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Abstract

Discrete exterior calculus (DEC) offers a coordinate-free discretization of exterior calculus especially

suited for computations on curved spaces. In this work, we present an extended version of DEC on

surface meshes formed by general polygons that bypasses the construction of any dual mesh and the

need for combinatorial subdivisions. At its core, our approach introduces a polygonal wedge product

that is compatible with the discrete exterior derivative in the sense that it satisfies the Leibniz product

rule. Based on the discrete wedge product, we then derive a novel primal–to–primal Hodge star operator,

which then leads to a discrete version of the contraction operator and the Lie derivative on discrete 0-,

1-, and 2-forms. We show results of numerical tests indicating the experimental convergence of our

discretization to each one of these operators.

Keywords: Discrete exterior calculus, discrete differential geometry, polygonal mesh, discrete wedge

product, cup product, discrete Leibniz product rule, discrete Hodge star operator, discrete interior prod-

uct, discrete Lie derivative.

Resumo

O cálculo exterior discreto eferece uma discretização do cálculo exterior que é independente de sistema

de coordenadas e é especialmente adequada para computação nas variedades curvas. Neste trabalho,

nós apresentamos uma versão desse cálculo estendida para as malhas poligonais gerais que evita a con-

strução de qualquer malha dual e a necessidade de uma subdivisão combinatorial. Essencialmente, nossa

abordagem introduz um novo produto wedge poligonal que é compatível com a derivada externa discreta

no sentido de que a lei do produto de Leibniz é mantida válida. Com base nesse produto, nós definimos

um novo operador estrela de Hodge discreto que não envolve malhas duais e que possibilita uma versão

discreta do produto interior e da derivada de Lie de formas discretas. Nós incluimos os resultados de

testes numéricos que indicam a convergência experimental de nossa discretização para cada um desses

operadores.

Palavras-chave: Cálculo exterior discreto, geometria diferencial discreta, malha poligonal, produto

wedge discreto, produto cup, regra de Leibniz discreta, operador estrela de Hodge discreto, produto

interior discreto, derivada de Lie discreta.
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Chapter 1

Introduction

Figure 1.1: Discrete differential forms as cochains on simplicial and quadrilateral pseudomanifolds: 0–form α0 is located on
vertices, 1–form β1 on edges, 2–form γ2 on faces of a triangle (L), quad (C), and mixed mesh (R).

The exterior calculus of differential forms, first introduced by E. J. Cartan in 1945, has become the

foundation of modern differential geometry. It is a coordinate–free calculus and therefore appropriate

the analysis and calculations on curved spaces of differential manifolds.

The discretization of differential operators on surfaces is fundamental for geometry processing tasks,

ranging from parameterization to remeshing. Discrete exterior calculus (DEC) is arguably one of the

prevalent numerical frameworks to derive such discrete differential operators. However, the vast major-

ity of work on DEC is restricted to simplicial meshes, and far less attention has been given to meshes

formed by arbitrary polygons.

In this work, we propose a new discretization for several operators commonly associated to DEC

that operate directly on polygons without involving any subdivision. Our approach offers three main

practical benefits. First, by working directly with polygonal meshes, we overcome the ambiguities of

subdividing a discrete surface into a triangle mesh. Second, our construction operates solely on primal

elements, thus removing any dependency on dual meshes. Finally, our method includes the discretization

of new differential operators such as contraction and Lie derivatives. We examined the accuracy of our

numerical scheme by a series of convergence tests on flat and curved surface meshes.

1.1 Related Work and Applications

The first reference to DEC is considered to be [Bossavit 1998], where the author presents the the-

ory of discretization through Whitney forms on a simplicial complex and thus creates the so–called

Whitney complex. But some researchers believe it all started with the paper of Pinkall and Polthier
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[Pinkall and Polthier 1993] on computing discrete minimal surfaces through harmonic energy minimiza-

tion using the famous cotan Laplace formula. Discrete Laplace operators have been since used in mesh

smoothing ([Crane et al. 2013a] and references therein), denoising, manipulation, compression, shape

analysis, physical simulation, computing geodesic distances on general meshes

[Crane et al. 2013b], and many other geometry processing tasks.

The first more complete textbook–like treatment about DEC on simplicial surface meshes we are

aware of is the PhD thesis of [Hirani 2003], in a certain way an expansion of it is [Desbrun et al. 2005],

where we can find extensions to dynamic problems. On the other hand, a concise introduction to the

basic theory with the arguably most important operators can be found in [Desbrun et al. 2008]. These

three publications have in common that they work with simplicial complexes only and use dual meshes.

Moreover, all their wedge products are metric–dependent, except for [Hirani 2003, Definition 7.2.1],

where we can find a discrete simplicial primal–primal wedge product that is actually identical to the

classical cup product of simplicial forms presented in many books of algebraic topology, including

[Munkres 1984] and [Massey 1991].

The SIGGRAPH 2013 Course material on Digital geometry processing with discrete exterior calcu-

lus [Crane et al. 2013c] also provides an essential mathematical background. Moreover, it shows how

the geometry–processing tools on triangle meshes can be efficiently implemented within this single

common framework.

An interesting but different new line of research is the so called Subdivision Exterior Calculus

(SEC), a novel extension of DEC to subdivision surfaces that was introduced in [De Goes et al. 2016].

SEC explores the refinability of subdivision basis functions and retains the structural identities such as

Stokes’ theorem and Helmholtz–Hodge decomposition. It allows for computations directly on the con-

trol mesh while maintaining the properties of their inner products and differential operators recognized

in [Wardetzky et al. 2007].

Next we summarize the key differences of our approach compared to existing schemes, but give

slightly more attention to the cup product which, for us, is the appropriate discrete version of the wedge

product.

The Cup Product and the Wedge Product

On smooth manifolds, the wedge product allows for building higher degree forms from lower degree

ones. Similarly a cup product is a product of two cochains of arbitrary degree p and q that returns a

cochain of degree p+ q located on (p+ q)–dimensional cells. The cup product was introduced by J. W.

Alexander, E. Čech, and H. Whitney [Whitney 1957] in 1930’s and it became a well–studied notion in

algebraic topology, mainly in the simplicial setting [Munkres 1984, Fenn 1983]. Later, the cup product

was extended also to n–cubes [Massey 1991, Arnold 2012].

Influential for us was the PhD thesis of Rachel Arnold [Arnold 2012], where various cup products on

simplicial and cubical n–pseudomanifolds are presented. She defines L2 cubical Whitney forms and a

cubical cup product that fits together with the wedge product of cubical Whitney forms. She then defines

discrete Hodge star operators on cell complexes without reference to any dual cell complexes in order

to prove the Poincaré duality in simplicial and, more importantly, in the cubical setting. She explores

the extent to which the theory surrounding the Hodge star and Poincaré duality may be recovered in the

absence of a dual complex. Her Hodge star operators are metric–independent, unlike in the continuous
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setting, which is fully sufficient for her purpose to prove the purely topological results.

In the case of the cup product on simplices, Rachel Arnold in [Arnold 2012] defines her cup product

as integral of the wedge product of two simplicial Whitney forms (Definition 4.2.1 therein), where

she cites Wilson ([Wilson 2007]) as the author. They defined their cup product of two cochains of

any degree and on any dimension. But Xianfeng Gu already in [Gu 2002, Theorem 4.7] introduced a

discrete wedge product of two simplicial 1–forms that is equivalent to the one of Wilson, yet he defined

his discrete wedge product only for two 1–forms. The same discrete wedge product then appeared also

in [Gu and Yau 2003].

In [Gonzalez–Diaz et al. 2011a] cup products on cubical complexes have been applied to compute

cohomology rings of 3D digital images (represented as cubical complexes Q(I)), thus simplify the

combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P (I) with fewer cells,

which improves the computational efficiency. The authors think of the cup product as the way the n–

dimensional holes obtained in homology are related to each other. It is known that two objects with non

isomorphic cohomology rings are not homotopic. They give an example of a torus and a wedge sum of

two loops and a 2–sphere (Figure 1.2). Both these objects have two tunnels and one cavity, they have the

same homology groups, but the cavity (γ) of the torus can be decomposed in the product of two tunnels

(α and β), i.e., α ∪ β = γ, whereas the cavity of the second object cannot. However, for us the second

object will not even be a pseudomanifold.

Figure 1.2: (L) Hollow torus and its two 1–dimensional holes. (R) Wedge sum of a 2–sphere and two loops. Both these objects
have homology groups given as H0 = Z, H1 = Z × Z, and H2 = Z, where H∗ = Z represents a finitely–generated abelian
group with a single generator and H1 = Z×Z represent the two independent generators in a finitely–generated abelian group.

Formulas for a diagonal approximation on a general polygon that are used to compute cup products

on the cohomology of polyhedrons are presented in [Gonzalez–Diaz et al. 2011b]. Their cup product

uses a complex structure called the AT–model (see [Gonzalez–Diaz et al. 2011b, Theorem 2]), and the

coefficient of their cochains lie in the field Z2.

In common to previous approaches, this notion of discrete wedge product is metric–independent

and satisfies core properties such as the Leibniz product rule with discrete exterior derivative, skew–

commutativity, and associativity on closed forms.

A cup product on general polygons is investigated also in [Kravatz 2008], but their cup product is

dependent on the choice of the so called minimal and maximal vertices and it is not clear where the

result should live.

Alternative metric–dependent versions of the discrete wedge product on simplicial complexes were

also suggested in [Hirani 2003, Section 7.2]. In particular, specialized expressions were necessary to
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address the different combination of primal and dual forms.

The Hodge Star Operator

The most common discretization of the Hodge star operator on triangle meshes is the so called diagonal

approximation, which is computed based on the ratios between the volumes of primal simplices and

dual cells. In contrast, we propose a Hodge star operator that is not an involution, i. e. it applied twice

does not gives an identity map in general. Our Hodge star cannot even be invertible, because there is

no isomorphism between groups of k–dimensional and (2 − k)–dimensional cells of general meshes.

This is a common drawback to all approaches that employ only primal meshes, we explain this further

in Section 3.3.

The Inner Product

By employing our proposed discrete wedge product ∧ and Hodge star operator ?, we define the inner

product matrices by M := ∧?, that turns to be identical (for the case of product of two 1–forms) to the

one introduced in [Alexa and Wardetzky 2011].

The Contraction Operator and the Lie Derivative

The Lie derivative can be thought of as an extension of a directional derivative of a function to derivative

of tensor fields (such as vector fields or differential forms) along a vector field. The Lie derivative

is invariant under coordinate transformations, which makes it an appropriate version of a directional

derivative on curved manifolds. It evaluates the change of a tensor field along the flow of another vector

field and is widely used in mechanics.

Our discretization of Lie derivative of functions (0–forms) corresponds to the functional map frame-

work of [Azencot et al. 2013], but now generalized to polygonal meshes. Our discrete Lie derivatives

are thus linear operators on functions on a manifold that produce new functions, with the property that

the derivative of a constant function is 0.

While maintaining the discrete exterior calculus framework, our work can also be interpreted as an

extension of the Lie derivative of forms presented in [Mullen et al. 2011b] from planar regular grids to

surface polygonal meshes in space.

1.2 Contributions and Overview

We start our treatment with a brief introduction to the discrete world of pseudomanifolds (Chapter 2),

chains of polygonal faces, and discrete differential forms as cochains on these pseudomanifolds (see

Figure 1.1). We also define the boundary and coboundary operators, the later being the discrete version

of the exterior derivative.

Our contributions are presented in Chapter 3, we:

• Define a discrete wedge product as a cup product on polygonal complexes and show experimental

convergence of the product of two discrete forms to the continuous wedge product of respective

differential forms (Section 3.2).
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• Provide a novel primal–primal discretization of the Hodge star operator (Section 3.3) that is com-

patible with the discrete wedge product.

• Using these two operators we derive a discrete inner product (Section 3.4).

• Employing the discrete Hodge star and wedge product we then define the contraction operator

(Section 3.5). Together with the discrete exterior derivative we then use the Cartan’s magic for-

mula to derive the discrete Lie derivative and we discuss its convergence to the continuous analog

in Section 3.6.

Our findings are then summarized and further research is suggested in Chapter 4.
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Chapter 2

Pseudomanifolds and
Discrete Differential Forms

Let us start with an informal motivation. Imagine we have a smooth manifold M and tangent bundle

on it TM , which is a set of all tangent vectors in M , i.e., all tangent spaces TxM to M at x ∈ M . A

R–valued (resp. vector–valued) differential k–form ωk is a smooth antisymmetric k–linear map of a set

of k tangent vectors to a scalar (resp. vector), that is:

ωk : TM × · · · × TM → R (resp. Rn).

We denote the vector space of k–forms as Ωk(M).

For example, a 0–form is just a function (we evaluate them at points), but a 1–form maps a tangent

vector to a scalar, and a 2–form assigns one scalar value to two tangent vectors Tx × Tx at some point

x ∈M .

In the discretization process it is therefore natural to define discrete 0–forms as scalars representing

the value of a function at vertices, discrete 1–forms as scalars representing a differential 1–form on

tangent vector field integrated along oriented edges, and discrete 2–forms as scalars encoding a density

through its area integral over oriented faces.

For example, let α ∈ Ω0(M), β ∈ Ω1(M) and ω ∈ Ω2(M) be differential forms on a differentiable

2–manifold M and let K be a cellular complex (a mesh) on the manifold M . We define the corre-

sponding discrete differential forms (cochains, see Definition 2.3.1) αD ∈ C0(K), βD ∈ C1(K), ωD ∈
C2(K) on each element of the mesh K as

αD(v) = α(v), βD(e) =

∫
e
β, ωD(f) =

∫
f
ω,

where v is a vertex, e an edge, and f a face of K. We will omit the subscript D to denote discrete forms

and instead we will understand that a form is discrete iff it is from the group C∗(K).

Further, we do not just want any oriented edges or faces in space, we want a well–behaved set of

vertices, edges, and faces: such well–behaved sets are the (orientable) pseudomanifolds.

A reader familiar with terms like cell complex, boundary operator, and cochains, may skip this

chapter and go straight to Chapter 3, where our actual contributions are presented and new operators are
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defined.

2.1 CW Pseudomanifolds

Now we will go through some notions from algebraic topology to get to the definition of orientable

and nonorientable pseudomanifolds (Definition 2.2.2). Orientable and nonorientable pseudomanifolds

whose faces are polygons are the domains of our interest. Even though in practice we will work with

even better behaved set of cells (see Remark 2.1).

Definition. A space is called a k-cell if it is homeomorphic to the unit k-ball Bk. It is called an open
cell of dimension k if it is homeomorphic to Int Bk. The set ėki := ēki − eki for k > 0 is called the

boundary of the k-cell eki .

Note that an isolated point is an open and closed 0-cell since it is the whole space of dimension 0.

Next we give the definition of a special class of cell complexes, called finite regular CW complexes; for

more details about CW complexes see for example [Munkres 1984, §38].

Definition 2.1.1. A finite CW complex is a space X and a finite collection of disjoint open cells ei
whose union is X such that:

1. X is Hausdorff.

2. For each open m-cell ei of the collection, there exist a continuous map fi : Bm → X that maps

IntBm homeomorphically onto ei and carries BdBm into a union of open cells, each of dimension

less than m.

If the maps fi can be taken to be homeomorphisms, and each set ėi := ēi − ei equals the union of some

open cells of X , then X is called a finite regular CW complex.

The Figure 2.1 shows an example of a regular and a non-regular CW complex.

Figure 2.1: (L) A regular CW complex. (R) A non-regular CW complex: The complex consisting of a point on a sphere is not
regular because both the endpoints of the 1-cell (circle) get mapped to the single 0-cell (the point), therefore the map of the
boundary of the 1-cell is not a homeomorphism.

Definition. We say that em is a face of en if em ⊂ ēn, and denote as em � en. If em 6= en, then em

is a proper face of en (em ≺ en). The subspace Xp of X that is the union of the open cells of X of

dimension at most p is called the p-skeleton of X and it is a CW complex in its own right.

Definition 2.1.2. A CW n-pseudomanifold is an n-dimensional finite regular CW complex which sat-

isfies the following three conditions:
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1. Every cell is a face of some n-cell.

2. Every (n− 1)-dimensional cell is a face of exactly two n-cells.

3. Given any two n-cells, ena and enb , there exist a sequence of n-cells

en0 , e
n
1 , . . . , e

n
k

such that ena = en0 , e
n
b = enk , and eni−1 and eni have a common (n − 1)-dimensional face (i =

1, . . . , k).

Remark. The definition above is due to Massey; by pseudomanifold he actually means a pseudomani-
fold without boundary. Massey calls compact the closed manifolds, i.e., by compact he means compact

without boundary. As mentioned in [Massey 1991, Chapter IX], it can be shown that any regular CW

complex on a closed connected n-manifold is an n-dimensional CW pseudomanifold. It is known that

every compact n-manifold admits a subdivision so as to define a regular CW complex structure on it

if n ≤ 3. However, there exist compact 4-manifolds which do not admit such a subdivision. Some

important properties of pseudomanifolds can be found also in [Geoghegan 2008, Section 12.3].

A pseudomanifold is a more general notion than a piecewise linear (PL) manifold, which is a topo-

logical manifold with a piecewise linear structure on it. A pseudomanifold may not be a topological

manifold as it may have singularities of codimension 2. Yet it is a notion specific enough so as to allow

for the definition of orientability or nonorientability (as we will see in the next section).

We complete the treatment with the following definition of an n–dimensional pseudomanifold with

boundary, which is a slight modification of the given notion presented in [Seifert and Threlfall 1980,

Paragraph 24].

Definition 2.1.3. A CW n-pseudomanifold with boundary is an n-dimensional finite regular CW

complex which satisfies the following three conditions:

1. Every cell is a face of some n-cell.

2. Every (n− 1)-cell is a face of at most two n-cells and there exist at least one (n− 1)-cell which

is incident with only one n-cell.

3. Given any two n-cells, ena and enb , there exist a sequence of n-cells

en0 , e
n
1 , . . . , e

n
k

such that ena = en0 , e
n
b = enk , and eni−1 and eni have a common (n − 1)-dimensional face (i =

1, . . . , k).

2.2 Orientable Pseudomanifolds

The next definitions are actually a result of a set of theorems in [Massey 1991, Chapter IX], but for our

purposes their implications are sufficient.
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Definition 2.2.1. Let K = {Kn} be a pseudomanifold on the topological space X . And let [enλ : en−1µ ]

be the incidence number of the cells enλ and en−1µ , for n > 0, such that:

1. If en−1µ is not a face of enλ, then [enλ : en−1µ ] = 0.

2. If en−1µ is not a face of enλ, then [enλ : en−1µ ] = ±1.

3. If e0α and e0β are the two vertices of the 1-cell e1λ, then [e1λ : e0α] + [e1λ : e0β] = 0.

4. Let enλ and en−2ρ be cells such that en−2ρ ≺ enλ; let en−1α and en−1β denote the unique (n− 1)-cells

en−1 such that en−2ρ ≺ en−1 ≺ en−1λ . Then

[enλ : en−1α ][en−1α : en−2ρ ] + [enλ : en−1β ][en−1β : en−2ρ ] = 0.

With these conditions it is possible to choose an orientation for each cell enλ in one and only one way.

Thus we can specify orientations for the cells of a pseudomanifold by specifying a set of incidence

numbers for the complex. Even though the definition may look slightly cumbersome, it actually gives

the intuitive way to specify the orientation of cells, as we demonstrate in the Example 2.2.1.

Example 2.2.1. When using the definition, we assume we have a list of cells of K together with the

information as to whether en−1i ≺ enj for any two cells en−1i and enj .

1. For each 1-cell e1, choose incidence numbers between it and its two vertices such that conditions

(2) and (3) hold, all other incidence numbers will be zero.

2. Now assume, inductively, that incidence numbers have been chosen between all cells of dimension

< n. Let en be an n-cell. Choose a face en−10 of en, and choose [en : en−10 ] to be +1 or -1. Using

condition (4), determine [en : en−1i ] for all (n− 1)-cells en−1i ≺ en which have an (n− 2)-face in

common with en−10 . Spread over the boundary en by repeating this process. All other incidence

numbers between en and (n − 1)-cells will be zero by condition (1). And repeat this process for

each n-cell of K.

For example in Figure 2.2, in the first step the incidence numbers between the 1-cell e10 and its vertices

were chosen to be [e10 : e00] = −1 and [e10 : e01] = 1. Next, we have chosen [e20 : e10] to be +1, therefore

the orientation of e20 will be the same as that of e10. But [e20 : e11] = −1.

Figure 2.2: Boundary homomorphism on 2-cells e20 and e21.
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Definition 2.2.2. Let K be an n-dimensional pseudomanifold (possibly with or without boundary), and

let en1 , e
n
2 be n-cells with a common (n − 1)-cell en−1. We define orientations for en1 and en2 to be

coherent (with respect to en−1) if:

[en1 : en−1] + [en2 : en−1] = 0.

A set of orientations for all the n-cells of K is said to be coherent if it is coherent in the above sense for

any pair of n-cells with a common (n− 1)-face.

K is said to be orientable if all its n-cells can be oriented such that any pair of n-cells sharing an

(n− 1)-dimensional face are oriented coherently. Otherwise it is called nonorientable.

The orientability or nonorientability of an n-dimensional pseudomanifold K only depends on the

underlying topological space involved, and not on the choice of the regular CW complex K.

Before we define the boundary operator, we need one more definition:

Definition 2.2.3. Let K be a pseudomanifold. A p-chain on K is a function c from the set of oriented

p-cells of K to the integers, such that c(e) = −c(e′) if e and e′ are opposite orientations of the same

cell. We add p-chains by adding their values, the resulting group is denoted Cp(K) and is called the

chain group of K. If p < 0 or p > dimK, we let Cp(K) denote the trivial group.

The incidence numbers, or equivalently, the set of orientations of p-cells of K, give us such a p-

chain.

Definition 2.2.4. Let Cn(K), n ≥ 0, be the chain groups of K. The boundary homomorphism

∂n : Cn(K)→ Cn−1(K), n > 0,

is defined to be

∂n(en) =
∑
λ

[en : en−1λ ]en−1λ , (2.1)

where en is an oriented n-cell of K with n > 0.

From the definition of incidence numbers it follows that ∂n is well-defined and that ∂n(−en) =

−∂n(en). Next we give an example of computation of the boundary homomorphism in a polygon:

Example 2.2.2. Let e20 and e21 be two 2-cells with opposite orientation as in Figure 2.2. We will check

that ∂2e20 = −∂2e21 and ∂2∂1 = 0. We have:

∂2e
2
0 = +e10 − e11 − e12 + e13,

∂2e
2
1 = −e10 + e11 + e12 − e13,

thus ∂2e20 = −∂2e21. And for ∂1∂2e20, omitting the indexes of ∂, we can write

∂∂e20 = ∂(+e10 − e11 − e12 + e13) = +∂e10 − ∂e11 − ∂e12 + ∂e13
= e01 − e00 − (e01 − e02)− (e02 − e03) + e00 − e03 = 0.
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Definition 2.2.5. A chain complex K = {Ki, ∂i} is a sequence of abelian groups Ki, i ∈ Z, and a

sequence of homomorphisms ∂i : Ki → Ki−1 which are required to satisfy the condition

∂i−1∂i = 0 ∀i.

For any such chain complex K = {Ki, ∂i} we have that im ∂i+1 ⊂ ker ∂i ⊂ Ki and we can define

Hi(K) =
ker ∂i

im ∂i+1
,

called the ith homology group of K.

If K is an n-dimensional pseudomanifold, then Kp = ∅ for p < 0 and p > n, thus Cn+1(K) = 0

and the chain complex reads:

0 −→ Cn(K)
∂n−→ · · · ∂k+1−→ Ck(K)

∂k−→ · · · ∂1−→ C0(K) −→ 0.

2.3 Discrete Differential Forms and the Exterior Derivative

Having learned about chains and the boundary homomorphism we can now define cochains and the

coboundary operator on them, which correspond to our discrete differential forms and the discrete exte-

rior derivative.

Definition 2.3.1. Let K be a pseudomanifold and Cn(K) the group of oriented n-chains of K. Let G

be an abelian group. The group of n-dimensional cochains of K, with coefficients in G, is the group

Cn(K) = Hom (Cn(K), G).

The coboundary operator d is defined to be the dual of the boundary operator ∂n : Cn+1(K) →
Cn(K), i.e., it is the homomorphism

d : Cn(K)→ Cn+1(K),

such that dd = 0.

We can think of a cochain group Cn(K) as dual of a chain group Cn(K). We now give the formal

definition of discrete differential forms and the discrete exterior derivative:

Definition 2.3.2. A discrete q–form αq on a pseudomanifold K is an element of Cq(K), the group of

q–dimensional cochains of K, that is

αq ∈ Cq(K) = Hom (Cq(K), G).

The discrete exterior derivative dq : Cq(K)→ Cq+1(K) is the coboundary operator and it holds:

(dqα
q)(cq+1) = α(∂q+1cq+1) =

∑
c∈Cq(K)

[cq+1 : c]α(c). (2.2)
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The most common choices of the coefficient group G are (R,+), (C,+), or a vector space V to-

gether with addition, which correspond to R–valued, C–valued, and vector–valued discrete differen-
tial forms.

Similarly to the definition of chain complexes (Definition 2.2.5), we have the following:

Definition 2.3.3. A cochain complex (C∗(K,R), d) is a sequence of abelian groups of n-dimensional

cochains Cn(K) together with the coboundary operators dn : Cn(K)→ Cn+1(K), i.e.,

0
dn←− Cn(K)

dn−1←− · · · dk←− Ck(K)
dk−1←− · · · d0←− C0(K)←− 0.

A q–form α is said to be a closed form (cocycle) if dα = 0, and it is called an exact form (cobound-

ary) if there exist a (q − 1)–form β such that dβ = α. Two closed q-forms are cohomologous if they

differ by an exact q–form, i.e.,

Hq(C∗) =
ker dq(C

∗)

im dq−1(C∗)
.

Note that each exact q-form α = dβ is closed, since dα = ddβ = 0.

IfM is a smooth manifold and d is the exterior derivative, then the complex (Ω∗(M), d) is called the

de Rham cohomology complex on M . The quotient of the real vector space of closed q–forms by the

subspace of exact q–forms on M is called the q–th de Rham cohomology group of M and is denoted

HdR(M).

Next we state an important theorem in differential geometry, called the Stokes’ theorem, whose

equivalent is valid also in the discrete setting.

Theorem 2.3.1 (Stokes). Let Mn be an orientable n–(pseudo)manifold with boundary ∂Mn and ω an

(n− 1)-form on Mn with compact support, then∫
M
dω =

∫
∂M

ω.

Figure 2.3: Stokes’ theorem on an orientable 2–pseudomanifold: a 2–form dα on faces is the sum of 1–form α as in (2.2) and
two faces sharing an edge have opposite directions on that edge, thus the values on interior edges cancel each other pairwise
and only the contribution from the boundary edges remains.

Stokes’ theorem tells us that the value of an n-form dω over an orientable n-manifold is equal to

the value of ω over its whole boundary. In the case of an orientable 2–dimensional pseudomanifold, the

validity can be easily shown – see Figure 2.3.
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Chapter 3

Contributions

This chapter contains the actual results of our research. Our approach is based on a discrete version of

the wedge product – the cup product (Section 3.2). Please note that we constantly switch between the

terms cup product and discrete wedge product, since they are equivalent for us.

3.1 Important Matrices

Throughout this report, we assume that K is a 2–dimensional pseudomanifold with polygonal faces

f ∈ F . Let us further denote v ∈ V the vertices, e ∈ E the edges, and h ∈ H the halfedges of the mesh

K.

The boundary homomorphisms and discrete derivatives can be represented by these matrices:

d0 = ∂1 =


[e0 : v0] · · · [e0 : v|V |−1]

...
. . .

...

[e|E|−1 : v0] · · · [e|E|−1 : v|V |−1]

 , (3.1)

d1 = ∂2 =


[f0 : e0] · · · [f0 : e|E|−1]

...
. . .

...

[f|F |−1 : e0] · · · [f|F |−1 : e|E|−1]

 . (3.2)

We also denote B the incidence matrix between vertices and edges without distinction of the orien-

tation, where [ei : vj ] is 1
2 if vj ≺ ei and 0 otherwise:

B =
1

2
d0 � d0, (3.3)

where � is the Hadamard (element–wise) product.

Further, the matrix fv represents the "weighted" incidence relation between vertices and faces, such

that fvij is 1
pi

[fi : vj ] for a pi–polygonal face fi, where [fi : vj ] is 1 if vj ≺ fi and 0 otherwise:

fv =


1
p0

[f0 : v0] · · · 1
p0

[f0 : v|V |−1]
...

. . .
...

1
p|F |−1

[f|F |−1 : v0] · · · 1
p|F |−1

[f|F |−1 : v|V |−1]

 . (3.4)
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To be later able to write the cup product in matrix form we need two more matrices denoted as R and

L. So let us now assume that we know the order of edges of a face f which is a p–polygon, we define

the incidence matrices R ∈ Rp×p and L ∈ Rp×p per face such that:

L[k, j] =


1 if ej is the k–th edge of the face f,

−1 if − ej is the k–th edge of the face f,

0 otherwise.

R =

b p−1
2
c∑

a=1

(
1

2
− a

p

)
Ra,

where

Ra[k, j] =


1 if ej is the (k + a)–th edge or − ej is the (k − a)–th edge of f,

−1 if ej is the (k − a)–th edge or − ej is the (k + a)–th edge of f,

0 otherwise.

If we wish to express the discrete wedge product globally (for the whole mesh), we need to work

with halfedges instead of edges. In such a case the matrices L,R ∈ R|H|×|H| read per a p–polygonal

face f :

L[k, j] =

{
1 if hj is the k–th halfedge of the face f with the same orientation as f,

0 otherwise.
(3.5)

R =

b p−1
2
c∑

a=1

(
1

2
− a

p

)
Ra, (3.6)

where

Ra[k, j] =


1 if hj is the (k + a)–th halfedge of f with the same orientation as f,

−1 if hj is the (k − a)–th halfedge of f with the same orientation as f,

0 otherwise.

(3.7)

And the exterior derivative on 1–forms d1 ∈ R|F |×|H| becomes:

d1[i, j] =

{
1 if hj is a halfedge of fi with the same orientation as fi,

0 otherwise.
(3.8)

3.2 Wedge and Cup Products

In this section we first present the wedge product in the continuous world and then give a general defi-

nition of a cup product of cochains to show the clear analogy between these two. We then proceed with

equations of cup products on triangles and quadrilaterals, by which we were inspired and later derived

formulas for cup products on general polygons (Subsection 3.2.3).
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The Wedge Product

A differential k-form α on a smooth n–manifold M is a tensor field of type (0, k) that is completely

antisymmetric, i.e., for α ∈ Ωk(M) ⊂ T 0
k (M) we have α(v, w) = −α(w, v) for all v, w ∈ TM .

Let {e1, . . . , en} be a basis of the tangent space TxM to M at point x ∈ M . Let α ∈ T 0
k (M) and

β ∈ T 0
l (M), we define their wedge product α ∧ β ∈ T 0

k+l(M) at the point x ∈M by

(α ∧ β) =
∑
τ

sign τα(eτ(1), . . . , eτ(k))β(eτ(k+1), . . . , eτ(k+l)), (3.9)

where the sum is over all permutations τ of {1, . . . , k+ l} such that τ(1) < · · · < τ(k) and τ(k+ 1) <

· · · < τ(k + l). And we have that sign τ = +1 if the permutation is even and sign τ = −1 if it is odd.

Examples of computing the wedge products can be found in [Abraham et al. 1988, Section 7.1]. The

wedge product exhibits the following properties, which we maintain also in the discrete setting except

the associativity (compare with the later Proposition 3.2.3):

Proposition 3.2.1. For α ∈ T 0
k (M), β ∈ T 0

l (M), and γ ∈ T 0
m(M), we have

1. ∧ is bilinear: α∧(c1β+c2γ) = c1(α∧β)+c2(α∧γ) and (c1α+c2β)∧γ = c1(α∧γ)+c2(β∧γ)

for some constants c1, c2 ∈ R,

2. ∧ is skew commutative: α ∧ β = (−1)klβ ∧ α,

3. ∧ is associative: α ∧ (β ∧ γ) = (α ∧ β) ∧ γ,

4. Leibniz rule: d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

For the proof see [Abraham et al. 1988, Proposition 7.1.5 and Theorem 7.4.1].

A Cup Product

The wedge product allows for building higher degree forms from lower degree ones, similarly a cup

product is a product of cochains of arbitrary degree p and q that returns a cochain of degree p+ q.

Whitney in [Whitney 1957, §9 of Appendix II] gives the following abstract definition of a cup prod-

uct, which also appears in [Arnold 2012, Definition 2.3.3].

Definition 3.2.1. Let X be a cell complex, the cup product of two cochains cp and cq is a bilinear

operation ∪ : Cp(X)× Cq(X)→ Cp+q(X) that satisfies the following three properties:

1. Let σp ∈ Cp(X) and σq ∈ Cq(X). Then σp ∪ σq is a (p + q)-cochain in St(σp) · St(σq), where

St(σi) is the union of all cells in which ci is a face, and A · B denotes the union of all cells in A

and B.

2. d(cp ∪ cq) = dcp ∪ cq + (−1)pcp ∪ dcq (Leibniz rule).

3. If X is connected, then there exist a real number γ∪ such that I0 ∪ cp = cp ∪ I0 = γ∪c
p, where

I0 is the constant 0-cochain that takes value 1 on the 0-cells of X .

The interested reader is also referred to [Massey 1991, Chapter XIII]. Whitney further asserts that

thanks to the Leibniz rule being valid, we have the following:
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Proposition 3.2.2. For α ∈ Hk(X), β ∈ H l(X), γ ∈ Hm(X), the cup product defines a bilinear

operation Hk(X)×H l(X)→ Hk+l(X), which is uniquely determined (well–defined) and is

1. skew commutative: α ∪ β = (−1)klβ ∪ α,

2. associative: α ∪ (β ∪ γ) = (α ∪ β) ∪ γ.

Thus the cup endows the cellular cohomology H∗(X) with a graded commutative ring structure, with

the cohomology class of I0 as unit element.

Comparing Proposition 3.2.1 with Definition 3.2.1 and Proposition 3.2.2, we affirm that both the

wedge and the cup product, respectively, are bilinear operations that take as input two forms, resp.

cochains, of arbitrary degree p and q and return a form, resp. cochain, of degree p + q. Moreover, they

both satisfy the Leibniz rule. But a general cup products is associative and skew–commutative only on

cohomology. Fortunately, for cup product on polygons we will recuperate the skew–commutativity for

any discrete forms (not just closed ones). However, our polygonal cup product will be associative only

on closed forms, see the Proposition 3.2.3.

Even though explicit formulas for computing cup product on a general cell complex are unknown,

there are well–known explicit formulas for cup products on simplicial and cubical complexes (e.g., see

[Arnold 2012]), and we expand the set of known cup products with cup products on general polygons

with coefficients in R, which is one of our contributions.

3.2.1 The Cup Product on Simplices

Figure 3.1: The cup product of simplicial forms is again either an 0–form located on vertices, 1–form located on edges, or an
2–form located on faces.

Arnold in [Arnold 2012, Definition 4.2.1] presents the definition of the Wilson’s cup product ∪ :

Cp(K)× Cq(K)→ Cp+q(K) given by

α ∪ β(c) =

∫
c
Wα ∧Wβ, (3.10)

where W is the simplicial Whitney form (see [Arnold 2012, Definition 4.1.1]) and c is an (p + q)–

simplex.

Using the equation (3.10) we computed simplicial cup products which we state as the following

definition:
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Definition 3.2.2. Let (v0, . . . , vk) be a k–simplex, the simplicial cup product, i.e., the cup product of

forms defined on simplices reads:

(α0 ∪ β0)(v0) = α(v0)β(v0),

(α0 ∪ β1)(v0, v1) =
1

2
(α(v0) + α(v1))β(v0, v1),

(α0 ∪ β2)(v0, v1, v2) =
1

3
(α(v0) + α(v1) + α(v2))β(v0, v1, v2),

(α1 ∪ β1)(v0, v1, v2) =
1

6

2∑
i=0

α(vi, vi+1)(β(vi+1, vi+2)− β(vi−1, vi)), i ∈ Z/3Z.

The action of ∪ is illustrated in Figures 3.1 and 3.2.

Remark. In our derivation we actually obtained (α0 ∪ β2) = 1
6(α(v0) + α(v1) + α(v2))β(v0, v1, v2)

and not 1
3(α(v0) + α(v1) + α(v2))β(v0, v1, v2). But in the case of 1

6 , the Leibniz rule for d(α0 ∪ β1)
is only satisfied if dβ = 0, i.e., β is a closed form. Whereas for 1

3 , the Leibniz rule for d(α0 ∪ β1) =

dα ∪ β + α ∪ dβ is satisfied for any α and β.

Figure 3.2: The cup product of two 1–forms is a 2–form located on faces (L).

The simplicial cup product satisfies the properties of Proposition 3.2.3, which we prove therein.

Comparing the Proposition 3.2.3 with Propositions 3.2.2 and 3.2.1, we can see that our simplicial cup

product is skew–commutative on any discrete forms, not only on cohomology as the generic cup product,

but it is still not associative in general as the wedge product, only on cohomology.

3.2.2 The Cubical Cup Product

In [Arnold 2012, Definition 3.2.1] the author defines a cubical cup product ∪c, for which the product of

two cochains agrees with the wedge product of their cubical Whitney forms (see [Arnold 2012, Section

3.2.2]), thus the Whitney map provides a connection of cubical cohomology with de Rham cohomology

([Arnold 2012, Theorem 3.2.12]).

We do not state the definition of ∪c on an n–dimensional cubical pseudomanifold because it would

involve a lot of new notation that is unnecessary for the case or our interest – the dimension 2, i.e.,

quadrilaterals. Therefore from [Arnold 2012, Definition 3.2.1] we computed the cup product on k–

dimensional cubes for 0 ≤ k ≤ 2 and we present the formulas in the following definition:

Definition 3.2.3. The cubical cup product ∪ : Cp(K) × Cq(K) → Cp+q(K) on a quadrilateral
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pseudomanifold K is defined by its action on a k–dimensional cube (v0, . . . , v2k−1) as:

(α0 ∪ β0)(v0) = α(v0)β(v0),

(α0 ∪ β1)(v0, v1) =
1

2
(α(v0) + α(v1))β(v0, v1),

(α0 ∪ β2)(v0, v1, v2, v3) =
1

4

( 3∑
i=0

α(vi)
)
β(v0, v1, v2, v3),

(α1 ∪ β1)(v0, v1, v2, v3) =
1

4

3∑
i=0

α(vi, vi+1)(β(vi+1, vi+2)− β(vi−1, vi)), i ∈ Z/4Z.

Figure 3.3: The cup product of cochains on a quadrilateral: for each degree the locations of the result of the product are
colored red.

The cup product of two cubical forms is illustrated in Figure 3.3 and it has the same properties as

the simplicial cup product – see Proposition 3.2.3.

3.2.3 The Cup Product on Polygons

As said earlier, we can extend the definitions of the discrete wedge product to any p–polygon such that

it still satisfies the defining properties of a cup product (Definition 3.2.1) and therefore automatically

also the properties of Proposition 3.2.2. Moreover, we show that our polygonal cup product is a skew–

commutative bilinear operation on any polygonal forms, not just on the closed ones, it satisfies the

Leibniz rule with discrete derivative, and it is associative on cohomology, viz. the Proposition 3.2.3.

Let us remember that a discrete q–form αq is a q–cochain

αq =
∑
cq∈K

α(cq),

where cq is a q–cell of a pseudomanifold K.

Definition 3.2.4. Let K be a 2–pseudomanifold whose 2–cells (faces) are polygons. The cup product

Ck(K) × C l(K) → Ck+l(K) of two discrete forms αk, βl is a (k + l)–form αk ∪ βl defined on each

(k + l)–cell of K, that is,

αk ∪ βl =
∑

ck+l∈K
αk ∪ βl(ck+l).

Let f = (v0, . . . , vp−1) be a p–polygonal face, (vi, vj) an edge, and v a vertex of K, the polygonal cup
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product is defined for each degree and per each (k + l)–cell as:

(α0 ∪ β0)(v) = α(v)β(v), (3.11)

(α0 ∪ β1)(vi, vj) =
1

2
(α(vi) + α(vj))β(vi, vj), (3.12)

(α0 ∪ β2)(f) =
1

p

( p−1∑
i=0

α(vi)

)
β(f), (3.13)

(α1 ∪ β1)(f) =

b p−1
2
c∑

a=1

(
1

2
− a

p

) p−1∑
i=0

α(i)(β((i+ a)%p)− β((i− a)%p)), (3.14)

where α(i) := α(ei) = α(vi, v(i+1)%p) and %p means modulo p.

In Theorem 3.2.1 we prove that the polygonal cup product we have just defined actually is a cup

product, that is, we prove that it satisfies the defining properties of a cup product (Definition 3.2.1). But

we first prove, in the following Lemma, that it obeys the Leibniz rule with the discrete derivative.

Lemma 3.2.1. The discrete wedge product from Definition 3.2.4 satisfies the Leibniz rule with the dis-

crete derivative, that is:

d0(α
0 ∪ β0) = d0α ∪ β + α ∪ d0β,

d1(α
0 ∪ β1) = d0α ∪ β + α ∪ d1β.

For d(α0 ∪ β2) and d(α1 ∪ β1) we get trivially 0 because there are no 3–dimensional chains (and thus

no 3–forms) on a 2–dimensional pseudomanifold.

Proof. We will prove the Leibniz rule for each degree separately.

The case d(α0 ∪ β0): let e = (vi, vj) be an edge of K, then

(d0α ∪ β + α ∪ d0β)(e) = (α(vj)− α(vi))
β(vi) + β(vj)

2
+
α(vi) + α(vj)

2
(β(vj)− β(vi))

=
β(vi)(−2α(vi)) + β(vj)(2α(vj))

2

= α(vj)β(vj)− α(vi)β(vi) = (α ∪ β)(vj)− (α ∪ β)(vi)

= d0(α
0 ∪ β0)(e).

The case d(α0 ∪ β1): Let us first simplify the notation and denote αi = α0(vi), βi = β1(ei). Let

also any index i to be understood as i%n. Let f = (v0, . . . , vn−1) be an n–polygonal face with edges

ei = (vi, vi+1). Due to the indexes being cyclic (modulo n), we can reorder the following sums in this
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manner:

d(α0 ∪ β1)(f) =
n−1∑
i=0

αi + αi+1

2
βi =

n−1∑
i=0

βi−1 + βi
2

αi

(dα0 ∪ β1)(f) =
n−1∑
i=0

bn−1
2
c∑

a=1

(
1

2
− a

n

)
(αi+1 − αi)(βi+a − βi−a)

=

n−1∑
i=0

bn−1
2
c∑

a=1

n− 2a

2n
(αi)(βi+a−1 − βi−a−1 − βi+a + βi−a)

(α0 ∪ dβ1)(f) =
1

n

n−1∑
i=0

αi

n−1∑
i=0

βi

Thus we want to show that

n−1∑
i=0

αi
βi−1 + βi

2
=

n−1∑
i=0

αi
2n

[ bn−1
2
c∑

a=1

(n− 2a)(βi+a−1 − βi+a + βi−a − βi−a−1) + 2

n−1∑
j=0

βj

]
,

but instead we will show that the following equation (3.15) holds for any i ∈ {0, . . . , n − 1}, which

implies that also the equality above is true.

βi−1 + βi
2

=
1

2n

[ bn−1
2
c∑

a=1

(n− 2a)(βi+a−1 − βi+a + βi−a − βi−a−1) + 2
n−1∑
j=0

βj

]
(3.15)

If n is even, then a = 1, . . . , bn−12 c is equivalent to a = 1, 2, . . . , n2 − 1, and if n is odd, then it is

equivalent to a = 1, . . . , n−12 . Thus we will first show the validity of (3.15) for n even and then for n

odd.

For n even we compute:

n
2
−1∑

a=1

(n− 2a)(βk+a−1 − βk+a) = (n− 2)(βk − βk+1) + (n− 4)(βk+1 − βk+2)

+ (n− 6)(βk+2 − βk+3) + · · ·+ 6(βk+n
2
−4 − βk+n

2
−3)

+ 4(βk+n
2
−3 − βk+n

2
−2) + 2(βk+n

2
−2 − βk+n

2
−1)

= nβk − 2(βk + βk+1 + βk+2 + βk+3 + · · ·+ βk+n
2
−3 + βk+n

2
−2 + βk+n

2
−1),

n
2
−1∑

a=1

(n− 2a)(βk−a − βk−a−1) = (n− 2)(βk−1 − βk−2) + (n− 4)(βk−2 − βk−3)

+ (n− 6)(βk−3 − βk−4) + · · ·+ 6(βk−n
2
+3 − βk−n

2
+2)

+ 4(βk−n
2
+2 − βk−n

2
+1) + 2(βk−n

2
+1 − βk−n

2
)

= nβk−1 − 2(βk−1 + βk−2 + βk−3 + · · ·+ βk+n
2
+2 + βk+n

2
+1 + βk+n

2
).
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Thus

n
2
−1∑

a=1

(n− 2a)(βk+a−1 − βk+a + βk−a − βk−a−1) = n(βk−1 + βk)− 2

k+n−1∑
i=k

βi

= n(βk−1 + βk)− 2
n−1∑
j=0

βj

and for n even we obtain

1

2n

[ bn−1
2
c∑

a=1

(n− 2a)(βk+a−1 − βk+a + βk−a − βk−a−1) + 2

n−1∑
j=0

βj

]
=
βk−1 + βk

2
.

For n odd we proceed in a similar fashion:

n−1
2∑

a=1

(n− 2a)(βk+a−1 − βk+a) = (n− 2)(βk − βk+1) + (n− 4)(βk+1 − βk+2)

+ (n− 6)(βk+2 − βk+3) + · · ·+ 5(βk+n−1
2
−3 − βk+n−1

2
−2)

+ 3(βk+n−1
2
−2 − βk+n−1

2
−1) + 2(βk+n−1

2
−1 − βk+n−1

2
)

= nβk − 2(βk + βk+1 + βk+2 + βk+3 + · · ·+ βk+n−1
2
−2 + βk+n−1

2
−1)− βk+n−1

2
,

n−1
2∑

a=1

(n− 2a)(βk−a − βk−a−1) = (n− 2)(βk−1 − βk−2) + (n− 4)(βk−2 − βk−3)

+ (n− 6)(βk−3 − βk−4) + · · ·+ 5(βk−n−1
2

+2 − βk−n−1
2

+1)

+ 3(βk−n−1
2

+1 − βk−n−1
2

) + (βk−n−1
2
− βk−n−1

2
−1)

= nβk−1 − 2(βk+n−1
2

+1 + βk+n−1
2

+2 + · · ·+ βk−3 + βk−2 + βk−1)− βk+n−1
2
.

Thus

n−1
2∑

a=1

(n− 2a)(βk+a−1 − βk+a + βk−a − βk−a−1) = n(βk−1 + βk)− 2
k+n−1∑
i=k

βi

= n(βk−1 + βk)− 2

n−1∑
j=0

βj

and for n odd we get

1

2n

[ bn−1
2
c∑

a=1

(n− 2a)(βk+a−1 − βk+a + βk−a − βk−a−1) + 2
n−1∑
j=0

βj

]
=
βk−1 + βk

2
.

We have shown that the equality (3.15) holds for any i ∈ {0, 1, . . . , n−1}, which implies d1(α0∪β1) =

d0α ∪ β + α ∪ d1β.

Now we are ready to claim that our discrete wedge product on polygonal pseudomanifolds actually
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is a cup product:

Theorem 3.2.1. The polygonal cup product from Definition 3.2.4 is a cup product, i.e., it satisfies the

Definition 3.2.1.

Proof. The equations (3.11)–(3.14) are bilinear, therefore the polygonal cup product is a bilinear oper-

ation.

It also satisfies item 1. of Definition 3.2.1 – the result of product of two forms is located on a face that is

incident to both the elements where the two original discrete forms reside.

Due to Lemma 3.2.1, our product satisfies item 2., the Leibniz rule.

We will now prove that item 3. of Definition 3.2.1 also holds. A pseudomanifold K as we defined

it is a connected cell complex, therefore we have to show that there exist a real number ξ such that

I0 ∪ αp = αp ∪ I0 = ξαp, where I0 is the constant 0–form that takes value 1 on the vertices of K.

Using the equations of Definition 3.2.4, we can thus write:

I0 ∪ α0 =
∑

vi∈V (K)

I0 ∪ α0(vi) =
∑
vi∈V

I0(vi)α
0(vi) =

∑
vi∈V

1α0(vi) = 1α0,

α0 ∪ I0 =
∑
vi∈V

α0 ∪ I0(vi) =
∑
vi∈V

α0(vi)I
0(vi) =

∑
vi∈V

α0(vi)1 = 1α0,

I0 ∪ α1 =
∑

(vi,vj)∈E(K)

I0 ∪ α1(vi, vj) =
∑

(vi,vj)∈E

I0(vi) + I0(vj)

2
α1(vi, vj)

=
∑

(vi,vj)∈E

1 + 1

2
α1(vi, vj) = 1α1,

α1 ∪ I0 =
∑

(vi,vj)∈E

α1 ∪ I0(vi, vj) =
∑

(vi,vj)∈E

α1(vi, vj)
I0(vi) + I0(vj)

2

=
∑

(vi,vj)∈E

α1(vi, vj)
1 + 1

2
= 1α1,

I0 ∪ α2 =
∑

fi∈F (K)

I0 ∪ α2(fi) =
∑
fi∈F

∑
vj≺fi

I0(vj)

pi
α2(fi)

=
∑
fi∈F

pi
pi
α2(fi) = 1α2,

α2 ∪ I0 =
∑
fi∈F

α2 ∪ I0(fi) =
∑
fi∈F

α2(fi)
∑
vj≺fi

I0(vj)

pi

=
∑
fi∈F

α2(f1)
pi
pi

= 1α2,

where pi is the number of vertices of a face fi. We thus conclude that ξ = 1 satisfies I0∪αp = αp∪I0 =

ξαp ∀p ∈ {0, 1, 2}.

Proposition 3.2.3. The polygonal cup product from Definition 3.2.4 satisfies these properties:

1. Bilinearity.

2. Skew–commutativity αk ∪ βl = (−1)klβl ∪ αk.
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3. Leibniz rule.

4. Associativity under the following conditions:

α0 ∪ (β0 ∪ γ0) = (α0 ∪ β0) ∪ γ0 always,

α0 ∪ (β0 ∪ γ1) = (α0 ∪ β0) ∪ γ1 if dα0 = 0 or dβ0 = 0,

α0 ∪ (β0 ∪ γ2) = (α0 ∪ β0) ∪ γ2 if dα0 = 0 or dβ0 = 0,

α0 ∪ (β1 ∪ γ1) = (α0 ∪ β1) ∪ γ1 if dα0 = 0.

Proof. From Theorem 3.2.1 we know our product is a bilinear operation satisfying the Leibniz rule with

discrete exterior derivative. We now show that it is also skew–commutative on any discrete forms and

associative in the declared fashion.

With respect to the announced form of associativity, in the case of the product of three 0–forms we

get to multiplying three real numbers on each vertex, which is indeed an associative operation. For the

other degrees, we have learned in the proof of Theorem 3.2.1 that if K is connected and a 0–form α0 is

constant (which is equivalent to closed), that is α0(vi) = ρ ∈ R ∀vi ∈ K, then the cup product of α0

with any q–form ωq is equal to multiplying ωq by the real number ρ. This fact yields:

(α0 ∪ βk) ∪ γl = (ρβk) ∪ γl = ρ(βk ∪ γl) = α0 ∪ (βk ∪ γl),

which proves the statement of item 4.

Concerning the skew–commutativity, looking at the equations (3.11)–(3.13) it is easy to see thatα0∪βl =

βl ∪ α0 for l = 0, 1, 2. The case of the product of two 1–forms is slightly more involving. We need to

prove that (α1∪β1)(f) = −(β1∪α1)(f) on an n–polygonal face f = (v0, . . . , vn−1). Let us remember

that

(α1 ∪ β1)(f) =

bn−1
2
c∑

a=1

(
1

2
− a

n

) n−1∑
i=0

α(i)(β((i+ a)%n)− β((i− a)%n),

where α(i) := α(ei) = α(vi, v(i+1)%n) and %n means modulo n. Again, to simplify the notation we

will omit writing the symbol %n in the indexes and by some index k we will always understand k%n.

We next show that

n−1∑
i=0

α(i)(β(i+ a)− β(i− a)) = −
n−1∑
i=0

β(i)(α(i+ a)− α(i− a)).
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Due to the indexes being cyclic (modulo n), we can write:

n−1∑
i=0

α(i)β(i+ a) = α(0)β(a) + α(1)β(1 + a) + · · ·+ α(n− a− 1)β(n− 1)

+ α(−a)β(0) + α(1− a)β(1) + α(2− a)β(2) + · · ·+ α(n− 1)β(n− 1 + a)

=

n−1∑
j=0

β(j)α(j − a),

n−1∑
i=0

α(i)β(i− a) = α(0)β(−a) + α(1)β(1− a) + · · ·+ α(n+ a− 1)β(n− 1)

+ α(a)β(0) + α(1 + a)β(1) + α(2 + a)β(2) + · · ·+ α(n− 1)β(n− 1− a)

=

n−1∑
j=0

β(j)α(j + a),

Thus

(α1 ∪ β1)(f) = −
bn−1

2
c∑

a=1

(
1

2
− a

n

) n−1∑
i=0

β(i)(α((i+ a)%n)− α((i− a)%n)) = −(β1 ∪ α1)(f).

Hence the polygonal cup product is skew–commutative on the cochain level.

The matrix form of the cup product, using the halfedge representation and the matrices defined in

Subsection 3.1, reads:

α0 ∪ β0 = α0 � β0, (3.16)

α0 ∪ β1 = (Bα0)� β1, (3.17)

α0 ∪ β2 = (fvα0)� β2, (3.18)

α1 ∪ β1 = d1(Lα
1)� (Rβ1). (3.19)

We can also express the cup product of two 1–forms on a single p–polygonal face as:

α1 ∪ β1(f) = (Lα1)>(Rβ1), for R =

b p−1
2
c∑

a=1

(
1

2
− a

p

)
Ra .

A Note about Cohomology Rings

IfK is a 2–dimensional pseudomanifold with polygonal 2–cells, then by Theorem 3.2.1 and Proposition

3.2.3, our polygonal cup product defines a bilinear operation Hk(K,R) × H l(K,R) → Hk+l(K,R)

that is well–defined on the cohomology level. Thus the set of cohomology classes H∗(K,R) together

with addition and the cup product forms a graded ring (H∗(K,R),+,∪), called the cohomology ring
of K, i.e.,

1. (H∗(K,R),+) is an abelian group,

2. (H∗(K,R),∪) is a monoid,
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3. and the multiplication is distributive with respect to the addition.

The cohomology ring provides us with a lot of additional information about the topology of a given

manifold, more subtle than the homology groups and the Betti numbers give. It is a fact that any polyhe-

dron of dimension ≤ 3 can be combinatorially subdivided so as to define a simplicial complex (see also

Polyhedral Hauptvermutung Conjecture [Ranicki (ed.) 1996]). Having a polygonal surface mesh,

we could thus subdivide it to get a triangle mesh and employ a simplicial cup product. However, we

propose to work directly with polygonal meshes and use polygonal cup product instead.

3.2.4 Discussion

We have found a very simple formula of a cup product of cochains on general polygonal pseudomani-

folds with coefficients in R, even though any commutative ring would serve as the coefficient ring. We

do not need to perform subdivision as to obtain simplicial or cubical complexes in order to compute the

cup product. Also, our result is independent of the ordering of vertices, unlike the one of [Kravatz 2008]

which uses a diagonal approximation that is sensitive to the choice of the so called minimal and max-

imal vertex. Further, unlike the cup product on polygons from [Gonzalez–Diaz et al. 2011b], our for-

mulas are very direct and simple and we do not use any additional structure such as the AT–model of

[Gonzalez–Diaz et al. 2011b, Theorem 2].

As we work directly with polygons, we overcome the ambiguities of subdividing a discrete surface

into a triangle mesh in order to be able to apply the simplicial cup product. In Example 3.2.1 we

demonstrate that different triangulations of the same polygonal mesh can even give slightly different

results.

In the following paragraphs we present some results of several tests performed. We always com-

pare our results to respective analytical solutions, that is why we have chosen some relatively simple

differential forms: linear, quadratic, and trigonometric. For all these classes of differential forms, our

cup product of discretized forms exhibit at least linear convergence to the analytically computed wedge

product of corresponding continuous forms. In the case of wedge product of a 0–form with a 1–form,

the convergence seems to be almost quadratic, see the Figures 3.5 and 3.8.

Figure 3.4: Examples of tested irregular polygonal meshes on torus (from left to right) with 1k, 2k, and 5k vertices. We can see
that there are polygons with variable number of points and also the edge lengths vary significantly. Furthermore, neighborhood
faces differ greatly in face areas.
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3.2.5 Numerical Evaluation

The numerical evaluation of our cup product as an approximation of the continuous wedge product of

differential forms was performed in the following fashion:

1. We integrate each differential l–form over all l–dimensional cells of our pseudomanifold K. That

is, we define discrete forms α0 ∈ C0(K), β1 ∈ C1(K), γ1 ∈ C1(K), and ω2 ∈ C2(K), per each

vertex v, edge e, and face f of K as:

α0(v) = A(v), β1(e) =

∫
e
B, γ1(e) =

∫
e

Γ, ω2(f) =

∫
f

Ω,

where the Greek capital letters denote the respective differential forms.

2. Next we compute the polygonal cup products of the discrete forms on all edges e and faces f of

K:

(α0 ∪ β1)(e), (α0 ∪ ω2)(f), (β1 ∪ γ1)(f).

3. We also calculate analytical solutions of (continuous) wedge product of the differential forms and

integrate these solutions over all edges e and faces f of K:

A ∧B(e) =

∫
e
A ∧B, A ∧ Ω(f) =

∫
f
A ∧ Ω, B ∧ Γ(f) =

∫
f
B ∧ Γ.

4. We then compute the L2–errors as

Error 01 =
(
α0 ∪ β1 −A ∧B

)>
M0

(
α0 ∪ β1 −A ∧B

)
,

Error 02 =
(
α0 ∪ ω2 −A ∧ Ω

)>
M1

(
α0 ∪ ω2 −A ∧ Ω

)
,

Error 11 =
(
β1 ∪ γ1 −B ∧ Γ

)>
M2

(
β1 ∪ γ1 −B ∧ Γ

)
.

where M2 is a diagonal |F | × |F | matrix given by

M2[i, i] =
1

|fi|

and M0,M1 are L2–Hodge inner product matrices of [Alexa and Wardetzky 2011], that is, M0 is

a diagonal |V | × |V | matrix given by

M0[i, i] =
∑
fj�vi

|fj |
pj
,

and M1 is the inner product of two 1–forms ε, ξ defined per face in the sense that

ε>M1ξ =
∑
f

ε|>fMfξ|f ,

where ε|f denotes the restriction of ε to the boundary of a p–polygonal face f and Mf is a sym-
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metric p× p matrix defined as

Mf :=
1

|f |
BfB

>
f ,

where Bf denotes a p× 3 matrix with edge midpoint positions as rows (we take the barycenter of

each face as the center of coordinates).

Figure 3.5: The cup product on a set of irregular meshes on a torus azimuthally symmetric around z axis: On the left, we see
a plot of decreasing L2 errors of the product of trigonometric forms (from Example 3.2.1). The graph on the right depicts the
convergence rate of the product of these forms: α0 = x2 + y2, β1 = −ydx+ xdy, γ1 = −2xzdx− 2yzdy + 2(x2 + y2 −√
x2 + y2)dz, ω2 = 2√

x2+y2

(
x(
√
x2 + y2 − 1)dy ∧ dz + y(

√
x2 + y2 − 1)dz ∧ dx + z

√
x2 + y2dx ∧ dy

)
. The scale

on both axes is log10. In Figure 3.4 we can see examples of the meshes tested, the implicit equation of the underlying torus is
(1−

√
x2 + y2)2 + x2 − 1

4
= 0

Example 3.2.1. We have performed several numerical tests with the following differential forms:

α0 = sin(x) cos(y)− 2 sin
(
z2
)

+ 1,

β1 =
(
sin2(x)− cos(2z)

)
dx+ (3 cos(x+ 2) + sin(y) cos(z))dy + (sin(xz) + 3 cos(y))dz,

γ1 = (cos(x) sin(y) + 3)dx+ (cos(y)− sin(z))dy +
(
sin
(
x2
)

+ cos(yz)
)
dz,

ω2 = (sin(xy) + cos(z + 1))dx ∧ dy + (cos(3x) + sin(2yz))dz ∧ dx+ sin(yz)dy ∧ dz.

In Figure 3.5 left we see the result of numerical evaluation of these forms on general polygonal meshes

on a torus. And in Figure 3.6 left we show numerical convergence of the cup product on a set of

polygonal meshes on a planar square and in the same figure right we illustrate that different triangulations

of the same polygonal mesh can give slightly different results – we again measure the deviations from

analytical solutions in the form of L2 errors.
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Figure 3.6: The graph on the left shows decreasing L2 errors of the product of trigonometric forms (from Example 3.2.1) on
a set of irregular meshes on a planar square. The graph on the right compares the L2 errors for the same forms and different
triangulations of a polygonal mesh with 700 vertices: we can see that the L2 errors are sensitive to the triangulation chosen.
In the case illustrated, the polygonal cup product performs slightly better than the simplicial one for product of a 0– with 1–
form and product of two 1–forms. But it has a bigger error for product of a 0–form with a 2–form. In Figure 3.7 we can see
the original polygonal mesh and two different triangulations of it.

Figure 3.7: A polygonal mesh and its different triangulations: (L) the original polygonal mesh (with 700 vertices and 330
faces), (C) Triangulation 0 (700 vertices and 1289 faces), (R) Triangulation 2 (700 vertices and 1289 faces).

Figure 3.8: The graph on the left depicts the convergence rate of the product of these forms: α0 = x2+y2, β1 = −ydx+xdy,
γ1 = −xzdx− yzdy+(x2 + y2)dz, ω2 = xdy ∧ dz+ ydz ∧ dx+ zdx∧ dy, on a set of general polygonal meshes on a unit
sphere. On the right we can see several samples of the meshes used (from left to right and top to bottom) with 1k, 2k, 5k, and
10k vertices.
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3.3 The Hodge Star Operator

We briefly introduce the Hodge star operator on Riemannian manifolds, for more detailed treatment, see

[Abraham et al. 1988, Sections 7.2 and 7.5] and especially [Abraham et al. 1988, Propositions 7.2.12

and 7.2.13].

IfM is a Riemannian n–manifold, i. e., a real smooth n–manifold equipped with an inner product g :

TM × TM → R on the tangent spaces TM , then the Riemannian metric g also induces a contravariant

(2,0)–tensor g(k) that acts on differential forms Ωk(M) for every k = 1, . . . , n. We will denote this inner

product on k–forms by square brackets [., .] and call it pointwise inner product on differential forms (as

opposite to L2–Hodge inner product, which we define later), that is:

[., .] : Ωk(M)× Ωk(M)→ R.

Now suppose that k is an integer such that 0 ≤ k ≤ n, the Hodge star operator ∗ establishes a one–

to–one mapping between k-forms and their dual (n − k)-forms. Concretely, the Hodge star operator

∗ : Ωk(M)→ Ωn−k(M) is the unique isomorphism that maps any k–form α into its dual (n− k)–form

∗α on M satisfying:

[∗α, β] = [α ∧ β, µ], β ∈ Ωn−k(M), (3.20)

where µ ∈ Ωn(M) denotes the volume form (a nowhere vanishing n–form) induced by the Riemannian

metric. The Hodge star operator satisfies the following properties:

∗ ∗ α = (−1)k(n−k)α, α ∈ Ωk(M), (3.21)

∗1 = µ, ∗µ = 1, (3.22)

where 1 is the constant 0–form having value 1 at all points x ∈M .

3.3.1 The Discrete Hodge Star Operator

We define a discrete Hodge star operator as a homomorphism (linear operator) from the group of p–

forms to (2 − p)–forms (cochains), i.e. ? : Cp(K) → C2−p(K), 0 ≤ p ≤ 2. But since our discrete

Hodge operator is defined without a notion of any dual mesh and there is no isomorphism between the

groups of p– and (2 − p)–dimensional cells (chains), our Hodge star is not an isomorphism (invertible

operator), unlike its continuous counterpart and diagonal approximations of the operator for which ∗∗ is

an identity up to the sign (see equation (3.21)).

On the other hand, thanks to the dual forms being located on elements of our "primal" mesh, we can

compute discrete wedge products of primal and dual forms and thus define a discrete inner product and

discrete interior product later on (in Sections 3.4 and 3.5).

In the following paragraphs we introduce the discrete Hodge stars of each degree, our definitions

were motivated by two conditions:

1. The Hodge dual of constant discrete forms on planar surfaces is exact, thus also the identities of

equation (3.22) hold on planar surface meshes.

2. The discrete Hodge star operator on 1–forms leads to L2–Hodge inner product on 1–forms iden-

tical to the one of [Alexa and Wardetzky 2011, Lemma 3].
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In the Subsection 3.3.2, we will see that on curved surface meshes the Hodge star operator on

constant forms is not exact in general, concretely the equation (3.22) does not hold, however this is

inevitable in the way we perform the numerical tests. We take as ground truth the analytical solution,

thus the volume form µ is taken as the volume form on the analytical surface and not on a polygonal

approximation of that surface. And since we work with polygonal meshes, the given volume forms µ

are not necessarily the volume forms on a particular polygon. Thus neither the discrete Hodge dual form

of the constant form α0 = 1 is exact on polygonal meshes. For example, in Figure 3.10, the 2–forms ω2

are the analytical volume forms on the underlying analytical surfaces, yet their discrete Hodge duals are

not exactly 1 on our polygonal meshes as they would on the smooth underlying Riemannian surfaces.

The Hodge star operator on 2–forms is just an incidence matrix taking in account the degree pi of

the pi–polygonal faces faces fi and the face areas |fi|. E.g., if ω2 is a 2–form, then the 0–form ?ω on a

vertex v is defined by

(?2ω)(v) =
1∑

fi�v

|fi|
pi

·
∑
fi�v

ω(fi)

pi
, (3.23)

i.e., it is a linear combination of values of ω on faces adjacent to v. In matrix form the operator reads

?2 = W−1V fv>,

where fv is the matrix defined in equation (3.4) and WV is a diagonal |V | × |V | matrix given by

WV [i, i] =
∑
fk�vi

|fk|
pk

.

The Hodge star operator on 1–forms is first defined per halfedges as:

?1 = W1 R
>, (3.24)

where R is the matrix defined in equation (3.6) and W1 is a symmetric matrix given per a p–polygonal

face f by:

W1[i, j] =
〈hi, hj〉
|f |

,

where hk are the halfedges incident to and having the same orientation as the face f , and 〈 , 〉 denotes

the dot product of the halfedges vectors.

If an edge e is not on boundary, it has two adjacent faces, thus we compute the values of a given

1–form ?β on corresponding halfedges, sum their values with appropriate orientation sign and divide

the result by 2 – see the explanation in Figure 3.9 and the Example 3.3.1.

Example 3.3.1. If we think about the mesh in the Figure 3.9, then the value of the Hodge star dual of a

1–form β on the halfedge e0 is

?β(e0) =
1

4|f0|

(
(〈e0, e1〉 − 〈e0, e3〉)(β(e0)− β(e2)) + (〈e0, e0〉 − 〈e0, e2〉)(β(e3)− β(e1)

)
.
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The value of the the Hodge star dual of the 1–form β on the edge e is then given by

?α(e) =
?β(e0)− ?β(e4)

2
.

Figure 3.9: Let β ∈ C1 and e = (v0, v1) be the edge with e0, e1 as the corresponding halfedges, then ?β(e) = ?β(e0)−?β(e4)
2

,
where ?β(e0) is a linear combination of values of β on dashed blue edges and ?β(e4) is a linear combination of values of β
on dashed orange edges

The Hodge star operator on a 0–form α is a 2–form defined per a p–polygonal face f as:

(?0α)(f) =
|f |
p

∑
vi≺f

α(vi), (3.25)

and it is simply the arithmetic mean of the values of α on vertices of the given face f multiplied by the

face area |f |. In matrix form it reads

?0 = WF fv,

where fv is the matrix defined in equation (3.4) and WF is a diagonal |F | × |F | matrix with face areas

as entries.

3.3.2 Numerical Evaluation and Discussion

Even though our discretizations of the Hodge star operator are not diagonal matrices, they are highly

sparse and thus computationally efficient. We have numerically evaluated our approximation of the

Hodge star operator in a fashion similar to the one explained at the beginning of Section 3.2.5.

We have performed several numerical tests on linear, quadratic, and trigonometric differential forms

on planar and curved meshes and they exhibit the same (at least linear) convergence rate. For example

in Figure 3.10 we tested different resolutions of polygonal meshes on a torus and a sphere (the same sets

of meshes as in Subsection 3.2.5). We evaluated errors of approximation for each degree – for Hodge

star on 2–forms (denoted as Error 2), 1–forms (Error 1), and 0–forms (Error 0). And in Figure 3.11 we

show decreasing L2 errors for trigonometric forms on a set of irregular polygonal meshes on a planar

square.
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Figure 3.10: The discrete Hodge star operator on quadratic forms on the torus (L) and the sphere (R) on the same set of meshes
as in the previous section. The graphs depict decreasing L2 errors, both axes are in log10 scale. On the left, we computed
the Hodge star duals of these forms: α0 = x2 + y2, β1 = −ydx + xdy, ω2 = 2√

x2+y2

(
x(
√
x2 + y2 − 1)dy ∧ dz +

y(
√
x2 + y2 − 1)dz ∧ dx + z

√
x2 + y2dx ∧ dy

)
. For the sphere and the graph on the right, we have chosen differential

forms: α0 = x2 + y2, β1 = −ydx + xdy, ω2 = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy. In both cases, we have chosen these
forms because the analytical solutions of the Hodge star duals are known, concretely: ?α = α ∧ µ, ?µ = 1, ?β = γ, where
for torus γ = −2xzdx− 2yzdy + 2(x2 + y2 −

√
x2 + y2)dz and for sphere γ = −xzdx− yzdy + (x2 + y2)dz.

Figure 3.11: The graph on the left depicts the convergence rate of approximations of the Hodge duals for the following
trigonometric differential forms: α0 = sin(x− 1)− cos(2y), β1 = (sin(2x) + cos(0.5y))dx+ (3 sin(x)− cos(y))dy, and
ω2 = (sin(x+1

4
) + cos(1− y

3
))dx ∧ dy, on a set of general polygonal meshes on a planar square. In the center we can see a

sample mesh with 600 vertices and on the right a mesh with 1300 vertices.

3.4 The L2–Hodge Inner Product

The L2–Hodge inner product of differential forms α, β ∈ Ωk(M) on a Riemannian manifold M is

defined as:

(αk, βk) :=

∫
M
α ∧ ?β.

We define a discrete L2–Hodge inner product by:

(αk, βk) := α ∪ ?β[K] =
∑
f∈K

(
α ∪ ?β

)
(f), k = 0, 1, 2,

where [K] is the fundamental class of the surface mesh K (all faces f of K).
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Thus, the discrete inner product matrices read:

M0 = fv>WF fv,

M1 |f =RW1 R
> |f ,

M2 = fvW−1V fv>,

where M1 |f is the matrix of product of two 1–forms restricted to a face f .

It can be easily shown that our inner product of 1–forms on triangle meshes is identical to the

one of [Gu and Yau 2003] and [Gu 2002]. And on general polygons it is equivalent to the one of

[Alexa and Wardetzky 2011, Lemma 3], that is:

RW1 R
> |f =

1

|f |
BfB

>
f , (3.26)

where Bf is a Rp×3 matrix with edge midpoint vectors as rows (we take the barycenter of each p–face

f as the center of origin per face).

Figure 3.12: The approximation errors of L2–Hodge inner products of 0-, 1–, and 2–forms on sets of irregular polygonal
meshes on a planar square (L), sphere (C), and torus (R). The differential forms tested on torus and sphere are the same as in
Figure 3.10. For the square we have chosen linear differential forms α0 = 3x−2y−1, β1 = (2x+y)dx+(−x+3y+1)dy,
and ω2 = (x− 2y + 1)dx ∧ dy.

To numerically evaluate our inner products, we have taken differential forms α0, β1, ω2 and com-

puted their analytical L2 norms over the mesh K:

X0 =

∫
K

α ∧ ∗α, X1 =

∫
K

β ∧ ∗β, X2 =

∫
K

ω ∧ ∗ω.

We have also defined discrete differential forms α0
D, β

1
D, ω

2
D on all elements of K as

αD(v) = α(v), βD(e) =

∫
e
β, ωD(v) =

∫
f
ω,

and computed their discrete L2 norms:

Y0 = α>DM0 αD, Y1 = β>DM1 βD, Y2 = ω>DM2 ωD.
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The L2 errors are then given by

Error 0 = |X0 − Y0|, Error 1 = |X1 − Y1|, Error 2 = |X2 − Y2|.

We have numerically evaluated these errors for several linear and quadratic forms on polygonal,

simplicial, and quadrilateral meshes in plane and space and they exhibit linear decrease in all cases,

some examples are shown in Figure 3.12.

3.5 The Interior Product

The interior product iX : Ωk(M) → Ωk−1(M) is the contraction of a differential form with a vector

field X . Even though the interior product does not need a metric for its definition, if M is a Riemannian

manifold, the following property holds [Hirani 2003, Lemma 8.2.1]:

Lemma 3.5.1. Let M be a Riemannian n–manifold, X ∈ X(M) a vector field, α ∈ Ωk(M), then

iX α = (−1)k(n−k) ∗ (∗α ∧X[),

where [ : X(M)→ Ω(M) is the flat operator.

Since we already have a discrete wedge product and Hodge star operator that are compatible with

each other, we can employ the lemma to define our discrete interior product (contraction operator)
iX : Ck(K)→ Ck−1(K) on a polygonal mesh K by:

iX α = (−1)k(2−k) ? (?α ∪X[), α ∈ Ck(K), k = 1, 2. (3.27)

For a vector field X ∈ X(M) on a differentiable manifold M , the discrete flat operator [ : X(M) →
C1(K) is defined on each edge e of the mesh K by:

X[(e) =

∫
e
〈X, e′〉dx =

∫ 1

0
〈X(t), e′(t)〉dt

for e(t) = v0 + t(v1 − v0), where v0, v1 are the endpoints of e.

Just like its continuous analog, our iX is a linear operator that maps k–forms to (k − 1)–forms such

that iX iX = 0.

We numerically evaluate our approximation of the contraction operator in a fashion similar to the

one explained at the beginning of Section 3.2.5. Concretely in Figure 3.13 we show the convergence

rate of the discrete contraction of various forms on the same sets of meshes as in previous sections.

3.6 The Lie derivative

The Lie derivative evaluates the change of a differential form α ∈ Ω(M) along the flow of a tangent

vector field X ∈ X(M) on a differentiable manifold M .

Using the Cartan’s magic formula we derive the discrete Lie derivative £X : Ck(K) → Ck(K)

as:

£Xα = iX dα+ d iX α, α ∈ Cp(K), p = 0, 1, 2.
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Figure 3.13: L2 errors of the contraction operator on discrete forms compared to analytical solutions: On the left we plot
the convergence for differential forms on torus given as β1 = −2xzdx − 2yzdy + 2(x2 + y2 −

√
x2 + y2)dz, ω2 =

2√
x2+y2

(
x(
√
x2 + y2−1)dy∧dz+y(

√
x2 + y2−1)dz∧dx+z

√
x2 + y2dx∧dy

)
wrt vector fieldX = (−y, x, 0). The

graphs in the center and on the right plot errors for linear and constant forms wrt linear vector field X = (−y, x, 0) on a torus
(C) and a sphere (R). The linear forms chosen are of the form β1 = (2x+y)dx+(−x+3y+z)dz, ω2 = (x−2y+z)dx∧dy.
And the constant forms read β1 = dx

3
− dy

2
+ dz

4
and ω2 = dx ∧ dy + dy ∧ dz. Error 1 L denotes the L2 error on linear

1–forms, Error 1 C denotes the L2 error on constant 1–forms, and similarly for 2–forms.

Our discrete contraction operator and Lie derivative share with their continuous counterparts some

important algebraic properties such as:

iX £X = £X iX , £Xd = d£X .

But the Leibniz product rule of the contraction operator and Lie derivative with discrete exterior deriva-

tive is not satisfied in general. Concretely

iX(αk ∪ βl) = (iX α
k) ∪ βl + (−1)kαk ∪ (iX β

l),

£X(α ∪ β) = (£Xα) ∪ β + α ∪ (£Xβ),

holds only if α or β is a closed 0–form.

Already in [Hirani 2003, Chapter 8] the author noticed that the Leibniz rule for Lie derivative might

not hold due to the discrete wedge product not being associative in general. We confirm the observation

in [Desbrun et al. 2005, Section 10] that the Leibniz rule may be satisfied only for closed forms.

3.6.1 Numerical Evaluation

We have seen converging behavior of Lie derivative of all tested forms on regular meshes, be them planar

or curved: with slope -1.5 on 0–forms and at least -0.5 on 1– and 2–forms, as we illustrate in Figures

3.14 left and 3.17 left. On irregular meshes we could still see linear convergence of Lie derivative of

0–forms. However, the L2 errors for 1– and 2–forms on very irregular meshes keep rather constant or

oscillate, as we demonstrate thorough this section.
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Figure 3.14: The Lie derivative on regular grids (L) and irregular polygonal meshes (R) on a unit square in plane: On constant
0–, 1–, 2– forms wrt constant vector fields, the Lie derivative is exact both on regular grid and irregular polygonal planar
meshes. On 0–forms it is also exact if the vector field or the 0–form is constant. On linear 0–forms wrt linear vector fields
(LL0) the derivative converges with slope -1.5 on regular grid and with slope -1.2 on irregular polygonal meshes. On 1– and
2–forms on regular grid, the L2 errors decrease with slope -0.5, but on irregular polygonal meshes (the same set of meshes
used in previous sections) the L2 errors decrease very slowly: LL goes for linear forms wrt linear v. f., LC for linear forms wrt
to constant v. f., and CL for constant forms wrt to linear v. f. The differential forms and vector fields tested are explicitly given
in Example 3.6.1.

Example 3.6.1. On planar domains, we test the approximation of Lie derivatives of constant/linear

differential forms wrt constant/linear vector fields. Following the notation of Figure 3.14, these are:

CL – Lie derivative of constant forms α0 = 3, β1 = 1
3dx −

1
2dy, ω2 = 1

8dx ∧ dy wrt constant vector

field X = (2x, 1− y, 0).

LC – Lie derivative of linear forms α0 = 3x − 2y − 1, β1 = (2x + y)dx + (−x + 3y + 1)dy,

ω2 = (x− 2y + 1)dx ∧ dy wrt constant vector field X = (15 ,−
1
2 , 0).

LL – Lie derivative of linear forms α0 = 3x − 2y − 1, β1 = (2x + y)dx + (−x + 3y + 1)dy,

ω2 = (x− 2y + 1)dx ∧ dy wrt linear vector field X = (2x, 1− y, 0).

For example, the Lie derivatives of the linear forms wrt the linear vector field (LL) are:

£Xα
0 = 6x+ 2y − 2, £Xβ

1 = (8x+ y + 1)dx+ (−x− 6y + 2)dy, £Xω
2 = (3x− 1)dx ∧ dy.

We also test the influence of irregularity of a mesh on L2 errors. Concretely, we have used gradual
jittering on perfectly regular meshes to see how the convergence changes. The results can be seen in

Figures 3.15 and 3.18. Jittering is done by moving each point of the mesh in random tangent direction,

where in the case of a curved surface we project the displaced points back on the analytical surface. The

displacement of each point is exactly r–times the shortest edge length l for some real r > 0.
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Figure 3.15: The Lie derivative of linear forms wrt linear vector fields (denoted LL in Example 3.6.1) on sets of gradually
jittered quadrilateral planar meshes, as explained in Example 3.6.1. The scale on both axes is log10, we test meshes with 100
up to 391876 vertices. The graph on the far left top is a plot of approximation errors on completely regular planar grid. Then
from left to right and top to bottom the graphs show convergence rate on a set of meshes with displacements 0.1l, 0.2l, 0.3l,
0.4l, where l is the shortest edge length of the original regular mesh. Samples of jittered meshes can be seen in Figure 3.16.

Figure 3.16: Samples of jittered meshes (with 1369 vertices): from left to right the applied displacements are 0.1l, 0.2l,
0.3l, 0.4l, where l is the shortest edge length of the original regular mesh. The mesh far right has already visible non–convex
quadrilaterals.

Just like in the planar case, the Lie derivative on meshes on curved surfaces exhibit experimental

convergence on regular meshes, as illustrated in Figure 3.17 left. However, on irregular meshes the

discrete Lie derivative of 1– and 2–forms does not seem to converge, the L2 errors rather oscillate

around constant values – see the Figure 3.17 center and right and also Figure 3.18. Only on 0–forms the

Lie derivative converges at least linearly.
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Figure 3.17: The Lie derivative on regular polygonal meshes on sphere (L), and irregular polygonal meshes on sphere (C) and
torus (R). For the two graphs concerning sphere, we test differential forms α0 = x2+y2, β1 = −xzdx−yzdy+(x2+y2)dz,
ω2 = xdy∧dz+ydz∧dx+zdx∧dy wrt vector fieldX = (−y, x, 0). The set of irregular polygonal meshes on sphere is the
same as in Figure 3.8. On torus we have tested forms α0 = x2 + y2, β1 = −2xzdx− 2yzdy + 2(x2 + y2 −

√
x2 + y2)dz,

ω2 = 2√
x2+y2

(
x(
√
x2 + y2−1)dy∧dz+y(

√
x2 + y2−1)dz∧dx+z

√
x2 + y2dx∧dy

)
wrt vector fieldX = (−y, x, 0).

And we have also used the same sets of meshes as in previous sections, where some samples are depicted in Figure 3.4.

In Figure 3.18 we demonstrate how jittering influences the convergence of L2 errors of our approxi-

mation of Lie derivatives of linear forms wrt linear vector fields on triangle meshes on a unit sphere.

Figure 3.18: The Lie derivative of linear forms wrt linear vector fields on sets of jittered meshes on a unit sphere. The graph
on the top far left is a plot of approximation errors on a regular triangle mesh. Then from left to right and top to bottom the
graphs show convergence rate on a set of triangle meshes with displacements 0.05l, 0.1l, 0.2l, 0.3l, where l is the shortest edge
length of the original regular mesh. Samples of jittered meshes can be seen in Figure 3.19. Here we have tested Lie derivatives
of differential forms α0 = 3x− 2y − z, β1 = (2x+ y)dx+ (−x+ 3y + z)dy, ω2 = (x− 2y + z)dx ∧ dy wrt vector field
X = (−y, x, 0).
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Figure 3.19: Samples of jittered meshes on a unit sphere, all with 10k vertices: from left to right the applied displacements (in
tangent direction) are 0.05l, 0.1l, 0.2l, 0.3l, where l is the shortest edge length of the original regular mesh.

3.6.2 Discussion

We have seen that the discrete approximation of the Lie derivative on curved and planar surface meshes

converges to the analytical solutions with slope -0.5 on 1– and 2–forms, and with slope -1.5 on 0–forms,

if the meshes are regular.

On irregular meshes the evidence does not hint at converging behavior for 1– and 2–forms. However,

even on highly irregular meshes, the errors kept rather constant, thus our method still may be used

for specific applications in computer graphics, where we do not need a great precision. The scope of

applications of our method is a subject for future research.
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Chapter 4

Conclusion and Future Work

We have presented a cup product of cochains on polygonal pseudomanifolds as a discrete version of the

wedge product of differential forms on smooth manifolds. Inspired by the formulas we derived from the

definition of the cubical cup product of cubical cochains introduced in [Arnold 2012] and the definition

of Wilson’s cup product of simplicial cochains, we came with simple and straightforward formulas for

the polygonal cup product of polygonal cochains, without employing any additional structure. That is,

we have defined a proper cup product of cochains on polygonal pseudomanifolds and in Theorem 3.2.1

we have proved that our product satisfies the definition of a cup product. This is a new result and our

main contribution.

Our polygonal cup product shares with the wedge product of differential forms defining properties

such as the bilinearity, skew–commutativity, and the Leibniz product rule with (discrete) derivative. The

wedge product is also associative, but our cup product is associative only on cohomology, this limitation

is common to all discrete versions of wedge product we know.

We have then defined a discrete Hodge star operator that is compatible with our discrete wedge

product and thus allows for definition of the L2– Hodge inner product and also the interior product

(contraction operator). For all these operations and operators we have shown that our approximations

converge to the analytical solutions at least linearly.

The contraction operator together with the discrete exterior derivative then gave rise to the Lie deriva-

tive by using Cartan’s magic formula. We presented an evidence that on regular meshes the Lie deriva-

tives of 0–, 1–, and also 2–forms converge. However, the experiments show that on very irregular

meshes, the Lie derivatives of 1– and 2–forms do not converge and the L2 errors of approximation stay

rather constant or oscillate.

4.1 Future Work

There are many directions of future research. We have used our discrete Hodge star operator to define a

discretization of the interior product, but on Riemannian manifolds, the Hodge star operator is employed

to define the codifferential operator δ : Ωk(M)→ Ωk−1(M) by

δ(αk) = (−1)k ∗ d ∗ α.
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Then using the codifferential operator, the Laplace–de Rham operator is given as ∆ := δd + dδ. In

the future, we want to define discrete codifferential and Laplace–de Rham operators in this manner and

analyze their properties. Concretely, we aim to investigate the resulting Hodge decomposition using

these two discrete operators together with the discrete exterior derivative d.

Further, we know that it is possible to define a discrete wedge product on tetrahedrons and 3–

dimensional (topological) cubes in a way that it satisfies the defining properties of a wedge product

such as the bilinearity, Leibniz product rule, skew–commutativity, and associativity on closed forms.

Therefore we want to examine the possibility to extend the calculus we have just presented from 2–

dimensional to (intrinsically) 3–dimensional manifolds, that is:

• Define DEC operators on 3–dimensional cubical and simplicial complexes, these shall include ex-

cept the discrete wedge product also the Hodge star operator. Once defined these, we could derive

a discrete contraction operator and a discrete Lie derivative just as we did in the 2–dimensional

case.

• Look for a definition of a discrete wedge product on general 3–dimensional polytopes other than

tetrahedras and cubes or at least find a subset of polytopes that allow for such a wedge product

that would satisfy the Leibniz product rule and other properties. And then possibly follow the

workflow above.

4.2 Conclusion

Our ultimate goal has been to define DEC operators as similar to their continuous counterparts as possi-

ble. The first step was to define the metric–independent operators and operations that would be compat-

ible with each other and would have desired properties, we have managed to meet this target by defining

the polygonal cup product that satisfies the Leibniz rule with discrete exterior derivative. The next step

was to endow our pseudomanifolds with a metric that would allow for defining good approximations of

metric–dependent operators such as the Hodge star. And using the discrete version of the wedge product,

Hodge star operator, and exterior derivative, we derived other operators commonly associated to DEC,

all of which operate directly on polygonal meshes, without any need for combinatorial subdivision or

use of a dual mesh.

Geometry processing with polygonal meshes is a new developing area, maybe one of the first steps

and also the most influential ones has been the definition of discrete Laplacians on general polygonal

meshes by [Alexa and Wardetzky 2011]. Our objective was to continue in this venue by presenting a

novel discretization of several operators and operations that act directly on general polygonal meshes

and are compatible with each other. We thus extend further the DEC framework from simplicial and

cubical setting to general polygonal case.

We have shown empirical convergence of our schemes even on irregular non–planar meshes, with

the exception of the Lie derivative of 1–and 2–forms that exhibits a sensitivity to the quality of mesh.

We believe that the generality of our framework will make it a useful tool in many geometry processing

tasks and will inspire further research in the area.

41



Bibliography

[Abraham et al. 1988] ABRAHAM R., MARSDEN J. E., RATIU T.: Manifolds, Tensor Analysis, and Applica-
tions, Vol. 75 of Applied Mathematical Sciences. Springer–Verlag, New York, 1988.

[Alexa and Wardetzky 2011] ALEXA M., WARDETZKY M.: Discrete Laplacians on General Polygonal
Meshes. In ACM Transactions on Graphics (SIGGRAPH), 30(4), 2011.

[Arnold 2012] ARNOLD R. F.: The Discrete Hodge Star Operator and Poincaré Duality. PhD thesis, Virginia
Tech, 2012.

[Azencot et al. 2013] AZENCOT O., BEN–CHEN M., CHAZAL F., OVSJANIKOV M.: An operator approach
to tangent vector field processing. In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Sym-
posium on Geometry Processing (Aire-la-Ville, Switzerland, Switzerland, 2013), SGP ’13, Eurographics
Association, pp. 73–82.

[Azencot et al. 2015] AZENCOT O., OVSJANIKOV M., CHAZAL F., BEN–CHEN M.: Discrete Derivatives of
Vector Fields on Surfaces – An Operator Approach. In ACM Transactions on Graphics, 34(3), pp. 29:1–
29:13, 2015.

[Bobenko et al. 2008] BOBENKO A. I., SCHRODER P., SULLIVAN J.M., ZIEGLER G. M. (Eds.): Discrete
Differential Geometry, Vol. 38 of Oberwolfach Seminars. Birkhauser Verlag, 2008.

[Bossavit 1998] BOSSAVIT, A.: Computational Electromagnetism. Academic Press, Boston, 1998.

[Cartan 1945] CARTAN É. J.: Les Systemes Differentiels Exterieurs et leurs Applications Géometriques. Herman,
Paris, 1945.

[Crane 2013] CRANE K.: Conformal Geometry Processing. PhD thesis, California Institute of Technology, 2013.

[Crane et al. 2013c] CRANE K., DE GOES F., DESBRUN M., SCHRODER P.,: Digital Geometry Processing
with Discrete Exterior Calculus. ACM SIGGRAPH 2013 Courses, 2013.

[Crane et al. 2013a] CRANE K., PINKALL U., SCHRODER P.: Robust Fairing via Conformal Curvature Flow.
In ACM Trans. Graph, 2013.

[Crane et al. 2013b] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics in Heat: A New Approach
to Computing Distance Based on Heat Flow. In ACM Transactions on Graphics, 2013.

[De Goes 2014] DE GOES F.: Geometric Discretization through Primal-Dual Meshes. PhD thesis, Caltech, 2014.

[De Goes et al. 2016] DE GOES F., DESBRUN M., MEYER M., DEROSE, T.: Subdivision Exterior Calculus
for Geometry Processing. In ACM Transactions on Graphics (SIGGRAPH), 35(4), 2016.

[De Goes et al. 2014a] DE GOES F., LIU B., BUDNINSKIY M., TONG Y., DESBRUN M.: Discrete 2-Tensor
Fields on Triangulations. In Computer Graphics Forum, 33, pp. 13–24 , 2014.

[De Goes et al. 2014b] DE GOES F., MEMARI P., MULLEN P., DESBRUN M.: Weighted Triangulations for
Geometry Processing. In ACM Transactions on Graphics, 33(3), 2014.

[De Goes et al. 2015] DE GOES F., WALLEZ C., HUANG J., PAVLOV D., DESBRUN M.: Power Particles: an
Incompressible Fluid Solver Based on Power Diagrams. In ACM Transactions on Graphics (SIGGRAPH),
34(4), 2015.

42



[Desbrun et al. 2008] DESBRUN M., KANSO E., TONG Y.: Discrete Differential Forms for Computational
Modeling. In Bobenko et al. [Bobenko et al. 2008], pp. 287–324.

[Desbrun et al. 2005] DESBRUN M., HIRANI A. N., LEOK M., MARSDEN J. E.: Discrete Exterior Calculus,
arXiv:math/0508341v2 [math.DG], 2005.

[Desbrun et al. 1999] DESBRUN M., MEYER M., SCHRODER P., BARR A.: Implicit Fairing of Irregular
Meshes using Diffusion and Curvature Flow. In Proc. ACM SIGGRAPH Conf., 1999.

[Fecko 2011] FECKO M.: Differential Geometry and Lie Groups for Physicists, Cambridge University Press,
2011.

[Fenn 1983] FENN R.: Techniques of Geometric Topology, Cambridge University Press, 1983.

[Geoghegan 2008] GEOGHEGAN R.: Topological Methods in Group Theory, Springer–Verlag New York, 2008.

[Gonzalez–Diaz et al. 2011a] GONZALEZ–DIAZ R., JIMENEZ M.J., MEDRANO B.: Cubical Cohomology
Ring of 3D Photographs. In International Journal of Imaging Systems and Technology 21(1), 2011.

[Gonzalez–Diaz et al. 2011b] GONZALEZ–DIAZ R., LAMAR J., UMBLE R.: Cup Products on Polyhedral Ap-
proximations of 3D Digital Images. In Lecture Notes in Computer Science, Vol. 6636, 2011.

[Gu and Yau 2003] GU X., YAU S. T.: Global Conformal Surface Parameterization. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP ’03), 2003.

[Gu 2002] GU X.: Parametrization for Surfaces with Arbitrary Topologies, PhD thesis, Computer Science, Har-
vard University, 2002.

[Hatcher 2001] HATCHER A.: Algebraic Topology. Cambridge University Press, 2001.

[Herholz et at. 2015] HERHOLZ P., KYPRIANIDIS J. E., ALEXA M.: Perfect Laplacians for Polygon Meshes.
In SGP ’15 Proceedings of the Eurographics Symposium on Geometry Processing, 2015.

[Hirani 2003] HIRANI A. N.: Discrete exterior Calculus. PhD thesis, Caltech, 2003.

[Kock 2009] KOCK A.: Synthetic Geometry of Manifolds. In Cambridge Tracts in Mathematics, Vol. 180, 2009.

[Kravatz 2008] KRAVATZ D.: Diagonal Approximations on an n-gon and The Cohomology Ring of Closed Com-
pact Orientable Surfaces. Senior thesis, Millersville University, 2008.

[Lee 1997] LEE J. M.: Riemannian Manifolds: An Introduction to Curvature. Springer, 1997.

[Manolescu 2015] MANOLESCU, C.: Pin(2)–equivariant Seiberg–Witten Floer homology and the Triangulation
Conjecture. Journal of American Mathematical Society (29), 2015.

[Massey 1991] MASSEY W. S.: A Basic Course in Algebraic Topology. Springer-Verlag New York, 1991.

[McKenzie 2007] MCKENZIE A.: HOLA: A High-Order Lie Advection of Discrete Differential Forms, with
Applications in Fluid Dynamics. Master’s thesis, California Institute of Technology. Division of Engineering
and Applied Science, 2007.

[Mullen et al. 2011a] MULLEN P., MEMARI P., DE GOES F., DESBRUN M.: HOT: Hodge–Optimized Trian-
gulations. In ACM Transactions on Graphics (SIGGRAPH), 30(4), 2011.

[Mullen et al. 2011b] MULLEN P., MCKENZIE A., PAVLOV D., DURANT L., TONG Y., KANSO E., MARS-
DEN J.E., DESBRUN M.: Discrete Lie Advection of Differential Forms. In Foundations of Computational
Mathematics, 11(2), pp. 131–149, 2011.

[Munkres 1984] MUNKRES J. R.: Elements of Algebraic Topology. Addison–Wesley, 1984.

[Pinkall and Polthier 1993] PINKALL U., POLTHIER K.: Computing Discrete Minimal Surfaces and Their Con-
jugates. In Experimental Mathematics, 2:15-36, 1993.

[Rognes 2011] ROGNES J.: Lecture Notes on Algebraic Topology II. University of Oslo, 2011.

43



[Ranicki (ed.) 1996] The Hauptvermutung Book, editor RANICKI A., ISBN 0-7923-4174-0, 1996.

[Seifert and Threlfall 1980] SEIFERT H., THRELFALL W.: A Textbook of Topology, Academic Press, 1980.

[Stillwell 1993] STILLWELL J.: Classical Topology and Combinatorial Group Theory. Springer-Verlag New
York, 1993.

[Wardetzky et al. 2007] WARDETZKY M., MATHUR S., KALBERER F., GRINSPUN E.: Discrete Laplace
operators: No Free Lunch. In SGP ’07 Proceedings of the fifth Eurographics Symposium on Geometry
Processing, 2007.

[Whitney 1957] WHITNEY H.: Geometric Integration Theory. Princeton University Press, Princeton, 1957.

[Wilson 2007] WILSON S. O.: Cochain Algebra on Manifolds and Convergence under Refinement. In Topology
and its Applications 154 (9), pp. 1898-1920, 2007.

[Zou et al. 2011] ZOU G., HU J., HUA J.: Authalic parameterization of general surfaces using Lie advection.
IEEE Transactions on Visualization and Computer Graphics 17, pp. 2005–2014, 2011.

44


