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Abstract

We consider stochastic variational inequalities with monotone operators. The operator F defining

the variational inequality depends both on a variable in the finite dimensional Euclidean space and on a

random variable. We are interested in finding solutions for the deterministic variational inequality prob-

lem whose operator T is defined as the expected value of F , but we do not assume that T is explicitly

available; rather we propose a Stochastic Approximation procedure, meaning that at each iteration, a

step similar to some variant of the deterministic projection method is taken after sampling the random

variable, choosing thus a specific realization of the operator. We consider two variants of the method

where the exact orthogonal projection step is replaced by an approximate one. The first variant is a pro-

jection method with approximate projections, where the variational inequality satisfies an error bound

on the solution set, called weak sharpness. We prove that the generated sequence is bounded and its

distance to the solution set converges to zero almost surely. In particular, every cluster point of the

sequence is, almost surely, a solution. For the case in which the feasible set is compact, we establish

a convergence rate and an estimate on the number of iterations required so that any solution of an

auxiliary linear program solves the variational inequality. The second variant is an iterative Tykhonov

regularization method with approximate projections where, instead of solving a sequence of regularized

variational inequality problems, the regularization parameter is updated in each iteration and a single

projection step associated with the regularized problem is taken. In this second method, we allow a

Cartesian structure on the variational inequality so as to encompass, for example, equilibrium conditions

of monotone stochastic Nash games with a limited coordination between the players’ stepsize and reg-

ularization sequences. Requiring just monotonicity, we prove that the generated sequence converges to

the least-norm solution of the variational inequality almost surely.
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1 Introduction

The standard (deterministic) variational inequality problem, which we will denote as VI(T,X), is defined as
follows: given a closed and convex set X ⊂ R

n and an operator T : Rn → R
n, find x∗ ∈ X such that

〈T (x∗), x− x∗〉 ≥ 0, (1)

for all x ∈ X. The variational inequality problem includes many interesting special cases, such as comple-
mentarity and optimization problems.

In the stochastic case, we start with a mapping F which depends not only on x ∈ R
n but also on a

random variable v : Ω → Ξ, defined on a probability space (Ω,F ,P). So F is of the form F : Ξ× R
n → R

n,
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‡Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, RJ, Brazil, philipthomp@gmail.com

1



where for every x ∈ R
n, F (·, x) : Ξ → R

n is an integrable random vector on a measurable space (Ξ,G). The
solution crierion analyzed in this paper consists of solving VI(T,X) as defined by (1), where T : Rn → R

n

is the expected value of F (v, ·), i.e.
T (x) = E[F (v, x)]. (2)

In this special case, problem (1)-(2) becomes the stochastic variational inequality problem (SVI). We remark
that a random solution of the SVI is allowed, i.e., a random variable x∗ : Ω → X that satisfies (1) almost
surely. Recently, [10] considered a more general definition of stochastic variational inequality where the
feasible set is also affected by randomness, that is, X : Ξ ⇒ R

n is a random set-valued function.
Methods for the deterministic VI(T,X) have been extensively studied (see [12]). If T is fully available

then SVI can be solved by these methods. However, knowledge of T is often scarce, for various reasons:
a) the probability distribution of v is known, but the calculation of the expected value (2) involves multi-
dimensional integration which is computationally expensive if not impossible,
b) the random function F is known but the distribution of v is not, so that the information on v can be only
obtained using past data or sampling,
c) E[F (v, x)] is not observable and must be approximately evaluated with some simulation procedure.

In these cases new methods are required for the stochastic counterpart SVI, that involve a statistical
analysis. When X = R

n, the VI(T ,X) defined by (1) becomes the problem of finding the zeroes of T : find
x∗ ∈ R

n such that
T (x∗) = 0. (3)

When T is given by (2), problem (3) is called the stochastic non-linear equation problem (SE). Robbins
and Monro proposed in [24] a stochastic approximation (SA) method for solving SE which uses directly the
random map F which is fully available, in contrast with the mean operator T . Since this fundamental work,
SA approaches to various stochastic optimization problems and, more recently, to stochastic variational
inequalities, have been studied (see references in [16]).

1.1 Deterministic projection methods

In the deterministic setting (1), the classical projection method for VI(T,X), akin to the projected gradient
method for convex optimization, is

xk+1 = Π[xk − αkT (x
k)] (4)

where Π is the projection operator onto X and {αk} is an exogenous sequence of positive stepsizes. If T is
strongly monotone, i.e.,

〈T (z)− T (x), z − x〉 ≥ σ‖z − x‖2 (5)

for all x, z ∈ R
n and some σ > 0, and also Lipschitz continuous, i.e.,

‖T (z)− T (x)‖ ≤ L‖z − x‖

for all x, z ∈ R
n and some L > 0, then the method converges to the (unique) solution of VI(T,X) (see [5]),

assuming that the stepsizes satisfy

αk ∈ (0, 2σ/L2) ∀k ∈ N, (6)

inf
k
αk > 0 or

∑

k

αk = ∞. (7)

This choice of stepsizes includes the possibility of a constant stepsize αk ≡ α ∈ (0, 2σ/L2).
The strong monotonicity assumption is quite demanding. If we remove the strong monotonicity assump-

tion and require the weaker assumption of monotonicity (i.e., 〈T (z) − T (x), z − x〉 ≥ 0 for all x, z ∈ R
n)

the situation becomes more complicated, and quite different from the case of convex optimization. Consider

T : R2 → R
2 defined as T (x) = Ax with A =

[

0 1
−1 0

]

. T is monotone and the unique solution of VI(T ,R2)

is x∗ = 0. However, it is easy to check that ‖x − αT (x)‖ > ‖x‖ for all x 6= 0 and all α > 0, so that the
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sequence generated by (4) moves away from the solution for any choice of {αk}. In order to deal with this
situation, Korpelevich proposed in [18] an extra-gradient algorithm of the form

zk = Π(xk − αkT (x
k)), (8)

xk+1 = Π(xk − αkT (z
k)). (9)

In this case, if T is Lipschitz continuous with constant L and VIP(T ,X) has solutions, then the sequence
generated by (8)-(9) converges to a solution of VIP(T,X) provided that the αk’s are taken as αk ≡ α ∈
(0, 1/L) (see [18],[12]). Observe that all these methods are explicit, i.e., the formula for obtaining xk+1 is an
explicit one, up to the computation of the orthogonal projection Π.

Another possible implicit approach for the solution of monotone variational inequalities is through a
Tikhonov regularization scheme (see [12], Chapter 12), which dates back to the study of ill-posed variational
problems in [26]. This approach typically requires solving a sequence of perturbed variational inequality
problems. Precisely, the k-th iteration consists of solving the variational inequality VI(T + ǫkI,X), where
the operator T + ǫkI is a perturbation of the original operator T given by a positive scalar ǫk. In this way,
each of the variational inequality problems VI(T + ǫkI,X) is strongly monotone and, hence, it has a unique
solution tk ∈ X. Under suitable conditions, if the regularization sequence {ǫk} is decreasing and convergent
to zero, the Tikhonov sequence {tk} converges to the least-norm solution of VI(T,X). An alternative to the
Tykhonov method is the proximal point method (see [12], Chapter 12 and [25]). In this case, the convergence
to a single solution of VI(T,X) is obtained through the addition of a proximal term θ(xk − xk−1), where θ
is a fixed positive parameter. The sequence xk is defined as the (unique) solution of VI(T + θ(I − xk−1), X)
and convergence is guaranteed under suitable assumptions. These are implicit methods, since they require
the solution of a sequence of regularized variational inequalities.

Excepting in very special cases (e.g., when X is an affine manifold or a ball), the computation of the
projection is a computationally expensive task, and hence it is desirable to replace the projection Π in (4)
and (8)-(9) by a more easily computable operator. In general, it is natural to assume that X is of the form

X = ∩m
i=1Xi,

with all the Xi’s closed and convex. When the orthogonal projection onto each Xi, namely Πi : R
n → Xi,

is much easier to compute than Π, a natural idea consists of replacing, at iteration k, Π by one of the Πi’s,
say Πik , or even by an approximation of Πi. A natural context for this procedure is the case in which
X is a polyhedron and the Xi’a are halfspaces. This procedure is the basis of the so called sequential
row action methods for solving systems of equations (another option consists of computing separately but
simultaneously the projections onto all the Xi’s and then taking a convex combination of these projections
as the next iterate; these are the so called parallel row action methods). See [7] for more details on row
action methods.

When dealing with sequential row action methods, it is necessary to specify the order in which the sets
Xi are used along the iterations, i.e. the so called control sequence {ik} ⊂ {1, . . . ,m}. Several options have
been considered in the literature:
a) cyclical control: {ik} = {σ(1), σ(2), . . . , σ(m), σ(1), . . . } where σ is a permutation of {1, . . . ,m}.
b) almost cyclical control: ik is chosen arbitrarily, but in such a way that there exists q ∈ N such that each
set is used al least once in each sequence of q consecutive iterations.
c) most violated constraint control: ik = argmaxi∈Mhi(z), where z is the point to be projected in the k-th
iteration and each Xi is assumed to be of the form Xi = {x ∈ R

n : hi(x) ≤ 0}, with hi : R
n → R convex for

all i ∈ {1, . . . ,m}.
d) random control: ik is sampled from {1, . . . ,m} with a given probability distribution, with some assumption
on it ensuring positivity of the frequency with which each index i ∈ {1, . . . ,m} is used.

A negative consequence of the use of any kind of approximate projections in explicit methods for varia-
tional inequalities is that the iterates in general cease to be feasible, and therefore, no specific relation exists
between them and the solution values, i.e. (1) is not valid any more when x is an element of the generated
sequence, because we do not have x ∈ X. In order to preserve the convergence properties in a context of
nonfeasible iterates, it becomes necessary to take small stepsizes, assuming e.g. that

∞
∑

k=0

α2
k < ∞,

∞
∑

k=0

αk = ∞. (10)
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The first condition allows to control the perturbation caused by the lack of feasibility of the iterates, while
the second one ensures that the sequence will eventually reach a solution even when the initial iterate
lies arbitrarily distant from the solution set. With these small stepsizes linear convergence rates are not
attainable, even in the case of the steepest descent method for convex minimization (a special case of
VI(T,X) with X = R

n and T = ∇h for a convex h : Rn → R). Thus we have a trade-off between the easier
computation of the iterates afforded by an approximate projection, and the number of iterations required to
achieve a point close enough to the solution set.

For methods using approximate projections, some assumption is needed in order to ensure that the
projections onto the sets Xi’s are reasonable approximations of the projection onto X. For this, some form
of error bound or linear regularity is assumed on the sets Xi, see Assumption 8 in Subsection 2.2 and the
comments following it. When each Xi is of the form Xi = {x ∈ R

n : hi(x) ≤ 0}, where the hi’s are convex
and differentiable, existence of a Slater point (i.e. a point x̂ such that hi(x̂) < 0 for all i) is enough. This is
the assumption made for instance in [3].

Explicit methods for monotone variational inequalities using approximate projections were studied e.g.
in [13] and [8], imposing rather demanding coercivity assumptions on T , in [2] assuming paramonotonicity of
T , and then in [4] assuming just monotonicity of T . Another method of this type, using an Armijo search as
in [15] for determining the stepsizes, and approximate projections with the most violated constraint control,
can be found in [3].

1.2 Stochastic approximation methods

We now discuss methods for stochastic variational inequalities (1)-(2), and we focus on stochastic approxi-
mation methods (SA).

Jiang and Xu proposed the following SA method with exact projections for SVI in [16]:

xk+1 = Π[xk − αk(T (x
k) + wk)], (11)

where {wk} is a sequence of random vectors on (Ω,F ,P), called stochastic error. This formulation includes
the important case in which the stochastic error is given by samples vk of v, i.e.

wk = F (vk, xk)− T (xk), (12)

in which case (11) can be written directly in terms of the available random map F :

xk+1 = Π[xk − αkF (vk, xk)]. (13)

When X = R
n (13) becomes the SA method first proposed by Robbins and Monro in [24] for the SE problem

given by (3):

xk+1 = xk − αkF (vk, xk). (14)

In the deterministic case, this method coincides with Bertsekas’ algorithm (4). For the convergence analysis,
it is assumed that T is strongly monotone and Lipschitz continuous, as in the case of of its deterministic
counterpart (4).

Modeling (11) as a stochastic process with the natural filtration

Fk = σ(x0, w0, . . . , wk−1),

where the initial iterative x0 is possibly an integrable random vector, this method has been proved in [16]
to converge to the (unique) solution of SVI, with stepsizes satisfying (6)-(7), which includes the option of a
constant stepsize, and with the following conditions on the stochastic error:

E[wk|Fk] = 0, (15)
∑

k

α2
kE[‖wk‖2|Fk] < ∞. (16)

The first condition means that the error is “stochastically unbiased” and the second one is a “stochastic
boundedness” hypothesis on the error variance, both of which are standard in SA methods. If the errors
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{wk} are bounded, i.e., for all k ∈ N, ‖wk‖ ≤ C for some C > 0, then the second condition above is satisfied
when

∑

k α
2
k < ∞, i.e., when the steps are square summable. In this case, convergence of the methods

requires that
∑

k αk = ∞.
Recently, Wang and Bertsekas in [27] improved upon the method in [16] by allowing approximate pro-

jections instead of exact ones, for the case of X = ∩m
i=1Xi, with a random control sequence, where both the

random map F and the control sequence {ωk} are jointly sampled, giving rise to the following algorithm:

xk+1 = Πωk
[xk − αkF (vk, xk)]. (17)

This method is a stochastic variation of method (4). In [27] the convergence of (17) to the solution of SVI
is analyzed under two options for the control sequence {ωk}:
a) cyclic control, according to either a deterministically order or randomly permuted order,
b) random control, assuming that all indices are sampled sufficiently often.

In case (b), {ωk} is a sequence of random variables on (Ω,F ,P) with values in {1, . . . ,m}. The method
(17) is modeled as a stochastic process with the natural filtration

Fk = σ(x0, ω0, . . . , ωk−1, v
0, . . . , vk−1),

with an integrable initial iterate x0. For convergence, the mean operator T is assumed to be strongly
monotone and F is required to be stochastically Lipschitz, namely, there exists L > 0, such that for all
x, z ∈ R

n and all k ∈ N,
E
[

‖F (vk, z)− F (vk, x)‖2
∣

∣Fk

]

≤ L2‖z − x‖2 (18)

almost surely. The notion of stochastic Lipschitz continuity of the random map F in (18) resembles the
standard Lipschitz continuity hypothesis of T used in [16] (see Assumption 4 in Subsection 2.2 and the
comments following it). Two additional assumptions on the operator sampling, in the spirit of (15) and (16)
are required: first, the sampling must be unbiased, i.e., E[F (vk, xk)|Fk] = T (xk) for every k ∈ N; second,
the sampling must be stochastically bounded: if x∗ is the unique solution of SVI (1)-(2), then there exists
Bx∗ > 0 such that

E
[

‖F (vk, x∗)‖2
∣

∣Fk

]

≤ B2
x∗ (19)

for all k ∈ N almost surely. For the convergence of the method (17) small stepsizes, satisfying (10), are
required, due to the stochastic approximation and to the use of approximate projections. Finally, the
convergence analysis of method (17) requires also a linear regularity condition on the sets Xi, namely our
Assumption 8 in Subsection 2.2.

Recently, regularized iterative Tychonov and proximal point methods for monotone stochastic variational
inequalities were introduced in [19]. In standard (deterministic) Tykhonov methods, one requires a sequence
of exact or approximate solutions of the strongly monotone variational inequalities VI(T + ǫkI,X) for each
iteration k ∈ N. In the stochastic regime, termination criteria are generally much harder to meet. As a
consequence, one often provides confidence intervals in practice by generating a fixed number of sample paths.
Another observation is that the convergence of methods based upon the Tikhonov regularization requires
increasing accuracy of the subproblem solution. The implementation of such algorithms in a stochastic regime
is substantially harder, since the mentioned confidence intervals for each regularized problem are obtained via
simulation, which require that these intervals get increasingly tighter. Alternatively, a stochastic iterative
Tykhonov-based scheme is studied in [19], where, instead of solving a sequence of regularized variational
inequality problems, the regularization parameter is updated in each iteration and a single projection step
associated with the regularized problem is taken. Also, the algorithm in [19] allows for a Cartesian structure
on the variational inequality, so as to encompass, for example, equilibrium conditions of monotone stochastic
Nash games with a limited coordination between the players stepsize and regularization sequences. Namely,
the feasible set X ⊂ R

N has the the form

X = X1 × · · · ×Xm, (20)

where each Cartesian component Xi ⊂ R
ni is a closed and convex set, and the operator has components

T = (T1, . . . , Tm) with Ti : RN → R
ni for i = 1, . . . ,m and

∑m
i=1 ni = N . The algorithm in [19] is thus
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described as follows: given the k-th iterate xk ∈ X with components xk
i ∈ Xi, for i = 1, . . . ,m, the next

iterate is given by the projection

xk+1
i = ΠXi [xk

i − αk,i(Ti(x
k) + ǫk,ix

k
i + wk

i )], (21)

for i = 1, . . . ,m, where {αk,1, . . . , αk,m} are the stepsize sequences, {ǫk,1, . . . , ǫk,m} are the regularization
parameter sequences, and wk = (wk

1 , . . . , w
k
m) is the stochastic error. As mentioned before, in method (21)

a single exact projection step associated with the regularized problem is taken at each iteration after the
regularization parameter update. This method is shown to converge under monotonicity and Lipschitz-
continuity of T and a partial coordination between the stepsize and regularization parameter sequences (see
Assumption 14)

The iterative proximal point in [19] follows a similar pattern, where a single exact projection step asso-
ciated with the regularized problem is taken at every iteration after updating the centering parameter θk
update. Namely, the proximal point method in [19] is

xk+1
i = ΠXi [xk

i − αk,i(Ti(x
k) + θk,i(x

k − xk−1) + wk
i )], (22)

for i = 1, . . . ,m. Differently from the Tykhonov method, this method requires strong monotonicity, which
in particular implies uniqueness of solutions.

An important example where the Cartesian structure mentioned above appears is the so called stochastic
Nash game, in which there areN players and the i-th one must solve the parametrized stochastic minimization
problem

min E[fi(v, xi, x−i)]

s.t. xi ∈ Xi.

Here, x−i denotes the collection {xj : j 6= i} of decisions of players j other than player i, and xi 7→
E[fi(v, xi, x−i)] is convex for all x−i ∈

∏

j 6=i X
j . The equilibrium conditions for the problem above can be

formulated as a variational inequality of the form (1), with X as in (20) and Ti(x) = ∇xi
E[fi(v, x)] for

i = 1, . . . ,m. In this setting, the use of different stepsizes and regularization parameters for each component
i ∈ {1, . . . ,m} is motivated by the players’ need to choose their stepsize and regularization parameters while
abiding by a coordination requirement.

Recently, stochastic extra-gradient methods for SVI have been proposed in [17], [9] and [28]. They take
the form

zk = Π(xk − αkF (vk1 , x
k)), (23)

xk+1 = Π(xk − αkF (vk2 , z
k)), (24)

where {vk1 , vk2} are samples from the random variable v. In [17], [9] and [28] a class of extra-gradient
methods based upon the mirror-prox method introduced by Nemirovski in [21] is studied. In these methods,
an additional iterative averaging technique is used after the extra-gradient steps (23)-(24). In [17], [9] and
[28], different sets of weights are studied and convergence rates are obtained. In all these methods, the
sampling is assumed to be unbiased, and the following uniform stochastic boundedness condition is imposed:
there exists σ > 0 such that

E[‖F (v, x)− T (x)‖2] ≤ σ2 (25)

for all x ∈ X. In [17], X is assumed to be compact, and T Lipschitz continuous and monotone on X. In [28]
X is assumed to be compact and T monotone and bounded on X, i.e., supx∈X ‖T (x)‖ < ∞. In [9], X is
allowed to be unbounded, with different convergence analyses for the cases of bounded and unbounded X.
Differently from the methods mentioned above, their convergence results are non-asymptotic, and based on
gap functions for VI(T,X). For the analysis, tools from Large Deviations theory are used, meaning that for
a given maximum number M of iterations, an explicit convergence rate in terms of M is obtained for the
expected value of the the gap function.

Finally, in the second part of [28], another extragradient method for the SVI is presented, without
requiring the Lipschitz constant of T . The method uses the iteration (23)-(24), without the averaging
output. A smoothing technique is applied. The assumptions are again the stochastic boundedness (25),
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boundedness of X and T , strict monotonicity of T (which implies uniqueness of solutions) and the following
weak sharpness assumption: there exists ρ > 0 such that

〈T (x∗), x− x∗〉 ≥ ρd(x,X∗) (26)

for all x ∈ X, x∗ ∈ X∗, where X∗ is the solution set of VI(T,X) (see Section 1.4 for comments on the
weak sharpness property). Differently from the above mentioned extra-gradient methods based upon the
mirror-prox method, the convergence results are asymptotic, as in [16], [27] and [19], using super-martingale
convergence theorems and obtaining, the a.s.-convergence of the full sequence and a convergence rate for
E[‖xk − x∗‖2], where x∗ is the unique solution of VI(T,X). Concerning the choice of stepsizes, this method
uses an adaptive stepsize sequence, which does not demand the Lipschitz constant of T , but requires the
knowledge of ρ and of bounds on ‖x‖ , ‖T (x)‖ for x ∈ X.

The convergence analysis of the stochastic methods (11) and (17) requires strong monotonicity. As in
[19], [17], [9] and [28], we are concerned here with the extension of these methods to the barely monotone
case. In [17], [9] and [28], this is achieved through an extra-gradient method and an averaging technique
(which allows larger steps of order O(1/

√
k) at the k-th iteration instead of the usual O(1/k)), with an

optimal rate of convergence. However, the convergence analysis is different: non-asymptotic convergence
rates for the expected value of the gap function are derived, instead of convergence rates for the distance
of the sequence to the solution set. Also, these methods require compactness of the feasible set (unless an
additional perturbation on the operator is added, see [9], Theorem 3.3). In [28], an additional extra-gradient
method with an asymptotic analysis for a class of variational inequalities satisfying the weak sharpness
property (26) is presented, but there is still the requirement of compactness of the feasible set, strong
monotonicity (implying uniqueness of solutions), and knowledge of the sharpness modulus ρ. In [19], instead
of the extra-gradient approach, iterative regularized Tykhonov and proximal point methods for the monotone
case are suggested, with the important property that instead of solving a sequence of regularized variational
inequalities (whose solution can be complex, specially in the stochastic regime), a single exact projection
step associated with the regularized problem is taken at every iteration. In the proximal point method,
however, strict monotonicity is required.

1.3 Our methods

In many asymptotic stochastic approximation methods, the stochastic error w(x) := F (v, x)− T (x) (which
is present due to the lack of knowledge of the mean operator T ) is at most bounded, implying the use of
a small stepsizes, satisfying (10), with a slow convergence rate. In this case, the use of easyly computable
approximate projections, instead of an exact one, can improve significantly the performance of the algorithm.
Excepting for method (17) for strongly monotone stochastic variational inequalities, all the above mentioned
methods use exact projections. We thus propose two projection methods which use approximate projections.

The first one is the extension of the projection method (17) with approximate projections, proposed in
[27], to the class of monotone variational inequalities satisfying the weak sharpness property (26). This
property has been first proposed in [6] for convex minimization problems and latter extended by [20] and
[29] to monotone variational inequalities. The geometric structure and algorithmical implications of weak
sharpness are developed in [20, 29]. In important cases, this property is equivalent to the existence of an error
bound for the solution set of the variational inequality in terms of a gap function, in cases with nonunique
solutions (thus the term “weak”). We explore weak sharpness in the stochastic approximation method (17)
applied to a class of variational inequalities where: (1) approximate projections are possible, and (2) the
solution set is not a singleton. In this sense we improve upon the method in [27], which requires strong
monotoncity of the operator, and thus uniqueness of the solution. Under monotonicity and weak sharpness,
we prove that the distance from the generated sequence {xk} to the solution set X∗ a.s. converges to zero,
without the knowledge of the sharpness modulus ρ. In the particular case in which the feasible set X is
compact, we present a convergence rate depending upon ρ.

The second method is a variation of the regularized iterative Tychonov method proposed in [19] with
approximate projections, requiring just monotonicity. We thus improve upon the results [19], which use exact
projections, and upon [27], where strong monotonicity is assumed. Precisely, a single approximate projection
step associated with the regularized problem is taken at each iteration, after updating the regularization
parameter. We also keep the Cartesian structure of the variational inequality, so that the method can
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be applied to the computation of equilibrium of monotone stochastic Nash games with limited coordination
between the players stepsize and regularization sequences. Due to the use of approximate projections instead
of exact ones, an additional coordination requirement is imposed. We mention that it is satisfied by usual
choices of stepsizes and regularization parameters (see Section 3.2, Assumption 14 and comments following
it and [19], Lemma 4). We prove a.s.-convergence of the generated sequence, under plain monotonicity of
the operator.

The paper is organized as follows: Section 2 analyzes the first method and Section 3 deals with the second
one. Since the assumptions differ for the two methods, we list the assumptions in each section, along with the
algorithm statements and their convergence analysis. In the following subsection we give some preliminary
result and notation.

1.4 Some preliminaries and notation

We always assume existence in the solution set X∗ of VI(T,X):

Assumption 1. Problem VI(T,X) is consistent: X∗ 6= ∅.

For x, y ∈ R
n, we denote 〈x, y〉 the standard inner product and ‖x‖ =

√

〈x, x〉 the correspondent Euclidian
norm. We shall denote by d(·, C) the distance function to a general set C, namely, d(x,C) = inf{‖x − y‖ :
y ∈ C} and by d the distance function d(·, X) to the feasible set X. We denote the l1-norm as ‖ · ‖1. For a
closed and convex set C ⊂ R

n, we denote by ΠC the orthogonal projection onto C. The following properties
of the projection operator are well known.

Lemma 1. Take a closed and convex set C ⊂ R
n. Then

i) For all x ∈ R
n, y ∈ C,

〈x−ΠC(x), y −ΠC(x)〉 ≤ 0.

ii) For all x ∈ R
n, y ∈ C,

‖ΠC(x)− y‖2 + ‖ΠC(x)− x‖2 ≤ ‖x− y‖2. (27)

iii) For all x, y ∈ R
n,

‖ΠC(x)−ΠC(y)‖ ≤ ‖x− y‖. (28)

iv) For all x, y ∈ R
n,

‖ΠC(y)− y‖2 ≤ 2‖ΠC(x)− x‖2 + 8‖y − x‖2. (29)

Proof. Item (i) is just the first order optimality condition for the optimization problem which defines ΠC(x),

namely the minimization of ‖x− y‖2 subject to y ∈ C. Items (ii), (iii) follow immediately from (i). Item
(iv) follows from (iii), triangle inequality and (a+ b)2 ≤ 2a2 + 2b2.

The abbreviation “a.s.” means “almost surely” and the abbreviation “i.i.d.” means “independent and
identically distributed”. Given sequences {xk} and {yk} and a point x ∈ R

n, the notation xk = Ox(y
k)

means that there exists Cx > 0, depending only oupn x, such that ‖xk‖ ≤ Cx‖yk‖ for all k. When there is
no dependence on x, we use the notation O instead of Ox. Given a σ-algebra F and a random variable ξ, we
denote by E[ξ], E[ξ|F ], and V[ξ] the expectation, conditional expectation and variance, respectively. Also,
we write ξ ∈ F for “ξ is F-measurable”. We denote by σ(ξ1, . . . , ξn) the σ-algebra generated by the random
variables ξ1, . . . , ξn.

As in other stochastic approximation methods, a fundamental tool to be used is the following Non-
negative Almost Super-martingale Convergence Theorem of Robbins and Siegmund (see [24]), which can be
seen as the stochastic version of the properties of quasi-Féjer convergence sequences.

Theorem 1 ([24], Theorem 1). Let {yk}, {uk}, {ak}, {bk} be sequences of nonnegative random variables,
adapted to the filtration {Fk}, such that

E
[

yk+1

∣

∣Fk

]

≤ (1 + ak)yk − uk + bk, ∀k ∈ N, a.s.,

where
∑

ak < ∞ and
∑

bk < ∞ almost surely. Then {yk} converges and
∑

uk < ∞, almost surely.
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We will also use the following result, whose proof can be found in Lemma 10 of [22].

Theorem 2. Let {yk}, {ak}, {bk} be sequences of nonnegative random variables, adapted to the filtration
{Fk}, such that

E
[

yk+1

∣

∣Fk

]

≤ (1− ak)yk + bk, ∀k ∈ N, a.s.,

where ak ∈ [0, 1],
∑

ak = ∞,
∑

bk < ∞ and limk→∞
bk
ak

= 0 almost surely. Then {yk} converges to zero,
almost surely.

1.4.1 Weak-sharpness

In the following we denote by

NX(x) = {v ∈ R
n : 〈v, y − x〉 ≤ 0, ∀y ∈ X}

the normal cone of X at the point x ∈ X. The tangent cone of X at x ∈ X is defined as TX(x) = [NX(x)]◦

where for a set Y ⊂ R
n, the polar set Y ◦ is defined as

Y ◦ = {v ∈ R
n : 〈v, y〉 ≤ 0, ∀y ∈ Y }.

In [6], the notion of weak-sharp minima for the problem minx∈X f(x) with solution setX∗ was introduced:
there exists ρ > 0 such that

f(x)− f(x∗) ≥ ρd(x,X∗) (30)

for all x∗ ∈ X∗ and all x ∈ X. In [6], it is proved that if f is a closed, proper, and differentiable convex
function and if the sets X and X∗ are nonempty, closed, and convex, then (30) is equivalent to the geometric
condition:

−∇f(x∗) ∈ int

(

⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦

)

(31)

for all x∗ ∈ X∗.
In optimization problems, objective values can be used for determining regularity of solutions. In varia-

tional inequalities one can use for that purpose the above geometric definition or use the gap function

G(x) = sup
y∈X

〈T (y), x− y〉.

We denote by B(0, 1) the unitary ball andX∗ the solution set of VI(T,X). Consider the following statements:

(i) There exists ρ > 0, such that

−F (x∗) + ρB(0, 1) ∈
⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦ (32)

for all x∗ ∈ X∗.

(ii) There exists ρ > 0, such that

〈T (x∗), z〉 ≥ ρ‖z‖, ∀z ∈ TX(x) ∩ NX∗(x) (33)

for all x∗ ∈ X∗.

(iii)

−T (x∗) ∈ int

(

⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦

)

(34)

for all x∗ ∈ X∗.

(iv) There exist ρ > 0 such that
G(x) ≥ ρd(x,X∗). (35)

for all x ∈ X.
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Statement (iii) is the definition of a weak-sharp VI(T,X) given in [20]. In Theorem 4.1 of [20], it was
proved that (i)-(ii) are equivalent, and that (i)-(iv) are equivalent when X is compact and T is paramonotone
i.e.,

〈T (x)− T (y), x− y〉 = 0 ⇒ T (x) = T (y)

for all x, y ∈ R
n (see [15] for other properties of paramonotone operators).

Relation (35) means that the gap function G provides an error bound on the solution set X∗. Paramono-
tonicity implies that T is constant on the solution set X∗ and important classes of paramonotone operators
are, for example, co-coercive, symmetric monotone and strictly monotone composite operators (see [12],
Chapter 2)

Recently, the following assumption was introduced in [28]: there exists ρ > 0 such that

〈T (x∗), x− x∗〉 ≥ ρd(x,X∗). (36)

for all x∗ ∈ X∗ and all x ∈ X. Clearly, (36) implies (35). We prove next that (36) implies (33) and the
converse statement holds when T is constant on X∗. Thus, when T is constant on X∗, (32), (33) and (36)
are equivalent, and when T is paramonotone and X is compact, relations (32)-(36) are all equivalent.

Proposition 1. Condition (36) implies (33). If T is constant on X∗, then (33) implies (36).

Proof. Suppose that (36) holds and let x∗ ∈ X∗. If TX(x∗) ∩ NX∗(x∗) = {0}, then (33) holds trivially.
Otherwise, take d ∈ TX(x∗) ∩ NX∗(x∗) with d 6= 0. For all x̄ ∈ X∗, we have

〈d, x̄− x∗〉 ≥ 0,

〈d, x̄− x∗〉 ≤ 0,

where the first relation holds because d ∈ TX(x∗) and the second one holds because d ∈ NX(x∗). From the
above relations, X∗ is a subset of the hyperplane Hd := {y : 〈d, y − x∗〉 = 0}. Since d ∈ TX(x∗), there exist
sequences dk ∈ R

n, tk > 0 such that x∗ + tkd
k ∈ X∗, dk → d and tk → 0. From (36) we get

〈T (x∗), x∗ + tkd
k − x∗〉 ≥ ρd(x∗ + tkd

k, X∗) ≥ ρd(x∗ + tkd
k, Hd) = ρtk

〈d, dk〉
‖d‖ .

Dividing the above relation by tk and letting k → ∞, we conclude that (33) holds for d.
Now suppose that (33) holds and that T is constant on X∗. Take x ∈ X, x∗ ∈ X∗. Let x̄ := ΠX∗(x).

Since x, x̄ ∈ X and X is convex, we have x− x̄ ∈ TX(x̄). On the other hand, since x̄ := ΠX∗(x), we obtain
from Lemma 1(i) and closedness and convexity of X∗ that x− x̄ ∈ NX∗(x̄). Thus, x− x̄ ∈ TX(x̄)∩NX∗(x̄).
We conclude from relation (33) that

〈T (x̄), x− x̄〉 ≥ ρ‖x− x̄‖ = ρd(x,X∗). (37)

Since T is constant on X∗, we have

〈T (x̄), x− x̄〉 = 〈T (x∗), x− x̄〉 = 〈T (x∗), x− x∗〉+ 〈T (x∗), x∗ − x̄〉 ≤ 〈T (x∗), x− x∗〉,
using the fact that 〈T (x∗), x − x∗〉 ≤ 0, which holds because x∗ ∈ X∗ and x̄ ∈ X. The result follows from
the above relation and (37).

Finally, we will need the following result from [20].

Theorem 3. If T is continuous and −T (y) ∈ int
(
⋂

x∈X∗ [TX(x) ∩ NX∗(x)]◦
)

for a certain y ∈ R
n, then

argminx∈X〈T (y), x〉 ⊂ X∗.

Proof. See Theorem 4.2 of [20].

As a consequence of Theorem 3, under weak sharpness and uniform continuity of T , any algorithm which
generates a sequence {xk} such that d(xk, X∗) → 0 has the property that after a finite number of iterations
M , any solution of the auxiliary linear program

argminx∈X〈T (xM ), x〉
is a solution of the original variational inequality (see Theorem 5.1 in [20]). This result can be used for
devising new algorithms under the weak sharpness property. However, in practice, M may be very large. In
Theorem 5 of Section 2 we provide an estimate of the average value of M for our first projection method,
under the weak sharpness assumption.
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2 A projection method with approximate projections

2.1 Statement of the algorithm

As commented upon in Section 1, the expensive step in the projection method is the computation of the
two orthogonal projections onto X. Among the several schemes which have been proposed for replacing
the orthogonal projection by more easily computable approximate ones, we will follow here the approach
presented in [27]. In this reference, the feasible set X is assumed to be of the form

X = ∩m
i=1Xi,

where all the Xi’s are closed and convex. We assume that the orthogonal projections onto the Xi’s, namely
Πi : R

n → Xi, are relatively easy to compute, while the orthogonal projection onto X, namely Π : Rn → X,
is not. A prototypical instance of this situation occurs when X is a polyhedron and each Xi is a halfspace.
The approximation scheme consists of replacing, in each step of the projection method, Π by one of the Πi’s.
If ik is the index of the constraint used in the k-th iteration, the sequence {ik} is called control sequence.
Among the various control sequences which have been studied, the method in [27] chooses the random control
sequence, i.e., we consider the control sequence as a sequence {ωk} of random variables defined on (Ω,F ,P),
with values in {1, . . . ,m}. We sample also the random variable v in the definition of the mapping F , selecting
a realization F (vk, ·) of F as the operator to be used in the k-th iteration.

Algorithm 1. 1) Initialization: Choose the initial iterate x0 ∈ R
n such that E[‖x0‖] < ∞, the stepsizes

{αk}, the random controls {ωk} and the operator samples {vk}.
2) Iterative step: Given xk, define:

xk+1 = Πωk
(xk − αkF (vk, xk)). (38)

2.2 Discussion of the assumptions

In the sequel we consider the natural filtration

Fk = σ(x0, ω0, . . . , ωk−1, v0, . . . , vk−1).

Next we present the assumptions necessary for our convergence analysis.

Assumption 2. The pair (T,X) is weakly sharp, i.e., there exists ρ > 0, such that

〈T (x∗), x− x∗〉 ≥ ρd(x,X∗) (39)

for all x∗ ∈ X∗ and all x ∈ X.

This assumption was proposed recently in [28] with different purposes. We explore weak sharpness in
the stochastic approximation method (38) as a property of variational inequalities such that

1) approximate projections are available,

2) solutions are possibly non unique.

By considering these kind of problems, we improve upon the analysis of [27], where strong monotonicity
(which implies uniqueness of solutions) is required for convergence of the method in (38), while our approach
demands the much weaker condition (39).

Assumption 3. The mean operator T is monotone, i.e.,

〈T (y)− T (x), y − x〉 ≥ 0

for all y, x ∈ R
n.
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Assumption 4. The random operator F is stochastically Lipschitz, i.e., there exists L > 0, such that

E
[

‖F (vk, y)− F (vk, x)‖2
∣

∣Fk

]

≤ L2‖y − x‖2

for all y, x ∈ R
n, k ∈ N almost surely.

The stochastic Lipschitz continuity in Assumption 4 is akin to the Lipschitz continuity of T . Indeed,
when the samples {vk} have the same distribution as v, Assumption 4 implies that T is Lipschitz and it is
satisfied, for instance, when:
a) The random variable v takes values in a finite sample space.
b) There exists L > 0, such that, for all z, x ∈ R

n and all k ∈ N, it holds that ‖F (vk, z)−F (vk, x)‖ ≤ L‖z−x‖
almost surely, or, in other words, when {F (vk, ·)} is equi-Lipschitz almost surely.
c) There exists a positive continuous function L(·) such that for every z, x ∈ R

n, ‖F (v, z) − F (v, x)‖ ≤
L(v)‖z − x‖ almost surely, and v takes values in a compact sample space.

Indeed, (a)⇒(b)⇒(c). Since only the random operator is supposed to be available, the stochastic Lipschitz
continuity of F is a more practical assumption than Lipschitz continuity of T .

Assumption 5. The operator sampling is stochastically unbiased, i.e.,

E
[

F (vk, x)
∣

∣Fk

]

= T (x)

for all x ∈ R
n and all k ∈ N, almost surely.

Assumption 6. The operator sampling is stochastically bounded on the solution set, i.e., there exists B > 0
such that

E
[

‖F (vk, x)‖2
∣

∣Fk

]

≤ B2,

for all x ∈ X∗, for all k ∈ N, almost surely.

Since
‖T (x)‖ = ‖E[F (v, x)]‖ ≤ E[‖F (v, x)‖] ≤

√

E[‖F (v, x)‖]2 ≤ B

for all x ∈ X∗, Assumption 6 implies in particular that the mean T is bounded on X∗. Assumption 6 entails
that the operator sampling is bounded and the operator is bounded on x ∈ X∗. Indeed, if the random
operator F : Ξ×X → R

n is bounded on Ξ×X∗, then B := sup(ξ,x)∈Ξ×X∗ ‖F (ξ, x)‖ satisfies Assumption 6.
Sufficient conditions for Assumption 6 to hold are the continuity of F and the compactness of the sample Ξ
and the solution set X∗.

We now state the assumptions concerning the approximate projections. The following assumption on the
control sequence ωk is akin to the almost cyclical control used in row action methods (see [7]).

Assumption 7. Each constraint is sampled sufficiently often, i.e., there exists δ ∈ (0, 1], such that, for all
i ∈ M,

P
(

ωk = i
∣

∣Fk

)

≥ δ

m

for all k ∈ N, almost surely.

This is the same condition imposed in [27]. It means that each constraint is sampled sufficiently often
“near independently” of each other and independently of the past. For example, if the constraint samples
{ωk} are i.i.d. with uniform distribution on M and independent of the mapping samples {vk}, then this
condition holds with δ = 1, since P

(

ωk = i
∣

∣Fk

)

= P(ωk = i) = 1
m
.

Assumption 8. The feasible set X satisfies a linear regularity condition: there exists η > 0 such that

‖Π(x)− x‖2 ≤ ηmax
i∈M

‖Πi(x)− x‖2

for all x ∈ R
n.
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This is the same condition imposed in [27]. This condition is satisfied by any polyhedron (Hoffman’s
Lemma). It has been analyzed by Bauschke and Borwein [1] (Definition 5.6, p. 40), and Deutsch and
Hundal [11]. These references provide several other situations where the linear regularity condition holds,
and indicate that it is a mild restriction in practice. This assumption means that each Πi is a not too bad
approximation of Π.

Assumption 9. The stepsizes αk satisfy:
∞
∑

k=0

αk = ∞, (40)

∞
∑

k=0

α2
k < ∞. (41)

We remark here that the use of small stepsizes in method (38) is forced by two factors: the use of
approximate projections instead of exact ones, and the mapping sampling of SA methods. Indeed, even with
exact projection, method (38) under Assumption 6 would still require small stepsizes.

2.3 Preliminary results

We state now two lemmas which are needed for our convergence analysis.

Lemma 2. Almost surely, for all x ∈ X∗, y ∈ R
n, k ∈ N,

E
[

‖F (vk, y)‖2
∣

∣Fk

]

≤ 2L2‖y − x‖2 + 2B2.

Proof. The proof is similar to the one of Lemma 3 in [27]; we present it here for sake of completeness. Let
x ∈ X∗, y ∈ R

n, k ∈ N, then

E
[

‖F (vk, y)‖2
∣

∣Fk

]

≤ 2E
[

‖F (vk, y)− F (vk, x)‖2
∣

∣Fk

]

+ 2E
[

‖F (vk, x)‖2
∣

∣Fk

]

≤ 2L2‖y − x‖2 + 2B2,

using the bound (a+ b)2 ≤ 2a2 + b2 in the first inequality and Assumptions 4, 6 in the second one.

Lemma 3. Almost surely,

E
[

‖Πωk
(x)− x‖2

∣

∣Fk

]

≥ δ

mη
d2(x)

holds for all x ∈ R
n and all k ∈ N

Proof. The proof is similar to the one of Lemma 4 in [27].

2.4 Convergence analysis

Theorem 4. Under Assumptions 1-9, the method (38) generates a bounded sequence {xk} such that

lim
k→∞

d(xk, X∗) = 0, almost surely. (42)

In particular, all cluster points of {xk} belong to X∗ almost surely.

Proof. Take x ∈ X∗ (nonempty by Assumption 1). Denote yk := xk − αkF (vk, xk). Since x ∈ Xωk
, we get

from Lemma 1(ii)

‖xk+1 − x‖2 = ‖Πωk
(yk)− x‖2

≤ ‖yk − x‖2 − ‖yk −Πωk
(yk)‖2

= ‖(xk − x)− αkF (vk, xk)‖2 − ‖yk −Πωk
(yk)‖2

= ‖xk − x‖2 − 2αk〈xk − x, F (vk, xk)〉+ α2
k‖F (vk, xk)‖2 − ‖yk −Πωk

(yk)‖2

≤ ‖xk − x‖2 − 2αk〈xk − x, F (vk, xk)〉+ α2
k‖F (vk, xk)‖2 − 1

2
‖xk −Πωk

(xk)‖2 + 4‖yk − xk‖

= ‖xk − x‖2 + 2αk〈x− xk, F (vk, xk)〉+ 5α2
k‖F (vk, xk)‖2 − 1

2
‖xk −Πωk

(xk)‖2, (43)
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using Lemma 1(ii) in the first inequality, Lemma 1(iv) in the second one and simple algebra in the equalities.
From Assumption 5 and the fact that xk ∈ Fk, we obtain

E
[

〈x− xk, F (vk, xk)〉
∣

∣Fk

]

= 〈x− xk,E
[

F (vk, xk)
∣

∣Fk

]

〉 = 〈x− xk, T (xk)〉. (44)

By Lemma 2 and the fact that xk ∈ Fk, we have

E
[

‖F (vk, xk)‖2
∣

∣Fk

]

≤ 2L2‖xk − x‖2 + 2B2. (45)

By Lemma 3, xk ∈ Fk. Denoting A := δ/(mη), we get

−E
[

‖Πωk
(xk)− xk‖2

∣

∣Fk

]

≤ −Ad2(xk). (46)

Using the fact that xk ∈ Fk, taking conditional expectation in (43) and invoking (44)-(46), we get

E
[

‖xk+1 − x‖2
∣

∣Fk

]

≤
(

1 + 10L2α2
k

)

‖xk − x‖2 + 2αk〈x− xk, T (xk)〉+ 10B2α2
k − A

2
d2(xk). (47)

Concerning the second term in the right hand side of (47), we write

〈T (xk), x− xk〉 = 〈T (xk)− T (x), x− xk〉+ 〈T (x), x−Π(xk)〉+ 〈T (x),Π(xk)− xk〉. (48)

By monotonicity of T (Assumption 3), the first term in the right hand side of (48) satisfies

〈T (xk)− T (x), x− xk〉 ≤ 0. (49)

Regarding the second term in the right hand side of (48), the weak sharpness property (Assumption 2) and
the fact that x ∈ X∗ imply

〈T (x), x−Π(xk)〉 ≤ −ρd(Π(xk), X∗). (50)

We now observe that |d(Π(xk), X∗)− d(xk, X∗)| ≤ ‖Π(xk)− xk‖ = d(xk), so that

d(Π(xk), X∗) ≥ d(xk, X∗)− d(xk).

Using this inequality in (50), we get

〈T (x), x−Π(xk)〉 ≤ −ρd(xk, X∗) + ρd(xk). (51)

Concerning the third term in the right hand side of (48), we have

〈T (x),Π(xk)− xk〉 ≤ ‖T (x)‖‖Π(xk)− xk‖ ≤ Bd(xk). (52)

Combining (49), (51) and (52) in (48) we finally get

〈T (xk), x− xk〉 ≤ −ρd(xk, X∗) + (ρ+B)d(xk). (53)

We use (53) in (47) and get

E
[

‖xk+1 − x‖2
∣

∣Fk

]

≤
(

1 + 10L2α2
k

)

‖xk − x‖2 − 2ραkd(x
k, X∗) + 10B2α2

k

+2(ρ+B)αkd(x
k)− A

2
d2(xk). (54)

Defining C := 2(ρ+B), we use the relation −a2 + 2ab = −(a− b)2 + b2 in order to get

−A

2
d2(xk) + Cαkd(x

k) = −
(

√

A

2
d(xk)− Cαk√

2A

)2

+
C2α2

k

2A
≤ O(α2

k). (55)

In view of (55) and (54), finally we get

E
[

‖xk+1 − x‖2
∣

∣Fk

]

≤
(

1 + 10L2α2
k

)

‖xk − x‖2 − 2ραkd(x
k, X∗) +

[

10B2 + 2A−1(ρ+B)2
]

α2
k
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=
[

1 +O(α2
k)
]

‖xk − x‖2 − 2ραkd(x
k, X∗) +O(α2

k) (56)

for all x ∈ X∗.
Choose now some x∗ ∈ X∗. By Assumption 9, we have

∑

k α
2
k < ∞. Hence, we conclude from Theorem

1 and (56) that {‖xk − x∗‖} a.s. converges and in particular, {xk} is a.s.-bounded.
Since (56) holds for all x ∈ X∗, we invoke Assumption 1 for choosing x̄k := ΠX∗(xk). Now, x̄k ∈ Fk,

because since xk ∈ Fk). Since d(xk, X∗) = ‖xk − x̄k‖, we have

E
[

d2(xk+1, X∗)
∣

∣Fk

]

≤ E
[

‖xk+1 − x̄k‖2
∣

∣Fk

]

≤
[

1 +O(α2
k)
]

‖xk − x̄k‖2 − 2ραkd(x
k, X∗) +O(α2

k)

=
[

1 +O(α2
k)
]

d2(xk, X∗)− 2ραkd(x
k, X∗) +O(α2

k) (57)

for all k ∈ N, using (56) and the fact that xk ∈ Fk in the second inequality.
By Assumption 9, we have

∑

k α
2
k < ∞, so that we conclude from Theorem 1 and (57) that {d(xk, X∗)}

a.s. converges, and almost surely
∞
∑

k=0

2ραkd(x
k, X∗) < ∞.

By Assumption 9, we also have
∑

k αk = ∞, so that the above relation implies a.s.

lim inf
k→∞

d(xk, X∗) = 0.

In particular, the sequence {d(xk, X∗)} has a subsequence that converges to zero almost surely. Since
{d(xk, X∗)} a.s. converges, we conclude that the whole sequence a.s. converges to 0.

Next we present a convergence rate result for the method with approximate projections (38) under the
weak sharpness property (39) and compactness of the feasible set. More precisely, our convergence rate
holds for the distance to the solution set d(xk, X∗). We apply this result for obtaining an estimate of the
average number of iterations required so that any solution of an auxiliary linear program is a solution of the
variational inequality.

We require compactness of each setX1, . . . , Xm (whose intersection is the feasible setX). In the important
case in whichX is a compact polyhedron, we can enforce this condition by replacing eachXi by its intersection
with a box (i.e., a norm-1 ball) containing X, say X ′

i so that X = ∩X ′
i, and all the X ′

i’s are clearly compact.
If each Xi is a halfspace, the orthogonal projection onto X ′

i is reasonably easy to compute (though harder
than the projection onto Xi). Corollary 5.6 and Theorem 5.27 of [1] exhibit a large number of situations in
which Assumption 8 holds. We continue with our convergence rate result.

Theorem 5. Let Assumptions 1-9 hold. Assume that 0 < αk < ρ/(10RL2) for all k and that each Xi is
compact. Take R ≥ maxi∈M maxx∈Xi

‖x‖. Let {xk} be the sequence generated by method (38). Then,

a) Almost surely, {xk} is bounded, d(xk, X∗) converges to 0 and, for all ǫ > 0 there exists a finite random
variable M ∈ N, such that

min
0≤k≤M

{d(xk, X∗)− βk} ≤ ǫ, (58)

satisfying

E

[

M−1
∑

k=0

αk

]

≤ d2(x0, X∗)

2ρǫ
, (59)

where

βk =
2Rc1ǫ+ c2

2(ρ−Rc1αk)
αk = O(αk), (60)

c1 = 10L2 and c2 = 10B2 + 2(ρ+B)2δm−1η−1. (61)

15



b) In particular, for all ǫ ∈ (0, ρ/L), and all stepsize sequence satisfying

0 < αk < min

{

ρ

c1R
,
2ρ( ρ

L
− ǫ)

c2 + 2Rc1
ρ
L

}

for all k, there exist almost surely a finite random M ∈ N such that (58) and (59) hold, and any
solution of the linear program

min
x∈X

〈T (xM ), x〉

belongs to X∗.

Proof. First we prove item (a). Fix ǫ > 0. From (57) we have for every k ∈ N,

E
[

d2(xk+1, X∗)
∣

∣Fk

]

≤
[

1 + c1α
2
k

]

d2(xk, X∗)− 2ραkd(x
k, X∗) + c2α

2
k. (62)

We define the following level set and stopping time:

Lk = {x ∈ R
n : d(xk, X∗) ≤ βk + ǫ} (63)

M := inf{k ∈ N : xk ∈ Lk}. (64)

We also define the following “stopped” auxiliary processes:

uk,M =

{

2ραkd(x
k, X∗)− c1α

2
kd

2(xk, X∗)− c2α
2
k if k < M,

0 if k ≥ M,
(65)

xk∧M =

{

xk if k < M,

xM if k ≥ M.
(66)

Since xk ∈ Fk and M is a stopping time, we have that xk∧M and uk,M belong to Fk. From (65), (66) and
(62) we get for all k ∈ N,

E
[

d2(x(k+1)∧M , X∗)
∣

∣Fk

]

≤ d2(xk∧M , X∗)− uk,M (67)

for all k ∈ N. From (63)-(65), we have for k < M :

uk,M ≥ (2ραk − 2Rc1α
2
k)d(x

k, X∗)− c2α
2
k

≥ 2(ραk −Rc1α
2
k)(βk + ǫ)− c2α

2
k = 2ρǫαk (68)

for k < M , using the bound d(xk, X) ≤ 2R in the first inequality, the fact that ραk − Rc1α
2
k > 0 (which

follows from the fact that 0 < αk < ρ/c1R) in the second one and (60) in the equality. In particular, we
have that uk,M ≥ 0 for all k ∈ N.

We claim now that P(M < ∞) = 1. This fact, together with (64), implies that d(xM , X∗) ≤ δM + ǫ
in which case (58) holds with probability 1. We proceed to prove the claim. Since {uk,M} is nonnegative,
we conclude from (67) and Theorem 1 that a.s.

∑

k uk,M < ∞. In the event [M = ∞] we have, by (68),
∑

k uk,M ≥ 2ρǫ
∑

k αk = ∞. Hence P(M = ∞) = 0.
We take total expectation in (67) and sum from 0 to some ℓ, obtaining

E
[

d2(x(ℓ+1)∧M , X∗)
]

≤ d2(x0, X∗)− E

[

ℓ
∑

k=0

uk,M

]

. (69)

Finally, we let ℓ → ∞ and use the monotone convergence theorem in (69), obtaining

d2(x0, X∗) ≥ E

[

∞
∑

k=0

uk,M

]

= E

[

M−1
∑

k=0

uk,M

]

≥ 2ρǫE

[

M−1
∑

k=0

αk

]

, (70)
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using (65) in the equality and (68) in the last inequality. We have proved (59).
For the proof of item (b), we observe that by the choice of ǫ and {αk} we have βk + ǫ < ρ/L for all k.

Hence, invoking item (a), we have d(xM , X∗) ≤ βM + ǫ < ρ/L. Calling x̄M := ΠX∗(xM ), we obtain, from
the Lipschitz continuity of T ,

‖T (xM )− T (x̄M )‖ ≤ L‖xM − x̄M‖ = Ld(xM , X∗) < ρ.

From Proposition 1, Assumption 2 and the equivalence between (32) and (33), we get

−T (xM ) + ρB(0, 1) ⊂
⋂

x∈X∗

[TX(x) ∩ NX∗(x)]◦. (71)

Hence, −T (xM ) ∈ int
(
⋂

x∈X∗ [TX(x) ∩ NX∗(x)]◦
)

and we get from Theorem 3

argminx∈X〈T (xM ), x〉 ⊂ X∗.

We remark that the above result is also useful when exact projections are taken. In such a case, the
constants are smaller: c1 = 10L2 and c2 = 10B2.

3 An iterative Tikhonov regularization method with approximate

projections

In this section we assume the variational inequality (1) has a Cartesian structure. We consider the decom-
position R

N = R
n1 × · · · ×R

nm , with N = n1 + . . .+nm and furnish this Cartesian space with the standard
inner product 〈x, y〉 =∑m

i=1〈xi, yi〉 for x = (x1, . . . , xm) and y = (y1, . . . , ym). We suppose that the feasible
set X ⊂ R

N has the form
X = X1 × · · · ×Xm, (72)

where each component Xi ⊂ R
ni is a closed and convex set for i = 1, . . . ,m. Also, the random operator

F : Ξ× R
N → R

N has the form
F = (F1, . . . , Fm),

where each component is of the form Fi : Ξ× R
n1 × · · · × R

nm → R
ni for i = 1, . . . ,m. From (2), the mean

operator has the form T = (T1, . . . , Tm) with Ti(x) = E[Fi(ξ, x)] for i = 1, . . . ,m.
A typical situation where this structure appears is the so called stochastic Nash game, in which there are

m players and the i-th one must solve the parametrized minimization problem

min E[fi(v, xi, x−i)]

s.t. xi ∈ Xi.

Here, x−i denotes the collection {xj : j 6= i} of decisions of players j other than player i, and xi 7→
E[fi(v, xi, x−i)] is convex for all x−i ∈ ∏

j 6=i X
j . The equilibrium conditions of the above problem can

be formulated as a stochastic variational inequality of the form (1)-(2) with X as in (72) and Fi(v, x) =
∇xi

fi(v, x) under reasonable assumptions of integrability, differentiability and Lipschitz continuity of fi for
i = 1, . . . ,m.

Finally, in order to explore the use of approximate projections, we also assume that for i = 1, . . . ,m,
each Cartesian component Xi of X in (72) has the following constraint form:

Xi = ∩ni

j=1X
i
j (73)

where each constraint component Xi
j ⊂ R

ni is closed and convex with easy computable projections for

j ∈ {1, . . . , ni}. A typical situation with this formulation occurs when each Cartesian component Xi is a
polyhedron and the Xi

j ’s are half-spaces.
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The idea of our iterative Tykhonov method consist of combining the distributed architecture for comput-
ing equilibria of the iterative Tykhonov method in [19] (which allows a Cartesian structure of the associated
VI) using easily computable approximate projections, with constraints as in (73). Under these two structures
(the Cartesian form (72) and constraints of the form (73)), the scheme uses a predefined random control
sequence such that, in each iteration of the Tykhonov method, the projection ΠXi is replaced by one of the
ΠXi

j
for every i = 1, . . . ,m. Simultaneously, the random variable v in the definition of F is also sampled,

selecting a realization Fi(v
k, ·) of Fi for each i = 1, . . . ,m, to be used in the k-th iteration. As in [19], we

also permit a partial coordination between the stepsize and the regularization parameters of the players, so
that each player can choose independently its stepsize and its regularization sequence (see Assumption 14
and comments following it).

We continue some notation. Given i ∈ {1, . . . ,m}, we denote by Πi
j : R

ni → R
ni the orthogonal

projection onto Xi
j for each selection j ∈ {1, . . . , ni} of the constraint components of Xi. Given a selection

j = (j1, . . . , jm) ∈∏m
i=1{1, . . . , ni} of the Cartesian and constraint components, we denote by Πj : R

N → R
N

the projection ontoX1
j1
×· · ·×XN

jm
. We emphasize that the orthogonal projection under a Cartesian structure

is simple: for x = (x1, . . . , xm) ∈ R
N and Y = Y 1 × . . .× Y m ⊂ R

N with xi ∈ R
ni and Y i ⊂ R

ni , we have

ΠY (x) = (ΠY 1(x1), . . . ,ΠY m(xm)). (74)

3.1 Statement of the algorithm

Algorithm 2. 1) Initialization: Choose the initial iterate x0 ∈ R
n so that E[‖x0‖] < ∞, the stepsize

sequence αk = (αk,1, . . . , αk,m) ∈ (0,∞)m, the regularization sequence ǫk = (ǫk,1, . . . , ǫk,m) ∈ (0,∞)m, the
random control sequence ωk = (ωk,1, . . . , ωk,m) ∈∏m

i=1{1, . . . , ni} and the operator samples {vk}.
2) Iterative step: Given xk = (xk

1 , . . . , x
k
m), define, for each i ∈ {1, . . . ,m},

xk+1
i = Πi

ωk,i
[xk

i − αk,i(Fi(v
k, xk) + ǫk,ix

k
i )], (75)

The iterative step can be written compactly as

xk+1 = Πωk
[xk −D(αk) · (F (vk, xk) +D(ǫk)x

k)]

where D(λ) is the diagonal matrix with entries λ = (λ1, . . . , λn) ∈ R
n. In order to simplify the notation, we

will write in ther sequel Πωk,i
for Πi

ωk,i
.

3.2 Discussion of the assumptions

We consider the natural filtration

Fk = σ(x0, ω0, . . . , ωk−1, v0, . . . , vk−1).

Assumption 10. We request Assumptions 3, 4 and 5, namely, monotonicity of T , stochastic Lipschitz
continuity of F and an unbiased operator sampling.

Assumption 11. The operator sampling is pointwise stochastically bounded on the feasible set, i.e., there
exists a locally bounded measurable function B : Rn → (0,∞) such that

E
[

‖F (vk, x)‖2
∣

∣Fk

]

≤ B2(x),

for all x ∈ X and all k ∈ N, almost surely.

We also have for every x ∈ X,

‖T (x)‖ = ‖E[F (v, x)]‖ ≤ E[‖F (v, x)‖] ≤
√

E[‖F (v, x)‖]2 ≤ B(x)

for all x ∈ X. Assumption 11 means that the operator sampling is pointwise bounded on the feasible
set. Indeed, if the sample space Ξ is compact and F (·, x) is continuous for all x ∈ X, then B(x) :=
supξ∈Ξ ‖F (ξ, x)‖ satisfies Assumption 11. In [27], strong monotonicity of T implies uniqueness of the solution,
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and this condition is requested to hold only for such unique solution. Here, with possibly multiple solutions,
we request Assumption 6 to hold uniformly on the solution set.

We now state the assumptions concerning the approximate projections which accommodate the Cartesian
structure. Basically, each Cartesian component Xi = ∩ni

j=1X
i
j should satisfy Assumptions 7, 8 and, as in

[19], the step and regularization sequences need the following coordination assumption:

Assumption 12. For each Cartesian component i ∈ {1, . . . ,m}, each constraint component in Xi = ∩ni

j=1X
i
j

is sampled sufficiently often, i.e., there exists δi ∈ (0, 1], such that

P
(

ωk,i = j
∣

∣Fk

)

≥ δi
ni

for all j ∈ {1, . . . , ni}, and all k ∈ N, almost surely.

We observe that Assumption 12 requires a sampling coordination between the control sequences {ωk,i}∞k=0

for i = 1, . . . ,m since the filtration Fk accumulates the history from the control sequence of every Cartesian
component. Such assumption is satisfied, for example, when δi = 1 for all i = 1, . . . ,m if {ωk,1}, . . . {ωk,m},
the {vk}’s are independent, and {ωk,i}∞k=0 are i.i.d. with a uniform distribution on {1, . . . , ni}. for each
i ∈ {1, . . . ,m}.

Assumption 13. For every Cartesian component i ∈ {1, . . . ,m}, Xi satisfies a linear regularity condition:
there exists ηi > 0 such that,

‖ΠXi(x)− x‖2 ≤ ηi max
j∈{1,...,ni}

‖ΠXi
j
(x)− x‖2,

for all x ∈ R
ni .

Assumption 14. Let αk,min = min1≤i≤m αk,i, αk,max = max1≤i≤m αk,i, ǫk,min = min1≤i≤m ǫk,i and
ǫk,max = max1≤i≤m ǫk,i. Then,

(i) For each i = 1, . . . ,m, {ǫk,i}∞k=1 is a decreasing sequence converging to zero.

(ii) limk→∞
α2

k,max

αk,minǫk,min

= 0, limk→∞
αk,max−αk,min

αk,minǫk,min

= 0 and limk→∞ αk,minǫk,min = 0.

(iii)
∑∞

k=0 αk,minǫk,min = ∞.

(iv)
∞
∑

k=0

α2
k,max < ∞,

∞
∑

k=0

(αk,max − αk,min)
2

αk,minǫk,min
< ∞,

∞
∑

k=0

(ǫk−1,max − ǫk,min

ǫk,min

)2(

1 +
1

αk,minǫk,min

)

< ∞.

(v) limk→∞
(ǫk−1,max−ǫk,min)

2

ǫ3
k,min

αk,min

(

1 + 1
αk,minǫk,min

)

= 0.

Assumption 14 contains usual conditions on the regularization parameters of Tykhonov algorithms, and
conditions on the stepsize sequence for SA algorithms, with certain coordination across stepsizes and regu-
larization parameters. Assumption 14 includes Assumption 2 in [19] with the following addition, due to the
use of approximate projections:

∞
∑

k=0

(αk,max − αk,min)
2

αk,minǫk,min
< ∞. (76)
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We observe that this condition is trivially satisfied when the stepsizes are equally chosen among the players.
Lemma 4 of [19] establishes that stepsizes and regularization parameters of the form

αk,i = (k + Ci)
−c,

ǫk,i = (k +Di)
−d,

satisfy Assumption 2 in [19], when c, d ∈ (0, 1) are such that c > d and c + d < 1, the Ci’s belong to the
interval [C,C] and theDi’s belong to the interval [D,D] for some 0 < C < C and 0 < D < D. These stepsizes
and parameters also satisfy our extra condition (76): indeed, if Cmax = max1≤i≤m Ci, Cmin = min1≤i≤m Ci

and Dmax = max1≤i≤m Di, then

αk,minǫk,min = (k + Cmax)
−c(k +Dmax)

−d = k−(c+d)(1 + Cmax/k)
−c(1 +Dmax/k)

−d > k−(c+d) > k−1,

because 0 < c+ d < 1. Therefore,

(αk,max − αk,min)
2

αk,minǫk,min
<

α2
k,max

k
=

1

k(k + Cmin)2c
≤ 1

k1+2c
.

3.3 Preliminary Results

Lemma 4. The operator Hk := D(αk) · (T +D(ǫk)) satisfies

〈Hk(y)−Hk(x), y − x〉 ≥ σk‖y − x‖2

for all y, x ∈ R
n, with

σk = αk,minǫk,min − L(αk,max − αk,min).

Proof. We consider the decomposition

〈Hk(y)−Hk(x), y − x〉 = 〈D(αk) · (T (y)− T (x)), y − x〉+ 〈D(αk)D(ǫk)(y − x), y − x〉. (77)

Concerning the second term in the right hand side of (77), if Dk is the diagonal matrix with entries
(α1ǫ1, . . . , αmǫm), then

〈D(αk)D(ǫk)(y − x), y − x〉 = 〈Dk(y − x), y − x〉 ≥ αk,minǫk,min‖y − x‖2. (78)

The first term in the right hand side of (77) is equal to

m
∑

i=1

αk,i〈Ti(y)− Ti(x), yi − xi〉 = αk,min

m
∑

i=1

〈Ti(y)− Ti(x), yi − xi〉

+
m
∑

i=1

(αk,i − αk,min)〈Ti(y)− Ti(x), yi − xi〉. (79)

The first term in the right hand side of (79) is nonnegative by monotonicity of T . For the second term in
the right hand side of (79), we have

m
∑

i=1

(αk,i − αk,min)〈Ti(y)− Ti(x), yi − xi〉 ≥ −
m
∑

i=1

(αk,i − αk,min)‖Ti(y)− Ti(x)‖‖yi − xi‖

≥ −(αk,max − αk,min)

m
∑

i=1

‖Ti(y)− Ti(x)‖‖yi − xi‖

≥ −(αk,max − αk,min)‖T (y)− T (x)‖‖y − x‖
≥ −(αk,max − αk,min)L‖y − x‖2, (80)

using Cauchy-Schwartz inequality in the first inequality, Hölder-inequality in the third one and Lipschitz
continuity of T in the last one. The result follows from (77)-(80).
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We remark that, in view of Lemma 4 and the second limit condition in Assumption 14(ii), the operator
Hk is in fact strongly monotone with modulus σk > 0 for all sufficiently large k.

Lemma 5. Assume that X ⊂ R
n is convex and closed, that the operator T : Rn → R

n is continuous and
monotone over X and that Assumption 1 hold. If the sequences {ǫk,i}∞k=1 for i = 1, . . . ,m decrease to 0
and satisfy that lim supk→∞

ǫk,max

ǫk,min

< ∞, with ǫk,max = maxi ǫk,i and ǫk,min = mini ǫk,i, then the Tykhonov

sequence tk ∈ SOL(T +D(ǫk), X) satisfies that

(i) {tk} is bounded and all cluster points of {tk} belong to X∗.

(ii) The following inequality holds for all k ≥ 1:

‖tk − tk−1‖ ≤ ǫk−1,max − ǫk,min

ǫk,min
Mt,

where Mt is an upper bound of maxk∈N ‖tk‖.

(iii) If lim supk→∞
ǫk,max

ǫk,min

≤ 1 then {tk} converges to the least-norm solution in X∗.

Proof. See Lemma 3 in [19].

3.4 Convergence Analysis

We present next our convergence result for this method.

Theorem 6. If Assumptions 1,10-14 hold, then the method (75) generates a sequence {xk} such that:

(i) if lim supk→∞
ǫk,max

ǫk,min

< ∞, then almost surely {xk} is bounded and all cluster points of {xk} belong to

the solution set X∗,

(ii) if lim supk→∞
ǫk,max

ǫk,min

≤ 1, then almost surely {xk} converges to the least-norm solution in X∗.

Proof. Let {tk} denote the Tykhonov sequence associated to VI(T,X) with regularization parameters {ǫk}, so
that tk ∈ SOL(T+D(ǫk), X) for all k ∈ N. Take i ∈ {1, . . . ,m} and denote yki := xk

i −αk,i(Fi(v
k, xk)+ǫk,ix

k
i ).

Since tki ∈ Xi ⊂ Xωk,i
, we get

‖xk+1
i − tki ‖2 = ‖Πωk,i

(yki )− tki ‖2

≤ ‖yki − tki ‖2 − ‖yki −Πωk,i
(yki )‖2

= ‖(xk
i − tki ) + (yki − xk

i )‖2 − ‖yki −Πωk,i
(yki )‖2

= ‖xk
i − tki ‖2 + 2〈xk

i − tki , y
k
i − xk

i 〉+ ‖yki − xk
i ‖2 − ‖yki −Πωk,i

(yki )‖2

≤ ‖xk
i − tki ‖2 + 2〈tki − xk

i , x
k
i − yki 〉+ 5‖yki − xk

i ‖2 −
1

2
‖xk

i −Πωk,i
(xk

i )‖2, (81)

using Lemma 1(ii) in the first inequality, Lemma 1(iv) in the second one and simple algebra on the equalities.
We sum the inequalities in (81) with i between 1 and m, getting

‖xk+1 − tk‖2 ≤ ‖xk − tk‖2 + 2

m
∑

i=1

〈tki − xk
i , x

k
i − yki 〉+ 5‖yk − xk‖2 − 1

2

m
∑

i=1

‖xk
i −Πωk,i

(xk
i )‖2. (82)

From Assumption 5 and the fact that xk
i ∈ Fk, we obtain

E
[

〈tki − xk
i , x

k
i − yki 〉

∣

∣Fk

]

= αk,i〈tki − xk
i ,E

[

Fi(v
k, xk)

∣

∣Fk

]

+ ǫk,ix
k
i 〉 = αk,i〈tki − xk

i , Ti(x
k) + ǫk,ix

k
i 〉. (83)
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Using the fact that xk
i ∈ Fk, we have

E
[

‖yki − xk
i ‖2
∣

∣Fk

]

= α2
k,iE

[

‖Fi(v
k, xk) + ǫk,ix

k
i ‖2
∣

∣Fk

]

≤ α2
k,iE

[

‖Fi(v
k, xk)− Fi(v

k, tk) + ǫk,i(x
k
i − tki ) + Fi(v

k, tk) + ǫk,it
k
i ‖2
∣

∣Fk

]

≤ 4α2
k,iE

[

‖Fi(v
k, xk)− Fi(v

k, tk)‖2
∣

∣Fk

]

+ 4α2
k,iǫ

2
k,i‖xk

i − tki ‖2

+4α2
k,iE

[

‖Fi(v
k, tk)‖2

∣

∣Fk

]

+ 4α2
k,iǫ

2
k,i‖tki ‖2

≤ 4α2
k,maxE

[

‖Fi(v
k, xk)− Fi(v

k, tk)‖2
∣

∣Fk

]

+ 4α2
k,maxǫ

2
k,max‖xk

i − tki ‖2

+4α2
k,maxE

[

‖Fi(v
k, tk)‖2

∣

∣Fk

]

+ 4α2
k,maxǫ

2
k,max‖tki ‖2.

Summing the inequalities in (84) with i between 1 and m, we get from Assumptions 4, 11,

E
[

‖yk − xk‖2
∣

∣Fk

]

=

m
∑

i=1

E
[

‖yki − xk
i ‖2
∣

∣Fk

]

≤ 4α2
k,maxE

[

‖F (vk, xk)− F (vk, tk)‖2
∣

∣Fk

]

+ 4α2
k,maxǫ

2
k,max‖xk − tk‖2

+4α2
k,maxE

[

‖F (vk, tk)‖2
∣

∣Fk

]

+ 4α2
k,maxǫ

2
k,max‖tk‖2

≤ 4L2α2
k,max‖xk − tk‖2 + 4α2

k,maxǫ
2
k,max‖xk − tk‖2

+4α2
k,maxB

2(tk) + 4α2
k,maxǫ

2
k,max‖tk‖2

≤ 4(L2 + ǫ2k,max)α
2
k,max‖xk − tk‖2 + 4α2

k,max(B
2
t + ǫ2k,maxM

2
t ), (84)

using the triangular inequality and the fact that (
∑4

i=1 ai)
2 ≤ 4

∑4
i=1 a

2
i in the first inequality, while the

the last inequality follows from the fact that Bt and Mt are positive constants (depending on the Tykhonov
sequence) satisfying maxk∈N ‖B(tk)‖ ≤ Bt and maxk∈N ‖tk‖ ≤ Mt, because {tk} is a bounded sequence by
Lemma 5, and B is a nonnegative locally bounded function by Assumption 11.

Denoting Ai := δi/(niηi), we get from Lemma 3 and the fact that xk
i ∈ Fk,

m
∑

i=1

E
[

‖Πωk,i
(xk

i )− xk
i ‖2
∣

∣Fk

]

≥
m
∑

i=1

Ai‖ΠXi(xk
i )− xk

i ‖2

≥ Amin

N
∑

i=1

‖ΠXi(xk
i )− xk

i ‖2

= Amind
2(xk), (85)

where Amin = min1≤i≤m Ai. Now we use again the fact that xk ∈ Fk, take conditional expectation in (82)
and combine the result with (83)-(85), in order to obtain

E
[

‖xk+1 − tk‖2
∣

∣Fk

]

≤
[

1 + 20(L2 + ǫ2k,max)α
2
k,max

]

‖xk − tk‖2 + 2
m
∑

i=1

αk,i〈tki − xk
i , Ti(x

k) + ǫk,ix
k
i 〉

+20(B2
t +M2

t ǫ
2
k,max)α

2
k,max −

Amin

2
d2(xk). (86)

The sum in the second term of the right hand side of (86) is equal to

〈D(αk) · (T +D(ǫk))(x
k), tk − xk〉 = 〈D(αk) · (T +D(ǫk))(x

k)−D(αk) · (T +D(ǫk))(t
k), tk − xk〉

+〈D(αk) · (T +D(ǫk))(t
k), tk −Π(xk)〉

+〈D(αk) · (T +D(ǫk))(t
k),Π(xk)− xk〉. (87)

Calling ∆k := αk,max − αk,min, it follows from Lemma 4 that the first term in the right hand side of (87)
satisfies

〈D(αk) · (T +D(ǫk))(x
k)−D(αk) · (T +D(ǫk))(t

k), tk − xk〉 ≤ −(αk,minǫk,min − L∆k)‖xk − tk‖2. (88)

22



The second term in the right hand side of (87) is equal to

m
∑

i=1

αk,i〈Ti(t
k) + ǫk,it

k
i , t

k
i −ΠXi(xk

i )〉 = αk,min

m
∑

i=1

〈Ti(t
k) + ǫk,it

k
i , t

k
i −ΠXi(xk

i )〉

+

m
∑

i=1

(αk,i − αk,min)〈Ti(t
k) + ǫk,it

k
i , t

k
i −ΠXi(xk

i )〉. (89)

The first term in the right hand side of (89) satisfies

m
∑

i=1

〈Ti(t
k) + ǫk,it

k
i , t

k
i −ΠXi(xk

i )〉 = 〈(T +D(ǫk))(t
k), tk −Π(xk)〉 ≤ 0, (90)

since tk ∈ SOL(T +D(ǫk), X). Regarding the second term in the right hand side if (89), we invoke the fact
that ΠXi(tki ) = tki , so that for each µ ∈ (0, 1) we have

m
∑

i=1

(αk,i − αk,min)〈Ti(t
k) + ǫk,it

k
i , t

k
i −ΠXi(xk

i )〉 ≤
m
∑

i=1

(αk,i − αk,min)‖Ti(t
k) + ǫk,it

k
i ‖‖ΠXi(tki )−ΠXi(xk

i )‖

≤ ∆k

m
∑

i=1

(‖Ti(t
k)‖+ ǫk,i‖tki ‖)‖tki − xk

i ‖

≤ ∆k(Bt + ǫk,maxMt)‖tk − xk‖

= 2
(Bt + ǫk,maxMt)∆k

2
√
µαk,minǫk,min

· √µαk,minǫk,min‖tk − xk‖

≤ (Bt + ǫk,maxMt)
2∆2

k

4µαk,minǫk,min
+ µαk,minǫk,min‖tk − xk‖2, (91)

using Cauchy-Schwartz inequality in the first inequality, Lemma 1(iii) for ΠXi , in the second one, the fact that
‖T (tk)‖ ≤ B(tk) ≤ Bt and ‖tk‖ ≤ Mt for all k ∈ N in the third one, and the relation 2ab = −(a−b)2+a2+b2

in the forth one. Putting together (89)-(91), we finally get that the second term in the right hand side of
(87) is bounded by

〈D(αk) · (T +D(ǫk))(t
k), tk −Π(xk)〉 ≤ (Bt + ǫk,maxMt)

2∆2
k

4µαk,minǫk,min
+ µαk,minǫk,min‖xk − tk‖2. (92)

For the third term in the right hand side of (87), we have

〈D(αk) · (T +D(ǫk))(t
k),Π(xk)− xk〉 ≤ ‖D(αk)‖‖T (tk) + ǫkt

k‖‖Π(xk)− xk‖
≤ αk,max(Bt + ǫk,maxMt)d(x

k). (93)

Combining (88), (92) and (93) with (87), we obtain

2〈D(αk) · (T +D(ǫk))(x
k), tk − xk〉 ≤

[

− 2(1− µ)αk,minǫk,min + 2L∆k

]

‖xk − tk‖2

+
(Bt + ǫk,maxMt)

2∆2
k

2µαk,minǫk,min
+ 2αk,max(Bt + ǫk,maxMt)d(x

k). (94)

Now we use (94) in (86), getting

E
[

‖xk+1 − tk‖2
∣

∣Fk

]

≤ qk‖xk − tk‖2

+20(B2
t +M2

t ǫ
2
k,max)α

2
k,max +

(Bt + ǫk,maxMt)
2∆2

k

2µαk,minǫk,min

+2αk,max(Bt + ǫk,maxMt)d(x
k)− Amin

2
d2(xk), (95)
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where
qk := 1− 2(1− µ)αk,minǫk,min + 20(L2 + ǫ2k,max)α

2
k,max + 2L∆k. (96)

Denoting by Ck := 2(Bt + ǫk,maxMt), the last term in the right hand side of (95) becomes

−Amin

2
d2(xk) + Ckαk,maxd(x

k) = −
(

√

Amin

2
d(xk)− Ckαk,max√

2Amin

)2

+
C2

kα
2
k,max

2Amin
≤

C2
kα

2
k,max

2Amin
= O(α2

k,max).

(97)
Using (97) in (95) we get that

E
[

‖xk+1 − tk‖2
∣

∣Fk

]

≤ qk‖xk − tk‖2

+

[

20(B2
t +M2

t ǫ
2
k,max) +

2(Bt +Mtǫk,max)
2

Amin

]

α2
k,max +

(Bt + ǫk,maxMt)
2∆2

k

2µαk,minǫk,min
(98)

for all k.
Next we relate ‖xk − tk‖2 with ‖xk − tk−1‖2, using the properties of the Tykhonov sequence (Lemma 5).

‖xk − tk‖2 ≤ (‖xk − tk−1‖+ ‖tk − tk−1‖)2
= ‖xk − tk−1‖2 + ‖tk − tk−1‖2 + 2‖xk − tk−1‖‖tk − tk−1‖

≤ ‖xk − tk−1‖2 +
(

Mt

ǫk−1,max − ǫk,min

ǫk,min

)2

+ 2Mt

ǫk−1,max − ǫk,min

ǫk,min
‖xk − tk−1‖.

Using the fact that 2ab = −(a − b)2 + a2 + b2, the last term in the rightmost expression in (99) can be
estimated as

2Mt

ǫk−1,max − ǫk,min

ǫk,min
‖xk − tk−1‖ = 2

√
αk,minǫk,min‖xk − tk−1‖ ·Mt

ǫk−1,max − ǫk,min√
αk,minǫk,minǫk,min

≤ αk,minǫk,min‖xk − tk−1‖2 +M2
t

(

ǫk−1,max − ǫk,min)
2

αk,minǫ3k,min

.

The inequality in (99) yields

‖xk − tk‖2 ≤ (1 + αk,minǫk,min)‖xk − tk−1‖2 +
(

Mt

ǫk−1,max − ǫk,min

ǫk,min

)2(

1 +
1

αk,minǫk,min

)

. (99)

We combine (98) and (99) in order to get

E
[

‖xk+1 − tk‖2
∣

∣Fk

]

≤ qk(1 + αk,minǫk,min)‖xk − tk−1‖2

+

[

20(B2
t +M2

t ǫ
2
k,max) +

2(Bt +Mtǫk,max)
2

Amin

]

α2
k,max +

(Bt + ǫk,maxMt)
2∆2

k

2µαk,minǫk,min

qk

(

Mt

ǫk−1,max − ǫk,min

ǫk,min

)2(

1 +
1

αk,minǫk,min

)

. (100)

We now estimate the coefficient qk(1 + αk,minǫk,min) in (100). In view of (96), we have

qk = 1− αk,minǫk,min

(

2− 2µ−
20(L2 + ǫ2k,max)α

2
k,max

αk,minǫk,min
− 2L∆k

αk,minǫk,min

)

. (101)

Assumption 14(ii) guarantees that

20(L2 + ǫ2k,max)α
2
k,max

αk,minǫk,min
+

2L∆k

αk,minǫk,min
→ 0,
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and, since µ ∈ (0, 1) is arbitrary, we ensure the existence of c ∈ (0, 1) such that

ck := 2µ+
20(L2 + ǫ2k,max)α

2
k,max

αk,minǫk,min
+

2L∆k

αk,minǫk,min
< c (102)

for all sufficiently large k. Next we show that qk ∈ (0, 1) for large k. Indeed, from (102) and the fact that
c ∈ (0, 1) we have that 1 < 2− ck < 2 for large enough k, so that we obtain, from (101),

1− 2αk,minǫk,min < qk < 1− αk,minǫk,min. (103)

Finally, limk→∞ αk,minǫk,min = 0 by Assumption 14(ii), so that (103) implies that qk ∈ (0, 1) for sufficiently
large k. Using this fact and (102) we get the following estimate:

0 < qk(1 + αk,minǫk,min) ≤ qk + αk,minǫk,min

= 1− αk,minǫk,min(2− ck) + αk,minǫk,min

= 1− αk,minǫk,min(1− ck)

≤ 1− αk,minǫk,min(1− c), (104)

using (102) in the last inequality.
Combining (100) and (104) we obtain

E
[

‖xk+1 − tk‖2
∣

∣Fk

]

≤ (1− ak)‖xk − tk−1‖2 + bk (105)

for all sufficiently large k, with ak := αk,minǫk,min(1− c) and

bk :=

[

20(B2
t +M2

t ǫ
2
k,max) +

2(Bt +Mtǫk,max)
2

Amin

]

α2
k,max+

(Bt + ǫk,maxMt)
2∆2

k

2µαk,minǫk,min
qk

(

Mt

ǫk−1,max − ǫk,min

ǫk,min

)2(

1 +
1

αk,minǫk,min

)

. (106)

From (104) and the fact that c ∈ (0, 1), we conclude that ak ∈ [0, 1], while from Assumption 14(iii) we have
that

∑

k ak = ∞. and from Assumption 14(iv) and (106) we get
∑

k bk < ∞. Finally, we obtain from (106):

0 ≤ bk
ak

= c1
α2
k,max

αk,minǫk,min
+ c2

(

∆k

αk,minǫk,min

)2

+ c3
(ǫk−1,max − ǫk,min)

2

ǫ3k,minαk,min

(

1 +
1

αk,minǫk,min

)

for some positive constants c1, c2 and c3. Therefore, we get that limk→∞ bk/ak = 0 from Assumption 14(ii)
and (v). These conditions, Theorem 2 and (105) imply that limk→∞ ‖xk − tk−1‖ = 0 almost surely. The
result follows from this fact and Lemma 5.
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