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Abstract

In this work we introduce a notion of Morita equivalence for formal Poisson structures adapting

to the formal setting Xu’s notion of Morita equivalence of Poisson manifolds. Our main result

is a classification of Morita equivalent formal Poisson structures deforming the zero structure

via the action of B-field transformations. In order to obtain this result, we analyze the problem

of deforming Poisson morphisms between ordinary Poisson structures into Poisson morphisms

between their formal Poisson deformations, and use it to construct formal dual pairs. Combined

with previous results on the classification of Morita equivalent star products, our main theorem

yields a concrete way to link the notions of Morita equivalence in algebra and geometry through

deformation quantization.
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CHAPTER 1

Introduction

The notion of Morita equivalence first arose in the theory of rings and algebras [54], and it

relies on comparing rings through their categories of representations. More precisely, Morita

equivalence identifies rings possessing equivalent categories of modules. This notion, although

reasonably weaker than the usual notion of ring isomorphism, turns out to preserve many

relevant ring-theoretic properties (see e.g. [2] for an exposition of Morita theory). A key

feature of Morita equivalence is that it is realized by means of certain bimodules, see Section

2.1.1 for a brief overview.

The notion of Morita equivalence has been transported from ring theory to many other

contexts, including C∗-algebras [61], (topological, Lie, or symplectic) groupoids ([56], [72]),

and Poisson manifolds [71]. In all these settings one has suitable notions of “module” (or

“representation”) and “bimodule” over the objects at hand, and these allow the concept of

Morita equivalence to be adapted to each context (see [47] for a unified approach). Morita

equivalence is the main equivalence relation between algebras that arise in noncommutative

geometry ([19], [61]), playing also a key role in physical applications ([18], [63]). In this work,

we will be particularly concerned with the notion of Morita equivalence in the realm of Poisson

manifolds [71], where the role of bimodules is played by a refinement of the notion of symplectic

dual pairs, due to Weinstein [68].

There are several natural constructions relating categories where Morita equivalence has

been defined; for example, one can pass from groupoids to (C∗-)algebras by considering their

convolution algebras (see e.g. [60], [16], [19]), or from (integrable) Poisson manifolds to sym-

plectic groupoids through the integration of Lie algebroids (see e.g. [51], [22]). In doing so, an

important question is whether Morita equivalence is preserved, i.e., whether these constructions

are functorial with respect to Morita equivalence; several results are known in this direction,

see e.g. [56], [55], [46] and [72]; for more recent papers, see [17] and [42].
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This thesis concerns a similar issue of preservation of Morita equivalence, but in the context

of passing from Poisson structures to noncommutative algebras by means of “quantization”.

More precisely, we will consider deformation quantization [3] as a way to associate noncommu-

tative algebras, known as star products, to Poisson structures. We can summarize the guiding

goal of this work as follows:

GOAL: Find a concrete link between Morita equivalence in Poisson geometry and Morita equiv-

alence in algebra through deformation quantization.

To be more precise, let us recall the main result in deformation quantization, due to Kontse-

vich [44] (see [65], [27], [39] and [67] for surveys and introductions to deformation quantization).

This result not only implies that any Poisson structure π on a manifold P admits a correspond-

ing star-product algebra, but it gives a parametrization of all star products associated with π

in terms of formal deformations of π. To have a clear statement, recall that a formal Poisson

structure on P is a formal power series π =
∑∞

j=0 λ
jπj of bivector fields πj on P , such that

[π, π]S = 0 for the Schouten bracket [·, ·]S of multivector fields extended bilinearly to formal

power series. Note that, in such a series, the first nonzero term is an ordinary Poisson structure

on P , so the series can be seen as a formal Poisson deformation of it. Kontsevich’s theorem

establishes a bijective correspondence

K∗ : FPois0(P )→ Def(P ), (1.1)

where FPois0(P ) is the space of formal Poisson structures on P , deforming the zero Poisson

tensor, modulo an equivalence relation given by the action of formal diffeomorphisms, and

Def(P ) is the moduli space of star-products on P .

To find a sense in which Morita equivalence is preserved under deformation quantization,

a natural route is to extend the geometric notion of Morita equivalence from ordinary Poisson

structures to formal Poisson structures (i.e., as an equivalence relation in FPois0(P )), and then

analyze its behavior under Kontsevich’s quantization map above. These issues are our main

focus in this work.

Some background: Morita equivalence of star products and B-fields

The problem of describing Morita equivalent star products has been studied in [5], [13] and

[6]. To formulate the results, we need to recall yet another notion of equivalence in the realm

of Poisson manifolds, namely, the gauge equivalence of Poisson manifolds of Ševera and Wein-

stein [64], also known as B-field transformations in the context of generalized geometry [36].

Classically, given a Poisson structure π on a manifold P and a closed 2-form B on P , one

can try to obtain a new Poisson structure τBπ by adding the pullback of B to each leafwise

symplectic form of π; assuming that the resulting closed 2-form on each leaf is nondegenerate,
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this operation yields a new Poisson structure. There is a natural adaptation of this “gauge

action” by closed 2-forms to formal Poisson structures. In this context, it leads to a canonical

action of H2
dR(P )λ, the space of formal de Rham classes in degree 2, on FPois0(P ) [6], which

we also denote by ([B], [π]) 7→ [τBπ].

Meanwhile, on the algebraic side of Kontsevich’s map above (star products), it is proven in

[5] that Morita equivalence is described by the orbits of a natural action of the Picard group

Pic(P ) ' H2(P,Z) (i.e., the group of isomorphism classes of complex line bundles L→ P with

tensor product as group operation) on Def(P ). A key result, proven by Bursztyn, Dolgushev

and Waldmann in [6], is that Kontsevich’s map (1.1) is equivariant with respect to these actions,

as long as the B-field is an integral form. This result is summarized in the following diagram:

{B-field action} {M.E. star products}
deformation quantization (integral B-fields)

(1.2)

Building on this result, in order to close the circle of ideas relating Morita equivalences of

Poisson structures and star products, one should:

(i) extend geometric Morita equivalence of Poisson structures to formal Poisson structures;

(ii) compare this notion with the gauge action by B-fields.

We will give a more detailed description of our results concerning (i) and (ii) in the next

subsection.

The connection between Morita equivalence and gauge transformations for ordinary Poisson

structures was studied by Bursztyn and Radko in [7], where they proved that integrable Poisson

manifolds which are gauge equivalent up to a Poisson diffeomorphism are Morita equivalent; the

converse is proven not to hold. This led Weinstein and Bursztyn to wonder how Xu’s geometric

notion of Morita equivalence might be related with the algebraic one on the quantum side ([9],

[14]), and ultimately motivates the guiding goal stated above.

Contributions of this thesis

In order to motivate the definition of Morita equivalence for formal Poisson manifolds, let us

recall here Xu’s definition of Morita equivalence for Poisson manifolds.

Definition 1.0.1. (Xu’s Morita equivalence [71]) Two Poisson manifolds (P1, π0) and

(P2, σ0) are Morita equivalent if there exists a symplectic manifold (S, ω0) and complete sur-

jective Poisson submersions J1 : (S, ω0) → (P1,−π0) and J2 : (S, ω0) → (P2, σ0), whose fibers

are connected, simply connected and symplectically orthogonal to each other. Such a symplectic

manifold (S, ω0) is called an equivalence symplectic bimodule.

In the above definition, the maps being complete means that, if X i
f is a complete hamiltonian

vector field in Pi, then XJ∗i (f) is a complete hamiltonian vector field in S. Despite the fact
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that Xu’s Morita equivalence is defined for ordinary Poisson structures in a purely geometric

way, it is built upon the notion of symplectic dual pairs, which admits (under some mild

topological conditions) a nice algebraic characterization that can be naturally adapted to the

formal setting. Concretely, a dual pair is a diagram of the form P1
J1←− S

J2−→ P2, where S is a

symplectic manifold, P1 and P2 are Poisson manifolds, and the maps are Poisson submersions

whose fibers are symplectically orthogonal to each other. The dual pair is called full if the

maps are surjective, and complete if the maps are complete. In a full dual pair, the geometric

property of symplectic orthogonality is equivalent to the algebraic condition of J∗1 (C∞(P1)) and

J∗2 (C∞(P2)) being Poisson commutant of one another inside C∞(S), as long as the Ji’s fibers

are connected (see [16]).

Hence, if (P1,−π0)
J1←− (S, ω0)

J2−→ (P2, σ0) is a Morita equivalence, then it satisfies, by

definition, the topological condition needed to describe it algebraically, namely, by a diagram

of the form

(C∞(P1), π0)
J∗1−→ (C∞(S), ω0)

J∗2←− (C∞(P2), σ0),

were J∗1 is anti-Poisson, J∗2 is Poisson, and J∗1 (C∞(P1)) and J∗2 (C∞(P2)) are mutually Poisson

commutant inside (C∞(S), ω0).

This algebraic condition admits a natural version in the formal setting, which leads us to

the following:

Definition 1.0.2. (Morita equivalence of formal Poisson manifolds) Two formal Pois-

son manifolds, (Pi, π
i), for i = 1, 2, are Morita equivalent if the following two conditions

hold:

1. There exists a symplectic manifold (S, ω0) and a diagram of the form

(C∞(P1)λ, π
1)

Φ1

−→ (C∞(S)λ, ω)
Φ2

←− (C∞(P2)λ, π
2),

for some ω = ω0 +
∑∞

j=1 λ
jωj ∈ Ω2

cl(S)λ, such that Φ1 is anti-Poisson, Φ2 is Poisson, and

Φ1(C∞(P1)λ) and Φ2(C∞(P2)λ) are mutually centralizers inside (C∞(S)λ, ω).

2. In the classical limit (λ → 0), (S, ω0) is an equivalence symplectic bimodule between

(P1, π
1
0) and (P2, π

2
0).

With this definition, the main result of this work is a classification of Morita equivalent

elements in FPois0(P ) via B-fields. More concretely, we have the following:

MAIN RESULT: Two formal Poisson structures [π], [π′] ∈ FPois0(P ) are Morita equivalent

if and only if [τBπ
′] = [ψ∗π], for some ψ ∈ Diff(P ) and [B] ∈ H2

dR(P )λ.

This will follow from Theorem 4.2.3 and Theorem 5.1.19. Thus, we may extend diagram

(1.2) in the following way
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{B-field action} {ME star products}

{ME formal Poisson structures}

deformation quantization (integral B-fields)

where the left diagonal arrow is due to our main result, and the dashed arrow is just given by

composing the other two.

Next we elaborate a little on the tools and techniques behind this result, whose proof consists

of two main steps: first, we study the construction of dual pairs for formal Poisson structures,

which entails the problem of deforming Poisson morphisms to morphisms of formal Poisson

structures; second, we note that formal deformations of dual pairs define a map that classifies

Morita equivalent formal Poisson structures, which we then prove to agree with the action by

B-fields. In more details:

Deformation of Poisson morphisms - Cohomology: First of all, we consider the prob-

lem of formal deformation of Poisson morphisms with respect to given deformations of the in-

volved Poisson structures, identifying the cohomology controlling this deformation and finding

the obstructions for iterative deformation and uniqueness up to a natural degree of freedom.

Next we consider the symplectic realization (T ∗P, ω0)
ρ−→ (P, 0), where ρ is the cotangent bundle

projection and ω0 := ωcan + ρ∗B0, with an arbitrary B0 ∈ Ω2
cl(P ). Applying the cohomological

results to the Poisson morphism (C∞(P ), 0)
ρ∗−→ (C∞(T ∗P ), ω0), we find that the obstructions

are absent, and by analyzing commutants we obtain a map

H2
dR(P )λ × FPois0(P )→ FPois0(P ); ([B], [π]) 7→ [πB], (1.3)

which classifies Morita equivalent elements in FPois0(P ) up to the action of Diff(P ) on FPois0(P )

via push-forward. This is the content of Theorem 4.2.3.

Relation with B-fields: Here we apply notions of Dirac geometry and Courant algebroids

adapted to the formal setting. The main idea behind the identification of the previous map

with B-field action is related to the problem of constructing symplectic realizations, which was

locally solved in ([68]), and then globally in [20] and [23]. Generalizing the problem and the

ideas of [23] to the context of Dirac geometry, in [32] Frejlich and Mǎrcuţ arrived to a dual-pair

relation in the context of Dirac structures, which is suitable to be adapted into the formal

setting of interest for us. To make sense of the result of Frejlich and Mǎrcuţ in the formal

context, and to be able to proof our main result, we needed to adapt notions from Courant

algebroids, its symmetries and derivations into the formal setting. In particular, for the formal

version of the standard Courant algebroid in TP⊕T ∗P we prove a formal version of Proposition

5



2.3 in Gualtieri’s work [36], which describes the form of the flow generated by a derivation of

the Courant algebroid. This allows us to prove that that the classifying map (1.3), and the

gauge action are related by [πB] = [τ−Bπ], as stated in Theorem 5.1.19.

Organization of the thesis

In Chapter 2 we review some definitions and fundamental results about formal structures,

deformation theory and its link to deformation quantization. We also recall the notions of

dual pairs along with those of Morita equivalence which are relevant for us and review how

the concept of B-fields come into play. We finish this chapter setting the definition of Morita

equivalence for formal Poisson manifolds.

Chapter 3 begins by defining the deformation of Poisson morphisms and introduces a de-

formation problem, which will ultimately lead us to the classification map (1.3). Then we

introduce the cohomology which controls the deformation problem and identify conditions for

iterative construction of deformations as well as for uniqueness of such deformations. These

results are summarized in Proposition 3.2.12 and Proposition 3.2.13. Meanwhile, in Proposition

3.2.18 we show how the deformation procedure yields a new formal Poisson structure, out of a

given one.

In Chapter 4 we apply the previous algebraic result to the deformation of the Poisson

morphism induced by the symplectic realization (T ∗P, ω0)
ρ−→ (P, 0), where ρ is the cotangent

bundle projection and ω0 := ωcan + ρ∗B0, for some B0 ∈ Ω2
cl(P ). We find that, in this case, all

the conditions identified in the previous chapter are fulfilled, thus, the deformation procedure

yields the classifying map (1.3). That is the content of Theorem 4.2.1 (along with its corollary)

and Theorem 4.2.3.

In Chapter 5 we establish the relation between Morita equivalence of formal Poisson struc-

tures and B-fields action. To do so, we start by adapting to the formal setting several facts

concerning Courant algebroids, its symmetries and derivations, as well as some notions from

Dirac geometry. A key ingredient to prove the main result, Theorem 5.1.19, is Proposition

5.1.18, for which the ideas from the work of Frejlich and Mǎrcuţ [32] were fundamental. We

finish this chapter with some final remarks.

The last chapter gathers a couple of appendices. In Appendix A we recall some basic con-

cepts of differential geometry, like semi-basic differential forms, vertical de Rham cohomology

and cotangent lifting. In Appendix B we review some aspects of Courant algebroids and Dirac

structures, in particular, the notions of symmetries and derivations of Courant algebroid, which

we extend into the formal context in Chapter 5.
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CHAPTER 2

Background on Morita equivalence and deformation theory

In this chapter we review some notions which are relevant for our purposes and introduce

notations and definitions that we are going to use. In the last section we introduce our definition

of Morita equivalence for formal Poisson manifolds.

2.1 Morita equivalence and gauge equivalence

In this section we recall the algebraic notion of Morita equivalence [54] as well as Xu’s Morita

equivalence for Poisson manifolds [71], lying this way the foundation upon which we will intro-

duce the notion of Morita equivalence for formal Poisson manifolds. We also review the concept

of gauge equivalence of Poisson manifolds [64] and its relation with Xu’s Morita equivalence.

Beside the original sources, further information can be found in [2], [14], [9] and [7].

2.1.1 Algebraic Morita equivalence

For a fixed unital ring R let RM be the category of left R-modules.

Definition 2.1.1. Two unital rings, R and S, are said to be Morita equivalent if RM and

SM are equivalent categories.

Recall that two categories C and D are said to be equivalent if there exist functors F : C → D
and G : D → C such that F ◦G ≈ 1D and G◦F ≈ 1C, where ≈ stands for natural isomorphism.

Such functors are called equivalence functors (see, for instance, [52] and [2]).

Example 2.1.2. The archetypical example of Morita equivalent rings is the following. Let R

be a unital ring and let Mn(R) be the ring of n×n matrices with entries in R, for some positive

integer n. Given a left R-module V ∈ RM, we associate to it the Mn(R)-module V n ∈ Mn(R)M

7



with the action given by the usual matrix action on column vectors. This defines a functor

F : RM → Mn(R)M, which can be shown is an equivalence functor (see [45, Th. 17.20]).

Thus, R and Mn(R) are Morita equivalent for any natural number n. This result also follows

immediately from the characterization theorem of Morita equivalent rings, which will be stated

below.

Let R and S be unital rings, an (R, S)-bimodule is an abelian group M together with

ring homomorphisms λ : R → Endl(M) and ρ : S → Endr(M), where Endl(M) (respectively

Endr(M)) is the set of group homomorphisms acting from the left (respectively, from the

right), making M into a left R-module and a right S-module, respectively, and satisfying any

(hence both) of the following equivalent conditions:

1. λ : R→ End(MS) is a ring homomorphism,

2. ρ : S→ End(RM) is a ring homomorphism.

Observe that End(MS) is the set of S-module homomorphism f : MS → MS, acting from the

left, which is a sub-ring of Endl(M), and a similar consideration for the second condition.

A bimodule RMS is called balanced if both the homomorphisms λ and ρ above are sur-

jective. If they are isomorphisms, then the bimodule is called faithfully balanced. A right

S-module PS is called a progenerator if it is finitely generated, projective and a generator,

i.e., there exist natural numbers m and n, and a module MS such that MS ⊕ PS ' Sm and

P n
S = MS ⊕ S. A Similar definition holds for left modules.

Given a bimodule RMS, we can construct functors

F := RMS ⊗ · : SM→ RM and G := Hom(RMS, ·) : RM→ SM,

in the following way: For objects SN ∈ SM, we define F (SN) := RMS ⊗ SN ∈ RM with

module structure given by r(x ⊗ y) := rx ⊗ y, for r ∈ R; for morphisms f : SN → SP , we

define F (f) : RMS ⊗ SN → RMS ⊗ SP by F (f)(x ⊗ y) := x ⊗ f(y). On the other hand, for

objects RN ∈ RM we put G(RN) := Hom(RMS, RN) ∈ SM, with module structure given by

(sf)(x) := f(xs), for s ∈ S; for morphisms g : RN → RP , we define G(g) : Hom(RMS, RN) →
Hom(RMS, RP ) by G(g)(h)(x) := g(h(x)), for h ∈ Hom(RMS, RN) and x ∈M .

Remark 2.1.3. (Notation): For the sake of simplicity, the sub-indices emphasizing the side

and the ring involved in the module structures are going to be omitted when there is no risk of

confusion, for example, HomR(M,N), when the bimodule RMS is fixed, will be interpreted as

Hom(RMS, RN), and M ⊗S P should be read RMS ⊗ SP , etc.

Now we can state the fundamental result of Morita theory for unital rings.

Theorem 2.1.4. (Morita) Two unital rings R and S are Morita equivalent if and only if

there exist a balanced bimodule SPR such that SP and PR are progenerators. In such a case,

F := P⊗R · : RM→ SM and G := HomS(P, ·) : SM→ RM are inverse equivalences. Moreover,
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if such a bimodule SPR exists, then Q := HomR(P,R) has a bimodule structure RQS with RQ

and QS being progenerators, F ≈ HomR(Q, ·) and G ≈ Q⊗S ·.

The following corollary is a useful test for equivalence.

Corollary 2.1.5. Given unital rings R and S, the following are equivalent,

1. R and S are Morita equivalent,

2. There is a progenerator PR such that S ' End(PR),

3. There is a progenerator RQ such that S ' End(RQ).

For a thorough exposition and proofs of these fundamental concepts see, for example, [2].

Remark 2.1.6. Note that, if PR is a right R-module, say via a ring homomorphism ρ : R →
Endr(P ), then the set End(PR) of R-module homomorphism is exactly the commutant of R

inside Endr(P ), i.e., in the shorthand notation f ◦ ρ(a) = fa for f ∈ Endr(P ) and a ∈ R we

have

End(PR) = {f ∈ Endr(P ); fa = af ∀a ∈ R}.

Similar consideration holds for the left R-module RQ and the set End(RQ).

Picard groups

Definition 2.1.7. Algebraic Picard group

Let (A, µ0) be an associative commutative R-algebra. The Picard group Pic(A) is the set of self-

equivalence functors F : AM→ AM, with composition of functors as group multiplication. By

the Morita’s characterization theorem, we can also view Pic(A) as the set of (A,A)-equivalence

bimodules AEA, with the group multiplication given by tensor product of bimodules.

If A is commutative, we denote by PicA(A) the group of isomorphism classes of (A,A)-

equivalence bimodules AEA satisfying ax = xa, for all x ∈ E and a ∈ A.

Definition 2.1.8. Geometric Picard group

Given a smooth manifold P , the Picard group Pic(P ) is the set of isomorphism classes of

(complex) line bundles L→ P with fiber-wise tensor product as group multiplication.

Example 2.1.9. Let A = C∞(P ), then relying on the Serre-Swan’s theorem, the (algebraic)

Picard group PicC∞(P )(C
∞(P )) can be identified with the (geometric) Picard group Pic(P ).

Moreover, the Chern map c1 : Pic(P )→ H2(P,Z) is a group isomorphism [40], where H2(P,Z)

is the second integral de Rham cohomology of P . Thus PicC∞(P )(C
∞(P )) ∼= H2(P,Z). More-

over, it can be shown (see Example 2.1 of [9]) that H2(P,Z), Pic(C∞(P )) and Diff(P ) fit in an

exact sequence

1→ H2(P,Z)→ Pic(P )→ Diff(P ),
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thus, we obtain the following geometric description of Pic(P ):

Pic(P ) = Diff(P ) nH2(P,Z),

where the semidirect structure is given by the action of Diff(P ) on H2(P,Z) via pull-back.

2.1.2 Dual pairs and Morita equivalence of Poisson manifolds

A dual pair P1 ← S → P2 consists of a symplectic manifold (S, ω), Poisson manifolds (P1, π1),

(P2, π2) and submersive Poisson maps J1 : S → P1, J2 : S → P2, where P2 = (P2,−π2), such

that the fibres of J1 and J2 are mutually symplectically orthogonal. A dual pair is called full

if the maps J1 and J2 are surjective, and complete if the maps J1 and J2 are complete, i.e.,

for any f ∈ C∞(Pi) with complete hamiltonian X i
f , the hamiltonian XJ∗i f

is complete as well.

It follows that the algebras J∗1 (C∞(P1)) and J∗2 (C∞(P2)) are Poisson commutant in C∞(S),

i.e.,

{J∗1 (C∞(P1)), J∗2 C
∞(P2)}ω = 0.

Example 2.1.10. Let (M,ω) be a symplectic manifold, and let G be a Lie group acting on M

in a regular way (M/G is a smooth manifold). Suppose that the action ψ : G ×M → M is

hamiltonian with a constant rank momentum map J : M → g∗, where g is the Lie algebra of G.

Then the fibration given by the level sets of J and the one given by orbits of ψ are symplectically

orthogonal to each other, and the quotient M/G inherits from M a natural Poisson structure

such that the projection map p : M →M/G is Poisson. Thus, the following diagram of Poisson

maps,

g∗
J←−M

p−→M/G,

where in g∗ we consider the KKS-Poisson structure, constitutes a dual pair. It can be seen that,

under some regularity conditions, there is a one to one correspondence between the symplectic

leaves of g∗, which are known as coadjoint orbits, and those of M/G, which are given by

symplectic reduction. Moreover, the transverse Poisson structures on corresponding leaves are

anti-isomorphic. It follows then that g∗ and M/G have closely related Poisson geometry. (See

[68] and [16] for details on this example.)

Example 2.1.11. Let G ⇒ G0 be a symplectic groupoid ([69], [43], [20]), i.e., it is a Lie

groupoid [53] endowed with a symplectic structure ω on G such that graph(m), the graph of the

multiplication map m, is a lagrangian submanifold of G × G × G, with the natural simplectic

structure on the product manifold, being G = (G,−ω). It can be seen (see, for instance, [20])

that there exists a unique Poisson structure π0 on G0 such that the source map s is Poisson,

and the target map t is anti-Poisson. Moreover, they are complete surjective submersion, hence

(G0, π0)
s←− (G,ω)

t−→ (G0,−π0) constitutes a complete full dual pair.

Definition 2.1.12. ([71, Xu]) Two Poisson manifolds P1 and P2 are said to be Morita equiv-
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alent if they fit in a complete full dual pair

P1
J1←− S

J2−→ P2,

with connected and simply connected fibres. Such an S is then called an equivalence (sym-

plectic) bimodule.

Remark 2.1.13. In a full dual pair P1
J1←− (S, ω)

J2−→ P2, with connected J1 and J2 fibers,

the condition of symplectic orthogonality of the Ji fibers is equivalent to the condition that the

algebras J∗1 (C∞(P1)) and J∗2 (C∞(P2)) are mutually centralizers of each other, i.e., J∗1 (C∞(P1))

is the Poisson commutator of J∗2 (C∞(P1)) inside (C∞(S), {·, ·}ω), and vice versa [16]. This

algebraic characterization is going to be essential for us.

Example 2.1.14. [71, Xu] Let S be a connected and simply connected symplectic manifold,

and let M be a connected manifold endowed with the zero Poisson structure; then the direct

product S ×M is Morita equivalent to M via the symplectic bimodule

S ×M ρ←− (X := S × T ∗M)
σ−→M,

where σ := pr : X →M and ρ := (id, pr) : X → S ×M .

The notion of algebraic Picard group (see Definition 2.1.7), as the group of isomorphism

classes of self Morita equivalences can be directly translated into the Poisson setting, thus in

[9], the authors proposed the following definition (see also [12]):

Definition 2.1.15. The Picard group of a Poisson manifold (P, π), denoted by Pic(P, π), is

the group of isomorphism classes of self Morita equivalence symplectic bimodules.

In [9], the authors studied the Picard group of some particular examples of Poisson mani-

folds. Among them, the Picard group of the zero Poisson structure is particularly interesting

for us, and the conclusion (see Proposition 6.6 in [9], see also [12]) is the following result:

Theorem 2.1.16. Any self Morita equivalence symplectic bimodule over a zero Poisson man-

ifold (P, 0) is of the form

(P, 0)
ρ←− (T ∗P, ωB)

ψ◦ρ−−→ (P, 0),

where T ∗P
ρ−→ P is the cotangent bundle, B is a closed two form on P , ωB := ωcan + ρ∗B, and

ψ ∈ Diff(P ).

2.1.3 Gauge equivalence

The notion of gauge equivalence, introduced in [64], is easier to be understood in the context of

Dirac structures. For the details of the following discussion, the reader is referred to Appendix

B.
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Let P be a smooth manifold. It can be seen that there is a bijection between Poisson tensors

π on P and Dirac structures L on P satisfying the condition L∩TP = {0} (see Lemma B.1.5).

On the other hand, as stated in Theorem B.2.4, the symmetry group of the standard Courant

algebroid TP ⊕ T ∗P is Diff(P ) n Ω2
cl(P ), where the sub-group Ω2

cl(P ) acts on TP ⊕ T ∗P by

(X ⊕ α)
τB7−→ (X ⊕ α + ιXB), which is known as gauge transformation (also known as B-

field transformation in the context of generalized complex geometry [36]). In particular, this

bundle map τB sends Dirac structures to Dirac structures. Moreover, as discussed in Remark

B.2.5, the condition L ∩ TP = {0} is preserved by this map if, and only if, the bundle map

I + B]π] : T ∗P → T ∗P is invertible. In this situation, the map τB yields a transformation in

the set of Poisson tensors on P , given by

π
τB7−→ τBπ; (τBπ)] := π](I +B]π])−1,

and two Poisson tensors π and π′ on P are called gauge equivalent if there exists B ∈ Ω2
cl(P )

such that π′ = τBπ.

Remark 2.1.17. The idea behind the gauge transformation is quite simply. Consider adding

up the pullback of the closed 2-form B to the leafwise symplectic form induced by π. This yields

a new leafwise closed 2-form that, in general, may fail to be nondegenerate. In the case it end

up with a leafwise symplectic structure, it is associated to a new global Poisson structure. This

new Poisson structure is the gauge transformation of the original one. In particular, suppose

π is a symplectic Poisson structure on a manifold P , let us put π] = (ω])−1. Then we have

((τBπ)])−1 = (I +B](ω])−1)ω] = ω] +B].

Hence, any two symplectic structures on P are gauge equivalent.

The relationship between Morita equivalence and Gauge equivalence of Poisson structures

was explored in [7], where the following result was proved (see also [9]).

Theorem 2.1.18. ([9, Th. 7.1]) If two integrable Poisson manifolds (P1, π1) and (P2, π2) are

gauge equivalent, up to a diffeomorphism, then they are Morita equivalent. The converse does

not hold in general.

2.2 Formal deformation theory

Here we recall some definitions and basic concepts related to deformation theory, focusing on

formal deformation of associative algebras and of Poisson algebras. We also introduce here

some notations and technicalities we are going to need. The exposition here is based on [48].
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2.2.1 Formal power series

Let R be a ring (in this work, we will be mainly interested in the case R = C). A formal

power series in the formal parameter (indeterminate) λ with coefficients in R is an object of

the form a =
∑∞

n=0 λ
nan, where an ∈ R, for all n. The set of all such objects will be denoted

by Rλ. Two formal power series a and b in Rλ are equal if, by definition, an = bn for all n.

The set Rλ can be given a ring structure by defining, for a, b ∈ Rλ:

a+ b :=
∞∑
n=0

λn(an + bn),

ab :=
∞∑
n=0

λn
n∑
k=0

akbn−k.

(2.1)

If R is unital, with unit 1, then Rλ is unital with unit given by the series with all coefficients

equal to 0 ∈ R except the one at order zero, which is 1 ∈ R. Moreover, if R is commutative

then so is Rλ. The following result concerning existence of inverses will be useful for us.

Proposition 2.2.1. Given a ∈ Rλ, there is an inverse a−1 ∈ Rλ (i.e., aa−1 = a−1a = 1 ∈ Rλ),

if and only if a0 ∈ R is invertible.

Proof. Given a =
∑∞

n=0 λ
nan, let a−1 =

∑∞
n=0 λ

nxn. Then, the condition aa−1 = 1 ∈ Rλ

amounts to the following infinite system of equations:

a0x0 = 1;
n∑
k=0

akxn−k = 0, n = 1, 2, ...,

which can be solved recursively for xj if and only if a0 ∈ R is invertible.

The space of coefficients of a formal power series need not be a ring, but can have other

algebraic structures; for example, if M is an R-module, then the space of formal power series

Mλ can be given an Rλ-module structure by defining, for a ∈ Rλ and x ∈Mλ:

ax :=
∞∑
n=0

λn
n∑
k=0

akxn−k. (2.2)

If A is an R-algebra, then the operations defined by equations (2.1) and (2.2), for r ∈ Rλ and

a, b ∈ Aλ, turn Aλ into an Rλ-algebra, which is associative and commutative if the algebra A
is so. In the following, we will refer to the structures induced by equations (2.1) and (2.2) as

the undeformed structures.

Example 2.2.2. Let M be a manifold, and let C∞(M) denote its algebra of complex-valued

smooth functions, while X •(M) and Ω•(M) stand for the C∞(M)-modules of multivector fields

and differential forms, respectively. Then C∞(M)λ is a Cλ-algebra, while X •(M)λ and Ω•(M)λ

are C∞(M)λ-modules, all of them with the undeformed structures.
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Consider now two R-modules M and N , with R being commutative. Then we have the R-

module HomR(M,N ), while HomR(M,N )λ and HomRλ(Mλ,Nλ) are Rλ-modules. Concerning

these structures we have the following basic observation.

Proposition 2.2.3. HomRλ(Mλ,Nλ) ∼= HomR(M,N )λ.

Proof. Denote by pri : Nλ → N the projection y 7→ yi, for y =
∑∞

j=0 λ
jyj ∈ Nλ. Now,

given an Rλ-linear map Φ: Mλ → Nλ, let Φ0 := Φ|M and define ΨΦ :=
∑∞

j=0 λ
jprj ◦ Φ0.

Since Φ0 and prj are R-linear, we have Ψ ∈ HomR(M,N )λ. Moreover, one can check that,

for α ∈ Rλ and Φ as before, ΨαΦ = αΨΦ, thus we get an Rλ-morphism. To conclude it is

an isomorphism, consider Ψ =
∑∞

j=0 λ
jψj ∈ HomR(M,N )λ and define ΦΨ : Mλ → Nλ by

ΦΨ(x) =
∑∞

j=0 λ
j
∑

m+n=j ψm(xn). Then one check that ΦΨ is Rλ-linear and actually we have

ΦΨΦ = Φ, thus these constructions are inverse of one another.

By the previous proposition, we always will consider elements Φ ∈ HomRλ(Mλ,Nλ) to be of

the form Φ =
∑∞

j=0 λ
jφj, with φj ∈ HomR(M,N ). In particular, given Φ,Ψ ∈ EndRλ(Mλ) ∼=

EndR(M)λ, we have

ΦΨ =
∞∑
j=0

λj
j∑

k=0

φkψj−k.

Let A be an R-algebra, and let Der(A) denote its space of derivations. Then we can

check that the isomorphism EndRλ(Aλ) ∼= EndR(A)λ restricts to derivations, thus Der(Aλ) ∼=
Der(A)λ. Indeed; given D ∈ Der(Aλ), we know we can write it in the form D =

∑∞
j=0 λ

jDj,

with Dj being R-linear. Then the derivation condition, D(ab) = D(a)b+aD(b) for any a, b ∈ A,

forces each Dj to satisfy the same condition, thus Dj ∈ Der(A) for each j.

Given an R-algebra A, define the following spaces:

λDer(Aλ) := {D ∈ Der(Aλ);D =
∞∑
j=1

λjDj},

Aut0(Aλ) := {φ ∈ Aut(Aλ);φ = I +
∞∑
j=1

λjφj}.

The next observation will be useful for us.

Proposition 2.2.4. The map exp: λDer(Aλ)→ Aut0(Aλ) given by

exp(D) := I +
∞∑
j=1

Dj

j!
,

is an isomorphism.

Proof. First of all let us observe that the map is well defined since D starts at order λ, thus,

at each order of λ, there are finitely many terms summing in the above formula. Now, one can
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check that, for a and b ∈ A, one gets exp(D)(ab) = exp(D)(a) exp(D)(b) by expanding both

sides in terms of λ and comparing them order by order. Then, by Rλ-linearity, we conclude

that the same holds for elements in Aλ. Thus, exp actually maps into Aut0(Aλ). Injectivity of

this map is clear. To show surjectivity, let φ = I +
∑∞

j=0 λ
jφj be an automorphism of Aλ. We

then want to solve the equation

exp(D) = φ,

where D =
∑∞

j=1 λ
jDj. Expanding the above equation in terms of λ, we get

I + λD1 + λ2

(
D2 +

D2
1

2!

)
+ · · · = I + λφ1 + λ2φ2 + · · ·,

which can be solved recursively, starting with D1 := φ1, then D2 := φ2−D2
1

2!
= φ2− φ2

1

2!
, and so on.

The fact that each Dj defined this way is actually a derivation of A follows from the fact that φ

is an automorphism of Aλ, thus, in particular, for any a and b ∈ A we have φ(ab) = φ(a)φ(b),

which forces the φj
′s to satisfy certain equations. For instance, φ1(ab) = φ1(a)b+ aφ1(b), thus

φ1 ∈ Der(A), and therefore, D1 := φ1 gives us D1 ∈ Der(A). Similarly, one can check that each

Dj defined as above gives rise to a derivation of A.

2.2.2 Deformation of algebras

From now on, we fix R = C. We want to review here the notion of formal deformation of

associative algebras, in the sense of Gerstenhaber [33], and a similar notion regarding Poisson

algebras, due initially to Richardson and Nijenhuis [59], introducing this way the concept of

formal Poisson structures, which is a fundamental ingredient in this work.

Deformation of associative algebras

Let (A, µ0) be a commutative associative C-algebra with unit. A formal deformation of

(A, µ0), in the sense of Gerstenhaber [33], is a Cλ-bilinear associative product µ : Aλ×Aλ → Aλ
of the form

µ = µ0 +
∞∑
j=1

λjµj.

Given two deformed Cλ-algebras (Aλ, µ) and (Bλ, η), a morphism between them is a Cλ-

linear map Φ: Aλ → Bλ such that Φ∗η = µ, i.e., for all x, y ∈ Aλ:

η(Φ(x),Φ(y)) = Φ(µ(x, y)).

Definition 2.2.5. Two formal deformations µ and µ′ of µ0 are equivalent if there exists a

morphism Φ: (Aλ, µ) → (Aλ, µ′) of the form Φ = I +
∑∞

j=1 λ
jφj. Such a map Φ is called an

equivalence map.
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We denote by Def(A, µ0) the set of equivalence classes of formal deformations of (A, µ0), or

simply by Def(A) if the original product is understood from the context. The set Aut(A), of

automorphisms of A, naturally acts on Def(A) by

Aut(A)×Def(A)→ Def(A); (ψ, [µ]) 7→ [ψ∗µ].

Star products: Let P be a smooth manifold and let C∞(P ) be its algebra of complex-valued

smooth functions with the usual commutative product µ0(f, g) = fg, given by pointwise multi-

plication of functions. A star-product ? on P is a formal deformation µ of µ0 in the previous

algebraic sense, i.e.,

f ? g = µ(f, g) = fg +
∞∑
i=1

λiµi(f, g),

such that the maps µi : C∞(P )×C∞(P )→ C∞(P ) are bidifferential operators. We also require

that the constant function 1 ∈ C∞(P ) is still the unit for ?. It can be shown (see [34, Sec. 14])

that any star product is equivalent to one satisfying this last condition. Here, the notion of

equivalence is the same as in the algebraic context; indeed, it can be seen that the operators φi

realizing a purely algebraic equivalence as in Definition 2.2.5 must be, in this case, differential

operators (see [38] and the references therein).

We denote by Def(P ) the set of equivalence classes of star-products on C∞(P ), where the

product being deformed is the usual commutative pointwise multiplication of functions on P .

Consider now an automorphism ψ of C∞(P ). It can be shown ([1, Th. 4.2.36]) that such

an automorphism can be realized by a unique diffeomorphism σ ∈ Diff(P ) via pullback, i.e.,

ψ(f) = σ∗(f) := f ◦ σ. Thus, the group of diffeomorphism Diff(P ) acts on Def(P ) via

Diff(P )×Def(P )→ Def(P ); (σ, [?]) 7→ [?σ], (2.3)

where, for all f, g ∈ C∞(P ),

σ∗(f ?σ g) = σ∗(f) ? σ∗(g).

Deformation of Poisson algebras

Let (A, ·, π0) be a Poisson algebra, i.e., (A, ·) is an associative commutative C-algebra and

π0 : A×A → A is a skew-symmetric biderivation satisfying the Jacobi identity, namely, for all

a, b, c ∈ A:

π0(a, π0(b, c)) + π0(b, π0(c, a)) + π0(c, π0(a, b)) = 0.

Equivalently, a Poisson structure on (A, ·) can be defined in term of the Schouten bracket,

whose definition we recall here for future references. To do so, define, for k ≥ 1:

X k(A) = {D : A×k → A;D is a skew-symmetric multiderivation}.

Let k := k − 1 and X k−1
:= X (A), thus X k

= X (A).
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Definition 2.2.6. The Schouten bracket [·, ·]S is a product on the space of skew-symmetric

multi-derivations

[·, ·]S : X k
(A)×X l

(A)→ X k+l(A),

given, for D ∈ X k
(A), E ∈ X l

(A) and a1, ..., ak+l+1 ∈ A, by

[D,E]S(a1, ..., ak+l+1) :=
∑
σ∈Sl,k

sgn(σ)D(E(aσ(1), ..., aσ(l)), aσ(l+1), ..., aσ(l+k))

− (−1)k l
∑
σ∈Sk,l

sgn(σ)E(D(aσ(1), ..., aσ(k)), aσ(k+1), ..., aσ(k+l)),

In terms of the Schouten bracket, a Poisson structure on (A, ·) is an element π0 ∈ X 2(A)

such that [π0, π0]S = 0 (see [28, Chapter 1] or [48, Chapter 3]).

Formal deformations of the Poisson structure π0 are defined in a similar way as for the

commutative associative product µ0. More precisely, consider the Cλ-algebra (Aλ, ·), endowed

with the undeformed commutative product. A formal Poisson deformation π of π0 is a

skew-symmetric biderivation of (Aλ, ·), of the form

π = π0 +
∞∑
j=1

λjπj

which satisfies the Jacobi identity. Thus, (Aλ, ·, π) is a Poisson algebra.

Remark 2.2.7. Some authors ([44, 29]) define a formal Poisson structure on (A, ·) as

the formal power series π given above and satisfying [π, π]S = 0, where [·, ·]S is the Schouten

bracket of multiderivations extended bilinearly to formal power series. It follows then that π

satisfies the Jacobi identity, and at order zero, [π0, π0]S = 0; thus, π0 is an ordinary Poisson

structure on (A, ·), and π can be seen as a formal deformation of π0, according to the above

definition. In the following, we will use both definitions interchangeably.

Given D ∈ λDer(Aλ), and π a formal Poisson structure on A, define π′ := exp([D, ·]S)π.

It can be shown (see [48, Sec. 13.3.4]) that [π′, π′]S = 0, thus π′ is again a formal Poisson

structure on (A, ·).

Definition 2.2.8. Two formal Poisson structures π and π′ on (A, ·) are said to be equivalent

if there exists D ∈ λDer(Aλ) such that π′ = exp([D, ·]S)π.

A straightforward computation shows that two formal Poisson structures π and π′ are related

by π′ = exp([D, ·]S)π if and only if

exp(D) : (Aλ, π)→ (Aλ, π′)

is a Poisson morphism. This, together with Proposition 2.2.4 allow us to give an alternative def-

inition of equivalence for formal Poisson structures, which is more in the spirit of the definition

17



given in the context of deformation of associative products.

Definition 2.2.9. Two formal Poisson structures π and π′ on (A, ·) are said to be equivalent

if there exists a Poisson morphism Φ: (Aλ, π)→ (Aλ, π′) of the form Φ = I +
∑∞

j=1 λ
jφj.

We denote by [π] the equivalence class of π, and by FPois(A, ·) the set of equivalence

classes of formal Poisson structures on (A, ·), or simply by FPois(A) if the associative product

is understood from the context. Moreover, when a Poisson structure is given on the algebra

C∞(P ), where P is a smooth manifold, we set FPois(P ) := FPois(C∞(P )).

It follows immediately that two equivalent Poisson structures π and π′, viewed as deforma-

tions, deform the same Poisson structure π0 = π′0. Thus, if a Poisson structure π0 is fixed on

A we set

FPois(A, π0) := {[π] ∈ FPois(A);π = π0 (mod λ)}.

Symplectic case: Let (M,ω0) be a symplectic manifold. It can be shown (see, for instance,

[37]) that any Poisson deformation πω of the Poisson tensor πω0 is of the form

πω(df, dg) = −ω(Xf , Xg),

with ω = ω0 +
∑∞

j=1 λ
jωj ∈ Ω2

cl(M)λ, being Xf ∈ X (M)λ the hamiltonian formal vector field

of f ∈ C∞(M)λ, given by ιXfω = df . The following classification result appeared in [49] (see

also [37]):

Proposition 2.2.10. The equivalence classes of Poisson deformations of the Poisson bracket

on a symplectic manifold (M,ω0) are parametrized by H2
dR(M)λ.

Thus, two Poisson deformations, π = πω and π′ = πω′ , of the Poisson tensor πω0 are

equivalent if and only if [ω] = [ω′] ∈ H2
dR(M)λ.

2.2.3 Deformation quantization of Poisson manifolds

Consider again an associative C-algebra (A, µ0) and let µ =
∑∞

i=0 λ
iµi be a formal deformation

of µ0. Let µ−1 be the skew-symmetric part of µ1, i.e., µ−1 (a, b) := 1
2
(µ1(a, b) − µ1(b, a)). The

associativity of µ implies that µ−1 is a Poisson structure on the algebra (A, µ0).

After this observation, let us go back to the situation of a star-product (Section 2.2.2).

Suppose we have a Poisson manifold (P, π0). then it is natural to ask whether or not it is

possible to find a star product µ =
∑∞

i=0 λ
iµi deforming the natural commutative product µ0

of C∞(P ) such that µ−1 recovers the original Poisson structure. In the affirmative case, one say

that such a µ quantizes π0. More than being just mathematically natural, this question is

deeply rooted in the physical problem of quantization, which can be traced back to Dirac [26].

Suppose now that µ =
∑∞

i=0 λ
iµi and µ′ =

∑∞
i=0 λ

iµ′i are two equivalent star-products on

P , i.e., there exists a Cλ-linear map T : C∞(P )λ → C∞(P )λ of the form T = I +
∑∞

k=1 Ti such

that

T (µ(f, g)) = µ′(T (f), T (g)), ∀f, g ∈ C∞(P ).
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Expanding both sides of the equation above we find that the coefficients in λ must satisfy

µ1(f, g) = µ′1(f, g) + T1(f)g + fT1(g)− T1(fg). (2.4)

Interchanging the role of f and g, we get

µ1(g, f) = µ′1(g, f) + T1(g)f + gT1(f)− T1(gf). (2.5)

Thus, subtracting (2.5) from (2.4) we get

µ1(f, g)− µ1(g, f) = µ′1(f, g)− µ′1(g, f),

hence, according to the observation at the beginning of this section, two equivalent star-products

on P quantizes the same Poisson structure. Thus, given a Poisson manifold (P, π0), we define

Def(P, π0) := {[?] ∈ Def(P ); ? quantizes π0}.

Let Diffπ0(P ) be the set of Poisson diffeomorphism of (P, π0), then the action (2.3) restricts to

an action of Diffπ0(P ) on Def(P, π0).

The problem of deformation quantization of Poisson manifolds addresses the following nat-

ural questions:

1. Existence: Given a Poisson manifold (P, π0), does there exist a star-product ? on P

quantizing π0? i.e., Is Def(P, π0) non-empty?

2. Classification: How can we parametrize Def(P, π0)?

The first known example of existence was the Moyal product on (R2n, ωcan), arising from

canonical quantization ([26], [70]). See [67], [37] and the references therein for further informa-

tion on Moyal Product. The problem of existence was solved for symplectic manifolds by De

Wilde-Lecomte [24]. Soon after, also for symplectic manifolds, a more geometrical proof of ex-

istence was provided by Fedosov [31], which can be generalized for regular Poisson manifolds as

well [30]. The classification problem for symplectic manifolds was solved by Nest-Tsygan [57],

Deligne [25] and Bertelson-Cahen-Gutt [4], and the conclusion is that the space of equivalence

classes of star-products on a symplectic manifold (M,ω) is parametrized by H2
dR(M)λ. A proof

of this result by Čech cohomological methods was given by Gutt-Rawnsley in [38]. For general

Poisson manifolds, the problem (of existence and classification) was solved by Kontsevich [44]

as a consequence of his Formality theorem. Kontsevich succeeded in constructing a bijection

between the set FPois0(P ) of equivalence classes of formal deformations of the trivial Poisson

structure on a manifold P and the set Def(P ) of equivalence classes of star-products on P ;

K∗ : FPois0(P )→ Def(P ),
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such that, if [π] and [µ?] correspond each other under this bijection, then 2µ−1 = π1. Thus, for a

given Poisson manifold (P, π0), the desired star product on P is any µ? such that K∗[λπ0] = [µ?].

2.3 Morita equivalence and deformation quantization

In this section we will review the principal results achieved, in a series of papers ([8], [5], [6]),

by Bursztyn, Dolgushev and Waldmann, which establishes the link alluded to in diagram (1.2)

in the introduction.

Classification of Morita equivalent star products: Given a Poisson manifold (P, π0), let

Pic(P ) be its geometric Picard group, i.e.: complex line bundles L→ P with group operation

given by tensor product (see Definition 2.1.8). Let Def(P ) be the moduli space of star products

on P . In [5], the author showed that a deformation quantization procedure performed on

complex line bundles L→ P yields a canonical action

Φ: Pic(P )×Def(P, π0)→ Def(P, π0),

such that two star-product ? and ?′ on (P, π0) are Morita equivalent if and only if there exists a

Poisson diffeomorphism ψ : P → P such that [?] and [?′ψ] lie in the same orbit of Φ. We denote

by ΦL the action map for a given element L ∈ Pic(P ).

Formal gauge action: Given a manifold P , recall the action of B-fields on Poisson structures

on P given by

(B, π) 7→ τBπ; (τBπ)] = π](I +B]π])−1,

provided the bundle map I + B]π] : T ∗P → T ∗P is invertible. Next we will see how this idea

can be translated into the formal setting.

Let π ∈ λX 2(P )λ be a formal Poisson structure, and let B ∈ Ω2
cl(P )λ be a formal closed

2-form. We have the following C∞(P )λ-linear maps:

π] :=
∞∑
j=1

λjπ]j : Ω1(P )λ → λX 1(P )λ,

and

B] :=
∞∑
j=0

λjB]
j : X 1(P )λ → Ω1(P )λ.

Notice that B]π] = λ(B]
0π

]
1) + O(λ2), hence the map I + B]π] is always invertible (see

Proposition 2.2.1). Thus, we get a well defined map

(B, π)
τ7−→ τBπ; (τBπ)] := π](I +B]π])−1.
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It was shown in [6] that this map yields an action

H2
dR(M,C)λ × FPois0(P )→ FPois0(P ); ([B], [π]) 7→ [τBπ].

The main result in [6] is the following:

Theorem 2.3.1. Given a complex line bundle L → P and a formal Poisson structure [π] ∈
FPois0(P ), we have

ΦL(K∗[π]) = K∗([τBπ]),

where B is a representative of the cohomology class 2πic1(L), being c1(L) the Chern class of

L→ P .

2.4 Morita equivalence of formal Poisson manifolds

In this section we propose a definition of Morita equivalence in the realm of formal Poisson

manifolds, building upon the algebraic characterization of equivalence symplectic bimodules.

As we saw in Remark 2.1.13, a key feature of an equivalence dual pair, P
JP←− (S, ω0)

JQ−→ Q,

is the Poisson commutativity condition:

{J∗P (C∞(P )), f}ω0 = 0⇒ f ∈ J∗Q(C∞(Q) and {g, J∗Q(C∞(Q))}ω0 = 0⇒ g ∈ J∗P (C∞(P ),

which says that, at the level of algebras (of functions), if P is Morita equivalent to Q then

C∞(P ) and C∞(Q) are mutually centralizers of one another inside (C∞(S), {·, ·}ω0), and this

resembles the similar result concerning Morita equivalence of associative algebras (see Remark

2.1.6).

Now let P1 and P2 be two smooth manifolds with corresponding formal Poisson structures

π1 =
∑∞

j=0 λ
jπ1
j and π2 =

∑∞
j=0 λ

jπ2
j . We have seen that, in such a case, π1

0 and π2
0 define

Poisson structures on P1 and P2, respectively, and from now on whenever we refer to the Pi’s

as Poisson manifolds, or they need to be Poisson manifolds from the context, we will assume

that their Poisson structures are these zeroth order terms of their formal structures.

Definition 2.4.1. A formal dual pair is a diagram of the form

(C∞(P1)λ, π
1)

Φ1

−→ (C∞(S)λ, ω)
Φ2

←− (C∞(P2)λ, π
2),

where; (Pi, π
i), for i = 1, 2, are formal Poisson manifolds; ω =

∑∞
j=0 λ

jωj ∈ Ω2
cl(S)λ, with

ω0 symplectic; Φ1 and Φ2 are Poisson and anti-Poisson morphisms, respectively, such that

Φ1(C∞(P1)λ) and Φ2(C∞(P2)λ) are mutually centralizers inside (C∞(S)λ, {·, ·}ω).

We now propose the following definition of Morita equivalence for formal Poisson manifolds.

Definition 2.4.2. Two formal Poisson manifolds, (Pi, π
i), for i = 1, 2, are Morita equiva-

lent if:
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1. there exist a symplectic manifold (S, ω0) such that

(C∞(P1)λ, π
1)

Φ1

−→ (C∞(S)λ, ω)
Φ2

←− (C∞(P2)λ, π
2),

is a formal dual pair, for some ω = ω0 +
∑∞

j=1 λ
jωj ∈ Ω2

cl(S)λ, and

2. in the classical limit, (S, ω0) is an equivalence symplectic bimodule between (P1, π
1
0) and

(P2, π
2
0).

It is not easy to provide examples of Morita equivalent formal Poisson manifolds. However,

in this work we will give a general way of constructing them in the case of deformation of the

zero structure. To properly state this result we need to go through some technicalities, yet we

may give here an intuitive explanation. To do so, let us begin by recalling an example in the

undeformed case.

Let (P1, π1)
J1←− (S, ω)

J2−→ (P2, π2) be a Morita equivalence symplectic bimodule, then, it

follows from the work of Frejlich and Mǎrcuţ in [32] that the single relation

τω(J∗1Lπ1) = J∗2Lπ2 , (2.6)

between the backward Dirac images J∗i Lπi , i = 1, 2, codifies all the algebraic properties char-

acterizing an equivalence symplectic bimodule. If B ∈ Ω2
cl(P2), essentially by equivariance

of backward Dirac images with respect to B-field actions, we get τ(ω+J∗2B)(J
∗
1Lπ1) = J∗2LτBπ2 .

Thus, if τBπ2 happens to be Poisson, we get the new Morita equivalence symplectic bimodule

(P1, π1)
J1←− (S, ω + J∗2B)

J2−→ (P2, τBπ2).

Let us now consider an element [π] ∈ FPois0(P ), and suppose we have a self-equivalence

formal dual pair

(C∞(P )λ, π)
Φ1

−→ (C∞(S)λ, ω)
Φ2

←− (C∞(P )λ, π). (2.7)

It follows from Theorem 2.1.16 and the condition on the classical limit Definition 2.4.2 that

the manifold S must be diffeomorphic to T ∗P , and ω must be a deformation of ω0 = ωcan+ρ∗B0,

for some B0 ∈ Ω2
cl(P ) and ρ : T ∗P → P being the bundle projection. We will adapt into the

formal context all the ingredients of the previous example, namely; the structures Lπi and their

backward transformation ρ∗Lπi ; the equivariance of the backward transformation with respect

to the action of formal B-fields, and a formal version of relation (2.6), codifying the dual pair

condition in Definition 2.4.2. This allows us to get, from the equivalence dual pair (2.7), another

formal dual pair as follows

(C∞(P )λ, π)
Ψ1

−→ (C∞(S)λ, ω + ρ∗B)
Ψ2

←− (C∞(P )λ, τBπ),

with B ∈ Ω2
cl(P )λ. Hence, τBπ is Morita equivalent to π, for any B ∈ Ω2

cl(P )λ. Moreover, and

this is the main result of this work, we will show that in this way (modulo a natural action

of Diff(P ) on FPois0(P )) we exhaust all formal Poisson structures [π′] ∈ FPois0(P ) which are

Morita equivalent to a given one.
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CHAPTER 3

Deformation of Poisson morphisms - Cohomological results

3.1 Deformation of Poisson morphisms

Let A and B be Poisson algebras over C, and let

φ0 : (A, {·, ·}A)→ (B, {·, ·}B),

be a Poisson morphism.

Definition 3.1.1. Given formal Poisson deformations πA =
∑∞

j=0 λ
jπAj , of πA0 = {·, ·}A, and

πB =
∑∞

j=0 λ
jπBj , of πB0 = {·, ·}B, a formal Poisson deformation of the Poisson morphism

φ0 : A → B, with respect to πA and πB, is a Poisson morphism of the form

Φ =
∞∑
j=0

λjφj : (Aλ, πA)→ (Bλ, πB).

Let (S, ω0)
J−→ (P, π0) be a symplectic realization. Then let π be a formal Poisson deformation

of π0 and σ be a formal Poisson deformation of πω0 .

Definition 3.1.2. A formal deformation of the symplectic realization (S, ω0)
J−→ (P, π0), with

respect to π and σ, is a formal Poisson deformation of the Poisson morphism

J∗ : (C∞(P ), π0)→ (C∞(S), πω0),

according to Definition 3.1.1.

We are interested in studying the following deformation problem:
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Problem 1: Given a Poisson morphism φ0 : (A, {·, ·}A)→ (B, {·, ·}B) and formal Poisson de-

formations πA of πA0 := {·, ·}A, and πB of πB0 := {·, ·}B, find a Poisson deformation Φ of φ0

with respect to πA and πB, according to Definition 3.1.1.

In the following section we will identify a cohomology controlling this deformation problem,

and the main result in this chapter may be summarized as follows:

Main Result: Triviality of the relevant cohomology allows us to solve Problem 1 and to estab-

lish a formal dual pair relation

(A′λ, π′)
Ψ−→ (Bλ, πB)

Φ←− (Aλ, π),

where A′ is the Poisson commutator of φ0(A) inside B.

This is the outcome of propositions 3.2.12, 3.2.13 and 3.2.18.

3.2 Cohomological results

In this section we develop some cohomological tools and then we apply it to study Problem

1. Here we follow closely some private communications of Stefan Waldmann with Henrique

Bursztyn [66].

3.2.1 A Chevalley-Eilenberg cohomology

Let φ0 : (A, {·, ·}A)→ (B, {·, ·}B) be a Poisson morphism, as above. Recall that (EndC(B), [·, ·]),
where EndC(B) is the endomorphism group of B as a C-vector space and [·, ·] is the commutator,

is a Lie algebra. Then the map

(A, {·, ·}A)→ (EndC(B), [·, ·]); a 7→ {φ0(a), ·}B,

is a Lie algebra homomorphism, and thus we can see B as a left Lie algebra module over

(A, {·, ·}A). Hence we consider the following Chevalley-Eilenberg complex: for k = 0 set

C0
CE(A,B) := B, and for k ∈ N, the k-cochains are

Ck
CE(A,B) := {D : A×k → B; D is C-multilinear and antisymmetric},

with differential δ given, for D ∈ Ck
CE(A,B) and a1, ..., ak+1 ∈ A, by

δD(a1, ..., ak+1) :=
k+1∑
j=1

(−1)j+1{φ0(aj), D(a1, ...,
j
∧, ..., ak+1)}B

+
∑
i<j

(−1)i+jD({ai, aj}A, a1, ...,
i
∧, ...,

j
∧, ..., ak+1).
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The corresponding cohomology will be denoted by H•CE(A,B).

Remark 3.2.1. The spaces Ck
CE(A,B) can be given the structure of a B-module, say from the

left, via

(bD)(a1, ..., ak) := bD(a1, ..., ak),

for b ∈ B, D ∈ Ck
CE(A,B) and ai ∈ A. Using φ0, we can also give it a left A-module structure,

via

(aD)(a1, ..., ak) := φ0(a)D(a1, ..., ak),

where a ∈ A. Notice that, in general, the differential is not compatible with these module

structures. However, as we will see later, in a geometric case of interest for us, the differential

will be A-linear.

Remark 3.2.2. This cohomology was considered by Richardson and Nijenhuis in [59] for the

study of deformation of Lie structures, and then applied in [58], by the same authors, to study

the deformation of Lie algebra and Lie group morphisms. In [59], given a vector space V they

showed that Alt(V ) := ⊕n Altn(V ), where Altn(V ) is the space of all alternating (n+ 1)-linear

maps of V into itself, can be endowed with the structure of a differential graded Lie algebra

and how this structure is related to the deformation problem they were working with. There,

they mainly deal with finite dimensional Lie algebras. In the following, we will introduce a

subcomplex of the above complex, in order to take care of the derivation property of the Poisson

brackets.

From now on we will focus on a special class of cochains, namely, those which are multi-

derivations of the associative product along φ0, i.e., for D ∈ Ck
CE(A,B), we ask for the following

condition to hold:

D(a1, ..., albl, ...., ak) = φ0(al)D(a1, ..., bl, ..., ak) +D(a1, ..., al, ..., ak)φ0(bl), (3.1)

for a1, ..., ak, bl ∈ A and l = 1, ..., k. Let Ck
CE,der(A,B) denote the subset of Ck

CE(A,B) satisfying

(3.1).

Remark 3.2.3. For the Poisson morphism induced by a symplectic realization (S, ω0)
J−→

(P, π0), these multiderivation cochains correspond to multivector fields on P along J , which

are sections of the pullback bundle J∗
∧•(TP ) (see Proposition 4.1.3 in Section 4.1).

Lemma 3.2.4. C•CE,der(A,B) is a subcomplex of C•CE(A,B) with respect to δ.

Proof. We need to show that for D ∈ Ck
CE,der(A,B), the cochain δD is still a multiderivation.

Since δD is already antisymmetric, we only need to check that it satisfies the Leibniz rule, say

for, the first argument. Thus we compute:
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δD(ab, a2, ..., ak+1) = {φ0(ab), D(a2, ..., ak+1)}B +
k+1∑
j=2

(−1)j+1{φ0(aj), D(ab, a2, ...,
j
∧, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1D({ab, aj}A, a2, ...,
j
∧, ..., ak+1)

+
∑
i<j

(−1)i+jD({ai, aj}A, ab, ...,
i
∧, ...,

j
∧, ..., ak+1).

Then we use the fact that φ0 is a morphism of the associative product, and the Leibniz rule for

the bracket and for D to expand over the product ab and get

δD(ab, a2, ..., ak+1) = φ0(a){φ0(b), D(a2, ..., ak+1)}B + φ0(b){φ0(a), D(a2, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1{φ0(aj), φ0(a)D(b, a2, ...,
j
∧, ..., ak+1)

+ φ0(b)D(a, a2, ...,
j
∧, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1D(a{b, aj}A + b{a, aj}A, a2, ...,
j
∧, ..., ak+1)

+
∑
i<j

(−1)i+jφ0(a)D({ai, aj}A, b, ...,
i
∧, ...,

j
∧, ..., ak+1)

+
∑
i<j

(−1)i+jφ0(b)D({ai, aj}A, a, ...,
i
∧, ...,

j
∧, ..., ak+1).

Applying the Leibniz rule and multilinearity of the brackets and of the cochain D, and the fact

that φ0 is a Poisson morphism we get

δD(ab, a2, ..., ak+1) = φ0(a){φ0(b), D(a2, ..., ak+1)}B

+ φ0(a)
k+1∑
j=2

(−1)j+1{φ0(aj), D(b, a2, ...,
j
∧, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1φ0({aj, a}A)D(b, a2, ...,
j
∧, ..., ak+1)

+ φ0(a)
k+1∑
j=2

(−1)j+1D({b, aj}A, a2, ...,
j
∧, ..., ak+1)

+
k+1∑
j=2

(−1)j+1φ0({a, aj}A)D(b, a2, ...,
j
∧, ..., ak+1)

+ φ0(a)
∑
i<j

(−1)i+jD({ai, aj}A, b, ...,
i
∧, ...,

j
∧, ..., ak+1) + (a↔ b),
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where (a ↔ b) means that we have again the entire expression with a and b interchanged.

Observe now that the third and fifth lines cancel out, due to antisymmetry of the Poisson

bracket, hence

δD(ab, a2, ..., ak+1) = φ0(a)
(
{φ0(b), D(a2, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1{φ0(aj), D(b, a2, ...,
j
∧, ..., ak+1)}B

+
k+1∑
j=2

(−1)j+1D({b, aj}A, a2, ...,
j
∧, ..., ak+1)

+
∑
i<j

(−1)i+jD({ai, aj}A, b, ...,
i
∧, ...,

j
∧, ..., ak+1)

)
+ (a↔ b).

= φ0(a)(δD)(b, a2, ..., ak) + φ0(b)(δD)(a, a2, ..., ak).

Hence, δD is a multiderivation cochain, as desired.

The corresponding cohomology will be denoted by H•CE,der(A,B). Note that the inclusion

at the level of cochains induces an inclusion H•CE,der(A,B)→ H•CE(A,B).

Consider now a second Poisson morphism ψ : B → C. Thus ψ ◦ φ0 : A → C is also a

Poisson morphism, so we may consider the complex C•CE(A, C). Define, for each k = 0, 1, ...,

the following map:

φ∗0 : Ck
CE(B, C)→ Ck

CE(A, C); φ∗0D(a1, ..., ak) := D(φ0(a1), ..., φ0(ak)),

where D ∈ Ck
CE(B, C) and a1, ..., ak ∈ A.

Lemma 3.2.5. The map φ∗0 : C•CE(B, C) → C•CE(A, C) is a chain map. It restricts to a chain

map

φ∗0 : C•CE,der(B, C)→ C•CE,der(A, C).

Proof. Take D ∈ Ck
CE(B, C) and a1, ..., ak+1 ∈ A, then compute:

(φ∗0δD)(a1, ..., ak+1) = (δD)(φ0(a1), ..., φ0(ak+1))

=
k+1∑
j=1

(−1)j+1{ψ(φ0(aj)), D(φ0(a1), ...,
i
∧, ..., φ0(ak+1))}C

+
∑
i<j

(−1)i+jD({φ0(ai), φ0(aj)}B, φ0(a1), ...,
i
∧, ...,

j
∧, ..., φ0(ak+1)).
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On the other hand, we have

(δφ∗0D)(a1, ..., ak+1) =
k+1∑
j=1

(−1)j+1{ψ ◦ φ0(aj), φ
∗
0D(a1, ...,

i
∧, ..., ak+1)}C

+
∑
i<j

(−1)i+jφ∗0D({ai, aj}A, a1, ...,
i
∧, ...,

j
∧, ..., ak+1)

=
k+1∑
j=1

(−1)j+1{ψ ◦ φ0(aj), D(φ0(a1), ...,
i
∧, ..., φ0(ak+1))}C

+
∑
i<j

(−1)i+jD({φ0(ai), φ0(aj)}B, φ0(a1), ...,
i
∧, ...,

j
∧, ..., φ0(ak+1)).

Thus, δφ∗0 = φ∗0δ, so φ∗0 is a chain map. The second statement follows from similar computations,

taking into account that φ0 is a morphism of the associative product.

Now we restrict our attention to pulling-back B-valued multiderivations of B, via φ0. Thus,

we consider C = B and ψ = I, hence we get a chain map

φ∗0 : C•CE,der(B,B)→ C•CE,der(A,B).

Definition 3.2.6. (Horizontal lift) A horizontal lift along φ0 : A → B is a C-linear map

h : C•CE(A,B)→ C•CE(B,B)

D 7→ Dh,

such that, for all a ∈ A and D ∈ C•CE(A,B),

φ∗0D
h = D and φ0(a)Dh = (φ0(a)D)h.

Remark 3.2.7. Note that the existence of a horizontal lift implies, in particular, that φ∗0 is a

surjective map. For k = 0, we have C0
CE(B,B) = B = C0

CE(A,B), and φ∗0 = I : B → B. It

follows from the first property in (3.2.6) that bh = b, for all b ∈ B.

It follows from the definition that two horizontal lifts h1 and h2 differ by an element in the

kernel of φ∗0. We introduce the following:

Definition 3.2.8. (Vertical cochains) A cochain D ∈ C•CE,der(B,B) is called vertical with

respect to φ0 : A → B if

φ∗0D = 0.

3.2.2 A deformation problem

For the reader convenience, let us recall here Problem 1.
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Problem 1: Given a Poisson morphism φ0 : (A, {·, ·}A)→ (B, {·, ·}B) and formal Poisson de-

formations πA of πA0 := {·, ·}A, and πB of πB0 := {·, ·}B, find a Poisson deformation Φ of φ0

with respect to πA and πB, according to Definition 3.1.1.

Remark 3.2.9. For the geometrical context we are interested in, the deformations of φ0 which

are of geometric interest are given by formal diffeomorphisms, i.e., they are of the form

Φ = exp(X)φ0,

where X ∈ λDer(B)λ. To simplify notation, we put π := πA and σ := πB. Thus, we want to

find X =
∑∞

j=1 λ
jXj with Xj ∈ Der(B) such that, for all a, b ∈ A, the map Φ := exp(X)φ0

satisfies

Φ(π(a, b)) = σ(Φ(a),Φ(b)). (3.2)

Notice that, for Φ to be a Poisson morphism, the condition Φ(ab) = Φ(a)Φ(b) must also be

fulfilled, but this will be the case, since φ0 is already a morphism of the associative product, and

exp(X) ∈ Aut0(B) (see Proposition 2.2.4).

Obstruction for the iterative construction

Suppose we have found X(k) such that Φ(k) := exp(X(k)) satisfies equation (3.2) up to order k,

i.e., we have:

Φ−1
(k)σ
(
Φ(k)φ0(a),Φ(k)φ0(b)

)
= φ0(π(a, b)) + λk+1Rk+1(a, b) + · · · (3.3)

for all a, b ∈ A, and some C-bilinear map Rk+1 : A×A → B.

Note that for k = 0 we do have a solution: X(0) = 0, thus Φ(0) = IB and we have

R1(a, b) = σ1

(
φ0(a), φ0(b)

)
− φ0(π1(a, b)).

Lemma 3.2.10. Assume we have found X(k) such that (3.3) holds. Then the map Rk+1 satisfies:

1. Rk+1 ∈ C2
CE,der(A,B),

2. δRk+1 = 0.

Proof. For the first item, we see that since π and σ are both antisymmetric in each order of λ,

this also holds for Rk+1. Thus, it left to check the Leibniz rule for Rk+1. For this recall that

σ and π satisfy the Leibniz rule and Φ(k) is an automorphism of Bλ, thus the left hand side in

(3.3) also satisfies the Leibniz rule. Therefore, the same holds for Rk+1. It remains to check

the closedness of Rk+1. Let a, b, c ∈ A, and compute:
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Φ−1
(k)σ

(
Φ(k)φ0(a), σ

(
Φ(k)φ0(b),Φ(k)φ0(c)

))
= Φ−1

(k)σ

(
Φ(k)φ0(a),Φ(k)

(
φ0(π(b, c))

+ λk+1Rk+1(b, c) + · · ·
))

= Φ−1
(k)σ
(
Φ(k)φ0(a),Φ(k)φ0(π(b, c))

)
+ Φ−1

(k)σ

(
Φ(k)φ0(a),Φ(k)

(
λk+1Rk+1(b, c) + · · ·

))
= φ0

(
π(a, π(b, c))

)
+ λk+1Rk+1(a, π(b, c)) + · · ·

+ Φ−1
(k)σ

(
Φ(k)φ0(a),Φ(k)(λ

k+1Rk+1(b, c) + · · ·)
)
,

where we used the defining equation of Rk+1, (3.3), for the first and last equality. Now taking the

cyclic sum over a, b, c, using the Jacobi identity for π and σ (recall that Φ(k) is an automorphism,

thus, it turns σ into a formal Poisson tensor again), and the fact that Φ(k) is the identity at

zeroth order, we get

0 = λk+1

(
Rk+1

(
a, π(b, c)

)
+Rk+1

(
b, π(c, a)

)
+Rk+1

(
c, π(a, b)

))
+ λk+1

(
σ
(
φ0(a), Rk+1(b, c)

)
+ σ
(
φ0(b), Rk+1(c, a)

)
+ σ
(
φ0(c), Rk+1(a, b)

))
+ · · ·.

To obtain the order λk+1 from the equation above, we have to expand the deformed Poisson

structures π and σ and take their zeroth order, which are the original brackets on A and B,

respectively, thus we get

0 = Rk+1(a, {b, c}A) +Rk+1(b, {c, a}A) +Rk+1(c, {a, b}A)

+ {φ0(a), Rk+1(b, c)}B + {φ0(b), Rk+1(c, a)}B + {φ0(c), Rk+1(a, b)}B,

which is precisely the condition δRk+1 = 0.

Now we look for Xk+1 ∈ Der(B) such that for Φ(k+1) := Φ(k) exp(λk+1Xk+1) we have an

analogous equation to (3.3) up to one order higher.

Remark 3.2.11. Note that Φ(k+1) is an automorphism of Bλ starting with identity, hence (see

Proposition 2.2.4), it must be of the form exp(X(k+1)) for some X(k+1) ∈ λDer(B)λ, thus, it

has the desired form.

We compute the analogous to (3.3) up to the order λk+1:

Φ−1
(k+1)σ

(
Φ(k+1)φ0(a),Φ(k+1)φ0(b)

)
= Φ−1

k+1Φ−1
(k)σ
(
Φ(k)Φk+1φ0(a),Φ(k)Φk+1φ0(b)

)
= (I − λk+1Xk+1 + · · ·)Φ−1

(k)σ
(
Φ(k)((I + λk+1Xk+1 + · · ·)φ0(a)), a← b

)
,
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where a ← b, in the second argument of σ, means that we repeat the first argument with a

replaced by b. Expanding the right hand side and using the defining equation of Rk+1, the fact

that Φ(k) and Φ−1
(k) are identity at zeroth order, and that φ0 is Poisson morphism between {·, ·}A

and {·, ·}B, we get

Φ−1
(k+1)σ

(
Φ(k+1)φ0(a),Φ(k+1)φ0(b)

)
= Φ−1

(k)σ
(
Φ(k)φ0(a),Φ(k)φ0(b)

)
− λk+1Xk+1σ

(
φ0(a), φ0(b)

)
+ λk+1σ

(
φ0(a), Xk+1φ0(b)

)
+ λk+1σ

(
Xk+1φ0(a), φ0(b)

)
+ · · ·

= φ0(π(a, b)) + λk+1Rk+1(a, b)− λk+1Xk+1φ0{a, b}A
+ λk+1{φ0(a), Xk+1φ0(b)}B + λk+1{Xk+1φ0(a), φ0(b)}B + · · ·.

Thus, to have (3.2) satisfied up to order λk+1 we need to fulfill

Rk+1(a, b) = Xk+1φ0{a, b}A − {φ0(a), Xk+1φ0(b)}B − {Xk+1φ0(a), φ0(b)}B,

for all a, b ∈ A. Note that the right hand side in the equation above is just −δφ∗0Xk+1(a, b),

hence we get the condition

−Rk+1 = δφ∗0Xk+1.

This equation, together with Lemma 3.2.10, tell us that [Rk+1] ∈ H2
CE,der(A,B) is an ob-

struction to finding a solution Xk+1. Moreover, even if [Rk+1] = 0, we still have to realize it as

a coboundary −δξk+1, with ξk+1 in the image of φ∗0. Thus we can state the following result.

Proposition 3.2.12. Suppose that we have a kth-order Poisson deformation Φ(k) = exp(X(k))

of φ0, thus yielding Rk+1 ∈ C2
CE,der(A,B) according to Lemma 3.2.10. If φ∗0 is surjective, then

the obstruction to extend Φ(k) into a (k + 1)th-order Poisson deformation of φ0 is given by

[Rk+1] ∈ H2
CE,der(A,B).

Uniqueness

Suppose we have found a solution to (3.2) of the form Φ = exp(X)φ0. We are now interested

in studying the degree of freedom of such a solution. First notice that, if Y ∈ λDer(B)λ is a

derivation of σ, then exp(Y ) is an automorphism of σ, then defining Φ := exp(Y )Φ, we still have

a solution of (3.2). Consider now an element V ∈ λDer(B)λ which is vertical with respect to φ0,

i.e., φ∗0Vj = Vj ◦ φ0 = 0. It follows that exp(V )φ0 = φ0, therefore Φ := exp(X) exp(V )φ0 = Φ is

again solution of (3.2).

Thus, so far we have that any solution of (3.2) of the form Φ = exp(X)φ0, can be modified

by transformations of the form

exp(X) exp(Y ) exp(X) exp(V ),

with V vertical and Y being a derivation of σ. Now we want to see whether this is the only

way to modify a given solution exp(X)φ0 of (3.2).
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Thus let Φ = exp(X)φ0 and Φ = exp(X)φ0 be two solutions of (3.2), where X,X ∈
λDer(B)λ. Suppose also that we have found Y(k), V(k) ∈ λDer(B)λ such that, V(k) is vertical,

Y(k) is a derivation of σ and exp(Y(k)) exp(X) exp(V(k)) agree with exp(X) up to order k. Notice

that, Y(0) = V(0) = 0 does the job for k = 0.

The fact that exp(Y(k)) exp(X) exp(V(k)) agree with exp(X) up to order k means that there

is a Z(k+1) ∈ λk+1 Der(B)λ such that

exp(Y(k)) exp(X) exp(V(k)) exp(−X) = exp(Z(k+1)) = Id+ λk+1Zk+1 + · · ·. (3.4)

Now we look for some vertical derivation Vk+1 ∈ Der(B)λ and a σ derivation Yk+1 ∈ Der(B)λ

such that the maps exp(λk+1Yk+1) exp(Y(k)) exp(X) exp(V(k)) exp(λk+1Vk+1) and exp(X) agree

up to order k + 1.

To do so, we compute the analogue to equation (3.4) up to on order higher.

exp(λk+1Yk+1) exp(Y(k)) exp(X) exp(V(k)) exp(λk+1Vk+1) exp(−X)

= (I + λk+1Y 0
k+1 + · · ·) exp(Y(k)) exp(X) exp(V(k))(I + λk+1V 0

k+1 + · · ·) exp(−X)

= exp(Y(k)) exp(X) exp(V(k)) exp(−X) + λk+1(Y 0
k+1 + V 0

k+1) + · · ·
= I + λk+1Zk+1 + λk+1(Y 0

k+1 + V 0
k+1) + · · ·.

Hence, the zeroth order terms Y 0
k+1 and V 0

k+1 need to satisfy

Y 0
k+1 + V 0

k+1 = −Zk+1. (3.5)

Now, since exp(Y(k)) is an automorphism of σ we have that exp(Y(k)) exp(X) exp(V(k))φ0

solves (3.2), thus we compute

exp(Z(k+1))σ
(

exp(−Z(k+1)) exp(Y(k)) exp(X) exp(V(k))φ0(a), a← b
)

= exp(Y(k)) exp(X) exp(V(k)) exp(−X)σ
(

exp(X)φ0(a), exp(X)φ0(b)
)

= exp(Y(k)) exp(X) exp(V(k))φ0(π(a, b))

= σ
(

exp(Y(k)) exp(X) exp(V(k))φ0(a), a← b
)
.

(3.6)

Now, expanding the left hand side of this equation we get

exp(Z(k+1))σ
(

exp(−Z(k+1)) exp(Y(k)) exp(X) exp(V(k))φ0(a), a← b
)

= (I + λk+1Zk+1 + · · ·)σ
(
(I − λk+1Zk+1 + · · ·) exp(Y(k)) exp(X) exp(V(k))φ0(a), a← b

)
= σ

(
exp(Y(k)) exp(X) exp(V(k))φ0(a), exp(Y(k)) exp(X) exp(V(k))φ0(b)

)
+ λk+1

(
Zk+1φ0{a, b}A − {Zk+1φ0(a), φ0(b)}B − {φ0(a), Zk+1φ0(b)}B

)
+ · · ·

= σ
(

exp(Y(k)) exp(X) exp(V(k))φ0(a), a← b
)
− λk+1(δφ∗0Zk+1)(a, b) + · · ·.
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Hence, comparing with the right hand side of (3.6), we get

δφ∗0Zk+1 = 0.

Suppose then that H1
CE,der(A,B) = {0}. Hence, since φ∗0Zk+1 ∈ C1

CE,der(A,B) is closed, we

can find Hk+1 ∈ B such that δHk+1 = φ∗0Zk+1, i.e.:

{Hk+1, φ0(a)}B = −φ∗0Zk+1(a) = −Zk+1(φ0(a)).

Observe that Hk+1 ∈ C0
CE,der(A,B) = B = C0

CE,der(B,B), hence, it follows from the previous

equation that V 0
k+1 := δHk+1 − Zk+1 ∈ C1

CE,der(B,B) vanishes along φ0. Hence, it is a vertical

cochain. Then we have

{Hk+1, ·}B + V 0
k+1 = −Zk+1,

and we fulfill (3.5) by taking Y 0
k+1 := {Hk+1, ·}B. Now, we may take Vk+1 := V 0

k+1 and Yk+1 :=

σ(Hk+1, ·).
In the following proposition we summarize the previous discussion.

Proposition 3.2.13. Assume that H1
CE,der(A,B) = {0}. If Φ = exp(X)φ0, with X ∈ λDer(B)λ,

is a solution of (3.2), then exp(X) is unique up to transformations of the form

exp(X) exp(XH) exp(X) exp(V ),

where V ∈ λDer(B)λ is vertical and XH = σ(H, ·) with H ∈ λBλ.

The commutant

Suppose we have found a deformation Φ = exp(X)φ0 of φ0 corresponding to some given de-

formations π of {·, ·}A and σ of {·, ·}B. Let A′ be the Poisson commutant of A inside B,

i.e.:

A′ := (φ0(A))c := {b ∈ B; {b, φ0(a)}B = 0 ∀a ∈ A}.

Now let C stand for the Poisson commutator of Φ(Aλ) inside (Bλ, σ). We are then interested

in finding a transformation of the form exp(X ′) : Bλ → Bλ such that exp(X ′)(A′λ) = C, i.e,

such that the restriction

exp(X ′) : A′λ → C,

is an isomorphism, and studying how it is linked to the deformations π and σ.

Remark 3.2.14. Let us first observe that, in order to have the above isomorphism, it is enough

to have

σ
(

exp(X ′)c,Φ(a)
)

= 0, (3.7)

for all c ∈ A′ and a ∈ A. Indeed, this equation implies that exp(X ′) maps A′λ injectively inside

C. Conversely, if b =
∑∞

j=0 λ
jbj ∈ Bλ commutes with Φ(a) for all a ∈ A, then the zeroth
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order of equation (3.7) reads {b0, φ0(a)}B = 0 for all a ∈ A, which implies b0 ∈ A′. Then

b − exp(X ′)b0 = λc1 + · · · belongs to C, hence we get {c1, φ0(a)}B = 0 for all a ∈ A, and

therefore c1 ∈ A′. Iterating this procedure yields an element c = b0 + λc1 + · · · ∈ A′λ such that

b = exp(X ′)c.

Thus, we look for X ′ ∈ λDer(B)λ such that equation (3.7) holds, for any c ∈ A′ and a ∈ A.

As in the previous cases, we want to find such an X ′ in an inductive way. Thus, suppose X ′(k)

satisfies (3.7) up to order k, for all c ∈ A′ and a ∈ A, then the error term has the form

σ
(

exp(X ′(k))c,Φ(a)
)

= λk+1Fk+1(c, a) + · · ·, (3.8)

for some C-bilinear map Fk+1 : A′ ×A → B. In particular, X ′(0) = 0 will do the job for k = 0.

Then we want to find the obstruction in the next order for X ′k+1 ∈ Der(B). We compute

σ
(

exp(λk+1X ′k+1) exp(X ′(k))c,Φ(a)
)

= σ
(
(I + λk+1X ′k+1 + · · ·) exp(X ′(k))c,Φ(a)

)
= σ

(
exp(X ′(k))c,Φ(a)

)
+ λk+1{X ′k+1c, φ0(a)}B + · · ·

= λk+1Fk+1(c, a) + λk+1{X ′k+1c, φ0(a)}B + · · ·.

Hence, the equation we need to solve is

{X ′k+1c, φ0(a)}B = −Fk+1(c, a), (3.9)

for all c ∈ A′ and a ∈ A.

Lemma 3.2.15. For each c ∈ A′, the map D := Fk+1(c, ·) satisfies δD = 0.

Proof. Consider a, b ∈ A and c ∈ A′. We use the Jacoby identity for σ, the defining equation

for Fk+1 (3.8), and the fact that Φ is a Poisson morphism to compute

σ

(
Φ(a), σ

(
Φ(b), exp(X ′(k))c

))
= σ

(
σ
(
Φ(a),Φ(b)

)
, exp(X ′(k))c

)
+ σ

(
Φ(b), σ

(
Φ(a), exp(X ′(k))c

))
= σ

(
Φ(π(a, b)), exp(X ′(k))c

)
+ σ

(
Φ(b)− λk+1Fk+1(c, a) + · · ·

)
= −λk+1Fk+1(c, π(a, b)) + · · · − λk+1{φ0(b), Fk+1(c, a)}B + · · ·

= −λk+1Fk+1(c, {a, b}A)− λk+1{φ0(b), Fk+1(c, a)}B + · · ·.

On the other hand, expanding the left hand side, we have

σ

(
Φ(a), σ

(
Φ(b), exp(X ′(k))c

))
= σ

(
Φ(a),−λk+1Fk+1(c, b) + · · ·

)
= −λk+1{φ0(a), Fk+1(c, b)}B + · · ·.

34



Hence, the map D := Fk+1(c, ·) satisfies

δD(a, b) = {φ0(a), D(b)}B − {φ0(b), D(a)}B −D({a, b}A)

= {φ0(a), Fk+1(c, b)}B − {φ0(b), Fk+1(c, a)}B − Fk+1(c, {a, b}A) = 0,

thus, δD = 0, as claimed.

Under the assumption that the first cohomology H1
CE,der(A,B) = {0} is trivial, we have

that there is an element X ′k+1(c) ∈ B such that

δX ′k+1(c) = Fk+1(c, ·),

which means that {φ0(a), X ′k+1(c)}B = (δX ′k+1(c))(a) = Fk+1(c, a), thus, equation (3.9) would

be solved. Since Fk+1 depends linearly on c, we could construct X ′k+1 by mapping c into X ′k+1(c)

in a linear way as well, but such a linear map X ′k+1 need not be a derivation.

Now, suppose we can prove the vanishing of the cohomology by means of a homotopy, i.e.,

an C-linear map h• : C
•
CE,der(A,B)→ C•−1

CE,der(A,B) such that, for l ≥ 1

hl+1δl + δl−1hl = IClCE,der(A,B).

In this case, we have for Fk+1 the equation

Fk+1(c, ·) = δ0h1Fk+1(c, ·),

for every c ∈ A′. Hence, we could take

X ′k+1(c) := h1(Fk+1(c, ·)),

which clearly satisfies (3.2.2) and is C-linear in c, since both Fk+1 and h1 are C-linear. For the

Leibniz rule we get

X ′k+1(cc′) = h1(Fk+1(cc′, ·)) = h1(cFk+1(c′, ·) + c′Fk+1(c, ·)).

Thus, it depends on whether the homotopy h• is A′-linear or not.

So far, assuming the existence of such A′-linear homotopy, we have X ′ defined only on A′λ.
In order to guarantee that we can extend X ′ to a derivation of Bλ, we need a second horizontal

lift, this time along the embedding φ′0 : A′ → B. Let us summarize the previous discussion as

follows.

Lemma 3.2.16. Suppose Φ is a solution of (3.2). If H1
CE,der(A,B) = {0} by means of an

A′-linear homotopy, then there exists a formal derivation X ′ : A′λ → λBλ such that (3.7) holds.

If in addition there exists a horizontal lift to a derivation X ′ ∈ λDer(B)λ then we have a formal
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automorphism exp(X ′) of Bλ satisfying (3.7). Moreover, this establishes an isomorphism

exp(X ′)φ′0 : A′λ → C,

where C stands for the commutator of Φ(Aλ) inside (Bλ, σ).

Degree of freedom for X ′: Suppose we have a horizontal lift with respect to φ′0 : A′ → B,

i.e., a map h′ : Der(A′)→ Der(B); ξ 7→ ξh
′

such that φ′0(ξ(g)) = ξh
′
(φ′0(g)). In such a situation,

if exp(X ′) is a solution of (3.7), according to the previous lemma, for any ξ ∈ Der(A′λ), we have

that exp(X ′) exp(ξh
′
) is also a solution, indeed:

σ
(

exp(X ′) exp(ξh
′
)φ′0(c),Φ(a)

)
= σ

(
exp(X ′)φ′0 exp(ξ)(c),Φ(a)

)
= 0.

Now we observe that this is the only freedom we have in choosing X ′.

Lemma 3.2.17. Suppose we already have exp(X ′) according to Lemma 3.2.16. If exp(X ′′) also

satisfies

σ
(

exp(X ′′)φ′0(a′),Φ(a)
)

= 0,

for all a′ ∈ A′ and a ∈ A, then, we must have

exp(X ′′)φ′0 = exp(X ′) exp(ξh
′
)φ′0,

with ξh
′

being the horizontal lift of some ξ ∈ λDer(A′λ).

Proof. It follows from Lemma 3.2.16 that we must have

exp(X ′′)φ′0(a′) = exp(X ′)φ′0(b′),

for some b′ ∈ A′λ. We have actually, b′ = φ′−1
0 exp(−X ′) exp(X ′′)φ′0(a′), hence the map a′ 7→ b′

is an automorphism of A′λ starting at identity. Thus, b′ = exp(ξ)(a′) for some ξ ∈ λDer(A′λ)
and

exp(X ′′)φ′0(a′) = exp(X ′)φ′0 exp(ξ)(a′) = exp(X ′) exp(ξh
′
)φ′0(a′),

for all a′ ∈ A′. Therefore,

exp(X ′′)φ′0 = exp(X ′) exp(ξh
′
)φ′0,

with ξ ∈ λDer(A′λ).

Proposition 3.2.18. Suppose that we can deform φ0 : (A, {·, ·}A) → (B, {·, ·}B), with respect

to deformations π of {·, ·}A and σ of {·, ·}B, to a map Φ = exp(X)φ0 uniquely up to transfor-

mations of the form

exp(X) exp(Y ) exp(X) exp(V ),

where V is vertical and exp(Y ) is a morphism of σ. Suppose further that H1
CE,der(A,B) = {0}

by means of an A′-linear homotopy, and that there exists a horizontal lift along φ′0 : A′ → B.
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Then, the equivalence class [π], of a formal deformation π of π0, induces a formal Poisson

structure π′ in A′λ, which is unique up to equivalence.

Proof. For a fixed deformation π of π0, and a corresponding deformation Φ of φ0, the isomor-

phism

Φ′ := exp(X ′)φ′0 : A′λ → C,

of Lemma 3.2.16 defines a formal Poisson structure π′ on A′λ by the formula

π′(a, b) = Φ′−1(σ(Φ′a,Φ′b)).

Now we check that the class [π′] is independent of any choices we made in the process.

First consider the degree of freedom of Φ′, so let Φ′′ : A′λ → C be another isomorphism,

inducing a corresponding formal Poisson structure π′′. By Lemma 3.2.17 we must have Φ′′ =

exp(X ′) exp(ξh
′
)φ′0, for some ξ ∈ λDer(A′λ). But then, π′ and π′′ are equivalent via the map

exp(ξ) : (A′λ, π′′)→ (A′λ, π′).

Next consider the degree of freedom of Φ = exp(X)φ0. Let Φ = exp(X)φ0 be another

deformation of φ0. By the uniqueness assumption, we must have

Φ = exp(Y ) exp(X) exp(V )φ0 = exp(Y )Φ

for some Poisson morphism exp(Y ) of σ and some vertical derivation V (notice that V vertical

implies exp(V )φ0 = φ0). Let C stands for the corresponding commutator, and let Φ
′
: A′λ →

C be the corresponding isomorphism given by Lemma 3.2.16, inducing the formal Poisson

structure π′. Notice that exp(Y ) : C → C is an isomorphism, and therefore the map

Ψ := Φ
′−1

exp(Y )Φ′ : (A′λ, π′)→ (A′λ, π′)

is an isomorphism starting at identity, thus, an equivalence map. Hence, π′ and π′ are equiva-

lent.

Finally, let π̂ ∼ π, so π̂ = exp(Lξ)π for some ξ ∈ λDer(Bλ). Let Φ̂ be a corresponding

deformation of φ0, and let Φ̂′ : A′λ → Ĉ be the corresponding isomorphism of Lemma 3.2.16,

with associated formal Poisson structure π̂′. Then the map Φ := Φ̂ exp(ξ) must be, by the

uniqueness assumption, of the form Φ̂ = exp(Y )Φ, for some Poisson morphism exp(Y ) of σ.

Notice that C = Ĉ, and that exp(Y ) : C → C is an isomorphism. Thus, the map

Φ̂′−1 exp(Y )Φ′ : (A′λ, π′)→ (A′λ, π̂′)

is an equivalence. Hence, π′ and π̂′ are equivalent after all.
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CHAPTER 4

Classification of Morita equivalent formal Poisson structures

The main result in this chapter, which comes from Theorem 4.2.1, its corollary, and Theorem

4.2.3 is the following:

Classifying map: Given a manifold P , there exists a map

H2
dR(P )λ × FPois0(P )→ FPois0(P ); ([B], [π]) 7→ [πB],

such that two elements [π], [π′] ∈ FPois0(P ) are Morita equivalent if and only if [π′] = [ψ∗π
B]

for some B ∈ Ω2
cl(P )λ and ψ ∈ Diff(P ).

4.1 The zero Poisson structure

Here we apply the previous considerations to the symplectic realization

(T ∗P, ω0)
ρ−→ (P, π0 = 0),

where ρ is the cotangent bundle projection and ω0 := ωcan + ρ∗B0 with B0 ∈ Ω2
cl(P ).

Given a deformation of ω0 of the form ωB = ω0 + ρ∗B, with B = B0 + λB1 + · · · ∈ Ω2
cl(P )λ

and a deformation π of π0 = 0, we will see that the Poisson deformation procedure described

in the previous chapter yields a new formal Poisson structure πB on P , defined uniquely up

to equivalence by the classes [π] and [B], and which is Morita equivalent to π according to

Definition 2.4.2, this is the content of Theorem 4.2.1 and its corollary. Moreover, in Theorem

4.2.3 we show that any pair of Morita equivalent elements [π], [π′] ∈ FPois0(P ) must satisfy

[π′] = [ψ∗π
B], with ψ ∈ Diff(P ), B ∈ Ω2

cl(P )λ and πB obtained via the Poisson deformation of

ρ∗ with respect to π and ωB.
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We begin by studying the following problem: Let π =
∑∞

j=1 λ
jπj be a formal Poisson

structure deforming the trivial Poisson structure on P , and let B ∈ Ω2
cl(P )λ. Putting ω0 :=

ωcan + ρ∗B0, we want to find a deformation Φ of

φ0 := ρ∗ : (C∞(P ), 0)→ (C∞(T ∗P ), {·, ·}ω0)

with respect to π and σ = {·, ·}B, according to Definition 3.1.1, where {·, ·}B is the Poisson

bracket induced by ωB := ωcan + ρ∗B.

To conclude existence and uniqueness, according to Proposition 3.2.12 and Proposition

3.2.13 we need to compute the cohomology H•CE,der(P, T
∗P ) := H•CE,der(C

∞(P ),C∞(T ∗P )) (at

least at degree 1 and 2), and to find a horizontal lift

h : C•CE,der(P, T
∗P )→ C•CE,der(T

∗P, T ∗P ).

Before going to these computations, let us observe some properties of the symplectic realization

we are working with.

Lemma 4.1.1. Consider (T ∗P, ω0)
ρ−→ P , with ω0 := ωcan + ρ∗B0. Then we have

1. T ∗P
ρ−→ P is a lagrangian fibration, i.e., each fiber is a lagrangian submanifold of (T ∗P, ω0).

2. For any g ∈ C∞(P ), the hamiltonian Xρ∗g is tangent to the fibers.

3. For any g ∈ C∞(P ) and f ∈ C∞(T ∗P ), we have {ρ∗g, f}ω0 = {ρ∗g, f}can. In particular;

{ρ∗g, f}ω0 = 0, ∀g ∈ C∞(P )⇒ f = ρ∗h for some h ∈ C∞(P ).

Proof. Let x ∈ P be any point, and let (qi) be a coordinate chart centered at x. Let Lx := ρ−1(x)

be the fiber at x. Then, on the induced chart (qi, pi) Lx is characterized by (q1 = · · · = qn = 0)

and at any point z ∈ Lx we have TzLx = span(∂p1 , ..., ∂pn). Hence, we get

ω0|z(∂pi|z, ∂pj |z) = ωcan|z(∂pi|z, ∂pj |z) +B0|ρ(z)(ρ∗|z∂pi |z, ρ∗|z∂pj |z) = 0,

thus, Lx is isotropic and by dimension it is lagrangian.

For the second item let V ⊂ T (T ∗P ) be the vertical distribution, namely, at any z ∈ T ∗P ,

Vz = TzLρ(z). Given g ∈ C∞(P ), pick any section Y of V and consider

ω0(Xω0
ρ∗g, Y ) = ιXω0

ρ∗g
ω0(Y ) = d(ρ∗g)(Y ) = Y (ρ∗g) = 0.

Thus, Xω0
ρ∗g ∈ V ω0 , but V ω0 = V by item 1, hence Xω0

ρ∗g ∈ V , which means it is tangent to the

fibers.

For the last item, observe that Xω0
ρ∗g ∈ V implies ιXω0

ρ∗f
ρ∗B0 = 0, hence Xω0

ρ∗f = Xcan
ρ∗f , and we

get

{ρ∗g, f}ω0 = df(Xω0
ρ∗g) = df(Xcan

ρ∗g ) = ωcan(Xcan
f , Xcan

ρ∗g ) = {ρ∗g, f}can.
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In particular, 0 = {ρ∗g, f}ω0 = {ρ∗g, f}can for all g ∈ C∞(P ) implies f = ρ∗h for some

h ∈ C∞(P ).

Now observe that, in this geometric case, since the Poisson bracket on C∞(P ) is zero, and

by item 3 in the previous lemma, the differential is just

δD(f1, ..., fk+1) =
k+1∑
j=1

(−1)j+1{ρ∗(fj), D(f1, ...,
j
∧, ..., fk+1)}can,

for D ∈ Ck
CE,der(P, T

∗P ) and f1, ..., fk+1 ∈ C∞(P ).

Recall also the C∞(P )-module structure on C•CE,der(P, T
∗P ), given according to Remark

3.2.1 by

(fD)(f1, ..., fk) := ρ∗fD(f1, ..., fk),

for D ∈ Ck
CE,der(P, T

∗P ) and f1, ..., fk ∈ C∞(P ).

Lemma 4.1.2. The differential δ is C∞(P )-linear with respect to the C∞(P )-module structure

of the complex C•CE,der(P, T
∗P ).

Proof. We need to check that δ(gD) = gδD for any g ∈ C∞(P ) and D ∈ Ck
CE,der(P, T

∗P ). To

do so, consider g1, ..., gk+1 ∈ C∞(P ) and compute

δ(gD)(g1, ..., gk+1) =
k+1∑
j=1

(−1)j+1{ρ∗gj, (gD)(g1, ...,
j
∧, ..., gk+1)}can

=
k+1∑
j=1

(−1)j+1{ρ∗gj, ρ∗gD(g1, ...,
j
∧, ..., gk+1)}can

=
k+1∑
j=1

(−1)j+1{ρ∗gj, D(g1, ...,
j
∧, ..., gk+1)}canρ∗g

+
k+1∑
j=1

(−1)j+1 {ρ∗gj, ρ∗g}can︸ ︷︷ ︸
=0

D(g1, ...,
j
∧, ..., gk+1)

= g(δD)(g1, ..., gk+1),

hence, δ(gD) = gδD, as desired.

4.1.1 Horizontal lift

To understand the horizontal lifting on this geometric case, let us first understand the geometric

interpretation of the elements in the complex we are working with. It is well-known that

derivations of the algebra of smooth functions C∞(P ) of a smooth manifold P are in one to

one correspondence with smooth vector fields on P , i.e., with smooth sections of the bundle

TP → P . Similarly we can identify multiderivations of C∞(P ) with multivector fields, i.e., with
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sections of the bundle
∧k(TP ) → P . Now, consider an element D in Ck

CE,der(P, T
∗P ), which

we defined to be a multiderivation along ρ∗, i.e., a multilinear map D : C∞(P )×k → C∞(T ∗P )

satisfying

D(f1, ..., flgl, ..., fk) = ρ∗(fl)D(f1, ..., gl, ..., fk) + ρ∗(gl)D(f1, ..., fl, ..., fk),

for f1, ..., fk, gl ∈ C∞(P ) and l = 1, ..., k. Then we would like to have a geometric counterpart

of this. What we need to consider geometrically is the concept of multivector field along a map.

Consider a smooth map φ : N → P , then a vector field on P along φ is, by definition, a

smooth section of the pull-back bundle φ∗TP → N . Any such section σ can be identified with

a smooth map σ : N → TP such that τP ◦ σ = φ, where τP is the tangent bundle projection.

On the algebraic side, we consider linear maps D : C∞(P )→ C∞(N) which are derivations

along φ∗, i.e.,

D(gh) = φ∗(g)D(h) + φ∗(h)D(g),

whose collection we denote by Der(φ). Then we have the following result.

Proposition 4.1.3. Let φ : N → P be a smooth map. Then Γ(φ∗TP ) and Der(φ) are isomor-

phic.

The proof (which can be found in [62, Prop. 3.2.7]) is a simple adaptation of the proof

that derivations of C∞(P ) and vector fields on P are in one to one correspondence. Also, it

can be easily generalized for the context of multiderivations and multivector fields along the

given map, thus we have an isomorphism Γ(φ∗
∧k(TP )) ∼= Derk(φ), where Derk(φ) is the set of

multiderivations along φ∗.

In our case, N = T ∗P and the map is the cotangent bundle projection ρ. A cochain,

D ∈ Ck
CE,der(P, T

∗P ), thus corresponds to some section of the bundle ρ∗
∧k(TP )→ T ∗P , hence

in a chart (U, qi) on P , with induced chart (T ∗U, qi, pi) on T ∗P , we have the local expression

D(g1, ..., gk) =
∑
i1,...,ik

Di1,...,ik∂qi1g1 · · · ∂qikgk, (4.1)

where {i1, ..., ik} ⊂ {1, ..., n} and Di1,...,ik ∈ C∞(T ∗U) are totally skew-symmetric in the indices

i1, ..., ik.

Now, by a horizontal lifting we mean a map sending a multiderivation D : C∞(P )×k →
C∞(T ∗P ) along ρ∗ to a multiderivation Dhor : C∞(T ∗P )×k → C∞(T ∗P ). Here it is important

to notice that, for the geometric case we are working with, we are mainly interested on degree

1, thus, on derivations D : C∞(P ) → C∞(T ∗P ) along ρ∗. Since the geometric counterpart

of these are vector fields on P along T ∗P
ρ−→ P , it follows from the local expression (4.1)

that it suffices for us to lift vector fields from P to its cotangent bundle T ∗P . This can be

accomplished, in this geometric case, in at least two ways. One is by horizontal lifting of vector

fields from a manifold to its cotangent bundle, which is a particular case of a lifting procedure

on vector bundles. Since this procedure, though well established, involves the introduction of
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a connection on the base manifold, we choose to use here a more canonical lifting procedure

available in the cotangent case. The interested reader on the more general lifting procedure

may consult [73], [62] and the references therein.

Given a cotangent bundle T ∗P → P , the cotangent lifting is a canonical way to lift some

geometric objects from P to T ∗P . In the case of a vector field X on P , it yields a vector field X

on T ∗P (see Appendix A.3). If (U, qi) is a chart on P and X = X i∂qi on this chart, then on the

induced cotangent chart (T ∗U, qi, pi) we have X = ρ∗(X i)∂qi − pkρ∗(∂qiXk)∂pi (see Proposition

A.3.2).

Now, for a derivation D : C∞(P )→ C∞(T ∗P ), with local expression

D = Di∂qi ,

we define its horizontal lift to be

Dhor = Di∂qi ,

where ∂qi is the cotangent lift of the vector field ∂qi . For a fixed 1 ≤ i0 ≤ n we have ∂qi0 = ∂qi0 ,

hence, for Dhor = Di∂qi we have Dhor = Di∂qi .

Then we check, for any f ∈ C∞(P ):

(φ∗0D
hor)(f) := Dhor(φ0(f)) = Dhor(ρ∗(f)) = Di∂qi(ρ

∗(f)) = D(f),

and

(φ0(f)D)hor = (ρ∗(f)Di∂qi)
hor = ((ρ∗(f)Di)∂qi)

hor = (ρ∗(f)Di)∂qi = ρ∗(f)Di∂qi = φ0(f)Dhor.

Hence, this hor map satisfies the conditions asked for in Definition 3.2.6.

4.1.2 The cohomology

To compute H0
CE,der(P, T

∗P ) we consider the beginning of the complex:

0
δ0−→ C0

CE,der(P, T
∗P ) ∼= C∞(T ∗P )

δ1−→ C1
CE,der(P, T

∗P )→ · · ·,

hence,

H0
CE,der(P, T

∗P ) = ker(δ1) := {f ∈ C∞(T ∗P ); δ1f = 0}.

Now, δ1f = 0 if and only if δ1f(g) = 0 for any g ∈ C∞(P ), i.e.:

0 = {ρ∗g, f}can, ∀g ∈ C∞(P )⇔ f = ρ∗h; h ∈ C∞(P ).

Hence, H0
CE,der(C

∞(P ),C∞(T ∗P )) ∼= ρ∗(C∞(P )).
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For k ≥ 1 we will break the problem into three steps. First, we localize the problem by con-

sidering C•CE,der(U, T
∗U), where U ⊂ P is a chart. In the second step, we construct a complex

isomorphism between the local model C•CE,der(U, T
∗U) and the vertical de Rham complex of

T ∗U , denoted by Ω•V (T ∗U) (see Appendix A.2). Now, the complex Ω•V (T ∗U) admits a C∞(U)-

linear homotopy (see Proposition A.2.3), and then, by means of the previous isomorphism we

get a C∞(U)-linear homotopy in the complex C•CE,der(U, T
∗U). Finally, we use Lemma 4.1.2

to construct a global C∞(P )-linear homotopy for C•CE,der(P, T
∗P ) by means of a partition of

unity on P .

First of all, let us fix some notations: given a chart (U, qi) ⊂ P , with induced chart

(T ∗U, qi, pi) ⊂ T ∗P , let Ik = (i1 < ··· < ik) ⊂ {1, ..., n} denote an strictly increasing multi-index

of length k. Then, we put dqIk := dqi1 ∧ · · · ∧ dqik , and likewise for dpIk ,
∂

∂qIk
and ∂

∂pIk
.

Notice that D ∈ Ck
CE,der(P, T

∗P ) induces by restriction a cochain DU ∈ Ck
CE,der(U, T

∗U).

The meaning of such a restriction is clear by the identification of D as a section of the bundle

ρ∗
∧k(TP )→ T ∗P . Hence, DU is uniquely written as

DU =
∑
Ik

DIk
U

∂

∂qIk
,

for some DIk
U ∈ C∞(T ∗U), totally skew-symmetric in the indices {i1, ..., ik}. Notice that we

have D(f1, ..., fk)|T ∗U = DU(f1|U , ..., fk|U).

Let δU be the differential in the complex C•CE,der(U, T
∗U), given, for F ∈ Ck

CE,der(U, T
∗U)

and g1, ..., gk+1 ∈ C∞(T ∗U), by

δUF (g1, ..., gk+1) =
k+1∑
l=1

(−1)l+1{ρ∗(gl), F (g1, ...,
l
∧, ..., gk+1)}can.

Notice then that (δD)U = δUDU .

Now we work with the local model, thus let U ⊂ Rn be an open set with global coordinates

(qi). For each k ≥ 1 we consider the following map

Ψ: Ck
CE,der(U, T

∗U)→ Ωk
V (T ∗U); D 7→ Ψ(D) :=

∑
Ik

DIkdpIk ,

where DIk are the coefficients of D in the global frame. Recall that both complexes, Ω•V (T ∗U)

and C•CE,der(U, T
∗U) are C∞(P )-modules (see Remark A.2.1 and Remark 3.2.1). The map Ψ

is a C∞(P )-module isomorphism. Indeed, it is clearly a bijection, and for D =
∑
DIk ∂

∂qIk
and

f ∈ C∞(U) we get

Ψ(fD) = Ψ

(
f
∑

DIk
∂

∂qIk

)
= Ψ

(∑
ρ∗fDIk

∂

∂qIk

)
=
∑

ρ∗fDIkdpIk = f
∑

DIkdpIk = fΨ(D).

Now we prove that Ψ is a complex map. (See Appendix A.2 for the complex structure in

Ω•V (T ∗U).)
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Lemma 4.1.4. In the above setting, we have dver ◦Ψ = Ψ ◦ δU .

Proof. Given D ∈ Ck
CE,der(U, T

∗U) we have uniquely D =
∑

Ik
DIk ∂

∂qIk
. Then we get

δUD = D̃ =
∑
Ik+1

D̃Ik+1
∂

∂qIk+1
,

where

D̃Ik+1 =
k+1∑
l=1

(−1)l+1∂D
i1...

l
∧...ik+1

∂pil
.

Hence, we get

Ψ(δUD) =
∑
Ik+1

k+1∑
l=1

(−1)l+1∂D
i1...

l
∧...ik+1

∂pil

 dpIk+1
. (4.2)

Now we compute dver(Ψ(D)) (see Example A.2.2).

dver(Ψ(D)) =

(
d

(∑
Ik

DIkdpIk

))v

=
∑
Ik

∑
r/∈Ik

DIk

∂pr
dpr

 dpIk .

Note that for each multi-index Ik+1 we have (k + 1) multi-indices Ik:

Ik+1 = (i1 < ... < ik+1) I lk = (i1 < ...
l
∧ ... < ik+1); 1 ≤ l ≤ k + 1.

For each of these (k+1) multi-indices I lk we have the expression

∑
r/∈Ijk

∂DIjk

∂pr
dpr. (4.3)

To get the coefficient of dver(Ψ(D)) at a fixed dpIk+1
, we look at the (k + 1) multi-indices I lk

with coefficients given by (4.3) and choose the ones to complete the multi-index Ik+1, thus we

will get an expression like
k+1∑
l=1

∂Di1...
l
∧...ik+1

∂pl
dpj ∧ dpIk ,

up to a sign depending on l. Then we observe that to get dpIk+1
we have to move dpl across

dpIk = dpi1 ∧ · · · ∧ dpik up to the lth position, which gives us the sign (−1)l+1. Thus, the

coefficient at dpIk+1
is given by

k+1∑
l=1

(−1)l+1∂D
i1...

l
∧...ik+1

∂pl
,

which is exactly the coefficient of dpIk+1
in the R.H.S. of (4.2). Thus, Ψ is a complex map.
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Now, let φU : Ω•V (T ∗U)→ Ω•−1
V (T ∗U) be a C∞(U)-linear homotopy, i.e., dverφU+φUdver = I

(see Proposition A.2.3), then ϕU := Ψ−1φUΨ is a C∞(U)-linear homotopy in C•CE,der(U, T
∗U).

Indeed, since ϕU is a composition of C∞(U)-linear maps, it is clearly C∞(U)-linear as well. For

the homotopy property, we compute

δUϕU + ϕUδU = δUΨ−1φUΨ + Ψ−1φUΨδU

= Ψ−1dverφUΨ + Ψ−1φUdverΨ

= Ψ−1(dverφU + φUdver)Ψ = Ψ−1Ψ = I.

Now we can prove the following result.

Proposition 4.1.5. For k ≥ 1, we have Hk
CE,der(P, T

∗P ) = {0}, by means of a C∞(P )-linear

homotopy.

Proof. We will construct a C∞(P )-linear homotopy ϕ on the complex C•CE,der(P, T
∗P ). It will

follow then that the cohomology is trivial.

Let (Uα, q
i
α) be an atlas on P , and let (ηα) be a locally finite partition of unity subordinated

to the covering (Uα), i.e., ηα ∈ C∞(P ), supp(ηα) ⊂ Uα, and
∑

α ηα = 1.

For each α we have the isomorphisms Ψα given by Lemma 4.1.4, and thus we get the

C∞(Uα)-linear homotopies ϕα on C•CE,der(Uα, T
∗Uα). Notice then that we can multiply ϕα by

functions on Uα as follows: given g ∈ C∞(Uα) we define, for any D ∈ Ck
CE,der(Uα, T

∗Uα):

(gϕα)(D) = g(ϕα(D)).

We define global maps ϕ̃α : C•CE,der(P, T
∗P ) → C•−1

CE,der(P, T
∗P ) in the following way: for

D ∈ Ck
CE,der(P, T

∗P ) we put

ϕ̃α(D)|Uα := (ηα|Uα)ϕα(DUα),

and

ϕ̃α(D)|P\supp(ηα) ≡ 0.

Nitice that, for each α, these are C∞(P )-linear maps. Indeed: given f ∈ C∞(P ) and D ∈
Ck
CE,der(P, T

∗P ) we have

ϕ̃α(fD)|Uα = ηα|Uαϕα(fDUα) = f |Uαηα|Uαϕα(DUα) = f |Uαϕ̃α(D)|Uα ,

while ϕ̃α(fD)|P\supp(ηα) = 0 = f |P\supp(ηα)ϕ̃α(D)|P\supp(ηα).

We claim that δϕ̃α+ϕ̃αδ = ηαI, where I is the identity operator in C•CE,der(P, T
∗P ). Indeed,

let D ∈ Ck
CE,der(P, T

∗P ) and g1, ..., gk ∈ C∞(P ). Then, first observe that:

(ηαI)(D)|P\supp(ηα) = 0 = (δϕ̃α + ϕ̃αδ)(D)|P\supp(ηα).
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On the other hand:

(ηαI)(D)|Uα := ηα|UαDUα

and

(δϕ̃α + ϕ̃αδ)(D)|Uα = δ(ϕ̃α(D))|Uα + ϕ̃α(δD)|Uα
= δα(ϕ̃α(D)|Uα) + ηα|Uαϕα(δD|Uα)

= δα(ηα|Uαϕα(DUα) + ηα|Uαϕα(δαDUα)

= ηα|Uαδα(ϕα(DUα)) + ηα|Uαϕα(δαDUα)

= ηα|Uα(δαϕα + ϕαδα)DUα

= ηα|UαDUα .

Thus δϕ̃α + ϕ̃αδ = ηαI, as claimed.

Now we define ϕ :=
∑

α ϕ̃α, which is well defined due to the finiteness property of the

partition of unity. Finally, we have, for f ∈ C∞(P ) and D ∈ Ck
CE,der(P, T

∗P ):

ϕ(fD) =

(∑
α

ϕ̃α

)
(fD) =

∑
α

ϕ̃α(fD) =
∑
α

fϕ̃α(D) = f
∑
α

ϕ̃α(D) = fϕ(D),

and

δϕ+ ϕδ = δ

(∑
α

ϕ̃α

)
+

(∑
α

ϕ̃α

)
δ =

∑
α

(δϕ̃α + ϕ̃αδ) =
∑
α

ηαI =

(∑
α

ηα

)
I = I.

Hence, the map ϕ is a C∞(P )-linear homotopy.

4.2 The classifying map

We can now state the following result.

Theorem 4.2.1. Given B ∈ Ω2
cl(P )λ and π on P deforming π0 = 0, put ωB := ωcan + ρ∗B.

Then there exist X ∈ λX (T ∗P )λ such that we have a Poisson morphism

Φ := exp(X)ρ∗ : (C∞(P )λ, π)→ (C∞(T ∗P )λ, ωB),

unique up to transformations of the form exp(X)  exp(XH) exp(X) exp(V ), with XH =

{H, ·}ωB and V ◦ ρ∗ = 0. Moreover, if C is the Poisson commutator of Φ(C∞(P )λ) inside

(C∞(T ∗P )λ, {·, ·}ωB), there exists Y ∈ X (T ∗P )λ such that

Ψ = exp(Y )ρ∗ : C∞(P )λ → C

is an isomorphism, unique up to formal diffeomorphisms of P .
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Proof. The existence and uniqueness of Φ follows from Propositions 3.2.12 and 3.2.13, in view

of the triviality of the cohomology Hk
CE,der(P, T

∗P ), for k ≥ 1, and the existence of horizontal

lift as discussed previously. Notice now that from the last item in Lemma 4.1.1 it follows that

C∞(P )′ := {f ∈ C∞(T ∗P ), {f, ρ∗g}ω0 = 0 ∀g ∈ C∞(P )} = ρ∗(C∞(P )),

hence, the existence and uniqueness of Ψ follows from Lemma 3.2.16 and Lemma 3.2.17, in

view of the existence of a C∞(P )-linear homotopy ϕ given by Proposition 4.1.5.

Corollary 4.2.2. There is a map (B, π) 7→ [πB], such that πB and π are Morita equivalent,

according to Definition 2.4.2.

Proof. The existence of such a map follows from the previous theorem and Proposition 3.2.18.

Then observe that πB and π satisfies the conditions in Definition 2.4.2, hence, they are Morita

equivalent.

Next we show that the map (B, π) 7→ [πB], given by the corollary above descends to the

equivalence classes and characterizes Morita equivalent formal Poisson structures. Precisely,

we have:

Theorem 4.2.3. The map (B, π) 7→ [πB] given by Corollary 4.2.2, for B ∈ Ω2
cl(P )λ and π

formal Poisson structure on P deforming π0 = 0, descends to a well defined map

H2
dR(P )λ × FPois0(P )→ FPois0(P ); ([B], [π]) 7→ [πB].

Two elements [π], [π′] ∈ FPois0(P ) are Morita equivalent, according to Definition 2.4.2, if and

only if, [π′] = [ϕ∗π
B] for some [B] ∈ H2

dR(P )λ and ϕ ∈ Diff(P ).

Proof. The fact that [πB] is independent of the representative of [π] was already proved in

Proposition 3.2.18.

Now let B′ = B+ dA, for some A ∈ Ω(P )λ. Then ωB and ωB′ are cohomologous, thus from

Proposition 2.2.10 there exists a Poisson morphism

exp(Z) : (C∞(T ∗P )λ, ωB′)→ (C∞(T ∗P )λ, ωB).

Consider the formal dual pair

(C∞(P )λ, π
B′)

Ψ′−→ (C∞(T ∗P )λ, ωB′)
Φ′←− (C∞(P )λ, π),

given by the pair (B′, π) according to Theorem 4.2.1. Then we get the formal dual pair

(C∞(P ), πB
′
)

Ψ̃−→ (C∞(T ∗P )λ, ωB)
Φ̃←− (C∞(P )λ, π),

where Φ̃ := exp(Z)Φ′ and Ψ̃ := exp(Z)Ψ′. Thus, by Corollary 4.2.2 we have that πB and πB
′

are equivalent.
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Now consider [π′] = [ψ∗π
B]. Then, from the dual pair

(C∞(P )λ, π
B)

Ψ−→ (C∞(T ∗P )λ, ωB)
Φ←− (C∞(P )λ, π)

given by the pair (B, π) according to Theorem 4.2.1, we get the following formal dual pair

(C∞(P )λ, π
′)

Ψ̂−→ (C∞(T ∗P )λ, ωB)
Φ←− (C∞(P )λ, π),

with classical limit (P, 0)
ϕρ←− (T ∗P, ω0)

ρ−→ (P, 0), where ω0 = ωcan + ρ∗B0, which is an equiva-

lence symplectic bimodule. Hence [π′] is Morita equivalent to [π].

For the converse, suppose [π] and [π′] are Morita equivalent by means of a formal dual pair

(C∞(P )λ, π
′)

Ψ−→ (C∞(S)λ, ω)
Φ←− (C∞(P )λ, π),

with classical limit (P, 0)
J1←− (S, ω0)

J2−→ (P, 0). Then, it follows from Theorem 2.1.16 that

S = T ∗P , ω0 = ωcan + ρ∗B0, for some B0 ∈ Ω2
cl(P ), J2 = ρ and J1 = ϕρ, for some ϕ ∈ Diff(P ).

Then we observe that, if s : P → T ∗P is the zero section, each ωi in the formal power series ω

is cohomologous to ρ∗Bi, with Bi := s∗ωi ∈ Ω2
cl(P ). Hence, ω is cohomologous to one of the

form ωB = ωcan + ρ∗B, with B ∈ Ω2
cl(P )λ. It follows that there exists a Poisson isomorphism

exp(Z) : (C∞(T ∗P )λ, ω)→ (C∞(T ∗P )λ, ωB).

Hence, if

(C∞(P )λ, π
B)

Ψ̂−→ (C∞(T ∗P )λ, ωB)
Φ̂←− (C∞(P )λ, π)

is the formal dual pair given by the pair (B, π), then

Ψ−1 exp(−Z)Ψ̂ϕ∗ : (C∞(P )λ, ϕ∗π
B)→ (C∞(P )λ, π

′)

is an equivalence. Hence [π′] = [ϕ∗π
B], as desired.

In the next chapter we will find the relation between this classifying map and the B-fields

action, arriving to the last ingredient to conclude the main result stated in the introduction.
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CHAPTER 5

Morita equivalence of formal Poisson structures and B-fields

In this chapter we establish the relation between Morita equivalence of formal Poisson struc-

tures and B-fields action. The main result is:

Classification of Morita equivalence formal Poisson structures via B-fields: Given a

manifold P , two elements [π], [π′] ∈ FPois0(P ) are Morita equivalent if and only if [τBπ
′] = [ψ∗π]

for some B ∈ Ω2
cl(P )λ and ψ ∈ Diff(P ), where τ is the B-field action map

5.1 Morita equivalence vs. B-field transformation

The main result in this section is Theorem 5.1.19, which essentially says that the map given

by Theorem 4.2.3 is actually an action map, whose orbits coincide with the orbits of B-field

actions. It follows that Definition 2.4.2 defines an equivalence relation in FPois0(P ), and

relying on Theorem 2.3.1 we conclude that Morita equivalent elements in FPois0(P ) related

by an integral B-field quantize to Morita equivalent star-produts on P under Kontsevich’s

deformation quantization.

5.1.1 Formal Courant algebroids

In order to prove Theorem 5.1.19 we need to introduce some technical tools. Essentially, we

will extend the notions of Courant algebroids, along with its symmetries and derivations, as

presented in Appendix B, to the realm of formal structures.
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Courant algebroids on Γ(TM)λ

Given a smooth manifold M , let TM := TM ⊕T ∗M . A Courant algebroid structure on TM is

given by some structural maps defined on the C∞(M)-module Γ(TM) (see Appendix B.2). Here

we want to extend those structural maps into maps defined on the C∞(M)λ-module Γ(TM)λ,

in such a way that they are linked together by the same axioms defining a Courant algebroid

structure on Γ(TM), and extend into this formal context some results about symmetries and

derivations of Courant algebroids. First of all, notice that there is a natural isomorphism

Γ(TM)λ ∼= X (M)λ ⊕ Ω(M)λ,

thus, any element σ ∈ Γ(TM)λ can be uniquely written as σ = X ⊕ α, with X ∈ X (M)λ and

α ∈ Ω(M)λ.

We then start by extending to the formal realm some elements of the Cartan calculus.

Definition 5.1.1. (Lie derivative, contraction, and differential) Given X ∈ X (M)λ,

we define the Lie derivative along X,

LX : X (M)λ ⊕ Ω(M)λ → X (M)λ ⊕ Ω(M)λ,

by

LX(Y ⊕ α) :=
∞∑
j=0

λj
∑
k+l=j

LXk(Yl ⊕ αl),

the contraction by X,

ιX : Ω•(M)λ → Ω•−1(M)λ,

by

ιXη :=
∞∑
j=0

λj
∑
k+l=j

ιXkηl,

and the differential,

d : Ω•(M)λ → Ω•+1(M)λ,

by

dη :=
∞∑
j=0

λjdηj.

Everywhere in the R.H.S. we use the usual Lie derivative, contraction and differential.

Notice that in the definition above of Lie derivative along formal vector fields, there is

already included the definition of Lie bracket of formal vector fields. With these definitions, we

recover usual properties of the Cartan calculus, like the following ones:

1. LX = ιXd+ dιX . “Cartan’s magic formula”,

2. L[X,Y ] = [LX ,LY ],
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3. ι[X,Y ] = [LX , ιY ],

with the brackets on the R.H.S. being just commutators. These can be checked by simply

expanding by λ-linearity both sides of the equalities and comparing terms at each order.

In this same spirit, we now extend the structural maps of the standard Courant algebroid

on Γ(TM) to maps defined on Γ(TM)λ. Thus, for σ =
∑∞

j=0 λ
jσj and η =

∑∞
j=0 λ

jηj, elements

of Γ(TM)λ, we consider the pairing,

〈σ, η〉 :=
∞∑
j=0

λj
∑
k+l=j

〈σk, ηl〉,

the Courant bracket,

[σ, η] :=
∞∑
j=0

λj
∑
k+l=j

[σk, ηl],

the anchor map,

ρ : Γ(E)λ → X (M)λ; σ 7→
∞∑
j=0

λjρ(σj),

and the differential,

d : C∞(M)λ → Ω(M)λ; f 7→
∞∑
j=0

λjdfj,

using in the R.H.S. the structural maps defined on sections of TM (see Appendix B.2).

Writing σ = X ⊕α and η = Y ⊕ β via the isomorphism Γ(TM)λ ∼= X (M)λ⊕Ω(M)λ, these

definitions recover the formulas for the pairing, the bracket, the anchor and the differential

given for sections of TM in Example B.2.1; for instance, we have:

〈σ, η〉 = 〈X ⊕ α, Y ⊕ β〉 = ιXβ + ιY α.

In particular, these extended structural maps also satisfy the Courant algebroid axioms

listed in Appendix B.2. We will refer to Γ(TM)λ with these structural maps as a formal

Courant algebroid on Γ(TM)λ, or simply as the Courant algebroid Γ(TM)λ if there is no risk

of confusion.

Symmetries and derivations of Γ(TM)λ

Definition 5.1.2. (Formal Courant Symmetries) Symmetries of the formal Courant al-

gebroid on Γ(TM)λ are pairs (F, φ), where φ is a formal diffeomorphism of M , i.e., it is a map

of the form

φ = exp(X) : C∞(M)λ → C∞(M)λ,

for some X ∈ λX (M)λ, and

F : Γ(TM)λ → Γ(TM)λ,
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is a Cλ-linear map, satisfying, for any σ, η ∈ Γ(TM)λ, and g ∈ C∞(M)λ:

1. F (gσ) = φ−1(g)F (σ),

2. φ〈F (σ), F (η)〉 = 〈σ, η〉,

3. [F (σ), F (η)] = F ([σ, η]).

Example 5.1.3. (Symmetries induced by formal diffeomorphisms) Let φ = exp(X)

be a given formal diffeomorphism. Define F := exp(−LX). Then (F, φ) is a formal Courant

symmetry. The proof of this assertion is a kind of straightforward but tedious computation to

check the three defining properties above. Let’s give some indication for the first one. First

note that, by linearity, it suffices to check for g = g0 ∈ C∞(M) and σ = σ0 ∈ Γ(TM). Then

observe that X = λX1 +λ2X2 + · · · = λX̂, with X̂ = X1 +λX2 + · · ·, thus we have exp(−X) =

exp(−λX̂) and exp(−LX) = exp(−λLX̂). Then expand both exp(−λX̂)(g0) exp(−λLX̂)(σ0)

and exp(−λLX̂)(g0σ0) in terms of λ and check the equality order by order using induction. The

other properties can be proved in the same way. Notice that the inverse of this symmetry is just

the pair (exp(LX), exp(−X)).

Example 5.1.4. (Symmetries induced by B-fields) Consider now an element B ∈ Ω2
cl(M)λ.

It induces on Γ(TM)λ the formal version of a B-field transformation, via

eB(X ⊕ α) := X ⊕ α + ιXB.

Then we have that the pair (eB, I) is a formal symmetry of Γ(TM)λ. This is proved in the

same way as in the geometric case, by using the Cartan calculus properties. For example:

[eB(X ⊕ α), eB(X ⊕ α)] = [X ⊕ α + ιXB, Y ⊕ β + ιYB]

= [X, Y ]⊕ LX(β + ιYB)− ιY d(α + ιXB)

= [X, Y ]⊕ LXβ − ιY dα + LXιYB − ιYLXB
= eB[X ⊕ α, Y ⊕ β],

where; in the third equality we use the Cartan’s magic formula and the fact that dB = 0; for

the fourth equality, we use ι[X,Y ] = [LX , ιY ] and the definition of eB.

The set Difff (M) of formal diffeomorphisms on M has a group structure given by

exp(X) exp(Y ) = exp(BCH(X, Y )),

where

BCH(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
([X, [X, Y ]] + [Y, [Y,X]]) + · · ·,

is the Baker-Campbell-Hausdorff formula (see [41, Chap. V]).
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This group acts on the set Ω•(M)λ of formal differential forms on M , via

exp(X) 7→ exp(LX),

moreover, since dLX = LXd, the action restricts to closed formal differential forms.

In the following lemma, we establish some technical result we are going to need.

Lemma 5.1.5. For any X, Y ∈ X (M)λ, B ∈ Ω2(M)λ and n ≥ 1 we have

1. ιLnYX = LnY ιX −
(
n
1

)
Ln−1
Y ιXLY + · · ·(−1)k

(
n
k

)
Ln−kY ιXLkY + · · ·(−1)nιXLnY .

2. exp(λLY )ιX = ιexp(λLY )X exp(λLY ).

3. eB exp(−λLY ) = exp(−λLY )eexp(λLY )B,

where exp(λLY )B is the action of Difff (M) on Ω2
cl(M)λ, mentioned above.

Proof. 1. For n = 1 this is just the property ιLYX = [LY , ιX ]. We now proceed by induction

on n, thus:

ιLnYX = ιLY (Ln−1
Y X) = LY ιLn−1

Y X − ιLn−1
Y XLY

= LY

(
n−1∑
k=0

(−1)k
(
n− 1

k

)
Ln−1−k
Y ιXLkY

)
−

(
n−1∑
k=0

(−1)k
(
n− 1

k

)
Ln−1−k
Y ιXLkY

)
LY

=
n∑
k=0

(−1)k
(
n

k

)
Ln−kY ιXLkY .

2. First notice that the proposed identity is equivalent to

exp(λLY )ιX exp(−λLY ) = ιexp(λLY )X . (5.1)

Thus we expand both sides of the above expression as follows:

ιexp(λLY )X = ιX + λιLYX + · · ·+ λk

k!
ιLkYX + · · ·, (5.2)

and

ιX exp(−λLY ) = ιX − λιXLY + · · ·+ (−1)k
λk

k!
ιXLkY + · · ·,

thus

exp(λLY )ιX exp(−λLY ) = ιX + λ(LY ιX − ιXLY ) + · · ·+ λk
(
LkY
k!
ιX −

Lk−1
Y

(k − 1)!
ιXLY

+
Lk−2
Y

(k − 2)!
ιX
L2
Y

2!
− · · ·+ (−1)kιX

LkY
k!

)
+ · · ·.

(5.3)

Then, expanding the term in λk in (5.2) using the formula in item 2, we see that it is

exactly the term in λk in (5.3). Thus, equality (5.1) is proved, and the result follows.
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3. Evaluating both sides of the proposed equality in an arbitrary element X ⊕α ∈ Γ(TM)λ,

we have:

eB exp(−λLY )(X ⊕ α) = exp(−λLY )X ⊕ exp(−λLY )α + ιexp(−λLY )XB,

and

exp(−λLY )eexp(λLY )B(X⊕α) = exp(−λLY )X⊕ exp(−LY )α+ exp(−λLY )ιX exp(λLY )B.

Thus, it suffices to show that for any X ∈ X (M)λ:

ιexp(−λLY )XB = exp(−λLY )ιX exp(λLY )B, ∀B ∈ Ω2(M)λ,

which is equivalent to:

ιexp(−λLY )X = exp(−λLY )ιX exp(λLY ).

Hence, the result follows from item 2, by replacing Y with −Y.

The same argument applied by Gualtieri in [36] to prove Theorem B.2.4 can be applied

here, in the formal context, to obtain the following result.

Proposition 5.1.6. Let (F, φ) be a formal symmetry of Γ(TM), with φ = exp(X). Then

F = exp(−LX)eB,

for some B ∈ Ω2
cl(M)λ. Thus we have Aut(Γ(TM)λ) ' Difff (M) n Ω2

cl(M)λ, where the semi-

direct product structure is given by the action exp(X) 7→ exp(LX).

Proof. Consider G := exp(LX)F . Then we get that (G, I) is a formal symmetry. Let σ, η ∈
Γ(TM)λ and g ∈ C∞(M)λ be arbitrary, then by developing G[σ, gη] = [G(σ), G(gη)] using the

properties of the bracket and the C∞(M)λ-linearity of G, we get that ρ = ρG. Then writing

G =

(
G1 G2

G3 G4

)
,

according to the splitting Γ(TM)λ = X (M)λ ⊕ Ω(M)λ, we conclude that G2 ≡ 0 and G1 ≡ I.

Using orthogonality, we conclude that 2ιXG3(X) + 2ιXG4(α) = 2ιXα, for any X ⊕ α. Thus,

taking α = 0, we get that B := G3 : X (M)λ → Ω(M)λ is a C∞(M)λ-linear skew-symmetric

map, hence it can be seen as an element in Ω2(M)λ. Finally, we have 2ιXG4(α) = 2ιXα for

any X ⊕ α, thus G4 = I. Therefore, G = eB, which being a symmetry, forces B to be actually

closed. Then we conclude F = exp(−LX)eB, with B ∈ Ω2
cl(M)λ, as claimed.
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The map Ψ: Difff (M)×Ω2
cl(M)λ → Aut(Γ(TM)λ); (exp(X), B) 7→ exp(−LX)eB is a bijec-

tion, and the semi-direct product indicated in the statement is, due to item 3 in the previous

lemma, precisely the group product induced by Ψ. Indeed,

(exp(X), eB)(exp(Y ), eC) := Ψ−1(exp(−LX)eB exp(−LY )eC)

= Ψ−1(exp(−LX) exp(−LY )eexp(LY )BeC)

= (exp(BCH(X, Y )), exp(LY )B + C).

Definition 5.1.7. (Formal Courant Derivations) Derivations of the formal Courant al-

gebroid Γ(TM)λ are Cλ-linear maps

D : Γ(TM)λ → Γ(TM)λ,

for which there exists a formal vector field X ∈ X (M)λ such that:

1. D(gσ) = gD(σ) +X(g)σ.

2. D[σ, η] = [D(σ), η] + [σ,D(η)].

3. X〈σ, η〉 = 〈D(σ), η〉+ 〈σ,D(η)〉.

The formal vector field X is usually called the symbol of D.

Any element e ∈ Γ(TM)λ yields a derivation via (D,X) = ([e, ·], ρ(e)), as can be verified

directly from the properties of the bracket and the anchor.

Let Ft = exp(−tLX)eBt be a one-parameter family of formal Courant symmetries, with

F0 = I. We may write it as

Ft =

(
exp(−tLX) 0

exp(−tLX)Bt exp(−tLX)

)
,

according to the splitting Γ(TM)λ ∼= X (M)λ ⊕ Ω(M)λ. Then we compute its derivative at

t = 0, noticing that − d
dt

∣∣
t=0

exp(−tLX) = LX and B0 = 0, to get

− d

dt

∣∣∣∣
t=0

Ft =

(
LX 0

−b LX

)
,

where b := d
dt

∣∣
t=0
Bt ∈ Ω2

cl(M)λ. Thus, we can identify − d
dt

∣∣
t=0
Ft with a pair (X, b) ∈ X (M)λ⊕

Ω2
cl(M)λ acting on Γ(TM)λ by

(X, b)Y ⊕ β = [X, Y ]⊕ LXβ − ιY b. (5.4)

It can be seen, by using the Cartan calculus properties, that this yields a derivation of Γ(TM)λ

with symbol X.
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If e = X ⊕ α ∈ Γ(TM)λ, we get a derivation as the pair (X, dα), and

(X, dα)Y ⊕ β = [X, Y ]⊕ LXβ − ιY dα = [X ⊕ α, Y ⊕ β].

Again in the same spirit of [36], we can now prove an analogous of Theorem B.2.6 in the

formal setting.

Proposition 5.1.8. Let (X, b) ∈ X (M)λ ⊕ Ω2
cl(M)λ, with X = λX1 + · · ·, be a derivation of

Γ(TM)λ acting via (5.4). Then, it induces a one-parameter subgroup of symmetries of Γ(TM)λ,

Ft = exp(−tLX)eBt ,

where

Bt =

∫ t

0

exp(sLX)bds.

Proof. To see that Ft is a symmetry of Γ(TM)λ just notice that

dBt =

∫ t

0

exp(sLX)dbds = 0,

since b is closed. To see that it yields a one-parameter subgroup of symmetries, we compute

Bt+s =

∫ t+s

0

exp(εLX)bdε =

∫ s

0

exp(εLX)bdε+

∫ s+t

s

exp(εLX)bdε

= Bs +

∫ t

0

exp((s+ u)LX)bdu = Bs + exp(sLX)

∫ t

0

exp(uLX)bdu

= Bs + exp(sLX)Bt.

Hence, due to item 3 in Lemma 5.1.5, we get

FtFs = exp(−tLX)eBt exp(−sLX)eBs = exp(−tLX) exp(−sLX)eexp(sLX)Bt+Bs

= exp(−(t+ s)LX)eBt+s = Ft+s,

and we are done.

We call a C∞(M)λ-submodule L ⊂ Γ(TM)λ involutive if [L,L] ⊂ L, and lagrangian if

L⊥ = L.

Remark 5.1.9. The same argument as in Remark B.1.2 gives us here the same result, namely,

the involutivity of a lagrangian L is equivalent to the vanishing of

Υ(a, b, c) := 〈[a, b], c〉,

for any a, b, c ∈ L.
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Example 5.1.10. Given a formal bivector field π on M , we may consider Lπ := graph(π]) ⊂
Γ(TM)λ, which is a C∞(M)λ-submodule. Then, the same computation as in Lemma (B.1.3)

gives us here that Lπ is lagrangian, and it is involutive if and only if π is a formal Poisson

tensor.

Remark 5.1.11. If L is an involutive submodule of Γ(TM)λ and e = X ⊕ α ∈ L, it follows

that the one-parameter group of symmetries Ft, generated by (X, dα) according to Proposition

5.1.8, preserves L.

5.1.2 Classification via B-fields

For the computations in this section we will consider point-wise evaluation as well as restriction

to open sets of formal objects, in the following sense: let M be a smooth manifold and consider,

for instance, a formal complex-valued smooth function f =
∑∞

j=0 λ
jfj ∈ C∞(M)λ, then given

q ∈ M we get fq :=
∑∞

j=0 λ
jfj(q) ∈ Cλ. On the other hand, given an open subset U ⊂ M , we

may define fU :=
∑∞

j=0 λ
jfj|U ∈ C∞(U)λ. Likewise, given a formal vector field X, a formal 1-

form η or a formal Poisson structure π on M , inducing the map π] : Ω(M)λ → X (M)λ, we get a

formal series of tangent vectors, Xq ∈ (TqM)λ, and a formal vector field XU ∈ X (U)λ; a formal

series of covectors, η ∈ (T ∗qM)λ, and a formal 1-form ηU ∈ Ω(U)λ, or a map π]q : (T ∗qM)λ →
(TqM)λ and a map π]|U : Ω(U)λ → X (U)λ.

Given a smooth map ϕ : M → N we have an induced map ϕ∗ : Ω•(N)λ → Ω•(M)λ, and for

each q ∈M :

dϕq : (TqM)λ → (Tϕ(q)N)λ,

and

(dϕq)
∗ : (T ∗ϕ(q)N)λ → (T ∗qM)λ.

Then, an element a = X ⊕ α ∈ X (M)λ ⊕ Ω(M) and an element b = Y ⊕ β ∈ X (N) ⊕ Ω(N)λ

are called ϕ-related, denoted by a ∼ϕ b, if α = ϕ∗β and dϕqXq = Yϕ(q), for all q ∈M .

Given a smooth manifold P , let ρ : T ∗P → P be its cotangent bundle, and consider the

induced map

ρ∗ : Ω•(P )λ → Ω•(T ∗P )λ.

Any formal vector field V ∈ λX (T ∗P )λ induces a deformation of ρ∗ as follows:

%∗ := exp(LV)ρ∗ : Ω•(P )λ → Ω•(T ∗P )λ.

If π is a formal Poisson structure on P , we consider Lπ := graph(π]) ⊂ X (P )λ ⊕ Ω(P )λ,

while for a given x ∈ P we consider (Lπ)x := graph(π]x) ⊂ (TxP )λ ⊕ (T ∗xP )λ, and for a given

open subset U ⊂ P , we put (Lπ)|U := graph(π]|U). Notice then that we have X ⊕ α ∈ (Lπ)|U
if and only if (X ⊕ α)x ∈ (Lπ)x for all x ∈ U . We also define, for a given q ∈ T ∗P :

(ρ∗Lπ)q := {v ⊕ (dρq)
∗ξ ∈ (TqT

∗P )λ ⊕ (T ∗q T
∗P )λ; dρqv ⊕ ξ ∈ (Lπ)ρ(q)},
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and then

ρ∗Lπ := {X ⊕ α ∈ X (T ∗P )λ ⊕ Ω(T ∗P )λ; (X ⊕ α)q ∈ (ρ∗Lπ)q,∀q ∈ T ∗P}.

Example 5.1.12. If X ⊕ α satisfies α = ρ∗β and X ∼ρ π](β), then X ⊕ α ∈ ρ∗Lπ.

Remark 5.1.13. The elements X ⊕ α of ρ∗Lπ can be more general than the ones captured in

the previous example. If X⊕α ∈ ρ∗Lπ, we have, first of all, α =
∑∞

j=0 λ
jαj with αj ∈ Ω(T ∗P ).

Then, by definition of ρ∗Lπ, for any q ∈ T ∗P we have αq = (dρq)
∗ξρ(q), for some unique

ξρ(q) ∈ (T ∗ρ(q)P )λ, hence, by Corollary A.1.2, αj ∈ Γ(ρ∗T ∗P ), for each j, and therefore α ∈
Γ(ρ∗T ∗P )λ. Now, by Example A.1.4, for any induced cotangent chart T ∗U , with coordinates

(xi, ξi), over a chart U on P , with coordinates (xi), we have αj =
∑n

r=1 f
j
r ρ
∗(dxr), for some

f jr ∈ C∞(T ∗U). Then, for any q ∈ T ∗U , the formal vector field X must satisfies dρqXq =

π]ρ(q)(
∑∞

j=0 λ
j(
∑n

r=1 f
j
r (q)dxr|ρ(q))).

Finally, we define

%∗Lπ := exp(LV)(ρ∗Lπ).

Regarding these definitions, we now prove some technical result we are going to need.

Lemma 5.1.14. Given any a0 = X0⊕α0 ∈ (ρ∗Lπ)q, there exists, for some open sets U ⊂ P and

T ∗U ⊂ T ∗P with q ∈ T ∗U , local formal sections a = X⊕α ∈ (ρ∗Lπ)|T ∗U and b = Y ⊕β ∈ (Lπ)|U
with a ∼ρ b and aq = a0.

Proof. Pick a trivializing chart U around p = ρ(q), and consider T ∗U
ρ−→ U . Since X0 ⊕ α0 ∈

(ρ∗Lπ)q, we have α0 = (dρq)
∗β0, for a unique β0 ∈ (T ∗pU)λ and dρqX0 = π]p(β0). Extend β0 to

an element β ∈ Ω(U)λ and define Y := π](β) ∈ X (U)λ. Then we have b := Y ⊕ β ∈ (Lπ)|U .

On the other hand, define α := ρ∗β ∈ Ω(T ∗U)λ and pick any formal vector field Z ∈ X (T ∗U)λ

which is ρ-related to Y (which exists since ρ is a surjective submersion). Then notice that

V0 := Zq −X0 satisfies

dρqV0 = dρqZq − dρqX0 = Yp − π]p(β0) = 0,

hence it is vertical. Extend V0 into a vector field V ∈ Γ(Ver(T ∗U))λ and define X := Z − V ∈
X (T ∗U)λ. Then a := X ⊕ α ∈ (ρ∗Lπ)|T ∗U is ρ-related to b and satisfies aq = a0.

Lemma 5.1.15. With the previous definition, ρ∗Lπ ⊂ X (T ∗P )λ ⊕ Ω(T ∗P )λ is involutive.

Proof. We first prove that ρ∗Lπ is lagrangian for the natural pairing on X (T ∗P )λ ⊕ Ω(T ∗P )λ.

To show ρ∗Lπ ⊂ (ρ∗Lπ)⊥, we need to check that 〈a1, a2〉q = 0 for all a1, a2 ∈ ρ∗Lπ and q ∈ T ∗P .

Thus, let X1 ⊕ α1 and X2 ⊕ α2 be arbitrary elements in ρ∗Lπ and pick a trivializing open set

U ⊂ P around ρ(q). By the previous lemma, for each i = 1, 2 we can find Yi⊕ρ∗βi ∈ (ρ∗Lπ)|T∗U
extending (Xi ⊕ αi)q and Zi ⊕ βi ∈ (Lπ)|U with Yi ∼ρ Zi. Then we compute

〈Y1⊕ρ∗β1, Y2⊕ρ∗β2〉q = (ιY1ρ
∗β2 + ιY2ρ

∗β1)q = (ρ∗(ιZ1β2 + ιZ2β1))q = 〈Z1⊕β1, Z2⊕β2〉ρ(q) = 0.
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But 〈X1 ⊕ α1, X2 ⊕ α2〉q = 〈Y1 ⊕ ρ∗β1, Y2 ⊕ ρ∗β2〉q, hence, ρ∗Lπ ⊂ (ρ∗Lπ)⊥.

On the other hand, given Z ⊕ η ∈ (ρ∗Lπ)⊥, we have, for any X ⊕ α ∈ ρ∗Lπ:

〈Z ⊕ η,X ⊕ α〉 = ιZα + ιXη = 0.

In particular, taking α = 0 we get X⊕0 ∈ ρ∗Lπ if and only if X ∈ Γ(Ver(T ∗P ))λ, thus ιXη = 0

for any X ∈ Γ(Ver(T ∗P ))λ, in particular, (ιX0η)q = 0 for any q ∈ T ∗P and X0 ∈ ker(dρq).

Hence, η =
∑∞

j=0 λ
jηj satisfies that ηj|q ∈ Ann(ker(dρq)) = (dρq)

∗(T ∗pP ), where p = ρ(q). Thus,

ηq = (dρq)
∗η̃p for some η̃p ∈ (T ∗pP )λ. Now observe that, being ρ a surjective submersion, for

any α ∈ Ω(P )λ there exists X ∈ X (T ∗P )λ such that X ∼ρ π](α), hence X ⊕ ρ∗α ∈ ρ∗Lπ, and

we get

0 = (ιZρ
∗α + ιXη)q = αp(dρqZq) + η̃p(π

]
p(αp)) = αp(dρqZq − π]p(η̃p).

Since α was arbitrary and ρ∗ is injective, we conclude that dρqZq = π]p(η̃p), thus, Z⊕ η ∈ ρ∗Lπ.

To conclude that ρ∗Lπ is involutive, we need to verify (see Remark 5.1.9) that

〈[a1, a2], a3〉 = 0, ∀a1, a2, a3 ∈ ρ∗Lπ.

First notice that, for ai ∈ X (T ∗P )λ⊕Ω(T ∗P )λ and bi ∈ X (P )λ⊕Ω(P )λ, for i = 1, 2, 3, and

ai ∼ρ bi, we have

〈[a1, a2], a3〉 = ρ∗〈[b1, b2], b3〉.

Indeed, let ai = Xi ⊕ ρ∗αi and bi = Yi ⊕ αi with Xi ∼ρ Yi, then we compute:

〈[X1 ⊕ ρ∗α1, X2 ⊕ ρ∗α2], X3 ⊕ ρ∗α3〉 = 〈[X1, X2]⊕ LX1ρ
∗α2 − ιX2dρ

∗α1, X3 ⊕ ρ∗α3〉
= ι[X1,X2]ρ

∗α3 + ιX3(LX1ρ
∗α2 − ιX2dρ

∗α1)

= ρ∗ι[Y1,Y2]α3 + ιX3(ρ∗LY1α2 − ρ∗ιY2dα1)

= ρ∗ι[Y1,Y2]α3 + ρ∗ιY3(LY1α2 − ιY2dα1)

= ρ∗〈[Y1 ⊕ α1, Y2 ⊕ α2], Y3 ⊕ α3〉.

Now given ai|q ∈ (ρ∗Lπ)q, for i = 1, 2, 3, by Lemma 5.1.14 we extend them locally to elements

ai ∈ (ρ∗Lπ)|T ∗U and find elements bi ∈ (Lπ)|U with ai ∼ρ bi. Thus we get

Υρ∗Lπ(a1|q, a2|q, a3|q) = Υρ∗Lπ(a1, a2, a3)q = ΥLπ(b1, b2, b3)ρ(q) = 0,

hence, ρ∗Lπ is involutive.

Lemma 5.1.16. Given a formal Poisson structure π =
∑∞

j=1 λ
jπj on P and B ∈ Ω2

cl(P )λ we

have

τρ∗B(ρ∗Lπ) = ρ∗(τBLπ),

Proof. Pick X ⊕ α + ιXρ
∗B ∈ τρ∗B(ρ∗Lπ) and put β := α + ιXρ

∗B. We want to show that

X ⊕ β ∈ ρ∗(τBLπ), i.e., for any q ∈ T ∗P , putting p = ρ(q), we need to find β̃p ∈ (T ∗pP )λ such
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that

βq = (dρq)
∗β̃p and dρqXq = (τBπ)]p(β̃p) (5.5)

hold. We know that there exists α̃p ∈ (T ∗pP )λ such that

αq = (dρq)
∗α̃p and dρqXq = π]p(α̃p), (5.6)

hold. Then β̃p := (I +B]
pπ

]
p)α̃p satisfies both conditions in (5.5). Indeed:

βq = αq + (ιXρ
∗B)q = (dρq)

∗α̃p + (dρq)
∗(ιdρqXqBp) = (dρq)

∗(α̃p + ιπ]p(α̃p)Bp) = (dρq)
∗(β̃p),

and

dρqXq = π]p(α̃p) = π]p(I +B]
pπ

]
p)
−1β̃p = (τBπ)]p(β̃p).

Thus we have τρ∗B(ρ∗Lπ) ⊂ ρ∗(τBLπ).

Conversely, let X ⊕ β ∈ ρ∗(τBLπ) and put α := β − ιXρ∗B. Then X ⊕ β = X ⊕ α+ ιXρ
∗B

and we want to show that X⊕α ∈ ρ∗Lπ, i.e., for any q ∈ T ∗P , putting p = ρ(q), we need to find

α̃p ∈ (T ∗pP )λ such that both conditions in 5.6 are satisfied. We know there exists β̃p ∈ (T ∗pP )λ

satisfying both conditions in (5.5). We claim that α̃p := (I−B]
p(τBπ)]p)β̃p does the job, indeed,

for the first condition in (5.6) we have

αq = βq − (ιXρ
∗B)q = (dρq)

∗(β̃q − ιdρqXqBp),

which together with dρqXq = (τBπ)]p(β̃p) yields αq = (dρq)
∗α̃p, as desired. As for the second

condition, we compute:

dρqXq = (τBπ)]p(β̃p) = (τBπ)]p(I −B]
p(τBπ)]p)

−1α̃p = (τ−B(τBπ))]p(α̃p) = π]p(α̃p).

Hence, τρ∗B(ρ∗Lπ) ⊃ ρ∗(τBLπ).

Lemma 5.1.17. Given (T ∗P, ω0)
ρ−→ P , where ω0 = ωcan + ρ∗B0 with B0 ∈ Ω2

cl(P ), let V ∈
λX (T ∗P )λ and %∗ := exp(LV)ρ∗. Consider a diagram of the form

(C∞(P )λ, π1)
ρ∗−→ (C∞(T ∗P )λ, ω)

%∗←− (C∞(P )λ, π2),

where π1 and π2 are formal Poisson structures on P , ω = ω0 +
∑∞

j=1 λ
jωj ∈ Ω2

cl(T
∗P )λ and

suppose the relation

ρ∗Lπ1 = eω(%∗Lπ2)

holds. Then:

1. Putting η := ω]|Γ(Ver(T ∗P ))λ, the map exp(−LV)η : Γ(Ver(T ∗P ))λ → Γ(ρ∗(T ∗P ))λ is an

isomorphism.

2. For all f, g ∈ C∞(P )λ, we have {%∗f, ρ∗g}ω = 0, and the maps ρ∗ and %∗ are Poisson and
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anti-Poisson morphism, respectively.

Proof. 1. First observe that V ∈ Γ(Ver(T ∗P ))λ implies V ⊕ 0 ∈ ρ∗Lπ1 , hence

exp(−LV)V ⊕− exp(−LV)ιV ω ∈ ρ∗Lπ2 .

In particular, this means that exp(−LV)(ω](V )) ∈ Γ(ρ∗T ∗P )λ, hence we get an injective

map

ϕ := exp(−LV)η : Γ(Ver(T ∗P ))λ → Γ(ρ∗(T ∗P ))λ.

Now observe that this map is Cλ-linear, thus it is of the form ϕ =
∑∞

j=0 λ
jϕj, with

ϕ0 = ω]0|Γ(Ver(T ∗P )) : Γ(Ver(T ∗P ))→ Γ(ρ∗(T ∗P )).

Then observe that, for X vertical, ιXρ
∗B0 ≡ 0, hence ϕ0 = ω]0|Γ(Ver(T ∗P )) = ω]can|Γ(Ver(T ∗P )),

which, from Example A.1.5, is an isomorphism. It follows from Proposition 2.2.1 that ϕ

is an isomorphism.

2. To conclude the statement we need to establish, for any f, g ∈ C∞(P )λ, the following

three equations:

{ρ∗f, %∗g}ω = 0,

{ρ∗f, ρ∗g}ω = ρ∗{f, g}π1 ,

{%∗f, %∗g}ω = −%∗{f, g}π2 .

(5.7)

Let f, g ∈ C∞(P )λ be arbitrary formal smooth functions, and let Xρ∗f and X%∗g be

hamiltonians with respect to ω. We claim that the three conditions in (5.7) follow if the

vector field

X := Xρ∗f −X%∗g (5.8)

satisfies

X ∼ρ X1
f and exp(−LV)X ∼ρ X2

g , (5.9)

where X1
f and X2

g are hamiltonians with respect to π1 and π2, respectively.

Indeed, from X ∼ρ X1
f we get X(ρ∗f) = ρ∗(X1

f (f)) = 0, which together with (5.8) implies

{ρ∗f, %∗g}ω = 0. (5.10)

Likewise, we have X(ρ∗g) = ρ∗(X1
f (g)) = ρ∗{f, g}π1 , which, together with (5.8) and (5.10)

yield

{ρ∗f, ρ∗g}ω = ρ∗{f, g}π1 .

On the other hand, from exp(−LV)X ∼ρ X2
g we get (exp(−LV)X)(ρ∗f) = ρ∗(X2

g (f)).

We may rewrite (exp(−LV)X)(ρ∗f) as ιexp(−LV )Xρ
∗(df), and from Lemma (5.1.5) we have
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ιexp(−LV )X = exp(−LV)ιX exp(LV), hence

ρ∗(X2
g (f)) = ιexp(−LV )Xρ

∗(df) = exp(−LV)ιX exp(LV)(ρ∗(df)).

Therefore, %∗(X2
g (f)) = ιX(d(%∗f)), which together with (5.8) and (5.10) implies

{%∗f, %∗g}ω = −%∗{f, g}π2 .

Now we proceed to show that the vector field X given by (5.8) actually satisfies both

conditions in (5.9). But first notice that, since the conditions in (5.7) make sense point-

wise, we may fix a point p0 ∈ P and work on a trivializing chart U ⊂ P around p0,

with coordinates (xr)nr=1, yet, to simplify notation, we will avoid writing the open sets to

indicate any restrictions.

Since ρ is a surjective submersion, there exists Y ∈ X (T ∗U)λ with Y ∼ρ X1
f , hence,

Y ⊕ ρ∗(df) ∈ ρ∗Lπ1 = (%∗Lπ2)ω. It follows that exp(−LV)Y ⊕ exp(−LV)(ρ∗(df)− ιY ω) ∈
ρ∗Lπ2 , i.e.:

exp(−LV)(ρ∗(df)− ιY ω) = α =
∞∑
j=0

λjαj; αj =
n∑
r=1

hjrρ
∗(dxr),

and, for any q ∈ T ∗U , with p = ρ(q),

dρq(exp(−LV)Y )q = π]2|p
( n∑

r

hjr(q)dx
r|p
)
.

Let η := exp(LV)α = ρ∗(df) − ιY ω. By item 1 there exists Ỹ ∈ Γ(Ver(T ∗U))λ such that

exp(−LV)(ιỸ ω) = α− ρ∗(dg), thus ιỸ ω = η − %∗(dg).

Define X := Y + Ỹ . Then we have ιXω = ρ∗(df)− %∗(dg), hence

X = Xρ∗f −X%∗g.

Since Y ∼ρ Xf
1 and dρqỸq = 0 for any q ∈ T ∗U , we also get

X ∼ρ X1
f .

Finally, thought after a slightly more involved argumentation, we also get

exp(−LV)X ∼ρ= X2
g . (5.11)

Indeed, notice that Ỹ ∈ Γ(Ver(T ∗U))λ implies Ỹ ⊕ 0 ∈ ρ∗Lπ1 , hence, from ρ∗Lπ1 =
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(%∗Lπ2)ω, we get exp(−LV)Ỹ ⊕− exp(−LV)ιỸ ω ∈ ρ∗Lπ2 , which in turns implies that

− exp(−LV)ιỸ ω = − exp(−LV)(η − %∗(dg)) = −α+ ρ∗(dg) =
∞∑
j=0

λj
(
ρ∗(dgj)−

n∑
r=1

hjrρ
∗(dxr)

)
,

and, for any q ∈ T ∗U , with p = ρ(q),

dρq(exp(−LV)Ỹ )q = π]2|p
( ∞∑
j=0

λj
(
dgj |p −

n∑
r=1

hjr(q)dx
r|p
))

= π]2|p(dgp)− dρq(exp(−LV)Y )q.

Hence, we get

dρq(exp(−LV)X)q = dρq(exp(−LV)Y )q + π]2|p(dgp)− dρq(exp(−LV)Y )q = π]2|p(dgp),

which implies (5.11), as claimed.

The next proposition, which is fundamental to prove the main result of this section, is a

formal version of, and is inspired directly by, a result due to Frejlich and Mǎrcuţ in the context

of realizations of Dirac structures by closed two-forms [32].

Proposition 5.1.18. Given a formal Poisson manifold (P, π) with cotangent bundle ρ : T ∗P →
P , define V ∈ λX (T ∗P )λ by Vξ = hor(π](ξ)), where hor is the horizontal lifting associated to a

linear connection ∇ on T ∗P , and let Lπ := graph(π). Consider the map %∗ := exp(LV)ρ∗, and

let

ω :=

∫ 1

0

exp(sLV)ωcands.

We then have

1. e−ω(ρ∗Lπ) = %∗Lπ.

2. There exists Z ∈ λX (T ∗P )λ such that

(C∞(P )λ, π)
Φ−→ (C∞(T ∗P )λ, {·, ·}can)

Φ̂←− (C∞(P )λ, π),

where Φ := exp(Z)ρ∗ and Φ̂ := exp(Z)%∗, is a formal dual pair.

Proof. 1. Let λcan ∈ Ω(T ∗P )λ be the tautological 1-form on T ∗P and consider V ⊕ λ, which

generates the flow

Ft = exp(−tLV)eBt ,

with Bt = −
∫ t

0
exp(sLV)ωcands, according to Proposition 5.1.8. Since ρ∗Lπ is involutive

and V⊕λcan ∈ ρ∗Lπ, it follows from Remark 5.1.11 that Ft preserves ρ∗Lπ. Then we have

exp(−tLV)eBt(ρ∗Lπ) = ρ∗Lπ ⇒ eBt(ρ∗Lπ) = exp(tLV)(ρ∗Lπ).
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Since t = 1 implies B1 = −ω, we get

e−ω(ρ∗Lπ) = exp(LV)(ρ∗Lπ) = %∗Lπ.

2. It follows from item 1 and Lemma 5.1.17 that in the diagram

(C∞(P )λ, π)
ρ∗−→ (C∞(T ∗P )λ, ω)

%∗←− (C∞(P )λ, π),

ρ∗ is Poisson, %∗ is anti-Poisson, and {ρ∗f, %∗g}ω = 0 for any f, g ∈ C∞(P )λ. Now observe

that

ω =

∫ 1

0

exp(sLV)dλcands = d

(∫ 1

0

exp(sLV)λcands

)
,

hence, [ω] = [ωcan] ∈ H2
dR(P )λ. It follows from Proposition 2.2.10, that the formal Poisson

structures πω and πcan are equivalent, i.e., there exists Z ∈ λX (T ∗P )λ such that

exp(Z) : (C∞(T ∗P )λ, ω)→ (C∞(T ∗P )λ, ωcan)

is a Poisson isomorphism. Thus, in the diagram

(C∞(P )λ, π)
Φ−→ (C∞(T ∗P )λ, {·, ·}can)

Φ̂←− (C∞(P )λ, π), (5.12)

Φ := exp(Z)ρ∗ is Poisson, Φ̂ := exp(Z)%∗ is anti-Poisson, and {Φf, Φ̂g}can = 0 for all

f, g ∈ C∞(P )λ. It follows then by an argument like in Remark 3.2.14 that Φ(C∞(P )λ)

and Φ̂(C∞(P )λ) are mutually centralizers. Thus, diagram (5.12) constitutes a formal

dual pair.

Now we are ready to prove the main result of this chapter

Theorem 5.1.19. Given a formal Poisson structure π = λπ1 + · · · on P , and B ∈ Ω2
cl(P )λ let

πB be the formal Poisson structure on P given by Corollary 4.2.2. Then we have [πB] = [τ−Bπ].

Proof. Consider the formal Poisson structure τ−Bπ. Then we have

ρ∗Lτ−Bπ = eω(%∗Lτ−Bπ),

for ω and %∗ as in Proposition 5.1.18. Then we get, from Lemma 5.1.16:

eω+ρ∗B(%∗Lτ−Bπ) = eρ
∗B(eω(%∗Lτ−Bπ)) = eρ

∗B(ρ∗Lτ−Bπ) = ρ∗Lπ.

Then, by Lemma 5.1.17 we have that

(C∞(P )λ, π)
ρ∗−→ (C∞(T ∗P )λ, ω + ρ∗B)

%∗←− (C∞(P )λ, τ−Bπ),
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is a formal dual pair. Now recall from the proof of item 2 in Proposition 5.1.18 that ω is

cohomologous to ωcan, thus we get that ω + ρ∗B is cohomologous to ωcan + ρ∗B, hence, there

exists a Poisson isomorphism

exp(Z) : (C∞(T ∗P )λ, ω + ρ∗B)→ (C∞(T ∗P )λ, ωcan + ρ∗B),

and therefore we get a formal dual pair

(C∞(P )λ, π)
Φ−→ (C∞(T ∗P )λ, ωcan + ρ∗B)

Ψ←− (C∞(P )λ, τ−Bπ),

with Φ := exp(Z)ρ∗ and Ψ := exp(Z)%∗. It follows then, by Corollary 4.2.2 that τ−Bπ and πB

are equivalent.

5.2 Final remarks

Here we address some remarks about the work presented so far, as well as some related open

questions. A natural line of generalization concerns the zeroth order term of the formal Poisson

structure on P . Letting this zeroth order π0 to be an arbitrary (integrable) Poisson structure

would lead us directly to the problem of characterizing the Picard group of (P, π0), which is

currently mostly an open question (see [9] and [12]). Also, in an attempt to show that Morita

equivalence of formal Poisson structures is actually an equivalence relation, let us point out that

for the general zeroth order, it is likely that reflexivity may fail, even with our more restrictive

definition keeping the symplectic structure undeformed. To get a feeling of that, suppose π is

a formal Poisson structure on P , deforming π0. We would like to find a symplectic manifold

(S, ω0), formal maps Φ and Ψ such that

(C∞(P )λ, π)
Ψ−→ (C∞(S)λ, ω0)

Φ←− (C∞(P )λ, π)

is a formal dual pair, and in the classical limit, (S, ω0) to be an equivalence symplectic bimodule

between (P, π0) and (P,−π0). One way to find such structures would be by deforming an

equivalence symplectic dual pair (P, π0)
J←− (S, ω0)

J−→ (P, π0). Since we are assuming that

π0 is integrable, such an equivalence symplectic bimodule is given by the s-simply connected

symplectic groupoid (Γ(P ), ω0) integrating (P, π0). But, as we have seen, the deformation

procedure is not unobstructed, hence, in general the simple iterative construction will not

work. We leave these observations for future work.

Another direction of research is to investigate Morita equivalence of Poisson algebras, which

could be seen as the algebraic structure underlying the geometric case we worked with. In this

direction, there exists some initial ideas due to Stefan Waldmann and Henrique Bursztyn in

private communications. The idea is to define a category by introducing a notion of Poisson

bimodules and an appropriate tensor product between them. Then, objects of the category
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would be Poisson algebras and morphism between them would be the bimodules introduced

previously (or better, isomorphism classes of bimodules). In such a category, Morita equivalent

of Poisson algebras would be just isomorphic objects. This is in the same spirit of the unified

approach to Morita equivalences as can be found in [47].

As a third line we could consider a connection with the work of Cabrera-Dherin [15]. There

they consider, for an arbitrary Poisson structure π on Rn, deformation of the symplectic re-

alization q0 : (R2n, ωcan) → (Rn, π0 = 0) of the form qλ = q0 + O(λ) : (R2n, ωcan) → (Rn, λπ),

finding an explicit formula for qλ, related to Kontsevich’s deformation quantization [44]. A con-

tinuation of this result could be to consider the “quantum” side (noncommutative algebras),

finding a deformation Qλ = Q0 +O(λ) : C∞(Rn)[[λ]]→ C∞(R2n)[[λ]] of the natural inclusion

Q0 := q∗0 : C∞(Rn)→ C∞(R2n), in such a way that sends Kontsevich’s star product on (Rn, π)

to the star product on R2n quantizing ωcan (Moyal product). It follows from general arguments

that such a deformation always exists, the point here is to find an explicit formula for it. The

deformation problem of Poisson morphism we considered in my thesis is a deformation of the

map with respect to deformations of the Poisson structures, keeping the associative products

undeformed. It could be interesting to find out how this deformation problem (and its solution)

is related with the deformation with respect to the star products.
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APPENDIX A

Differential geometry of vector bundles

Here we review some basic concepts of differential geometry of fibred manifolds. We are mostly

interested in vector bundles and more precisely in the tangent and cotangent bundles of a given

manifold. For details the reader may consult [35] and [62].

A.1 Semi-basic differential forms

Let ρ : E →M be a surjective submersion. Given z ∈ E, consider the vector space Ver(E)z :=

ker(dρ|z). The vertical bundle with respect to ρ is Ver(E) :=
⋃
z Ver(E)z. This is a subbundle

of the tangent bundle TE, whose sections are vector fields on E which are everywhere tangent

to the fibers of ρ.

Let τ : F → M be a vector bundle. Recall that the pull-back bundle of F by ρ, denoted

ρ∗F , is a vector bundle over E with total space given by

ρ∗F := E ×M F = {(u, v) ∈ E × F ; ρ(u) = τ(v)},

thus, at any point z ∈ E, the fiver ρ∗F |z is given by F |ρ(z).

We may define a bundle morphism Φ: TE → ρ∗TM by

Φ(z, v) = (z, dρz(v)).

Its transpose Ψ: ρ∗T ∗M → T ∗E is then given by

Ψ(z, ϕ) = (z, (dρz)
∗ϕ).

Since ρ is a surjective submersion, Φ is a surjective bundle morphism, and Ψ is an injective
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bundle morphism. Moreover, we have the following observation.

Proposition A.1.1. The map Φ yields an isomorphism TE/Ver(E) ∼= ρ∗TM , and the map

Ψ is an isomorphism between ρ∗T ∗M and the annihilator (Ver(E))0 of Ver(E).

Proof. For each z ∈ E, the restriction Φz : TzE → ρ∗TMz of Φ is a surjective linear map whose

kernel is ker(dρz) = Ver(E)z. Thus we have TzE/Ver(E)z ∼= ρ∗T ∗Mz, and so TE/Ver(E) ∼=
ρ∗TM . On the other hand, the restriction Ψρ(z) is the transpose of Φz, hence we have

Im(Ψρ(z)) = (ker(Φz))
0 = (Ver(E)z)

0. Since Ψρ(z) is injective, we have an isomorphism

Ψρ(z) : T ∗ρ(z)M → (Ver(E)z)
0, hence the bundle isomorphism Ψ: ρ∗T ∗M → (Ver(E))0.

Corollary A.1.2. Given a surjective submersion ρ : E → M , let η : E → T ∗E; z 7→ (z, ηz) be

a 1-form. The following are equivalent:

1. For any X ∈ Γ(Ver(E)), ιXη = 0.

2. For each z ∈ E, there exists a unique ϕ ∈ T ∗ρ(z)M such that ηz = (dρz)
∗(ϕ).

3. The 1-form η can be regarded as a section of the bundle ρ∗T ∗M , under the isomorphism

Ψ.

Proof. 1. 1) ⇒ 2): notice that condition 1) implies that for any z ∈ E and v ∈ Ver(E)z

we have ηz(v) = 0, thus ηz ∈ (Ver(E)z)
0, and then by the isomorphism Ψρ(z) : T ∗ρ(z)M →

(Ver(E)z)
0, there exists a unique ϕ ∈ T ∗ρ(z)M such that (dρz)

∗ϕ = ηz.

2. 2)⇒ 3): just notice that condition 2) means that the section η satisfies z 7→ (z, ηz) with

ηz Im(Ψρ(z)). Hence, by the isomorphism Ψ, η can be regarded as a section of ρ∗T ∗M .

3. 3) ⇒ 1): If η ∈ Γ(ρ∗T ∗M), under the identification given by Ψ, then η is a section of

(Ver(E)z)
0, hence, for any X ∈ Γ(Ver(E)) we have ιXη = 0.

A 1-form on E that satisfies any of the three equivalent conditions above is called a semi-

basic differential form

Example A.1.3. Taking the surjective submersion ρ : E →M to be the cotangent bundle T ∗M ,

the morphism Ψ identifies ρ∗(T ∗M) with (Ver(T ∗M))0. Recall the coordinate free definition

of the canonical 1-form on T ∗M , λ : T ∗M → T ∗T ∗M ; z = (q, ξ) 7→ (z, λz), where λz(v) =

ξ(dρzv) = (dρz)
∗(ξ)(v). Thus, λ satisfies, by definition, condition 2 in the previous corollary.

Hence, λ is a semi-basic differential form.
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Local expression

Continuing with the surjective submersion ρ : E → M , by the local form of submersions,

around any z ∈ E there exists an adapted chart U ⊂ E, i.e., a local chart with coordinates

(x1, ..., xn, y1, ..., yk) in U and (x′1, ..., x′n) in ρ(U) such that, on U , the map ρ takes the form

(x1, ..., xn, y1, ..., yk) 7→ (x′1 = x1, ..., x′n = xn).

It follows that a 1-form η is semi-basic if and only if its restriction to any adapted chart may

be written as

η =
n∑
i=1

aidx
i,

where ai ∈ C∞(U), for each i.

Example A.1.4. For the cotangent bundle T ∗M , the natural chart induced on T ∗M by a

chart on M is an adapted chart. Thus, a 1-form η on T ∗M is semi-basic if and only if,

for any cotangent chart (T ∗V, xi, ξi) the local expression of η is of the form η =
∑n

i=1 aidx
i,

with ai ∈ C∞(T ∗V ). Thus, for any z ∈ T ∗V , ηz =
∑n

i=1 ai(z)dxi|z, and the unique element

ϕ ∈ T ∗ρ(z)M given by condition 2 in Corollary A.1.2, is given by ϕ =
∑n

i=1 ai(z)dxi|ρ(z).

Example A.1.5. Let ωcan be the canonical 2-form on T ∗M , and let ω]can : T (T ∗M)→ T ∗(T ∗M)

be the induced bundle map: (z, v) 7→ (z, ωcan|z(v, ·)). We claim that ω]can maps vertical vector

fields on T ∗M isomorphically onto semi-basic 1-forms on T ∗M . Indeed: for any z ∈ T ∗M ,

using a cotangent chart (T ∗V, xi, ξi) around z we have ωcan =
∑n

j=1 dx
i ∧ dξi and any vertical

vector at z is of the form v =
∑n

j=1 fj∂ξj ∈ Ver(T ∗M)z, for some fj ∈ C∞(T ∗U). Then we

have ω]can(z, v) = (z,
∑n

j=1 fj(z)dxj|z), hence, by the previous example: ω]can|z : Ver(T ∗M)z →
ρ∗(T ∗M)z. This map is injective, since ωcan is non-degenerate, and by counting dimensions, it is

an isomorphism. It follows that the bundle map ω]can : V er(T ∗M)→ ρ∗T ∗M is an isomorphism,

hence so is the induced map on sections.

A.2 Vertical cohomology

Consider a surjective submersion ρ : E → M . Let Ver(E) be the vertical subbundle of TE,

and let Ver(E)∗ be its dual bundle. Sections of these bundles are finitely generated projective

C∞(E)-modules, as usual, due to Serre-Swan theorem. We want to consider also, for each

integer k ≥ 0 the bundle
∧k Ver(E)∗, whose section we denote by Ωk

V (E), with Ω0
V (E) identified

with C∞(E).

Let us denote the sections of Ver(E) by XV (E). Notice that an element X ∈ X (E) is in

XV (E) if and only if, at any z ∈ E, we have dρzXz = 0, thus, if and only if, X is ρ-related to

zero. It follows that, if X and Y are elements of XV (E), then so is their Lie bracket [X, Y ], hence

XV (E) is a Lie sub algebra of X (E). This allows us to define exterior derivative, contraction

and Lie derivative with respect to elements in XV (E) in the algebra Ω•V (E).
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For each k ≥ 1, we may consider elements of Ωk
V (E) as alternate C∞(E)-multilinear maps

from XV (E)×k to C∞(E), thus, we may define the following operators in Ω•V (E): The vertical

de Rham differential dver : Ωk
V (E) → Ωk+1

V (E), the contraction by X ∈ XV (E), ιX : Ωk
V (E) →

Ωk−1
V (E), and the Lie derivative, with respect to X ∈ XV (E), LX : Ωk

V (E) → Ωk
V (E). These

maps are defined, for η ∈ Ωk
V (E) and X1, ..., Xk+1 ∈ XV (E), by

(dverη)(X1, ..., Xk+1) =
k+1∑
j=1

(−1)j+1Xj

(
η(X1, ...,

j
∧, ..., Xk+1)

)
+
∑
i<j

(−1)i+jη
(
[Xi, Xj], X1, ...,

i
∧, ...,

j
∧, ..., Xk+1

)
,

(ιXη)(X1, ..., Xk−1) := η(X,X1, ..., Xk−1),

and

(LXη)(X1, ..., Xk) = X(η(X1, ..., Xk))−
k∑
j=1

η(X1, ..., [X,Xi], ..., Xk). (A.1)

For k = 0, we extend these maps by (dverf)(X) = X(f), ιXf = 0 and LXf = X(f). For

η ∈ Ωk
V (E), ξ ∈ Ω•V (E), and X, Y ∈ XV (E), they satisfy, all together, the following properties.

1. ιX(η ∧ ξ) = ιXη ∧ ξ + (−1)kη ∧ ιXξ.

2. ι[X,Y ] = LXιY − ιYLX .

3. LX(η ∧ ξ) = LXη ∧ ξ + η ∧ LXξ.

4. L[X,Y ] = [LX ,LY ].

5. LX = ιXdver + dverιX .

6. dver(η ∧ ξ) = dverη ∧ ξ + (−1)kη ∧ dverξ.

7. d2
ver = 0.

These properties can be proved by the same steps used to prove the analogous results for

ordinary calculus on manifolds as can be found, for instance, in [35, Chap. IV]. The complex

(Ω•V (E), dver) is called the vertical cohomology associated to the submersion ρ : E →M .

Remark A.2.1. As elements in Ω•V (E) takes values on C∞(E), it acquires a C∞(M)-module

via ρ∗: If η ∈ ΩkV (E), we put (fη)(X1, ..., Xk) := ρ∗fη(X1, ..., Xk).

Our next task is to consider the cohomology of this complex in the particular case of vector

bundles. More precisely, we will only need the result for a trivial vector bundle. From now on,

we pick ρ : E →M to be a finite dimensional vector bundle.
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A horizontal subbundle HE of TE is any subbundle that complements the vertical subbun-

dle, i.e.: TE = Ver(E)⊕HE. Existence of hizontal subbundles for any finite dimensional vector

bundle is a well known fact (see, for instance, [35, Chap. II]).

Suppose then that a horizontal subbundle HE has been fixed. A vector field X on E is

called horizontal if, at any z ∈ E, it satisfies Xz ∈ HE|z. As sections of a vector bundle, the set

XH(E) of horizontal vector fields on E forms a finitely generated projective C∞(E)-module,

however, it is not in general a Lie subalgebra of XV (E). Any vector field X on E can be

uniquely decomposed as X = Xv ⊕Xh, according to the direct sum TE = Ver(E)⊕HE.

We may define a graded subalgebra AV (E) ⊂ Ω•(E) by

AV (E) := {η ∈ Ω•(E); ιXη = 0 for all X ∈ XH(E)}.

Following [35], we call AV (E) the vertical subalgebra of Ω•(E). Notice that it depends on the

choice of HE. We are interested now in the following isomorphism of C∞(E)-modules

fV : Ω•V (E)→ AV (E),

given, for η ∈ Ωk
V (E), and X1, ..., Xk ∈ X (E), by

(fV η)(X1, ..., Xk) = η(X1v, ..., Xkv),

according to the decomposition Xi = Xiv ⊕Xih.

Example A.2.2. Consider M = Rn with global coordinates (qi) and let E = T ∗M , with global

coordinates (qi, pi). Then we have Ver(E) = span{∂pi}, and we have a natural horizontal

subbundle given by span{∂qi}. The vertical subalgebra AV (E) is given, at degree k, by elements

of the form η =
∑

Ik
ηIkdpIk , where Ik = {i1 < · · · < ik} ⊂ {1, ..., n} is an strictly increasing

multi-index of length k, ηIk ∈ C∞(E), and dpIk := dpi1 ∧ · · · ∧ dpik . Under the isomorphism

fV : Ω•V (E) → AV (E), the vertical de Rham differential dver is then computed in coordinates

by dverη = (dη)v, where d is the usual de Rham differential in Ω•(E) and (·)v is the projection

onto AV (E) given by discarding all components of the argument that contains dqi.

Next we show, for the previous example, that there exists a C∞(M)-linear homotopy oper-

ator h : Ω•V (T ∗M)→ Ω•−1
V (T ∗M).

Let us denote a point z ∈ T ∗M by z = (q, p). Let σ ∈ Ωk
V (T ∗M), hence it may be written

as σ = 1
k!
σi1...ik(x, p)dpi1 ∧ · · · ∧ dpik . We define then, for t ∈ R, σt by

σt =
1

k!
σi1...ik(x, tp)dpi1 ∧ · · · ∧ dpik .

Observe that σ0 = σ(x, 0) and σ1 = σ. Introducing the new independent variables pi := tpi,

we get σi1...ik(q, p) = σi1...ik(x, tp) and
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dverσ =

(
1

k!
dσi1...ik(q, p) ∧ dpi1 ∧ · · ·dpik

)v
=

1

k!

∂σi1...ik
∂pi

dpi ∧ dpi1 ∧ dpik

= t
1

k!

∂σi1...ik
∂pi

dpi ∧ dpi1 ∧ dpik = tdverσ.

Now let V be the vertical vector field defined by V(q, p) := pi∂pi . Then we define, for each

integer k ≥ 1, the operator h : Ωk
V (T ∗M)→ Ωk−1

V (T ∗M), given by

hσ =

∫ 1

0

(ιVσ)tk−1dt. (A.2)

Proposition A.2.3. The operator h, given by (A.2), is C∞(M)-linear and satisfies dverh +

hdver = I, where I is the identity operator in Ωk
V (T ∗M).

Proof. The fact that, for each k, the operator h is C∞(M)-linear is clear since the integration

is made over the fibres, and ρ∗f is constant along the fibres for any f ∈ C∞(M).

For the homotopy property, let σ ∈ Ωk
V (T ∗M), then

(dverh+ hdver)σ = dver(hσ) + h(dverσ) =

∫ 1

0

dver(ιVσ)tk−1dt+

∫ 1

0

(ιVdverσ)tkdt

=

∫ 1

0

tk−1
(
dver(ιVσ) + ιV(dverσ)

)
=

∫ 1

0

tk−1LVσdt.
(A.3)

Writing down LVσ in coordinates we have

LVσ =
1

k
(LVσ)i1...ikdpi1 ∧ · · · ∧ dpik ,

where, from the definition of Lie derivative (A.1) we get

(LVσ)i1...ik = pi
σi1...ik
∂pi

+
k∑
r=1

σi1...ir−1iir+1...ik

∂pi
∂pir

= pi
∂σi1...ik
∂pi

+
k∑
r=1

σi1...ir−1iir+1...ikδ
i
ir

= tpi
σi1...ik
∂pi

+ kσi1...ik = t
d

dt
σi1...ik + kσi1...ik .

(A.4)

Substituting in (A.3) we get

(dverh+ hdver)σ =
1

k!

∫ 1

0

(
tk
dσi1...ik
dt

+ ktk−1σi1...ik

)
dpi1 ∧ · · · ∧ dpikdt

=
1

k!

∫ 1

0

d

dt
(tkσi1...ik)dpi1 ∧ · · · ∧ dpikdt =

1

k!
(tkσi1...ik)

∣∣1
0
dpi1 ∧ · · · ∧ dpik

=
1

k!
σi1...ikdpi1 ∧ · · · ∧ dpik = σ
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A.3 Cotangent lifting

Let M and N be smooth manifolds and let f : M → N be a diffeomorphism. We may lift it to

a diffeomorphism f : T ∗M → T ∗N in the following way: given (q, ξ) ∈ T ∗M , we define

f(q, ξ) = (f(q), (df ∗q )−1ξ),

where df ∗q : T ∗f(q)N → T ∗qM is the transpose of dfq. The map f ] turns out to be a diffeomorphism,

and it is known as the cotangent lift of f . Let us summarize some of its properties, which proofs

are straightforward manipulations of the definitions.

Proposition A.3.1. The cotangent lift of a diffeomorphism has the following properties.

1. Given a diffeomorphism f : M → N , the map f : T ∗M → T ∗N is a bundle isomorphism

over f .

2. If g : N → P is another diffeomorphism, then g ◦ f = g ◦ f .

3. If αN and αM are the tautological 1-forms on T ∗N and T ∗M , respectively, then f
∗
αN =

αM .

We may use now this cotangent lift to lift vector fields from a manifold M to its cotangent

bundle T ∗M . To do so, first recall that any vector field X on M generates a flow ϕ(X,t), i.e., a

local one-parameter group of diffeomorphisms. If we apply the cotangent lifting procedure to

ϕ(X,t) we get a one-parameter family of local diffeomorphisms ϕ(X,t), which, by item 2) in the

previous proposition, turns out to be a flow on T ∗M , and thus, it gives rise to a vector field X

on T ∗M , which is known as the cotangent lift of X. Notice that, since ϕ(X,t) covers ϕ(X,t), with

respect to the cotangent bundle projection ρ : T ∗M → M , it follows that dρzXz = Xρ(z), for

any z ∈ T ∗M . Thus, X and X are ρ-related. Next we find the local expression of the cotangent

lift X.

Proposition A.3.2. Let X be a vector field on M , and let (U, qi) be a chart on M . If the

local expression of X on U is X = X i∂qi, then the local expression of X on the induced chart

(T ∗U, qi, pi) is

X = ρ∗X i∂qi − pjρ∗(∂qiXj)∂pi .

Proof. Let us first observe that X is a hamiltonian vector field, with respect to the canonical

symplectic structure of T ∗M . In fact, if α is the tautological 1-form on T ∗M , then H := ιXα is

a hamiltonian function for X. Indeed, since the flow ϕ(X,t) preserves α, it follows that LXα = 0.

Then, by Cartan’s magic formula we get dιXα = −ιXdα, hence ιXωcan = dH.

Now, if X = ai∂qi + bi∂pi , it follows from ιXωcan = dH that al = ∂plH and bl = −∂qlH. In

order to compute these partial derivatives we express H in terms of the local data as follows.

Observe that, for z = (q, p) ∈ T ∗U , H = ιX]α implies that

H(z) = (ιX]α)(z) = α|z(X]
z) = p(dρzX

]
z) = p(Xp) = p(X i

q∂qi |q) = (prρ
∗Xr)(z).
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Hence we get al = ρ∗X l, and bl = −pr∂ql(ρ∗Xr) = −prρ∗(∂qlXr). Thus, we have

X = ρ∗X i∂qi − pjρ∗(∂qiXj)∂pi ,

as claimed.
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APPENDIX B

Dirac structures and Courant algebroids

Here we recall some basic concepts about Dirac Geometry [21] and Courant algebroids [50]. We

limit ourselves to the case of interest for our purposes. For more about these topics the reader

is referred, beside the original sources, to [10], [11], [36] and the references therein.

B.1 Dirac structures

Given a smooth manifold M , consider the vector bundle TM := TM ⊕ T ∗M . A typical

section of this bundle will be denoted as X ⊕ ξ or (X, ξ), where X ∈ Γ(TM) ∼= X (M) and

ξ ∈ Γ(T ∗M) ∼= Ω(M). The C∞(M)-module Γ(TM) carries a natural non-degenerate symmetric

bilinear pairing

〈·, ·〉 : Γ(TM)× Γ(TM)→ C∞(M); 〈X ⊕ ξ, Y ⊕ η〉 := η(X) + ξ(Y ), (B.1)

as well as a bilinear bracket on the sections Γ(TM), known as Dorfman bracket, defined by

[·, ·] : Γ(TM)× Γ(TM)→ Γ(TM); [X ⊕ ξ, Y ⊕ η] := ([X, Y ],LXη − ιY dξ), (B.2)

where the bracket in the right is the usual Lie bracket of vector fields, LX is the Lie derivative

with respect to X and ιY is the contraction by Y .

Definition B.1.1. Given a smooth manifold M, a Dirac structure on M is a subbundle

L ⊂ TM such that

1. L = L⊥, i.e., L is self-orthogonal (lagrangian) with respect to the pairing (B.1).
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2. Γ(L) is involutive with respect to the Courant bracket (B.2).

Remark B.1.2. Subbundles L ⊂ TM satisfying only condition 1 above are usually called

almost Dirac structures, and condition 2 is referred to as the integrability condition.

In the presence of self-orthogonality, the involutivity property is equivalent to the vanishing of

Υ(a, b, c) := 〈[a, b], c〉,

for any a, b, c ∈ L. Indeed, let L be involutive, and let a, b, c ∈ L, then [a, b] ∈ L, and from

L⊥ = L, we get

〈[a, b], c〉 = 0.

Conversely, if Υ vanishes identically on L, it means that for any a, b, c ∈ L, [a, b] ∈ L⊥ = L,

thus L is involutive.

Given a bivector field π on M , let π] : T ∗M → TM be its associated bundle map. For

f, g ∈ C∞(M), define {f, g}π := π(df, dg), and consider also its Jacobiator;

Jacπ(f, g, h) := {f, {g, h}π}π{g, {h, f}π}π + {h, {f, g}π}π.

We then observe the following fact.

Lemma B.1.3. Given a bivector field π on M , define

Lπ := graph(π]) = {π](α)⊕ α;α ∈ T ∗M} ⊂ TM.

Then L⊥π = Lπ, and for ai := π](dfi)⊕ dfi, with fi ∈ C∞(M), i = 1, 2, 3, we have

Υ(a1, a2, a3) = Jacπ(f1, f2, f3).

In particular, Lπ is Dirac if and only if π is Poisson.

Proof. The fact that L⊥π = Lπ, follows from the skewsymmetry of π. Indeed, for any α, β ∈
Ω(M),

〈π](α)⊕ α, π](β)⊕ β〉 = ιπ](α)β + ιπ](β)α = π(α, β) + π(β, α) = 0,

thus Lπ ⊂ L⊥π . Conversely, let X ⊕ α ∈ L⊥π , then

0 = 〈X ⊕ α, π](β)⊕ β〉 = ιXβ + ιπ](α)β = ιXβ − ιπ](β)α = ιX−π](α)β, ∀β ∈ Ω(M),

hence X = π](α). Therefore, L⊥π ⊂ Lπ.
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Now let ai = π](dfi)⊕ dfi, fi ∈ C∞(M), i = 1, 2, 3, then we compute:

〈[π](df1)⊕ df1, π
](df2)⊕ df2], π](df3)⊕ df3〉 = 〈[π](df1), π](df2)]⊕ Lπ](df1)df2, π

](df3)⊕ df3〉
= Lπ](df1)ιπ](df2)df3 − ιπ](df2)Lπ](df1)df3

+ ιπ](df3)(Lπ](df1)df2)

= ιπ](df1)dιπ](df2)df3 − ιπ](df2)dιπ](df1)df3

+ ιπ](df3)dιπ](df1)df2

= {f1, {f2, f3}} − {f2, {f1, f3}}+ {f3, {f1, f2}}
= Jacπ(f1, f2, f3).

Thus, by Remark B.1.2 we conclude that Lπ is a Dirac structure if and only if π is a Poisson

tensor.

Remark B.1.4. Notice that if π is a Poisson tensor, then the Dirac structure Lπ satisfies

Lπ ∩ TM = {0}. Indeed, given π](α)⊕ α ∈ Lπ ∩ TM , we get α = 0, thus π](α) = 0.

The converse of this fact is also true. More precisely, we have:

Lemma B.1.5. A Dirac structure L ⊂ E is the graph of a bivector field π if and only if

L ∩ TM = {0}.

Proof. The “only if” part is the remark above. Let ρ : TM ⊕ T ∗M → T ∗M be the natural

projection. Notice that L = L⊥ implies that at any p ∈ M the dimension of the fiber Lp is

the same as de dimension of T ∗pM, thus ρ(L) = T ∗M . Now define a map π] : T ∗M → TM by

π](α) := X such that X⊕α ∈ L. If Y ∈ TM also satisfies Y ⊕α ∈ L, then X−Y ∈ L∩TP =

{0}, thus X = Y and so π] is well defined. Now observe that L = L⊥ implies

0 = 〈π](α)⊕ α, π](β)⊕ β〉 = α(π](β)) + β(π](α)),

hence, π] : T ∗P → TP is a skew-symmetric bundle map with graph(π]) = L. It follows from

Lemma B.1.3 that the associated bivector π is Poisson.

B.2 Standard Courant algebroid

Given a smooth manifold M , consider again a vector bundle E →M . A Courant algebroid

structure on E consists of

1. A bundle map ρ : E → TM , called the anchor.

2. A non-degenerate, symmetric, bilinear pairing 〈·, ·〉 on its module of section Γ(E).

3. A bilinear bracket [·, ·] on its module of sections Γ(E).
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4. A differential map d : C∞(M)→ Γ(E).

Such that for any e1, e2, e3 ∈ Γ(E) and f ∈ C∞(M), they satisfy the following conditions:

1. [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]],

2. ρ(e1)〈e2, e3〉 = 〈[e1, e2], e3〉+ 〈e2, [e1, e3]〉,

3. ρ([e1, e2]) = [ρ(e1), ρ(e2)],

4. [e1, fe2] = f [e1, e2] + ρ(e1)(f)e2,

5. [e1, e1] = D〈e1, e1〉,

where D = 1
2
ρ∗d, for d : C∞(M)→ Γ(E).

Example B.2.1. The bundle E := TM⊕T ∗M endowed with the pairing (B.1) and the Courant

bracket (B.2) is a Courant algebroid with anchor map given by X ⊕ α 7→ X and differential

d : C∞(M)→ Γ(E) given by f 7→ 0⊕ df , being df the de Rham differential of f .

From now on, we will mainly be interested in the Courant algebroid of Example B.2.1, and

will refer to it as the standard Courant algebroid.

A symmetry of a Courant algebroid E is a bundle map (F, f), with f ∈ Diff(M) such that

the induced map on sections, F : Γ(E)→ Γ(E); e 7→ F ◦ e ◦ f−1 satisfies:

1. f ∗〈F (e1), F (e2)〉 = 〈e1, e2〉,

2. [F (e1), F (e2)] = F ([e1, e2].

Remark B.2.2. Notice that, implicit in the concept of a bundle map there is the fact that the

induced map on sections and the automorphism of C∞(M) given by f ∗ are related by

F (gσ) = (f ∗)−1(g)F (σ).

This property will be important for us in the formal context.

Example B.2.3. A diffeomorphism f ∈ Diff(M) induces a symmetry (f̂ , f) via:

f̂ := diag(f∗, f
∗−1).

A closed 2-form B on M also induces a symmetry (eB, I) via:

eB(X ⊕ α) = X ⊕ α + ιXB.

This is known as B-field transformation and denoted sometimes by τB.

It can be seen that this example covers essentially all the symmetries of the standard Courant

algebroid. More precisely, in [36] it was proved the following result.
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Theorem B.2.4. Let (F, f) be a symmetry of the standard Courant algebroid structure on

E = TM ⊕ T ∗M . Then we must have

F = f̂ eB,

for some closed 2-form B on M . Thus, the group of automorphisms of the Courant algebroid

E is isomorphic to Diff(M) n Ω2
cl(M), where the semi-direct product is given by the action of

Diff(M) on Ω2
cl(M) via pull-back.

Remark B.2.5. Given a Poisson structure π and B ∈ Ω2
cl(P ), the Courant algebroid symmetry

τB transforms the Dirac structure Lπ as follows:

τB(Lπ) = {(π](α), α + ιπ](α)B); α ∈ T ∗P},

which is again a Dirac structure. Thus, in order to define a new Poisson structure, it must

satisfy τB(Lπ) ∩ TM = {0}, which is to say that α + ιπ](α)B is never zero whenever α 6= 0,

which in turn is equivalent to the condition that the bundle map

Id+B]π] : T ∗M → T ∗M

is invertible. In the affirmative case, we denote by πB the corresponding Poisson structure,

which is characterized by

(πB)] = π] ◦ (Id+B]π])−1.

A derivation of the Courant algebroid structure on E is a C-linear map

D : Γ(E)→ Γ(E),

for which there exists a derivation X of the algebra C∞(M) such that, for any e ∈ Γ(E) and

f ∈ C∞(M), we have

D(fe) = fD(e) +X(f)e.

It follows from the Courant algebroid axioms listed above that any section e ∈ Γ(E) defines

a derivation via (D,X) := ([e, ·], ρ(e)).

Differentiating a one-parameter family of Courant automorphisms Ft = f̂te
Bt , with F0 = I,

and recalling that LX = − d
dt

∣∣
t=0
f̂ , we see that derivations can be identified with pairs (X, b) ∈

X (M)⊕ Ω2
cl(M), acting by

(X, b)(Y ⊕ β) = [X, Y ]⊕ LXβ − ιY b. (B.3)

Thus, this gives another way to get a derivation out of any section of E: given e = X ⊕α ∈
Γ(E), we consider the pair (X, dα), which can be seen yields a derivation via the action above.
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Moreover, this derivation coincides with the one constructed using the bracket and the anchor

map.

Regarding the derivations of the standard Courant algebroid E = TM ⊕ T ∗M , in [36] it

was proved the following result.

Theorem B.2.6. Let (X, b) be a derivation of the standard Courant algebroid E = TM⊕T ∗M ,

acting via (B.3). Then it induces a one-parameter subgroup of Courant automorphisms Ft =

ϕ̂te
Bt, where ϕt is the flow of X, and Bt is given by

Bt =

∫ t

0

ϕ∗t bdt.
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