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Abstract. We utilize the wave curve method to prove the existence and give a charac-
terization of a certain bifurcation locus in the saturation triangle. Such structure arises,
for instance, when water and gas are injected in a mature reservoir either to dislodge oil
or to sequestrate CO2. The proof takes advantage of a certain wave curve to ensure that
the waves in the �ow are a rarefaction preceded by a shock, which is in turn preceded by a
constant two-phase state (i.e., it lies at the boundary of the saturation triangle). For convex
permeability models of Corey type, the analysis reveals further details, such as the number
of possible two-phase states that correspond to the above mentioned shock, whatever the
left state of the latter is within the saturation triangle.

1. Introduction

We are interested in solving problems of injection of water and gas in oil recovery, as well as
the injection of gas alone into porous media in order to sequestrate CO2. In both problems,
shocks connecting three-phase states (i.e. interior to the saturation triangle) to two-phase
states (i.e. at the boundary of the saturation triangle) are important. It is important to �nd
the boundary separating admissible from non-admissible shocks. In this work we present
theorems establishing the existence and uniqueness of such a separation curve.
We are interested in injection problems leading to �ow in porous media of three phases

that do not exchange mass. Such �ows are modeled by systems of two conservation laws; a
survey of the mathematical theory for such �ows may be found in [1, 3, 15] and references
therein.
In the interior of the saturation triangle, convex relative permeability Corey models such as

those considered in this work lose strict hyperbolicity only at an �umbilic point�, i.e., a point
where the two characteristic speeds coincide (and there are two distinct eigenvectors), but
the speeds are distinct around this point. In previois works, the location and characterization
of the umbilic point has already established, see e.g. [4, 5, 16].
However, loss of strict hyperbolicity gives rise to rich structures for solutions of Riemann

problems (cf. [8, 9, 10, 11]). In this work, we characterize one of the structures that
is fundamental in these constructions, which has been named �extension of the physical
boundaries�. These estimates can shorten the uniqueness proof in [2].

2. Mathematical model

Consider the �ow of a mixture of three �uid phases (which, for concreteness, are called
water, gas and oil) in a thin, horizontal cylinder of porous rock. Let sw(x, t), sg(x, t) and
so(x, t) denote the respective saturations at distance x along the cylinder, at time t. Because
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sw+sg+so = 1 and 0 ≤ sw, sg, so ≤ 1, the state space for the model is the saturation triangle
∆; see e.g. Fig. 3.2. In our analysis, we choose sw and sg as the two independent variables,
thus S := (sw, sg)

T ; the vertices of ∆ are W = (1, 0)T , G = (0, 1)T and O = (0, 0)T .

2.1. Conservation laws. Three-phase �ow in 1d at constant injection rate is governed by
the non-dimensionalized system ∂S/∂t+ ∂F (S)/∂x = 0, or

∂sw
∂t

+
∂fw(sw, sg)

∂x
= 0,

∂sg
∂t

+
∂fg(sw, sg)

∂x
= 0, (1)

representing conservation of water and gas. (Of course, as the satuarion S is the vec-
tor (sw, sg)

T , the �ux F (S) is given by the vector (fw(S), fg(S))T .) The �ux functions
fw(sw, sg) and fg(sw, sg) are determined by the relative permeabilities of the three phases.
For simplicity we assume that the relative permeabilities are strictly positive within the
saturation triangle. From Darcy's law the �uxes are

fα(S) =
mα(S)

m(S)
, for α = w, g, o, where m := mw + mg + mo

is the total mobility; mw, mg, mo represent the mobility of each phase.
A Corey type model is de�ned by a set of mobilities mα(sα) that are nondecreasing con-

tinuous functions of their own saturation sα. In this work we focus on convex Corey models:

De�nition 1. A Corey model is said to be convex when the mobilities are C1[0, 1]∩C2(0, 1)
functions satisfying:

(1) mα(sα) > 0 for sα ∈ (0, 1] and mα(0) = 0,
(2) m′

α(sα) > 0 for sα ∈ (0, 1] and m′
α(0) = 0,

(3) m′′
α(sα) ≥ 0 for sα ∈ (0, 1),

(4) no pair of the quantities m′′
w(sw), m′′

g(sg), m′′
o(so) vanish simultaneously for any state

in the interior of the saturation triangle (0 < sw, sg, so < 1).

2.1.1. Basic solutions. System (1) has solutions that propagate as waves. The Jacobian
matrix of the �uxes is the key for rarefaction waves. The characteristic speeds are the two
eigenvalues of the Jacobian derivative matrix

J(S) :=
∂(fw, fg)

∂(sw, sg)
(S) =

∂F

∂S
(S),

provided that these eigenvalues are real, in which case the smaller one is called the slow-family
characteristic speed λ s(sw, sg) and the larger one is called the fast-family characteristic speed
λ f(sw, sg). For the Corey model, both eigenvalues are real and nonnegative for each state
in the saturation triangle.
The self-similarity of solutions of a Riemann problem implies that if u(x, t) is a solution

at a given time t, then u(αx, αt) is also a solution for any α > 0. Centered rarefaction and
shock waves are self-similar. In this work we analyze particuliarities of the second type, i.e.,
the jump discontinuities produced by shocks.
The Hugoniot locus of a state So, denoted by H(So), is given by all the states S that

satisfy the Rankine-Hugoniot (RH) condition:

F (S)− F (So) = σ(S − So), (2)
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where σ = σ(So, S) is the propagation speed of the discontinuity between S and So, and the
�uxes F (S) and saturations S are given as before. (Notice that S belongs to H(So) if and
only if So belongs to H(S).)
Since the Hugoniot locus for a state on an edge of the saturation triangle always contains

the edge, it is important to identify the part of this locus that lies in the interior of the
saturation triangle, so we are led to de�ne for any state S on an edge of the triangle the
subset Hint(S) of H(S) consisting of points interior to the triangle. In the case of convex
Corey models, taking S as a vertex of the saturation triangle, the Hugoniot locus is given
by Hint(S) as a curve interior to the triangle except at S and at the state on the opposite
edge where the curve reaches the boundary of the saturation triangle, and the two edges
that meet at S (cf. [4, 5]).
We recall two versions of the very useful triple shock rule [4, 5]. Denoting the shock

speed σ(Si, Sj) by σij: Triple Shock Rule I: consider states S1, S2 belonging to H(S0); if
σ01 = σ02 holds, then S1 belongs to H(S2) and σ01 = σ02 = σ12 holds. Triple Shock Rule
II: let S0, S1, S2 be noncollinear states such that S1, S2 belong to H(S0) and S1 belongs to
H(S2); then σ01 = σ02 = σ12 holds.
The following de�nitions are inspired by the Ole��nik-Welge's construction (see [4, 6, 13,

14, 17]) for a single conservation equation.

De�nition 2. A state S is said to be an extension of a state So relative to the characteristic
family i (slow or fast) if (i) S lies in H(So) and (ii) σ(S, So) = λi(S). Typically the extension
of a state consists of a number of states. We denote by Ei(So) the locus of extension states
of the state So. An interior boundary extension relative to the characteristic family i for
the edge WO is the union of loci Ei(S) for all S ∈ WO. We denote the slow locus by IsWO

and the fast by I fWO; analogous de�nitions hold for the other edges. Conversely, an exterior
boundary extension relative to the characteristic family i for the edge WO is the locus of all
states the i-th extension of which are states on WO. We denote the slow locus by E sWO and
the fast by E fWO; analogous de�nitions hold for the other edges.

A system is called strictly hyperbolic at S if the characteristic speeds satisfy the inequality
λ s(S) < λ f(S); they are well studied [12, 14]. In three-phase �ow models there are points
where the characteristic speeds coincide, which are called coincidence points. Furthermore,
in Corey models there are isolated coincidence points where the Jacobian matrix is a multiple
of the identity, i.e., umbilic points. The classi�cation for power-law convex Corey models is
in [16].
The vertices of the saturation triangle are also umbilic points, [18].

Property 3. ([4, 5])For convex Corey models, the speed of the shocks between the interior
umbilic point to the vertices of the triangle are equal to 1.

3. Structures in the saturation triangle for convex Corey models

In this section we focus on properties of the shock extension of boundaries, the shocks are
characteristic either at the interior point or at the edges of the triangle. We characterize their
construction and show that for convex Corey models the extension is determined uniquely
by the average particle (or �interstitial�) speed of one of the shock phase-states, namely
the phase that is missing on the side of the triangle in question. Moreover, we provide an
estimate on the number of states on each edge of the triangle belonging to the Hugoniot
locus of any state S in the interior of the saturation triangle.
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3.1. Boundary extensions.
In this section we focus on extensions of the side WO, see De�nition 2; extensions of the
other edges have similar properties. Take a state E := (e, 0)T on this boundary, and examine
relation (2) for phase g; noticing that fg(E) is zero, the interior point S must satisfy fg(S) =
σsg. Besides this equality, the shock speed σ equals either λ s(S) or λ f(S) on the interior
extension IsWO or I fWO of WO, see De�nition 2. As λ s(S) = λ f(S) holds only at the umbilic
point, generically the two above mentioned loci are disconnected. As the family involved
is irrelevant in the proof of the following theorem, we take λ(S) to denote either λ s(S) or
λ f(S).

Theorem 4. Consider a convex Corey model. A point S in the saturation triangle belongs
to IWO if and only if fg(S)/sg = λ(S) holds. (Analogous statements hold for the other
boundaries.)

Proof. By the very De�nition 2 and the RH condition (2) a point S ∈ IWO satis�es fg/sg = λ
at S. Now let us prove the reciprocal: if S = (sw, sg)

T satis�es fg/sg = λ at S, then S belongs
to the extension of the boundary WO.
Let S be a point in the saturation triangle satisfying fg(S)/sg = λ(S), which is the second

RH condition (2.b) between S and a point E onWO with σ(E, S) = λ(S). In order to prove
that S belongs to IWO, it is su�cient to exhibit a point E := (e, 0)T for e ∈ [0, 1] satisfying

f(e) = fw(S) + λ(S)(e− sw), (3)

where on the LHS of (3) we have fw(E) on WO written as the two-phase fractional �ow
function f(e) = mw(e)/(mw(e) + mo(1− e)) that depends solely on e. On the RHS we have
a straight line with slope λ(S) that depends on the same e; for convenience we denote this
line in the independent variable e as

r(e) := fw(S) + λ(S)(e− sw), e ∈ [0, 1]; (4)

recalling that S is �xed, notice that fw(S), λ(S) and sw are constant. Equation (3) aims at
�nding the intersection of f(e) with r(e).

}

}

}
} } }sw sg so

f(e)

r(e)

sw sw + sg

fo(S)

fg(S) = λ(S) sg

fw(S)

e

P1

P2

Figure 3.1. (a) In the unit square the solid curve is f(e) and the dashed
line is r(e). Their intersection represents the solution; it is pictured as a dot.
The three solid rectangles are sw × fw(S), sg × fg(S), so × fo(S) (from left to
right). (b) The same unit square when fw(s)/sw < fg(s)/sg < fo(s)/so hold.
P1 = (sw, fw(S)) and P2 = (1− so, 1− fo(S)), case II in Fig. 3.2.
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From (4), notice that r(sw) = fw(S) and r(sw + sg) = fw(S) + fg(S) hold, hence the
schematic plot in Fig. 3.1.a. The internal rectangles with thick dark sides along the diagonal
of the unit square have width sα and height fα(S). Because the slope λ(S) = fg(S)/sg is
positive, the intersections of r(e) with the border of the unit square determine four con�gu-
rations, see Fig. 3.2:

I) �left-top�, when fo(S)/so < fg(S)/sg < fw(S)/sw holds (Fig. 3.2 -I);
II) �bottom-right�, when fw(S)/sw < fg(S)/sg < fo(S)/so holds (Figs. 3.1.b, 3.2 -II);
III) �bottom-top�, when fw(S)/sw, fo(S)/so < fg(S)/sg holds (Figs. 3.1.a, 3.2 -III);
IV ) �left-right�, when fg(S)/sg < fw(S)/sw, fo(S)/so holds (Fig. 3.2 -IV ).

Notice that the origin and (1, 1) belong to the graph of the two-phase fractional �ow function
f(e), so that there exists e satisfying (3) for S in cases III or IV, the shaded regions in Fig. 3.2.
We need to verify (3) for cases I and II.

O

WG mg/sg = mw/sw

mg/sg = mo/so

IV :
mg/sg <

mw/sw,
mo/so

III:
mg/sg >

mw/sw,
mo/so

I

II

I:

II:

Figure 3.2. Internal Hugoniot Hint(O) and Hint(W ) split the saturation tri-
angle by comparing the mα/sα ratios. In the shaded regions mg/sg is the
extremal ratio, in regions I and II, mg/sg is the intermediate ratio. (I: see
Fig. 3.1.a. II: see Fig. 3.1.b.) The small boxes represent the four cases; solid
lines have slope λ(S), dotted lines have slopes fw(S)/sw and fo(S)/so.

Since all inequalities involving fα(S)/sα in all cases have the same denominator m(S), we
simplify the comparison by eliminating common denominators and using analogous relations
involving mα(S)/sα = mα(sα)/sα instead of fα(S)/sα. Therefore, in the two white regions
in the triangle of Fig. 3.2, we have

In I :
mo(S)

so
<

mg(S)

sg
<

mw(S)

sw
,

In II :
mw(S)

sw
<

mg(S)

sg
<

mo(S)

so
.

Consider a state S in region II satisfying the desired condition fg(S)/sg = λ(S). (It is
easier to follow the argument geometrically in Fig. 3.3.) The slope mo(so)/so is larger
than mg(sg)/sg, thus with a direct aid of convex properties we have mg(sg) + mo(so) <
(sg + so)mo(so)/so < mo(so + sg), see [4, 6]. Then adding mw(sw) to the outer inequalities,
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{
{
{

so + sgso0

mo(so + sg)

M
mo(so) + mg(sg)

mo(so)

mg(sg)

mo(s)

mg(s− so)

Figure 3.3. The solid curve is mo(s) versus s, the dashed curve is mg(s)
starting at (so, mo(so)). At the left heights in the auxiliary rectangles, at the
right total heights. The straight solid line has slope mo(so)/so where M has
coordinates (so + sg, (sg + so)mo(so)/so), the dashed line has slope mg(sg)/sg.

and taking the reciprocal we obtain

fw(S) =
mw(sw)

mw(sw) + mg(sg) + mo(so)
>

mw(sw)

mw(sw) + mo(1− sw)
= f(sw). (5)

As (4) implies that r(sw) = fw(S), which is larger than f(s) at s = sw, we have proved that
there exists at least a value e larger than sw at which the graphs of r(e) and f(e) intersect.
(Inequality (5) also shows that there exists at least a value e smaller than sw leading to an
analogous conclusion.) Then E = (e, 0)T on WO belongs to H(S) when S is within region
II. The proof for S in region I is similar. The proof for S in regions III and IV follows by
inspecting the diagrams in Fig. 3.2 and noting that the graph of f(s) is a continuous curve
passing through (0, 0) and (1, 1); thus the theorem is proved. �

Remark 5. We may extract some further information from Theorem 4 proof. In the shaded
regions in Fig. 3.2, the straight line r(e) intersects f(e) at least once (f(e) is a continuous
curve passing through (0, 0) and (1, 1)). On the other hand, for states in the extension
boundary belonging to region I or II, such a con�guration possesses at least two intersections.
For a state S belonging to IsWO (or I fWO), let E be a state in WO such that S belongs to
H(E). Notice that the �number� of such states E can increase when r(e) intersects the graph
of the two-phase �ow f(e) at more points; such intersections occur in pairs. Thus there is
an odd number of solutions for S in the shaded regions and an even number of solutions for
S in regions I or II. The curves separating these regions are the internal Hugoniot curves
Hint(W ) and Hint(O), where the parity of number of solutions changes.
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O

WG

IsWOIsGO

IsWG

I fWOI fGO

I fWG

O

WG

E fGO

E fWO

E fWO

HWG

HWO

HGO

Figure 3.4. Extensions of the boundary for the slow family (solid) and the
internal Hugoniot locus from the pure oil saturation (dashed). The location of
the interior umbilic point is enclosed by the boundary extensions IsWO, IsGO

and IsWG.

The following result is a consequence of the Triple Shock Rule.

Remark 6. Let S be a state on the extension of the boundary GO, the Hugoniot locus of
which, H(S), possesses two states E1 and E2 belonging to GO. As the edges of the saturation
triangle are invariant manifolds for the PDE system (1), the Triple Shock Rule II implies
that the shock speeds σ(S, E1), σ(S, E2), and σ(E1, E2) are equal to λ(S). Thus S is an
extension state of both E1 and E2.

Claim 7. For any state S in the interior of the saturation triangle there is at least a state
E = (e, 0)T on the edgeWO such that E belongs to the Hugoniot locus of S; hence E ∈ H(S).
Moreover, the parity of the number of solutions varies in the four regions described in Fig. 3.2
as follows: an even number of states E for S in regions I and II, and an odd number of
states E for S in regions III and IV . The change of the parity occurs for states S on Hint(O),
Hint(W ) or over the fast exterior extension boundary of the edge WO, E fWO; characteristic
at the edge.

Proof. As in the proof of Theorem 4 for any state S in the saturation triangle we need to
exhibit a state E or a value e ∈ [0, 1] satisfying

f(e) = fw(S) + σ(e− sw), (6)

with f(e) de�ned as in (3) and the shock speed σ = σ(S, E) given from the RH condition
(2.b) as fg(S)/sg. In this case, let us de�ne the straight line at the RHS of (6) as r(e) given
by

r(e) := fw(S) + σ(e− sw), e ∈ [0, 1];

recalling that S is �xed, notice that fw(S), σ and sw are constant. Equation (6) aims at
�nding the intersection of f(e) with r(e).
Actually the separation in the four regions given in Fig. 3.4 follows from the relations

satis�ed by the internal Hugoniot loci of W and O. Indeed, the two-phase �ux f(e) is
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continuous and passes through (0, 0) and (1, 1) and the straight line satis�es:

r(0) = fw(S)− sw
fg(S)

sg


> 0, for fw(S)/sw > fg(S)/sg
= 0, for fw(S)/sw = fg(S)/sg
< 0, for fw(S)/sw < fg(S)/sg

, (7)

r(1) = fw(S) +
fg(S)

sg
(sg + so)

= fw(S) + fg(S) + so
fg(S)

sg


> 1, for fg(S)/sg > fo(S)/so
= 1, for fg(S)/sg = fo(S)/so
< 1, for fg(S)/sg < fo(S)/so

. (8)

Notice that a state S in region I satis�es (7.a) and (8.a), in region II satis�es (7.c) and (8.c),
in region III satis�es (7.c) and (8.a) and in region IV satis�es (7.a) and (8.c). Therefore for
states in region III and IV , we guarantee the existence of E on edge WO. (As the two-phase
�ux is strictly increasing, in region IV we have a unique value e satisfying (6).)
For any state in region I, as r(0) > 0 holds, it su�ces to show that the relation r(sw +

sg) < f(sw + sg) holds. As in this region mw(sw)/sw > mg(sg)/sg holds, it follows from
convexity that mw(sw) + mg(sg) < mw(sw + sg) holds. (See Fig. 3.3 with o as w.) Now,
multiplying this relation by mo(so), adding mw(sw + sg)(mw(sw) + mg(sg)) on both sides,
factoring mw(sw) + mg(sg) at LHS and mw(sw + sg) at RHS, and crossing the correct total
mobilities, one obtains

fw(sw) + fg(sg) =
mw(sw) + mg(sg)

mw(sw) + mg(sg) + mo(so)
<

mw(sw + sg)

mw(sw + sg) + mo(so)
= f(sw + sg).

Since r(sw + sg) = fw(S) + fg(S), we have proved that for a state S in region I, there exists
at least two states E on the edge WO. The proof for S in region II is analogous by showing
that r(sw) > f(sw) holds.
From relations (7.b) and (8.b) it is clear that over the internal Hugoniot loci, the state

W belongs to H(S) for S in Hint(W ), so the vertices are the new states and parity changes
from region I to III or from region II to IV . Nonetheless, in region III the straight line r(e)
crosses the unitary box in the con�guration �bottom-top�, so an odd number of solutions
must exist. As the passing from region I or II shows that the vertices W or O are solutions,
we notice that the change of parity can only occur when r(e) is tangent to f(e); therefore σ
equals f ′(e) and the shock speed matches the characteristic speed at the two-phase �ux. We
notice that λ s is zero at the boundary, thus the characteristic speed is λ f(E) and the state
S in the interior of the saturation triangle belongs to E fWO. �

Corollary 8. Actually, when the �ux function restricted to the boundaries is �S-shaped� and
it has a unique in�exion point, Claim 7 provides the exact number of states on the edge WO
belonging to H(S) as follows. Refer to Fig. 3.2; there is a single state on WO for S in
region IV , a pair of states on WO for S in regions I and II. For S in region III extra care
is needed, as there may be exterior boundary extensions E fWO, E fGO (see Fig. 3.4). When S
is inside of region III, there are three states on WO; once the state S crosses one of such
extensions, the number of states on WO reduces to one. Moreover, notice that for S on E fWO

and E fGO one of the two states is characteristic at the edge WO. Notice also that the new
state on the edge WO for S crossing Hint(O), Hint(W) is a vertex.
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Remark 9. A proof that convex permeability Corey models have S-shaped �ux function is
given in [7] for the class of power-law permeabilities.
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