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Abstract

This paper examines issues of data completion and location uncertainty, popular in
many practical PDE-based inverse problems, in the context of option calibration via
recovery of local volatility surfaces. While real data is usually more accessible for this
application than for many others, the data is often given only at a restricted set of
locations. We show that attempts to “complete missing data” by approximation or
interpolation, proposed in the literature, may produce results that are inferior to treat-
ing the data as scarce. Furthermore, model uncertainties may arise which translate
to uncertainty in data locations, and we show how a model-based adjustment of the
asset price may prove advantageous in such situations. We further compare a carefully
calibrated Tikhonov-type regularization approach against a similarly adapted EnKF
method, in an attempt to fine-tune the data assimilation process. The EnKF method
offers reassurance as a different method for assessing the solution in a problem where in-
formation about the true solution is difficult to come by. However, additional advantage
in the latter approach turns out to be limited in our context.

1 Data manipulation and local volatility surfaces

The basic setup of data assimilation and inverse problems for model calibration consists
of an assimilation of dynamics, defined for instance as a discretized PDE, and observed
data [RC15]. The celebrated Kalman filter, for example, does a forward pass on a weighted
least squares problem fitting both model dynamics and data, and it guarantees variance
minimization for a linear problem with Gaussian noise.

However, in practice, the “statistical sanctity” of the data is often violated before the
assimilation process commences. This can happen for various reasons and in different
circumstances:

1. In cases where the data is scarce, in the sense that it is observed only at a small set of
locations compared to the size of a reasonable discretization mesh of a physical domain,
there would be many models (solutions to the inverse problem) that explain the data
(e.g., [HAOO4]). It is then tempting to “complete” the data by some interpolation or
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other approximation (e.g., [Kah05]), whereupon the role of an ensuing regularization
as a prior is less crucial.

2. There may be a hidden uncertainty in the locations of data, not only in data values
(e.g., [HAO8, GH15]). For instance, engineers often prefer to see data given at regular
mesh nodes, so a quiet constant interpolation, moving data items to the nearest cell
vertex, is common practice.

3. Data completion may be necessary to obtain a more efficient algorithm [RKvdDA14,
KdSA*15].

4. A quiet data completion is often assumed by mathematicians in order to enable build-
ing theory for inverse problems. This includes assumptions of available data on con-
tinuous boundary segments [EHN96], or of observed (measured) relationships between
unknown functions that are presumed to hold everywhere in a physical domain.

5. There are situations where some form of data completion and other manipulation is
necessary because no one knows how to solve the problem otherwise [KdSAT15].

These observations raise the following questions: (i) when (and in what sense) is it
practically acceptable to perform such data manipulations? (ii) in which circumstances can
one gain advantage by treating the observed data more carefully? and (iii) how should one
assess correctness of a solution that has been obtained with such manipulated data? Our
general observation is that researchers occasionally, but not always, seem to get away with
such “crimes”, in the sense of producing agreeable results. For instance, in [RKvdDA14]
the authors obtained agreeable reconstructions so long as the percentage of completed data
did not exceed about 50%, but not more. Such empirical evidence is relatively rare in
the literature, however, and it depends on the problem at hand. More insight is therefore
required, and such may be gained by considering applied case studies.

In this article we focus on a model calibration problem that has had tremendous impact
in mathematical finance. It concerns the determination of the so-called local volatility
surface, making use of derivative prices. A good model for the volatility is crucial for many
applications ranging from risk management to hedging and pricing of financial instruments.
This setting features both scarce data and uncertainty regarding data location, and it allows
us to work with real data, often available through the internet.

The classical Black-Scholes-Merton model had subsumed a constant volatility model o
[BS73] in a simplifying stochastic dynamics for the underlying process [KKO01]. However,
the constant volatility assumption was quickly contradicted by the actual derivative prices
observed in the market. The disagreement between the Black-Scholes model-implied prices
for different expiration dates and negotiated strike prices became known as the smile effect.
A number of practical parametric as well as nonparametric models have been proposed
in this context; see [Gat06] and references therein. The parametric ones try to fulfill dif-
ferent phenomenological features of the observed prices. Yet, in a ground breaking paper
Dupire [Dup94] proposed the use of a function o that depends on time and the price at that
time. For the case of the European call contracts, he replaced the Black-Scholes equation
by a PDE of the form
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with initial and boundary conditions (for calls) given by

Cir=0,K) = (So—K)*, (2)
lim C(r,K) = 0,
K—oo

Il(ngC(T, K) = So,

where 7 is time to maturity, K is the strike price, and C' = C(r, K) is the value of the
Furopean call option with expiration date 7' = 7. The parameter Sy is the asset’s price
at a given date. One ensuing complication in using (1), however, is in the calibration of
this model, by which we mean finding a plausible volatility surface o(7, K) that matches,
or explains, given market data on call option values. The task here is significantly more
challenging than in the case where o is a constant. This paper deals with the computational
challenges that this inverse, or inference problem gives rise to.

The forward problem involves finding the values of C' satisfying the differential prob-
lem (1)-(2) for given o(7, K) and Sy, evaluated at the points (7, K') where data values are
available. A major difficulty here is that the data are scarce. To explain what we mean by
this, suppose we have discretized the PDE using, say, the Crank-Nicolson method (cf. (5)
below) on a rectangular mesh that is reasonable in the sense that the essence of the dif-
ferential solution is retained in the discrete solution. Then the data is scarce in that the
number M of degrees of freedom in the discrete C' typically far exceeds the number of given
data values I: I < M. Moreover, the available data in some typical situations are given at
locations that are far from the boundaries of the (truncated) domain on which the approx-
imated PDE problem is solved. See Figures 1 and 5 below for examples of such (real) data
sets.

Now, if the local volatility surface is discretized, or injected, on the same mesh as that
of the forward problem, then there are roughly M degrees of freedom in o, which is again
potentially far larger than the number of data constraints. We can of course discretize o
on a coarser sub-mesh (which in the extreme case would have only one point, thus leading
back to a constant volatility), or parameterize the surface in a more involved manner;
see [HKPS07, HK05, AP05a, EE05, BT00, AP05b, CZ13, AZ14] and references therein
for further detail. Here, however, we stick to a straightforward nodal representation of
this surface on the full C-mesh in the hope of retaining flexibility and detail, while avoiding
artifacts that may arise from restrictive simplifying assumptions. This approach has worked
well in geophysical exploration problems [HAO04], among others.

Thus, the problem of finding a volatility surface that explains the data is often signifi-
cantly under-constrained in practice. This does not make it easy to solve, however, as the
ultimate goal is to obtain plausible volatility surfaces that can be worked with, and not just
to match data. Our task is therefore to assimilate the data information with the informa-
tion contained in the PDE model (1), using any plausible a priori information as a prior
in the assimilation process. Such a priori information can vary significantly, addressing
concerns of adherence to the financial model, relative smoothness of the volatility surface,
and numerical stability issues, among others.

One approach that has been relatively popular in financial circles is to apply to the data
special interpolation/extrapolation methods that take into account the a priori information
of the financial model (e.g., [Kah05]). This is used to obtain data values at all points of



the rectangular mesh on which C is defined, and subsequently the “new data” is assimi-
lated with the information that the solutions of the Dupire equation for different o’s yield
to calibrate (1). An advantage with this data completion approach is that the data is no
longer scarce when we get to the redefined inverse problem. This allows for developing some
existence and uniqueness theory as well; see [CSZ12] and references therein. However, a dis-
advantage is that such data completion constitutes a “statistical crime”, as the errors in the
new data may no longer be considered as independent random variables, see [RKvdDA14].
In fact, we get two solutions C' that are in a sense competing rather than completing one
another, since the one satisfying (1), even for the “best” o, does not necessarily satisfy the
data interpolation conditions and vice versa.

In Sections 2 and 5 we therefore examine the performance of this data completion
approach against that of a scarce data approach that is based on a carefully tuned Tikhonov-
type regularization. Using both synthetic and real data sets, we show that the scarce data
approach can give better and more reliable results; in our reported experiments this has
happened especially for the real data applications.

We then continue with the scarce data approach.

The maximum a posteriori (MAP) functional considered in Section 2 is based on the
statistical assumption that the data error covariance matrix is a scalar multiple of the
identity. In Section 3 we subsequently consider an algorithm, based on an approach re-
cently proposed in [ILS13] and [JMO0S8|, where we attempt to learn more about the error
covariance matrix as the iterative process progresses, using ensemble Kalman filter (EnKF)
techniques. Although our problem is time-dependent, the time variable here does not really
differ from the other independent variable in the usual sense. In particular, the unknown
surface o depends on both K and 7, unlike for instance a material function in reservoir
simulation [ILS13] or electromagnetic data inversion [HAOO04], which are independent of
time. Thus, the EnKF-like methods considered use an artificial time [AHDOT7]. In Section 3
we find that the EnKF algorithm can be improved in our context by adding smoothing
prior penalties, just like in Section 2. The probabilistic setup, although general, is not fully
effective as a substitute for prior knowledge that is available in no uncertain terms.

The problem setting used in Sections 2 and 3 regards the asset price Sy as a known
parameter. However, in practice there is uncertainty in this parameter. In fact, we have
an observed value which is in the best case an average over a day of trading, so Sy should
be treated as an unknown with an observed mean value and a variance that is relatively
easy to estimate. This in turn affects the calibration problem and its solution process.
Section 4 deals with this additional complication, which translates into uncertainty in the
data locations of a transformed formulation for (1).

In Section 5 we collect our numerical tests, addressing and assessing the various aspects
of the methods desribed earlier. We use synthetic data in Section 5.1 to show the advan-
tage in applying the method of Section 4 for problems with uncertainty in the price Sp.
In Section 5.2 we use market equity data to fine-tune our regularization functional, as well
as to compare Tikhonov-type regularization vs the modified artificial time EnKF. In Sec-
tion 5.3 we use oil and gas commodity market data to further investigate data completion
approaches, showing that the scarce data approach is superior. Conclusions are offered in
Section 6.



2 Two approaches for handling scarce data

Below we assume that the parameter Sy is given.! This assumption will be modified in

Section 4. We then apply a standard transformation changing the independent variable K
to the so-called log moneyness variable y = log(K/Sp). This is followed by changing the
dependent variables of the forward and inverse problems to u(7,y) = C(7, Spexp(y)) and
a(t,y) = 2o(r, K(y))?, respectively. We obtain the dimension-less parabolic PDE with no
unbounded coefficients

—22+a<§2§—§2) bgz = 0, 7>0,yeR, (3)
subject to the side conditions
u(t=0,y) = So(1—exp(y))", (4a)
ylLrgo u(r,y) = 0, (4b)
ygr—noo u(r,y) = So. (4c)

We can write (3)-(4) as L(a)u = ¢, with the linear differential operator L depending on
a and operating on u and with the right hand side ¢ = ¢(Sp) given. Thus, the forward
problem involves finding u satisfying this parabolic linear differential problem for a given
local variance surface a and price Sy.

To find a numerical solution for L(a)u = ¢ we first approximate the domain in y by
a finite interval, restricting [, < y < r, for two real values satisfying [, < 0 < ry. The
boundary conditions (4b) and (4c) are then required to hold at 7, and [,, respectively.
Next, we discretize the PDE problem on a mesh with a fixed step A7 in 7 and a fixed step
Ay in y. Denote by u; ; the approximation of u(iA7,l, + jAy) and by a; ; the injection of
the surface a at (1A, 1, +jAy), i =1,...,M;+1,j=0,1,..., M, +1, where (M, +1)A, =
ry — ly, (M;+1)A7 =T. Then, using the Crank-Nicolson method [AP05a], we have the
difference relations

Uit1,j — Uij Qi j + Qit1,5
et o (Wi — 2uig Ui o1+ Uagen — 2wy + i)

AT 4Ay?
a;; + ait1,5 — 20
- = 4ij (Wit 1,541 — Wik1,j—1 + Wi j41 — Ui j—1)
= 0, i=1,....,M,, j=1,...,M,. (5)

An obvious treatment of the initial and (Dirichlet) boundary conditions closes this system
of M = M;M, equations that are linear for the variables w; ;. The mesh function wuj for
the approximation u can be conveniently reshaped (say, ordered by column) into a vector
up, € RM | retaining the same notation without confusion. Similarly, we obtain the mesh
function aj as an injection of a(7,y), reshaped into a vector if need be. Then we can
write (5) as

Li(ap)un = qn, or u, = Ly(azn) qn, (6)

'In the related online calibration setting, data are given for several values of Sp. For each such value of
So we then make a variable transformation and find a volatility surface.



where Lj, is a sparse, nonsingular M x M matrix and ¢ is the mesh injection of q.

The inverse problem is to find a volatility surface o, approximated through ay, that
explains given observed data d € R!. These data values approximate u at [ locations in
the rectangular domain on which the problem (3)-(4) is defined. Typically, these locations
are far from the boundaries and [ < M; see Figures 1 and 5. Thus, the data set is
sparse, or scarce, and the [ x M matrix P which maps grid locations for uy to those of d,
using bilinear interpolation as necessary, has many more columns than rows. The forward
operator, which predicts the data for a given ay, is the matrix-vector product (or projection)
Puy,. The inverse problem is to find a plausible aj;, for which the predicted and observed
data are sufficiently close, as described below.
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Figure 1: Data locations for a PBR (Petrobraes, an oil company) set in the (7,y) domain
with our coarsest mesh in the background.

Note that the approximate solution of the inverse problem must be positive at all mesh
points. This positivity constraint turns out to hold automatically in all our reported calcu-
lations (i.e., it is not an active constraint in the encountered optimization problems).

2.1 Regularizing the inverse problem

If the data d has Gaussian noise ~ N (0,T"), where I is a symmetric positive definite (SPD)
error covariance matrix, then the maximum likelihood (ML) data misfit function is

$lan) = || Pun(an) — d||f-1, (7)

where for an SPD matrix C' we define the vector energy norm ||z = V2T Cz. For instance,
ifI' = aall, ag > 0, then the discrepancy principle (see, e.g., [Vog02, EHN96]) yields the



stopping criterion (i.e., we should find aj, to reduce ¢ until)
d(ap) < p, where p=ay'l. (8)

However, there are in general many surface meshes ap that would satisfy the condi-
tions (8) (i.e., explain the data). We therefore introduce a regularization operator R(ap)
which is a prior, in the sense that it represents prior knowledge or belief about our sought
surface. We then take steps to minimize the MAP merit function

or(an) = ¢(an) + R(ap). 9)

Here we introduce the Tikhonov-type penalty function

R(an) = o Z Z(am — ap)?

M‘r My
a2 2 a3 2
+ A2 ; ;(am‘ —ai—15)" + A7 Z jzzl(ai,j —a;j-1), (10)

i

where a1, a9, a3 > 0 are parameters to be determined.

The terms involving as and ag correspond to smoothness of a(7,y) in 7 and y, re-
spectively. Thus, the values a;; that are elements of the 2D mesh function a; should not
fluctuate randomly, as they ought to form a reasonably smooth surface. So, we insist on
selecting ag, ag > 0, and will modify a given EnKF algorithm accordingly as well. This pe-
nalizes lack of smoothness (or, roughness) in the reconstructed local variance surface. Actual
values for these parameters, determined by experimentation, are reported in Section 5.

Next, the term governed by the weight a1 penalizes the distance from our sought surface
to an a priori function ag that we take to be a constant (not knowing better). A reasonable
value for this constant can often be estimated based on the risk category of the asset under
consideration. The importance of having this term is that without it the prior may tend to
favour surface flatness, whether or not this is realistic. But for the case of scarce data there
could be too much freedom in seeking merely a relatively flat surface which still explains
the data. Setting a; = 0 might therefore cause the solution process to behave unstably, as
demonstrated further in Section 5.

Having determined values «;, i = 1,2, 3 for the ensuing experiments the next question
is choosing the relative weight of the data misfit function and the prior, which amounts to
determining a value for o in the expression I' = «y L], For this we have used the well-known
L-curve method [Vog02, EHN96].

2.2 The data completion approach

Another approach to deal with the scarce data is to first interpolate/extrapolate the ob-
served data to all M locations of the u-mesh. This can be done using the Kahale al-
gorithm [KahO05], which represents a prior that reflects financial considerations (namely,
maintaining the smile, and more). The inverse problem is subsequently defined on the
thus-enriched data set, the matrix P in (7) becoming the identity, and the Tikhonov-type
regularization previously described is applied for its solution.



This data completion subsequently allows for the development of a more solid theory
for the solution of the corresponding regularized inverse problem.

A potential difficulty with this approach, however, is that the ensuing matching of the
interpolated “data values” to a field u, that approximately satisfies the PDE problem (3)—
(4) is applied to data that can no longer be considered to have independent, random noise.
The interpolation/extrapolation operator and the PDE discrete Green’s function operator
could be in conflict. In Sections 5.2 and 5.3 we describe examples using real data sets from
different markets which compare data completion using two different techniques to the scarce
data approach. The obtained plots in Figures 8, 9, 11 and 12 clearly demonstrate that the
data completion approach can give inferior results. In particular, the reconstructions using
data completion often agree neither with other curves nor with intuition.

3 Artificial time EnKF-type methods

The homotopy, or continuation, approach of embedding a given problem in a larger one with
artificial time, subsequently defining an iterative method by “advancing” in the artificial
time, is old; see references in [AHDO7]. In our context there have been recent efforts that
use such an iterative process to also adaptively learn and improve knowledge of the error
covariance [ILS13, CES14]. A Kalman filter setting is obtained as in [ILS13] by defining for
the ML data misfit function ¢(ay) of (7) the augmented state vector

in = W(ay) = (Pujj’gah)) , (11)

together with the artificial dynamics (or prediction) &Swl) = \Il(agl")). The observations

d in (7) are then approximately matched by H &;:Hl) , with H = (0 I ) Further, the
ensemble Kalman filter (EnKF) approach applies Monte Carlo approximations in order to
obtain cheap estimates for the error covariance matrices that appear in the Kalman filter
method.

It is well-known that Kalman smoothing is equivalent to the solution of the correspond-
ing weighted least squares problem, while the Kalman filter end result agrees with that of
the Kalman smoother. However, what is not taken directly into account in [ILS13, CES14]
are the additional regularization terms in the MAP merit function (9). In fact, we general-
ize (10) by considering

n;in orlap) = (d — Puh(ah))TI‘_l (d — Puh(ah)) + (ap — ao)TD_l(ah —ap) + (12)

(Lyag — Lrap)T D>

T

Y(Lrag — Lyap) + (Lyao — Lyap)" D, (Lyag — Lyay),

where L, € RUMr—1)xMy 4 L, e RM>x(My=1) are the scaled discrete sums that multiply o
and ag there, respectively. The matrices D, D, and D, are corresponding error covariance
matrices, with D as yet unknown and to be determined in the EnKF process.

Next, we modify the data misfit part in (12) using the state augmentation approach (11).
For this we redefine the matrices L, and L, by

Ly« (L: 0), Ly+ (L, 0).



The matrix D is also modified properly, and we set

fo = (Puz(fa())) |

We can then rewrite (12) for the augmented variable a; of (11) as
min ér(a) = (d- Hayp) T (d = Hay,) + (an — a0)" D™ (an — ao) + (13)
(Lrao — Lray)" D7 (Lrao — Lran) + (Lyao — Lyan)" Dy ' (Lyo — Lyan).
Since (13) is just an enlarged weigthed least squares problem, it also corresponds to
a Kalman smoother/filter process, and we subsequently build an approximation for it as

in [JMO8] by defining and solving a “three-stage” EnKF.

The details are somewhat tedious but straightforward, so we have gathered them in
Appendix A. We are led to the following algorithm, where we let &Eln’] ) denote the augmented
state vector of the j-th sample in the n-th iteration.

1. Initialization

(a) Generate J samples of ago), denoted {ago’j)}le, where ago’j) ~ N (ag, Dy) and
Dy is an initial covariance matrix.

(b) Compute Puh(a(o’j)), j=1,...,J, thus defining {&gl’j)}jzl.
2. For n=0,1,2,..., until convergence criterion is satisfied, do:

(a) Prediction step

i. For j=1,...,J, set

(r,5)
~(n+1,5 n,J a
a% e \Ij(al(l ])) B <Puh}(la(n’j))> .
h

ii. Define sample mean and covariance matrix as

J
_(n+1) 1Lty
“h - 32% ",
j=1
J
1 n 1) s ~(n 1 _(n _(n
Dpy1 = jzég +1J)(a§l +1,J))T_a§l +1)(a§1 +1))T‘

I
—

J

(b) Analysis step (three-stage Ensemble Kalman filter)

i. Calculate
e AY =D, HT(HD,HT +T)~
e B, = (- AY H)D,y,

n+1 =
2 1 1 —_
e A®) = B 7L, BY) LT + D,)!

« Bl = (- A% LB,
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3 2 2 _
o A0, = BT, BT 1 D)
2
« B = (- AN LB,
(Here I is an identity matrix of appropriate size.)
ii. For j =1,...,J, update

a ) = a4 B, (BTN, — Hay )

+ LID7N () — e\t

b LIDF A 1,19, 0

where dfﬁrl =d+ 77534217 nnH ~ N(0,T); rr (19 and r(nH’J) are sampled
from N (L Tahn+1), D;) and N (L yahnJrl D,), respectively.
iii. For j=1,...,J, set
agnﬂ»j) _ (I 0) L)

(c) Convergence test
Compute

n+1 Z (n+1,5)

and check for convergence.

Assuming that this algorithm stops after N iterations, it requires (N + 1)J solutions of
the forward problem.

4 Uncertainty in the asset price

In a typical image processing application of deblurring, denoising or inpainting, data values
are prescribed at pixels, so the measurement locations are known. However, when denoising
a point cloud or a surface mesh, for instance, there is no such distinction between a datum
value and location: the unknowns are nodal mesh points in 3D, and as such they live in a
higher dimensional space (namely, 3 rather than 1). This difference affects portability of
image processing algorithms to similar problems on surfaces [HA08].

A more subtle instance of location uncertainty arises in our volatility surface context.
The observed value for Sy is actually an average of a day’s trading (say), and as such
contains uncertainty whose variance can fortunately be directly estimated. In this section
we thus make Sy an unknown that can be adjusted but should not stray too much from a
measured (and thus observed) average value Sp.

This affects the regularization prior, which now depends also on Sy, so R = R(ap, Sp),
and has a term added to (10):

R(ap,So) = o Z Z (a;; — 24 as(Sp — So) (15a)

a9 2 :2 : 2
+ ATQ : :: :(a’iyj — Qi lvj alv] aZ:] 1 :

7 =1 i g=1
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The additional parameter a5 is determined by the daily price variance.

Furthermore, in the dimension-less form (3) of the Dupire PDE problem, which to
recall allows bounded PDE coefficients and uniform discretization step sizes in (7,y), the
independent log moneyness variable y = log(K/Sp) now contains uncertainty as welll We
therefore update also the misfit function (7) to read

¢(an, S0) = [I1P(So)un(an) — d|[f (15b)
My
+oan Y (1 explyy(S0)) " — (1 - exp(ys(So))*)
j=1

The parameter oy, like as, is determined from the variance in Sy. In fact, in our
experiments we have found that it is safe to set a5 = 0 and control the uncertainty penalty
through a4 alone. Note that in the data projection matrix, P = P(Sp). Our optimization
problem replacing (9) is now

min @r(an, So) = ¢(an, So) + R(an, So). (16)

ap,So

To solve the extended optimization problem (16) we apply a splitting method, alternately
minimizing (16) for aj and for Sp. When Sy is held fixed, the problem returns to that
considered in Sections 2 and 3. When ay, is frozen in turn, the remaining minimization
problem for Sp is in 1D and causes no difficulty. Furthermore, fortunately the coupling
between these variables is weak, so fast convergence of this splitting method is observed in
all our experiments.

5 Testing our methods on real and synthetic data

In this section we present a number of tests that were performed in order to illustrate the
points made in the previous sections as well as to compare the different methodologies.
Specifically, we compare results related to the introduction of uncertainty in the value of
the reference price Sy, the effect of choosing between the EnKF and the Tikhonov-type
regularization approach, and the introduction of a penalty associated to the mean value of
the local variance surface ay,.

The computations for all the examples described in this paper were performed using
garden-variety personal computers, with typical runtimes clocking within a few minutes.
Thus, being concerned in this work with addressing several fundamental questions, no
special effort was made to optimize the runtime performance of our codes.

The basic setting of our numerical experiments consists of solving the inverse problem
described in Section 1, first using synthetic data (tainted by multiplicative Gaussian noise)
and then using real data. In the synthetic data examples, we first assume a ground truth
local variance surface ase On a fine grid, from which we solve the discretized PDE for uj, as
in Section 2. From that we sample data on a coarser mesh (so as to avoid a so-called inverse
crime) and then subject the data to noise. In the real data examples we selected publicly
available option data from the NY stock exchange. The reconstructions are performed by
using the techniques put forth in Sections 2 and 3.
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5.1 Results for uncertain S, using synthetic data

In order to test our techniques in situations where we have full control of the unknown
volatility surface, we postulate a local volatility surface with known form . We concentrate
on the issue of underlying price uncertainty, and as we shall see, this can be well addressed
by the method discussed in Section 4.

5.1.1 First experiment with underlying price uncertainty

We start by experimenting with the uncertainty about the value of Sy for a ground truth
volatility given by

2 4 4
g—%e_T/QCOS <75ry>’ if —2/5<y<2/5

o(r,y) = (17)
2/5, otherwise.

From (17) we produced call option prices by solving the PDE system (3)-(4) discretized
over a mesh with step sizes A7 = 0.005 and Ay = 0.025. The maximum time to maturity
iS Tmax = 0.5 year, and the minimum and maximum log-moneyness strikes are Yy, = —5
and ymax = D, respectively. We also chose, for simplicity, the true underlying asset price as
So = 1.0 and the risk-free interest rate as » = 0.

The computed call prices u; ; were then polluted by a relative noise,

u?’?isy — ’LLi’j(l + 0.017’]1',]'), (18)
with 7; ; drawn from the standard normal distribution N(0,1). The data is then composed
on a coarse mesh by the noisy prices u?’?lsy with , = id7, i = 1,...,5, 07 = 0.1, and

y; = —0.75 + joy, oy = 0.05, j = 0,1,...,30. The observed underlying price is Sy = 0.95.

As mentioned in Section 4, the minimization of the Tikhonov-type functional (16) is
achieved by alternating minimizations, namely, the minimization w.r.t. aj, which is per-
formed by a gradient descent method as in [AAZ15], and w.r.t. Sy, which is performed
with the MATLAB function 1sqnonlin. In both stages, the mesh width used are A7 = 0.01
and Ay = 0.05, the minimum and maximum log-moneyness values are taken as —5 and 5,
respectively, and the maximum time to maturity is 0.5.

We started the algorithm with a% = 0.45%/2 and S8 = Sy = 0.95. During the mini-
mization w.r.t. aj, we took the parameters in the penalty function as op = 10°, oy = 102,
as = 10%, a3 = 1, and agy = as = 0, whereas in the minimization w.r.t. Sy, we used
a1 =ag =a3 =0, and oy = a5 = 10°. The a priori surface was taken as ag = 0.452/2.

After 8 iterations, the resulting underlying asset price was 0.999, and the normalized
lo-distance between the true and the reconstructed local volatility surfaces was 0.13. At the
beginning, with Sy = 0.95, the normalized distance was 5.55. Figure 2 compares between
the reconstructed local volatility surface and the ground truth at each maturity. With the
same scarce data set, as the underlying asset price was adjusted, we found a local volatility
surface much closer to the original one. Table 1 presents the evolution of the normalized
fo-distance between the true and the reconstructed local volatility surfaces, illustrating the
latter observation.
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T =37 days T =73 days T =110 days T =146 days T =183 days
0.5 0.5 0.5 0.5 0.5
0.4 0.4 0.4 0.4 0.4
0.3 0.3 0.3 0.3 0.3
0.2 0.2 0.2 0.2 0.2
01 -0.5 0 0.5 01 -0.5 0 0.5 01 -0.5 0 0.5 01 -0.5 0 0.5 01 -0.5 0 0.5

Figure 2: Reconstructed (continuous line) and true (line with circles) local volatility surfaces
at the five different maturities. The reconstructed local volatility surface corresponds to
the last one obtained with the adjustment algorithm of the underlying asset Sy.

Table 1: Normalized fo-distance between the true and the reconstructed local volatility
surfaces and the value of Sy at each step of the algorithm for adjusting Sy.

Iteration 1 2 3 4 5 6 7 8
Normalized Distance | 5.55  3.41 2.39 1.22  0.78 047 0.21 0.13
So 0.950 0.963 0.977 0.985 0.989 0.994 0.007 0.999

5.1.2 Another experiment with underlying price uncertainty

We have carried out another experiment which deals with the underlying price uncertainty.
The same general form as given in (17) is used for the volatility surface, except for a little
bit of smoothing: see the bottm right subfigure in Figure 3. However, we make sure to
employ parameters that are close to the ones generally encountered with real data, and we
use data that follows a practical grid. The parameters for the example are given in Table 2.

Table 2: Parameters for the example of Figure 3.

Sp initial spot price 2500
Strue Optimal spot price | 2200
r interest rate 0.25%
the maximum maturity 1.8
Minimum y -3.5
Maximum y 3.5
AT 0.1
Ay 0.1
a priori surface ag 0.4%2/2

Following the same algorithm as before, we obtain that Sy approximates Sy well, and
furthermore, the local variance a; approximates a;.,. on a coarse grid. This is illustrated
in Figures 3 and 4.
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Figure 3: Calibration of the local volatility in 5 iterations. Shown from the upper left,
clockwise, are the 1st iteration, 3rd iteration, 5th iteration and the ground truth.
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Figure 4: The estimated spot price converges to the true price.

Discussion of the synthetic data results The experiment with synthetic data indicates
that including the underlying stock price as one of the unknowns (which corresponds to
handling data location uncertainty in y) leads to better results when there is uncertainty
about such value. Indeed, Table 1 and Figures 2 and 3 show that the normalized distance
between the reconstructions and the true surface decreases considerably when we combine
local volatility calibration with the adjustment of the underlying asset price, upon using
the algorithm presented in Section 4. In the first experiment, the distance of the initial
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price and the price was relatively small, whereas in the second one, the two prices were
significantly apart. In both cases, we can see that after only a few iterations, the prices
were well-approximated.

5.2 Results for equity data

In this subsection and the next we consider real data from financial markets. Such markets
are a tremendous source of data which can be promptly accessed by researchers. In our
experiments we chose options on the Standard and Poors (SPX) index.? Figure 5 depicts
the locations at which our data set is given.

L, OO0O0LBGd cooocoooo

y - log-moneyness

| I O B O A

s Eoho el 100 T in [ 20 ha's Roto Bomaon L toha 1 s oo~ Bin B to hos © s fu to s Inie ~dto o —

[T AT AT

mol e T Tt

I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1 11 1.2 13 14 15 16 1.7 18 18 2 21 22 23 24
7 - lime to maturity

Figure 5: Locations of the SPX data in the (7,y) domain with our coarsest mesh in the
background.

Such options are fairly liquid ones and thus amenable to the models introduced in Sec-
tion 1. The data were collected on 19-Jun-2015 and contain prices for 9 different maturities
ranging from 1 day to 2 years. The parameters for all the models are given in Table 3. Note
that the optimal spot price in the table refers to the optimized spot price using the method
described in Section 4.

2The Standard and Poors is a weighted index of actively traded large capitalization common stocks in
the United States.
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Table 3: Parameters for the equity data examples.

So initial spot price 2112.7
So optimal spot price | 2095.6
r interest rate 0.25%
the maximum maturity 2.5
Minimum y -4.5
Maximum y 1.5
AT 0.05
Ay 0.1
initial ag 0.142/2

The parameters g, a1, az and ag in the penalty functional (10) or (12) used in this
experiment can be found in Table 4.

Table 4: Parameters of the penalty functional (10) or (12) with SPX data.
Parameter g a1 e %) Qg
Value 4.e+8 | let6or0 | l.e+6 | 1l.e+6

Table 5: Residuals of the 6 method variants.

Tikhonov-type EnKF
Scarce | Comp. | Scarce (no ag) | Comp. (no ag) | Scarce | Comp.
Residual | 0.0196 | 0.0314 0.0247 0.0289 0.0198 | 0.0294

Figure 6 displays reconstructed SPX local volatility surfaces at different maturities ob-
tained with three method variants using the original scarce data. Note that the results
generated by the Tikhonov-type method with ag penalty and EnKF are closer, whereas the
results without the ag penalty differ inexplicably.

T=25 T=165 T =204 T =332
< EnKF real data
— Tikhonov real data
02 Noa, real data 02

o o
DT \ ”‘% Py ”‘%
\
01 | /a/e 01 01 01
7
0.05| 0.05| 0.05| 0.05|
0 0 0 0

Figure 6: Reconstructed SPX local volatility surfaces at different maturities obtained with
three method variants using scarce data.

In Figure 7 we consider SPX local volatility surfaces at different maturities obtained with
the methods of Sections 2 and 3. They were computed using completed data as in [Kah05].
Note that the three method variants produce similar results around y = 0. (This is called
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at-the-money.) For |y| > 0.5 (the so-called in-the-money and out-of-the-money regions), if
we do not add the ag penalty, the two wings blow up.

T=25 T=165 T =204 T=332

‘P‘ EnKF comp. data

~#-Tikhonov comp. data ”

035 X Noa, comp. data 035 x 0% > %
< Noa, < <

N

Figure 7: Reconstructed SPX local volatility surfaces at different maturities obtained with
Tikhonov-type and EnKF methods using completed data.

Figure 8 presents reconstructed SPX local volatility surfaces obtained with all six method
variants. When put together, we can see that the different methods lead to results that get
closer as the maturity gets longer around y = 0.

T=25 T=165 T =204 T=332

x B> EnkF comp. data < X
038 . - Tkhonov comp. data 035 . 035 . 035
“ «Noa, comp. data . :
03 X < EnKF roal data 03 . 03 X 1 o3
K | —Tikhonov real data .
025 |- Noa, realdata

Figure 8: Reconstructed SPX local volatility surfaces obtained with six method variants.

Figure 9 is a zoom-in of Figure 8 to the at-the-money region. Observe that the plotted
curves are generally divided into two groups: one is obtained from the original (scarce) data
and the other from the completed data. This phenomenon is clearer in the figures for the
earliest and latest dates T'= 25 and T' = 332.

T=25 T=165 T =204 T=332

B> EnkF comp. data

~#e-Tikhonov comp. data
«Noa, comp. data

< EnkF real data

~—Tikhonov real data

- No a, real data

_ - L

Figure 9: Reconstructed SPX local volatility surfaces obtained with six method variants
for different maturities in the at-the-money (y = 0) neighborhood.
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Let us define implied wvolatility as the volatility that would be observed for a standard
call (or put) contract to give the observed price if the classical Black-Scholes formula were
used. This concept is prevalent in market related discussions. In Figure 10 we see that the
reconstructions of implied volatility from local volatility do better for intermediate term
and long term maturities. However, when the maturities are short, the results split into
two groups according to whether we use the original scarce data or the completed data.

T=91 T=183

0
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01 e
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02 015 01 005 0 005 01 015 02 02 015 01 005 0 005 01 015 02 02 015 01 005 0 005 01 015 02

T =546 T=912

0 0
02 015 01 005 0 005 01 015 02 02 015 01 005 0 005 01 015 02

Figure 10: Implied (Black-Scholes) volatility corresponding to the local volatility surfaces
obtained with the six method variants compared to the market one.

We measure the data misfit of all methods in three different ways. Let I, Z-LJ (Ilb";) denote
the implied volatility corresponding to the reconstructed local volatility (from the average of
bid and ask option prices) with strike K; and maturity 7;. In the SPX example, we restrict
the strikes to be between 1890 and 2500. Further, V;; is the volume of the option price
with strike K; and maturity 7;, and N, is the number of contracts that have a nonzero
volume. We define

RMSE = \/Z(I Ib“) /Nyot,  (root mean square error)
1,

RWMSE = \/Z(I i Ilb‘; X Vi j/Nyoi, (root weighted mean square error)
i?j

RR = Z i Ib“ )2/ Z Iba ,  (relative residual).

The resulting values are presented in Table 6.
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Table 6: Measures of data misfit of the 6 models

Tikhonov-type EnKF
Scarce | Comp. | Scarce (no ap) | Comp. (no ag) | Scarce | Comp.
RMSE 0.0195 | 0.0321 0.0290 0.0325 0.0255 | 0.0324
RWMSE | 0.0175 | 0.0241 0.0252 0.0242 0.0241 | 0.0242
RR 0.1407 | 0.1987 0.2292 0.2186 0.1766 | 0.2186

Discussion of the real equity data results From the above experiment we conclude
that using real or completed data sets we get quite different results. Within the completed
data set, if we discard the ag penalty, the two wings of the local volatility surface are not
stable, both for methods of Sections 2 and 3. This is apparent in all the figures as well as
Table 5. From the results involving reconstruction of the implied volatility, the Tikhonov-
type method using the original (scarce) data has the best residuals in all three measures,
and the EnKF method is the second best.

5.3 Results for commodities and data completion

Commodities have been traded extensively in different markets throughout the world for
centuries. In many of those markets, a number of liquid options on such assets are also
traded. Here again, data from such markets are freely available, and modelling such data
is very relevant for financial analysts and risk management applications.

In the present set of examples, we consider the adaption of Dupire’s model to the context
of option prices on commodity futures introduced in [AAZ15]. For the present purpose, it
consists of essentially the model presented in Sections 1 and 2.

We chose data from WTI? futures and their options, as well as Henry Hub? contracts.
The end-of-the-day WTI option and future prices were traded at 06-Sep-2013, with the
maturity dates, 18-Oct-2013, 16-Nov-2013, 17-Dec-2013, 16-Jan-2014, 15-Feb-2014 and 20-
Mar-2014. The end-of-the-day Henry Hub option and future prices were traded at 06-
Sep-2013, with the maturity dates, 29-Oct-2013, 27-Nov-2013, 27-Dec-2013, 29-Jan-2014,
26-Feb-2014 and 27-Mar-2014. The option prices were divided by their underlying future
prices, so Sy = 1.

In what follows, by residual we mean the merit function (7) with ' = ay I, ag > 0. The
penalty function (10) was used with a1 = ag = a3. A gradient descent method was applied
in the minimization of the resulting Tikhonov-type regularization functional. Inspired by
the discrepancy principle, different values for o were tested, and the largest one which gave
a residual below a fixed tolerance was chosen. See [AAZ15] for further details.

To complete the data (when this alternative was used in this subsection) we applied
linear interpolation, taking into account the boundary and initial conditions in (4). The
boundary conditions were applied at y = +£5.

When using completed data, we evaluated the local volatility only in the maturity
times given in the original data, and interpolated it linearly in time, at each step in the

3West Texas Intermediate (WTI) is a grade of crude oil used as a benchmark in oil pricing.
‘Henry Hub (HH) natural gas futures are standardized contracts traded on the New York Mercantile
Exchange (NYMEX).
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minimization. Also, whenever |y| > 0.5 was encountered, we set a(7,y) = a(7,0.5*sign(y)).
When using the given scarce data, at each iteration, for each maturity time 7 in the data
set, we interpolated a(7, ) linearly in the intervals [—5, Ymin), and (Ymax, 5], assuming that
a(t,—5) = max{0.08, a(7, Ymin) } and a(1,5) = max{0.08, a(T, Ymax)}, where ymin and Ymax
are the minimum and maximum log-moneyness strikes in the data set corresponding to .

Figures 11 and 12 display reconstructed local volatility surfaces for the different matu-
rities, comparing between using the given data and the completed data.

T =53 days T =82 days T =42 days T =71days
0.5 04— 4 + 0.5 0.8
r
0.3 / 0.4 0.6
04 ‘ ﬂ { ‘
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0'?1 0 1 E)1 0 1 0']1 0 1 E)1 0 1
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Figure 11: Reconstructed local volatility for Figure 12: Reconstructed local volatility for
different maturity dates for Henry Hub call different maturity dates for WTTI call option
option prices, comparing between completed prices, comparing between completed data
data (green line with pentagram) and scarce (green line with pentagram) and scarce data
data (blue line) results. (blue line) results.

Figures 13 and 14 present a comparison between the implied volatilities of both methods
and the market ones, in order to assess how accurate the reconstructions are. One of the
main advantages of the local volatility model is the capability of fitting the market implied
smile, which has an important relationship with market risk. The implied volatilities were
evaluated using the MATLAB function blsimpv, and we used the interest rate as the dividend
yield.

In all of these experiments, we have used the mesh widths A7 = 1/365 and Ay = 0.05,
the annualized risk-free interest rate was taken as 0.25%, and b = 0 in (3), since futures
have no drift.

Table 7 displays the parameters obtained in the tests of local volatility calibration with
Henry Hub and WTT call prices, with scarce and completed data. In this table, by residual,
we mean the fs-distance between the evaluated quantity and the data, normalized by the
f5-norm of the data.
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Figure 13: Henry Hub prices: completed Figure 14: WTI prices: completed data
data (green line with pentagram), scarce (green line with pentagram), sparse data
data (blue continuous line), and market (red (blue continuous line), and market (red
squares) implied volatilities. squares) implied volatilities.

Table 7: Parameters obtained in the local volatility calibration with Henry Hub and WTI
call prices using sparse data and completed data.

WTI Henry Hub
Comp. Data | Sparse Data | Comp. Data | Sparse Data
Qo 1.0e4 1.0e3 1.0e3 1.0e3
1] = g = Q3 4.5 1.0 1.3 1.0
Price Residual 2.16e-2 3.21e-3 3.47e-2 2.14e-2
Implied Vol. Residual 1.26e-1 2.66e-2 9.61e-2 5.98e-2

Discussion of the real commodity data results Observing the market implied volatil-
ities and the implied volatilities obtained with both methods in Figures 13 and 14, the results
with scarce data present a much better smile adherence than when using completed data.
So, completing the data can be seen as an unnecessary introduction of noise or inconsis-
tency. It can be better noticed when observing the implied volatilities at deep in-the-money
(y < —0.1) and deep out-of-the-money (y > 0.1) strikes. In these regions, for almost all
cases, the results with scarce data practically matched the implied volatility, whereas with
data completion, the resulting implied volatilities presented higher values. For financial
market practitioners, higher implied volatilities can be translated to higher risk. So, using
data completion could lead investors to be more conservative than necessary.
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6 Conclusions

The questions of how to treat observed data in order to produce agreeable solutions, and
relatedly, how much to trust the quality of a given data set collected by another agent, are
prevalent in many nontrivial applied inverse problems. Standard theory appears to have
little to contribute to their satisfactory resolution, and more carefully assembled experience
is required. In this article we have highlighted some of the issues involved through an
important application in mathematical finance, and we have proposed methods that improve
on techniques available in the open literature.

The problem of constructing a local volatility surface has similarities with some ap-
plications in areas such as geophysics and medical imaging, in that it boils down to the
calibration of a diffusive PDE problem, reconstructing a distributed parameter function,
i.e., a surface, rather than a few unrelated parameter values. The difficulty of dealing with
scarce data, which highlights the need for a careful practical selection of a prior, is common,
as is the uncertainty in data location, although the latter appears here as dependence only
on a scalar additional variable.

The finance problem considered here is distinguished from its more physical comrades in
two important aspects. One is the availability of real data: we have experimented here with
three different real applications, while most papers appearing in the applied mathematics
literature never get to deal with real data at all. The other aspect is the difficulty of
assessing the resulting recovered volatilities: there is no physical solution here, data sets
are changing daily, and experience rules. In the present setting we had to determine the
coefficients of the regularization operators, for instance «; in (8), (10) and (15), by trial and
error.

Of particular interest is the regularization term involving ag and «;. This term is a
penalty on the sought local volatility surface for straying away from a given constant, ag,
which in turn is estimated based on the type of asset under consideration. The question
whether or not this should be done is a deep one and touches upon the very foundations
of the model under consideration. It also has a practical unfolding, since the possibility
that the volatility, as a function of the asset price, grows at a sufficiently fast rate may be
connected (at least in some similar models) to the presence of market bubbles [JKP11].

The EnKF method considered in Section 3 is an adaptation of one of several methods
proposed in the literature [ILS13, RC15], improved by adding smoothing penalty terms. We
have also experimented with a similar adaptation of the method in [CES14]. In both cases
the results are not consistently better than those obtained by the Tikhonov-type method of
Section 2, which in hindsight is not surprising. However, since such methods are currently
very much in vogue (especially in our target application area) we feel that our results in this
sense are important: one must have data of sufficient quality for such methods to dominate.
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A  EnKF details

The regularized weighted least-squares problem (13) has the solution

ap, = D'+ H'T'H+LID 'L, + LD, 'L,)™"
(D 'ag+ H'T'd+ LI D' Lrao + L) D, ' Lyao). (19)

However, D is unknown. To address this we apply EnKF and replace D by the covariance
matrix computed from generated samples. We also replace Lrag and Lyag in (13) by 7,
and r, sampled from N (L;ao, D;) and N (Lyao, D), respectively. In this way, 7 and r,
can be viewed as two observations like d. Next we explain the calculations in one iteration
of the prediction and analysis steps that appear in the EnKF algorithm stated at the end
of Section 3. ' ‘

Having generated {aglo’] )}3]:1 as the initial ensemble, we calculate Puh(aﬁlo’j )) and define

(0,5)
’\(Lj) — ah : —
a = , , =1,2,...,
h <Puh(a§lo’j))> ’

This is the first prediction step (i.e., we set n = 0 in the stated algorithm). The sample
mean and covariance matrix are then given by

4 1 1

~

J
Z&g”.

de

We now calculate the Kalman gain three times to obtain
(D' +H'T'H + LD 'L + LD, L)
Denoting
U= (D' +H'T'H+ LD 1L,) !

we have

(D' +H'T'H+ LID 'L + LD, L)~
= (U '+ LD, 'L,
= U-ULJ(L,UL] + D,)"'L,U
= (I-WiLy)T,

where W7 = ULT(L U LT + D,)~!. We continue with the same procedure to calculate U.
Let V™' = D'+ HIT- 1H and Wo = VLI(L, VLY + D,)~!. Then we have

U = (D{'+H'T'H+LID'L,)™!
= (V4 LID L)t
= V-vLi(L. VLI + D)LV
(I = WaL;)V.
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Hence, defining also W3 = D1HT(HD;H” +T')~! we have

V = (D{'+H'T 'H)!
= D, —-DH'(HDT +TI)"'HD,
(I — W3H)D;.

Now (19) reads

i = U (D7ap + HTT 4 LD Leaf ) + LDy Lya )
= U (U + HTT N - Hay D) + LID; (ry = Leaf! ) + LT Dy (ry = Lyaf! )

— délvj) + U (HTF_l(d_ Hdgll,])) +LZD;1(TT _ LT&SJ)) + Lngl(ry _ Lydgd))) ‘

Reversing this procedure and adjusting notation, we obtain the analysis step 2(b) of the
algorithm in Section 3 for n = 0.

In each iteration of the EnKF algorithm, the prediction step is used to map the samples
into the data space. The analysis step then calculates the “distance” between the mapped
ensemble and the noisy data. Following the analysis step, the approximated local variance
and estimated option prices are calculated, and this is used to compare with the original
data. We compute the residual and compare to the one from the last iteration: Step 2 of
the algorithm is repeated until the residual is less than a certain threshold.
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