

R,L RL
v k+1 _ k y
Nk+1 2 S
+ Lk+l p— T]k+1

LZ-1

Z vR Lk

Lk—H o (3-4.15)

L
> —* ¢ (L2 —6)
Lyt

6
> €k (1 — F) 2 €x41,
k

a contradiction. ]

Observe that Lemma 3.3.3 is also valid for the quantities qx and the
proof remains the same. We now prove an analogous of Lemma 3.3.4: We
will verify that, if € is small enough and R and k are large enough, then
we have the correct decay.

5/4
Lemma 3.4.5. There exists R, €y and k3 > k; such that qi, < e log " Lk

Proof. First we compute

there exists x € Iy such that ng(y) =0,
< <
Zﬂo ST <Py for ally € Ii \ {x}

x€ly
< LiPylno(0) = 0]\ < e <tk
(3.4.16)
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Now define, for Ry = %“Lﬁ,

7 ) there exists a path vy that is ( )
= ’ . p 4.1
k Ll n’-allowed and Vﬁk’Lk (y) =0 3417
and observe that
Poyor [Fil < Py, Z no(x) < 1| < e M. (3-4.18)
xely
Fix ks >k, such that 2" < e~1°8 " Lks_Since li P F 5] =
3 > k; such that 2e <e Sincelime, 0Py, o7 [Fi;*] =
= R -
H)pk3,p{<3 [Fi;], we can choose €y, such that ]Ppkypl,<3 [Fk‘;] < H)pkyp{% [Fi,] +
e M3 and conclude that
R ~ —cL —cL
Pi3/Pry [Fk:S] < ]Ppks,p{(3 [Fio] +e % < 2e s, (3-4.19)

¢
This concludes the proof with R = Ry, = %Lis and the suitable choice
of €0. [l

3.4.4 Proof of Theorem 1.1.4

We now turn to the proof that r; travels to the right with positive ve-
locity. The renormalisation developed in Subsection 3.3.2 does not give us
this information for the sequence of times Ly. Our first goal is to obtain
bounds for these times. With it, we use a concatenation argument similar
to the one used in the proof of Theorem 1.1.3 to conclude.

We begin by introducing the zero-mean martingale

‘1

M == 10— | 5000 1521 d, (34.20)

0

and stating a concentration estimate for it.

Proposition 3.4.6. For every & > 0, there exists a positive constant c,, that
depends also on p > O such that, for all k,

_111/8
Po[[Mp, | > 81i] < e W (3-4.21)
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We postpone the proof of this proposition to the Appendix. With it, we
can study the behavior of 7y at the times Ly. Since we know that My, is
concentrated around its mean, in order to verify that r, drifts to the right
it suffices to study the integral term in (3.4.20).

Proposition 3.4.7. There exists kK4 > k3 and & > 0 such that, for all k > k4,
P, [r, < 6Ly, and vo = 0] < 4e 108" L. (3.4.22)

The idea of the proof is to use that, with high probability, the path 7y
is n-allowed. Therefore, for a positive fraction of times, there are more
than two particles close to it. Using this fact, we will prove that there is
a positive fraction of times for which two particles are on top of the front,
producing a drift to the right.

Proof. Begin by introducing the event

_ )
Gk = { sup || = Zkl_ﬁ} , (3-4.23)

Ogtng
and notice that, by Lemmas 3.2.1 and 3.2.2,

(Tt)o<t<t, is not n-allowed for

Pos, the scale k and 1y = 0

} <P, [Gi,1o=0] <ce®

for some positive constant c.
By possibly increasing the value of k3, we obtain, for k > k3,

Po. VI (1) < €00,T0 = 0] < g + P [Gi, To = 0] < 2108 Lk (3.4.25)

We now claim that, if, for some time t € [0, L], we have Z;t:tf_R Ne(x) >
2, then there exists a positive probability that

1
s et t+1]:ns(rs) =2} > 3 (3-4.26)
One way to see why this is true is the following. Consider initially the
stopping time T = inf{s > t : ng(rs) > 2}. Since, at time t, there exists
at least one more particle that is within distance R from 1, we have that
Py [t <t+1/2] > 0 uniformly. When this happens, there is also a positive
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probability that no particle in v moves between times v and 1,1,: It
suffices that no particle in a large interval around T moves and no particle
from outside this interval reaches r; before time T+ 1/2.

This implies that, conditioned on (¢, ¢), the indicator function of the
event in (3.4.26) stochastically dominates a random variable X with positive
expectation and that assumes only the values zero and one. Define 6 =
=, [X].

We now investigate the event {Vﬁ’Lk(rt) > €o). In it, there exists a
sequence of times (t;)icin), N = | %2 L], such that [t; — t;| > 2, for i # j, and

4R
th:l:rt _rNt(x) = 2, for all i € [N]. These times allow us to estimate

Po, [V (1) < 8/2,10 = 0] < Poo [X7 + Xz 4 -+ + Xn < 8Ly

4.2
SRV () < o =0, O

where (X;)icn are ii.d. copies of X.
Standard concentration bounds for (X;)icnj and Equation (3.4.25) imply

P, VO (1) < 8/2,m0 = 0] < 371087 L, (3.4.28)
Notice that, if VT?’Lk(rt) > %/2, then
t b
, zg(ns(rs))1{ns(rs)>2}d5 > ZQ(Z)Lk (3-4-29)
Define 6’ = %g(Z) and use Proposition 3.4.6 to conclude that

Po,. [, < 8'Li, 1o = 0] < Pp [Vt (1) < 8,10 = 0]+ P [[My, | > 8'Ly]
< 4e_1°g5/4 L,
(3-4-30)

]

We are now ready to conclude the proof of Theorem 1.1.4. The last step
is a concatenation argument similar to the one used in the last section to
conclude Theorem 1.1.3. For this reason, we provide just a sketch of the
proof.
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Proof of Theorem 1.1.4. We may assume that L > 2Ly, . Choose k > ky
such that

g S L<2hgys (3.4-31)

For m = (x,s) € Z x Ly INy, define the events
Ex(m) = {r, —x < 8Ly and ro(m) = x} (3-4-32)

where ¢ is given by Proposition 3.4.7. Consider also

H =ax— i < : 4.
Hy(m) {x Oé&kart(m) < 2(F++1)Lk} (3-4-33)
Finally, define
] ez vt +L
A= { for some t > 0 }’ (3-434)

where v, is given by Theorem 1.1.3 and is such that (1.1.7) holds.
Define the set of indices

My ={m € Z x LyINp : By(m) N By, # 0}, (3-4-35)
and consider the event

BE:AQ

k>

k(m)® N Hi(m). (3-436)

D
(mall

P

mEMk

Proposition 3.4.7, Lemma 3.2.2 and Theorem 1.1.3 imply, by possibly chang-
ing constants, that

— 1 5/a
Po. [Bi) <c,e @ 1087 L (3-4-37)

Similarly to the proof of Theorem 1.1.3, define

Lk+2/Lk
=1 U {wh (3.4-38)
k>k =0

On the event Bg N{ry = 0}, induction implies that

T >6t, forallte Ji. (3-4-39)
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We now interpolate for the remaining values of t. Consider initially
t > L. Let k be the smallest k > k such that
L
L <t< (L+1)L, for some { < E—Jrz (3.4.40)
K
Let { denote the unique value of £ and observe that { > L/L,_;. This easily
implies, by increasing the value of L if necessary,

5
e > ML — (2 + 1)L > Et' (3-4.41)
The interpolation for the values t < L is done in the same way as in the
proof of Theorem 1.1.3 and we omit it here. O

Finally, as an application, we prove a decoupling for the zero range pro-
cess considering functions of the space-time configurations whose supports
are far away in space. Recall the definition of the vertical distance (3.1.12)
and consider the horizontal distance between the boxes B; and B

dy = inf{lx —yl: (x,t) € By and (y, s) € Bz} (3-4-42)

Proposition 3.4.8. Fix 0 < p_ < p4 < oo. There exist positive constants C,, C,,
and c,, such that, for any two square boxes B1 and B; of side-length s satisfying

dy = C,(s +dv) + C,, (3-4-43)

and any two functions of the space-time f1,f; : INOZX]R+ — [0, 1] with respective
supports in By and B,, we have, for any p € [p_, p4],

E,[f12) < Eplf1]E,[f2] + c,e o 1o du (3.4.44)

Proof. Observe first that we may increase the side-length of both boxes by
at most dy +s and assume the boxes have the form

By =[—s,0] x [0, s],
B, = [dy, dn +s] x [0, s].

Figure 3.8 can be used as a reference.

We now verify that, with high probability, the outcomes of f; and f;
are determined by disjoint parts of the graphical construction in the space-
time.
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EEEIRER

Figure 3.8: The boxes B; and B,. Notice also the infection process
1¢([3d1/4],0) and the lines that bound the evolution of the front.

Consider initially r¢([3d1/4],0). Observe that, if f, is not determined
by the graphical construction restricted to (] dn/2],00) x [0, s] (and the ini-
tial configuration restricted to ([ d1/2],00)), then the infection r¢([3dwn/4],0)
touches either B, or the line y = [dn/2]. On the other hand, if we con-
sider the reflected infection #¢([d1/4],0), that starts with the right half-axis
infected and travels to the left, we obtain a similar statement for By: The
outcome of f; is not determined by the graphical construction restricted to
(—oo, [dn/2]) x [0, s] if, and only if, the reflected infection reaches either B;
or the line y = [dn/2]. Besides, the graphical construction is independent
in disjoint subsets of the space-time.

Let A be the event where 1¢([3d1/4],0) touches either B, or the line y =
[dn/2], and denote by A the respective event with the infection f¢([d1/4],0)
and the box By. If we choose C, and C,, large enough, we can use Theo-
rems 1.1.3 and 3.1.4 to bound

e log®/
PylA] < ce™® ' log " dn, (3.4.45)

N

By symmetry, the same is true for IP,[A]. We now can bound

]Ep[fl fZ] ]Ep[fl leACmAC] + ]Pp[A] + ]Pp[A]
[F11Ep[f2] + 2(IPp[A] + Py [A]) (3.4.46)

<
<E
< EIf]E,[fy] + ce© ' log”" dn

The proof is complete. O



NOISE SENSITIVITY AND VORONOI PERCOLATION

In this chapter, we change subjects and focus on the second part of this
thesis. We now work on a different class of problems: Noise sensitivity
for Voronoi percolation. We develop the tools that allow us to prove Theo-
rems 1.2.1 and 1.2.2.

Tools and techniques from the analysis of Boolean functions will be
central in the remainder the chapter. We shall in Section 4.1 begin with
a brief review of these, centering on the use of randomized algorithms
and their revealment. In Section 4.2 we outline the discretization method
developed in [2], which will allow for these techniques to be applied in
the setting of Voronoi percolation. In Section 4.3 we describe an algorithm
that will be used to prove Theorem 1.2.1, and estimate its revealment. The
proof of Theorem 1.2.1 is then given in Section 4.4, and Sections 4.5 and 4.6
are dedicated to study the effect of alternative perturbations, and to prove
Theorem 1.2.2.

4.1 ANALYSIS OF BOOLEAN FUNCTIONS

In the analysis of Boolean functions, discrete Fourier techniques have
become an indispensable tool. Although phenomena such as sharp thresh-
olds and noise sensitivity can be directly linked to the spectrum of the
Fourier-Walsh decomposition of a Boolean function, it is often a very chal-
lenging task to obtain precise estimates on the spectrum itself. A range of
techniques have therefore been developed in order to relate such phenom-
ena to notions such as influence of variables and revealment of algorithms,
which are typically more tractable quantities to estimate.
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In this section, we review some results connecting influences and re-
vealment to threshold behavior and noise sensitivity. We shall avoid the
discussion of Fourier techniques, that lie behind several of the results we
describe, and refer the reader to the books [23] and [36] for a more exten-
sive treatment.

4.1.1  Influence of variables

Let f:{0,1}™ — {0, 1} be a Boolean function. The influence of bit k € [n]
for f is defined as

Inf (f) = Inf} (f, [n]) := Pp[f(w) # floww)], (4.1.1)

where oy is the operator that changes w at position k from wy to 1 —
wy. Recall that a Boolean function is called monotone if f(w’) > f(w)
whenever w; > wy for each k € [n]. It is well-known that many monotone
Boolean functions exhibit a threshold phenomenon, where the probability
P, [f = 1] increases from close to o to close to 1 in a narrow window — the
threshold window. The central role of influences in the understanding of
this phenomenon is emphasized by the Margulis-Russo formula. It says
that, for any monotone function f : {0, 1}™ — {0, 1},

d
dp plf =1] Z Inf} (f (4.1.2)

Russo’s approximate o-1 law [42] gives the first general condition for
the existence of a threshold. Russo showed that, if, for every € > 0, there
exists 6 > 0 such that if Infﬁ(f) < 0 uniformly in k and p, then P, (f = 1)
transitions from below € to above 1 — € in a window of width at most
€. Later works [28, 21, 48] have obtained a more precise formulation of
Russo’s theorem that allows one to get a quantitative bound on the width
of the threshold window.

Influences are likewise fundamentally connected to the notion of noise
sensitivity. The BKS Theorem, due to Benjamini, Kalai and Schramm [12],
says that a sufficient condition for a sequence (fn)n>1 of Boolean functions
to be noise sensitive at level p is that

Z Inff (fn)? = 0 asm — oo. (4.1.3)
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For monotone functions this condition is also necessary.

4.1.2  Revealment of algorithms

A (randomized) algorithm is a rule that queries the bits of w € {0, 1}™ in
a random order, which is allowed to depend on what has been seen so far,
and outputs either o or 1. An algorithm is said to determine f if its output
equals f(w) for each w € {0,1}". The revealment of an algorithm A with
respect to K C [n] is defined as

Op(A,K) := max IP,[A queries bit k]. (4.1.4)
In order to verify when the condition in (4.1.3) is satisfied, Benjamini,
Kalai and Schramm [12] devised a method involving algorithms. This
method was developed further in later work by Schramm and Steif [43]. In
essence, this method shows that a sequence of functions is noise sensitive
if there exists (a sequence of) algorithms that determines f,, without being
likely to query any specific bit. The next proposition, due to Schramm and
Steif [43], gives an explicit formulation of this last statement.

Proposition 4.1.1. Let A be an algorithm that determines the function f : {0, 1}™ —
{0, 1}. Then, for every m > 1, we have

Ep[f(w)f(w®)] —Ep[f(w)]? < e ™ +m?5, (A, nl),

Since the correlation is non-negative, it is immediate from the propo-
sition above that a sequence (f,)n>1 is noise sensitive if there exists an
algorithm A determining f,, with revealment tending to zero. Moreover, if
op(A, [n]) decays polynomially fast, then the sequence (f,)n>1 has positive
noise sensitivity exponent.

Randomized algorithms are related to influences and threshold phe-
nomena via the following inequality, due to O’Donnell, Saks, Schramm
and Servedio [37].

Proposition 4.1.2. Let f : {0,1}" — {0, 1} be a Boolean function and A an algo-
rithm that determines f. Then, for every p € (0, 1), we have

Vary (f) < p(1—p) Y 8p(A, k) Infl(f). (4.1.5)
ken]
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The above inequality implies, in particular, that
.I n
Vary (f) < 78(A, ) }_Inf{(f),
k=1

and hence, together with the Margulis-Russo formula, one concludes that
monotone Boolean functions satisfy the inequality

d Vary (f)
a P = Ay
We will, via the study of algorithms, be able to obtain polynomial bounds
on the width of the threshold window of certain Boolean functions, where
methods based on influences would give logarithmic bounds, see e.g. [21].
Somewhat less standard is the following upper bound on the sum of
influences in terms of the revealment: For every function f: {0, 1}™ — {0, 1}
that is monotone in each coordinate we have

Y Infl(f) < /n ) Inf(f)? <
ken] keMn]

o —py VoA M 416)

The former of the two inequalities is immediate from Cauchy-Schwarz in-
equality, whereas the latter follows from (a variant of) the Schramm-Steif
revealment Theorem. Although we are not aware of an application of this
kind, this inequality provides a way to obtain a lower bound on the width
of the threshold window for monotone Boolean functions that is sharper
than the elementary lower bound of order '/y/n.

4.2 CONTINUUM TO DISCRETE

We now begin to set the stage for the proof of Theorem 1.2.1. Our
approach will be based on a method developed in [2], and revisited in [5],
that allows one to reduce the continuum problem at hand to its discrete
counterpart via a two-stage construction of the continuum process.

Recall that IP,, denotes the distribution of a Poisson point process in
O with intensity measure nAgs ® [pd1 + (1 —p)dp). Fix an integer k > 2
and choose n, € Q distributed as Py, . Let n be obtained from my by
independently including each point of 1y with probability !/k. Notice that
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n is distributed according to IP,,,, and that conditional on ny, we may
consider 1 as an element in {0, 1}« chosen according to IP1 .

Recall the notation (n,n(e)) for a pair of configurations in Q) distributed
according to Py, ,, where the latter is an e-perturbation of the former. The
two-stage construction gives an alternative way to obtain a pair of con-
tigurations (n,n¢) where, conditional on ny, the latter is obtained by an
e-perturbation of the former seen as elements in {0, 1/%. Using the fact
that n and ny \ 1 are independent, itis for ¢’ <1—1/kand e = €'/(1 —1/k)
straightforward to verify that (n,n(e’)) and (n,n¢) are equal in distribution.

The two-stage construction thus leads us to the identity

IEn,‘/z [fR (n)fR (ﬂ(€/))] - IEn,‘/z [fR (ﬂ)]z = Varkn,1/z (IE [fR (ﬂ)!ﬂk] )
+ Eyn 1, [Elfr () fr () ] — Elfr (M) id?].

In order to prove that fg is noise sensitive it will thus suffice to prove that
each term in the right-hand side of (4.2.1) is small for large n. To prove
that the variance term, for fixed k, tends to zero as n tends to infinity turns
out to be equivalent to the original problem. To see this, let n’ and n” be
obtained independently from my by keeping each point with probability
1/x. Then, for ¢’ = 1 —1/ the joint law of (n’,n”) equals that of (n,n(e’)),
and hence’

Ey 1 [fr)frm(e))] — Buo s [frm)]

= Eyn 1, [Elfr( ) fRM”) ] — By 1, [E [fR(n’)mk]]z (4.2.2)
= Varyy, 1, (Elfr(n")ni).

However, we shall in Lemma 4.2.1 see that the expression in (4.2.2) tends
to zero as k — oo. The goal will then be to show that, for large k, condi-
tional on ny, the function fy : {0, 1}"% — {0, 1} is noise sensitive in the sense
of (1.2.1), with high probability.

In a similar manner we shall rely on the two-stage construction in order
to prove that fg has a sharp threshold at p = 1/2. The construction here will
have to be slightly different, since we now want to vary the color of certain
points and not their presence. We will thus let 7, denote the projection of
Mk to S, and instead aim to show that P[fg(n) = 1/7,] grows from o to 1 in a
narrow interval around p = 1/2, with high probability. A first step in both

(4.2.1)

"Here, k > 1 does not have to be an integer.
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these instances is obtained in the following lemma, which has its origins
in [2], although the proof we present here is taken from [5].

Lemma 4.2.1. For every integer k > 2 and p € (0, 1) we have

1
Varynp (E [fr(n)mi] ) < 0%

Proof. 1t all boils down to use a suitable construction for the pair (1, n).
Consider k independent copies n,n3, ..., n¥ of n, and let k be chosen
uniformly in [k]. We then observe that

Variyp (E [fr(m)lmid) < Varn, (E [fe (1) [, )

= Vary (% i fr <n(i)> )
i=1

The lemma then follows from the independence of the n¥). O

As an easy corollary of the lemma above we obtain the following.

Lemma 4.2.2. For every rectangle R C S there exists ko, depending only on the
aspect ratio of R, such that, if k > ko, then we have, for all large n, that

1

P2 [P [frlm) = Tid ¢ [o/2,1 ] < )

where c, is the constant in (1.2.2).

Proof. Chebyshev’s inequality and Lemma 4.2.1 imply that

Py s [P fr(n) = Tl ¢ [e5/2,1— /2]

c
<P [P lfr(m) = Tnd =Py 1l = 11 > 5|
<t b
for k and n large enough. O

Remark 4.2.3. Notice that if, for some k > 2, we have

lim Vary, 1, (Elfg(n) [nid) =0,

n—oo

then the conclusion in Lemma 4.2.2 strengthens to

Hm Py, [P [fr(n) = 1M € [65/2,1 —/2]] =0.

n—oo
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4.3 AN ALGORITHM WITH LOW REVEALMENT

In this section, we continue to work towards a proof of Theorem 1.2.1.
We will adopt the two-stage construction introduced in the previous sec-
tion, and devise an algorithm which, conditional on the denser set of points
Nk, determines the outcome of fr(1) by querying points of n, whether they
are contained in the sparser set 1. We then proceed to show that this algo-
rithm has low revealment, which in the next section will allow us to deduce
that fg is noise sensitive and has a threshold at p = /2.

4.3.1  The algorithm

In this subsection we describe the algorithm. Loosely speaking, it will
explore the square S until it has discovered all blue components that touch
a randomly selected vertical line through R. This is achieved by querying
points close to the vertical line first, and then proceeding to points that
are close to already explored blue components connected to the vertical
line. Since we cannot tell the Voronoi tessellation of 1 by just observing
Mk, we will only gain information about the actual tiling locally as we go.
To contour this difficulty, we will split S into boxes on a mesoscopic scale
(see Figure 4.1), so that by querying all points within such a box we will
correctly determine the tiling within that box with high probability, apart
from close to the boundary. That is, by further dividing each box into nine
sub-boxes the thus learn the tiling of n correctly within the centre box with
high probability.

If the algorithm discovers a blue component that touches both left and
right sides of R, then there is a horizontal blue crossing of R. If not, then
there is a vertical red crossing. The reason the algorithm has low reveal-
ment is that a given point is both unlikely to be close to the randomly
located vertical line, and unlikely to be connected far by a blue path.

The rest of this section will be dedicated to confirming these claims. We
tirst give a more precise description of our algorithm, see Algorithm 4.3.1.
Recall that Q is the collection of finite subsets of S x {0, 1}.

Lemma 4.3.1. Algorithm 4.3.1 determines the outcome of g almost surely.

Proof. Observe that if there exists a horizontal blue crossing of R, then
it necessarily crosses every vertical line through R. Hence, it suffices to
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Figure 4.1: The unit square divided into smaller squares at a mesoscopic
scale. When all points of ny in a sub-square are queried, then the tiling
within the center box in a further division into nine sub-boxes is correctly
determined with high probability.

Algorithm 4.3.1 (Existence of a horizontal blue crossing)

1:
2

3:

Input: . € Q,n € {0, 1™ and R = [a,b] x [c,d] C S.

Choose a point xy uniformly in the mid third of the interval [a, b].
Consider a lattice in S with mesh size m = 1/[n'/*], and divide each
cell in this lattice into nine equally sized subcells.

Query points in all cells of the lattice that intersect RN {x = %o} and
their neighbouring cells. Declare the examined cells explored, and each
explored cell safe if also the eight cells that surround it are explored.

If any of the cells explored so far contains an empty subcell, then query
all points of ni. Otherwise, proceed and explore all cells that share an
edge with a safe cell and are connected to the line {x = %} by a blue
component inside the safe region. Explore also any cell neighbouring
to these cells and declare an explored cell which is surrounded by ex-
plored cells safe.

Repeat Step 5 until all connected blue components inside R that inter-
sect {x = xp} are discovered. If there is a connected blue component
inside R that connects {x = a} to {x = b}, return 1. Otherwise, return o.

verify that given ny the algorithm correctly determines all connected blue
components of 1 inside R that intersect the random vertical line {x = x¢}.

If the algorithm queries all points of ny then this is trivially true. If

not, then all we need to verify is that for each safe cell, i.e., a cell which is
explored along with its eight surrounding neighbours, we have determined
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the tiling within. This is indeed the case since if no neighbouring cell has an
empty subcell, then no point outside the safe cell and its eight neighbours
can affect the tiling inside the safe cell. O

Now that we have an algorithm that determines fg, we need to bound
its revealment. Since the algorithm only reveals the configuration inside
cells of a mesoscopic lattice, we consider each such cell individually and
bound the revealment of every point inside it at once. This is done in the
next two subsections.

4.3.2  One-arm estimates

For a point in ni to be queried by the algorithm above one of the follow-
ing three things would have to occur: Either there is a subcell of some cell
of the lattice which does not contain any point of 1, or it is contained in a
cell “close’” to the random vertical line through R, or it is in a cell located
‘far’ from the line, but there exists a connected blue path in n connecting
the vertical line with one of the eight cells that surround that cell. In this
subsection we shall bound the probability of the third of these possibilities.

Let m = [n'/*]~" as before, and partition S into squares of side length
m. The precise choice of m is irrelevant as long as n~/? < m < 1. Let
C C S be a cell in this lattice, and let C’ be the square of side length 3m
centered at C. We define Arm(C) as the event that there exists a blue path
that connects C’ to the boundary of the square of side y/m centered at C.

Proposition 4.3.2. There exists &6 > 0 such that, for every y > 0, we can find
ko = 150 that, for k > Ko, p < /2, and all large n, depending on k, we have

Pynp [P M € Arm(C) [my] > n?l <n.

Estimates of this type have previously been obtained in [2, 3, 5], and the
proof presented here will be similar, although different in some details. It
will suffice to consider the critical case p = /2 due to monotonicity. As a
tirst step, we prove a lemma that bounds the probability that a configura-
tion contains a large cell. Let

E := {some cell of ] has radius larger than n™"*}. (4-3.1)
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Lemma 4.3.3. There exists c,, > 0 such that, for all n > 1, we have
P, 1,,[E] < exp(—c,n'). (4.3-2)

Proof. We split the unit square S into boxes of side length (10[n'?])~".
Notice that for E to occur it is necessary for the intersection of n with at
least one of these about 100n%/3 boxes to be empty. For each individual
box this occurs with probability at most exp(—0.01n-n~"3). Via the union
bound we conclude that

P, 1, [E] < 100n%3 exp(—0.01n'7),
as required. O

Proof of Proposition 4.3.2. Fix a cell C C S of side length m = [n'/*]~". For
every integer j > 0, denote by A; the square annulus centered around C,
with inner side-length 4m and outer side-length 3-4m. Let O; be the
event that there is not a blue path connecting the inner and outer boundary
of A;j. That is, Oj is the even that there is a red path in A; that disconnects
any blue component touching C from the exterior of A;. Observe that, in
order for the event Arm(C) to occur, Oj cannot occur for integers j in the
set
J={je N:m<4m<m'”?}

Let E be the event in (4.3.1), and let Aj’ denote the set of points within
distance m/3 of A;. We note that, on E, the events O; are determined by
the restriction of 1 to A]-’ , which we shall denote n". That is, if gj: Q—
{0, 1} denotes the indicator of Oj, then

1gc - gj(N) = 1gc - gj (n0). (4.3-3)

Moreover, since the sets A/ are disjoint the configurations n') are indepen-
dent. Since Oj; cannot occur for any j € ] in case that Arm(C) occurs, it
follows that

PlArm(C) [nid < PIE[nid +P[E° 1 () Of ]
j€]
< PE|md + ] [P[g;(n") = 0] (43.4)

j€]
< PIEmd + [ (PIO§ [md + PIE ).
j€]



4.3 AN ALGORITHM WITH LOW REVEALMENT

Figure 4.2: The square C, surrounded by a larger square with side length
m'/2. The dashed annuli represent the sets A;. Notice that, if there is a blue
path from C to the boundary of the square, none of the annuli can contain
a red circuit.

Introduce the events

D :={P[E|nd >/n} and Dj:= {P[Oj|md < c¢!/32—2/n},

and let D* denote the event that Dj occurs for at least half the indices in J.

From (4.3.4) we conclude that on (D* U D)€ there exists > 0 such that
P[Arm(C)mi] < V/n+ [(1—c*/32) +3/m]"* < n%.

It remains to bound the probability that either D or D* occurs. By
Markov’s inequality and Lemma 4.3.3,

Py 1,[D] < 1Py p[E] < n-exp(—c,n’?). (4-3-5)

Since nm? >> 1 and the annulus A; is the union of four rectangles with
sides 3-4'm and 4'm, it follows from Lemma 4.2.2 and Harris” inequality
that

Pin1/,[PLOj ] < c?/16] < 4k~ 72, (4.3.6)

Here, it is important to observe that the bound is independent of the chosen
annulus. Indeed, if the annulus is not entirely contained in S, then it would
only be harder for blue to reach its outer boundary from within.
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We then observe that
]F)kn/1/2 [D U D*] < ]PanT/z [D] + Z\II/Z Sup IPkTL,1/2 |:l:)C m ﬂ D]:| ’ (4.3.7)
I .
jel
where the supremum above is taken over all subsets of ] with at least []|/2
elements. Repeated use of (4.3.3) shows that

FunD*0103] € P | ()P st = 1] < 14
jel jel | C4
< TP [P [g5n7) = Timi] < 32 =]
jel
< H <1Pkn,1/z [D] +]Pkn,1/2 []P[O]h]k] < ?})
jel

Hence, combined with the estimates in (4.3.5)-(4.3.7) we conclude that

Py 1,[DUD* < n- exp(—c.n') +2"2[n - exp(—c.n'?) + 4k~ ] Wz,
Since |J]| = Q(logn) we may for every y > 0 choose k large so that the
above estimate is bounded by n™ for all large n. O

4.3.3 Revealment of the algorithm

Now that we have the one-arm estimate, we can bound the revealment
of our algorithm. We recall that a point in 1y may be queried if the m x m
cell in which it belongs is either ‘close’ to the random vertical line through
R, or ‘far” but connected by a blue path to that line, or if the algorithm at
some point discovers a subcell of some m x m cell which is empty.

Proposition 4.3.4. Let A denote Algorithm 4.3.1. There exist & > 0 and ko > 1
such that, for every k > ko, p < 1/2, and all large n, we have

Pianp [814 (A, ) > Tfé} <n 0,

Proof. As before we partition the unit square S into cells of side length m,
and split each cell C into nine further subcells. Let G be the event that each
such subcell contains a point of 1, and let

B := {P[G[mi] > 1/n}.
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Markov’s inequality then gives that, for large n,
1
Pinp[B] < nPyplG] < n-9m 2exp(—9 Inm?) < zn—so_

Next we fix y = 100 and let & > 0 and ko > 1 be as in Proposi-
tion 4.3.2. Let B’ denote the event that for some m x m cell C, we have
P[Arm(C)nx] > n°. The union bound and Proposition 4.3.2 then gives
that for large n
Pinp[B'] < m™? max Py p [P[Arm(C)mi] > n°] < %nSO.

For a given m x m cell C we let D¢ be the event that C is within distance
2\/m of the random line through R. The probability of D¢ is independent
of 1y, and one can obtain an upper bound of order \/m, uniformly in C.

For a point of ny to be queried there has either to exist a subcell of some
m x m cell that is empty, or the point must lie in a cell C within distance
2y/m of the randomly chosen vertical line through R, or Arm(C) has to
occur. The revealment of A thus has to satisfy

81 (A,m) < max (11>[G°|nk] +P[Dny] +1P[Arm(C)|nk]>,
CCS

which restricted to the event (BN B’)¢isat mostn ' +n~"/f+n?. O

We may analogously to the algorithm A define an algorithm A’ which
looks for a vertical red crossing of R. By symmetry it follows that, for

P21/
]Pkn,p [51/k(ﬂ/,1’]k) > Tl_é} <n°.

4.4 NOISE SENSITIVITY AND THE THRESHOLD WINDOW

This section is devoted to the proof of Theorem 1.2.1. The proof is
divided in two parts. First, we prove that Voronoi percolation is noise
sensitive, with a positive noise sensitivity exponent. Then we bound the
width of the threshold window. Throughout the section we work with the
two-stage construction of the random Voronoi configuration, as described
in Section 4.2.

97



98

NOISE SENSITIVITY AND VORONOI PERCOLATION

Proof of Theorem 1.2.1 (first part). Due to Equation (4.2.1) and Lemma 4.2.1
it will suffice, for the first part of the theorem, to show that for some y > 0
and all large k we have

Ei, 2| Elfr(n)fr(n¥)nd — Elfe()ind?] 50 asn— o0, (441

where ¢, =n".

Let A be the algorithm in Algorithm 4.3.1. The Schramm-Steif reveal-
ment Theorem (Proposition 4.1.1) gives that, for almost every nyand m > 1,
we have

E[fr(m)frM™)ni] — ElfrM)nid* < exp(—enm) +m?81, (A, mi).

Let & > 0 be as in Proposition 4.3.4, and let B, denote the event that
61 (A, M) > n % Then Py, ;[Bnl < n~>°, and consequently

Ein,1 [JE [fr (M) fRr (M) ] — E[fr (M) ]

0 4 exp(—enm) + M By, 1,81, (A, i) 15¢]

04 exp(—enm) + m?n 2.

<n
<n
Hence, (4.4.1) holds with y = §/3 and n®%3 <« m < n%2, which concludes
the proof of the first part of Theorem 1.2.1. O

We proceed with the proof of the second part.

Proof of Theorem 1.2.1 (second part). Given n € () we shall with 17, denote
its projection onto S. We first note that by dominated convergence we have

d d _
d_p]Pn,‘p [fr =1] = Enp d—p]P[fR(n) = 1|, (4.4.2)

since the rate at which IP[fr(n) = 1/7;] may increase as p varies is bounded
by the number of variables [, | affected by p. Moreover, given 1y, we may
think of n as an element in {0, 1}" x {0, 1), where the first half of the
coordinates determine ‘color” and the second half determine ‘presence’ in
the final configuration. The Margulis-Russo formula then gives that

d Y P [ x is present and its color ﬁk]

EPHR(M =1imd = is pivotal for fg

XEMNK
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almost surely. Since a blue point is better than no point, and no point
is better than a red point, it follows that switching presence rather than
color of a point is less likely to affect the outcome of fr. Consequently, the
derivative is bounded from below by the sum

Y TP[xis present and its presence is pivotal for fg |fiy].
XENK

Each term in the above expression can be rewritten as %lE[Inf;/ “(fr, M) M,
where the factor '/k comes from the probability of being present. Hence,
Equation (4.4.2) and the OSSS inequality (Proposition 4.1.2) together give
that

d 4 [Var(fRMk)

1 1/
—P[f =11 > -E Inf, " (fg, > —E
R(m) CE[ Y Inf(fr,m)] T

dp X } . (44.3)
XENK

Fix € > 0 and let I = I¢(n) denote the set of points p € [0, 1] for which
Py p[fr = 1] € (¢,1 —€). By monotonicity I is an interval, and for small e
the interval contains the point 1/2. Consequently, to complete the proof it
will suffice to show that there exists v > 0 such that |[I¢| < n~Y for all € > 0.

Let A be the algorithm in Algorithm 4.3.1, and A’ be the analogously
defined algorithm that looks for a vertical red crossing of R. We introduce
the events

A= {Plfr() = Tmi] € (¢/2,1—¢/2)},
B:= { min{&/k(fl,nk),51/k(fl',nk)} < n_é},

with which (4.4.3) reduces to

d

d_p]Pn’p [fr=1] > 2k n?d P, ,[ANB. (4-4-4)

Next we fix k > 16/e%. By Chebyshev’s inequality and Lemma 4.2.1 we
then have, for all p € I, that

P p[A] < (2/€) Varn, (Plfr(M) = 1i]) < 4/(e*k) < 1/a

By increasing k if necessary, Proposition 4.3.4 gives that I, ,[B¢] < 1/4 for
all p € [0,1] and n large. Integrating over I in (4.4.4) thus leads to the
bound

d 1215
1> Le gpPerlfe=11dp > ekl
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and hence that |I.| < 2k/(e?n®). Since € > 0 was arbitrary, the theorem
follows with vy = /2. H

We can also study the behavior of fg(n) for fixed values of k.

Proposition 4.4.1. For every p € [0,1] and k > 1, not necessarily an integer,
lim Varynp (E [fr(n)mi ) = 0.
n—oo

Besides, there exists & > 0 such that for all p € [0,1], k > 1 and all large n

5 50

IPkn,p 61/k(.A,T]k) >n | <n
Proof. For p = 1/2 the first statement of the proposition is immediate
from (4.2.2) and the first statement of Theorem 1.2.1. For p # 1/2 it is a
trivial consequence of the second statement of Theorem 1.2.1.

As for the second statement, it is necessary to go through the arguments
in Section 4.3 again, and notice that the only place where k needs to be
large is in (4.3.6). Due to the first part of this proposition, we may modify
Lemma 4.2.2, as pointed out in Remark 4.2.3, to obtain that the probability
in (4.3.6) is small for every k > 1 and n large. O

4.5 SQUARE-ROOT STABILITY

In Section 4.4, we concluded the proof of Theorem 1.2.1, and the remain-
der of this chapter will aim to establish Theorem 1.2.2. The first step in this
direction is to establish a result that roughly states that fy is stable with
respect to perturbations that act independently and uniformly on each of
the two colors and change at most order square-root of the points.

Throughout this section we shall use the notation & :={x € S: (x,0) € n}
and ¢ := {x € S : (x,1) € n} to denote the set of red and blue points
respectively, and identify n with the pair (&, ¢) when appropriate.

Proposition 4.5.1. Let ' = (&', ') and n = (&, C) be a pair of configurations in
Q, chosen according to Py, 1, and whose joint law satisfies the following proper-
ties, stated only for the &-coordinates:

(i) Given &, the distribution of &N &' is invariant by permutations of &, and,
conditioned on its size, the set &'\ & is formed by independently and uni-
formly distributed points in S.
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(ii) For every & > 0, there exists a constant C such that, for all large n,

Pos[lE" Al > Cyn] <8, (4.5.1)
where &' A\ & is the symmetric difference between the two sets.

If, in addition, the pairs (¢, C) and (&, &) are independent, then, for any rectangle
R C S, we have

P, 1, [fR(CE) # fR(C,E)] =0 asn — oo.

The square-root scale that figures in the theorem is meaningful in the
sense that y/n is an upper bound on the derivative of a monotone Boolean
function on n bits. Consequently, the threshold window cannot have a
width smaller than 1/4/n, and noise sensitive monotone functions have a
window that is strictly wider (cf. (4.1.6)). Hence, a uniform perturbation
that involve order /1 bits is therefore too small to affect the outcome of
the function.

The above heuristic has been made precise in the setting of Boolean
functions in a paper by Broman, Garban and Steif [17, Lemma 6.1]. We
shall prove Proposition 4.5.1 via a suitable two-stage construction in which
a version of the result from [17] can be applied.

Lemma 4.5.2. Let A1, Ay, ..., Ax be a partition of [n], and let (w, w*) be a pair
of configurations in {0, 1}™ with law P satisfying the following properties:

(i) there exists ¢ > O such that |A;| > cn, foralli=1,2,...,k
(ii) w and w* are under P uniformly distributed in {0, 1}";
(iii) P is invariant under all permutations 7t of [n] such that 7t(A;) = Ay, for
alli=1,2,...,k;
(iv) for every & > O there exists a constant C such that, for all large n and all

i=1,2,...,k
[dA w, w* >C\/|A}<5
where da, (w, w* Z]EA lw(j) — w*(j)I.

Then, for every € > 0, there exists a constant C such that, for all large n and any
function f: {0, 1}™ — {0, 1}, we have

P[f(w) # f(w*)] < e+— ZI £/2(f) (4.5.2)
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Combined with (4.1.6) the bound in (4.5.2) may be expressed in terms
of the sum of influences squared or the revealment of algorithms.

Proof. The case k = 1 is the statement of Lemma 6.1 in [17] (with the
additional hypothesis that w* is uniform in {0, 1}"). The remaining cases
follows from induction on k.

Fix some k > 2, assume the result is true for all j < k and fix a partition
A1,A2, ..., Axs1. Denote by A =M\ A and w = (wx, wa,,,) for the
restrictions of w to the sets A and Ay ;. Observe that

Plf(ws, way.,) # frlwy, wi,, )] S P[flwg, way ) # frlwf, way,,)]
+ ﬁ[f(w}v WA, 4 ) # fR(w}\’ wj;\k—ﬂ ﬂ )
(4-5.3)

To bound the first probability in the last expression above, we apply
the induction hypothesis conditioned on wa, ., and use that w,, ,, is uni-
formly distributed in {0, 1Y4%+1 to obtain

s} * C 1/2
P[f(ws, way,,) # frlw}, wa, )] <e+—=) I (f).  (4.54)
\/@ keA

Analogous computations for the last term in (4.5.3) concludes the proof.
O

We now focus on the proof of Proposition 4.5.1.

Proof of Proposition 4.5.1. The first step of the proof is to find a suitable con-
struction of the pairs (¢, ¢’) and (&,&’). Since the perturbation acts inde-
pendently on the two colors, this construction can be done separately.

For this purpose, let M = [£' N &l and N = €'\ &|. Let &, be a Poisson
point process on S with intensity measure nAg, and let & and & be uniformly
chosen subsets of &,. Given |E|, sample the pair (M, N) according to the
right conditional law. Next, choose uniformly a subset EA C & of size M
and let &8 be a uniformly chosen subset of &; \ & of size min{N, [&; \ &[}.
Besides, let £¢ be a collection of N independent and uniformly chosen
points of the square S. Now set

£ EAUER, N <&\ &,
g if N> [£2\ &,
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and
E’/// — aA U aB, it N < |E,2 \ E.|/
EAUES, N> 8\ &

Construct the collection (¢, ¢”, (") analogously, and note that ({, ") and
(&,&"") have the correct joint distribution.

In the next step, we note that £ = £” with probability tending to 1. To
see this, fix e > 0 and notice that N and [&; \ &| are independent, and that
the latter is Poisson with parameter ™/2. Then, by assumption (i7) we have

P[N > [E;\&]] < PIN>mn/al+P[6;\ & </ < e
for all large n. The above construction thus gives, for large n, that

P p [fr(E Q) # fr(E, )] < 2e +P[fr(E, 0) # fr(E",¢")]. (4.5.5)

Conditional on ({y, &,) the pairs (¢, ") and (&, &") can be thought of
as pairs of elements in {0, 112 and {0, 1}%2 respectively. The last step of
the proof will thus be to apply Lemma 4.5.2 to bound the last probability
above. In preparation for this, set dy, 1= €22™ and let C,, be the constant
in hypothesis (ii) that corresponds to 6. Let

By :={P[lEAE"| > Cnv/n| &) = 27™ for some m > 1}.
Clearly [E A &"] is equal to [E A &"| on the event where N < |&; \ &|. Hence,

the union bound and Markov’s inequality give, for large n, that
P[B1] < P[B1, N > [E\ &[] +P[B1, N < [E3\ &]]
EAE" > Coym|&y] =27
forsome m > 1 and N < |&, \ & (4.5.6)

<et ) 2"PEAE"|>Cnvn] < e+ ) 2™ < 2e

m>1 m>1

<]P[N>|£2\5H+JP[

Let also B; := {|&,] ¢ ["/2,2n]} and define the analogous events By and B,
to the collection (;. On the event G := (B; UB, UB; UB,)¢, Lemma 4.5.2
combined with (4.5.2) can be applied and it gives that, for large n,

P[fR(€,C) # fr(E",C")] < 6e+E[P[fr(E, Q) # fr(£", C")| (2, &2] 16]

1
<6e+cm[ m&%mmg}
vl &,
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By combining the last equation above with (4.5.5) and (4.1.6) we obtain

Pr s [fR(E, Q) # fR(E),C)] < 8+ CEy iy [\/814(Am2)],

which by Proposition 4.4.1 is no larger than 9e when n is large. Since € > 0
was arbitrary, the proof is complete. O

4.6 CONSERVATIVE DYNAMICS AND RELATED TOPICS
This final section is devoted to different perturbations in our model.

Thinning and sprinkling. We begin with a comment on nonconserva-
tive and time dependent dynamics. We saw in Section 4.4 that sensitiv-
ity with respect to thinning a configuration uniformly is equivalent to the
usual concept of noise sensitivity. We here complement that observation
by showing that the same is true for sprinkling.

Let 1 € Q be chosen according to IP(j_¢), 1, and let n’ and n” be
independent configurations chosen according to P, 1,. Then the joint law
of MmuUn’,muUn’) equals that of (n,n(e)), and

En1, [fr)fr((€))] — By 1 [frm)]?
2
=E [IE [frRUN')fr(n Un”)ln]] —E [IE [fr(n Un’)\nﬂ

= Var <1E[fk(n Un’)!n}).

Hence, being sensitive with respect to an e-sprinkling is equivalent to being
noise sensitive, and thus follows from Theorem 1.2.1. That the same holds
for an e-thinning was seen already in Section 4.4.

Perturbing the colors. We shall briefly describe the results in [3], and
explain how they imply that the crossing function is sensitive with respect
to re-randomizing a small proportion of the colors of the points. That is,
if n’ is obtained from n € Q by resampling the second coordinate of each
point (x, u) € 1 independently and uniformly with probability e > 0, then

E. 1 [fRMfRMD] — Eqyis [fR(n)]z —0 asn — oo. (4.6.1)
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Givenn € Q, let 1 denote the projection onto S. Then,

E, 1 [frRM)frM’)] —Eq 1) [fR(ﬂ)]z =En1, [IE [frR(n)fr(")[7] —IE[fR(Tl)|T_l]]

+ Var,, 1, <1E [fr(n)[71] > )

In [3], the authors show that both expressions in the above right-hand side
vanish as n — oo, and hence prove (4.6.1). That the variance term tends
to zero shows that observing the tiling but not the coloring of a Voronoi
configuration typically gives very little information about whether a color-
ing will typically produce a horizontal blue crossing or not, and confirms a
conjecture of Benjamini, Kalai and Schramm [12]. The latter is essentially a
statement of noise sensitivity of the crossing function in a quenched sense.
One may show that noise sensitivity in the sense of (1.2.3) follows from
that statement. However, we emphasize that the techniques used there are
more restrictive than the techniques used here, as they are based on a color-
switching trick. It is therefore motivated to present an alternative proof, as
we have done here, that applies in a wide range of settings.

Perturbing the positions. We now turn to the proof of Theorem 1.2.2.
The proof will be based on Proposition 4.5.1, which emphasizes a close
relation to the exclusion sensitivity studied in [17].

Proof of Theorem 1.2.2. We shall show that the crossing function fy is sensi-
tive with respect to re-randomizing the positions of a small proportion of
the points. This type of perturbation is conservative in the sense that the
number of points of each color is kept constant. Our goal will be to con-
struct the process in a suitable manner, and then apply Proposition 4.5.1.

As before we shall identify a configuration n € Q with a pair of config-
urations (&, C). Let (Xi)i>1 and (Yi)i>1 be independent collections of inde-
pendent and uniformly distributed points in S. In addition, let L, M and
N be independent Poisson distributed random variables with parameters
(1—€e)n/2, en/2 and en/2, respectively. Next we define a triple (&¢/,&", &")
as

E,/ = {X1/ XZ/ ey XL-l—M}/

Ev” = {X1/X2/- . .,XL}U{Y],YZ,. . '/YN}/ (462)
" =1{X1, X, ..., X U{Y1, Yo, o, YD

105



106

NOISE SENSITIVITY AND VORONOI PERCOLATION

Finally, we let (¢/, (", ") be an independent copy of (&¢/,&",&").

Notice that the pair (n/,n") is distributed as the pair (n,n(e)) in (1.2.3),
while the pair (n/,n"’) is distributed as the pair (n,n*) in Theorem 1.2.2. We
also notice that the pair (n”,n"’) satisfy the conditions of Proposition 4.5.1.

In particular, Chebyshev’s inequality shows that for every 6 > 0 there exists
C such that

Var(M — N
P’ A& > CVa) = PIM-NI > Cva] < i oM € s

Consequently, Proposition 4.5.1 implies that
P, [fr(n(e)) # fr(n*)] = P[fr(n") # fr(n™)] — 0. (4.6.3)

Finally, we obtain that

‘En,‘/z [fR(n)fR(n*)] _]En,1/z [fR(n)]z) < IPn,‘/z [fR(n(e)) = fR(n*)}

By () (D) = By )

4

which by Theorem 1.2.1 and (4.6.3) tend to zero as n — oo. O
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CONCENTRATION INEQUALITIES

Here we recall some results about concentration of measures. We begin
by the classical result known as Azuma’s inequality.

Theorem A.o.1 (Azuma’s Inequality). Let {Xy};_; be a collection of indepen-
dent random variables and t > 0. Assume that there exist constants {cyJ}_;
satisfying P[IXx| < ¢l =1 for all k. Then

D X —E(Xy) >t] < exP{_—t};
k=1

3

1. P

2 yqct

—t
<expl ——— ¢ -
{ 23 ¢k }
This theorem also remains valid whent the sequence X, is a martingale.
We will not prove it here, since it can be found as Theorem 6.2 of [15]. This

theorem implies a concentration bound for binomial random variables, that
we state now as a corollary:

2. P

n
D Xe—E(Xi) < —t
k=1

Corollary A.o.2. If X is a random variable with distribution Binomial(n, p) and
t>0:

: - >t < — 5
1 P[X—np>t] <exp { 3 }
2 P[X—np < —t] <exp —t

. p < < > .

Our next objective is to prove concentration bounds for Poisson random
variables. This is done in the next lemmas:
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Lemma A.0.3. Let A > 0, t > 0 and X ~ Poisson(A). There exist constants
c.s > 0and c,, > 0 such that

PIX > 2\ +t] < e Y

and
P[X < V3] < e ),

Moreover, the constants ¢, > 0 and c,, > 0 do not depend on t and .

Proof. Let c,; > 0 such that e“® — 1 = 2c,. Then, by Markov’s inequality,

P[X > 22+ t] = I[’[eczBX > 6028(27\—0—‘[)]
< exp{A(e™ — 1) —cis(2A + 1)} = e~

For the second inequality, observe that if 0 > 0 then

PX < M3l =Ple ™ > e "/
< exp(A(e ™ —1) + 003} = e M PH1-5),

If we take 6 small enough, we have c,, = —e 94 1— % > 0. O
Lemma A.o0.4. For all A > 0 and X ~ Poisson(A)
P[X >3\ < e

Proof. Take 0 > 0 such that 30 = e% and use the same computations as in
the lemma above. O

Lemma A.o.5. Forall A > 0, u > 3A and X ~ Poisson(A)
PIX > p] < e,
for some positive constant c.,.

Proof. Simply observe that

<exp{Ale—1)—u} < e N5  pmenMn),



HEAT KERNEL ESTIMATES

In this section we prove heat kernel estimates for the symmetric random
walk on Z.
The heat kernel is defined as

pi(x,y) = Px[W; =],

where (W})¢>0 is a continuous time simple symmetric random walk. It will
be useful to consider also the discrete heat kernel, that is defined as

pn(x,y) =Py [Xy =],

where (X )nen is a discrete time lazy symmetric random walk.
The next lemma gives us estimates in the discrete time case:

Lemma B.o.1. There exists a constant c,, > 0 such that for allm € N and x € Z
C,.

vn

Proof. If we write {Z,}neN to the discrete time simple symmetric random

walk, it is easy to see that {ZZT“}
nelN

random walk. This implies that the lemma is a consequence of

pn(oz X) g

is a discrete time lazy symmetric

C,,
vas
Now we just need to count the number of paths that are in 2x at time

2n. Assume 0 < x < n (by symmetry this extends to —n < x < 0, and this
quantity is zero if [x| > n), and observe that the number of possible paths

Po[Zn = 2x] <
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.. ) ) 2n
of the random walk that start at zero and is in 2x at time 2n is ( ntx )

With the aid of Stirling’s approximation we estimate

1 2n T (2n\  (2n)! C,.
pal0x) = Polzan =20 = 30 (21 ) < 5 () = e <

]

Now we get analogous bounds for continuous time random walks:

Proposition B.o.2. For the continuous time random walk, there exists a constant
c,. > 0 such that for every t > 0 and x € Z

C,.
N4

Proof. We use a construction of the continuous time random walk with a
Poisson process of rate 2 and a skeleton chain given by a lazy symmetric
random walk. Let N be the number of jumps in the interval [0, t], that

has distribution Poisson(2t). We use Lemmas A.0.3 and B.o.1 to get the
estimates:

pt(ol X) <

+00
pe(0,x) < P [Ny < 2t/3] + PXx =x, Ny = K]
k=[2t/3]

2C29t+ Z k] 2C29t+ Z k]
2t/3—| 2t/3—‘
g e—2C29t + i <

Vit

(@)

32

e



PROOF OF PROPOSITION 3.1.2

This section contains the proof of Proposition 3.1.2. We present only the
proof of the first statement, since the second one is obtained in the same

way.
Begin by observing that
Z(e*R"'(p))
Ey[eM1] = = — .
’ Z(R"1(p))

By independence, for A > 0 we have

n
exp {}\Zxk} > e}\(PJre)n]

k=1
< []Ep[eAqu—?\(p—i-e)} n

{Z(exR](p))e_x(p%)}n
Z(R71(p)) '

n
S Xz (p+en
k=1

We now split the last term above and work with the function

_Z(ERT(P)) aprs)
™=ZrT0y ¢

Observe that f(0) = 1 and that

1) oA %)Z(e}‘R_1(p)) Ap—1 €
PN = e M0 =S T [RERT ) — o 5
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The function R is increasing. Besides, R’ is continuous, hence R is Lips-
chitz continuous on the interval [0, ep]. Therefore, for A < 1,

R(e*R7"(p)) —p =R(e*R7'(p)) —R(R'(p))

<elp IR (p1)(e = 1) < 3,

for all A < A,(e) := min {log (1 + m> , 1 } For such values of A,

f’(A) < 0 and hence f(A) < 1. Now, we just need to choose c(p4) such that
2c(p+)e < Ai(€) for all € < 1. This implies that we can bound

n
Po | Y X > (p+em| < eclerlein, (C.1)
k=1

completing the proof.



PROOF OF CLAIM 3.1.10

Here we prove that the process (n;)s>o defined in Subsection 3.1.4 is
indeed a zero range process.

The first step is to verify that this is the case when we have only finitely
many particles. This follows easily, since we have a Markov chain in a
countable state space: We simply wait until the first clock rings and make
the necessary updates in the positions of the particles and the clocks being
used.

The idea now is to split the integer lattice into parts that do not com-
municate between themselves until a small time t and study the process
restricted to this partition.

A site x € Z is an absorbing point up to time t if no particle of the
process 1 leaves x before time t. This means that site x behaves as a trap
until time t. We will now verify that the probability that a given site is
an absorbing point up to time t is positive, for some choice of t > 0. By
translation invariance, it suffices to consider x = 0.

Since we only need to lower bound the probability above, we will not
prove sharp results. Notice that, if [-K, K] contains no particle at time zero,
then the origin is an absorbing point up to time t if no particle from outside
[—K, K] reaches the origin before time t. This implies we only need to
choose K so that the probability that there exists a particle starting outside
[—K, K] reaches the origin before time t is strictly smaller than one.

For K = [(6I4t+3)(p+1)| +2, we can use the same computations
of (3.1.11) to conclude

no particle from
P, | outside [-K, K] reaches | >1—cte "+, (D.1)
the origin before time t
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for some constant c.
Now, we want that [-K, K] is empty at time zero. This gives the lower
bound

the origin is an
P, | absorbing point | > (1 — cte ™Y (]Pp[no(O) = 0]

>2K+1
up to time t

>0, (D.2)

for t small enough.

Now that we know absorbing points occur with positive probability,
Borel-Cantelli Lemma implies that it is possible to partition the integer
lattice into random intervals such that the extreme points are absorbing up
to time t.

Fixed this random partition, up to time t, in each of the intervals, we
have finitely many particles and the result follows from the finite case. This
proves that (ns)o<s<t is a zero range process. Now just repeat the process
to all time intervals [nt, (n+ 1)t).



PROOF OF PROPOSITION 3.4.6

In this section we study the martingale introduced in (3.4.20) and prove
Proposition 3.4.6.

The first lemma we prove is a tail bound for the increments of this
martingale.

Lemma E.o.1. There exists a positive constant c,, that depends only on the density
p > 0 such that, forall t > 0 and u > 0,

]PpHMt_H - Mt| 2 LL] < C33€—C3E1u1/2. (EI)

Proof. It is enough to consider t = 0 and, by increasing if necessary the
value of c,;, we can also consider u large.
} / (E.2)

Consider the event
PyAl < ce© 7, (E3)

Y=

A =< sup [rs—T1o| >
s€l0,1]

and observe that Lemmas 3.2.1 and 3.2.2 imply

We also introduce the event

B = {ns(x) > Fi' for some (x,s) € [—u, u] x [0,1]}. (E.g)
+

Union bound and Lemma 3.1.3 gives

Py[B] <ce © ™ (E.5)



120 PROOF OF PROPOSITION 3.4.6
Finally, on (A UB U{rp < %/2})¢, using that g(k) < 't k, we obtain

1
1
M = Mol < 11 = 1ol || 5001(r) g 1525

0 (E.6)
uw 1

<—+—Fi—u
S22,

and the proof is complete. O

Using the tail bound obtained above we can prove the concentration
estimates for the martingale M. This proof follows the lines from [33].

Proof of Proposition 3.4.6. We investigate the martingale M restricted to the
integer times. Denote J,, = o(M; : t < n) and X;, = M;, — M,;,_;. Fix a
positive integer k and define

and _ -

1
{Xnl>L/") X1

Observe that both Y, and Z,, are martingale differences with respect to

the filtration (Fy)n>0 and that Y, + Z,, = Xx..
We easily obtain that

Ly
Py[[Mr, | > 8L =P, || Xn| > 5Ly
n=1

- . . (E.9)
k 8 k 8
<Py (D Yu > SLi| +P > Zn > Sl
n=1 n=1

We now focus on the two probabilities on the right hand side of the
estimate above. ]
Notice that Y| < ZLk/ ‘. Hence, Azuma’s inequality implies

(o]

§2.1/2

Py |[D Ya| > 5Le| <2 325, (E.10)

n=I1

N
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As for Z,, observe initially that F(u) = P,[|Xn] > u] < c33e_c331u‘/2,

according to Lemma E.o.1. We now bound

2 2
Eolzn] < Eo lxniﬂxnﬂl 4}}
o0
— —J y x*dF(x)
L/
M
— lim (MF(M) — LR —J 2xF(x)dx> (E.11)
M—c0 L/
1/8 M —1.1/2
< L]L/zcwe_ciuk/ —J 1 2c33xe_°33]X " dx
: L
< CLL/ ze_CLL/S,
by possibly changing constants.
This implies that
2
P LZkz ol <« 2k LZk zo| | <ce et (E.12)
P n:1n/2k \521_% — n X . .

Combining Equations (E.9), (E.10) and (E.12) easily implies the proposi-
tion. [



122 PROOF OF PROPOSITION 3.4.6



BIBLIOGRAPHY

[1] Daniel Ahlberg and Rangel Baldasso. Noise sensitivity and voronoi
percolation. arXiv preprint arXiv:1708.03054, 2017.

[2] Daniel Ahlberg, Erik Broman, Simon Griffiths, and Robert Morris.
Noise sensitivity in continuum percolation. Israel Journal of Mathemat-
ics, 201(2):847-899, 2014.

[3] Daniel Ahlberg, Simon Griffiths, Robert Morris, and Vincent Tassion.
Quenched voronoi percolation. Advances in Mathematics, 286:889—-911,
2016.

[4] Daniel Ahlberg and Jeffrey E. Steif. Scaling limits for the threshold
window: When does a monotone Boolean function flip its outcome?
Ann. Inst. Henri Poincaré Probab. Stat., to appear. With an appendix by
Gabor Pete.

[5] Daniel Ahlberg, Vincent Tassion, and Augusto Teixeira. Sharpness of
the phase transition for continuum percolation in R?. arXiv preprint
arXiv:1605.05926, 2016.

[6] Oswaldo Alves, Fabio Machado, and Serguei Popov. Phase transition
for the frog model. Electronic Journal of Probability, 7, 2002.

[7] Oswaldo Alves, Fabio Machado, Serguei Popov, and Krishnamurthi
Ravishankar. Phase transition for the frog model. Electronic Journal of
Probability, 7, 2002.

[8] Oswaldo S.M. Alves, Fabio P. Machado, and Serguei Popov. The shape
theorem for the frog model. The Annals of Applied Probability, 12(2):533—
546, 2002.

[9] Enrique Daniel Andjel. Invariant measures for the zero range process.
The Annals of Probability, pages 525-547, 1982.



124

BIBLIOGRAPHY

[10] Rangel Baldasso and Augusto Teixeira. Spread of an infection on the
zero range process. In preparation.

[11] Rangel Baldasso and Augusto Teixeira. How can a clairvoyant particle
escape the exclusion process? arXiv preprint arXiv:1605.07575, 2016.

[12] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity
of boolean functions and applications to percolation. Publications
Mathématiques de I'Institut des Hautes Etudes Scientifiques, 90(1):5-43,

1999.

[13] Jean Bérard and Alejandro F Ramirez. Large deviations of the front
in a one-dimensional model of X +Y — 2X. The Annals of Probability,
pages 955—-1018, 2010.

[14] Béla Bollobds and Oliver Riordan. The critical probability for random
voronoi percolation in the plane is 1/2. Probability theory and related
fields, 136(3):417-468, 2006.

[15] Stéphane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration
inequalities: A nonasymptotic theory of independence. OUP Oxford, 2013.

[16] Simon R Broadbent and John M Hammersley. Percolation processes:
I. crystals and mazes. In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 53, pages 629-641. Cambridge University
Press, 1957.

[17] Erik I Broman, Christophe Garban, and Jeffrey E Steif. Exclusion sen-
sitivity of boolean functions. Probability theory and related fields, 155(3-
4):621-663, 2013.

[18] Francis Comets, Jeremy Quastel, and Alejandro Ramirez. Fluctuations
of the front in a one dimensional model of X +Y — 2X. Transactions of
the American Mathematical Society, 361(11):6165-6189, 2009.

[19] Hugo Duminil-Copin, Aran Raoufi, and Vincent Tassion. Exponential
decay of connection probabilities for subcritical Voronoi percolation
in RY. Preprint, see arXiv:1705.07978.

[20] Paul Erdos and Alfréd Rényi. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5(1):17-60, 1960.



BIBLIOGRAPHY

[21] Ehud Friedgut and Gil Kalai. Every monotone graph property has
a sharp threshold. Proceedings of the American mathematical Society,

124(10):2993-3002, 1996.

[22] Christophe Garban, Gabor Pete, and Oded Schramm. The fourier
spectrum of critical percolation. Acta Mathematica, 205(1):19—104, 2010.

[23] Christophe Garban and Jeffrey E Steif. Noise sensitivity of Boolean func-
tions and percolation, volume 5. Cambridge University Press, 2014.

[24] Marco Antonio Giacomelli. On a one-dimensional model of infection
spreading. Brazilian Journal of Probability and Statistics, 23(1):92-103,
20009.

[25] Geoffrey R Grimmett. Percolation (grundlehren der mathematischen
wissenschaften). 2010.

[26] Marcelo Hildrio, Frank Den Hollander, Vladas Sidoravicius, Re-
nato Soares dos Santos, Augusto Teixeira, et al. Random walk on
random walks. Electronic Journal of Probability, 20, 2015.

[27] Milton Jara, Gregorio Moreno, and Alejandro F Ramirez. Front prop-
agation in an exclusion one-dimensional reactive dynamics. Markov
Processes and Related Fields, 14(2):185-206, 2008.

[28] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables
on boolean functions. In Foundations of Computer Science, 1988., 29th
Annual Symposium on, pages 68-8o. IEEE, 1988.

[29] George Kesidis, Takis Konstantopoulos, and Shashi Phoha. Surveil-
lance coverage of sensor networks under a random mobility strategy.
In Sensors, 2003. Proceedings of IEEE, volume 2, pages 961—965. IEEE,
2003.

[30] Harry Kesten. The critical probability of bond percolation on the
square lattice equals % Comm. Math. Phys., 74(1):41-59, 1980.

[31] Harry Kesten and Vladas Sidoravicius. The spread of a rumor or
infection in a moving population. Annals of Probability, pages 2402—
2462, 2005.

125



126

BIBLIOGRAPHY

[32] Claude Kipnis and Claudio Landim. Scaling limits of interacting particle
systems, volume 320. Springer Science & Business Media, 2013.

[33] Emmanuel Lesigne and Dalibor Volny. Large deviations for martin-
gales. Stochastic processes and their applications, 96(1):143—159, 2001.

[34] Thomas M Liggett, Roberto H Schonmann, Alan M Stacey, et al. Dom-
ination by product measures. The Annals of Probability, 25(1):71-95,

1997.

[35] Ronald Meester and Rahul Roy. Continuum percolation, volume 119.
Cambridge University Press, 1996.

[36] Ryan O’Donnell. Analysis of boolean functions. Cambridge University
Press, 2014.

[37] Ryan O’Donnell, Michael Saks, Oded Schramm, and Rocco A Serve-
dio. Every decision tree has an influential variable. In Foundations
of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on,
pages 31-39. IEEE, 2005.

[38] Yuval Peres, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer. Mo-
bile geometric graphs: detection, coverage and percolation. In Pro-
ceedings of the twenty-second annual ACM-SIAM symposium on Discrete
Algorithms, pages 412—428. SIAM, 2011.

[39] Serguei Popov and Augusto Teixeira. Soft local times and decoupling
of random interlacements. Journal of the European Mathematical Society,

17(10):2545-2593, 2015.

[40] Serguei Yu Popov. Frogs and some other interacting random walks
models. In DRW, pages 277-288, 2003.

[41] Alejandro F Ramirez and Vladas Sidoravicius. Asymptotic behavior
of a stochastic combustion growth process. Journal of the European
Mathematical Society, 6(3):293—334, 2004.

[42] Lucio Russo. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete,
61(1):129-139, 1982.



BIBLIOGRAPHY

[43] Oded Schramm and Jeffrey E Steif. Quantitative noise sensitivity and
exceptional times for percolation. In Selected Works of Oded Schramm,

pages 391—444. Springer, 2011.

[44] Vladas Sidoravicius and Alexandre Stauffer. Phase transition for finite-
speed detection among moving particles. Stochastic Processes and their
Applications, 125(1):362-370, 2015.

[45] Frank Spitzer. Interaction of markov processes. Advances in Mathemat-
ics, 5(2):246—290, 1970.
[46] Alexandre Stauffer. Space-time percolation and detection by mobile

nodes. The Annals of Applied Probability, 25(5):2416—2461, 2015.

[47] Alain-Sol Sznitman. Vacant set of random interlacements and perco-
lation. Annals of mathematics, pages 2039—2087, 2010.

[48] Michel Talagrand. On russo’s approximate zero-one law. The Annals
of Probability, pages 1576-1587, 1994.

[49] Vincent Tassion. Crossing probabilities for voronoi percolation. The
Annals of Probability, 44(5):3385-3398, 2016.

127



	Abstract
	Acknowledgements
	Introduction
	Decoupling of interacting particle systems
	Detection
	Infection

	Noise sensitivity for Voronoi percolation

	Decoupling for the exclusion process and detection
	The decoupling
	A brief review of the exclusion process
	Decoupling
	Coupling

	Detection
	The set S
	The probability measure P
	The box notation
	Planar oriented percolation
	Proof of Theorem 1.1.1


	Zero range process decoupling and spread of infections
	The decoupling
	The zero range process
	A graphical construction for the zero range process
	Vertical decoupling
	The coupling

	The infection process
	Finite velocity
	The box notation
	Estimates on pk
	Proof of Theorem 1.1.3

	Positive velocity
	Simultaneous decoupling
	The box notation
	Estimates on qk
	Proof of Theorem 1.1.4


	Noise sensitivity and Voronoi percolation
	Analysis of Boolean functions
	Influence of variables
	Revealment of algorithms

	Continuum to discrete
	An algorithm with low revealment
	The algorithm
	One-arm estimates
	Revealment of the algorithm

	Noise sensitivity and the threshold window
	Square-root stability
	Conservative dynamics and related topics

	Appendix Concentration inequalities
	Appendix Heat kernel estimates
	Appendix Proof of Proposition 3.1.2
	Appendix Proof of Claim 3.1.10
	Appendix Proof of Proposition 3.4.6

