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Abstract

We introduce and study the family of sets in a finite dimensional Eu-
clidean space which can be written as the Minkowski sum of an open,
bounded and convex set and a closed convex cone. We establish sev-
eral properties of the class of such sets, called OM-decomposable, some
of which extend related properties holding for the class of Motzkin de-

composable sets (i.e., those for which the convex and bounded set in the
decomposition is requested to be closed, hence compact).
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1 Introduction

It has been known at least since the mid XIX century that the set of solutions
of a system of linear equations admits an explicit representation, as the sum of
a particular solution plus an arbitrary linear combination of the vectors forming
a basis of the linear subspace consisting of the solutions of the associated ho-
mogeneous system. The corresponding result for systems of linear inequalities
is much more recent. In his doctoral thesis [7], written in 1936, T. Motzkin
proved that the set F of solutions of such a system consists of the sums of con-
vex combinations of a finite set of vectors (the vertices of F ) and nonnegative
combinations of another finite set (the extreme rays of F ). In modern termi-
nology, every (possibly unbounded) convex polyhedron is the Minkowski sum
of a convex and compact polytope and a closed and convex cone. This char-
acterization turned out to be quite useful for establishing finite convergence of
pivotal algorithms for Linear Programming (e.g. the Simplex Method, see [2]),
and more specifically, for Quadratic Programming, like Lemke’s method, see [1].

Motzkin’s representation result suggested the consideration of a class of con-
vex sets more general than polyhedra, resulting from removing the “linear” na-
ture of these, while keeping the decomposition aspect. More precisely, those sets
in R

n which can be written as the Minkowski sum of a compact and convex set
and a closed and convex cone. Such sets were introduced in [3], where they were
called Motzkin decomposable, or M-decomposable, in short, and further studied
in [5] and [4], together with the M-decomposable functions, namely those whose
epigraphs are M-decomposable. The class of M-decomposable sets lies hence in
between the classes of closed polyhedra and of closed and convex sets.

We comment now on some features of M-decomposable sets. It is easy to
check that the cone D appearing in the decomposition of an M-decomposable
set F = C + D (where C is the compact set), is uniquely determined; it is
precisely the recession cone 0+(F ) of F , namely the set of directions d ∈ R

n

such that {a + td : t ∈ R+} ⊂ F for any a ∈ F . On the other hand, whenever
D 6= {0}, the compact and convex set C is not uniquely determined; the given
set C might be replaced, for instance, by F ∩ B, where B is any ball in R

n

containing C.
A sizable number of additional properties of such sets and functions were

established in the above mentioned references, and we single out two of them
for future reference.

First, M-decomposable sets whose recession cones are pointed, admit a
minimal decomposition, which we define next. We say that a representation
F = C + D of an M-decomposable set F is minimal when C ⊂ C ′ for any
convex and compact set C ′ ⊂ R

n such that F = C ′ + D. When F is M-
decomposable and D is pointed, there exists such a minimal decomposition,
and the corresponding compact and convex set C is itself uniquely determined:
it is the closed and convex hull of the extreme points of F (see Theorem 11(ii)
in [5]).

Second, M-decomposable sets whose recesion cones are pointed admit an M-
decomposition of truncation type, meaning a decomposition F = C+D with the
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following property: there exits a hyperplane H such that C is the intersection
of F with one of the half-spaces determined by H, while the intersection of F
with the opposite half-space consists of a set of half-lines emanating from F ∩H
(see Lemmas 21 and 29 in [4]).

M-decomposable sets share some properties of convex sets, but not all. For
instance, the Minkowski sum of two convex sets is convex, but the Minkowski
sum of M-decomposable sets may fail to be M-decomposable. This is a con-
sequence of the facts that M-decomposable sets are always closed, and the
Minkowski sum of closed sets may not be closed. This situation suggests that it
might be of interest to relax the closedness assumptions on the sets involved in an
M-decomposition, namely the bounded convex set and the cone. The closedness
hypothesis on the cone was relaxed in [6], where the so called M-predecomposable
sets were introduced, meaning those sets of the form F = C +D, where C is a
convex and compact set and D is a convex cone, not necessarily closed. Several
properties of these sets (including some not enjoyed by M-decomposable sets,
like the one related to the Minkowski sum), were established in [6].

In this paper we will continue this line of research, keeping the closedness of
the cone, but discarding the compactness assumption on the bounded set. More
precisely, we will assume that C is an open, bounded and convex set. Regarding
the cone D, for the sake of simplicity we will fix it as the recession cone of F ,
i.e. we will consider sets F ⊂ R

n such that F = C + O+(F ), where C is open,
bounded and convex and O+(F ) is the recession cone of F . These sets will be
called OM-decomposable (OM standing for “Open Motzkin”).

We will prove in Section 2 that the OM-decomposable sets are precisely those
whose closure is M-decomposable. After showing that the Minkowski sum of
two OM-decomposable sets is OM-decomposable, we will proceed to establish
suitable extensions to OM-decomposable sets of the two above described results
on M-decomposable sets.

2 OM-decomposable sets

We start this section with the formal definition of OM-decomposable sets.

Definition 1. The convex set ∅ 6= F ⊂ R
n is OM-decomposable if there exists

a nonempty, open, convex and bounded set C ⊂ R
n such that F = C +O+(F ).

Remark 1. Observe that if F ⊂ R
n is OM-decomposable, then F is open and

convex.

We start with an elementary property of open and convex sets, needed in
for the proof of Theorem 2.

Lemma 1. Let ∅ 6= F ⊂ R
n be an open and convex set. Then O+(F ) =

O+[cl(F )].

Proof. Take d ∈ O+(F ), x ∈ cl(F ) and λ ≥ 0. There exists a sequence {xk} ⊂ F
converging to x. Hence, the sequence {xk+λd} is contained in F and it converges
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to x + λd ∈ cl(F ). Therefore, d ∈ O+[cl(F )]. Now, take d ∈ O+[cl(F )], x ∈ F
and λ ≥ 0. Since F is an open and convex set, we have that int[cl(F )] = F .
Therefore, x+ λd ∈ F . The lemma is proved.

Next we deal with the relation between OM-decomposable sets and M-
decomposable ones. Before establishing the result, we quote a theorem on
M-decomposable sets which will be needed in the proof.

Theorem 1. If F is M-decomposable and O+(F ) is pointed, then there exists
an M-decomposition of F , say F = C + O+(F ), of truncation type, meaning
that there exists a hyperplane H such that C = F ∩H+, and F ∩H− = (F ∩
H) +O+(F ), i.e., F ∩H− is a set of halflines emanating from F ∩H.

Proof. See Lemmas 21 and 29 in [4].

Our result on the connection between M - and OM-decomposability is the
following.

Theorem 2. Let ∅ 6= F ⊂ R
n be an open and convex set. Assume that O+(F )

is pointed. Then F is OM-decomposable if and only if cl(F ) is M-decomposable.

Proof. =⇒) F = C + O+(F ), implying that cl(F ) = cl(C) + cl[O+(F )] =
cl(C) + cl [O+(cl(F ))] = cl(C) +O+[cl(F )]. Since C is bounded and convex, we
get that cl(F ) is M-decomposable.

⇐=) cl(F ) is M-decomposable, so that there exists a convex, compact set
C such that cl(F ) = C + O+[cl(F )] = C + O+(F ). Since O+(F ) is a pointed
cone, we invoke Theorem 1, concluding that there exists a hyperplane H such
that C ⊂ H− ∩ cl(F ) and cl(F ) = H− ∩ cl(F )+O+(F ). Since F is an open set,
without loss of generality we can consider that H− ∩ cl(F ) has dimensionality
n. By convexity, int[H− ∩ cl(F )] = int (H−) ∩ F ⊂ F . Hence,

int
[
H− ∩ cl(F )

]
+O+(F ) = int

(
H− ∩ F

)
+O+(F ) ⊂ F.

Now, let us take a point x ∈ F . Suppose that x /∈ int (H−) ∩ F + O+(F ). It
follows that

cl(F ) = H− ∩ cl(F ) +O+[cl(F )] =

cl
[
int

(
H−

)
∩ F

]
+O+(F ) = cl

[
int

(
H−

)
∩ F +O+(F )

]
,

by convexity and Lemma 1. Hence, x ∈ bd [cl(F )], which is a contradiction.
Thus, we obtain that F = int (H−) ∩ F +O+(F ), which implies that the set F
is OM-decomposable. The proof is complete.

Remark 2. Theorem 2 shows a kind of symmetry between closed M-decomposable
and the open OM-decomposable sets.

Remark 3. We remark that a set lying strictly in between an OM-decomposable
set and its closure, is neither OM-decomposable nor M-decomposable. Indeed,
in view of Remark 1, such set would be in between an open set and its closure,
and hence it would be neither open nor closed, but OM-decomposable sets are
open, invoking again Remark 1, and M-decomposable sets are clearly closed.
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Next we show that the Minkowski sum of OM-decomposable sets is OM-
decomposable.

Proposition 1. Let the convex set F ⊂ R
n be such that F = C + D, where

C ⊂ F is a convex, open and bounded set and D is a convex cone. Then
D ⊆ O+(F ) and F = C +D = C +O+(F ).

Proof. Take any d ∈ D and x ∈ F . Then, x = c + h, with c ∈ C and h ∈ D.
Observe that x+ d = c+ (h+ d) belongs to F , because h+ d ∈ D. Therefore,
d ∈ O+(F ) and D ⊆ O+(F ). Hence, F = C +D ⊂ F +D ⊆ F + O+(F ) = F,
so that F = C +D = C +O+(F ).

Corollary 1. If F,G are OM-decomposable, then F +G is OM-decomposable.

Proof. Follows easily from Proposition 1.

Now we will extend to OM-decomposable sets some results which hold for
M-decomposable sets. We recall that a closed set F ⊂ R

n is M-decomposable iff
F = C + O+(F ) for some compact and convex set C. We start by introducing
some notation and quoting a result on M-decomposable sets.

Given a hyperplane H = {x ∈ R
n : atx = α}, with a ∈ R

n, α ∈ R, we denote
asH+, H− the two half-spaces determined byH, i.e., H+ = {x ∈ R

n : atx ≥ α},
H− = {x ∈ R

n : atx ≤ α}.

Theorem 3. If F is M-decomposable and O+(F ) is pointed, then there exists
a minimal M-decomposition of F , meaning an M-decomposition of the form
F = C + O+(F ) such that C ⊂ C ′ for all M-decomposition F = C ′ + O+(F ).
In fact C is precisely the closed convex hull of the extreme points of F .

Proof. See Theorem 11 in [5].

We study next the suitable extensions of Theorems 3 and 1 to the case of
OM decompositions. We start by stating an elementary property.

Proposition 2. Let C ⊂ R
n be an open, bounded and convex set, E ⊂ R

n be a
closed and convex set and K ⊂ R

n a closed and convex cone. Then

i) int(E) +K = int(E +K),

ii) cl(C) +K = cl(C +K).

Proof. i) It is immediate that both sets int(E) + K and int(E + K) are
open, and that they have the same closure, namely cl(E+K). Hence they
coincide.

ii) Observe that cl(C +K) = cl(C)+ cl(K) = cl(C)+K, by closedness of K.

Now we state and prove the extension of Theorem 3 to OM-decomposable
sets.
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Theorem 4. Assume that F is OM-decomposable and that O+(F ) is pointed.
Let C be the closed convex hull of the extreme points of cl(F ). If int(C) 6= ∅ then
F = int(C) + O+(F ), and this is a minimal OM-decomposition of F , meaning
that int(C) ⊂ C ′ for all OM-decomposition F = C ′+O+(F ) of F . If int(C) = ∅
then there exists no minimal OM-decomposition of F .

Proof. By Theorem 2, cl(F ) is M decomposable. By Theorem 3, cl(F ) = C +
O+(F ) and this M-decomposition is minimal. We proceed to prove that F =
int(C) +O+(F ). Note that

int(C) +O+(F ) = int(C +O+(F )) = int[cl(F )] = int(F ) = F,

using Proposition 2(i) in the first equality, Theorem 3 in the second one, con-
vexity of F in the third one and openness of F in the fourth one. The claim is
proved. Next we prove the minimality of the OM-decomposition F = int(C) +
O+(F ). Assume that there exists an open set E ⊂ int(C) such that E +
O+(F ) =int(C) +O+(F ). Then

cl(E) +O+(F ) = cl[E +O+(F )] = cl[int(C)] +O+(F ) = cl(F ),

using Proposition 2(ii) in the first equality. It follows that cl(E) + O+(F ) is
an M-decomposition of cl(F ). By the minimality property of C (Theorem 3),
we get that C ⊂ cl(E), so that int(C) ⊂ int[cl(E)] = E, using the fact that E
is open and convex in the equality. We have established the minimality of the
OM-decomposition F = int(C) +O+(F ).

Finally, we prove that if int(C) = ∅ then there is no minimal OM-decomposit-
ion of F . Consider an OM-decomposition of F , i.e. F = E + O+(F ) with E
open and bunded. Let A be the affine hull of C (also called the linearity of C,
i.e., the intersection of all the affine manifolds containing C). Since int(C) = ∅,
we get that dim(A) < n. Let B = A⊥ be the orthogonal complement of A, and
relint(C) be the relative interior of C, meaning the interior of C relative to A.

For ε > 0, define Ĉε = {d + u : d ∈ relint(C), u ∈ B, ‖u‖ < ε}. Note that Ĉε

is homeomorphic to relint(C) × B̂, with B̂ = {u ∈ B : ‖u‖ < ε}. Observe that

relint(C) is open in the relative topology of A, and B̂ is open in the relative

topology of B, so that relint(C)× B̂ is an open subset of A×B in the product
topology, which is just the standard topology of Rn = A×B. We conclude that
Ĉε is open in R

n for all ε > 0. Define C̃ε = Ĉε ∩ E. Clearly, C̃ε is open. We
will prove that it is nonempty. We claim first that C ⊂ cl(E). By Theorem 2,
cl(F ) = cl(E) +O+(F ) is an M-decomposition of cl(F ). Note that the extreme
points of cl(F ) belong to cl(E), because otherwise they would be of the form
c+ y with 0 6= y ∈ O+(F ) and c ∈ cl(E), but then c+ y belongs to the segment
between c+(1/2)y ∈ cl(E)+O+(F ) and c+(3/2)y ∈ cl(E)+O+(F ), and hence
it cannot be an extreme point. Since cl(E) is convex, it follows that C ⊂ cl(E),

establishing the claim. Take a point z ∈ relint(C) ⊂ Ĉε. Since z ∈ cl(E), there

exists a sequence {zk} ⊂ E such that limk→∞ zk = z. Since Ĉε is open, zk

belongs to Ĉε for large enough k, so that zk ∈ Ĉε ∩ E = C̃ε, and hence C̃ε is
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nonempty. We claim now that C̃ε + O+(F ) = F for all ε > 0. Since C̃ε ⊂ E,
we have that

C̃ε +O+(F ) ⊂ E +O+(F ) = F. (1)

On the other hand, note that C ⊂ cl
(
Ĉε

)
. Since C ⊂ cl(E), we have that

C ⊂ cl
(
Ĉε ∩ E

)
= cl

(
C̃ε

)
, so that

cl(F ) = C +O+(F ) ⊂ cl
(
C̃ε

)
+O+(F ) = cl

(
C̃ε +O+(F )

)
, (2)

using Proposition 2(ii) in the last equality. Since F and C̃ε + O+(F ) are both

convex, taking interior in both sides of (2) we obtain that F ⊂ C̃ε + O+(F ),

which, in view of (1), gives F = Ĉε + O+(F ), establishing the claim. We have

shown that C̃ε + O+(F ) is an OM-decomposition of F for all ε > 0. If there
existed a minimal OM-decomposition of F , say of the form F = C∗ + O+(F )

with C∗ open and bounded, we would have that C∗ ⊂ ∩ε>0C̃ε ⊂ ∩ε>0Ĉε, but
it follows easily from the definition of Ĉε that ∩ε>0Ĉε = ∅, completing the
proof.

We give next an example of an OM-decomposable set for which there exists
no minimal OM-decomposition.

Example 1. Take F = {(x, y) ∈ R
2 : 0 < x < 2, y > 0}.

It is clear that the set of extreme points of cl(F ) is {(0, 0), (2, 0)}, so that
the closed and convex hull of the extreme points of F is the set C = {(x, 0) :
0 ≤ x ≤ 2}, which has empty interior in R

2. Consider the triangle with vertices
at (0, 0), (2, 0), (1, t), with t ∈ (0, 1), and let Ut be the interior of such triangle.
It is easy to check that O+(F ) = {(0, s) : s ≥ 0}, and that F admits the OM-
decomposition F = Ut +O+(F ) for all t > 0. Since ∩t>0Ut = ∅, there exists no
minimal OM decomposition of F .

Next we extend Theorem 1 to OM-decompositions. We start by introducing
a suitable definition of an OM-decomposition of truncation type.

Definition 2. An OM-decomposition of truncation type of an OM-decomposable
set F is an OM-decomposition F = C + O+(F ) such that there exists a hyper-
plane H satisfying:

i) C = F ∩ int(H+),

ii) F ∩H− = (F ∩H) +O+(F ).

We will need an elementary result.

Proposition 3. Assume that the hyperplane H = {x ∈ R
n : atx = α} induces

an M-decomposition of truncation type of an M-decomposable set E. If β < α
then the hyperplane Ĥ = {x ∈ R

n : atx = β} also induces an M-decomposition
of truncation type of E.
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Proof. First we must check that E ∩ Ĥ+ is compact and convex. It is certainly
closed and convex, since both E and Ĥ+ are closed and convex. We prove next
that it is bounded. Suppose, for the sake of contradiction, that it is unbounded.
Since E∩H+ is bounded, because H induces an M-decomposition of truncation
type, we obtain that E∩{x ∈ R

n : β ≤ atx ≤ α} is unbounded, and hence, being
convex, it contains a halfline, say with direction u ∈ O+(E). It follows that u
is a direction in H, but then E ∩ H+ is unbounded, a contradiction. Hence,
E ∩ Ĥ+ is bounded. Now E ∩ Ĥ− ⊂ E ∩H−. Therefore E ∩ Ĥ− also consists
of a set of halflines emanating from E ∩ Ĥ (each one of which is contained in
the corresponding halfline of E ∩ H− of the same direction, emanating from
E ∩H).

The extension of Theorem 1 is the following.

Theorem 5. If F is OM-predecomposable and O+(F ) is pointed, then there
exists an OM-decomposition of F , say F = C +O+(F ), of truncation type.

Proof. By Theorem 2, cl(F ) is M-decomposable. By Theorem 1, cl(F ) admits
an M-decomposition of truncation type, say the one given by the hyperplane
H = {x ∈ R

n : atx = α} (a ∈ R
n, α ∈ R). Take any β < α, and consider

the hyperplane Ĥ := {x ∈ R
n : atx = β}. By Proposition 3, Ĥ induces an M-

decomposition of cl(F ) of truncation type. We must check that Ĥ also induces

an OM-decomposition of F of truncation type. It is clear that F ∩ Ĥ− is a

set of halflines emanating from F ∩ Ĥ, and that F ∩ int
(
Ĥ+

)
is open. Since

F∩ int
(
Ĥ+

)
⊂ cl(F )∩Ĥ+, which is a compact set, we obtain that F∩ int

(
Ĥ+

)

is bounded. It only remains to see that F ∩ int
(
Ĥ+

)
is nonempty (indeed, this

is the only reason for switching from H to Ĥ; the set F ∩ int (H+) might be
empty). Note that cl(F ) ∩ H 6= ∅, because H induces an M-decomposition of
truncation type of cl(F ). Take x ∈ relint[cl(F )∩H] = F∩H. Then atx = α > β,

meaning that x ∈ int
(
Ĥ+

)
. Thus x ∈ F∩ int

(
Ĥ+

)
, completing the proof.
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