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Abstract. We study a quadratic system of conservation laws with an elliptic region. The
second order terms in the fluxes correspond to type IV in Shearer and Schaeffer classification.
The viscosity matrix is the identity so the DRS point lies on the elliptic boundary. We
prove that high amplitude Riemann solutions arise from Riemann data with arbitrarily
small amplitude in the hyperbolic region near the DRS point. For such Riemann data there
is no small amplitude solution. This behavior is related to the bifurcation of one of the
codimension-3 nilpotent singularities studied by Dumortier, Roussarie and Sotomaior.

1. Introduction

A famous theorem of Lax [7] states that systems of n conservation laws with small data
have Riemann solution consisting of n small waves, rarefactions or shocks, separated by
constant states, under certain hypotheses. What happens if the hypotheses are violated?
T.P. Liu [8] showed in 1974 that if the hypothesis of genuine nonlinearity is violated, the
rarefactions and shocks can join. Still, they form n groups separated by n−1 constant states.

In this work, we find an example of a system of two equations for which the Riemannn
solution consists of two shocks with O(1) amplitude no matter how small the data is, provided
it is close to a special point on the locus where the characteristic speeds coincide, i.e, the
data is close to a special point on the boundary of the elliptic region.

Though our example occurs in a system with quadratic flux functions, such a point exists
generically for systems that change from hyperbolic to elliptic type. This point is associated
to a local bifurcation of the traveling wave ODE for the viscous conservation law, studied by
Dumortier, Roussarie and Sotomaior in [4]. In their classification, this is called an elliptic
bifurcation. Thus the existence of large Riemann solutions for small data is generic.

Dumortier, Roussarie and Sotomaior proved the existence of three types of codimension
three bifurcations for planar vector fields: elliptic, saddle and focus. Azevedo, Marchesin,
Plohr and Zumbrum in [1] proved that saddle bifurcation are associated to the existence of
local Riemann solutions containing three waves for systems of two conservation laws. This
solution has more waves than dimensions, and one of these waves is not a Lax wave. In [1]
it was also proved that foci bifurcations do not occur for ODE’s originating from systems of
two diffusive conservation laws.

Therefore, we conjecture that for diffusive systems of two conservation laws the conse-
quences of violations of Lax theorem’s hypotheses are understood.

In Sec. 2 we review some results for systems of two conservation laws in one space dimen-
sion. In Sec. 3 we present our results. Proofs are in Sec. 4. In the Sec. 5 we present some
remarks about our result.
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2. Background

In this section we review some results for systems of two conservation laws in one space
dimension. These are partial differential equations of the form

Ut + F (U)x = 0, (2.1)

where U(x, t) = (u, v)T ∈ R2 for x ∈ R and t ≥ 0, F ∈ C2 (R2,R2).
A Riemann problem is an initial value problem with constant states on the left and right

hand sides of the origin, called UL and UR, that is

U(x, 0) =

{
UL if x < 0,
UR if x > 0.

(2.2)

We are concerned with solutions of (2.1) and (2.2) of the form

U(x, t) =





UL if x < s1t,
UM if s1t < x < s2t,
UR if s2t < x,

(2.3)

i.e., they are sequences of two discontinuities (shocks) with speed s1 and s2.
Following Gel’fand [5] and Courant-Friedrichs [3] we require that the shocks are traveling

waves U (x, t) = Ū (η), η = (x− st) /ε, of the equation

Ut + F (U)x = εUxx (2.4)

with limη→±∞ U (η) = U± in the limit as ε ↘ 0, i.e., we impose that the associated ordinary
differential equation

U̇ = F (U)− F (U−)− s (U − U−) (2.5)

has an orbit connecting the equilibria U− to U+. In this case we say that the shock is
admissible or that it has a viscous profile. Therefore, each shock must satisfy the following
two Rankine-Hugoniot conditions

F (U+)− F (U−)− s (U+ − U−) = 0, (2.6)

where U− and U+ are, respectively, the left and right states of the shock and s is its speed.
We denote the shock by the triplet (U−, U+, s); we may use s (U−, U+) or just s for the shock
speed.

Based on Lax [7] and Conley and Smoller [2], we define:

Definition 2.1. Generic shocks appearing in Riemann solutions are:

• 1-shocks : U− is a repeller and U+ is a saddle (1S in the figures);
• 2-shocks : U− is a saddle and U+ is an attractor (2S in the figures).

Definition 2.2. Other connections are important in our problems, namely:

• over-compressive shocks: U− is a repeller and U+ is an attractor (C in the figures);
• left characteristic 1-shocks : U− is a repeller-saddle and U+ is a saddle;
• left characteristic over-compressive shocks : U− is a repeller-saddle and U+ is an

attractor.

For left characteristic shocks U− is not a hyperbolic equilibrium because one of its eigen-
values on the linearization vanishes.
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Definition 2.3. The Rankine-Hugoniot set for a fixed U− is a one-dimensional set in U -
space:

H (U−) =
{
U+ ∈ R2 : ∃s ∈ R such that equation (2.6) holds

}
. (2.7)

Each point of the Rankine-Hugoniot setH is classified according to Definitions 2.1 and 2.2.
Typically, there are sectors in H consisting of 1-shocks, of 2-shocks and of over-compressive
shocks, i.e., H is divided in connected parts such that every U+ in the sector is a shock of
same kind. Similarly, there are (isolated) points in H representing left characteristic shocks.

Smooth solutions of (2.1) satisfy

Ut + DF (U) Ux = 0. (2.8)

Definition 2.4. The set of U in R2 where DF (U) has:

• two distinct real eigenvalues is called the strictly hyperbolic region;
• two distinct complex conjugate eigenvalues is called the elliptic region;
• one double real eigenvalue is called the coincidence locus.

In the strictly hyperbolic region the characteristic speeds of DF (U) are ordered so that the
lowest is called 1-speed, λ1 (U), and the highest is called 2-speed, λ2 (U). The eigenvectors
of DF (U) are ~r1 (U) and ~r2 (U).

We now state a version of Lax’s classical theorem for systems of two equations in a small
neighborhood N with N̄ in the strictly hyperbolic region, such that ∇λi · ~ri 6= 0, i = 1, 2.

Theorem 2.5. Given UL and UR in N , there exist two transverse foliations, tangent to ~r1

at UL and to ~r2 at UR, and a UM such that the curve segment from UL to UM along the slow
speed foliation followed by the curve segment from UM to UR along the fast speed foliation
parametrize the unique solution of the Riemann problem with data UL, UR. These curves
represent shocks and rarefactions.

Corollary 2.6. Let UM be the middle point of the solution of the Riemann problem with
data UL, UR. Then |UM − UL| ↘ 0 as |UR − UL| ↘ 0.

Figure 2.1. The transverse set of curves near UL and the middle point UM

of the Riemann problem solution with data UL, UR.

Remark 2.7. Lax’s famous shocks inequalities arise from the observation that the eigenval-
ues of the linearization of the ODE (2.5) at the equilibria U−, U+ (in fact, at any equilibrium
U) are λ1 (U)− s.
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3. The Local Riemann Problem with non Local Solution

We study a model of type IV in Shearer and Schaeffer’s classification with the flux function

F

(
u
v

)
=

1

2

(
3u2 + v2

2uv

)
+

(
2v
0

)
. (3.1)

We set a = 3 and b = 0 in the classification given in [10]. We expect that other type IV
models with nearby parameters lead to similar results.

Since

DF

(
u
v

)
=

[
3u v + 2
v u

]
(3.2)

the eigenvalues of DF are

λ1 = 2u−
√

u2 + (v + 1)2 − 1 and λ2 = 2u +
√

u2 + (v + 1)2 − 1. (3.3)

Notice that λ1 = λ2 along the circle u2 + (v + 1)2 = 1, the coincidence locus. The interior
of this circle is the elliptic region in this model.

We show that non local solutions arise from Riemann problems with arbitrarily small data.
This result is stated in the following theorems.

Theorem 3.1. Let O be (0, 0). There exists an open set B with O ∈ ∂B in the strictly
hyperbolic region having the following property. Given a small β > 0, for any UR ∈ B with
|UR −O| < β the solution of the Riemann problem with data UL = O, UR has amplitude
close to 4.

This behavior can be extended for UL, UR in open sets near O in the hyperbolic region.
Let T (β) be the family of open triangles in the hyperbolic region

T (β) =
{
(u, v) ∈ R2 : 0 < v < β2/9 and − v < u < v

}
. (3.4)

The choice β2/9 is explained in the proof of Lemma 4.1.

Theorem 3.2. Let be β & 0. For every UL ∈ T (β) there is a non empty open set A(UL, β)
closer than β from UL with the following properties. i) The set A (UL, β) lie in the hyperbolic
region; ii) For all points UR in A(UL, β) the solution of the Riemann problem with data UL,
UR has amplitude larger than 4.

We remark that both T (β) and A (UL, β) approach O as β vanishes.

4. Proof of the theorems

Substituting (3.1) in the Rankine-Hugoniot relation (2.6) yields

−s(u+ − u−) + 3(u2
+ − u2

−)/2 + (v2
+ − v2

−)/2 + 2(v+ − v−) = 0 (4.1a)

−s(v+ − v−) + u+v+ − u−v− = 0. (4.1b)

For U− = O = (0, 0), Eqs. (4.1) reduce to the quadratic curves

Q ≡ 3

2

(
u+ − s

3

)2

+
1

2
(v+ + 2)2 = 2 +

s2

6
and (u+ − s) v+ = 0. (4.2)

The Rankine-Hugoniot locus H (O) defined in (2.7) consists of the horizontal axis v+ = 0
and of the circle u2

+ + (v+ + 2)2 = 4. On the horizontal axis the shock velocity is given by
s = 3

2
u+. On the circle, s = u+, so that s < λ1 (U+) if and only if u+ > 0 and −2 < v+ < 0;

also s > λ2 (U+) if and only if u+ < 0 and −2 < v+ < 0.
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Now we can classify the points inH (O) according to the Definitions 2.1 and 2.2 as shown in
Figure 4.1. Notice that the 1-shock (O,O′, 0) is left characteristic, i.e., s (O,O′) = λ1 (O) =
0. The points D1, D2 and D3 will be used later.

Figure 4.1. The curve H (O) . The 1-shocks: solid curve; over-compressive
shoks (C): dashed.

The intersections of the two curves in (4.2) are the equilibria of the associated ODE (2.5).
If s = 0 there are just two equilibria, O and O′ = (0,−4), see Figure 4.2. The equilibrium
O′ plays an important role.

The phase portrait for the ODE (2.5) associated to the shock (O,O′, s = 0) is shown
in Figure 4.4. For this EDO the nilpotent singularity O is a possibly degenerate elliptic
equilibrium in the classification given by Dumortier, Roussarie and Sotomaior, see [4] and
[1]. Thus O is called the DRS point in this phase space. One can verify that the coincidence
curve contains an homoclinic orbit of O, thus the orbits that connect the equilibria O and
the saddle O′ lie in the hyperbolic region.

The phase portrait for U− = O with shock speed s1 . λ1 (O) has four equilibria, as it
can be easily seen using (4.2), see Figures 4.3 and 4.5. We see that O splits into three
equilibria, O, D1 and D2, while O′ moves to D3; D1 and D3 lie on the 1-shock sector 1S

Figure 4.2. Quadratic curves
for U− = O and s = 0.

Figure 4.3. Quadratic curves
for U− = O and s . 0.
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Figure 4.4. Phase portrait,
U− = O, s = 0. The coinci-
dence curve contains an orbit

Figure 4.5. Phase portrait
for U− = O, s . 0.

of H (O) while D2 lies on the over-compressive sector C near O′, see again Figure 4.1. The
jacobian DF at the equilibrium O has only one eigenvector, with eigenvalue −s1, so O is
a non hyperbolic repeller. It is easy to check that D1 is a saddle and D2 is an attractor.
Since O′ was a saddle, D3 is also a saddle. Thus, the four equilibria define several shocks (see
Figures 4.5 and 4.6): the 1-shocks (O, D1, s1) and (O, D3, s1), the over-compressive shock
(O, D2, s1) and the 2-shocks (D1, D2, s1) and (D3, D2, s1). Therefore the Riemann problem
with UL = O and UR = D2 has multiple solutions in phase space that coincide in physical
space. Now we remove the degeneracy of the Riemann solution.

We have a family of equilibria D2 (s) that lies in C. There are two kinds of solutions for
the Riemann problem UL = O and UR near D2 but out of C, see Figure 4.7.

If UR lies above C (in this case we denote UR by Ru), the solution is a 1-shock (O, D1, s1)
followed by a faster 2-shock (D1, Ru, su > s1); the equilibriaO and D1 do not change type and
Ru is an attractor like D2. We remark that the sequence of a 1-shock (O, D3, s1) followed by a
2-shock (D3, Ru, s (D3, Ru)) has incompatible shock speeds, i.e., s (D3, Ru) < s1. Therefore,
the Riemann problem with data O, Ru has a local solution as established in Lax Theorem.

On other hand if UR lies below C (in this case we denote UR by Rd) the solution is a
1-shock (O, D3, s1) followed by a faster 2-shock (D3, Rd, sd > s1); the equilibria O and D3 do
not change type and Rd is an attractor like D2. We remark that the sequence of a 1-shock
(O, D1, s1) followed by a 2-shock (D1, Rd, s (D1, Rd)) has incompatible shock speeds, i.e.,
s (D1, Rd) < s1. Therefore, the Riemann problem with data O, Rd does not have a local
solution, i.e., for such Riemann data there is no small amplitude solution.

Because C touches O we can choose Rd as close to O as we wish, so there are Riemann
problems with data UL = O, UR with non local solutions. The open set B (see Figure 4.8)
lies in the gap between C and the part of H (O′) given by

u =
√
−v (v + 12) (v + 4) / (v + 12) . (4.3)

The proof of theorem 3.1 is complete.
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Figure 4.6. Phase
portrait UL = O,
s1 . 0.

Figure 4.7. Solutions of the Riemann
problem with UL = O and UR out the com-
pressive sector but near D2.

Figure 4.8. The
open set B in The-
orem 3.1.

Figure 4.9. H (UL) for UL ∈ T (β).
The 1-shocks: solid curve; over-
compressives shocks: dashed; 2-shocks:
dotted curve.

We now show that this behavior actually occurs also for UL in triangles above O. However,
in this case the over-compressive sector does not touch UL any more. Let T (β) be the family
of open triangles defined in (3.4). For UL in T (β) the Rankine-Hugoniot curve is shown in
Figure 4.9; the points Mi will be defined later. Because UL now lies in the hyperbolic region
it has two characteristic speeds, and we set s0 = λ1 (UL). The Lax theorem guarantees that
the over-compressive sector does not touch UL.

The phase portrait for UL ∈ T (β) with s . s0 = λ1 (UL) has four equilibria, UL is a re-
peller, see Figure 4.10.a. The equilibria define the following shocks: the 1-shocks (UL,M1, s)
and (UL,M3, s), the over-compressive shock (UL,M2, s), and the 2-shocks (M1,M2, s) and
(M3,M2, s).

By increasing the speed back to s0 the equilibria M1 and UL collapse into each other (UL

is a repeller-saddle) but M2 stays away, see Figures 4.9 and 4.10.b. In this case we rename
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Figure 4.10. Phase portraits for UL ∈ T (β) with different speeds: a) s . s0;
b) s = s0 (the equilibrium M1 = UL is a repeller-saddle); c) s & s0.

Figure 4.11. Solutions of the
Riemann problem with UL ∈
T (β) and UR out of compres-
sive sector but near M2. Figure 4.12. Solution for

UL ∈ T (β), UR ∈ A (UL, β).

M2 and M3 as, respectively, MC and MS. The equilibria define the following shocks: the
left characteristic 1-shock (UL,MS, s0) and the left characteristic over-compressive shock
(UL, MC , s0).

For s & s0 there is just one shock starting at UL, namely the 2-shock from UL to M2, see
Figures 4.9 and 4.10.c.

For right states near the over-compressive sector C of H (UL) there are two kinds of
solutions, see Figure 4.11. If UR lies above C (in this case we denote UR by Ru), the solution
is a 1-shock from UL to M1 followed by a faster 2-shock from M1 to Ru (the equilibria UL

and M1 do not change type and Ru is an attractor as M2). We remark that the sequence
of a 1-shock from UL to M3 followed by a 2-shock from M3 to Ru has incompatible shock
speeds. Therefore, the Riemann problem with data UL, Ru has a unique local solution with
middle state M1 as established in Lax Theorem.
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On other hand if UR lies below C (in this case we denote UR by Rd), see again Figure
4.11, the solution is a 1-shock from UL to M3 followed by a faster 2-shock from M3 to Rd

(the equilibria UL and M3 do not change type and Rd is an attractor as M2). We will show
that M3 stays away from UL, therefore, the Riemann problem with data UL, Rd has a large
amplitude solution, i.e., for such Riemann data there is no small amplitude solution. We
remark that the sequence of a 1-shock from UL to M1 followed by a 2-shock from M1 to Rd

has incompatible shock speeds.
We need to determine where the over-compressive sector ends, i.e., we must locate the

point MC separating the 2-shock sector from the over-compressive sector.

Lemma 4.1. For UL ∈ T (β) with small β we have |UL −MC | < β and |UL −MS| > 4.

Proof. Let us find the location of MC ≡ (uC , vC) and MS ≡ (uS, vS). If UL = (αvL, vL) ∈
T (β), with −1 < α < 1 and 0 < vL < β2/9, straightforward calculations using (4.1) with
s = λ1 (UL) lead to

vC = −vL − 2 + b, vS = −vL − 2− b and ui = 2αvL − a− (αv2
L + avL)/vi (4.4)

for i = C, S, with

a =
√

2vL + (1 + α2)v2
L and b =

√
4 + (6αa− 2)vL − 6(α2 − 2)v2

L. (4.5)

The quantity a is real in the hyperbolic region; b is real in part of the hyperbolic region, e.g.
where vL <

√
3uL + 1 and vL > −1

2
, or where vL > −√3uL + 1 and vL < −1

2
. For small

positive β both MC and MS lie in the strictly hyperbolic region.
Expanding the distances from UL to MS and MC in power series in vL we have:

|UL,MC | '
(
5
√

2vL − αvL

)
/3 and |UL,MS| ' 4 + 7vL/4, (4.6)

with error O
(
v

3/2
L

)
, so for small positive vL we have

|UL,MC | < 3
√

vL < β and |UL,MS| > 4. (4.7)

¤
Lets us examine the Riemann solution for UR lying in the region below the part of C to

the left of MC (see Figure 4.12). The 1-shock from UL to M3 near MS has speed s1 slightly
lower than λ1 (UL); the 2-shock from M3 to Rd near M2 and MC has speed higher than s1.
By continuity we have |UL,M3| > 4 and |UL, Rd| < β.

The tangent dU to H (UL) at MC is given by
(
DF (MC) − sI

)
dU − (MC − UL) ds = 0

and the tangent of H (MS) at MC is given by
(
DF (MC) − sI

)
dU − (MC −MS) ds = 0.

Therefore H (UL) and H (MS) are transverse at MC because either UL, MC and MS are not
collinear neither λ1 (UL) equals any characteristic speed of MS. So we can define an angular
open set A (UL, β), see Figure 4.12, with vertices on MC and angle given by the tangents of
H (UL) and H (MS) at MC and distance to UL that is smaller than β.

The proof of theorem 3.2 is complete.

5. Remarks

Dumortier, Roussarie and Sotomaior studied (see [4]) the versal bifurcation for a nilpotent
singularity for a planar vector field with three parameters. They classify the codimension-3
bifurcations as saddle, focus and elliptic type. In [1] it is proved that saddle and elliptic
bifurcations occur in quadratic models; moreover for a type IV flux with identity viscosity
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Figure 5.1. Phase portrait
for the elliptic singularity
DRS. From [4]. (Reproduced
by permission.)

Figure 5.2. One of the possi-
ble perturbations of the phase
portrait for the elliptic singu-
larity DRS.

matrix the singularity is elliptic. The phase portrait for this kind of nilpotent singularity is
sketched in Figure 5.1. One of the sixteen stable deformation is shown on Figure 5.2. No
high amplitude solutions arise directly from the local bifurcation. In fact, looking only for
local solutions would lead to nonexistence of Riemann solution. However the phase portraits
of the solution for UL ∈ T (β) contain an extra equilibrium M3 near O′ which is fundamental
for defining the non local solution, see again Figure 4.10.a.

So, in this work, we show that the elliptic bifurcation is associated to nonlocal solutions of
local Riemann problems, which do not lie in Lax Theorem scope. In [1], it was shown that
the saddle bifurcation is associated to Riemann solutions which require three waves separated
by constant states (see Figure 5.4). One of the waves is a saddle-to-saddle connection called
transitional or undercompressive wave, separating the 1-wave and the 2-wave. Again the
necessity of three waves for solving a planar Riemann problem with small data lies outside
Lax Theorem scope.

For Riemann problem with a type IV umbilic point, it is shown in [6] that in the high
amplitude solutions do not appear. The singularity is not nilpotent any more, since taking
for UL the umbilic point it contains all the four equilibria points. In other words, the phase
portrait for UL equal to the umbilic point with speed lower than characteristic is topologically
equivalent to the phase portrait for O with s . 0, see again Figure 4.5. However for
left characteristic speed they are not topologically equivalent any more: there is just one
equilibrium in the umbilic case and two equilibria (O and O′) in the our case.

In our work we restrict ourself to identity matrix. A natural question is to ask what
happens if we allow real viscosity matrices. This is a motivation for future work.
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Figure 5.3. Versal unfolding for a codimension-3 elliptic nilpotent singular-
ity. (Reproduced by permission.)

Figure 5.4. Local solution for saddle equilibrium. Waves: 1-shock
(UL,M1, s1); transitional (M1,M2, s2); 2-shock (M2, UR, s3).
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