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Abstract

A goodness–of–fit test based on empirical processes is proposed as a model diagnostic
check method for continuous time stochastic volatility models. More specifically, as the
volatility is not observable, a marked empirical process is constructed from the represen-
tation in a state space model form associated to the discretized version of the underlying
process. Distributions of these processes are approximated using bootstrap techniques.
Some simulation results and an empirical application to an EURIBOR (Euro Interbank
Offered Rate) data set are presented for illustration.

Contents

1 Introduction 2

2 The Stochastic Volatility Model 5
2.1 State Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 GOF-Tests 9
3.1 Drift Function Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Volatility function test . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Bootstrap Approximations 11
4.1 Bootstrap Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Some Applications 13
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1 Introduction

Understanding and quantifying volatility is one of the main challenges in present–day
financial analysis. This is thoroughly justified by its impact in pricing and risk man-
agement, among other applications. For instance, it is crucial in pricing and hedging
derivatives a good model selection.

However, this is not an easy task to accomplish. The volatility of a process is not
directly observed and thus needs to be estimated by some indirect process. In addition,
the term volatility has different meanings depending on the discipline or field of study,
which has given rise to quite a few different definitions of volality throughout the liter-
ature (see Ghyles et al. (1996), Shephard (2005) and references therein for a sample of
the various approaches and historical background).

Nevertheless, there is a key feature of volatility which somehow unifies the alterna-
tive approaches: volatility refers to a measure of variation or oscillation of the observed
quantity time series. Intuitively, higher volatility acts as if time would be running faster

and more information is being added to the observed system (see Shephard (2005) and
references therein).

In financial applications, the classical work of Markowitz (1952) connects the volatil-
ity directly with investment strategies and risk management. The seminal papers by
Black and Scholes (1973) and Merton (1973) in option pricing make use of a powerful
simplifying assumption. Namely, that the underlying asset follows a geometric Brown-
ian motion (GBM) with drift

drt = µrtdt +σrtdWt , (1)

where dWt refers to the differential of the Wiener process, rt denotes the asset price
and σ and µ are constant values. However, this hypothesis has been deeply scrutinized
and questioned in the literature. For instance, even in the case of US stock returns,
departures from GBM have been well-documented (see Campbell et al. (1997), Sec-
tion 9.3.6).

In addition, the unpredictability and evidence of non–stationarity of the volatility in
financial time series under different scales has been well documented in the literature
and goes back to Mandelbrot (1963) and Officer (1973). This naturally leads to the
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proposal of more general models than (1), such as

drt = m(rt)dt +σ(rt)dWt , (2)

where the drift m and the volatility σ are now dependent on the underlying asset, rt .
Equation (2) can be analyzed as a parametric model by assuming that

drt = m(rt ,θ)dt +σ(rt ,θ)dWt , (3)

where the functional form for m an σ are well–defined within a certain class that de-
pends on an unknown parameter θ ∈ Θ ⊂ Rd with d a positive integer. Equation (3)
allows for the representation of a fairly broad family of financial models. See for exam-
ple Andersen and Lund (1997) and Hull and White (1987).

A plethora of volatility definitions and indices arises when volatility models are for-
mulated in a discrete time scale. For instance, a great deal of attention has been paid to
models such as the autoregressive conditional heteroskedasticity (ARCH) model by En-
gle (1982) and its generalizations. The need for continuous models is obvious and cru-
cial for comparisons, model simulations and ultimately pricing and risk-management.
As it can be seen in Shephard (2005), there have been efforts in both simulation and
inference methods on continuous–time stochastic volatility models. Nevertheless, to
the best of our knowledge, the joint use of goodness–of–fit tests and Kalman filtering
techniques has not been explored.

In this work, financial models will be considered as continuous in time and described
by stochastic differential equations whose coefficients are to be determined parametri-
cally. In particular, the focus will be placed on models for an observed quantity rt given
by the stochastic differential equation

drt = m1(rt ,θ)dt +σtυ1(rt ,θ)dW1,t

dg(σt) = m2(g(σt),ϑ)dt +υ2(g(σt),ϑ)dW2,t

(4)

where g, m1, υ1, m2 and υ2 are known functions; Φ = (θ ,ϑ)∈Rd is an unknown vector
parameter (to be estimated); σ2

t is the unobserved volatility and W1,t y W2,t are (possibly
correlated) Brownian motions.
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As remarked in Campbell et al. (1997) there are many open issues in statistical
inference for continuous–time processes with discretely sampled data. For instance,
Aı̈t-Sahalia (1993) proposes a nonparametric estimator of the diffusion coefficient (as-
suming some constraints on the drift). Genon-Catalot et al. (1999) introduce appropriate
and explicit functions of the observations to replace either the log-likelihood or the score
function. Aı̈t-Sahalia and Kimmel (2007) developed an alternative method that employs
maximum likelihood, using closed form approximations to the true (but unknown) like-
lihood function. Specifically, for Model (3), the goodness–of–fit testing problem has
been discussed by Dette and von Lieres und Wilkau (2003), Dette et al. (2006) and
Monsalve-Cobis et al. (2011).

For the stochastic volatility model in equation (4), most of the existing methods for
goodness–of–fit testing are not directly applicable due the fact that the volatility is not
directly observed, but there have been some approaches for testing its components. For
example, Lin et al. (2013) propose a goodness–of–fit test for the volatility distribution
in (4), based on the deviation between the empirical characteristic function and its para-
metric counterparts.

In this work, a goodness–of–fit test based on the empirical process is proposed. First,
a discretized version of Model (4) is considered. Then, Kalman filtering techniques
are applied to obtain the associated state space model. Finally, the ideas described in
Monsalve-Cobis et al. (2011) for the construction of some generalized statistical tests
are applied to this context. Thus, the goal is to introduce a goodness–of–fit test for the
(parametric) drift and volatility functions in those models with a stochastic volatility
component. Calibration of the tests is done using bootstrap procedures (see Rodriguez
and Ruiz (2012) and Monsalve-Cobis et al. (2011)).

This article is organized as follows: the continuous time stochastic volatility mod-
els are presented in Section 2, discussing the corresponding state space structure. In
Section 3, the new goodness–of–fit tests for the drift and the volatility is introduced.
Section 4 is devoted to the bootstrap strategy used for calibration. Finally, in Section 5,
some preliminary simulation results are provided, jointly with a real data application of
the tests, dealing with interbank intereset rates in the Eurozone.
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2 The Stochastic Volatility Model

Consider the stochastic volatility Model (4), where g, m1, m2, υ1 and υ2 are known real
valued functions satisfying certain regularity conditions in order to ensure the existence
and uniqueness of the solution of the underlying stochastic differential equations (see
Genon-Catalot et al. (1999) and Lin et al. (2013)). The coefficients in (4) depend on the
unknown parameters Φ = (θ ,ϑ) ∈Θ ∈Rd , and therefore, different models can be gen-
erated for stochastic volatility by choosing different parametric forms for the functions
g, m1, m2, υ1 and υ2. The developments presented in this paper will be focused on a
widely studied model, which has been used in several financial applications: the CKLS

model proposed by Andersen and Lund (1997). This model incorporates the volatility
as a non observable stochastic factor, being an extension of the CKLS model introduced
by Chan et al. (1992). The specification proposed by Andersen and Lund (1997) as-
sumes mean reversion both at the level of the interest rate and at the volatility (in log
scale). More concretely:

drt = κ1(µ− rt)dt +σtr
γ

t dW1,t

d log(σ2
t ) = κ2(α− log(σ2

t ))dt +ξ dW2t ,

where W1t and W2t are independent Brownian motions, and α,κ1,κ2,µ,γ and ξ are the
unknown parameters.

It should be also noted that it is not unusual to find in Model (4) a correlation be-
tween rt and σt as a consequence of the corresponding Brownian processes. In that case,
the following kind of dependence structure can be used,

dW1t = ρdW2t +
√

1−ρ2dW3t , ,

with W2t and W3t independent Brownian motions. However, along this paper, ρ will be
set to 0.

Although model in equation (4) specifies a proper framework for continuous time
financial process analysis, in practice, the phenomena associated to such processes is
just observed at discrete time points. Hence, discretized versions of continuous time
models must be considered for application in practice. For that purpose, assume that
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the process {rt : 0 ≤ t ≤ T} is observed at discrete equally spaced times ti = i∆, i =

0,1, . . . ,n, with a fixed ∆> 0 within an observation window [0,n∆= T ], which increases
as n grows. Then, the discrete time version of Model (4) can be formulated as

rti+1− rti = m1(rti,θ)∆+σtiυ1(rti,θ)
(
W1,ti+1−W1,ti

)
g(σti+1)−g(σti) = m2(g(σti),ϑ)∆+υ2(g(σti),ϑ)

(
W2,ti+1−W2,ti

)
and taking into account the properties of the Brownian motion, the process can be ex-
pressed as

yti
∆

= m1(rti,θ)+σtiυ1(rti,θ)∆
−1/2ε1,ti

g(σti+1)−g(σti) = m2(g(σti),ϑ)∆+υ2(g(σti),ϑ)
√

∆ε2,ti ,

(5)

where, yti = rti+1 − rti , and {ε1,ti,ε2,ti} are two independent random variables with dis-
tribution N(0,1), for i = 1, . . . ,n.

An important issue when analyzing the behaviour of the aforemetioned processes is
the large sample scheme, since there is not a unique way of defining it. The most natural
approach considered in practice consists in taking ∆ (spacing between two consecutive
observations) as fixed and let the number of observations n grow (see Kessler (2000)
and Iacus (2008), for some examples). However, there are other alternatives, as the
one considered by Genon-Catalot et al. (1999), where the sampling distance ∆ = ∆n

goes to zero whereas the window n∆n goes to infinity. The main goal of the different
observation schemes is related to keeping the asymptotic properties of the estimators
and to allow the use of statistical inference methods (see Lin et al. (2013)).

2.1 State Space Model

The estimation of stochastic volatility models turns out to be a complex problem, partly
motivated by the estimation of the transition density funciton of rt (the state variable),
which is itself a difficult task, even under closed formulations. In addition, the state
variables that determine the volatility are not directly observable. Thus, the estimation
for such a function just from information of the underlying process in its essence calls
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for the use of filtering techniques. With this purpose, Kalman filtering techniques are
applied to obtain the state space representation (5) of the model in (4). Taking xti =

g(σti), with g strictly monotonic and after some algebraic manipulations,

yti
∆

= m1(rti,θ)+g−1(xti)υ1(rti,θ)∆
−1/2ε1,ti

xti+1 = xti +m2(xti,ϑ)∆+υ2(xti,ϑ)
√

∆ε2,ti.

(6)

The main goal of this representation is to capture the dynamics of the observable vari-
ables yti and rti , in terms of the unobservable σti . It is important to stress that, for con-
venience, the state space model is required to fall within the class of linear state space
models. This is achieved considering, for example, g(y) = log(y2). Thus, Model (5)
with g(·) = 2log(·) can be written as equation (6):

yti
∆

= m1(rti,θ)+σtiυ1(rti,θ)∆
−1/2ε1,ti

log(σ2
ti+1

) = log(σ2
ti )+m2(log(σ2

ti ),ϑ)∆+υ2(log(σ2
ti ),ϑ)

√
∆ε2,ti.

Following the derivation in Harvey et al. (1994), denote by eti the error obtained from
the equation

eti =
yti
∆
−m1(rti,θ) = σtiυ1(rti,θ)∆

−1/2
ε1,ti ,

which gives:

log(e2
ti) = log(σ2

ti )+2log(υ1(rti,θ))− log(∆)+ log(ε2
1,ti)

Now, taking uti = log(e2
ti), and xti+1 = log(σ2

ti+1
), the following state space model is

obtained:
uti = xti +2log(υ1(rti,θ))+ηti−κ

xti+1 = xti +m2(xti,ϑ)∆+υ2(xti,ϑ)
√

∆ε2,ti

(7)

with ηti =− log(∆)+ log(ε2
1,ti)+κ and κ = log(∆)−E

[
log(ε2

1,ti)
]
. The parameter esti-

mation of Φ=(θ ,ϑ) can be obtained by maximum likelihood, computing the likelihood
from the innovations ηt1, . . . ,ηtn .
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In the sequel, the estimation can be obtained using Kalman filters considering a
mixture of Gaussian variables to approximate the non–Gaussian errors, but other alter-
natives are also possible. With respect to this issue, note that innovation errors in the
previous state space model are not Gaussian. If ε2

1,ti follows a lognormal distribution,
then the state space model presents Gaussian errors, and it can be estimated using basic
Kalman filter techniques. Unfortunately, under the assumption of normality for ε1,ti , the
variable ε2

1,ti has a χ2 distribution with one degree of freedom, and the density under the
logarithmic transformation is given by

f (x) =
1√
2π

e−
1
2 (e

x−x), −∞ < x < ∞,

with mean −1.2704 and variance π2/2. It is clear the need of applying methodology
that allows to obtain an equation involving the non observable variable xti , with Gaussian
mixture distributions. Therefore, writing the observation equation in Model (7) with
uti = log(e2

ti) as
uti = xti +2log(υ1(rti,θ))+ηti−κ

where ηti is zero-mean noise, the assumption of a normal mixture distribution will be
considered. In particular, for a mixture of two distributions:

ηti−κ = Itizti0 +(1− Iti)zti1,

where Iti is an iid process such that P{Iti = 0} = π0, P{Iti = 1} = π1, (π0 + π1 = 1),
zti0 ∼ iid N(0,σ2

0 ), and zti1 ∼ iid N(µ1,σ
2
1 ). The advantage of such procedure hinges

upon the use of normality.
The estimation of the model parameters is performed by maximum likelihood, being

the log–likelihood function to optimize:

logL(Φ) =
n

∑
i=1

log

(
1

∑
j=0

π j f j(ti|ti−1)

)

where the transition density f j(ti|ti−1) is approximated by a normal or normal mixture
density, with parameters given by the filter. For details see, for example, Shumway and
Stoffer (2011), §6.8 and §6.9.
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An alternative method for the estimation of the stochastic volatility can be found in
Aı̈t-Sahalia and Kimmel (2007). In this reference, maximum likelihood is also used but
considering numerical approximations of the true likelihood. In order to consider posi-
tive correlation between Brownian motions, the methods introduced by §6.7-Shumway
and Stoffer (2011) and Nisticò (2007), also based on Kalman filtering techniques, could
be considered.

3 GOF-Tests

A generalization of the goodness–of–fit test proposed in Monsalve-Cobis et al. (2011)
for the stochastic volatility Model (4) will be presented in this section. The proposal
follows the methodology developed by Stute (1997) for the regression context, based on
empirical residual processes. The goal in this work is to compare the parametric form
of the drift functions and the volatility for the model under consideration, establishing
as null hypothesis:

H0m : m1 ∈ {m1(·,θ) : θ ∈Θ} (8)

for the parametric form of the drift function, and

H0v : υ1 ∈ {υ1(·,θ) : θ ∈Θ} (9)

for the parametric form of the volatility. The construction of the test statistic and the
testing procedure will be described in the next sections.

3.1 Drift Function Test

Assume that Φ̂ = (θ̂ , ϑ̂) is an appropriate estimator (satisfying a root-n consistency
condition) of the true parameter Φ = (θ ,ϑ) of the stochastic volatility model. The test
statistic for assessing the parametric form of the drift function, under the assumption
that H0v given by (9) holds, is based on the empirical process:

Dn(r) =
1√
n

n

∑
i=1

1{rti≤r}

{yti
∆
−m1(rti, θ̂)

}
, with r ∈ R,
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being 1{·} the indicator function. For constructing a test statistic, a continuous functional
Ψ(·) of the empirical process can be considered. In general, such a test statistic will be
defined as Tn = Ψ(Dn) and the null hypothesis H0m is rejected if Tn > c1−α where c1−α

satisfies
P{Tn > c1−α |H0m}= α .

Two examples of such a test statistic are the following

T KS
n = sup

r
|Dn(r)|, and TCvM

n =
∫
R

Dn(r)2Fn(dr)

being the first one a Kolmogorov-Smirnov (KS) type test and the second one a Cramér-
von Mises (CvM) statistic. In the previous formulation, Fn denotes the empirical distri-
bution of {rti}n

i=1. Along the text, Tn = T KS
n or Tn = TCvM

n will be used to indicate the
specific statistics under consideration.

3.2 Volatility function test

Focusing now on the volatility component, and similarly to the ideas presented for the
test designed for the drift function, assume that Φ̂ = (θ̂ , ϑ̂) is an appropriate estimator
of the true parameter Φ = (θ ,ϑ) in the volatility model. The goodness–of–fit test for
the parametric form of the volatility function under the assumption that H0m given by
(8) holds, is based on the empirical process:

Vn(r,x) =
1√
n

n

∑
i=1

1{rti≤r,σ̂2
ti
≤x}

{(yti
∆
−m1(rti, θ̂)

)2
−

σ̂2
ti υ

2
1 (rti, θ̂)

∆

}
, with r,x ∈ R.

with σ̂2
t an estimate of the volatility. As before, a continuous functional Ψ(·) of the

empirical process can be considered to define, in general, the test statistics Un = Ψ(Vn).
Similarly, the null hypothesis H0υ is rejected if Un > c1−α where c1−α is the critical
value for the α–level test:

P{Un > c1−α |H0υ}= α ,
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Again, Kolmogorov-Smirnov (KS) and Cramér-von Mises (CvM) statistics can be ex-
pressed as

UKS
n = sup

r,x
|Vn(r,x)|, and UCvM

n =
∫ ∫

R2
(Vn(r,x))

2 Fn(dr,dx)

where Fn is the empirical distribution of {rti, σ̂
2
ti }. Un =UKS

n or Un =UCvM
n will be used

to denote the corresponding statistics.
In the definition of Vn(r,x), a parametric model is assumed for the drift m1. If such

a model in H0m is not specified, a nonparametric estimator for m1 must be used. In that
case, the problem is that: E [yti/∆|rti] = m1(rti,θ)+ υ1(rti,θ)∆

−1/2E
[
g−1(xti)ε1,ti|rti

]
and additional assumptions on the stochastic volatility would be necessary to obtain a
consistent estimator of m1 (for example, using a kernel estimation). Clearly, this is still
an open problem and more research is needed in this direction.

Both for the drift and the volatility tests, the critical values under the null hypothesis,
denoted by c1−α , must be determined. For that purpose, the distribution of the processes
Tn and Un must be specified, which turns out to be difficult in general. Alternatively, ap-
proximations of such critical values by means of bootstrap techniques can be considered
for testing purposes. A bootstrap approximation will be introduced in the next section.

4 Bootstrap Approximations

A bootstrap algorithm will be presented for approximating the critical values of the
proposed test statistics. The procedure is based on the generation of an artificial sample
with the same characteristics of the initial one. From such a sample, critical values are
estimated as follows.

First, let {(r∗t )} be an artificial process (to be defined later in detail) and let Φ̂∗ =

(θ̂ ∗, ϑ̂ ∗) be a parameter estimator obtained from such process. Then, the bootstrap
versions Dn and Vn are given by:

D∗n(r) =
1√
n

n

∑
i=1

1{r∗ti≤r}

{
y∗ti
∆
−m1(r∗ti , θ̂

∗)

}
, with r ∈ R.
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V ∗n (r,x)=
1√
n

n

∑
i=1

1{r∗ti≤r,σ̂∗2ti
≤x}

{(
y∗ti
∆
−m1(r∗ti , θ̂

∗)

)2

−
σ̂∗2ti υ2

1 (r
∗
ti , θ̂
∗)

∆

}
, with r,x ∈ R.

The critical value c1−α will be approximated by its bootstrap counterpart, c∗1−α
, so that

P∗{T ∗n > c∗1−α}= α, P∗{U∗n > c∗1−α}= α,

where P∗ denotes the probability measure associated to the bootstrap with

T ∗KS
n = sup

r
|D∗n(r)|, or T ∗CvM

n =
∫
R

D∗n(r)
2Fn(dr)

and
U∗KS

n = sup
r,x
|V ∗n (r,x)|, or U∗CvM

n =
∫ ∫

R2
V ∗n (r,x)

2Fn(dr,dx)

In practice,
c∗1−α = T ∗dB(1−α)e

n , or c∗1−α =U∗dB(1−α)e
n

that is, the dB(1−α)e-th order statistic calculated on the B bootstrap replicates T ∗ j
n = T ∗n

(U∗ j
n =U∗n ), 1≤ j≤B. The empirical p-value for the bootstrap sample can be calculated

as
]{T ∗ j

n > Tn}
B

or
]{U∗ j

n >Un}
B

,

that is to say, the p-value is taken as the fraction of values from the bootstrap versions
T ∗n (U∗n ) exceeding the value of Tn (Un). It seems clear that appropriate (consistent)
parametric estimates for the stochastic volatility model parameters is crucial for the
procedure. In the following section, some aspects concerning the characteristics of the
artificial sample used in the bootstrap procedure implementation will be described.

4.1 Bootstrap Resampling

For the construction of the bootstrap sample, the state space model structure must be
taken into account. This feature will be illustrated for Model (7). A crucial condition is
that such model presents Gaussian errors, or at least, that such errors are approximately
Gaussian distributed (which must be checked using some statistical procedure). Under
these premises, the bootstrap sample can be generated as follows:
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1. Let Φ̂ = (θ̂ , ϑ̂) be the estimator of the true parameter Φ, obtained by maximum
likelihood. That is:

Φ̂ = argmax
Φ

L(Φ),

assuming that the errors follow Gaussian mixture distribution.

2. Following Shumway and Stoffer (2011) §6.7, apply the Kalman filter equations
to obtain a bootstrap resample

{(
u∗ti,x

∗
ti,rti

)}
where the {rti} remain fixed.

3. Once the bootstrap resample is obtained, estimate the corresponding parameters
Φ̂∗ = (θ̂ ∗, ϑ̂ ∗) associated to the state space model by maximum likelihood, based
on L∗(Φ).

4. Get the bootstrap versions of the aforementioned processes D∗n(r,x) and V ∗n (r,x),
for x,r ∈ R, and T ∗n , (U∗n ).

5. Repeat Steps 2–4 B times and get copies T ∗ j
n , (U∗ j

n ), for j = 1,2, . . . ,B,

6. Finally, compute the bootstrap approximations of the critical values

ĉ∗1−α = T ∗dB(1−α)e
n or ĉ∗1−α =U∗dB(1−α)e

n .

5 Some Applications

The performance of the testing procedure introduced in this work is illustrated in this
section. First, some preliminary simulation results are shown, considering a previously
studied model from the financial literature and showing the procedure perfomance. A
real data example is also provided. The dataset gathers interest rate curves at the Euro-
pean markets, the EURIBORr-(Euro Interbank Offered Rate).

As an example of artificial data, consider Model (1) given in (Monsalve-Cobis et al.,
2011, equation (35)):

drt = (0.0408−0.5921rt)dt +σtr1.4999
t dW1,t

where the deterministic value σt =
√

1.6704 in the previous reference is replaced by a
stochastic volatility model with d(logσ2

t ) = ωdW2,t being ω an unknown parameter.
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Table 1: Empirical power for the null (γ = 1.4999) and for the two alternatives (γ =
1.25,1.0).

γ = 1.4999 γ = 1.25 γ = 1.00

α = 0.10 0.11 0.39 0.89

α = 0.05 0.08 0.24 0.77

Equation (7) adapted for this model is given by:

uti = xti + γ0 log(r2
ti)− log∆−1.2704+ηti

xti+1 = xti +ω
√

∆ε2,ti

with γ0 = 1.4999, ηti a random variable following the centered density given in Section
2.1 and ε2,ti distributed as a standard normal.

The null hypothesis H0v : υ1(rt ,θ)= r1.4999
t was tested under the assumption that the

drift is completely known and with ω = 0.0046 in the simulated model. For simulations,
{rt : 0≤ t ≤ T} was observed at discrete equally spaced times ti = i∆, i = 0,1, . . . ,n =

300 with ∆ = 1/52. The Kolmogorov–Smirnov UKS
n statistic was applied for testing in

100 trials. The distribution of the test under the null was calibrated by the suggested
bootstrap resampling with B = 1000. For the resampling, the density of ηti was simu-
lated using a mixture of seven normal densities as described in Kim et al. (1998). Table
1 shows the empirical power for the levels α = 0.1,0.05 obtained for the null and for
the alternatives υ1(rt ,θ) = rγ

t with γ = 1.4999 (the null) and γ = 1.25 and γ = 1.0.
Needless to say that this is a very simple example and more research is necessary

about the theoretical and practical behaviour of the different tests and the simulation
in more complex models. Even in this simple case, the optimization procedure of the
Kalman filter is quite demanding in computing time. That effect is multiplied here by
the number of bootstrap replicates. So, a revision of the (possibly high time consum-
ing) steps involved in the procedure (design of Kalman filter, optimization techniques,
constraints for the parameters, ...) is required in order to get better calibration levels in
a more extensive study.

As far as the real data set is concerned, the interest rate curves of EURIBOR, repre-
senting the rates at which different interbank Euro denominated deposits, with distinct
maturities, are offered within Eurozone. Such maturities for the EURIBOR time series
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Figure 1: Time series for the interbank deposits in the Eurozone for the period 2001-
2006 with maturities of 1,2, and 3 weeks; and 1,2, . . . ,12 months.

are 1,2, and 3 weeks, and 1,2, . . . ,12 months, being the EURIBOR time frequency a
daily scale. For the analysis, the data is divided in two observed time series:

• Previously to the crisis: From October 15th, 2001 till March 31st, 2006

• During the crisis: From January 2nd, 2008 till November 30th, 2011.

Figures 1 and 2 display the graphical evolution of the EURIBOR series during the above
mentioned periods. As null hypotheses, for the goodness–of–fit tests for the drift and
the volatility, a CKLS formulation incorporating the stochastic volatility model proposed
in Andersen and Lund (1997) is considered:

drt = κ1(µ− rt)dt +σtr
γ

t dW1,t

d log(σ2
t ) = κ2(α− log(σ2

t ))dt +ξ dW2t

where W1t and W2t are independent Brownian motions. The Euler scheme is applied to
discretize the model and to obtain the first order approximation

rti+1− rti = κ1(µ− rti)∆+σtir
γ

ti

√
∆ε1,ti

log(σ2
ti+1)− log(σ2

ti ) = κ2(α− log(σ2
ti ))∆+ξ

√
∆ε2,ti
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Figure 2: Time series for the interbank deposits in the Eurozone for the period 2008-
2011 with maturities of 1,2, and 3 weeks; and 1,2, . . . ,12 months.

where ε1,t and ε2,t are independent normal random variables N(0,1) with fixed ∆ and
weekly frequency (hence, ∆ = 1/52). The corresponding general Model (7) is, in this
case:

ut = xt +2γ log(rt)−1.27+ζt− log(∆)

xt = φ0 +φ1xt−1 +ξ
√

∆ε2,t

where

• φ0 = (1−κ2∆), φ1 = κ2α∆

• ζt = log(ε2
1,t)+1.27

• ut = log(e2
t ) and et = Yt/∆−m1(rt ,θ) = Yt/∆−κ1 (µ− rt)

• xt = log(σ2
t ).

Based on the above state space model, the proposed tests are applied. Model parame-
ters are estimated by maximum likelihood and Kalman filtering procedures are applied
to obtain the non observable variable xt , required for performing the tests. B = 500
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Table 2: p-values associated to the goodness–of–fit test for the drift and volatility func-
tions of the stochastic volatility model adjusted to the EURIBOR series before the crisis.

GOF-Drift GOF-Volatility
Maturity p̂value Dn(r,x) p̂value Vn(r,x)

1 week 0.036 28.634 0.126 3.717
2 week 0.660 21.603 0.098 2.586
3 week 0.754 27.816 0.984 0.017

1 month 0.752 37.673 0.998 0.003
2 month 0.194 57.085 0.996 0.002
3 month 0.054 51.173 0.990 0.003
4 month 0.186 38.473 0.990 0.004
5 month 0.246 38.926 0.982 0.007
6 month 0.442 33.302 0.990 0.009
7 month 0.238 35.567 0.948 0.013
8 month 0.132 38.118 0.870 0.019
9 month 0.088 38.478 0.766 0.026

10 month 0.050 39.023 0.652 0.033
11 month 0.076 39.375 0.528 0.037
12 month 0.034 42.505 0.440 0.050

bootstrap copies are generated to approximate the distribution of the corresponding pro-
cesses involved in the tests contruction and estimate the empirical p-values. The results
collected in Table 2 and Table 3 were obtained applying the resampling scheme de-
scribed in Section 4. It can be noted that the p-values associated to the tests for the drift
and the volatility of the EURIBOR series, except for a few cases of maturity, do not

reject the null hypothesis for the periods before the crisis and during the crisis. There-
fore, the CKLS model, incorporating the volatility factor, is capable of characterizing
such series. It is important to emphasize that the CKLS model considered in Monsalve-
Cobis et al. (2011), without taking into account the stochastic volatility, was rejected in
a conclusive way for the volatility component.

In the light of the results, incorporating a stochastic model for the volatility func-
tion in a more flexible way seems to allow for a more effective characterization of the
EURIBOR series.
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Table 3: p-values associated to the goodness–of–fit test for the drift and volatility func-
tions of the stochastic volatility model adjusted to the EURIBOR series during the crisis.

GOF-Drift GOF-Volatility
Maturity p̂value Dn(r,x) p̂value Vn(r,x)

1 week 0.222 25.947 0.460 0.198
2 week 0.898 19.519 0.616 0.159
3 week 0.748 23.504 0.402 0.171

1 month 0.996 16.458 0.870 0.129
2 month 0.828 20.524 0.544 0.177
3 month 0.794 19.166 0.596 0.258
4 month 0.476 21.579 0.336 0.310
5 month 0.040 25.021 0.072 0.418
6 month 0.140 27.131 0.096 0.468
7 month 0.436 23.855 0.976 0.013
8 month 0.094 29.190 0.104 0.506
9 month 0.064 28.640 0.066 0.869

10 month 0.056 27.945 0.118 0.656
11 month 0.006 28.735 0.156 0.646
12 month 0.166 26.243 0.098 0.767
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