
INSTITUTO NACIONAL DE MATEMÁTICA
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Introduction

One of the most important recent endeavors in the field of Algebraic Geo–
metry is to describe the birational geometry of the moduli spaces associated
to curves.

Fixing the genus g, a topological invariant of curves, the moduli space
of curves has been constructed by Mumford in the 60’s; it is denoted Mg.
Even though Birational Geometry is concerned with general properties, a
compactification of Mg is useful. A compactification of Mg is the Deligne–
Mumford Mg ([DM]), the compactification by adding stable curves to the
boundary.

In order to try to characterize the effective cone of Mg and to answer
other questions related to the birational geometry of Mg, several effective
divisors were computed in Picfun(Mg)⊗Q in terms of the so-called Harer
basis. The Brill–Noether divisors were computed by Harris and Mumford
[HMu] by the method of test curves. Also by the same method, Diaz
[D] and Cukierman [C] computed other divisors. Farkas computed several
divisors by the same method and together with Popa [FP] obtained in-
equalities between the first few coefficients of any effective divisor in Mg

not contained in the boundary.

Recently, Cumino, Esteves and Gatto ([CEG1],[CEG2]) recomputed the
Diaz and Cukierman divisors with a new approach. Instead of using test
curves, the calculation was done over a general 1-parameter family of sta-
bles curves. They used the theory of limit linear series for curves of compact
type introduced by Eisenbud and Harris ([EH1]), but in a slightly more ge–
neral format, working for any nodal connected curves. This approach has
also been taken by Abreu [A] to compute a new effective divisor in Mg, in
his thesis work under the guidance by Esteves.

For g = 2n, the divisor Abreu computed is defined as the closure of
the locus of smooth curves C having a pair of points (P,Q) such that Q
has ramification weight at least 2 in the linear system H0(ωC(−nP )) and
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iv INTRODUCTION

P has ramification weight at least 2 in the linear system H0(ωC(−nQ)).
We can consider other classes of divisors which are similar to the divisor
which was calculated by Abreu. For instance, for nonnegative integers a, b
such that a+ b = g, a general problem is the calculation of the class of the
divisor Ra,b which is defined as the closure of the locus of smooth curves
C having a pair of points (P,Q) such that Q has ramification weight at
least 2 in the linear system H0(ωC(−aP )) and P has ramification weight
at least 2 in the linear system H0(ωC(−bQ)). Notice that Abreu’s thesis
work addresses the case a = b. A natural variant of this kind of divisors is:
for each positive integer 1 ≤ n ≤ g − 2, consider the divisor S2Wn which
is defined as the closure of the locus of smooth curves C having a pair of
points (P,Q) such that Q has ramification weight at least 3 in the linear
system H0(ωC(−nP )). Our work addresses the case n = 1.

Thus, this work addresses the problem of computing the class in the
Picard group of the functor Picfun(Mg) of a certain effective divisor of Mg.
This divisor, S2W1 in Mg, is defined as the closure of the locus of smooth
curves C having a pair of points (P,Q) with Q having ramification weight
at least 3 in the linear system H0(ωC(−P )). Our approach is to combine
the methods by Cumino, Esteves and Gatto and the method of test curves.
For simplicity, we denote S2W := S2W1.

Writing the class of the divisor we want to compute as

S2W := aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2]

and using the method of test curves, we obtain the coefficient ai in terms
of the coefficient a1 for every i > 1 and each odd integer g ≥ 5. We find
the following relations:

ai = (i(g − i)/(g − 1))a1, for every 2 ≤ i ≤ [g/2].

Also, we compute the coefficient a by using the Thom–Porteous formula
and intersection theory. For each g, we get

a = 9g5 − 51g4 + 129g3 − 207g2 + 174g − 54.

In order to find a lower bound for each coefficient ai, we need to state the
following hypothesis:

Hypothesis (∗).
If (X,A) is a general pointed smooth curve, then for every ramification

point P ∈ X of the complete linear system H0(ωX(−(gX − 1)A)) and for



INTRODUCTION v

every i ≥ 1, the complete linear system H0(ωX((i + 1)A − P )) does not
have ramification points on X−{A} having ramification weight at least 3.

Using the methods by Cumino, Esteves and Gatto, and using the hy-
pothesis (∗), we find the following inequalities for each g:

−bi ≤ ai for every 1 ≤ i ≤ [g/2],

where

bi := 6i4g2 − 6i4g + 12i4 − 6i3g3 − 3i3g2 − 3i3g − 18i3 + 3i2g4

+ 3i2g2 + 12i2g + 6i2 − 3ig5 + 12ig4 − 21ig3 + 21ig2 − 21ig + 6i.

We actually have equalities above for g = 3 and i = 1, and for g = 4
and i = 2.

The ′general family′ method, i.e. the method we use to obtain a lower
bound for each coefficient ai, with i ≥ 1, is coarsely described below. Let
π : X → T be a general family of stable curves over a smooth projective
curve T . We can assume that the singular curves in our family have only
one node. Furthermore, we can assume that these curves are not in the
divisor we want to compute. Now, let Y = X ×T X and blow up to solve
the singularities of Y . Let B be this blow up. Composing with the first
projection Y → X , we obtain a map ρ : B → X . We consider ρ as a family
of curves over X .

Let ω be the relative dualizing sheaf of B/X and L := ω(−∆̃), where ∆̃
is the strict transform of ∆ in B. It may be necessary to modify L, B and
even X . Abusing notation, we can say that the changes must be suitable
enough that we get a family ρ of nodal curves over X such that h0(L

∣∣
F

) =
g−1 for every fiber F . Thus, ρ∗L is locally free of rank g−1 and we can use
relative sheaves of jets to compute the ramification points of H0(L

∣∣
F

) as
the fiber F varies. By considering the natural evaluation map u : ρ∗ρ∗L →
Jg−2
ρ (L) and substracting excess components of the degeneracy scheme W ′

of u, we get a divisor W intersecting each fiber in finitely many points. If
W intersects each singular fiber with multiplicity at most 2 at each point,
then we have π∗ρ∗(c3(J

2
ρ (OB(W )))) = [π]∗(S2W ), where [π] : T → Mg is

the map which is induced by π; otherwise, we may have excess points on
the singular fibers and we must calculate multiplicities at certain points
and substract them from c3(J

2(OB(W ))) to get [π]∗(S2W ). It turns out
that we can obtain a lower bound for the coefficient ai, for every i ≥ 1.
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In order to obtain the coefficient ai in terms of the coefficient a1 for
every i > 1 and every odd positive integer g ≥ 5, we use the method of
test curves. We use [g/2]− 1 test curves, which are induced by families of
flag stable curves over P1, and we apply a result which is similar to [HMo],
Theorem 6.65, statement 2. To be able to apply the result, we use a general
result about flag curves.

Our work is organized as follows: In Chapter 1 we present some pre-
liminaries on ramification schemes, smoothings, limit linear systems and
linear series on general smooth curves. In Chapter 2 we review some facts
about the construction of Mg and about its associated Picard groups. In
Chapter 3 we present some needed results on linear systems on rational
and elliptic curves. In Chapter 4 we introduce the divisor S2W and com-
pute the coefficient of λ in the expression for S2W ; we do a description
of the results and methods used in the following chapters, and we present
our main theorem (Theorem 4.1.1). Also, we present a few results which
can be useful to compute the coefficient of δ0 in the expression for S2W .
In Chapter 5 we present a general result on flag curves (Proposition 5.1.1)
and we apply this result by using the method of test curves to get relations
between the coefficients of δ1, . . . , δ[g/2] in the expression for S2W . Finally,
in Chapter 6 we compute lower bounds for the coefficients of δ1, . . . , δ[g/2].



Chapter 1

Limit linear systems and
ramification schemes

1.1 Ramification points

A nodal curve C is a reduced, connected, projective scheme of dimension
1 over C whose only singularities are nodes. The dualizing sheaf ωC is an
invertible sheaf over C. The arithmetic genus of C is gC = h0(C, ωC).

Let C be a smooth curve, L an invertible sheaf on C and V ⊆ H0(L) a
linear system of dimension r+ 1, for an integer r ≥ 0. For each P ∈ C and
each integer i ≥ 0, let V (−iP ) := V ∩H0(L(−iP )), the space of sections
of V vanishing at P with multiplicity at least i. The orders of vanishing at
P of sections of L in V can be ordered in a increasing sequence a0, . . . , ar.
Define the ramification weight of P ,

wtV (P ) =
r∑
i=0

(ai − i)

We say that P is a ramification point of V if wtV (P ) > 0; otherwise P
is said to be an ordinary point of V . If wtV (P ) = 1, we call P a simple
ramification point ; and if wtV (P ) ≥ 2 we call P a special ramification point.

On the other hand, V induces a section of L⊗r+1⊗ω⊗(r+1
2 )

C , obtained by
considering locally Wronskian determinants of a sequence of r+1 functions.
The zero locus of this section is denoted by RV and called the ramification
divisor of (V,L). Indeed, a local analysis shows that

RV =
∑

P∈C wtV (P )P

The degree of RV is the degree of the invertible sheaf L⊗r+1⊗ω⊗(r+1
2 )

C , i.e.,

1



2 1. LIMIT LINEAR SYSTEMS AND RAMIFICATION SCHEMES

deg(RV ) = (r + 1)(deg(L) + r(g − 1)),

known as the Plücker formula.

1.2 Ramification schemes

Let π : X→ T be a flat, projective morphism whose fibers are nodal curves
of genus g. We say that π is a family of curves. Suppose X is a nonsingular
scheme. Let L be an invertible sheaf on X and V ⊆ π∗L a locally free
subsheaf of rank r + 1, for an integer r ≥ 0. Suppose for each t ∈ T the
composition

Vt = Vt/(mT,tVt) −→ (π∗L)t/(mT,t(π∗L)t) −→ H0(Xt,L
∣∣
Xt

)

is injective. We call V a relative linear system.
There exist sheaves J iπ(L) for each integer i ≥ 0 satisfying the following

properties (see [E1], [LT])
(1) J0

π(L) ∼= L.
(2) J iπ(L) is locally free of rank i+ 1.
(3) There are natural evaluation maps ei : π∗π∗L→ J iπ(L).
(4) For each i ≥ 1, there is an exact sequence of truncation

0 // ω⊗iπ ⊗ L // J iπ(L)
ri // J i−1

π (L) // 0

where ωπ is the relative dualizing sheaf of π. The truncation maps ri are
compatible with the evaluation maps, i.e., ei−1 = ri ◦ ei for every i ≥ 1.

When π is a family of smooth curves, the sheaves J iπ(L) are called
relative sheaves of principal parts of order i of L.

Let W′V be the degeneracy locus of the natural evaluation map

ur : π∗V→ π∗π∗L→ Jrπ(L)

Notice that ur is a morphism between locally free sheaves of rank r+ 1
over X. Locally, W′V is given by the zero locus of a Wronskian determi-
nant of a sequence of r + 1 functions. Furthermore, W′V has the prop-
erty that W′V ∩ Xt is the ramification divisor RVt of the linear system
Vt ⊆ H0(Xt,L

∣∣
Xt

) for every smooth fiber Xt. Let Xns ⊆ X be the lo-
cus of nonsingular fibers of π. The closure W′V ∩ Xns in X is denoted by
WV. We call WV the ramification divisor of (V,L).
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In case V = π∗L, we say that WV is the ramification divisor of the
invertible sheaf L.

The formation of W′V is functorial in the following sense: suppose there
are a morphism ψ : L′ → L which is an injective morphism between
invertible sheaves on X whose degeneracy divisor is D, a relative linear
system V′ ⊆ π∗L

′ of rank r + 1, a morphism µ : V′ → V with degeneracy
scheme Y , and a commutative diagram

V′ //

µ
��

π∗L
′

π∗ψ
��

V // π∗L

By using the naturality of the evaluation maps, we obtain the following
commutative diagram of locally free sheaves of rank r + 1

π∗V′ //

π∗µ
��

Jrπ(L′)

Jrπ(ψ)
��

π∗V // Jrπ(L)

By using the truncation exact sequences, we obtain that the degeneracy di-
visor of Jrπ(ψ) : Jrπ(L′)→ Jrπ(L) is (r+1)D; therefore, taking determinants
in the commutative diagram, we obtain

π∗Y + W′V = (r + 1)D + W′V′ (1.2.1)

Now, we will define the k-th special ramification locus. The divisor WV

is the zero locus of a section w : OX → OX(WV). By using the natural
evaluation maps, this section induces derivatives w(k) : OX → Jkπ (OX(WV)).
Let SkWV be the zero scheme of w(k). We say that SkWV is the k-th
special ramification locus. On Xns, the support of SkWV is the set of
points P having ramification weight at least k + 1 in the linear system
Vπ(P ) ⊆ H0(L

∣∣
Xπ(P )

).

1.3 Smoothings

Let C be a nodal curve. A smoothing of C is a flat, projective morphism
p : C → Σ where Σ = SpecC[[t]], C is a regular scheme and C is isomorphic
to the special fiber.
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Let p : C → Σ be a smoothing of a nodal curve C of genus g. Let C∗ be
the generic fiber, L an invertible sheaf on C and V ⊆ p∗L a relative linear
system of rank r + 1. Let V = H0(V) ⊆ H0(L). As p is flat and Σ is
a regular, integral scheme of dimension 1, it follows that every associated
point of L belongs to C∗. Then the restriction Γ(C,L) → Γ(C∗,L

∣∣
C∗

) is

injective. Indeed, suppose s ∈ Γ(C,L) satisfies s
∣∣
C∗

= 0; then we have
Supp(s)∩C∗ = ∅. On the other hand, if s 6= 0, then we can write Supp(s) =
{x1}∪ . . .∪{xm} as a union of irreducible components and we obtain that
the points x1, . . . , xm are associated points of L, hence these points belong
to C∗. It follows that s = 0. Thus, H0(L) is a torsion-free C[[t]]-module and
hence free. Also, it follows that V is a free C[[t]]-module. Notice that, since
cohomology commutes with flat base change, we have the isomorphism
H0(L)⊗C[[t]] C((t)) ∼= H0(L

∣∣
C∗

). Let V∗ = V ⊗C[[t]] C((t)). Since V ⊆ p∗L is

a relative linear system, we have an injective map V/tV ↪→ H0(L)/tH0(L),
that is, V = V∗ ∩H0(L).

Let D be a divisor on C with support in C. Let V (D)∗ be the image
of V∗ under the natural isomorphism H0(L

∣∣
C∗

) ∼= H0(L(D)
∣∣
C∗

). Define

V (D) = V (D)∗ ∩H0(L(D)).

If D is an effective divisor on C, we define V (−D) = V ∩H0(L(−D)).
Also, if D ⊆ C is a subcurve, define V

∣∣
D

as the image of V under the
restriction map H0(L)→ H0(L

∣∣
D

).

Let C1, . . . , Cn be the irreducible components of C. Since C is connected,
for each i = 1, . . . , n there exists an invertible sheaf Li on C of the form

Li = L(
n∑
i=1

ai,lCl) = L⊗OC(
n∑
i=1

ai,lCl)

such that the restriction map

H0(C,Li

∣∣
C

)→ H0(Ci,Li

∣∣
Ci

)

is injective. We say that Li has focus on Ci. Let Vi = V (
∑n

i=1 ai,lCl) and
let V̄i be the image of Vi under the restriction map

H0(C,Li)→ H0(Ci,Li

∣∣
Ci

)

The dimension of V̄i is r+1. We say that (V̄i,Li

∣∣
Ci

) is a limit linear system
on Ci.
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Let Ri be the ramification divisor of (V̄i,Li

∣∣
Ci

) and W the ramification
divisor of V. Then (see [E2], Theorem 7)

W ∩ C =
n∑
i=1

Ri +
∑
i<j

∑
P∈Ci∩Cj

(r + 1)(r − li,j)P

where li,j = ai,j − ai,i + aj,i − aj,j. We call W ∩ C the limit ramification
divisor of (V,L), and li,j is called the connecting number between Li and
Lj with respect to Ci and Cj.

Now, we will present some facts about smoothings and general curves.
The following discussion can be found in [A].

Consider C = E ∪ F , where E,F are subcurves without irreducible
components in common. We have that V (−E) = V ∩H0(L(−E)) induces
a relative linear system V(−E) ⊆ p∗(L(−E)) of rank r + 1. By using
the equation (1.2.1), we obtain W′V = (r + 1)E + W′V(−E) − p∗Y , where
Y is the degeneracy divisor of V(−E) → V. Let µ : V (−E) → V be
the inclusion map. We have that µ is a homomorphism of free C[[t]]-
modules of rank r + 1 and p∗Y =ordt(det(µ))C. Now, we will show that
ordt(det(µ)) =dimCcoker(µ). Indeed, since tV ⊆ V (−E), we have the
natural epimorphisms of C-vector spaces

V/tV → V/V (−E) and V (−E)/tV (−E)→ V (−E)/tV .

Let m :=dimCV/V (−E) and let g1, . . . , gm be sections in V such that their
images in V/V (−E) give us a C-basis of V/V (−E). As V/tV → V/V (−E)
is an epimorphism, it follows that

dimCV (−E)/tV =dimCV/tV−dimCV/V (−E) = r + 1−m

Let f1, . . . , fr+1−m be sections in V (−E) such that their images give us a
C-basis of V (−E)/tV . Since the images of tg1, . . . , tgm in tV/tV (−E) give
us a C-basis of tV/tV (−E), we have that a C-basis of V (−E)/tV (−E)
is given by the images of f1, . . . , fr+1−m, tg1, . . . , tgm in V (−E)/tV (−E).
By Nakayama’s lemma, f1, . . . , fr+1−m, tg1, . . . , tgm span the C[[t]]-module
V (−E), and since V (−E) is a free C[[t]]-module of rank r+1, we have that
f1, . . . , fr+1−m, tg1, . . . , tgm give us a C[[t]]-basis of V (−E). Analogously, we
have that f1, . . . , fr+1−m, g1, . . . , gm give us a C[[t]]-basis of V . Therefore,
using the bases f1, . . . , fr+1−m, tg1, . . . , tgm and f1, . . . , fr+1−m, g1, . . . , gm of
V (−E) and V respectively, we get that ordt(det(µ)) = m =dimCcoker(µ).
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Therefore

W′V = (r + 1)E + W′V(−E) − dimCcoker(µ)C

= (r + 1)E + W′V(−E) − dimC(V
∣∣
E

)C

Now, let {P1, . . . , Pn} := E ∩ F . Using the exact sequence

0→ V
∣∣
F

(−P1 − . . .− Pn)→ V
∣∣
C
→ V

∣∣
E
→ 0,

where V
∣∣
F

(−P1 − . . . − Pn) := V
∣∣
F
∩ H0(L

∣∣
F

(−P1 − . . . − Pn), we get
dimCV

∣∣
F

(−P1 − . . . − Pn)+dimCV
∣∣
E

=dimCV
∣∣
C

=dimCV/tV = r + 1.
Then

W′V = (r + 1)E + W′V(−E) − dimC(V
∣∣
E

)(E + F )

= W′V(−E) + (r + 1− dimC(V
∣∣
E

))E − dimC(V
∣∣
E

)F

= W′V(−E) + dimCV
∣∣
F

(−P1 − . . .− Pn)E − dimC(V
∣∣
E

)F

(1.3.2)

In addition, if D is an effective divisor of C such that D and E have no
common components, then V (−D)

∣∣
E
⊆ V

∣∣
E

(−D · E).
For the convenience of the reader we include a collection of results we

will need, without their proofs.

Proposition 1.3.1. Let C be a nodal union of two smooth curves X and
Y , identifying the point A ∈ X with the point B ∈ Y . Let p : C → Σ
be a smoothing of C, L an invertible sheaf over C and V ⊆ p∗L a relative
linear system of rank r + 1. Let W ′ be the degeneracy scheme and W the
ramification divisor of V. Suppose that for every i > 0 the following is
satisfied

dimC(V
∣∣
X

(−iA))+dimC(V (−iY )
∣∣
Y

(−B)) ≤ r + 1
dimC(V

∣∣
Y

(−iB))+dimC(V (−iX)
∣∣
X

(−A)) ≤ r + 1

Then

W ′ = W + TwV |X(A)Y + TwV |Y (B)X

Proof. See [A], Lemma 5.2.2. 2

Proposition 1.3.2. Let C be a smooth curve, L an invertible sheaf and
V ⊆ H0(L) a linear system of dimension r + 1. Let V ′ = V (−P ) ⊆
H0(L(−P )) for some point P ∈ C such that V ′ 6= V . Suppose V and V ′

do not have special ramification points on C−{P}. Then V and V ′ do not
have ramification points in common on C − {P}.



1.3. SMOOTHINGS 7

Proof. See [A], Lemma 5.2.5. 2

Proposition 1.3.3. Let (C,A) be a general pointed smooth curve of genus
g. Then, for every 0 ≤ a ≤ g−1, the complete linear system H0(ωC(−aA))
does not have special ramification points.

Proof. See [A], Proposition 5.3.3. 2

Proposition 1.3.4. Let (C,A) be a general pointed smooth curve of genus
g ≥ 1, and i a positive integer. Then the complete linear system H0(ωC(iA))
has only simple ramification points distinct from A.

Proof. See [CEG2], Proposition 3.1. 2

Proposition 1.3.5. Let i0 be a fixed positive integer. Then for a general
curve C of genus g and a general point R ∈ C,

h0(ωC((1 + i)R− (a+ 1)P − (b+ 1)Q)) = 0

for every P,Q ∈ C, every i = 0, . . . , i0 and every nonnegative integers a
and b with a+ b = g + i.

Proof. See [A], Proposition 5.3.4. 2

Proposition 1.3.6. Let i0 be a fixed positive integer. Then for a general
curve C of genus g and a general point R ∈ C,

h0(ωC((1 + i)R− (a− 1)P − (b− 1)Q)) = 2

for every P,Q ∈ C − {R}, every i = 0, . . . , i0 and every positive integers a
and b with a+ b = g + i.

Proof. See [A], Proposition 5.3.6. 2



Chapter 2

The moduli space of stable curves
and intersection theory

2.1 Construction of Mg

Let g ≥ 2 be an integer. Let Mg denote the coarse moduli space of stable
curves. We will recall how Mg is constructed. Given a Deligne-Mumford
stable curve X, we have that ω⊗nX is very ample for each n ≥ 3. Then,
we may view X as a closed subscheme of degree 2n(g − 1) of PN , where
N = (2n−1)(g−1)−1, as by Riemann-Roch h0(X,ω⊗nX ) = (2n−1)(g−1)
for each n ≥ 2.

We have that ω⊗nX
∼= OX(1); we call such a stable curve n-canonically

embedded. Let H be the Hilbert scheme parametrizing subschemes of
PN with Hilbert polynomial 2n(g − 1)T + 1 − g, and U ⊆ PN × H the
universal closed subscheme. There is a locally closed subscheme K ⊆ H
parametrizing n-canonically embedded stable curves of genus g. We can
get K as follows:

Let H ′ ⊆ H be the open subscheme parametrizing nodal curves. Let
UH ′ ⊆ PN×H ′ be the induced subfamily over H ′. This family UH ′ admits a
Picard algebraic space PicUH′/H ′ over H ′. Furthermore, the sheaves ω⊗nUH′/H ′
and OUH′(1) induce a map

H ′ → PicUH′/H ′ ×H ′ PicUH′/H ′.

Then K is the preimage of the diagonal under this map.

We have that K is locally closed in H ′, because so is the diagonal in
PicUH′/H ′×H ′PicUH′/H ′. Let V := UK ⊆ PN ×K be the induced subscheme
and v : V → K the family induced by the second projection PN ×K → K.

8
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We have that K is smooth (see [HMo], lemma 3.35).
The family v : V → K is versal. To see this, let π : C → S be a family

of genus g stable curves. The pushforward π∗(ω
⊗n
π ) is locally free of rank

N + 1. Thus, for each point s ∈ S, there is an open neighborhood Us of
s and an isomorphism O⊕N+1

Us
→ π∗(ω

⊗n
π )
∣∣
Us

. We have an induced map

Cs := π−1(Us) → PN × Us, and this map is an embedding for n ≥ 3, as
the fibers of π are stable. This is a n canonical embedding, so we get a
map Us → K and by the universal property of the Hilbert scheme, we get
a Cartesian diagram

Cs //

π
��

V
v
��

Us //K

Therefore, v is versal.
The group of automorphisms PGL(N) of PN acts naturally on H. Then,

there is an induced action PGL(N)×K → K. Gieseker [G] constructs Mg

as a geometric GIT quotient of K under this action for any n sufficiently
large. The quotient map, Φ : K → Mg, is also the map induced by the
family v : V → K.

2.2 The Picard group of Mg

LetMg be the coarse moduli space parametrizing stable curves. LetA1(Mg)
be its Chow group of codimension−1 cycle classes and Pic(Mg) its Picard
group. SinceMg has only finite quotient singularities, every codimension−1
subvariety Y of Mg is Q−Cartier, i.e. there is a Cartier divisor D of Mg

such that [D] = d[Y ] for some integer d > 0. So we have an isomorphism

A1(Mg)⊗Q→ Pic(Mg)⊗Q

Now, we will define the Picard group of the moduli functor Picfun(Mg):

Definition 2.2.1. An element γ ∈ Picfun(Mg)⊗Q is a collection of classes
γπ ∈ Pic(S)⊗Q for each family of stable curves π : C → S, such that for
each Cartesian diagram

C ′ //

π′
��

C
π
��

S ′
f // S
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we have γπ′ ∼= f ∗(γπ).

We have an isomorphism (see [HMo], Proposition 3.88)

Pic(Mg)⊗Q→ Picfun(Mg)⊗Q

It is easy to explain how the isomorphism works: Consider an element
Γ ∈ Pic(Mg). For each family of stable curves π : C → S, we have an
induced map ζ : S →Mg. Now, define γπ := ζ∗(Γ).

Also, there is an isomorphism (see [HMu], p.50)

Picfun(Mg)→ Pic(K)PGL(N),

where Pic(K)PGL(N) ⊆ Pic(K) is the invariant subgroup under the action
of PGL(N). The isomorphism carries an element γ ∈ Picfun(Mg) to γv.

2.3 Tautological and boundary classes

There is a natural element λ ∈ Picfun(Mg), which is called a tautological
class. Given a family π : C → S of stable curves, define λπ :=det(π∗(ωπ)),
where ωπ is the dualizing sheaf of π.

To define the boundary classes, we need some terminology. Given a
connected nodal curve X, a node P ∈ X is called a disconnecting node if
X − {P} is not connected. Otherwise, P is called a connecting node.

For each i = 0, . . . , [g/2], we define the subsets ∆′i ⊆ K as follows: ∆′0
is the set of points s ∈ K such that the fiber Vs has a connecting node,
and ∆′i, for i ≥ 1 is the set of points s ∈ K such that the fiber Vs has
a disconnecting node P , and the closure in Vs of one of the connected
components of Vs − {P} has arithmetic genus i. The subsets ∆′i ⊆ K
are closed subsets of K of codimension 1. We give them their reduced
induced scheme structures. Thus, they are Cartier divisors, because K is
smooth. The invertible sheaves associated to the ∆′i are invariant under
the action of PGL(N). Let δ0, . . . , δ[g/2] denote the corresponding elements
of Picfun(Mg). These elements are called boundary classes. We can also
view λ and the δi as elements of Pic(Mg)⊗Q.

The group Picfun(Mg) is freely generated by λ and the δi for g ≥ 3 (see
[AC]). If g = 2, then δ0 and δ1 form a basis for Pic(Mg)⊗Q (see [M]), and
we have Mumford’s relation:

10λ = δ0 + 2δ1
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For our calculations, it is important the fact that a class γ ∈ Picfun(Mg)⊗Q
is defined by its value γπ ∈ Pic(S)⊗Q on 1-parameter families π : C → S,
where C is smooth. Moreover, it is enough to consider just a sufficiently
general family.

2.4 Intersection theory

All definitions and theorems of this section can be found in [F].

Let X be a scheme, and AkX the Chow group of its k−cycles modulo
rational equivalence. Let E be a vector bundle over X of rank r. For
i = 0, 1, . . ., the i− th Chern class ci(E) is a map

ci(E)∩− : AkX → Ak−iX

defined for all k by the following properties:

1. c0(E) = 1.

2. If f : X ′ → X is a flat morphism, then

ci(f
∗E) ∩ f ∗α = f ∗(ci(E) ∩ α)

for all cycles α on X and all i.

3. (Whitney sum) For any exact sequence

0→ E ′ → E → E ′′ → 0

of vector bundles on X, we have

ck(E) =
∑
i+j=k

ci(E
′)cj(E

′′).

4. (Normalization) If E is a line bundle, and D is a Cartier divisor on

X with OX(D) ∼= E, then

c1(E) ∩ [X] = [D].

5. (Projection formula) If f : X ′ → X is a proper morphism, then

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗(α)

for all cycles α on X ′ and all i.
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6. (Vanishing) For all i > r, we have that

ci(E) = 0.

Define the Chern polynomial ct(E) by

ct(E) := 1 + c1(E)t+ . . .+ cr(E)tr.

Factor ct(E) =
∏r

i=1(1 + αit) in a formal way, i.e., the Chern classes of
E are the elementary symmetric functions of α1, . . . , αr. The αi are called
Chern roots of E.

The Chern classes of the dual bundle E∨ are given by the formula

ci(E
∨) = (−1)ici(E).

For a line bundle L, we have the following formula for the top Chern
class of the tensor product E ⊗ L

cr(E ⊗ L) =
r∑
i=0

c1(L)icr−i(E).

Keeping the same notation of Section 1.2, we have the following propo-
sition:

Proposition 2.4.1. c1(J
i
π(L)) =

(
i+1

2

)
c1(ωπ)+(i+1)c1(L) for every i ≥ 0.

Proof. By using the truncation exact sequence

0→ ωπ ⊗ L→ J1
π(L)→ J0

π(L) ∼= L→ 0

we obtain by the Whitney formula

c1(J
1
π(L)) = c1(ωπ⊗L) + c1(L) = c1(ωπ) + c1(L) + c1(L) = c1(ωπ) + 2c1(L)

More generally, by using the truncation exact sequence

0→ ω⊗iπ ⊗ L→ J iπ(L)→ J i−1
π (L)→ 0

we obtain by the Whitney formula for every i ≥ 1

c1(J
i
π(L)) = c1(ω

i
π ⊗ L) + c1(J

i−1
π (L)) = ic1(ωπ) + c1(L) + c1(J

i−1
π (L))

Therefore, by induction
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c1(J
i
π(L)) = (1+2+ ...+ i)c1(ωπ)+(i+1)c1(L) =

(
i+1

2

)
c1(ωπ)+(i+1)c1(L).

2

The Chern character ch(E) of a vector bundle E of rank r is defined by
the formula

ch(E) =
r∑
i=1

exp(αi),

where exp(x) = ex =
∑∞

i=0 x
n/n!, and α1, . . . , αr are the Chern roots of E.

The first terms are

ch(E) = r+c1(E)+
1

2
(c1(E)2−2c2(E))+

1

6
(c1(E)3−3c1(E)c2(E)+3c3(E))+. . .

The Todd class td(E) of a vector bundle E of rank r is defined by the
formula

td(E) =
r∏
i=1

Q(αi),

where

Q(x) =
x

1− e−x
= 1 +

1

2
x+

∞∑
k=1

(−1)k−1 Bk

(2k)!
x2k,

where the Bk are the Bernoulli numbers and α1, . . . , αr are the Chern roots
of E. The first terms are

td(E) = 1 +
1

2
c1(E) +

1

12
(c1(E)2 + c2(E)) +

1

24
c1(E)c2(E) + . . .

When X is non-singular, we write simply ci(E) in place of ci(E) ∩ [X].
Furthermore, every coherent sheaf F on a non-singular X has a finite
resolution by locally free sheaves

0→ En → En−1 → . . .→ E1 → E0 → F → 0,

so we can extend the definition of Chern classes to coherent sheaves; in
fact, just use the Whitney sum to define

ct(F) :=
n∏
i=0

ct(Ei)
(−1)i.

Given a proper morphism f : X → Y and a coherent sheaf E over X,
recall that the shriek of E by f , denoted by f!(E), is an element of the
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Grothendieck group of coherent sheaves on Y (for details and definitions,
see [F], p.281). In order to state the Grothendieck-Riemann-Roch Theo-
rem, we just need the following definition:

Definition 2.4.1. Let f : X → Y be a proper morphism and E a coherent
sheaf over X. Define

ch(f!(E)) :=
∑
i=0

(−1)ich(Rif∗(E)).

Now, we state the Grothendieck-Riemann-Roch Theorem; this theorem
will be useful for us, as by using it, we will be able to compute the first
Chern class of the pushforward of an invertible sheaf, and this will be
important to compute classes of degeneracy loci of evaluation maps (see
Section 1.2).

Theorem 2.4.2. (Grothendieck-Riemann-Roch) Let f : X → Y be a
proper morphism between smooth connected schemes. Then

ch(f!(E)) = f∗(ch(E) · td(TX/Y )),

for all coherent sheaf E over X, where TX/Y is the relative tangent sheaf.

If π : C → S is a family of stable curves, where both C and S are smooth,
then the Grothendieck-Riemann-Roch Theorem can be used to prove the
following formulas:

(1) td1(TC/S) = −1
2c1(ωπ).

(2) π∗(td2(TC/S)) = λπ.

(3) π∗(c1(ωπ)2) = 12λ− δ, where δ = δ0 + . . .+ δ[g/2].
Finally, we will state the Thom-Porteous Formula, which we will use to-

gether with the Grothendieck-Riemann-Roch Theorem to compute classes
of degeneracy loci of evaluation maps.

Theorem 2.4.3. Let X be a smooth connected scheme, u : E → F a
morphism of vector bundles of ranks e and f , and k ≤min{e, f}. Define
Dk(u) as the locus where the map has rank ≤ k. If Dk(u) has the expected
codimension (e− k)(f − k), then

[Dk(u)] = ∆
(e−k)
f−k (c(F − E)) ∩ [X],

where ∆
(d)
l (c(F − E)) = det((cl+j−i(F − E))i,j=1,...,d), and for each i, j,

cl+j−i(F − E) is the coefficient of tl+j−i in the formal series ct(F )/ct(E).
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In particular, if e = f and k = e− 1, then

Dk(u) = c1(F )− c1(E)

and if k = 0 and E = OX then

[Dk(u)] = cf(F ).



Chapter 3

Linear systems on rational and
elliptic curves

3.1 Rational curves

Proposition 3.1.1. Let R1, . . . , Rn be distinct points on P1, and a1, . . . , an
positive integers. Define the linear system

V := H0(ωP1((a1 + 1)R1)) + . . .+H0(ωP1((an + 1)Rn))

⊆ H0(ωP1((a1 + 1)R1 + . . .+ (an + 1)Rn))

Then V is (a1 + . . . + an)-dimensional and has no ramification points on
P1 − {R1, . . . , Rn}. Furthermore, for each i, the orders of vanishing at Ri

of the sections in V are

0, . . . , ai − 1, ai + 1, . . . , a1 + . . .+ an

and wtV (Ri) =
∑

j 6=i aj.

Proof. Let L := ωP1((a1 + 1)R1 + . . .+ (an + 1)Rn). Since for each i

Ui := H0(ωP1((ai + 1)Ri)) ∩
∑
j 6=i

H0(ωP1((aj + 1)Rj))

is contained in H0(L(−
∑

j 6=i(aj + 1)Rj)) and H0(L(−(ai + 1)Ri)), we get

Ui ⊆ H0(L(−(a1 + 1)R1 − . . .− (an + 1)Rn)) = H0(ωP1) = 0

for every i, so the dimension of V is a1 + . . .+ an. On the other hand, all
complete linear systems on P1 have no ramification points, so the statement

16
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of the proposition is true if n = 1. Suppose n ≥ 2 and let us argue by
induction on n. For every 0 ≤ m ≤ a1 + 1

V (−mR1) = H0(ωP1((a1 + 1−m)R1))⊕H0(ωP1((a2 + 1)R2))⊕ . . .
. . .⊕H0(ωP1((an + 1)Rn))

Then dimCV (−mR1) = a1−m+a2 + . . .+an for every 0 ≤ m ≤ a1 and
V (−a1R1) = V (−(a1 + 1)R1).

Now, consider the linear system

V ′ = H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn))
⊆ H0(ωP1((a2 + 1)R2 + . . .+ (an + 1)Rn))

Since by induction V ′ has no ramifications points on P1 − {R2, . . . , Rn},
and since dimCV

′ = a2 + . . .+ an and V ′(−αR1) = V (−(a1 + 1 +α)R1) for
every integer α ≥ 0, it follows that V (−(a1 + 1 + a2 + . . . + an)R1) = 0.
Thus, the orders of vanishing at R1 of the sections in V are

0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . .+ an,

whence wtV (R1) = a2 + . . . + an. Analogously, for each i, the orders of
vanishing at Ri of the sections in V are

0, . . . , ai − 1, ai + 1, . . . , a1 + . . .+ an,

whence wtV (Ri) =
∑

j 6=i aj. Then

wtV (R1) + . . .+ wtV (Rn) = (n− 1)(a1 + . . .+ an).

On the other hand, since

deg(L) = a1 + . . .+ an + n− 2 and dimCV = a1 + . . .+ an,

we have by Plücker formula

deg(RV ) = (n− 1)(a1 + . . .+ an).

Therefore, we have no other ramification points. 2

Proposition 3.1.2. Let R1, . . . , Rn be distinct points on P1, and a1, . . . , an
positive integers.

Let L := ωP1((a1 + 1)R1 + . . .+ (an + 1)Rn)). Define the linear system

V := H0(ωP1((a1 + 1)R1))⊕ . . .⊕H0(ωP1((an + 1)Rn)) ⊆ H0(L)
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Let V1 ⊆ H0(L) be a linear system of dimension a1 + . . .+an−1 contained
in V and containing

H0(ωP1((a1 − 1)R1))⊕H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn))

Then either V1 has no ramification points on P1 − {R1, . . . , Rn} or V1 has
exactly one ramification point there and the ramification is simple. Fur-
thermore,

wtV1
(R1) = (

∑
j 6=1 aj) + a1 + . . .+ an − 2 + ε1, where ε1 ∈ {0, 1},

and for each i 6= 1

wtV1
(Ri) = (

∑
j 6=i aj)− 1 + εi, where εi ∈ {0, 1}.

Proof. If a1 = 1, then by dimension considerations

V1 = H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn)).

Then, it follows from Proposition 3.1.1 that

wtV1
(Ri) =

∑
j 6=1,i aj = (

∑
j 6=i aj)− 1 + εi,

where εi = 0 for every i 6= 1, and

wtV1
(R1) = 2(a2 + . . .+ an)

= (
∑
j 6=1

aj) + a1 + . . .+ an − 2 + ε1,

where ε1 = 1.

Now, assume a1 ≥ 2. As the orders of vanishing at R1 of the sections in
V are

0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . .+ an,

it follows that the orders of vanishing at R1 of the sections in V1 are of
the form {0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . . + an} − {l}, for some integer
l ∈ {0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . .+ an}. Notice that

V (−2R1) = H0(ωP1((a1 − 1)R1))⊕H0(ωP1((a2 + 1)R2))⊕ . . .
. . .⊕H0(ωP1((an + 1)Rn)) ⊆ V1
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and since V1 ⊆ V , we have V1(−2R1) = V1 ∩ V (−2R1) = V (−2R1). Then
dimCV1(−2R1) = a1 + . . .+ an − 2 and hence l ≤ 1. Therefore

wtV1
(R1) = wtV (R1) + a1 + . . .+ an − 1− l

= (
∑
j 6=1

aj) + a1 + . . .+ an − 2 + ε1,

where ε1 = 1− l ∈ {0, 1}.
To show the equalities wtV1

(Ri) = (
∑

j 6=i aj)− 1 + εi, where εi ∈ {0, 1}
and i 6= 1, it is enough to consider the case i = 2. Notice that

V (−(a2 + 1)R2) = H0(ωP1((a1 + 1)R1))⊕H0(ωP1((a3 + 1)R3))⊕ . . .
. . .⊕H0(ωP1((an + 1)Rn))

Now, consider the linear system

V ′ = H0(ωP1((a1 + 1)R1))⊕H0(ωP1((a3 + 1)R3))⊕ . . .
. . .⊕H0(ωP1((an + 1)Rn))

⊆ H0(ωP1((a1 + 1)R1 + (a3 + 1)R3 . . .+ (an + 1)Rn))

Since

V ′(−2R1) = H0(ωP1((a1 − 1)R1))⊕H0(ωP1((a3 + 1)R3))⊕ . . .
. . .⊕H0(ωP1((an + 1)Rn))

⊆ H0(ωP1((a1 − 1)R1 + (a3 + 1)R3 . . .+ (an + 1)Rn))

has no ramification points on P1− {R1, R3, . . . , Rn} and dimCV
′(−2R1) =

a1 + a3 + . . . + an − 2, we get V ′(−2R1 − (a1 + a3 + . . . + an − 2)R2) = 0
and hence V (−2R1− (a1 + . . .+ an− 1)R2) = 0. As we saw in Proposition
3.1.1, we have dimCV (−(a1 + . . . + an − 1)R2) = 2; then, by dimension
considerations

V = V (−2R1)⊕ V (−(a1 + . . .+ an − 1)R2)

Therefore V (−(a1 + . . .+ an − 1)R2) * V1 and we get

dimCV1(−(a1 + . . .+ an − 1)R2) = 1

On the other hand, as we saw in Proposition 3.1.1, the orders of vanishing
at R2 of the sections in V are

0, . . . , a2 − 1, a2 + 1, . . . , a1 + . . .+ an
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So the orders of vanishing at R2 of the sections in V1 are of the form

{0, . . . , a2 − 1, a2 + 1, . . . , a1 + . . .+ an} − {l},

for some integer l ∈ {0, . . . , a2− 1, a2 + 1, . . . , a1 + . . .+ an}. Since we have
dimCV1(−(a1 + . . . + an − 1)R2) = 1, it follows that l ≥ a1 + . . . + an − 1.
Thus

wtV1
(R2) = wtV (R2) + a1 + . . .+ an − 1− l

= a1 + a3 + . . .+ an + a1 + . . .+ an − 1− l
= a1 + a3 + . . .+ an − 1 + a1 + . . .+ an − l
= a1 + a3 + . . .+ an − 1 + ε2,

where ε2 := a1 + . . .+ an − l ∈ {0, 1}.
Now, we will prove the first statement of the proposition. Using the

equalities we have shown, we get∑
wtV1

(Ri) = (a1 + . . .+ an − 1)n− 1 +
∑
εi

On the other hand, by Plücker formula deg(RV1
) = (a1+. . .+an−1)n. Then

0 ≤
∑
εi ≤ 1 and V1 has 1−

∑
εi ramification points on P1−{R1, . . . , Rn},

counted with their respective weights. This proves the first statement of
the proposition. 2

Proposition 3.1.3. Let R1, . . . , Rn be distinct points on P1, and a1, . . . , an
positive integers. Define the linear system

V := H0(ωP1((a1 + 1)R1))⊕ . . .⊕H0(ωP1((an + 1)Rn))

⊆ H0(ωP1((a1 + 1)R1 + . . .+ (an + 1)Rn))

Consider the linear system

V1 := V (−P ) ⊆ H0(ωP1(−P + (a1 + 1)R1 + . . .+ (an + 1)Rn))

Then either V1 has no ramification points on P1 − {R1, . . . , Rn} or V1 has
exactly one ramification point there and the ramification is simple. Fur-
thermore, for each i

wtV1
(Ri) = (

∑
j 6=i aj)− 1 + εi, where εi ∈ {0, 1}.
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Proof. All complete linear systems on P1 have no ramification points,
so the first statement of the proposition is true if n = 1. Suppose n ≥ 2
and let us argue by induction on n. We have

V (−a1R1) = V (−(a1 + 1)R1)

= H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn))

Then

V1(−a1R1) = V1(−(a1 + 1)R1)

= (H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn)))(−P )

⊆ H0(ωP1(−P + (a2 + 1)R2 + . . .+ (an + 1)Rn))

Now, consider the linear system

V ′ = (H0(ωP1((a2 + 1)R2))⊕ . . .⊕H0(ωP1((an + 1)Rn)))(−P )

⊆ H0(ωP1(−P + (a2 + 1)R2 + . . .+ (an + 1)Rn))

We have dimCV
′ = a2 + . . .+ an − 1 (Proposition 3.1.1) and by induction

R1 is at most a simple ramification point of V ′. Therefore, the orders of
vanishing at R1 of the sections in V1 are

0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . .+ an − 1 or

0, . . . , a1 − 1, a1 + 1, . . . , a1 + . . .+ an − 2, a1 + . . .+ an,

i.e., {0, . . . , a1−1, a1 +1, . . . , a1 + . . .+an}−{l}, where l = a1 + . . .+an−1
or l = a1 + . . .+ an. Then

wtV1
(R1) = wtV (R1) + a1 + . . .+ an − 1− l

= (
∑
j 6=1

aj)− 1 + a1 + . . .+ an − l

= (
∑
j 6=1

aj)− 1 + ε1,

where ε1 = a1 + . . .+ an − l ∈ {0, 1}. Analogously, we have for each i

wtV1
(Ri) = (

∑
j 6=i aj)− 1 + εi, where εi ∈ {0, 1}.

Using the equalities we have shown, we get∑
wtV1

(Ri) = (a1 + . . .+ an − 1)(n− 1)− 1 +
∑
εi
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On the other hand, by Plücker formula deg(RV1
) = (a1 + . . .+ an− 1)(n−

1). Then 0 ≤
∑
εi ≤ 1 and V1 has 1 −

∑
εi ramification points on

P1 − {R1, . . . , Rn}, counted with their respective weights. This proves the
proposition. 2

Proposition 3.1.4. Let R1, . . . , Rn be distinct points on P1 and l1, . . . , ln
nonnegative integers.

Let L be an invertible sheaf and L′ := L(−l1R1 − . . .− lnRn).

Let V ⊆ H0(L) be a linear system such that V ⊆ H0(L′). Let V ′ denote
the linear system V inside H0(L′) and let r + 1 :=dimCV . Then, for each
i, we have that b0 + li, . . . , br + li are the orders of vanishing at Ri of the
sections in V , where b0, . . . , br are the orders of vanishing at Ri of the
sections in V ′. Hence, for each i

wtV (Ri) = wtV ′(Ri) + li(r + 1)

Proof. To show the equalities wtV (Ri) = wtV ′(Ri) + lidimCV , it is
enough to consider the case i = 1. Since L′ = L(−l1R1 − . . . − lnRn), we
have for each β ≥ 0

H0(L′(−βR1)) = H0(L(−(l1 + β)R1 − l2R2 − . . .− lnRn)),

and since V ⊆ H0(L(−l2R2 − . . .− lnRn)), we have

H0(L′(−βR1)) ∩ V = H0(L(−(l1 + β)R1 − l2R2 − . . .− lnRn)) ∩ V
= H0(L(−(l1 + β)R1)) ∩ V

Therefore H0(L′(−βR1))∩V ′ = H0(L(−(l1+β)R1))∩V . Thus, if b0, . . . , br
are the orders of vanishing at R1 of the sections in V ′, then b0+l1, . . . , br+l1
are the orders of vanishing at R1 of the sections in V . This proves the
statement of the proposition. 2

3.2 Elliptic curves

Proposition 3.2.1. Let E be a smooth elliptic curve, A a point of E and
g an odd positive integer. Let L := OE((2g − 2)A). Consider the linear
system

V := H0(OE(gA)) ⊆ H0(L)
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Let V1 ⊆ H0(L) be a linear system of dimension g − 1 such that

H0(OE((g − 2)A)) ⊆ V1 ⊆ V

Then wtV1
(Q) ≤ 2 for every Q ∈ E − {A} and wtV1

(A) = (g − 1)2 + ε,
where ε ∈ {0, 1}.

Proof. Let Q ∈ E − {A}. Notice that V (−gA) = H0(OE((g − 2)A)) is
contained in V1. As we have

V (−gA) ∩ V (−(g − 3)Q) = H0(OE((g − 2)A− (g − 3)Q))

as subspaces of H0(OE((2g−2)A)), it follows that V (−gA)∩V (−(g−3)Q)
has dimension 1. Then, by dimension considerations

V = V (−gA) + V (−(g − 3)Q)

Therefore V (−(g − 3)Q) * V1 and dimCV1(−(g − 3)Q) = 2. On the
other hand, the orders of vanishing at Q of the sections in V are of the
form 0, . . . , g − 2, ag−1, where g − 1 ≤ ag−1 ≤ g, and hence the orders of
vanishing at Q of the sections in V1 are of the form {0, . . . , g−2, ag−1}−{l},
where l ∈ {0, . . . , g − 2, ag−1}. As dimCV1(−(g − 3)Q) = 2, it follows that
l ≥ g − 3. Thus wtV1

(Q) = wtV (Q) + g − 1 − l ≤ 2, if Q is an ordinary
point of V .

Now, assume Q is an ordinary point of V (−gA) = H0(OE((g − 2)A)).
Then, by dimension considerations

V = V (−gA)⊕ V (−(g − 2)Q).

Therefore V (−(g− 2)Q) * V1 and dimCV1(−(g− 2)Q) = 1. It follows that
l ≥ g − 2 and hence wtV1

(Q) = wtV (Q) + g − 1− l ≤ 2.

Now, we will prove that H0(OE(gA)) and H0(OE((g − 2)A)) do not
have ramification points in common on E−{A}, when g is an odd positive
integer. Suppose by contradiction that there exists Q ∈ E−{A} which is a
ramification point in common of both H0(OE(gA)) and H0(OE((g−2)A)).
Then h0(OE(gA− gQ)) = 1 and h0(OE((g − 2)A− (g − 2)Q)) = 1. Thus
gA and gQ are linearly equivalent divisors and the same property is true
for (g − 2)A and (g − 2)Q. Therefore, 2A and 2Q are linearly equivalent
divisors. Now let g = 2n + 1; since 2A and 2Q are linearly equivalent
divisors, we have that 2nA and 2nQ are linearly equivalent divisors. As
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(2n+ 1)A and (2n+ 1)Q are linearly equivalent divisors, it follows that A
and Q are linearly equivalent divisors and hence Q = A, a contradiction.

Finally, we will compute wtV1
(A). Since the orders of vanishing at A of

the sections in V are g − 2, . . . , 2g − 4, 2g − 2, we have that the orders of
vanishing at A of the sections in V1 are of the form

{g − 2, . . . , 2g − 4, 2g − 2} − {l}

where l ∈ {g−2, . . . , 2g−4, 2g−2}. Since V (−gA) ⊆ V1 ⊆ V , we have that
V1(−gA) = V (−gA). Then dimCV1(−gA) = g − 2 and g − 2 ≤ l ≤ g − 1.
Therefore

wtV1
(A) = wtV (A) + g − 1− l = (g − 1)2 + ε

where ε = g − 1− l ∈ {0, 1}. 2



Chapter 4

The divisor

4.1 Introduction

Our aim is to compute the class of the divisor S2W in Picfun(Mg), defined
as the closure of the locus of smooth curves C with a pair of points (P,Q)
satisfying that Q is a ramification point of the linear system H0(ωC(−P ))
with ramification weight at least 3.

Write the class of the divisor we want to compute as

S2W := aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2]

First, we will compute the coefficient a. Let π : X → T be a family
of smooth curves over a smooth curve T . Consider the double product
Y = X×T X as a family of curves via the first projection p1 : Y → X. Let
W be the ramification divisor of the invertible sheaf L = ωp1

(−∆) with
respect to p1. Notice that h0(L

∣∣
YP

) = h0(ωXπ(P )
(−P )) = g − 1 for every

P ∈ X. Then p1∗(L) is locally free of rank g − 1.
Now, we will compute π∗p1∗([S

2W ]). By the Thom-Porteous Formula:

[W ] = c1(J
g−2
p1

(L))− c1(p
∗
1p1∗(L))

By using the truncation exact sequences, we obtain (Proposition 2.4.1)

c1(J
g−2
p1

(L)) =
(
g−1

2

)
c1(ωp1

) + (g − 1)c1(L)

We have to compute c1(p1∗(L)). Notice that by Riemann-Roch we have
h1(L

∣∣
YP

) = 1 for every P ∈ X, as h0(L
∣∣
YP

) = g−1. It follows that R1p1∗(L)
is invertible.

Consider the long exact sequence

0→ p1∗(L)→ p1∗(ωp1
)→ p1∗(ωp1

∣∣
∆

)→
25
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R1p1∗(L)→ R1p1∗(ωp1
)→ R1p1∗(ωp1

∣∣
∆

)→ 0.

Since R1p1∗(ωp1

∣∣
∆

) = 0, as the restriction of ωp1

∣∣
∆

to each fiber is supported
at a point, we have a surjection R1p1∗(L) → R1p1∗(ωp1

). As R1p1∗(L)
is an invertible sheaf and R1p1∗(ωp1

) ∼= OX, it follows that R1p1∗(L) ∼=
R1p1∗(ωp1

). Then we have an exact sequence

0→ p1∗(L)→ p1∗(ωp1
)→ p1∗(ωp1

∣∣
∆

)→ 0

Via the Whitney formula, we have

c1(p1∗(L)) = c1(p1∗(ωp1
))− c1(p1∗(ωp1

∣∣
∆

)).

From ωp1
= p∗2ωπ, we get p1∗(ωp1

∣∣
∆

) = ωπ. On the other hand, since
p1∗(ωp1

) = p1∗(p
∗
2(ωπ)) ∼= π∗π∗ωπ,

c1(p1∗(ωp1
)) = π∗c1(π∗ωπ) = π∗c1(det π∗ωπ) = π∗λπ

Therefore

c1(p1∗(L)) = π∗λ−Kπ

where λ := λπ and Kπ = c1(ωπ).
Let Kp1

= p∗2Kπ and Kp2
= p∗1Kπ. Then

[W ] =

(
g − 1

2

)
Kp1

+ (g − 1)c1(L)− p∗1(π∗λ−Kπ)

=

(
g − 1

2

)
Kp1

+ (g − 1)(Kp1
−∆)− p∗1π∗λ+Kp2

=

(
g

2

)
Kp1

+Kp2
− (g − 1)∆− p∗1π∗λ

By the Thom-Porteous Formula:

[S2W ] = c3(J
2
p1

(OY(W )))

Using the truncation exact sequence

0→ ω⊗2
p1
⊗OY(W )→ J2

p1
(OY(W ))→ J1

p1
(OY(W ))→ 0

and recalling that J1
p1

(OY(W )) is locally free of rank 2, we get

c3(J
2
p1

(OY(W ))) = c2(J
1
p1

(OY(W )))c1(ω
⊗2
p1
⊗OY(W )),
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and using the truncation exact sequence

0→ ωp1
⊗OY(W )→ J1

p1
(OY(W ))→ OY(W )→ 0

we get c2(J
1
p1

(OY(W ))) = c1(OY(W ))c1(ωp1
⊗OY(W )).

Therefore

[S2W ] = c3(J
2
p1

(OY(W ))) = [W ](Kp1
+ [W ])(2Kp1

+ [W ])

On the other hand, since O(−∆)
∣∣
∆
∼= ωπ (identifying ∆ with X), we have

O(−∆)
∣∣
∆

= (p∗2ωπ)
∣∣
∆

= ωp1

∣∣
∆

and O(−∆)
∣∣
∆

= (p∗1ωπ)
∣∣
∆

= ωp2

∣∣
∆

. Then
∆2 = −Kp1

·∆ = −Kp2
·∆. Using the projection formula and the following

formulas
(1)K3

p1
= 0, K3

p2
= 0 and (p∗1π

∗λ)2 = 0
(2)p1∗(Kp1

·∆) = Kπ, ∆2 = −Kp1
·∆ = −Kp2

·∆
(3)π∗(K

2
π) = 12λ, π∗(Kπ) = 2g − 2

(4)π∗π∗(α) = p1∗p
∗
2(α) for every cycle α on X, we get:

π∗p1∗([S
2W ]) = (9g5 − 51g4 + 129g3 − 207g2 + 174g − 54)λ

Therefore,

a = 9g5 − 51g4 + 129g3 − 207g2 + 174g − 54.

For g odd and g ≥ 5, we will obtain the coefficient ai in terms of the
coefficient a1 for every i > 1, in Chapter 5, by using the method of test
curves. We will use [g/2] − 1 test curves, which are induced by families
of flag stable curves over P1. Of crucial importance in the use of the test
curves is Proposition 5.2.1, which is similar to [HMo], Thm 6.65, (2);
in fact, Proposition 5.2.1 implies that result. To be able to apply our
Proposition 5.2.1, we will use Proposition 5.1.1, which is a general result
about flag curves. We end up with (see Chapter 5 for more details)

ai = (i(g − i)/(g − 1))a1, for each 2 ≤ i ≤ [g/2].

In Chapter 6, we will obtain a lower bound for the coefficient ai, for
every i ≥ 1. To do it, we will consider a general family π : X→ T of stable
curves over a smooth projective curve T . Since the family is general, the
singular curves we have in our family have only one node, and these singular
curves are not in the support of the divisor we want to compute. We will
restrict ourselves to a neighborhood in T of some point t0, such that Xt0
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is a singular fiber and the other fibers are nonsingular. Assume that the
singular fiber is reducible.

First, we consider Y′ = X×T X and blow up to solve the singularities of
Y′. Let B′ be this blow up. Using the first projection of Y′ to X, we obtain
a map ρ′1 : B′ → X. We consider ρ′1 as a family of curves over X.

Let ω be the relative dualizing sheaf of B′/X and L′ := ω(−∆̃), where
∆̃ is the strict transform of ∆ in B′. It will be necessary to do some
modifications in order to obtain h0(L′

∣∣
F

) = g − 1 for every fiber F of ρ′1.

After the modifications, we get a family ρ1 : B→ X̃ of nodal curves over X̃
such that h0(L

∣∣
F

) = g− 1 for every fiber F , where X̃ is a suitable blow up

of X, Y := X̃ ×T X and B is a blow up of Y which solves its singularities.
Then, ρ1∗L is locally free of rank g − 1 (Proposition 6.2.1). Now consider
the natural map u : ρ∗1ρ1∗L→ Jg−2

ρ1
(L) and substract excess components of

the degeneracy scheme W ′ of u. Then, we get a divisor W intersecting each
fiber in finitely many points (Propositions 6.3.1 and 6.4.2). If W intersects
each fiber away from the nodes, with multiplicity at most 2 at each point,
then we have π̃∗ρ1∗(c3(J

2
ρ1

(OB(W )))) = [π]∗(S2W ), where [π] : T → Mg is

the map which is induced by π, and π̃ : X̃ → T is the morphism induced
by π : X → T . However, we have only proved that S2W has only finitely
many points in the singular fibers (see Proposition 6.4.3 and Hypothesis
(∗) before that proposition). We must then compute their multiplicities
and substract them from c3(J

2
ρ1

(OB(W ))) to get [π]∗(S2W ). It turns out
that we can obtain a lower bound for the coefficient ai, for every i ≥ 1. We
end up with

−bi ≤ ai for every 1 ≤ i ≤ [g/2],

where

bi := 6i4g2 − 6i4g + 12i4 − 6i3g3 − 3i3g2 − 3i3g − 18i3 + 3i2g4

+ 3i2g2 + 12i2g + 6i2 − 3ig5 + 12ig4 − 21ig3 + 21ig2 − 21ig + 6i.

Our main theorem is:

Theorem 4.1.1. Let S2W ⊆ Mg be the effective divisor which is defined
as the closure of the locus of smooth curves C with a pair of points (P,Q)
satisfying that Q is a ramification point of the linear system H0(ωC(−P ))
with ramification weight at least 3.

Write the class of S2W in Picfun(Mg)⊗Q in the form
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S2W = aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2]

Then

a = 9g5 − 51g4 + 129g3 − 207g2 + 174g − 54, and

(1) If g is an odd integer such that g ≥ 5, then

ai = (i(g − i)/(g − 1))a1 for every 2 ≤ i ≤ [g/2].

(2) Assume the following hypothesis holds:
(∗) If (X,A) is a general pointed smooth curve, then for every ramifica-

tion point P ∈ X of the complete linear system H0(ωX(−(gX − 1)A)) and
for every i ≥ 1, the complete linear system H0(ωX((i+ 1)A−P )) does not
have ramification points on X −{A} having ramification weight at least 3.

Then, for every g, we have the following inequalities

−bi ≤ ai for every 1 ≤ i ≤ [g/2],

where

bi := 6i4g2 − 6i4g + 12i4 − 6i3g3 − 3i3g2 − 3i3g − 18i3 + 3i2g4

+ 3i2g2 + 12i2g + 6i2 − 3ig5 + 12ig4 − 21ig3 + 21ig2 − 21ig + 6i.

We actually have equalities in Theorem 4.1.1, item (2), without using
the hypothesis (∗), for g = 3 and i = 1, and for g = 4 and i = 2. (See
Propositions 6.4.4 and 6.4.5.)

4.2 The irreducible case

In this section, we just present a few results which can possibly be useful
to compute the coefficient of δ0 in the expression for S2W .

Proposition 4.2.1. Let X be a nodal curve which is the union of a smooth
curve C of genus g−1 and a chain of rational smooth curves E1, . . . , En−1.
Suppose C intersects only E1 and En−1. Let A ∈ C ∩E1 and B ∈ C ∩En−1

be the unique points of intersection. Assume that (C,A,B) is a two-pointed
general smooth curve. Let p : C → Σ be a smoothing of X. Fix an integer
1 ≤ i ≤ n− 1 and a section Γ of p intersecting X at a point P ∈ Ei, where
P is not a node of X. Let L := ωp(−Γ) and let W0 be the limit ramification
divisor of L. Then
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multQ(W0) ≤ 1, if Q ∈ X is not a node.

Furthermore, if n = q(g− 1), where q > 0 is an even integer, and i = n/2,
then W0 is reduced and contains no node of X.

Proof. We have

L
∣∣
C

= ωC(A+B),L
∣∣
Ei

= OEi(−1),L
∣∣
Ej

= OEj ; j 6= i. (4.2.1)

For each l = 1, . . . , n− 1, set

Ll := L(−
n−1∑
r=1

al,rEr),

where

al,r = (n− r)al,n−1−max{i− r, 0}−max{l− r, 0}(g−2)−max{n−d− r, 0},
i+ l(g − 2) = nal,n−1 − (n− d), 1 ≤ d ≤ n, al,n−1 ≥ 1.

If i+ l(g−2) is a multiple of n, then al,n−1 < g−1(as i < n and l < n) and
al,1 + al,n−1 = g − 1, and hence al,1 ≥ 1. Analogously, if i+ l(g − 2) is not
a multiple of n, then al,n−1 < g and al,1 + al,n−1 = g, and hence al,1 ≥ 1.

If i+ l(g − 2) is a multiple of n, then we have

Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B),

Ll

∣∣
El

= OEl(g − 2),

Ll

∣∣
Ej

= OEj , if j 6= l.

If i+ l(g − 2) is not a multiple of n and n− d 6= l, then

Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B),

Ll

∣∣
El

= OEl(g − 2),

Ll

∣∣
En−d

= OEn−d(1),

Ll

∣∣
Ej

= OEj , if j 6= l, n− d.

If i+ l(g − 2) is not a multiple of n and n− d = l, then

Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B),

Ll

∣∣
El

= OEl(g − 1),

Ll

∣∣
Ej

= OEj , if j 6= l.
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Thus, Ll has focus on El. Let Vl be the limit linear system of L on El.
When i + l(g − 2) is a multiple of n or i + l(g − 2) is not a multiple of
n and n − d 6= l, by dimension considerations, Vl = H0(OEl(g − 2)) and
hence Vl ⊆ H0(OEl(g − 2)) has no ramification point on El. Now, assume
i+ l(g−2) is not a multiple of n and n−d = l. Let Z := X − C and let Al

and Bl be the nodes of X lying on El. By considering the exact sequence

0→ Ll(−C)
∣∣
Z
→ Ll

∣∣
X
→ Ll

∣∣
C
→ 0,

we get

h0(Ll

∣∣
X

) ≤ h0(OEl(g − 1)(−A−B))

+ h0(ωC(−(al,1 − 1)A− (al,n−1 − 1)B))

= g − 1,

as A and B are general points of C, and since by semicontinuity we
have h0(Ll

∣∣
X

) ≥ g − 1, we conclude h0(Ll

∣∣
X

) = g − 1. By the base
change theorem we have a surjection H0(Ll)→ H0(Ll

∣∣
X

). Thus, we have
H0(OEl(g−1)(−Al−Bl)) ⊆ H0(Ll

∣∣
X

) ∼= Vl ⊆ H0(OEl(g−1)) and hence, for
Q ∈ El−{Al, Bl}, the vanishing sequence of Vl at Q starts with 0, . . . , g−3,
and since Vl(−gQ) ⊆ H0(OEl(g − 1)(−gQ)) = 0, we conclude Vl has only
simple ramification points on El − {Al, Bl}.

On the other hand, as h0(Ll

∣∣
C

(−A)) = h0(Ll

∣∣
C

(−B)) = 0, it follows
that Vl(−Al) = Vl(−Bl) = Vl(−Al −Bl). Then

Vl(−(g−1)Al) = Vl(−(g−1)Al−Bl) ⊆ H0(OEl(g−1)(−(g−1)Al−Bl)) = 0

and hence Al(analogously, Bl) is not a ramification point of Vl.
Now, we are going to see what happens on C. It follows from equation

4.2.1 that L has focus on C and the limit linear system of L on C is
VC = H0(ωC). Since C is a general smooth curve, VC ⊆ H0(ωC(A + B))
has only simple ramification points on C − {A,B}. This proves the first
statement of the proposition.

We will prove the last statement of the proposition. Assume n = q(g−1),
where q > 0 is an even integer, and i = n/2. Since the limit linear system
of L on C is VC = H0(ωC) ⊆ H0(ωC(A+B)), wtVC(A) = wtVC(B) = g− 1.
On the other hand, by Plücker formula, we get

deg(W0) = (g − 1)(g2 − g − 1) and
deg(RVC) = (g − 1)(g2 − g − 1)− (g − 3)(g − 1).
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Therefore, we have (g − 1)(g2 − g − 1)− (g − 1)2 limit ramification points
on C − {A,B}. Since Al and Bl are not ramification points of Vl and
deg(RVl) = g − 1 for every l such that i + l(g − 2) is not a multiple of n
and n− d = l, it is enough to show that there are exactly g − 1 integers l
satisfying the condition: 1 ≤ l ≤ n−1, i+l(g−2) is not a multiple of n and
n− d = l. This condition is equivalent to: 1 ≤ l ≤ n− 1 and i+ l(g− 1) is
a multiple of n. We have i+ l(g−1) is a multiple of n if and only if l+ q/2
is a multiple of q. Therefore, the condition 1 ≤ l ≤ n− 1 and i + l(g − 1)
is a multiple of n is equivalent to l = q− q/2, 2q− q/2, . . . , (g− 1)q− q/2;
thus there are exactly g − 1 integers l satisfying that condition. 2

Proposition 4.2.2. Let X be a nodal curve which is the union of a smooth
curve C of genus g−1 and a chain of rational smooth curves E1, . . . , En−1.
Suppose C intersects only E1 and En−1. Let A ∈ C ∩E1 and B ∈ C ∩En−1

be the unique points of intersection. Assume that (C,A,B) is a two-pointed
general smooth curve. Let p : C → Σ be a smoothing of X. Fix a section Γ
of p intersecting X at a point P ∈ C, where P is not a node of X and

h0(ωC(−aA− bB − P )) = 0,

for every nonnegative integers a and b with a+ b = g−2. Let L := ωp(−Γ)
and let W0 be the limit ramification divisor of L. Assume that n = q(g−1),
where q > 0. Then W0 contains no node of X.

Proof. We have

L
∣∣
C

= ωC(A+B − P ),L
∣∣
Ej

= OEj . (4.2.2)

For each l = 1, . . . , n− 1, set

Ll := L(−
n−1∑
r=1

al,rEr),

where

al,r = (n− r)al,n−1−max{l − r, 0}(g − 1)−max{n− d− r, 0},
l(g − 1) = nal,n−1 − (n− d), 1 ≤ d ≤ n, al,n−1 ≥ 1.

If l(g − 1) is a multiple of n, then al,n−1 < g − 1(as i < n and l < n) and
al,1 + al,n−1 = g − 1, and hence al,1 ≥ 1. Analogously, if l(g − 1) is not a
multiple of n, then al,n−1 < g and al,1 + al,n−1 = g, and hence al,1 ≥ 1.

If l(g − 1) is a multiple of n, then we have
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Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B − P ),
Ll

∣∣
El

= OEl(g − 1),

Ll

∣∣
Ej

= OEj , if j 6= l.

If l(g − 1) is not a multiple of n and n− d 6= l, then

Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B − P ),
Ll

∣∣
El

= OEl(g − 1),

Ll

∣∣
En−d

= OEn−d(1),

Ll

∣∣
Ej

= OEj , if j 6= l, n− d.

If l(g − 1) is not a multiple of n and n− d = l, then

Ll

∣∣
C

= ωC(−(al,1 − 1)A− (al,n−1 − 1)B − P ),
Ll

∣∣
El

= OEl(g),

Ll

∣∣
Ej

= OEj , if j 6= l.

Thus, Ll has focus on El. Let Vl be the limit linear system of L on El.
Let Al and Bl be the nodes of X lying on El, with Bl = Al+1 for every
l = 1, . . . , n− 2. When l(g − 1) is a multiple of n, we have

h0(Ll

∣∣
C

(−A)) = h0(Ll

∣∣
C

(−B)) = 0,

by the hypothesis of the proposition, which implies

Vl(−Al) = Vl(−Bl) = Vl(−Al −Bl).

Then

Vl(−(g−1)Al) = Vl(−(g−1)Al−Bl) ⊆ H0(OEl(g−1)(−(g−1)Al−Bl)) = 0,

and hence Al(analogously, Bl) is not a ramification point of Vl. Now assume
that l(g − 1) is not a multiple of n. Then h0(Ll

∣∣
C

) = 0, by the hypothesis
of the proposition. Thus,

Vl = H0(OEl(g − 1)(−Bl)), if n− d < l,
Vl = H0(OEl(g − 1)(−Al)), if n− d > l, and
Vl = H0(OEl(g)(−Al −Bl)), if n− d = l.

Now, we are going to see what happens on C. It follows from equation
4.2.2 that L has focus on C and the limit linear system of L on C is
VC = H0(ωC(A + B − P )). Notice that A and B are not ramification
points of VC , by the hypothesis of the proposition. On the other hand, by
Plücker formula, we get
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deg(W0) = (g − 1)(g2 − g − 1) and
deg(RVC) = (g − 1)(g2 − g − 1)− (g − 2)(g − 1).

Therefore, we have (g − 1)(g2 − g − 1)− (g − 2)(g − 1) limit ramification
points on C − {A,B}. Since Al and Bl are not ramification points of
Vl and deg(RVl) = g − 1 for every l such that l(g − 1) is a multiple of
n, it is enough to show that there are exactly g − 2 integers l satisfying
the condition: 1 ≤ l ≤ n − 1 and l(g − 1) is a multiple of n. We have
l(g − 1) is a multiple of n if and only if l is a multiple of q. Therefore,
the condition 1 ≤ l ≤ n − 1 and l(g − 1) is a multiple of n is equivalent
to l = q, 2q, . . . , (g − 2)q; thus there are exactly g − 2 integers l satisfying
that condition. 2



Chapter 5

Flag curves

5.1 A result on flag curves

A flag curve is a nodal curve X satisfying the following properties:

(1) It is of compact type, i.e., the number of nodes of X is smaller (by
one) than the number of components.

(2) Each component of X is either P1 or an elliptic curve.

(3) Each elliptic component of X contains exactly one node of X.

(4) Each P1 contains at least 2 nodes of X.

Proposition 5.1.1. Let X be a flag curve of genus g. Assume g is an odd
integer and let p : C → Σ := SpecC[[t]] be a smoothing of X. Let C∗ be the
generic fiber of p and C∗ the geometric generic fiber. Then C∗ satisfies the
following condition:

for each P∗ ∈ C∗, the ramification points of the complete linear system
H0(ωC∗(−P∗)) have ramification weight at most 2.

Proof. Let P∗ ∈ C∗. After base change, we may assume that P∗ is a
rational point of C∗, and thus there is a section Γ of p intersecting C∗ at
P∗. After base changes and a sequence of blowups at the singular points of
the special fiber C0, we may assume that C is regular and that Γ intersects
the special fiber at a point P which is not a node of C0. After all the base
changes and the sequence of blowups, each node is replaced by a chain of
rational smooth curves and C0 is still a flag curve.

Let L := ωp(−Γ) and let W0 be the limit ramification divisor of L.
To prove the statement of the proposition, it is enough to show that
multQ(W0) ≤ 2 for every Q ∈ C0. There are two cases to consider.

Case (1): P lies on a rational component Y of C0.

35
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We will show that multQ(W0) ≤ 2 for every Q ∈ C0. To prove this,
we will show that the multiplicity of W0 at each node of C0 is 0, and
multQ(W0) ≤ 2 if Q ∈ C0 is not a node.

The limit linear system of ωp on Y is of the form (see [EH2])

V := H0(ωY ((a1 + 1)R1))⊕ . . .⊕H0(ωY ((an + 1)Rn))
⊆ H0(ωY (2a1R1 + . . .+ 2anRn)),

where n is the number of connected components of C0 − Y , the integers
aj are the genera of the closures of the connected components of C0 − Y ,
and each Rj is the point of intersection of Y and the connected component
of C0 − Y of genus aj. Notice that if ωp(DZ) has degree 2g − 2 on a
component Z of C0 and degree 0 on the other components of C0, where
DZ ⊆ C0 is a divisor, then L(DZ) has focus on Z. In this way, we can get a
limit linear system VZ of L on each component Z of C0, and the connecting
number between L(DZ1

) and L(DZ2
) corresponding to components Z1 6= Z2

of C0 is equal to the connecting number between ωp(DZ1
) and ωp(DZ2

)
corresponding to Z1 and Z2. The limit linear system of L on Y is

VY = V (−P ) ⊆ H0(ωY (−P + 2a1R1 + . . .+ 2anRn)).

It follows from Proposition 3.1.3 that wtVY (Q) ≤ 1 if Q ∈ Y −{R1, . . . , Rn},
whence multQ(W0) ≤ 2 if Q ∈ Y is not a node of C0. (In fact, if Q ∈ Y
is not a node of C0, then multQ(W0) ≤ 1.) Now, we have to prove that
the multiplicity of W0 at each point Rj is 0. Assume that j = 1 and R1

is the point of intersection of Y and a rational component Y1 of C0. By
Propositions 3.1.3 and 3.1.4, we have

wtVY (R1) = (
∑
j 6=1

aj)− 1 + ε1 + (a1 − 1)(g − 1)

= g − a1 − 1 + ε1 + (a1 − 1)(g − 1)

where ε1 ∈ {0, 1}. Let R′1, . . . , R
′
m be the nodes of C0 lying on Y1. Assume

R′m = R1. Let VY1
be the limit linear system of L on Y1. We have

multR1
(W0) = wtVY (R1) + wtVY1

(R′m) + (g − 1)(g − 2− (2g − 2))

= wtVY1
(R′m) + g − a1 − 1 + ε1 + (a1 − 1)(g − 1)− g(g − 1)

= wtVY1
(R′m) + (g − 1)(a1 − g)− a1 + ε1.

On the other hand, consider the limit linear system of ωp on Y1
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V ′ := H0(ωY1
((a′1 + 1)R′1))⊕ . . .⊕H0(ωY1

((a′m + 1)R′m))
⊆ H0(ωY1

(2a′1R
′
1 + . . .+ 2a′mR

′
m)).

We have that VY1
⊆ V ′. By Propositions 3.1.1 and 3.1.4 we have that the

orders of vanishing at R′m of the sections in V ′ are

0+(a′m−1), . . . , a′m−1+(a′m−1), a′m+1+(a′m−1), . . . , a′1+. . .+a′m+(a′m−1)

and wtV ′(R
′
m) = (

∑
j 6=m a

′
j) + (a′m − 1)g. Thus, the orders of vanishing at

R′m of the sections in VY1
are of the form

{a′m−1, . . . , 2(a′m−1), a′m+1+(a′m−1), . . . , a′1 + . . .+a′m+(a′m−1)}−{l},

for some l. Thus

wtVY1
(R′m) = wtV ′(R

′
m) + g − 1− l

= (
∑
j 6=m

a′j) + (a′m − 1)g + g − 1− l

= g − a′m + (a′m − 1)g + g − 1− l.

Therefore, since a1 + a′m = g, we have

multR1
(W0) = g − a′m + (a′m − 1)g + g − 1− l + (g − 1)(a1 − g)− a1 + ε1

= (g − 1)(a′m + a1 − g) + (g − a1 − a′m) + (a′m − 1− l) + ε1

= (a′m − 1− l) + ε1 ≤ ε1 ≤ 1.

Since the intersection multiplicity of the ramification divisor of L and the
special fiber at the node R1 cannot be 1, we have multR1

(W0) = 0. (No-
tice that, the only important information about VY we have used in the
reasoning above is the ramification weight of VY at the point R1.)

Now, we are going to see what happens on Y1. We have to prove that
the multiplicity of W0 at each point R′j is 0, and multQ(W0) ≤ 2 if Q ∈ Y1

is not a node of C0. Since multR1
(W0) = 0, a′m − 1− l = −ε1. This implies

that l = a′m−1 or l = a′m. Then dimCVY1
(−(a′m+ 1)R′m) = g−2 and hence

VY1
⊇ V ′(−(a′m+1)R′m) = H0(ωY1

((a′1+1)R′1))⊕. . .⊕H0(ωY1
((a′m−1)R′m)).

Now, using the last Formula in Proposition 3.1.2 for V1 = VY1
, and using

Proposition 3.1.4, we are able to use the same reasoning above to conclude
that multR′j(W0) = 0 if R′j is the point of intersection of Y1 and a rational
component of C0. Also, using Proposition 3.1.2, we get that multQ(W0) ≤ 2
if Q ∈ Y1 is not a node of C0. Notice that, we can use the same reasoning
above, repeatedly, for each rational component in C0.
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It remains to prove that, if Ȳ is a rational component of C0 intersecting
an elliptic component E of C0, then the point of intersection of Ȳ and E
does not appear in W0 and multQ(W0) ≤ 2 if Q ∈ E is not a node of C0.
Let R̄1, . . . , R̄k be the nodes of C0 lying on Ȳ and C the node of C0 lying
on E. Assume R̄k = C and let VȲ , VE be the limit linear systems of L on
Ȳ and E respectively. We have an equality of the form

wtVȲ (R̄k) = (
∑

j 6=k āj)− 1 + εk + (āk − 1)(g − 1),

where εk ∈ {0, 1}, the integers āj are the genera of the closures of the
connected components of C0 − Ȳ , and each R̄j is the point of intersection
of Ȳ and the connected component of C0 − Ȳ of genus āj. Since āk = 1,
wtVȲ (R̄k) = g − 2 + εk. Then

multR̄k(W0) = wtVȲ (R̄k) + wtVE(C) + (g − 1)(g − 2− (2g − 2))

= g − 2 + εk + wtVE(C)− g(g − 1)

= wtVE(C) + g − 2− g(g − 1) + εk.

On the other hand, as the limit linear system of ωp on E is

V ′ := H0(ωE(gC)) ⊆ H0(ωE(2(g − 1)C)),

it follows that VE ⊆ V ′ = H0(ωE(gC)). The orders of vanishing at C of
the sections in V ′ are

g − 2, . . . , 2g − 4, 2g − 2

and wtV ′(C) = g2 − 2g + 1. Thus, the orders of vanishing at C of the
sections in VE are of the form

{g − 2, . . . , 2g − 4, 2g − 2} − {l},

where l ∈ {g − 2, . . . , 2g − 4, 2g − 2}. Then

wtVE(C) = wtV ′(C) + g − 1− l
= g2 − 2g + 1 + g − 1− l
= g2 − g − l.

Therefore

multR̄k(W0) = g2 − g − l + g − 2− g(g − 1) + εk

= (g − 2− l) + εk ≤ εk ≤ 1.
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It follows that multR̄k(W0) = 0 and hence R̄k is not a limit ramification
point, and l = g−2 or l = g−1, which implies that dimCVE(−gC) = g−2
and hence VE ⊇ V ′(−gC) = H0(ωE((g − 2)C)).

By using Proposition 3.2.1, we get multQ(W0) ≤ 2 if Q ∈ E is not a
node of C0. This proves the case (1).

Case (2): P lies on an elliptic component E of C0.
We will show that multQ(W0) ≤ 2 for every Q ∈ C0. To prove this,

we will show that the multiplicity of W0 at each node of C0 is 0, and
multQ(W0) ≤ 2 if Q ∈ C0 is not a node.

Let C be the node of C0 lying on E. Since the limit linear system of ωp
on E is

V = H0(ωE(gC)) ⊆ H0(ωE(2(g − 1)C)),

the limit linear system of L on E is

VE = V (−P ) = H0(ωE(gC − P )) ⊆ H0(ωE(2(g − 1)C − P )).

Notice that VE has at most simple ramification points on E−{C}, whence
multQ(W0) ≤ 2 if Q ∈ E is not a node of C0. Now, we have to prove that
the multiplicity of W0 at the point C is 0. We have that VE(−nC) = VE
for every 0 ≤ n ≤ g − 2. For every n ≥ g − 2

VE(−nC) = H0(ωE(gC − P )) ∩H0(ωE(2(g − 1)C − P − nC))

= H0(ωE(2(g − 1)C − P − nC)).

Then dimCVE(−nC) = 2(g−1)−n−1 for every g−2 ≤ n ≤ 2g−4. Thus,
since VE(−(2g− 3)C) = H0(ωE(C − P )) = 0, the orders of vanishing at C
of the sections in VE are g−2, . . . , 2g−4. Hence wtVE(C) = (g−1)(g−2).

Assume that C is the point of intersection of E and a rational component
Y of C0. Let R1, . . . , Rn be the nodes of C0 lying on Y . Assume Rn = C
and let VY be the limit linear system of L on Y . As the limit linear system
of ωp on Y is of the form

V ′ := H0(ωY ((a1 + 1)R1))⊕ . . .⊕H0(ωY ((an + 1)Rn))
⊆ H0(ωY (2a1R1 + . . .+ 2anRn)),

it follows that VY ⊆ V ′. By Propositions 3.1.1 and 3.1.4 we have that the
orders of vanishing at Rn of the sections in V ′ are

0+(an−1), . . . , an−1+(an−1), an+1+(an−1), . . . , a1 + . . .+an+(an−1)
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and wtV ′(Rn) = (
∑

j 6=n aj) + (an − 1)g. Thus, the orders of vanishing at
Rn of the sections in VY are of the form

{an− 1, . . . , 2(an− 1), an + 1 + (an− 1), . . . , a1 + . . .+ an + (an− 1)}− {l},

for some l. Thus

wtVY (Rn) = wtV ′(Rn) + g − 1− l
= (
∑
j 6=n

aj) + (an − 1)g + g − 1− l

= g − an + (an − 1)g + g − 1− l.

Since an = 1, wtVY (Rn) = 2(g − 1)− l. Therefore

multC(W0) = wtVY (Rn) + wtVE(C)− g(g − 1)

= 2(g − 1)− l + (g − 1)(g − 2)− g(g − 1)

= −l.

It follows that multC(W0) = 0 and hence C is not a limit ramification
point, and l = 0, which implies that

VY = H0(ωY ((a1 + 1)R1))⊕ . . .⊕H0(ωY ((an−1 + 1)Rn−1)).

By Propositions 3.1.1 and 3.1.4, we have for every k 6= n

wtVY (Rk) = (
∑
j 6=k,n

aj) + (ak − 1)(g − 1)

= (
∑
j 6=k

aj)− 1 + (ak − 1)(g − 1).

Thus, the proof of this case follows as in the case (1). 2

5.2 Effective divisors in Mg

Let g and i be positive integers such that g ≥ 5 and 2 ≤ i ≤ [g/2]. We will
define a family of curves over P1 in the following steps:

Step 1: Fix 3 distinct points R, S and T on P1, and let P1
i−1 := P1,

Ri−1 := R, Si−1 := S and Ti−1 := T . (We use this notation to extend a
notation we will see later.) Begin with the fibered product P1

i−1 × P1
i−1,

and then blow up the points (Ri−1, Ri−1), (Si−1, Si−1) and (Ti−1, Ti−1). Let
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P1
(Ri−1,Ri−1),P

1
(Si−1,Si−1) and P1

(Ti−1,Ti−1) be the rational curves on the blowup

(P1
i−1 × P1

i−1)̃ over the points (Ri−1, Ri−1), (Si−1, Si−1) and (Ti−1, Ti−1) of
P1
i−1 × P1

i−1. The points in the intersections ({Ri−1} × P1
i−1)̃ ∩ P1

(Ri−1,Ri−1),

({Si−1}×P1
i−1)̃∩P1

(Si−1,Si−1) and ({Ti−1}×P1
i−1)̃∩P1

(Ti−1,Ti−1) will be denoted
R′, S ′ and T ′ respectively. Also, abusing notation, we denote the strict
transform of each fiber {Q} × P1

i−1 ⊆ P1
i−1 × P1

i−1 by P1
i−1.

Step 2: Now, fix g smooth pointed elliptic curves (E1, C1), . . . , (Eg, Cg).
Let Y be the disjoint union of (P1

i−1×P1
i−1)̃, P1×Ei and P1×Ei+1 modulo

the identification of the strict transform of the diagonal ∆̃ ⊆ (P1
i−1×P1

i−1)̃
with P1 × {Ci} ⊆ P1 × Ei, and the identification of the strict transform
(P1

i−1 × {Si−1})̃ ⊆ (P1
i−1 × P1

i−1)̃ with P1 × {Ci+1} ⊆ P1 × Ei+1.
Step 3: Assume i ≥ 3 and consider a chain of i − 2 three pointed ra-

tional curves (P1
1, R1, S1, T1), . . . , (P1

i−2, Ri−2, Si−2, Ti−2) with Tj = Rj+1 for
every 1 ≤ j ≤ i − 3. Now, attach the elliptic curves E1, . . . , Ei−1 at the
points R1, S1, S2, . . . , Si−2 respectively, identifying the points C1, . . . , Ci−1

with the points R1, S1, S2, . . . , Si−2 respectively, obtaining a nodal curve
which we will call Xi. If i = 2, we set Xi := E1 and Ti−2 := C1.
Analogously, consider a chain of g − i − 2 three pointed rational curves
(P1

i , Ri, Si, Ti), . . . , (P1
g−3, Rg−3, Sg−3, Tg−3) such that Tj = Rj+1 for every

i ≤ j ≤ g − 4. Now, attach the elliptic curves Ei+2, . . . , Eg at the points
Si, . . . , Sg−3, Tg−3 respectively, identifying the points Ci+2, . . . , Cg with the
points Si, . . . , Sg−3, Tg−3 respectively, obtaining a nodal curve which we will
call Yi.

Step 4: Let X be the disjoint union of Y , P1 ×Xi and P1 × Yi modulo
the identification of (P1

i−1 × {Ri−1})̃ ⊆ Y with P1 × {Ti−2} ⊆ P1 ×Xi, and
the identification of (P1

i−1 × {Ti−1})̃ ⊆ Y with P1 × {Ri} ⊆ P1 × Yi. This
gives a family πi : X → P1 of stable curves of genus g.

Abusing notation, for each fiber F of πi, we denote by Ri−1, Si−1 and
Ti−1 the points in the intersections F ∩ (P1

i−1×{Ri−1})̃, F ∩ (P1
i−1×{Si−1})̃

and F ∩ (P1
i−1 × {Ti−1})̃. Figure 3.1 describes the family given by πi.

Proposition 5.2.1. Let D ⊆Mg be an effective divisor, with class

D = aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2]

If π∗iD = 0, for every 2 ≤ i ≤ [g/2], then

al = (l(g − l)/(g − 1))a1, for every 2 ≤ l ≤ [g/2].
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Figure 5.1: The family.

Proof. For every i, the degree of (δ0)πi is 0, because each fiber of πi
contains only disconnecting nodes. On the other hand, for every fiber F
of πi, each section of H0(ωπi

∣∣
F

) vanishes at each P1.
Furthermore, we have that H0(ωπi

∣∣
E

) = H0(ωE(C)) for every elliptic
component E of F , where C is the node of F lying on E. The upshot is
that

H0(ωπi
∣∣
F

) =
⊕

EH
0(ωE),

for every fiber F of πi. Thus, πi∗(ωπi) is trivial and hence deg((λ)πi) = 0.
Assume i ≥ 4. By the construction of πi, we have that

deg((δ1)πi) = ∆̃2 + ((P1
i−1 × {Si−1})̃)2

= ∆2 − 3 + ((P1
i−1 × {Si−1})2 − 1)

= 2− 2(0)− 3 + (0− 1) = −2,
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where ∆̃ and (P1
i−1 × {Si−1})̃ are the strict transforms of the diagonal ∆

and P1
i−1×{Si−1} in the blow up (P1

i−1×P1
i−1)̃ of P1

i−1×P1
i−1 at the points

(Ri−1, Ri−1), (Si−1, Si−1) and (Ti−1, Ti−1).

On the other hand, we have deg((δ2)πi) = 1, as the fiber of πi over S
has a disconnecting node S ′ such that the closure of one of the connected
components of π−1

i (S)−{S ′} has genus 2 and the total space of πi is smooth
at S ′. (The total space of πi is smooth at the point S ′, as this point can
be seen as a point of (P1

i−1 × P1
i−1)̃, which is a smooth surface.)

For 3 ≤ l ≤ i− 2, we have deg((δl)πi) = 0, as the family is locally trivial
around P1 × {Q} ⊆ X for every Q which is a node of Xi or Yi.

Now, we will compute deg((δi−1)πi). Notice that for every fiber F of πi,
the closure of one of the connected components of F − {Ri−1} has genus
i− 1. If g is even and i = g/2, then for each fiber F , the closure of one of
the connected components of F − {Ti−1} has genus i− 1 and hence

deg((δi−1)πi) = ((P1
i−1 × {Ri−1})̃)2 + ((P1

i−1 × {Ti−1})̃)2

= ((P1
i−1 × {Ri−1})2 − 1) + ((P1

i−1 × {Ti−1})2 − 1)

= (0− 1) + (0− 1) = −2

Otherwise,

deg((δi−1)πi) = ((P1
i−1 × {Ri−1})̃)2

= (P1
i−1 × {Ri−1})2 − 1

= 0− 1 = −1

To compute deg((δi)πi), first notice that the fiber of πi over R has a disco–
nnecting node R′ such that the closure of one of the connected components
of π−1

i (R)−{R′} has genus i and the total space of πi is smooth at R′, and
the same holds for the fiber of πi at T . Now, if g is odd and i = (g− 1)/2,
then for each fiber F , the closure of one of the connected components of
F − {Ti−1} has genus i and hence

deg((δi)πi) = 2 + ((P1
i−1 × {Ti−1})̃)2

= 2 + ((P1
i−1 × {Ti−1})2 − 1)

= 2 + (0− 1) = 1
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Otherwise, deg((δi)πi) = 2. Finally, if i ≤ [g/2]− 1, then

deg((δi+1)πi) = ((P1
i−1 × {Ti−1})̃)2

= ((P1
i−1 × {Ti−1})2 − 1)

= 0− 1 = −1

and deg((δl)πi) = 0, if i + 2 ≤ l ≤ [g/2]. Now, as π∗iD = 0, for every
2 ≤ i ≤ [g/2], it follows that

2a1 − a2 + ai−1 − 2ai + ai+1 = 0 for every 2 ≤ i < [g/2],

2a1 − a2 + 2ai−1 − 2ai = 0, if g is even and i = g/2, and

2a1 − a2 + ai−1 − ai = 0, if g is odd and i = (g − 1)/2.

For i = 2, 3, analogously, we get the same equations. Now, solving the
system of [g/2]− 1 equations, we get that

al = (l(g − l)/(g − 1))a1, for every 2 ≤ l ≤ [g/2].

2

Corollary 5.2.2. Let g be an odd positive integer such that g ≥ 5. Let
S2W ⊆ Mg be the effective divisor which is defined as the closure of the
locus of smooth curves C with a pair of points (P,Q) satisfying that Q
is a ramification point of the linear system H0(ωC(−P )) with ramification
weight at least 3.

Write the class of S2W in Picfun(Mg)⊗Q in the form

S2W = aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2]

Then

al = (l(g − l)/(g − 1))a1, for every 2 ≤ l ≤ [g/2].

Proof. Just combine Propositions 5.1.1 and 5.2.1. 2



Chapter 6

The reducible case

6.1 The family

Consider a general family π : X → T of stable curves over a smooth
projective curve T . As the family is general, the singular curves we have
in our family have only one node and these curves are not in the divisor
S2W we want to compute. We will restrict ourselves to a neighborhood in
T of some point t0, such that Xt0 is a singular fiber and the other fibers
are nonsingular. Assume that the singular fiber is reducible.

The special fiber is a nodal union of two general smooth pointed curves
(X,A) and (Y,B), identifying A with B. Suppose gY ≤ gX .

Let X̃ be the blowup of X at the ramification points of the complete lin-
ear systems H0(ωX(−(gX−1)A)) and H0(ωY (−(gY −1)B)). Notice that X̃
is the blowup of X at the supports of the unique effective divisors of X and
Y which are linearly equivalent to KX − (gX − 1)A and KY − (gY − 1)B,
respectively. Notice that the points A and B are not ramification points of
the linear systems H0(ωX(−(gX − 1)A)) and H0(ωY (−(gY − 1)B)), respec-
tively, as A and B are general points of X and Y respectively. Abusing
notation, we denote by X and Y the strict transform of X and Y in X̃. Also
if P ∈ X is one of the blown up points, we denote by P1

P the component

of the exceptional divisor on X̃ corresponding to P . Abusing notation, we
denote by P ∈ X̃ the point of intersection of X ∪ Y and P1

P . These points

are nodes of the singular fiber of the family π̃ : X̃ → T ; also this singular
fiber has the point A ∈ X̃ as a node.

Let Y = X̃×T X. The singularities of Y are the points (A,A) and (P,A),
where the points P ∈ X̃− {A} are nodes of the singular fiber of π̃.

To solve the singularities of Y, we blow up X×X and Y ×Y ; let B be this

45
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blowup. We obtain a P1 over each singularity of Y. We denote by P1
(P,A) the

rational curve on B over the point (P,A) ∈ Y and P1
(A,A) the rational curve

on B over the point (A,A) ∈ Y. Let ∆̃ be the strict transform in B of the
inverse image of ∆ via the natural morphism Y→ X×T X. Let Z11, Z12, Z21

and Z22 be the strict transforms of X × X,X × Y, Y × X and Y × Y
respectively. Let (P1

P×X )̃ and (P1
P×Y )̃ be the strict transforms of P1

P×X
and P1

P × Y respectively. A local analysis shows that ∆̃ intersects P1
(A,A)

transversally. Also, P1
(A,A) = Z11∩Z22 and Z12, Z21 do not contain P1

(A,A). If

P ∈ X−{A} is a node of the singular fiber of π̃, then P1
(P,A) = Z11∩(P1

P×Y )̃

and Z12, (P1
P ×X )̃ do not contain P1

(P,A). Also, if P ∈ Y − {B} is a node

of the singular fiber of π̃, then P1
(P,A) = Z22 ∩ (P1

P ×X )̃ and Z21, (P1
P × Y )̃

do not contain P1
(P,A). See figure 6.1.

Let p̄1, p̄2 be the projection maps of Y and b : B → Y the blowup. Set
ρi = p̄i ◦ b for i = 1, 2, and L = ωρ1

(−∆̃− Z11).

......
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Y
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P

A=BP

Z1

Z
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1
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21 2
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1
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X
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1

1
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Figure 6.1: The family over X̃.
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6.2 Direct images

Proposition 6.2.1. ρ1∗(L) is locally free of rank g − 1.

Proof. It is enough to show that h0(L
∣∣
BP

) = g − 1 for every P ∈ X̃.

There are 8 cases to consider.

Case (1): BP is a smooth curve. Then

H0(L
∣∣
BP

) = H0(ωXπ(P )
(−P ))

it follows that h0(L
∣∣
BP

) = g − 1.

Case (2): P ∈ X − {A} and P is not a node of the singular fiber of π̃.
Then

L
∣∣
X

= ωX(2A− P ), L
∣∣
Y

= ωY

and thus h0(L
∣∣
BP

) = g − 1.

Case (3): P ∈ X − {A} is a node of the singular fiber of π̃. Then

L
∣∣
X

= ωX(A− P ), L
∣∣
P1 = OP1(1), L

∣∣
Y

= ωY

therefore h0(L
∣∣
BP

) = g − 1.

Case (4): P = A. Then

L
∣∣
X

= ωX(A), L
∣∣
P1 = OP1, L

∣∣
Y

= ωY

it follows that h0(L
∣∣
BP

) = g − 1.

Case (5): P ∈ Y − {B} and P is not a node of the singular fiber of π̃.
Then

L
∣∣
X

= ωX(A), L
∣∣
Y

= ωY (B − P )

Then we have that h0(L
∣∣
BP

) = g − 1.

Case (6): P ∈ Y − {B} is a node of the singular fiber of π̃. Then

L
∣∣
X

= ωX(A), L
∣∣
P1 = OP1, L

∣∣
Y

= ωY (B − P )

Therefore h0(L
∣∣
BP

) = g − 1.

Case (7): Let BQ be the fiber of B over a point Q ∈ P1
P −{P}, for some

P1
P intersecting X. Then

L
∣∣
X

= ωX(A− P ), L
∣∣
Y

= ωY (B)
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Then we obtain that h0(L
∣∣
BQ

) = g − 1.

Case (8): Let BQ be the fiber of B over a point Q ∈ P1
P −{P}, for some

P1
P intersecting Y . Then

L
∣∣
X

= ωX(A), L
∣∣
Y

= ωY (B − P )

and it follows that h0(L
∣∣
BQ

) = g − 1. 2

Proposition 6.2.2. R1ρ1∗(L) ∼= OX̃

Proof. Notice that by Riemann-Roch we have h1(L
∣∣
BP

) = 1 for every

P ∈ X̃, as h0(L
∣∣
BP

) = g − 1. It follows that R1ρ1∗(L) is invertible. Let

D = ∆̃ + Z11 and consider the long exact sequence

0→ ρ1∗(L)→ ρ1∗(ωρ1
)→ ρ1∗(ωρ1

∣∣
D

)→

R1ρ1∗(L)→ R1ρ1∗(ωρ1
)→ R1ρ1∗(ωρ1

∣∣
D

)→ 0

Now, we will show that R1ρ1∗(ωρ1

∣∣
D

) = 0 in codimension 2. Indeed, con-
sider the exact sequence

0→ ωρ1
(−Z11)

∣∣
∆̃
→ ωρ1

∣∣
D
→ ωρ1

∣∣
Z11
→ 0

Since R1ρ1∗(ωρ1
(−Z11)

∣∣
∆̃

) = 0, as the restriction of ωρ1
(−Z11)

∣∣
∆̃

to each
fiber is supported at a point, we have R1ρ1∗(ωρ1

∣∣
D

) ∼= R1ρ1∗(ωρ1

∣∣
Z11

). To

show that R1ρ1∗(ωρ1

∣∣
Z11

) = 0 in codimension 2, it is enough to show that

h1(BP , (ωρ1

∣∣
Z11

)
∣∣
BP

) = 0 for every P ∈ X̃ away from a codimension- 2 locus.
If P /∈ X, then this is true. Now, let P ∈ X such that P is not a node of
X̃t0. Consider the exact sequence

0→ ωρ1
(−Z11)→ ωρ1

→ ωρ1

∣∣
Z11
→ 0

then we have an exact sequence

ωρ1
(−Z11)

∣∣
BP
→ ωBP → (ωρ1

∣∣
Z11

)
∣∣
BP
→ 0

Writing BP = X ∪ Y , we see that the image of the first map vanishes over
X, as X ⊆ Z11. Thus, this image is ωρ1

(−Z11)
∣∣
Y

= ωY . Hence, we have
the exact sequence

0→ ωY → ωBP → (ωρ1

∣∣
Z11

)
∣∣
BP
→ 0
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Taking the long exact sequence in cohomology, we get

H1(Y, ωY )→ H1(BP , ωBP )→ H1(BP , (ωρ1

∣∣
Z11

)
∣∣
BP

)→ 0

By duality, the map H1(Y, ωY ) → H1(BP , ωBP ) is a surjection if and
only if the map H0(BP ,OBP ) → H0(Y,OY ) is injective, which is true.
Thus, R1ρ1∗(ωρ1

∣∣
D

) = 0 in codimension 2 and hence we have a surjection
R1ρ1∗(L) → R1ρ1∗(ωρ1

) in codimension 2. As R1ρ1∗(L) is an invertible
sheaf and R1ρ1∗(ωρ1

) ∼= OX̃
, it follows that R1ρ1∗(L) ∼= OX̃

. 2

6.3 Classes of the degeneracy scheme and the rami-

fication divisor

Let W ′ be the degeneracy locus of the evaluation map ρ∗1ρ1∗(L)→ Jg−2
ρ1

(L)
and W the closure of W ′ ∩Bns.

Proposition 6.3.1.

W = W ′ −
(
gY
2

)
Z11 −

((
gX + 1

2

)
− 1

)
Z12 −

(
gY
2

)
Z21 −

(
gX + 1

2

)
Z22

−
(
gY + 1

2

) ∑
P1
P∩X 6=∅

(P1
P ×X )̃ −

((
gX
2

)
+ 1

) ∑
P1
P∩X 6=∅

(P1
P × Y )̃

−
((

gY
2

)
+ 1

) ∑
P1
P∩Y 6=∅

(P1
P ×X )̃ −

(
gX + 1

2

) ∑
P1
P∩Y 6=∅

(P1
P × Y )̃

Proof. Consider a slice Σ on X̃ intersecting X̃t0 transversally at a point
which is not a node. Let S be the fibered product

S
f //

��

B

ρ1��

Σ // X̃

The family of curves S→ Σ has smooth generic fiber. Since the formation
of the degeneracy scheme commutes with base change, we have that f ∗(W ′)
is the degeneracy scheme of the invertible sheaf f ∗(L).

Thus, it is enough to see that the pull back via f of the right side
of the equality we want to prove is effective and does not have vertical
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components for every point P ∈ X̃t0 which is not a node. For this, we use
Proposition 1.3.1. Abusing notation, we denote by L the invertible sheaf
f ∗(L) on S, and let V = H0(L). There are 4 cases to consider.

Case (1): Let P ∈ X − {A} such that P is not a node of X̃t0.
We have

L
∣∣
X

= ωX(2A− P ), L
∣∣
Y

= ωY .

Consider the exact sequence

0→ H0(ωY (−B))→ H0(L
∣∣
X∪Y )→ H0(ωX(2A− P )).

It follows that h0(L
∣∣
X∪Y ) ≤ h0(ωY (−B))+h0(ωX(2A−P )) = gY −1+gX =

g − 1 and since by semicontinuity h0(L
∣∣
X∪Y ) ≥ g − 1, then h0(L

∣∣
X∪Y ) =

g − 1 and we have a surjection H0(L
∣∣
X∪Y ) → H0(ωX(2A − P )). By the

base change theorem we have a surjection H0(L)→ H0(L
∣∣
X∪Y ) and hence

V
∣∣
X

= H0(ωX(2A− P )).
We will show that

dimC(V
∣∣
X

(−iA))+dimC(V (−iY )
∣∣
Y

(−B)) ≤ g − 1 for every i ≥ 1.

We have the exact sequence

0→ V (−iY )
∣∣
Y

(−B)→ V (−iY )
∣∣
X∪Y → V (−iY )

∣∣
X
→ 0.

Then dimC(V (−iY )
∣∣
Y

(−B)) ≤dimC(V (−iY )
∣∣
X∪Y ) = g − 1 and as

V
∣∣
X

(−iA) = H0(ωX(−(i− 2)A− P )),

it follows that dimC(V
∣∣
X

(−iA))+dimC(V (−iY )
∣∣
Y

(−B)) ≤ g − 1 for every
i ≥ gX + 2. On the other hand for 2 ≤ i ≤ gX + 1 we have

V (−iY )
∣∣
Y

(−B) ⊆ H0(ωY ((i− 1)B)),

which implies that dimC(V (−iY )
∣∣
Y

(−B)) ≤ h0(ωY ((i−1)B)) = gY + i−2;
also we have dimC(V

∣∣
X

(−iA)) = h0(ωX(−(i−2)A−P )) = gX− i+1, as P
is an ordinary point of the complete linear system H0(ωX(−(gX − 1)A)).
Finally, for i = 1 we have dimCV

∣∣
X

(−A) = h0(ωX(A − P )) = gX − 1 and
dimC(V (−Y )

∣∣
Y

(−B)) ≤ h0(ωY ) = gY .
Now, we will show that

dimC(V
∣∣
Y

(−iB))+dimC(V (−iX)
∣∣
X

(−A)) ≤ g − 1 for every i ≥ 1.
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Consider the exact sequence

0→ H0(ωX(A− P ))→ H0(L
∣∣
X∪Y )→ H0(ωY ).

Since h0(L
∣∣
X∪Y ) = g − 1 = h0(ωX(A− P )) + h0(ωY ), we have a surjection

H0(L
∣∣
X∪Y )→ H0(ωY ), and as we have a surjection H0(L)→ H0(L

∣∣
X∪Y ),

it follows that V
∣∣
Y

= H0(ωY ). Thus, we get V
∣∣
Y

(−iB) = H0(ωY (−iB)) =
0 for every i ≥ gY . On the other hand, as we have the exact sequence

0→ V (−iX)
∣∣
X

(−A)→ V (−iX)
∣∣
X∪Y → V (−iX)

∣∣
Y
→ 0,

it follows that dimCV (−iX)
∣∣
X

(−A) ≤dimC(V (−iX)
∣∣
X∪Y ) = g − 1. Then

dimC(V
∣∣
Y

(−iB))+dimC(V (−iX)
∣∣
X

(−A)) ≤ g − 1 for every i ≥ gY . Now,
for i ≤ gY − 1 we have

V (−iX)
∣∣
X

(−A) ⊆ H0(ωX((i+ 1)A− P )),

which implies that dimCV (−iX)
∣∣
X

(−A) ≤ gX−1+i. Also dimCV
∣∣
Y

(−iB) =
h0(ωY (−iB)) = gY − i.

Thus, the hypothesis of Proposition 1.3.1 are satisfied in this case. Since
V
∣∣
Y

= H0(ωY ), we get TwV |Y (B) = 0 + 1 + . . .+ gY − 1 =
(
gY
2

)
. Also since

V
∣∣
X

= H0(ωX(2A−P )), we have TwV |X(A) = 0+2+ . . .+gX =
(
gX+1

2

)
−1.

Hence the multiplicities of X and Y in the degeneracy scheme are what we
stated.

Case (2): Let P ∈ Y − {B} such that P is not a node of X̃t0.
We have

L
∣∣
X

= ωX(A), L
∣∣
Y

= ωY (B − P ).

Considering the exact sequence

0→ H0(ωY (−P ))→ H0(L
∣∣
X∪Y )→ H0(ωX(A)),

as in the first case, we get V
∣∣
X

= H0(ωX(A)). We will show that

dimC(V
∣∣
X

(−iA))+dimC(V (−iY )
∣∣
Y

(−B)) ≤ g − 1 for every i ≥ 1.

We have V
∣∣
X

(−iA) = H0(ωX(−(i−1)A)) = 0 for every i ≥ gX +1. On the
other hand, for i ≤ gX we have dimC(V

∣∣
X

(−iA)) = h0(ωX(−(i − 1)A)) =
gX − i + 1, and since V (−iY )

∣∣
Y

(−B) ⊆ H0(ωY (iB − P )), we have that
dimC(V (−iY )

∣∣
Y

(−B)) ≤ h0(ωY (iB − P )) = gY + i− 2.
Now, we will show that
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dimC(V
∣∣
Y

(−iB))+dimC(V (−iX)
∣∣
X

(−A)) ≤ g − 1 for every i ≥ 1.

Considering the exact sequence

0→ H0(ωX)→ H0(L
∣∣
X∪Y )→ H0(ωY (B − P )),

we get V
∣∣
Y

= H0(ωY (B − P )). We have V
∣∣
Y

(−iB) = H0(ωY (−(i− 1)B −
P )) = 0 for every i ≥ gY + 1. On the other hand, for i ≤ gY we have

V (−iX)
∣∣
X

(−A) ⊆ H0(ωX(iA)),

which implies that dimCV (−iX)
∣∣
X

(−A) ≤ gX−1+i. Also dimCV
∣∣
Y

(−iB) =
h0(ωY (−(i− 1)B−P )) = gY − i, as P is an ordinary point of the complete
linear system H0(ωY (−(gY − 1)B)).

Thus, the hypothesis of Proposition 1.3.1 are satified in this case. Since
V
∣∣
Y

= H0(ωY (B − P )), we get TwV |Y (B) = 1 + . . . + gY − 1 =
(
gY
2

)
; also

since V
∣∣
X

= H0(ωX(A)), we have TwV |X(A) = 1 + . . . + gX =
(
gX+1

2

)
.

Hence the multiplicities of X and Y in the degeneracy scheme are what we
stated.

Case (3): Consider Q ∈ P1
P − {P} such that P1

P intersects X.
We have

L
∣∣
X

= ωX(A− P ), L
∣∣
Y

= ωY (B).

Considering the exact sequence

0→ H0(ωY )→ H0(L
∣∣
X∪Y )→ H0(ωX(A− P )),

we get V
∣∣
X

= H0(ωX(A− P )). We will show that

dimC(V
∣∣
X

(−iA))+dimC(V (−iY )
∣∣
Y

(−B)) ≤ g − 1 for every i ≥ 1.

We have V
∣∣
X

(−iA) = H0(ωX(−(i − 1)A − P )) = 0 for every i ≥ gX +
1; on the other hand, for i ≤ gX − 1, since P is a ramification point
of the complete linear system H0(ωX(−(gX − 1)A)), we have (Propo-
sitions 1.3.3 and 1.3.2) dimC(V

∣∣
X

(−iA)) = h0(ωX(−(i − 1)A − P )) =
gX − i. As V (−iY )

∣∣
Y

(−B) ⊆ H0(ωY (iB)), then dimC(V (−iY )
∣∣
Y

(−B)) ≤
h0(ωY (iB)) = gY + i− 1.

Finally, for i = gX , we have dimCV
∣∣
X

(−gXA) = h0(ωX(−(gX − 1)A −
P )) = 1, as P is a ramification point of the complete linear system
H0(ωX(−(gX − 1)A)). Now, we will show that dimC(V (−gXY )

∣∣
Y

(−B)) ≤
g − 2. As



6.3. CLASSES OF THE DEGENERACY SCHEMEANDTHE RAMIFICATION DIVISOR53

L(−gXY )
∣∣
X

= ωX(−(gX − 1)A− P ), L(−gXY )
∣∣
Y

= ωY ((gX + 1)B),

then L(−gXY ) has focus on Y . Let VY = V (−gXY )
∣∣
Y

be the limit linear
system on Y . Then dimCVY = g − 1. Since B is a general point of Y , the
orders of vanishing at B of the sections of ωY ((gX+1)B) are {0, 1, . . . , gX−
1, gX + 1, . . . , g}; and since VY has codimension 1 in H0(ωY ((gX + 1)B)),
the orders of vanishing at B of the sections of ωY ((gX + 1)B) in VY are of
the form {0, 1, . . . , gX − 1, gX + 1, . . . , g}−{l}, for some l ∈ {0, 1, . . . , gX −
1, gX + 1, . . . , g}. Then we have that wtVY (B) = gY + g − 1 − l. On the
other hand, notice that

L(−gYX)
∣∣
X

= ωX((gY + 1)A− P ), L(−gYX)
∣∣
Y

= ωY (−(gY − 1)B),

then L(−gYX) has focus on X. Let VX = V (−gYX)
∣∣
X

be the limit linear
system on X. As dimCVX = g − 1 = h0(ωX((gY + 1)A − P )), it follows
that VX = H0(ωX((gY + 1)A − P )). Then the orders of vanishing at A
of the sections in VX are {0, 1, . . . , gY − 1, gY + 1, . . . , g − 2, g} and hence
wtVX(A) = gX . Now, as L(−gYX) has focus on X and L(−gXY ) has focus
on Y , it follows that the connecting number between these sheaves with
respect to X and Y is lXY = 0 − (−gY ) + 0 − (−gX) = g. Therefore, we
have

wtVX(A) + wtVY (B) + (g − 1)(g − 2− lXY ) ≥ 0, i.e.,
gX + gY + g − 1− l + (g − 1)(g − 2− g) ≥ 0.

It follows that l ≤ 1. If l = 0, the intersection multiplicity of the ram-
ification divisor and the special fiber at the node would be 1, which is
impossible. Thus, we get that l = 1. It follows that dimCVY (−B) = g− 2,
that is, dimCV (−gXY )

∣∣
Y

(−B) = g − 2.
To show the inequality dimCV

∣∣
Y

(−iB)+dimCV (−iX)
∣∣
X

(−A) ≤ g − 1
is similar to the begining of Case (2), exchanging X with Y and A with
B. Thus, we get V

∣∣
Y

= H0(ωY (B)). Now, since V
∣∣
X

= H0(ωX(A − P )),
TwV |X(A) = 1+ . . .+gX−2+gX =

(
gX
2

)
+1. Also since V

∣∣
Y

= H0(ωY (B)),

TwV |Y (B) = 1 + . . .+ gY =
(
gY +1

2

)
. Hence the multiplicities of X and Y in

the degeneracy scheme are what we stated.
Case (4): Consider Q ∈ P1

P − {P} such that P1
P intersects Y .

This case is similar to Case (3) exchanging X with Y and A with B.
Thus, we get that the multiplicities of X and Y in the degeneracy scheme
are what we stated. 2
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Lemma 6.3.2. Let Kπ := c1(ωπ), Kρ1
:= c1(ωρ1

) and Kρ2
:= c1(ωρ2

). Let

b′ : X̃→ X be the blow-up. Then

∆̃2 = −Kρ1
· ∆̃

ρ1∗(∆̃
2) = −b′∗(Kπ)

Proof. Let g : Y → X ×T X be the natural morphism and b : B → Y

the blow-up. Let f : ∆̃ → ∆ be the morphism induced by g ◦ b, and let
p̄1, p̄2 be the projection maps of Y. Since (g ◦ b)∗(I∆) modulo torsion is
I∆̃ · IP1

(A,A)
, we have that (g ◦ b)∗(I∆)

∣∣
∆̃

modulo torsion is I∆̃

∣∣
∆̃
· IP1

(A,A)·∆̃
.

On the other hand, (g ◦ b)∗(I∆)
∣∣
∆̃

= f ∗(I∆

∣∣
∆

) and I∆

∣∣
∆
∼= Ω1

π = ωπ ⊗ J
(identifying ∆ with X), where J is the ideal sheaf of the nodes. Then we
have that f ∗(ωπ) ⊗ IP1

(A,A)·∆̃
= I∆̃

∣∣
∆̃
· IP1

(A,A)·∆̃
and hence I∆̃

∣∣
∆̃

= f ∗(ωπ).

Thus, denoting by p1, p2 the projection maps of X×T X, we have

OB(−∆̃)
∣∣
∆̃

= f ∗(ωπ) = f ∗(ωp1

∣∣
∆

) = (b∗g∗(ωp1
))
∣∣
∆̃

= (b∗ωp̄1
)
∣∣
∆̃

= ωρ1

∣∣
∆̃

.

Therefore ∆̃2 = −Kρ1
· ∆̃ and ρ1∗(∆̃

2) = −ρ1∗(f
∗(Kπ)) = −b′∗(Kπ). 2

Proposition 6.3.3.

[W ′] =

(
g

2

)
Kρ1

+Kρ2
−

∑
P1
P∩X 6=∅

(P1
P ×X )̃ −

∑
P1
P∩X 6=∅

(P1
P × Y )̃

−
∑

P1
P∩Y 6=∅

(P1
P ×X )̃ −

∑
P1
P∩Y 6=∅

(P1
P × Y )̃ − (g − 1)∆̃

− ρ∗1π̃∗λπ + (gX − 1)ρ∗1X − (g − 1)Z11

Proof. By the Thom-Porteous Formula:

[W ′] = c1(J
g−2
ρ1

(L))− c1(ρ
∗
1ρ1∗(L)).

Using the exact sequences of truncation, we get (Proposition 2.4.1)

c1(J
g−2
ρ1

(L)) =

(
g − 1

2

)
c1(ωρ1

) + (g − 1)c1(L)

=

(
g − 1

2

)
Kρ1

+ (g − 1)(Kρ1
− ∆̃− Z11)

=

(
g

2

)
Kρ1
− (g − 1)∆̃− (g − 1)Z11
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Now, we will compute c1(ρ1∗(L)). By Grothendieck-Riemann-Roch we
have:

ch(ρ1!(L)) = ρ1∗(ch(L) · td(T
B/X̃))

= ρ1∗((1 + c1(L) +
c1(L)2

2
+ ...) · (1− Kρ1

2
+ td2(TB/X̃) + ...))

= ρ1∗(1 + (c1(L)− Kρ1

2
)

+ (
c1(L)2

2
− Kρ1

c1(L)

2
+ td2(TB/X̃)) + ...)

= ρ1∗(1 + (
Kρ1

2
− ∆̃− Z11)

+ (
K2
ρ1

+ ∆̃2 + Z2
11 − 2Kρ1

· ∆̃− 2Kρ1
· Z11 + 2∆̃ · Z11

2

−
K2
ρ1
−Kρ1

· ∆̃−Kρ1
· Z11

2
+ td2(TB/X̃)) + ...)

On the other hand, we have the following formulas:
(1)ρ1∗(Z11) = 0, as Z11 is vertical with respect to ρ1.
(2)ρ1∗(Z

2
11) = −X, as Z2

11 = −Z11 · (Bt0 − Z11) and the only component
of Z11 · (Bt0 − Z11) which is not contracted by ρ1 is (X × {A})̃.

(3)ρ1∗(Kρ1
· Z11) = (2gX − 1)X, as writing BP = X ∪ Y for each point

P ∈ X − {A} which is not a node of X̃t0 we have that Kρ1

∣∣
X

= ωX(A) has
degree 2gX − 1.

Also, recall that ρ1∗(td2(TB/X̃)) = λρ1
= π̃∗λπ. Using these formulas and

the previous lemma, we get

ch(ρ1!(L)) = (g − 2) +
−b′∗(Kπ)−X − 2b′∗(Kπ)− 2(2gX − 1)X + 2X

2

− −b
′∗(Kπ)− (2gX − 1)X

2
+ π̃∗λπ + . . .

= (g − 2)− b′∗(Kπ)− (gX − 1)X + π̃∗λπ + . . . ,

Since R1ρ1∗(L) ∼= OX̃
(Proposition 6.2.2), we have that ch(ρ1!(L)) = (g −

2) + c1(ρ1∗(L)) + .... Then

c1(ρ1∗(L)) = −b′∗(Kπ)− (gX − 1)X + π̃∗λπ

and hence

[W ′] =

(
g

2

)
Kρ1
− (g−1)∆̃− (g−1)Z11−ρ∗1(−b′∗(Kπ)− (gX−1)X+ π̃∗λπ)



56 6. THE REDUCIBLE CASE

=

(
g

2

)
Kρ1
− (g − 1)∆̃− (g − 1)Z11 + ρ∗1b

′∗(Kπ) + (gX − 1)ρ∗1X − ρ∗1π̃∗λπ

On the other hand, as Kπ̃ = b′∗(Kπ) +
∑

P1
P , it follows that

Kρ2
= ρ∗1(Kπ̃) = ρ∗1b

′∗(Kπ) + ρ∗1(
∑

P1
P ),

i.e., ρ∗1b
′∗(Kπ) = Kρ2

−ρ∗1(
∑

P1
P ). This, together with the formula for [W ′],

implies the proposition. 2

By Propositions 6.3.1 and 6.3.3, we get the formula for [W ]:

[W ] =

(
g

2

)
Kρ1

+Kρ2
− (g − 1)∆̃− ρ∗1π̃∗λπ + (gX − 1)ρ∗1X −

(
gY
2

)
Z21

− (

(
gY
2

)
+ g − 1)Z11 − (

(
gX + 1

2

)
− 1)Z12 −

(
gX + 1

2

)
Z22

− (

(
gY + 1

2

)
+ 1)

∑
P1
P∩X 6=∅

(P1
P ×X )̃ − (

(
gX
2

)
+ 2)

∑
P1
P∩X 6=∅

(P1
P × Y )̃

− (

(
gY
2

)
+ 2)

∑
P1
P∩Y 6=∅

(P1
P ×X )̃ − (

(
gX + 1

2

)
+ 1)

∑
P1
P∩Y 6=∅

(P1
P × Y )̃

6.4 Lower bounds for the coefficients

Let j denote the genus of Y , and let λ := λπ. Our next aim is to compute
π̃∗ρ1∗([W ]·([W ]+Kρ1

)·([W ]+2Kρ1
)). To do it, it is necessary to compute all

intersections appearing. We list some of the most representative formulas
in the following lemma (see appendix for a list of all intersections).

Lemma 6.4.1. We have the following formulas:
(1) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P ×X )̃)3) = 2δj

(2) π̃∗ρ1∗(K
2
ρ1
· Z11) = 0

(3) π̃∗ρ1∗(Z
2
11 ·Kρ1

) = −(2gX − 1)gXδj
(4) π̃∗ρ1∗(∆̃

2 ·Kρ2
) = −12λ+ δj

(5) π̃∗ρ1∗(Kρ1
·Kρ2

· Z11) = (2gX − 1)(3gX − 2)δj
(6) π̃∗ρ1∗(∆̃

2 · Z11) = −(2gX − 1)δj
(7) π̃∗ρ1∗(Z

2
11 · ∆̃) = −gXδj

(8) π̃∗ρ1∗(Kρ1
·Kρ2

· ρ∗1X) = (2g − 2)(3gX − 2)δj
(9) π̃∗ρ1∗(Z

2
11 ·Kρ2

) = −(3gX − 2)δj
(10) π̃∗ρ1∗(Z

2
11 · ρ∗1π̃∗λ) = 0
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Proof. To show the calculation techniques, we will prove the formulas
(1), (2), (4), (6), (8) and (9).

(1) ((P1
P×X )̃)2 = −(P1

P×X )̃·(Bt0−(P1
P×X )̃) = −(P1

P×{A}+{P}×X).

Then ((P1
P ×X )̃)3 = −(P1

P ×{A}+ {P}×X) · (P1
P ×X )̃. On the other

hand, we have P1
P ×{A} = (P1

P ×Y )̃ ·(P1
P ×X )̃, then P1

P ×{A}·(P1
P ×X )̃ =

(P1
P ×Y )̃ · ((P1

P ×X )̃)2 is the self-intersection of P1
P ×{A} on (P1

P ×Y )̃; this
self-intersection is the self-intersection of P1

P ×{A} on P1
P × Y minus 1, as

(P1
P × Y )̃ is the blow-up of P1

P × Y at the point (P,A) ∈ P1
P × {A}. Since

the self-intersection of P1
P ×{A} on P1

P ×Y is 0, P1
P ×{A} · (P1

P ×X )̃ = −1.
Analogously, {P} ×X · (P1

P ×X )̃ = −1. This implies Formula (1).

(2) We have that K2
ρ1
· Z11 is the self-intersection of Kρ1

· Z11 on Z11.
Let i : Z11 ↪→ B and j : X ↪→ X be the inclusion maps, q2 : X ×X → X
the second projection and ϕ : Z11 → X ×X the morphism induced by the
blow-up b : B→ X̃×T X

B b // X̃×T X
p̄2 //X

Z11

i

OO

ϕ //X ×X q2 //

OO

X

j

OO

Then we have

Kρ1
· Z11 = i∗Kρ1

= i∗ρ∗2Kπ = ϕ∗q∗2j
∗Kπ = ϕ∗q∗2(KX + A).

Therefore, the self-intersection ofKρ1
·Z11 on Z11 is 0, and from this Formula

(2) follows.

(4) By using the projection formula and Lemma 6.3.2, we get

π̃∗ρ1∗(∆̃
2 ·Kρ2

) = π̃∗ρ1∗(∆̃
2 · ρ∗1Kπ̃)

= π̃∗(ρ1∗(∆̃
2) ·Kπ̃)

= π̃∗(−b′∗(Kπ) · (b′∗(Kπ) +
∑

P1
P ))

= π∗b
′
∗(−b′∗(K2

π)) = −π∗(K2
π) = −(12λ− δj) = −12λ+ δj

(6) We have that ∆̃2 · Z11 is the self-intersection of ∆̃ · Z11 on Z11; this
self-intersection is the self-intersection of the diagonal on X ×X minus 1,
as Z11 is the blow-up of X × X at the points (A,A) and (P,A), where
the points P ∈ X − {A} are the nodes of X̃t0, and the diagonal of X ×X
passes through the point (A,A) and does not pass through the points
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(P,A). Since the self-intersection of the diagonal on X ×X is −(2gX − 2),
we have ∆̃2 · Z11 = −(2gX − 1). Formula (6) follows.

(8) By using the projection formula, we get

π̃∗ρ1∗(Kρ1
·Kρ2

· ρ∗1X) = π̃∗ρ1∗(Kρ1
· ρ∗1(Kπ̃) · ρ∗1X)

= π̃∗ρ1∗(Kρ1
· ρ∗1(Kπ̃ ·X))

= π̃∗(ρ1∗(Kρ1
) ·Kπ̃ ·X)

= π̃∗((2g − 2)Kπ̃ ·X)

= (2g − 2)(3gX − 2)δj

(9) By using the projection formula, we get

π̃∗ρ1∗(Z
2
11 ·Kρ2

) = π̃∗ρ1∗(Z
2
11 · ρ∗1(Kπ̃))

= π̃∗(ρ1∗(Z
2
11) ·Kπ̃)

= π̃∗(−X ·Kπ̃)

= −(3gX − 2)δj

2

Using Singular [S] for the computations, we obtain
π̃∗ρ1∗([W ] · ([W ] +Kρ1

) · ([W ] + 2Kρ1
)) = a(g)λ+ bj(g)δj, where

a(g) = 9g5 − 51g4 + 129g3 − 207g2 + 174g − 54

(as computed in chapter 4) and

bj(g) = 6j4g2 − 6j4g + 12j4 − 6j3g3 − 3j3g2 − 3j3g − 18j3 + 3j2g4

+ 3j2g2 + 12j2g + 6j2 − 3jg5 + 12jg4 − 21jg3 + 21jg2 − 21jg + 6j.

Proposition 6.4.2. The divisor W is flat over X̃.

Proof. It is enough to show that W does not contain any irreducible
component of each fiber BP . Indeed, let IW be the ideal sheaf of W and
consider the natural morphism IW ↪→ OB. Since OB is flat over X̃, we
have that if IW

∣∣
BP
→ OBP is injective for every point P ∈ X̃ (which is true

when W does not contain any irreducible component of each singular fiber
BP ), then the cokernel of the morphism IW ↪→ OB is flat over X̃.

There are 4 cases to consider.
Case (1): Let P = A and let BA = X ∪ P1 ∪ Y be the fiber of B over

the point A.
Let L1 := L(−(gY − 1)Z11 − (gY − 1)Z21). Then, we have
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L1

∣∣
X

= ωX(gYA), L1

∣∣
P1 = OP1, L1

∣∣
Y

= ωY (−(gY − 1)B).

Then h0(L1

∣∣
BA

) = g − 1 and hence ρ1∗(L1) is locally free of rank g − 1 in
a neighborhood of A.

Consider Σ and S as in the begining of the proof of Proposition 6.3.1,
but assume that Σ is a slice through the point A ∈ X̃ intersecting X and Y
transversally at the point A. Since f ∗(L1) has focus on X, the degeneracy
scheme of f ∗(L1) does not contain X, i.e., the pullback of the degeneracy
scheme of L1 does not contain X. Then W does not contain X.

On the other hand, analogously, by considering the invertible sheaf
L2 := L(−gXZ12 − gXZ22) we get that W does not contain Y .

Now, we are going to see what happens on P1. Abusing notation, we
denote by L the invertible sheaf f ∗(L) on S.

Let L′ := L(gXX + (gY − 1)Y + f ∗(∆̃)). We have

L′
∣∣
X

= ωX(−(gX − 1)A), L′
∣∣
P1 = OP1(g), L′

∣∣
Y

= ωY (−(gY − 1)B).

Thus L′ has focus on P1. Let V ′ = H0(L′), then V ′
∣∣
P1 ⊆ H0(OP1(g)). As

L′(−gXX)
∣∣
X

= ωX(A), it follows that V ′(−gXX)
∣∣
P1 has A as a base point.

Therefore,

V ′(−gXX)
∣∣
P1 ⊆ H0(L′(−gXX)

∣∣
P1(−A)) = H0(OP1(g)(−(gX + 1)A)).

On the other hand, we have

dimC V
′(−gXX)

∣∣
P1 = g − dimC V

′(−gXX)
∣∣
X∪Y (−A−B)

≥ g − h0(ωX)

= g − gX = gY

Hence V ′(−gXX)
∣∣
P1 = H0(OP1(g)(−(gX + 1)A)). Analogously, we get

V ′(−gY Y )
∣∣
P1 = H0(OP1(g)(−(gY + 1)B)), and since

H0(OP1(g)(−(gX + 1)A)) ∩H0(OP1(g)(−(gY + 1)B)) = 0

as subspaces of H0(OP1(g)), then by dimension considerations,

V ′
∣∣
P1 = H0(OP1(g)(−(gX + 1)A))⊕H0(OP1(g)(−(gY + 1)B)).

Let R := P1 ∩ ∆̃. We have V ′(−f ∗(∆̃))
∣∣
P1 ⊆ V ′

∣∣
P1(−R). On the other

hand, the degree of the ramification divisor of V ′|P1 is g, wtV ′|P1
(A) = gY

and wtV ′|P1
(B) = gX . Then A and B are the only ramification points of
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V ′
∣∣
P1 and hence dimCV

′
∣∣
P1(−R) = g − 1. Thus, the limit linear system

of L on P1 is V ′(−f ∗(∆̃))
∣∣
P1 = V ′

∣∣
P1(−R). Then, the limit linear system

of L on P1 does not depend on the slice Σ. Notice that, if N ⊆ W is a
irreducible curve passing through a point Q ∈ P1 − {A,B} such that the
generic point of N lies on a smooth fiber of ρ1, then Q is a limit ramification
point on some slice Σ, and hence Q is a ramification point of V ′

∣∣
P1(−R).

We conclude that W does not contain P1.

Case (2): Consider a fiber BP = X ∪ P1 ∪ Y , where P1
P ∩X 6= ∅.

By considering the invertible sheaf L1 := L(−gY (P1
P×X )̃−(gY −1)Z11),

as in Case (1), we get that W does not contain X.

Now, consider Σ and S as in the begining of the proof of Proposition
6.3.1, but assume Σ is a slice in X̃ intersecting P1

P and X transversally at
the point P . Abusing notation, we denote by L the invertible sheaf f ∗(L)
on S, and let V := H0(L). We will see what happens on P1.

For each i ≥ 0, let Li := L(−iP1) and let W ′
i be the degeneracy scheme

of Li. Let mP1(i) denote the multiplicity of P1 in the divisor W ′
i . By

Equation 1.3.2, we get

mP1(i) = mP1(i+ 1) + dimC V (−iP1)
∣∣
X∪Y (−A−B).

Furthermore,

Li

∣∣
X

= ωX(−(i− 1)A− P ), Li

∣∣
P1 = OP1(1 + 2i), Li

∣∣
Y

= ωY (−iB),

which implies that Li has focus on P1 for each i ≥ gX , and hence mP1(i) = 0
for every i ≥ gX . It follows that

mP1(0) =

gX−1∑
i=0

dimCV (−iP1)
∣∣
X∪Y (−A−B).

On the other hand, for each i ≥ 0 we have

dimCV (−iP1)
∣∣
X∪Y (−A−B) ≤ h0(ωX(−iA− P )) + h0(ωY (−(i+ 1)B)),

which implies that

mP1(0) ≤ TwH0(ωX(A−P ))(A) + TwH0(ωY )(B)

=

(
gX
2

)
+ 1 +

(
gY
2

)
.
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This, together with the fact that W ′ contains Z11 and (P1
P × Y )̃ with

multiplicities
(
gY
2

)
and

(
gX
2

)
+ 1 respectively (Proposition 6.3.1), implies

that W does not contain P1.

Now, we are going to show that W does not contain Y . Let L′ :=
L(gXX + (gY − 1)Y ). We have

L′
∣∣
X

= ωX(−(gX − 1)A− P ), L′
∣∣
P1 = OP1(g), L′

∣∣
Y

= ωY (−(gY − 1)B).

Thus L′ has focus on P1. Let V ′ = H0(L′), then V ′
∣∣
P1 ⊆ H0(OP1(g)). Since

L′(−gXX)
∣∣
X

= ωX(A − P ), we have that V ′(−gXX)
∣∣
P1 has A as a base

point. Then

V ′(−gXX)
∣∣
P1 ⊆ H0(L′(−gXX)

∣∣
P1(−A)) = H0(OP1(g)(−(gX + 1)A)).

On the other hand, we have

dimC V
′(−gXX)

∣∣
P1 = g − 1− dimC V

′(−gXX)
∣∣
X∪Y (−A−B)

≥ g − 1− (gX − 1)

= g − gX = gY

Therefore V ′(−gXX)
∣∣
P1 = H0(OP1(g)(−(gX +1)A)). Analogously, we have

V ′(−gY Y )
∣∣
P1 ⊆ H0(OP1(g)(−(gY + 1)B)). Now, notice that

dimC V
′(−gY Y )

∣∣
P1 = g − 1− dimC V

′(−gY Y )
∣∣
X∪Y (−A−B)

≥ g − 1− gY
= gX − 1,

and since

H0(OP1(g)(−(gX + 1)A)) ∩H0(OP1(g)(−(gY + 1)B)) = 0

as subspaces of H0(OP1(g)), then by dimension considerations,

V ′
∣∣
P1 = H0(OP1(g)(−(gX + 1)A))⊕ V ′(−gY Y )

∣∣
P1.

Let VP1 := V ′
∣∣
P1. It follows that VP1(−gXA) = VP1(−(gX + 1)A). Then,

writing the vanishing orders at A of the sections of VP1,

{0, . . . , g} − {l1, l2},

where 0 ≤ l1 < l2 ≤ g, we have l1 = gX or l2 = gX . On the other hand,
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L(−gYX + (gY − 1)Y )
∣∣
X

= ωX((gY + 1)A− P ),
L(−gYX + (gY − 1)Y )

∣∣
P1 = OP1,

L(−gYX + (gY − 1)Y )
∣∣
Y

= ωY (−(gY − 1)B).

Then L(−gYX + (gY − 1)Y ) has focus on X, and by dimension considera-
tions, the limit linear system of L on X is VX = H0(ωX((gY +1)A−P )). As
P is a ramification point of H0(ωX(−(gX − 1)A)), it follows the vanishing
orders at A of the sections of VX are {0, . . . , gY − 1, gY + 1, . . . , g − 2, g}
and hence wtVX(A) = gX . Since L(−gYX+(gY −1)Y ) has focus on X and
L(gXX+(gY −1)Y ) has focus on P1, the connecting number between these
sheaves with respect toX and P1 is lXP1 = gY−1−(−gY )+gX−(gY−1) = g.
Therefore, we have

wtVX(A) + wtVP1(A) + (g − 1)(g − 2− lXP1) ≥ 0, i.e.,
gX + 2g − 1− (l1 + l2)− 2(g − 1) ≥ 0.

It follows that l1 + l2 ≤ gX + 1; and since l1 = gX or l2 = gX , we have that
l1 = 0 and l2 = gX , or l1 = 1 and l2 = gX . But, for l1 = 0 the intersection
multiplicity of the ramification divisor and the special fiber at the node
is 1, which is impossible. Thus, we get that l1 = 1, l2 = gX and hence
wtVP1(A) = 2g − 1 − (1 + gX) = 2(g − 1) − gX and the limit ramification
divisor does not contain the point A. Also, since degRVP1 = 2(g − 1), we
have wtVP1(B) ≤ gX .

On the other hand, we have that

VP1(−gYB) = VP1(−(gY + 1)B) = V ′(−gY Y )
∣∣
P1

has dimension gX − 1. Then, writing the orders of vanishing at B of the
sections of VP1,

{0, . . . , g} − {l′1, l′2},

where 0 ≤ l′1 < l′2 ≤ g, we get that l′1 = gY . On the other hand,

L(gXX − (gX + 1)Y )
∣∣
X

= ωX(−(gX − 1)A− P ),
L(gXX − (gX + 1)Y )

∣∣
P1 = OP1, L(gXX − (gX + 1)Y )

∣∣
Y

= ωY ((gX + 1)B).

Then L(gXX − (gX + 1)Y ) has focus on Y . Let VY be the limit linear
system on Y ; writing the orders of vanishing at B of the sections of VY ,
{0, . . . , gX − 1, gX + 1, . . . , g} − {l}, we get wtVY (B) = gY + g − 1− l. As
L(gXX + (gY − 1)Y ) has focus on P1 and L(gXX − (gX + 1)Y ) has focus
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on Y , it follows that the connecting number between these sheaves with
respect to P1 and Y is lP1Y = gY −1−gX+gX−(−(gX+1)) = g. Therefore,
we have

wtVP1(B) + wtVY (B) + (g − 1)(g − 2− lP1Y ) ≥ 0, i.e.,
2g − 1− (l′1 + l′2) + gY + g − 1− l − 2(g − 1) ≥ 0.

It follows that l′1 + l′2 + l ≤ gY + g; and hence l′2 + l ≤ g. Now, since
wtVP1(B) ≤ gX , we have 2g − 1− (l′1 + l′2) ≤ gX ; then l′1 + l′2 ≥ g − 1 + gY ,
i.e., l′2 ≥ g − 1. We conclude that l = 1 and l′2 = g − 1, or l = 0 and
g − 1 ≤ l′2 ≤ g. But, for l = 0 and l′2 = g − 1, the intersection multiplicity
of the ramification divisor and the special fiber at the node is 1, which is
impossible. The remaining cases, that is, l = 1 and l′2 = g − 1, l = 0 and
l′2 = g, imply the limit ramification divisor does not contain the point B.

Now, notice that when l = 1 and l′2 = g−1; we have wtVP1(B) = gX , and
as wtVP1(A) = 2(g − 1) − gX , it follows that the limit ramification divisor
does not contain any point of P1.

On the other hand, by using the formula for the class of W (see after
proposition 6.3.3), together with the following facts: the intersection mul-
tiplicities of all Kρ1

, Kρ2
, ∆̃ and ρ∗1π̃

∗λπ with P1 are zero; and Z11 ·P1 = −1,
Z12 · P1 = 1, (P1

P × X )̃ · P1 = 1, (P1
P × Y )̃ · P1 = −1, we conclude that

W ·P1 = 1. Thus, since W does not contain P1, there is a unique irreducible
component of W intersecting P1, and this intersection is transversal. Let
D := W ∩ P1. Then, D ∈ P1 is a limit ramification point on the slice Σ.
It follows that the case l = 1 and l′2 = g− 1 is impossible, and hence l = 0
and l′2 = g. Then VY = H0(ωY (gXB)). Thus, the limit linear system on Y

does not depend on the slice Σ, and hence W does not contain Y .

Case (3): Consider a fiber BP = X ∪ P1 ∪ Y , where P1
P ∩ Y 6= ∅.

This case is similar to Case (2).

Case (4): P ∈ X̃t0 is not a node.

By the proof of Proposition 6.3.1, we have that for each slice Σ passing
through the point P , f ∗(W ) does not contain any vertical component on
S. 2

Now, we want to prove that S2W ∩ Bt0 is finite. There are some cases
which are easy to handle (see Propositions 6.4.4 and 6.4.5), but in the
general case, we need to state the following hypothesis:

Hypothesis (∗).
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If (X,A) is a general pointed smooth curve, then for every ramification
point P ∈ X of the complete linear system H0(ωX(−(gX − 1)A)) and for
every i ≥ 1, the complete linear system H0(ωX((i + 1)A − P )) does not
have ramification points on X−{A} having ramification weight at least 3.

Proposition 6.4.3. S2W ∩Bt0 is finite.

Proof. Since W is flat, for each singular fiber BP , we have that W∩BP is
the limit ramification divisor over any slice Σ intersecting X̃t0 transversally
at the point P . We are going to see what happens on each fiber; keeping
the notation as in the begining of the proof of Proposition 6.3.1, we denote
by L the invertible sheaf f ∗(L) on S.

Case (1): P ∈ X is not a node of X̃t0.
We have

L(−(gX + 1)Y )
∣∣
X

= ωX(−(gX − 1)A− P ),
L(−(gX + 1)Y )

∣∣
Y

= ωY ((gX + 1)B).

Then L(−(gX + 1)Y ) has focus on Y , and since P is not a ramification
point of H0(ωX(−(gX − 1)A)), by dimension considerations we have that
the limit linear system of L on Y is VY = H0(ωY (gXB)). On the other
hand,

L(−(gY − 1)X)
∣∣
X

= ωX((gY + 1)A− P ),
L(−(gY − 1)X)

∣∣
Y

= ωY (−(gY − 1)B).

Then L(−(gY − 1)X) has focus on X, and by dimension considerations we
have that the limit linear system of L on X is VX = H0(ωX((gY +1)A−P )).

Since B is a general point of Y , the orders of vanishing at B of the
sections in VY are {1, . . . , gX−1, gX +1, . . . , g}; then wtVY (B) = gY +g−1.
Also, {0, . . . , gY −1, gY +1, . . . , g−1} are the orders of vanishing at A of the
sections in VX ; hence wtVX(A) = gX − 1. Thus, the number of ramification
points of VX and VY on (X − {A}) ∪ (Y − {B}) is

(g − 1)((g − 2)(gX − 1) + 2gX − 2 + gY )− (gX − 1)
+(g − 1)((g − 2)(gY − 1) + 2gY − 2 + gX + 1)− (gY + g − 1);

this sum is (g−1)(g2−g−1), and since this number is the total number of
limit ramification points, we have that W does not contain the node. On
the other hand, as VY = H0(ωY (gXB)), it follows from Proposition 1.3.4
that wtVY (Q) = 1 for every ramification point Q of VY on Y − {B}. Also,
for Q ∈ X − {A}, it follows from Propositions 1.3.5 and 1.3.6 that
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h0(ωX((gY + 1)A− P − (g + 1)Q)) = 0,
h0(ωX((gY + 1)A− P − (g − 3)Q)) = 2.

Then, the orders of vanishing at Q of the sections in VX are

{0, . . . , g − 4, ag−3, ag−2}, where ag−2 ≤ g.

Thus, wtVX(Q) ≥ 3 if and only if h0(ωX((gY + 1)A − P − gQ)) = 1 and
h0(ωX((gY +1)A−P − (g−2)Q)) = 2; and in this case wtVX(Q) = 3. Since
h0(ωX((gY + 1)A−P − gQ)) = 1 if and only if Q is a ramification point of
H0(ωX((gY +1)A)) and P is a ramification point ofH0(ωX((gY +1)A−gQ)),
we get that there only exist a finitely many points (P,Q) ∈ Z11 such that
P ∈ X is not a node of X̃t0, Q ∈ X − {A} and wtVX(Q) = 3, where
VX = H0(ωX((gY + 1)A− P )).

Case (2): P ∈ Y is not a node of X̃t0.
This case is similar to Case (1):

VX = H0(ωX(gYA)) ⊆ H0(ωX((gY + 1)A)) and
VY = H0(ωY ((gX + 1)B − P ))

are the limit linear systems on X and Y respectively. Also, W does not
contain the node, wtVX(Q) = 1 for every ramification point Q of VX on
X − {A}; for each Q ∈ Y − {B} we have that wtVY (Q) ≥ 3 if and only
if wtVY (Q) = 3; and there exists a finitely many points (P,Q) ∈ Z22 such
that P ∈ Y is not a node of X̃t0, Q ∈ Y − {B} and wtVY (Q) = 3.

Case (3): Consider Q ∈ P1
P − {P} such that P1

P intersects X.
By the proof of Case (3) of Proposition 6.3.1, we have that the limit

linear systems on X and Y satisfy VX = H0(ωX((gY + 1)A−P )) and VY ⊆
H0(ωY ((gX + 1)B)). Also, we obtained that l = 1, where {0, 1, . . . , gX −
1, gX + 1, . . . , g} − {l} are the orders of vanishing at B of the sections of
ωY ((gX + 1)B) in VY . Therefore W does not contain the node B, VY 6=
H0(ωY (gXB)) and VY ⊇ H0(ωY ((gX − 1)B)).

Now, consider a linear system V ⊆ H0(ωY ((gX + 1)B)) satisfying

V ⊇ H0(ωY ((gX − 1)B)) and dimCV = g − 1.

We have that D ∈ Y − {B} is a ramification point of V if and only if
V (−(g− 1)D) 6= 0, i.e., V ⊇ H0(ωY ((gX + 1)B− (g− 1)D)). On the other
hand, for every D ∈ Y − {B},

H0(ωY ((gX − 1)B)) ∩H0(ωY ((gX + 1)B − (g − 1)D)) = 0
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as subspaces of H0(ωY ((gX + 1)B)). Hence, by dimension considerations,
D ∈ Y − {B} is a ramification point of V if and only if

V = H0(ωY ((gX − 1)B))⊕H0(ωY ((gX + 1)B − (g − 1)D)).

It follows that VY and H0(ωY (gXB)) do not have ramification points in
common on Y − {B}, and since the limit linear system on Y ⊆ BP is
H0(ωY (gXB)), we have that for every D ∈ Y − {B}, W does not contain
P1
P × {D}.

On the other hand, by using the formula for the class of W (see after
Proposition 6.3.3), we conclude that W · P1

P × {D} = 1 for every point
D ∈ Y −{B}. Then, for each D ∈ Y −{B}, we have W intersects P1

P×{D}
at a single point; thus, as Q varies in P1

P − {P}, the limit linear system
VY on Y ⊆ BQ varies through distinct subspaces of H0(ωY ((gX + 1)B)),
and furthermore, those limit linear systems on Y do not have ramification
points in common on Y − {B}. Also, notice that, as Q varies in P1

P , the
limit linear system VY on Y ⊆ BQ varies through all the subspaces V of
H0(ωY ((gX +1)B)) satisfying V ⊇ H0(ωY ((gX−1)B)) and dimCV = g−1.

Since H0(ωY ((gX − 1)B)) ⊆ VY ⊆ H0(ωY ((gX + 1)B)), for every point
D ∈ Y − {B} we have that wtVY (D) = wtH0(ωY ((gX+1)B))(D) + g − 1 − l′,
where {b0, . . . , bg−1} − {l′} are the orders of vanishing at D of the sections
in VY , with {b0, . . . , bg−1} the orders of vanishing at D of the sections of
H0(ωY ((gX + 1)B)). If D ∈ Y − {B} is an ordinary point of the linear
system H0(ωY ((gX − 1)B)) then {0, . . . , g− 3} ⊆ {b0, . . . , bg−1}−{l′}, and
hence l′ ≥ g−2; and since wtH0(ωY ((gX+1)B))(D) ≤ 1, we have wtVY (D) ≤ 2.
On the other hand, as H0(ωY ((gX − 1)B)) has only simple ramification
points on Y − {B}, it follows that {0, . . . , g − 4} ⊆ {b0, . . . , bg−1} − {l′}.
Therefore l′ ≥ g − 3, and if D ∈ Y − {B} is an ordinary point of
H0(ωY ((gX + 1)B)) then wtVY (D) ≤ 2.

Now, consider D ∈ Y − {B} such that D is a ramification point in
common of the linear systems H0(ωY ((gX−1)B)) and H0(ωY ((gX +1)B)).
Then, we have

{0, . . . , g − 4, g − 2} ⊆ {b0, . . . , bg−1} − {l′} and
{b0, . . . , bg−1} = {0, . . . , g − 2, g};

which imply l′ = g − 3 or l′ = g. Therefore, if D is a ramification point
of VY , then l′ = g − 3 and wtVY (D) = 3. Then, for D ∈ Y − {B}, we
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have wtVY (D) ≥ 3 if and only if wtVY (D) = 3. Also, if α is the num-
ber of ramification points in common on Y − {B} of the linear systems
H0(ωY ((gX − 1)B)) and H0(ωY ((gX + 1)B)), then there exist α points
(Q,D) ∈ (P1

P×Y )̃ such that Q ∈ P1
P−{P}, D ∈ Y −{B} and wtVY (D) = 3,

where VY is the limit linear system on Y ⊆ BQ.
On the other hand, the hypothesis (∗) implies that there are no points

(Q,D) ∈ (P1
P×X )̃ such thatQ ∈ P1

P−{P}, D ∈ X−{A} and wtVX(D) ≥ 3,
where VX = H0(ωX((gY + 1)A− P )).

Case (4): Consider Q ∈ P1
P − {P} such that P1

P intersects Y .
This case is similar to Case (3): We have the limit linear systems on X

and Y satisfy

VX ⊆ H0(ωX((gY + 1)A)) and VY = H0(ωY ((gX + 1)B − P )).

Also, W does not contain the node, VX ⊇ H0(ωX((gY − 1)A)) and VX 6=
H0(ωX(gYA)). If β is the number of ramification points in common on
X−{A} of the linear systems H0(ωX((gY −1)A)) and H0(ωX((gY +1)A)),
then there exist β points (Q,D) ∈ (P1

P ×X )̃ such that Q ∈ P1
P −{P}, D ∈

X−{A} and wtVX(D) = 3, where VX is the limit linear system on X ⊆ BQ.
Also, there are no points (Q,D) ∈ (P1

P × Y )̃ such that Q ∈ P1
P − {P},

D ∈ Y − {B} and wtVY (D) ≥ 3, where VY = H0(ωY ((gX + 1)B − P )).
Case (5): Let P = A and let BA = X ∪ P1 ∪ Y be the fiber of B over

the point A.
We have

L(−(gY − 1)X + (gY − 1)Y )
∣∣
X

= H0(ωX(gYA)),
L(−(gY − 1)X + (gY − 1)Y )

∣∣
P1 = OP1,

L(−(gY − 1)X + (gY − 1)Y )
∣∣
Y

= H0(ωY (−(gY − 1)B)).

Then L(−(gY −1)X+(gY −1)Y ) has focus on X and VX = H0(ωX(gYA)).
Also,

L(gXX − gXY )
∣∣
X

= H0(ωX(−(gX − 1)A)), L(gXX − gXY )
∣∣
P1 = OP1.

L(gXX − gXY )
∣∣
Y

= H0(ωY (gXB));

Then L(gXX − gXY ) has focus on Y and VY = H0(ωY (gXB)). On the
other hand,

L(gXX + (gY − 1)Y )
∣∣
X

= H0(ωX(−(gX − 1)A)),
L(gXX + (gY − 1)Y )

∣∣
P1 = OP1(g)(−R),

L(gXX + (gY − 1)Y )
∣∣
Y

= H0(ωY (−(gY − 1)B));
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where R = P1 ∩ ∆̃. Then L(gXX + (gY − 1)Y ) has focus on P1.
Let {0, . . . , g− 1}− {l′′} be the orders of vanishing at A of the sections

in the limit linear system VP1. It follows that

wtVX(A) + wtVP1(A) + (g − 1)(g − 2− (g − 1)) ≥ 0, i.e.,
gX + g − 1− l′′ − (g − 1) ≥ 0.

Then l′′ ≤ gX . By the proof of Case (1) of Proposition 6.4.2, we have that
VP1 ⊇ H0(OP1(g)(−R − (gX + 1)A))⊕H0(OP1(g)(−R − (gY + 1)B)), and
since the numbers 0, . . . , gX − 2 are the orders of vanishing at A of the
sections in the linear system

H0(OP1(g)(−R− (gX + 1)A))⊕H0(OP1(g)(−R− (gY + 1)B)) ⊆
H0(OP1(g)(−R)),

we get l′′ ≥ gX − 1. Therefore gX − 1 ≤ l′′ ≤ gX , but for l′′ = gX − 1, the
intersection multiplicity of the ramification divisor and the special fiber
at the point A is 1, which is impossible. Thus, l′′ = gX and W does not
contain the point A. Analogously, W does not contain the point B.

On the other hand, the number of ramification points of VX and VY on
(X − {A}) ∪ (Y − {B}) is

(g − 1)((g − 2)(gX − 1) + 2gX − 2 + gY )− gX
+(g − 1)((g − 2)(gY − 1) + 2gY − 2 + gX)− gY .

This sum is (g−1)(g2−g−1)−1, which implies there is a unique ramification
point of VP1 on P1 − {A,B}, and this point has ramification weight 1.
Noticing that VX has only simple ramification points on X − {A} and VY
has only simple ramification points on Y − {B}, we conclude there are no
points lying on this fiber of weight at least 3.

Case (6): Consider the fiber BP = X ∪ P1 ∪ Y , where P ∈ X − {A} is
a node of X̃t0.

By the proof of Proposition 6.4.2, the limit linear systems on X and Y

are VX = H0(ωX((gY +1)A−P )) and VY = H0(ωY (gXB)) respectively; also,
there is a unique limit ramification point on P1−{A,B}, and this point has
ramification weight 1. As in Case (3), we have VX = H0(ωX((gY +1)A−P ))
does not have ramification points on X − {A} having ramification weight
at least 3. Also, since VY = H0(ωY (gXB)), we get wtVY (D) = 1 for every
ramification point D of VY on Y − {B}. Therefore, there are no points
lying on this fiber of weight at least 3.
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Case (7): Consider the fiber BP = X ∪ P1 ∪ Y , where P ∈ Y − {B} is
a node of X̃t0.

This case is similar to Case (6); there are no points lying on this fiber
of weight at least 3. 2

In the following propositions, we get more information without using
the hypothesis (∗).

Proposition 6.4.4. If g = 3, then S2W ∩Bt0 = ∅.

Proof. We have gX = 2 and gY = 1. As in Proposition 6.4.3, we will see
what happens on each singular fiber BP .

Case (1): P ∈ X is not a node of X̃t0.

It is enough to show that there is no point Q ∈ X − {A} such that
h0(ωX(2A− P − 3Q)) = 1 and h0(ωX(2A− P −Q)) = 2.

Suppose h0(ωX(2A − P − 3Q)) = 1 and h0(ωX(2A − P − Q)) = 2. As
deg(ωX(2A − P − 3Q)) = 0 and h0(ωX(2A − P − 3Q)) = 1, it follows
that KX + 2A − P and 3Q are linearly equivalent divisors; and since we
have h0(ωX(2A − P − Q)) = 2, we conclude h0(OX(2Q)) = 2. Then
h0(ωX(−2Q)) = 1, and since deg(ωX(−2Q)) = 0, we have that KX and
2Q are linearly equivalent. We conclude that 2A and P + Q are linearly
equivalent; but this is impossible, as h0(OX(2A)) = 1.

Case (2): P ∈ Y is not a node of X̃t0.

Notice that, since gY = 1, VY = H0(ωY ((gX +1)B−P )) has only simple
ramification points.

Case (3): Consider Q ∈ P1
P − {P} such that P1

P intersects X.

Notice that H0(ωY (B)) has only the point B as a ramification point.
Also, as showed in the case (1), there is no point Q ∈ X − {A} such that
h0(ωX(2A− P − 3Q)) = 1 and h0(ωX(2A− P −Q)) = 2.

Finally, notice that we do not have Case (4) of Proposition 6.4.3, as
gY = 1. 2

Proposition 6.4.5. If g = 4 and gY = 2, then S2W ∩Bt0 = ∅.

Proof. We have gX = 2 and gY = 2. As in Proposition 6.4.3, we will see
what happens on each singular fiber BP .

Case (1): P ∈ X is not a node of X̃t0.

It is enough to show that there is no point Q ∈ X − {A} such that
h0(ωX(3A− P − 4Q)) = 1 and h0(ωX(3A− P − 2Q)) = 2.
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Suppose h0(ωX(3A − P − 4Q)) = 1 and h0(ωX(3A − P − 2Q)) = 2.
As deg(ωX(3A − P − 4Q)) = 0 and h0(ωX(3A − P − 4Q)) = 1, it follows
that KX + 3A − P and 4Q are linearly equivalent divisors; and since we
have h0(ωX(3A − P − 2Q)) = 2, we conclude h0(OX(2Q)) = 2. Then
h0(ωX(−2Q)) = 1, and since deg(ωX(−2Q)) = 0, we get that KX and
2Q are linearly equivalent. We conclude that 3A− P and 2Q are linearly
equivalent; which implies that

2 = h0(ωX) = h0(OX(2Q)) = h0(OX(3A− P ))

and hence h0(ωX(P − 3A)) = 1. It follows that h0(ωX(−3A)) = 1, which
is impossible.

Case (2): P ∈ Y is not a node of X̃t0.
This case is similar to Case (1).
Case (3): Consider Q ∈ P1

P − {P} such that P1
P intersects X.

As showed in the case (1), there is no point Q ∈ X − {A} such that
h0(ωX(3A−P−4Q)) = 1 and h0(ωX(3A−P−2Q)) = 2. Thus, it is enough
to show that H0(ωY (B)) and H0(ωY (3B)) do not have ramification points
in common on Y − {B}. Suppose Q ∈ Y − {B} is a ramification point in
common of the complete linear systems H0(ωY (B)) and H0(ωY (3B)). We
have h0(ωY (B − 2Q)) = 1, i.e., h0(ωY (−2Q)) = 1. Then KY and 2Q are
linearly equivalent. On the other hand, since h0(ωY (3B − 4Q)) = 1, we
have h0(OY (3B−2Q)) = 1; it follows that there exists a point R ∈ Y such
that 3B − 2Q and R are linearly equivalent. Thus, we have

2 = h0(ωY ) = h0(OY (2Q)) = h0(OY (3B −R))

and hence h0(ωY (R − 3B)) = 1. As B ∈ Y is a general point, it follows
that R 6= B; therefore h0(ωY (−3B)) = 1, which is impossible.

Case (4): Consider Q ∈ P1
P − {P} such that P1

P intersects Y .
This case is similar to Case (3). 2

Observe that if we write the class of S2W as

S2W := aλ− a0δ0 − a1δ1 − . . .− a[g/2]δ[g/2],

then Propositions 6.4.4 and 6.4.5 tell us that a1 = b1 for g = 3, and a2 = b2

for g = 4, where bj := bj(g) are the numbers computed before Proposition
6.4.2.



Appendix A

Intersections appearing in the
reducible case

A.1 List of intersections

We have the following formulas:

(1) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)3) = 2δj
(2) π̃∗ρ1∗(K

2
ρ1
· Z11) = 0

(3) π̃∗ρ1∗(Z
2
11 ·Kρ1

) = −(2gX − 1)gXδj
(4) π̃∗ρ1∗(∆̃

2 ·Kρ2
) = −12λ+ δj

(5) π̃∗ρ1∗(Kρ1
·Kρ2

· Z11) = (2gX − 1)(3gX − 2)δj
(6) π̃∗ρ1∗(∆̃

2 · Z11) = −(2gX − 1)δj
(7) π̃∗ρ1∗(Z

2
11 · ∆̃) = −gXδj

(8) π̃∗ρ1∗(Kρ1
·Kρ2

· ρ∗1X) = (2g − 2)(3gX − 2)δj
(9) π̃∗ρ1∗(Z

2
11 ·Kρ2

) = −(3gX − 2)δj
(10) π̃∗ρ1∗(Z

2
11 · ρ∗1π̃∗λ) = 0

(11) π̃∗ρ1∗(∆̃
2 · Z22) = −(2gY − 1)δj

(12) π̃∗ρ1∗(Z
2
22 · ∆̃) = −gY δj

(13) π̃∗ρ1∗(Z11 · Z22 · ∆̃) = δj
(14) π̃∗ρ1∗(Z

3
11) = gXδj

(15) π̃∗ρ1∗(Z
3
22) = gY δj

(16) π̃∗ρ1∗(Z
2
11 · Z22) = −δj

(17) π̃∗ρ1∗(Z
2
22 · Z11) = −δj

(18) π̃∗ρ1∗(Z
2
11 · ρ∗1X) = gXδj

(19) π̃∗ρ1∗(Z
2
22 · ρ∗1X) = −δj

(20) π̃∗ρ1∗(Z11 · Z22 · ρ∗1X) = 0
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(21) π̃∗ρ1∗((ρ
∗
2X)2 · ρ∗1X) = 0

(22) π̃∗ρ1∗(Z
2
22 · ρ∗1π̃∗λ) = 0

(23) π̃∗ρ1∗(Z11 · Z22 · ρ∗1π̃∗λ) = 0

(24) π̃∗ρ1∗((ρ
∗
2X)2 · ρ∗1π̃∗λ) = 0

(25) π̃∗ρ1∗(Z
2
11 · (P1

P ×X )̃) = 0

(26) π̃∗ρ1∗(Z
2
22 · (P1

P × Y )̃) = 0

(27) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Z

2
11 · (P1

P × Y )̃) = −δj
(28) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(Z
2
11 · (P1

P × Y )̃) = 0

(29) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Z

2
22 · (P1

P ×X )̃) = −δj
(30) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(Z
2
22 · (P1

P ×X )̃) = 0

(31) π̃∗ρ1∗(Z
2
11 · ρ∗2X) = gXδj

(32) π̃∗ρ1∗(Z
2
22 ·Kρ2

) = −(3gY − 2)δj
(33) π̃∗ρ1∗(Z11 · Z22 ·Kρ2

) = 0

(34) π̃∗ρ1∗(Kρ1
·Kρ2

· ∆̃) = 12λ− δj
(35) π̃∗ρ1∗(Kρ1

· ∆̃2) = −12λ+ δj
(36) π̃∗ρ1∗(∆̃

3) = 12λ− δj
(37) π̃∗ρ1∗(K

2
ρ1
· ∆̃) = 12λ− δj

(38) π̃∗ρ1∗(K
2
ρ2
· ∆̃) = 12λ− (g − 1)δj

(39) π̃∗ρ1∗(Kρ1
· ∆̃ · Z11) = (2gX − 1)δj

(40) π̃∗ρ1∗(Kρ1
· ∆̃ · Z22) = (2gY − 1)δj

(41) π̃∗ρ1∗(Kρ2
· ∆̃ · Z11) = (3gX − 2)δj

(42) π̃∗ρ1∗(Kρ2
· ∆̃ · Z22) = (3gY − 2)δj

(43) π̃∗ρ1∗(K
3
ρ1

) = 0

(44) π̃∗ρ1∗(K
3
ρ2

) = 0

(45) π̃∗ρ1∗(K
2
ρ1
·Kρ2

) = (2g − 2)(12λ− δj)
(45) π̃∗ρ1∗(K

2
ρ2
·Kρ1

) = (2g − 2)(12λ− (g − 1)δj)

(46) π̃∗ρ1∗(∆̃
2 · ρ∗1π̃∗λ) = −(2g − 2)λ

(47) π̃∗ρ1∗(K
2
ρ1
· ρ∗1π̃∗λ) = 0

(48) π̃∗ρ1∗(Kρ1
·Kρ2

· ρ∗1π̃∗λ) = (2g − 2)2λ

(49) π̃∗ρ1∗(K
2
ρ2
· ρ∗1π̃∗λ) = 0

(50) π̃∗ρ1∗(Kρ1
· ∆̃ · ρ∗1π̃∗λ) = (2g − 2)λ

(51) π̃∗ρ1∗(Kρ2
· ∆̃ · ρ∗1π̃∗λ) = (2g − 2)λ

(52) π̃∗ρ1∗((ρ
∗
1X)2 · ρ∗1π̃∗λ) = 0

(53) π̃∗ρ1∗(ρ
∗
1X · ρ∗2X · ρ∗1π̃∗λ) = 0

(54) π̃∗ρ1∗(ρ
∗
1X · Z11 · ρ∗1π̃∗λ) = 0
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(55) π̃∗ρ1∗(Z22 · ρ∗2X · ρ∗1π̃∗λ) = 0

(56) π̃∗ρ1∗(Z11 · ρ∗2X · ρ∗1π̃∗λ) = 0

(57) π̃∗ρ1∗(Z22 · ρ∗1X · ρ∗1π̃∗λ) = 0

(58) π̃∗ρ1∗(Z11 · Z22 ·Kρ1
) = 0

(59) π̃∗ρ1∗(Z
2
22 ·Kρ1

) = −(2gY − 1)gY δj
(60) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P ×X )̃)2 · ρ∗1π̃∗λ) = 0

(61) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · ρ∗1π̃∗λ) = 0

(62) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · ρ∗1π̃∗λ) = 0

(63) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · ρ∗1π̃∗λ) = 0

(64) π̃∗ρ1∗((P1
P ×X )̃ · (P1

P × Y )̃ · ρ∗1π̃∗λ) = 0

(65) If P 6= Q, then π̃∗ρ1∗((P1
P ×X )̃ · (P1

Q ×X )̃ · ρ∗1π̃∗λ) = 0

(66) If P 6= Q, then π̃∗ρ1∗((P1
P × Y )̃ · (P1

Q × Y )̃ · ρ∗1π̃∗λ) = 0

(67) If P 6= Q, then π̃∗ρ1∗((P1
P ×X )̃ · (P1

Q × Y )̃ · ρ∗1π̃∗λ) = 0

(68) π̃∗ρ1∗((P1
P ×X )̃ · Z11 · ρ∗1π̃∗λ) = 0

(69) π̃∗ρ1∗((P1
P ×X )̃ · Z22 · ρ∗1π̃∗λ) = 0

(70) π̃∗ρ1∗((P1
P × Y )̃ · Z11 · ρ∗1π̃∗λ) = 0

(71) π̃∗ρ1∗((P1
P × Y )̃ · Z22 · ρ∗1π̃∗λ) = 0

(72) π̃∗ρ1∗((P1
P ×X )̃ · ρ∗1X · ρ∗1π̃∗λ) = 0

(73) π̃∗ρ1∗((P1
P × Y )̃ · ρ∗1X · ρ∗1π̃∗λ) = 0

(74) π̃∗ρ1∗((ρ
∗
1π̃
∗λ)3) = 0

(75) π̃∗ρ1∗((ρ
∗
1X)3) = 0

(76) π̃∗ρ1∗((ρ
∗
2X)3) = 0

(77) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)3) = δj
(78) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P × Y )̃)3) = δj

(79) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)3) = 2δj
(80) π̃∗ρ1∗(K

2
ρ1
· ρ∗1X) = 0

(81) π̃∗ρ1∗(K
2
ρ1
· ρ∗2X) = 0

(82) π̃∗ρ1∗(K
2
ρ1
· Z22) = 0

(83) π̃∗ρ1∗(K
2
ρ1
· (P1

P ×X )̃) = 0

(84) π̃∗ρ1∗(K
2
ρ1
· (P1

P × Y )̃) = 0

(85) π̃∗ρ1∗(K
2
ρ2
· ρ∗1X) = 0

(86) π̃∗ρ1∗(K
2
ρ2
· ρ∗2X) = 0

(87) π̃∗ρ1∗(K
2
ρ2
· Z11) = 0

(88) π̃∗ρ1∗(K
2
ρ2
· Z22) = 0

(89) π̃∗ρ1∗(K
2
ρ2
· (P1

P ×X )̃) = 0

(90) π̃∗ρ1∗(K
2
ρ2
· (P1

P × Y )̃) = 0
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(91) π̃∗ρ1∗(Kρ1
· (ρ∗1π̃∗λ)2) = 0

(92) π̃∗ρ1∗(Kρ2
· (ρ∗1π̃∗λ)2) = 0

(93) π̃∗ρ1∗(∆̃ · (ρ∗1π̃∗λ)2) = 0

(94) π̃∗ρ1∗(ρ
∗
1X · (ρ∗1π̃∗λ)2) = 0

(95) π̃∗ρ1∗(ρ
∗
2X · (ρ∗1π̃∗λ)2) = 0

(96) π̃∗ρ1∗(Z11 · (ρ∗1π̃∗λ)2) = 0

(97) π̃∗ρ1∗(Z22 · (ρ∗1π̃∗λ)2) = 0

(98) π̃∗ρ1∗((P1
P ×X )̃ · (ρ∗1π̃∗λ)2) = 0

(99) π̃∗ρ1∗((P1
P × Y )̃ · (ρ∗1π̃∗λ)2) = 0

(100) π̃∗ρ1∗(Kρ1
· (ρ∗1X)2) = −(2g − 2)gXδj

(101) π̃∗ρ1∗(Kρ2
· (ρ∗1X)2) = 0

(102) π̃∗ρ1∗(∆̃ · (ρ∗1X)2) = −gXδj
(103) π̃∗ρ1∗(Z11 · (ρ∗1X)2) = 0

(104) π̃∗ρ1∗(Z22 · (ρ∗1X)2) = 0

(105) π̃∗ρ1∗(ρ
∗
2X · (ρ∗1X)2) = 0

(106) π̃∗ρ1∗((P1
P ×X )̃ · (ρ∗1X)2) = 0

(107) π̃∗ρ1∗((P1
P × Y )̃ · (ρ∗1X)2) = 0

(108) π̃∗ρ1∗(Z
2
22 · ρ∗2X) = −gY δj

(109) π̃∗ρ1∗(Kρ1
· (ρ∗2X)2) = 0

(110) π̃∗ρ1∗(Kρ2
· (ρ∗2X)2) = −(2g − 2)δj

(111) π̃∗ρ1∗(∆̃ · (ρ∗2X)2) = −δj
(112) π̃∗ρ1∗(Z11 · (ρ∗2X)2) = 0

(113) π̃∗ρ1∗(Z22 · (ρ∗2X)2) = 0

(114) π̃∗ρ1∗((P1
P ×X )̃ · (ρ∗2X)2) = 0

(115) π̃∗ρ1∗((P1
P × Y )̃ · (ρ∗2X)2) = 0

(116) π̃∗ρ1∗(((P1
P ×X )̃)2 ·Kρ1

) = −(2gX − 1)δj
(117) π̃∗ρ1∗(((P1

P × Y )̃)2 ·Kρ1
) = −(2gY − 1)δj

(118) π̃∗ρ1∗(((P1
P ×X )̃)2 ·Kρ2

) = δj
(119) π̃∗ρ1∗(((P1

P × Y )̃)2 ·Kρ2
) = δj

(120) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · ∆̃) = −δj
(121) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1
P ×X )̃)2 · ∆̃) = 0

(122) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · ∆̃) = 0

(123) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · ∆̃) = −δj
(124) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P ×X )̃)2 · ρ∗1X) = −δj

(125) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · ρ∗1X) = 0

(126) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · Z11) = −δj
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(127) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · Z11) = 0

(128) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · Z22) = 0

(129) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · Z22) = −δj
(130) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P ×X )̃)2 · Z22) = 0

(131) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · Z22) = −δj
(132) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(((P1
P × Y )̃)2 · Z11) = −δj

(133) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · Z11) = 0

(134) π̃∗ρ1∗(((P1
P ×X )̃)2 · ρ∗2X) = δj

(135) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · (P1
P × Y )̃) = −δJ

(136) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P ×X )̃)2 · (P1
P × Y )̃) = 0

(137) π̃∗ρ1∗(((P1
P × Y )̃)2 · ρ∗2X) = −δj

(138) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · (P1
P ×X )̃) = 0

(139) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · (P1
P ×X )̃) = −δj

(140) π̃∗ρ1∗(Kρ1
·Kρ2

· Z22) = (2gY − 1)(3gY − 2)δj
(141) π̃∗ρ1∗(Kρ1

·Kρ2
· ρ∗2X) = (2gX − 1)(2g − 2)δj

(142) π̃∗ρ1∗(Kρ1
·Kρ2

· (P1
P ×X )̃) = −(2gX − 1)δj

(143) π̃∗ρ1∗(Kρ1
·Kρ2

· (P1
P × Y )̃) = −(2gY − 1)δj

(144) π̃∗ρ1∗(Kρ1
· ∆̃ · ρ∗1X) = (2gX − 1)δj

(145) π̃∗ρ1∗(Kρ1
· ∆̃ · (P1

P ×X )̃) = 0

(146) π̃∗ρ1∗(Kρ1
· ∆̃ · (P1

P × Y )̃) = 0

(147) π̃∗ρ1∗(Kρ1
· ∆̃ · ρ∗2X) = (2gX − 1)δj

(148) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · ρ∗1X) = 0

(149) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · Z11) = 0

(150) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · Z22) = 0

(151) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · ρ∗2X) = 0

(152) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · (P1

P ×X )̃) = 0

(153) π̃∗ρ1∗(Kρ1
· ρ∗1π̃∗λ · (P1

P × Y )̃) = 0

(154) π̃∗ρ1∗(Kρ1
· ρ∗1X · Z11) = −(2gX − 1)gXδj

(155) π̃∗ρ1∗(Kρ1
· ρ∗1X · Z22) = (2gY − 1)δj

(156) π̃∗ρ1∗(Kρ1
· ρ∗1X · ρ∗2X) = 0

(157) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗1X · (P1
P ×X )̃) = (2gX − 1)δj

(158) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗1X · (P1
P ×X )̃) = 0

(159) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗1X · (P1
P × Y )̃) = (2gY − 1)δj

(160) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗1X · (P1
P × Y )̃) = 0

(161) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ1

· Z11 · (P1
P ×X )̃) = (2gX − 1)δj

(162) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ1

· Z11 · (P1
P ×X )̃) = 0
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(163) π̃∗ρ1∗(Kρ1
· Z11 · (P1

P × Y )̃) = 0

(164) π̃∗ρ1∗(Kρ1
· Z11 · ρ∗2X) = 0

(165) π̃∗ρ1∗(Kρ1
· Z22 · ρ∗2X) = 0

(166) π̃∗ρ1∗(Kρ1
· Z22 · (P1

P ×X )̃) = 0

(167) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ1

· Z22 · (P1
P × Y )̃) = 0

(168) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ1

· Z22 · (P1
P × Y )̃) = (2gY − 1)δj

(169) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗2X · (P1
P ×X )̃) = 0

(170) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ1

· ρ∗2X · (P1
P ×X )̃) = −(2gX − 1)δj

(171) π̃∗ρ1∗(Kρ1
· ρ∗2X · (P1

P × Y )̃) = 0

(172) π̃∗ρ1∗(Kρ1
· (P1

P ×X )̃ · (P1
P × Y )̃) = 0

(173) π̃∗ρ1∗(Kρ2
· ∆̃ · ρ∗1X) = (3gX − 2)δj

(174) π̃∗ρ1∗(Kρ2
· ∆̃ · ρ∗2X) = (2gX − 1)δj

(175) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ2

· ∆̃ · (P1
P ×X )̃) = −δj

(176) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ2

· ∆̃ · (P1
P ×X )̃) = 0

(177) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(Kρ2

· ∆̃ · (P1
P × Y )̃) = 0

(178) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Kρ2

· ∆̃ · (P1
P × Y )̃) = −δj

(179) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · ρ∗1X) = 0

(180) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · Z11) = 0

(181) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · Z22) = 0

(182) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · ρ∗2X) = 0

(183) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · (P1

P ×X )̃) = 0

(184) π̃∗ρ1∗(Kρ2
· ρ∗1π̃∗λ · (P1

P × Y )̃) = 0

(185) π̃∗ρ1∗(Kρ2
· ρ∗1X · Z11) = 0

(186) π̃∗ρ1∗(Kρ2
· ρ∗1X · Z22) = 0

(187) π̃∗ρ1∗(Kρ2
· ρ∗1X · ρ∗2X) = 0

(188) π̃∗ρ1∗(Kρ2
· ρ∗1X · (P1

P ×X )̃) = 0

(189) π̃∗ρ1∗(Kρ2
· ρ∗1X · (P1

P × Y )̃) = 0

(190) π̃∗ρ1∗(Kρ2
· Z11 · ρ∗2X) = −(3gX − 2)δj

(191) π̃∗ρ1∗(Kρ2
· Z11 · (P1

P ×X )̃) = 0

(192) π̃∗ρ1∗(Kρ2
· Z11 · (P1

P × Y )̃) = 0

(193) π̃∗ρ1∗(Kρ2
· Z22 · ρ∗2X) = (3gY − 2)δj

(194) π̃∗ρ1∗(Kρ2
· Z22 · (P1

P ×X )̃) = 0

(195) π̃∗ρ1∗(Kρ2
· Z22 · (P1

P × Y )̃) = 0

(196) π̃∗ρ1∗(Kρ2
· ρ∗2X · (P1

P ×X )̃) = δj
(197) π̃∗ρ1∗(Kρ2

· ρ∗2X · (P1
P × Y )̃) = −δj

(198) π̃∗ρ1∗(Kρ2
· (P1

P ×X )̃ · (P1
P × Y )̃) = −δj
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(199) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · ρ∗1X) = 0

(200) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · Z11) = 0

(201) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · Z22) = 0

(202) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · ρ∗2X) = 0

(203) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · (P1
P ×X )̃) = 0

(204) π̃∗ρ1∗(∆̃ · ρ∗1π̃∗λ · (P1
P × Y )̃) = 0

(205) π̃∗ρ1∗(∆̃ · ρ∗1X · Z11) = −gXδj
(206) π̃∗ρ1∗(∆̃ · ρ∗1X · Z22) = δj
(207) π̃∗ρ1∗(∆̃ · ρ∗1X · ρ∗2X) = −δj
(208) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(∆̃ · ρ∗1X · (P1
P ×X )̃) = δj

(209) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(∆̃ · ρ∗1X · (P1

P ×X )̃) = 0

(210) π̃∗ρ1∗(∆̃ · ρ∗1X · (P1
P × Y )̃) = 0

(211) π̃∗ρ1∗(∆̃ · Z11 · ρ∗2X) = −δj
(212) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(∆̃ · Z11 · (P1
P ×X )̃) = δj

(213) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(∆̃ · Z11 · (P1

P ×X )̃) = 0

(214) π̃∗ρ1∗(∆̃ · Z11 · (P1
P × Y )̃) = 0

(215) π̃∗ρ1∗(∆̃ · Z22 · ρ∗2X) = δj
(216) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(∆̃ · Z22 · (P1
P × Y )̃) = 0

(217) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(∆̃ · Z22 · (P1

P × Y )̃) = δj
(218) π̃∗ρ1∗(∆̃ · Z22 · (P1

P ×X )̃) = 0

(219) π̃∗ρ1∗(∆̃ · ρ∗2X · (P1
P ×X )̃) = 0

(220) π̃∗ρ1∗(∆̃ · ρ∗2X · (P1
P × Y )̃) = 0

(221) π̃∗ρ1∗(∆̃ · (P1
P ×X )̃ · (P1

P × Y )̃) = 0

(222) π̃∗ρ1∗(ρ
∗
1π̃
∗λ · Z11 · Z22) = 0

(223) π̃∗ρ1∗(ρ
∗
1π̃
∗λ · ρ∗2X · (P1

P ×X )̃) = 0

(224) π̃∗ρ1∗(ρ
∗
1π̃
∗λ · ρ∗2X · (P1

P × Y )̃) = 0

(225) π̃∗ρ1∗(ρ
∗
1X · Z11 · ρ∗2X) = gXδj

(226) π̃∗ρ1∗(ρ
∗
1X · Z11 · (P1

P ×X )̃) = 0

(227) π̃∗ρ1∗(ρ
∗
1X · Z11 · (P1

P × Y )̃) = 0

(228) π̃∗ρ1∗(ρ
∗
1X · Z22 · ρ∗2X) = δj

(229) π̃∗ρ1∗(ρ
∗
1X · Z22 · (P1

P ×X )̃) = 0

(230) π̃∗ρ1∗(ρ
∗
1X · Z22 · (P1

P × Y )̃) = 0

(231) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(ρ

∗
1X · ρ∗2X · (P1

P ×X )̃) = −δj
(232) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(ρ
∗
1X · ρ∗2X · (P1

P ×X )̃) = 0

(233) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(ρ

∗
1X · ρ∗2X · (P1

P × Y )̃) = δj
(234) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(ρ
∗
1X · ρ∗2X · (P1

P × Y )̃) = 0
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(235) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(ρ

∗
1X · (P1

P ×X )̃ · (P1
P × Y )̃) = δj

(236) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(ρ

∗
1X · (P1

P ×X )̃ · (P1
P × Y )̃) = 0

(237) π̃∗ρ1∗(Z11 · Z22 · ρ∗2X) = 0
(238) π̃∗ρ1∗(Z11 · Z22 · (P1

P ×X )̃) = 0
(239) π̃∗ρ1∗(Z11 · Z22 · (P1

P × Y )̃) = 0
(240) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(Z11 · ρ∗2X · (P1
P ×X )̃) = −δj

(241) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Z11 · ρ∗2X · (P1

P ×X )̃) = 0
(242) π̃∗ρ1∗(Z11 · ρ∗2X · (P1

P × Y )̃) = 0
(243) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(Z11 · (P1
P ×X )̃ · (P1

P × Y )̃) = δj
(244) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(Z11 · (P1
P ×X )̃ · (P1

P × Y )̃) = 0
(245) π̃∗ρ1∗(Z22 · ρ∗2X · (P1

P ×X )̃) = 0
(246) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(Z22 · ρ∗2X · (P1
P × Y )̃) = 0

(247) If P1
P ∩ Y 6= ∅, then π̃∗ρ1∗(Z22 · ρ∗2X · (P1

P × Y )̃) = δj
(248) If P1

P ∩X 6= ∅, then π̃∗ρ1∗(Z22 · (P1
P ×X )̃ · (P1

P × Y )̃) = 0
(249) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(Z22 · (P1
P ×X )̃ · (P1

P × Y )̃) = δj
(250) π̃∗ρ1∗(ρ

∗
2X · (P1

P ×X )̃ · (P1
P × Y )̃) = 0

(251) If P1
P ∩X 6= ∅, then π̃∗ρ1∗(((P1

P × Y )̃)2 · ρ∗1X) = −δj
(252) If P1

P ∩ Y 6= ∅, then π̃∗ρ1∗(((P1
P × Y )̃)2 · ρ∗1X) = 0

(253) π̃∗ρ1∗(∆̃
2 · ρ∗1X) = −(2gX − 1)δj

(254) π̃∗ρ1∗(∆̃
2 · ρ∗2X) = −(2gX − 1)δj

(255) π̃∗ρ1∗(∆̃
2 · (P1

P ×X )̃) = 0
(256) π̃∗ρ1∗(∆̃

2 · (P1
P × Y )̃) = 0
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