
On the convergence to equilibrium of Kac’s random walk on

matrices

Roberto I. Oliveira∗

May 18, 2007

Abstract

We consider Kac’s random walk on n-dimensional rotation matrices, where each step
is a random rotation in the plane generated by two randomly picked coordinates. We
show that this process converges to the uniform (Haar) measure in the (Wasserstein)
transportation cost metric in O

(
n2 lnn

)
steps. This improves on previous results of

Diaconis/Saloff Coste and Pak/Sidenko and is a lnn factor away from being optimal.
Our proof method includes a general result akin to the path coupling method of

Bubley and Dyer. Suppose that P is a Markov chain on a Polish length space (M,d)
and that for all x, y ∈ M with d(x, y) � 1 there is a coupling (X,Y ) of one step from
P from x and y (respectively) that is (c+ o (1))-contracting on average. Then the map
µ 7→ µP is c-contracting in the transportation cost metric. Other applications of this
result are also presented.

1 Introduction

Around 50 years ago Kac [6] introduced a one-dimensional toy model of a Boltzmann gas.
It is a discrete-time Markov process whose state at a time t ∈ {0, 1, 2, 3, . . . } is a vector
v(t) = (v1(t), . . . , vn(t)) ∈ Rn, corresponding to the velocities of of n interacting particles
of equal mass. At each time t, a uniformly distributed pair 1 ≤ it < jt ≤ n and a uniform
angle θt ∈ (0, 2π] are chosen independently. This choice corresponds to a collision between
particles it, jt whose velocities are changed to new values vi(t+1) = cos θtvit(t)+sin θtvjt(t),
vjt(t + 1) = cos θtvjt(t) − sin θtvit(t), whereas the other velocities are kept the same. This
prescription for the new velocities implies that the total kinetic energy E(t) ≡

∑n
k=1 vk(t)

2

is conserved.
For each time step t,

v(t+ 1) = R(it, jt, θt)v(t),
∗IMPA, Rio de Janeiro, RJ, Brazil, 22430-040. rimfo@impa.br
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where R(it, jt, θt) is a rotation by θt of the plane generated by the coordinates it and jt in
n-dimensional space. Two related processes have been studied in the literature under the
heading of “Kac’s random walk”:

• On the one hand, one might focus on the evolution of v(0), v(1), v(2), v(3), . . . . If one
sets E(0) = 1 (so that E(t) = 1 for all t), one obtains an ergodic Markov chain over
the n− 1-dimensional sphere Sn−1 ⊂ Rn with uniform invariant distribution;

• On the other hand, one might consider the random walk on rotation matrices deter-
mined by choosing some X(0) and then setting X(t + 1) = R(it, jt, αt)X(t) (t ≥ 0).
This corresponds to a discrete-time ergodic random walk on the group SO(n) of n×n
rotation matrices (as long as X(0) ∈ SO(n)) whose stationary distribution is Haar
(uniform) measure.

Kac deals with different aspects of the first process, such as entropy production and
“propagation of chaos” (i.e. approximate factorizability of two-particle density functions);
see the original [6] and the more recent [4, 3] for discussions and references. The second
process is also mathematically natural and has been considered as a Monte Carlo method
to sample approximately from Haar measure [5] and do dimensionality reduction [1].

The natural question arises of how fast Kac’s random walk on SO(n) converges to equi-
librium. This question may be posed different forms. L2 convergence to equilibrium is well
understood since Carlen, Carvalho and Loss [3] obtained the exact spectral gap and Maslin
[8] computed the entire spectrum of the two processes. Convergence in total variation also
occurs, as shown by Diaconis and Saloff-Coste [4] who obtained a very poor eO(n2) mixing
time bound for convergence in total variation of the matrix process. We cannot improve on
this bound, but note that total variation is too stringent a notion of convergence for many
applications (as it is sensitive to errors at arbitrarily small scales), whereas L2 convergence
seems to be too weak (e.g. when one starts from a discrete distribution).

We consider an intermediate notion of convergence to equilibrium based on transporta-
tion cost, for which we prove near-optimal convergence estimates. Given a metric space
(M,d) and two probability measures µ, ν over the Borel σ-field of M , the p-transportation
cost (or Wasserstein) distance between µ and ν, denoted by Wd,p(µ, ν) is the infimum of
(E [d(X,Y )p])1/p over all couplings (X,Y ) of (µ, ν) (see Section 2.2 for a formal definition).
Diaconis and Saloff Coste [4] and Pak and Sidenko [10] use the dual characterization of
Wd,1 [13, Remark 6.5] that is especially relevant for simulations:

Wd,1(µ, ν) = sup
{∫

M
f d(µ− ν) : f : M → R is 1− Lipschitz under d

}
. (1)

That is, if one can sample from µ, we can estimate
∫
M f dν for any Lipschitz f up to

a Wd,1(µ, ν) intrinsic bias. One scenario where transportation cost seems to be the ideal
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metric is described by Ailon and Chazelle [1]. They start from the fact that one can “reduce
the dimension” of a point set S ⊂ Rn by first applying a random linear transformation X
drawn from Haar measure on SO(n) and then projecting onto the first k coordinates. A
result known as the Johnson Lindenstrauss lemma says that if one chooses k = O(ln |S|/ε2)
(which does not depend on the ambient dimension n), with high probability the ratios of
pairwise distances in S are all preserved up to (1 ± ε)-factors. One can easily check that
a similar result holds when X is Wd,1-close to being Haar distributed (for an appropriate
metric d; see below). In that case, bounds for the convergence of Kac’s random walk imply
good approximations to random projections. Moreover, as noted in [1], for X = X(t)
coming from Kac’s random walk the products st = X(t)s (s ∈ S) can be computed with
just a constant amount of extra memory, as the map st 7→ st+1 affects only two coordinates
of st. This is a very important feature for large datasets.

Our main result is a bound on the convergence to equilibrium of Kac’s random walk
on matrices. Our setting corresponds to metric spaces (M,d) with M = SO(n) and three
choices of metric d. For a, b ∈ SO(n) we define:

ρ(a, b) ≡ sup
ψ∈Rn, |ψ|=1

|(a− b)ψ|, with | · | = Euclidean norm.;

hs(a, b) ≡ ‖a− b‖hs =
√

Tr((a− b)†(a− b)), the Hilbert-Schmidt norm;

D(a, b) ≡ the Riemannian metric on SO(n) induced by the Hilbert-Schmidt
inner product 〈u, v〉hs ≡ Tr(u†v).

Clearly ρ ≤ hs ≤ D always. Define the p-transportation-cost mixing times:

τd,p(ε) ≡ inf{t ∈ N : WSO(n),d,p(µP
t,H) ≤ ε for all prob. measures µ on SO(n)},

where d = D, hs or ρ; H is Haar measure on SO(n); and µP t is the time-t distribution of
a walk started from distribution µ. Note that τρ,p(·) ≤ τhs,p(·) ≤ τD,p(·) (it is also the case
that τd,p is increasing in p). We will show that:

Theorem 1 For d = D, hs or ρ and 1 ≤ p ≤ 2, Kac’s random walk on matrices satisfies
the following mixing time estimate:

τd,p(ε) ≤

⌈
n2 ln

(
4
√

2πn2

ε

)⌉
.

Thus O
(
n2 lnn

)
steps of the Markov chain suffice to bring µP t ε-close to Haar measure

H for any ε = n−O(1). This improves on a O
(
n4 lnn

)
by Diaconis and Saloff Coste and a

very recent preprint by Pak and Sidenko [10] that lowered the estimate to O
(
n2.5 lnn

)
steps

(we only learned about that result after proving the main results in the present paper). As
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noted by the latter authors, Ω(n2) steps are necessary for p = 1-convergence under the
Hilbert-Schmidt distance hs (which they call the Frobenious norm). This implies that the
dependence on n in our result optimal up to a logarithmic factor. We note in passing that
the d = ρ bound already suffices for dimensionality reduction.

The key to proving Theorem 1 is a contraction property of the Markov transition kernel
of the random walk under consideration. Fix again a metric space (M,d). For 0 ≤ c < 1,
say that a Markov transition kernel P on M is c-contracting for the Wd,p metric if for all
probability measures µ, ν ∈ Prd,p(M):

Wd,p(µP, νP ) ≤ cWd,p(µ, ν). (2)

We will prove the following estimate:

Lemma 1 In the same setting as Theorem 1, Kac’s random walk on matrices is√
1− 1(

n
2

) -contracting

in the WD,p metric for any 1 ≤ p ≤ 2.

The proof of Lemma 1 follows a strategy related to the path coupling method for discrete
Markov chains introduced by Bubley and Dyer [2]. Suppose P is now a Markov chain on the
set of vertices V of a connected graph G. The graph induces a natural shortest-path metric
d on G. It is sometimes possible to prove a “local contraction” estimate of the following
form: for any x, y ∈ V that are adjacent in G, there is a coupling ofX (distributed according
to one step of P from x) and Y (distributed according to one step of P from y) such that:

E [d(X,Y )] ≤ c = c d(x, y) < 1.

If that is the case, Bubley and Dyer proved that the local couplings extend to “globally
contracting” couplings for all random pairs (x, y) = (X0, Y0) ∈ V 2, with:

E [d(X,Y )] ≤ cE [d(X0, Y0)] .

This implies in particular that Wd,1(µP t, νP t) ≤ diam(G)ct for all distributions µ, ν, where
diam(G) is the diameter of the graph G. In the discrete setting such results easily extend
to total variation bounds.

Our adaptation of their technique is based on the fact that SO(n) is a geodesic space
with the metric D: that is, D(a, b) is the length of the shortest curve connecting a and b.
We will show that whenever (M,d) is a geodesic space (or more generally a length space;
see Section 2.1) and P is such that, for all deterministic x, y ∈M with d(x, y) � 1

E [d(X,Y )p] ≤ (c+ o (1))d(x, y)p,
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then P is c-contractive and Wd,p(µP t, ηP t) ≤ ctdiam(M) for all µ, η ∈ Prd,p(M), where
diam(M) is the diameter of M . That is, we show that if (M,d) is a Polish length space
and P satisfies some reasonable assumptions, one can always extend “local contracting
couplings” of random walks started from deterministic states near each other to “globally
contracting couplings” for arbitrary initial distributions. This result is stated as Theorem 2
below.

We note that proving local contraction is the problem-specific part of our technique. In
our case we can use the local geometry of SO(n) as a Riemmann manifold to do calculations
in the tangent space, which greatly simplifies our proof. Pak and Sidenko [10] use a similar
coupling construction, but neither do they use the local structure of SO(n) as effectively, nor
do they state any general result on local-to-global couplings. On the other hand, Diaconis
and Saloff Coste [4] use the analytic technique known as the comparison method which
seems intrinsically sub-optimal as well as more complex to apply.

We should also point out that our general coupling idea for continuous-state-space
Markov chains has appeared in other works. In particular, while this paper was being
prepared Ollivier released a preprint containing a result very similar to our Theorem 2 in
his study of positive Ricci curvature for Markov chains on metric spaces [9, Proposition
17] (albeit with a less detailed proof). In fact, what he calls “positive Ricci curvature” is
precisely what we call c-contractivity above; from that one can deduce many properties,
such as concentration for the stationary distribution and some log-Sobolev-like inequalities
(see [9] for details and other references where contractivity of the Markov chain has been
used recently). We present our own version of the coupling result both to make the paper
self-contained and in order to provide a fully detailed proof (see Remark 1). This is espe-
cially important since there have been several important recent results involving analytic,
geometric and probabilistic applications of transportation cost [13, 7, 11, 12] and we believe
that our technique might be applicable to that field. One sample application is discussed
in the last section.

The remainder of the paper is as follows. Section 2 reviews some important concepts
from probability, metric geometry and optimal transport. Section 3 proves our general
result on local-to-global couplings, Theorem 2. We formally define Kac’s random walk on
matrices and then prove Lemma 1 and Theorem 1 in Section 4. Section 5 sketches proofs
of mixing time estimates for other random walks on matrices, discusses some geometric
applications of our results and presents some open problems.

2 Preliminaries

2.1 Metric spaces, length spaces, σ-fields

Whenever we discuss metric spaces (M,d), saying that A ⊂M is measurable will mean that
A belongs the σ-field generated by open sets in M , i.e. the Borel σ-field B(M). Moreover,
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all measures on metric spaces will be implicitly defined over Borel sets. We will always
assume that the metric spaces under consideration are Polish, i.e. complete and separable.

Following [13, page 123], we say that metric space (M,d) is a length space if for all
x, y ∈ M and every ε > 0 there exists an ε-approximate midpoint z ∈ M with |d(x, z) −
d(x, y)/2| ≤ ε and |d(y, z) − d(x, y)/2| ≤ ε. All complete Riemannian manifolds and their
Gromov-Haussdorf limits are length spaces. Non-locally-compact examples of Polish length
spaces include separable Hilbert spaces.

2.2 Distributions, couplings and mass transportation

All facts stated below can be found in [13, Chapter 6].
Let (M,d) be a metric space and Pr(M) be the space of probability measures on (the

Borel σ-field of) M . Given µ, ν ∈ Pr(M), a measure ν ∈ Pr(M ×M) (with the product
Borel σ-field) is a coupling of (µ, ν) if for all Borel-measurable A ⊂M :

η(A×M) = µ(A), η(M ×A) = ν(A).

The set of couplings of (µ, ν) is denoted by Cp(µ, ν). This is always a non-empty set since
the product measure µ× ν is in it.

Given p > 0, Prd,p(M) ⊂ Pr(M) is the set of all probability measures µ such that for
some (and hence all) o ∈M ∫

M
d(o, x)p dµ(x) < +∞.

One can define the p-transportation cost (or p-Wasserstein) metric Wd,p on Prd,p(M)
by the formula:

Wd,p(µ, ν)p ≡ inf
{∫

M×M
d(x, y)p dη(x, y) : η ∈ Cp(µ, ν)

}
, µ, ν ∈ Prd,p(M). (3)

Such metrics are related to the “mass transportation problem” where one attempts to
minimize the average distance traveled by grains of sand when a sandpile is moved from
one configuration to another.

It is known that (Prd,p(M),Wd,p) is Polish iff (M,d) is Polish. If (M,d) is Polish,
the infimum above is always achieved by some η = ηopt(µ, ν), which we will refer to as a
p-optimal coupling of µ and ν.

For x ∈ M , δx ∈ Pr(M) is the point mass at x, the distribution that assigns measure
1 to the set {x}. A basic property of mass transportation is that if x, y ∈ M , then
Wd,p(δx, δy) = d(x, y).

It is often convenient to deal with random variables rather than measures. If X is
a M -valued random variable, LX ∈ Pr(M) is the distribution (or law) of X. Notice
that LX ∈ Prd,p(M) iff E [d(o,X)p] < +∞ for some (hence for all) o ∈ M . We will
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write X =d µ whenever X is a random variable with LX = µ and X =d Y if X,Y
are random variables with LX = LY . Call a random pair (X,Y ) a coupling of (µ, ν) if
L(X,Y ) ∈ Cp(µ, ν). Wd,p(µ, ν) can be equivalently viewed as the infimum of E [d(X,Y )p]1/p

over all such couplings.
Finally, we note that if M is compact (as it is in our application) then for any p ≥ 1

Prd,p(M) = Pr(M) and Wd,p metrizes weak convergence.

2.3 Markov transition kernels

In this section we assume (M,d) is Polish. A Markov transition kernel on M is a map
P : M × B(M) → [0, 1] such that for all x ∈ M Px(·) ≡ P (x, ·) is a probability measure
and for all A ∈ B(M) Px(A) is a measurable function of x. A Markov transition kernel
defines a M -valued Markov chain; for each µ ∈ Pr(M), there exists a unique distribution on
sequences of random variables {X(t)}+∞

t=0 such that X(0) =d µ and for all t ∈ {1, 2, 3, . . . },
the distribution of X(t) conditioned on {X(s)}t−1

s=0 is PX(t−1).
For µ ∈ Pr(M) and t ∈ N, µP t is the measure of X(t) defined as above; one can check

that µP t+1 = (µP t)P for all t ≥ 0.

3 From Local to Global Couplings

In this section we will discuss our method for moving from local to global bounds on the
contraction/expansion properties of a Markov kernel. In our application we have a Markov
kernel P on a Polish space (M,d). Using explicit couplings, we will show that for some
C > 0 and all x, y ∈ M , Wd,p(Px, Py) ≤ (C + o (1))d(x, y), where o (1) → 0 when y → x.
The main result in this section implies that under some natural conditions, it follows that
Wd,p(µP, νP ) ≤ Cr whenever µ, ν ∈ Prd,p(M) are r-close.

Theorem 2 (Local-to-Global Coupling) Suppose (M,d) is a Polish length space, p ≥ 1
is given and P is a Markov transition kernel on (M,d) satisfying the following character-
istics.

1. Px has finite p-th moments for all x: that is, Px ∈ Prd,p(M) for all for all x ∈M ;

2. Markov steps according to P have uniformly bounded p-th moments: there exists
some ∆ > 0 such that for all x ∈M Wd,p(δx, Px) ≤ ∆, or equivalently

∀x ∈M,

∫
M
d(x, x′)p dPx(x′) ≤ ∆p.

3. P is locally C-Lipschitz on M . That is, the map

x 7→ Px
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from (M,d) to (Prd,p(M),Wd,p) is locally C-Lipschitz in the following sense: for all
bounded S ⊂M there exists a map αS : [0,+∞) → [0,+∞] such that limr→0 αS(r) =
0 and

Wd,p(Px, Py) ≤ (C + α(d(x, y))) d(x, y).

Then for all µ ∈ Prd,p(M) we also have µP ∈ Prd,p(M) and moreover the map µ 7→ µP is
C-Lipschitz, that is:

∀µ, ν ∈ Prd,p(M), Wd,p(µP, νP ) ≤ CWd,p(µ, ν).

Before we prove this result we discuss its application to the setting where C = (1− κ)
for some κ > 0 and the other assumptions are satisfied. First we recall the well-known
fact that a (1−κ)-Lipschitz map between complete metric spaces has a unique fixed point.
Since (M,d) and (Prd,p(M),Wd,p) are Polish, this immediately implies that there exists a
unique element π ∈ Prd,p(M) with πP = π.

Secondly, the (1 − κ)-Lipschitz property also implies that (M,d) has finite diameter.
This was noted by Ollivier [9, Lemma 2.1] and we reproduce his argument here: for all
x, y ∈M we have on the one hand

Wd,p(Px, Py) = Wd,p(δxP, δyP ) ≤ (1− κ)Wd,p(δx, δy) = (1− κ)d(x, y)

and on the other

Wd,p(Px, Py) ≥Wd,p(δx, δy)− 2 sup
z∈M

Wd,p(δz, Pz) ≥ d(x, y)− 2∆.

Hence
∀x, y ∈M, d(x, y) ≤ 2∆

κ
.

In particular, Pr(M) = Prd,p(M). It follows that π is the unique P -invariant distribution
on M . Moreover for all t ∈ N and µ ∈ Pr(M),

Wd,p(µP t, π) = Wd,p(µP t, πP t) ≤ (1− κ)tWd,p(µ, π) ≤ (diamd(M)) e−κt,

where diamd(M) ≤ 2∆/κ is the diameter of (M,d).
We collect those facts in the following corollary.

Corollary 1 Assume (M,d) and P satisfy the assumptions of Theorem 2 for some p ≥ 1
and C = (1− κ) < 1 (i.e. κ > 0). Then the diameter of (M,d) is at most 2∆/κ and there
exists a unique P -invariant measure π on M . Moreover, the p-transportation-cost mixing
times:

τd,p(ε) ≡ min{t ∈ N : ∀µ ∈ Pr(M), Wd,p(µP t, π) ≤ ε}
satisfy

τd,p(ε) ≤
⌈
κ−1 ln

(
diamd(M)

ε

)⌉
≤
⌈
κ−1 ln

(
2∆
κε

)⌉
.
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We now proceed to prove the Theorem.
Proof: [of Theorem 2] First note that the local C-Lipschitz condition can be formulated in
a more general setting.

Definition 1 A map f : M → N between metric spaces (M,d) and (N, d′) is said to
be locally C-Lipschitz (for some C > 0) if for all bounded subsets S ⊂ M there exists a
function αS : R+ → R+ such that:

∀x, y ∈ S, d′(f(x), f(y)) ≤ (C + αS(d(x, y))) d(x, y)

and limr↘0 αS(r) = 0.

Then the following analytic lemma holds.

Lemma 2 With the notation of Definition 1, assume that M is a length space. Then any
f : M → N that is locally C-Lipschitz is C-Lipschitz according to the standard definition.

This lemma has a very simple proof in the case where M is e.g. a Riemannian manifold.
For in that case we can find a unit-speed geodesic γ : [0, d(x, y)] → M connecting x to y.
The local C-Lipschitz condition then implies that f ◦ γ is Lipschitz and ‖(f ◦ γ)′‖∞ ≤ C,
so that:

|f(y)− f(x)| ≤ |f ◦ γ(d(x, y))− f ◦ γ(0)| ≤ C d(x, y).

For general length spaces the proof is only slightly more complicated, but it still uses the
intuitive idea that x and y are “close” to being connected by a geodesic; see Section 3.1 for
details. For our proof we only need the following consequence.

Corollary 2 If P is a Markov transition kernel on a length space (M,d) satisfying condi-
tion 3. of Theorem 2, then Wd,p(Px, Py) ≤ C d(x, y) for all x, y ∈M .

The bounding of Wd,p(Px, Py) can be thought of as an implicit construction of a coupling
along a geodesic path; this is precisely where the name “path coupling” comes from.

To continue, we simply note that x 7→ Px is uniformly continuous. The second lemma
(proven in Section 3.2) shows that µP ∈ Prd,p(M) whenever µ ∈ Prd,p(M) and shows that
we will only need to compare µP and νP , for µ, ν with countable support.

Lemma 3 Let (M,d) be Polish. Suppose P is a Markov transition kernel on M such that:

1. Px ∈ Prd,p(M) for all x ∈M ;

2. supx∈M Wd,p(δx, Px) ≤ ∆ < +∞, or equivalently

sup
x∈M

∫
M
d(x, x′)p dPx(x′) ≤ ∆p < +∞; and
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3. x 7→ Px is a uniformly continuous map from M to Prd,p(M).

Then for all µ ∈ Prd,p(M) we have µP ∈ Prd,p(M). Moreover, there exists a sequence
{µj}j ⊂ Prd,p(M) of measures with countable support such that Wd,p(µj , µ) → 0 and
Wd,p(µjP, µP ) → 0.

The proposition implies the following statement: if Wd,p(µP, νP ) ≤ CWd,p(µ, ν) for all
µ, ν in Prd,p(M) that have countable support, then the same holds for all µ, ν in Prd,p(M).
Our final goal is to prove the Lipschitz estimate for measures with countable support.

Thus let µ =
∑

j∈N pjδxj be a convex combination of a countable number of point
masses (xj ∈ M for all j); similarly, let ν =

∑
k∈N qkδyk

. The p-optimal coupling η of µ
and ν is of the form

η =
∑
j,k∈N

rj,kδ(xj ,yk)

for some convex weights rj,k. Now define for each pair j, k a p-optimal coupling ξj,k of
Pxj , Pyk

. Then
η′ =

∑
j,k∈N

rj,kξj,k ∈ Cp(µP, νP ).

Moreover, since x 7→ Px is C-Lipschitz,∫
M×M

d(u, v)p dξj,k(u, v) = Wd,p(Pxj , Pyk
)p ≤ Cp d(xj , yk)p,

which implies

Wd,p(µP, νP )p ≤
∫
M×M

d(u, v)p dη′(u, v)

=
∑
j,k∈N

rj,k

∫
M×M

d(u, v)p dξj,k(u, v)

≤ Cp
∑
j,k∈N

rj,kd(xj , yk)p

= Cp
∫
M×M

d(u, v)p dη(u, v).

The RHS is simply CpWd,p(µ, ν)p. 2

Remark 1 As pointed out in the Introduction, Ollivier stated a very similar result in [9,
Proposition 17]. In his proof he assumes that there exists a Markov transition kernel ξ on
M2 such that for all (x, y) ∈ M2, ξ(x,y) is a 1-optimal coupling of (Px, Py). This greatly
simplifies his argument, but we could not find there or elsewhere a detailed proof of the
existence of ξ. At any rate, our own argument provides an alternative approach to the
same result and makes our paper self-contained.
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3.1 Proof of Lemma 2

Proof: Fix x, y ∈ M , S = B(M,d)(x, d(x, y) + 1) and αS be as in Definition 1 (we may
assume it to be increasing wlog). We will show that

∀j ∈ N ∀δ ∈ (0, 1), d′(f(x), f(y)) ≤
(
C + αS

(
d(x, y) + δ

2j

))
(d(x, y) + δ). (4)

which implies via j → +∞ and δ → 0 that

d′(f(x), f(y)) ≤ Cd(x, y).

Iterating the definition of length space implies that for any δ ∈ (0, 1) and j ∈ N one can
find z0 = x, z1, . . . , z2j−1, z2j = y, all in M , with

∀i ∈ {1, 2, . . . , 2j},
∣∣∣∣d(zi, zi−1)−

d(x, y)
2j

∣∣∣∣ ≤ δ

2j
.

We then have

d′(f(x), f(y)) ≤
2j∑
i=1

d′(f(zi), f(zi−1)) ≤
2j∑
i=1

(C + αS(d(zi, zi−1)))d(zi−1, zi).

For the last inequality we used the fact that f is locally C-Lipschitz and that for each i

d(zi, x) ≤
2j∑
`=1

d(z`, z`−1) ≤ d(x, y) + δ ≤ d(x, y) + 1 ⇒ zi ∈ S.

To deduce (4) we simply note that for each i

d(zi, zi−1) ≤
d(x, y) + δ

2j

and sum the corresponding bounds. 2
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3.2 Proof of Lemma 3

Proof: Let ∆ > 0 be as in the assumptions. For the first statement we note that, for any
µ ∈ Prd,p(M) and any o ∈M ,∫

M
d(o, x′)p dµP (x′) =

∫
M

(∫
M
d(o, x′)p dPx(x′)

)
dµ(x) (5)

(use d(o, x′) ≤ d(o, x) + d(x, x′)) =
∫
M

(∫
M

[d(o, x) + d(x, x′)]p dPx(x′)
)

(6)

(use |a+ b|p ≤ 2p(|a|p + |b|p)) ≤ 2p
∫
M

∫
M
d(o, x)p dPx(x′) dµ(x) (7)

+2p
∫
M

∫
M
d(x, x′)p dPx(x′) dµ(x) (8)

≤ 2p
∫
M
d(o, x)p dµ(x) + (2∆)p < +∞. (9)

Thus µP is in Prd,p(M) whenever µ is.
We now present a discrete approximation scheme for µ. Since M is separable, there

exists a sequence of partitions {Pj}j∈N of M such that:

• each partition contains countably many measurable sets;

• for all j ∈ N, Pj+1 refines Pj ; and

• for all j ∈ N the sets in Pj have diameter at most εj for some sequence εj → 0.

Let us also assume that for each j ∈ N and A ∈ Pj we have picked some x(j)
A ∈ A. Consider

the measures:
µj ≡

∑
A∈Pj

µ(A)δ
x
(j)
A

. (10)

Clearly µj ∈ Prd,p(M) for all j and Wd,p(µj , µ) → 0 when µj → 0. Our goal will be to show
that Wd,p(µjP, µP ) → 0. First recall that x 7→ Px is uniformly continuous, hence there
exists a sequence δj → 0 such that for all j ∈ N, all A ∈ Pj and all x ∈ A:

Wd,p(Px(j)
A

, Px) ≤ δj .

We will use this to show that

∀j < k, Wd,p(µj , µk) ≤ δj (in particular, {µj}j is Cauchy). (11)

Recall that if j < k Pk is a refinement of Pj , hence for all B ∈ Pk there exists a set AB ∈ Pj
with B ⊂ AB. For each such B, we have x(k)

B ∈ AB, hence there exists a coupling ηB,k,j of

12



P
x
(k)
B

and P
x
(j)
AB

with ∫
M×M

d(u, v)p dηB,k,j(u, v) ≤ δpj .

Extend this to a coupling of µkP and µjP by:

ηk,j ≡
∑
B∈Pk

µ(B) ηB,k,j .

To prove that ηk,j ∈ Cp(µjP, µkP ), notice that the first marginal of this measure is∑
B∈Pk

µ(B)P
x
(k)
B

= µkP.

Moreover, for any A ∈ Pj , the set of all B ∈ Pk with AB = A is a partition of A, hence the
second marginal is also right:

∑
B∈Pk

µ(B)P
x
(k)
A

=
∑
A∈Pj

 ∑
B∈Pk :AB=A

µ(B)

 P
x
(j)
A

=
∑
A∈Pj

µ(A)P
x
(j)
A

= µjP.

It follows that ηk,j ∈ Cp(µjP, µkP ) and moreover one can check that∫
M×M

d(u, v)p dηk,j(u, v) ≤ δpj ,

which implies (11).
(Prd,p(M),Wd,p) is Polish since (M,d) is. By the above, we know that there exists a

measure ξ ∈ Prd,p(M) such that Wd,p(µjP, ξ) ≤ δj . This also implies [13, Theorem 6.8]
that µjP ⇒ ξ in the weak topology. However, it is an exercise to show that µjP ⇒ µP
weakly, hence ξ = µP and Wd,p(µjP, µP ) → 0, as desired. 2

4 Analysis of Kac’s random walk

4.1 Definitions

Let M(n,R) be the set of all n × n matrices with complex entries. These are the linear
operators from Rn to itself and we equip Rn with a canonical basis e1, . . . , en of orthonormal
vectors. For a ∈ M(n,R), a† is the transpose of a. Using it, one can define the Hilbert-
Schmidt inner product 〈a, b〉hs ≡ Tr(a†b) on M(n,R), under which it is isomorphic to Rn2

with the standard Euclidean inner product. We let ‖ · ‖hs be the corresponding norm.
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An element a ∈ M(n,R) is orthogonal if a†a = aa† = id, the identity matrix. The
subset of M(n,R) given by:

SO(n) ≡ {a ∈M(n,R) : aa† = id,det(a) = 1}

is a compact, connected submanifold ofM(n,R). It is also a Lie group since it is closed under
matrix multiplication and matrix inverse. Therefore SO(n) has a Haar measure H, which
we may define as the unique probability measure on that group such that for all measurable
S ⊂ SO(n) and a ∈ SO(n) we have H(S) = H(Sa) = H(aS) where Sa = {sa : s ∈ S} and
aS = {as : s ∈ S}.

We now define Kac’s random walk on matrices. For 1 ≤ i < j ≤ n and θ ∈ [0, 2π] define
R(i, j, θ) as a rotation by θ of the plane generated by ei, ej . This is equivalent to setting:

R(i, j, θ)ek =


cos θei + sin θej , k = i;
cos θej − sin θei, k = j;
ek k ∈ {1, . . . , n}\{i, j}

(12)

and extending R(i, j, θ) to all ψ ∈ Rn by linearity. Kac’s random walk on matrices corre-
sponds to the following Markov transition kernel:

Px(S) ≡ 1
2π
(
n
2

) ∑
1≤i<j≤n

∫ 2π

0
δR(i,j,θ)x(S) dθ (x ∈ SO(n), S ⊂ SO(n) measurable).

Thus to generate X =d Px from x one chooses 1 ≤ i < j ≤ n uniformly at random
from all

(
n
2

)
possible choices, pick and θ ∈ [0, 2π] also uniformly at random and then sets

X = R(i, j, θ)x. The required measurability conditions are easily established. One can also
check that Haar measure H is P -invariant.

4.2 The geometry of SO(n)

We collect some standard facts that will be used in our proofs.
The tangent space at the identity matrix id is the set of all anti-self-adjoint operators:

T ≡ TidSO(n) = {h ∈M(n,R) : h† = −h}. (13)

We let D be the Riemannian metric induced on SO(n) by 〈·, ··〉hs. Since SO(n) is
compact, one can show the following.

∀z, w ∈ SO(n), ‖z − w‖hs ≤ D(z, w) ≤ ‖z − w‖hs +O
(
‖z − w‖2

hs

)
, (14)

where O (rα) is just some term whose absolute value is uniformly bounded by crα, c > 0 a
constant not depending on r (we will use this notation from now on). Moreover, if we let
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ΠT be the orthogonal projector onto T (according to the Hilbert-Schmidt inner product),
then

∀z ∈ SO(n), ‖z − id−ΠT (z − id)‖hs ≤ O
(
D(z, id)2

)
. (15)

This is so because if ‖z − id‖ = r � 1, then ‖z − id − h̃‖hs = O
(
r2
)

for some h̃ ∈ T , and
h̃ = h = ΠT (z− id) is the best choice of approximation one may make. Notice that the two
equations together imply:

|D(z, id)− ‖ΠT (z − id)‖hs| = O
(
‖ΠT (z − id)‖2

hs

)
. (16)

One can define another distance on M(n,R) via:

ρ(a, b) ≡ sup{|(a− b)ψ| : ψ ∈ Rn, |ψ| = 1}, where | · | is the Euclidean norm.

Then for all a, b ∈ SO(n):
ρ(a, b) ≤ ‖a− b‖hs ≤ D(a, b).

We notice that these distances are all invariant under multiplication: if a, b, c ∈ SO(n),

ρ(ca, cb) = ρ(ac, bc) = ρ(a, b)

and similarly for hs(a, b) = ‖a− b‖hs and D(a, b).

4.3 The contraction coefficient

In this section we prove Lemma 1.
Proof: Consider x, y ∈ SO(n) and let D(x, y) = r. We will show that there exists a
coupling (X,Y ) of (Px, Py) with

E
[
D(X,Y )2

]
≤ (1− δ) r2 +O

(
r3
)

for δ = 1/
(
n
2

)
. As in the previous section, O

(
r3
)

is some term that is uniformly bounded
by a multiple of r3. The existence of such a coupling implies that

WD,2(Px, Py) ≤ (1− δ)D(x, y)2 +O
(
D(x, y)3

)
,

which shows that P is locally
√

(1− δ)-Lipschitz for p = 2.
Our coupling will be as follows. Suppose we set X = R(i, j, θ)x with i, j, θ randomly

picked as prescribed in the definition of the random walk. We will set Y = R(i, j, θ′) with
the same i, j and some θ′ = (θ−α) mod 2π, where α = α(i, j, x, y) depends on i, j, x, y but
not on θ. In that case θ′ is uniform on [0, 2π] independently of i, j, x, y, hence (X,Y ) is a
valid coupling of (Px, Py). Also notice that, using the invariance of D under multiplication,

D(X,Y ) = D(R(i, j, θ)x,R(i, j, θ′)y) = D(R(i, j, θ), R(i, j, θ′)yx†) = D(R(i, j, α), yx†),
(17)
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as
R(i, j, θ′)†R(i, j, θ) = R(i, j, θ − θ′) = R(i, j, α).

We will use (14), (15) and (16) to bound the RHS of (17): this will allow us to do all
calculations we need in the tangent space T = TidSO(n). First, however, we need an
orthonormal basis for that space. For each 1 ≤ k < ` ≤ n let ak` ∈ T be the operator that
is uniquely defined by:

ak` et ≡


e√̀
2
, t = k;

− ek√
2
, t = `;

0, t ∈ {1, . . . , n}\{k, `}.
.

One can check that {ak`}1≤k<`≤n is indeed an orthonormal basis for T = TidSO(n) with
the Hilbert Schmidt inner product. For 1 ≤ t ≤ n we also define dt ∈M(n,R) as the matrix
that has a 1 at the (t, t)-th entry and zeroes elsewhere. Then 〈dt, ds〉hs = 1 if t = s and 0
otherwise and also 〈dt, ak`〉hs = 0 for any t, k, `. With these definitions one can write:

R(i, j, α) = id + (cosα− 1)di + (cosα− 1)dj +
√

2 sinαaij . (18)

Now set h = ΠT (yx† − id). Since D(yx†, id) = D(x, y) = r, ‖h‖hs = r + O
(
r2
)

and
‖yx† − id − h‖hs = O

(
r2
)
. Suppose we commit ourselves to making a choice of α = O (r)

(i.e. |α| ≤ cr for a constant c independent of r). Expanding sin and cos we get:

R(i, j, α) = id +
√

2αaij +O
(
r2
)
.

Moreover, we also have

D(yx†, R(i, j, α)) = ‖yx† −R(i, j, α)‖hs +O
(
‖yx† −R(i, j, α)‖2

hs

)
(19)

= ‖yx† − id−
√

2αaij‖hs +O
(
‖yx† − id−

√
2αaij‖2

hs + r2
)

(20)

= ‖h−
√

2αaij‖hs +O
(
r2
)
. (21)

Thus we choose α = 〈h, aij〉hs/
√

2, which minimizes ‖h−
√

2αaij‖hs and only depends
on i, j and h = ΠT (yx† − id). Since the ak` form an orthonormal basis of T 3 h, we have

h =
∑

1≤k<`≤n
〈h, ak`〉hsak` ⇒

∑
1≤k<`≤n

〈h, ak`〉2hs = ‖h‖2
hs = r2 +O

(
r3
)
.

This shows that |α| = O (r) as desired and moreover

D(X,Y )2 = D(yx†, R(i, j, α))2 (by (17))
= ‖h− 〈h, aij〉hsaij‖2

hs +O
(
r3
)

(expand h) = ‖h‖2
hs − 〈h, aij〉2hs +O

(
r3
)
.
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If we now average over i, j, θ we obtain

E
[
D(X,Y )2

]
= ‖h‖2 − 1(

n
2

) ∑
1≤i<j≤n

〈h, aij〉2hs +O
(
r3
)

=

(
1− 1(

n
2

)) ‖h‖2
hs +O

(
r3
)

=

(
1− 1(

n
2

)) r2 +O
(
r3
)
,

which is the desired bound.
To finish the proof we apply our result on local-to-global couplings, Theorem 2. We have

shown that the Markov transition kernel P for Kac’s random walk is locally C-Lipschitz
for

C =

(
1− 1(

n
2

))1/2

, 1 ≤ p ≤ 2.

The remaining assumptions of Theorem 2 and Corollary 2 are trivially verified since SO(n)
has bounded diameter. We conclude that:

∀µ, η ∈ Pr(M), Wd,p(µP, νP ) ≤
√

1− 1(
n
2

) Wd,p(µ, ν).

2

4.4 Mixing time estimates

We now prove Theorem 1.
Proof: [of Theorem 1] For the upper bound it suffices to prove the estimate for τD,2(ε).
We will apply Corollary 2 with M = SO(n), d = D and P the transition kernel for Kac’s

random walk. According to Lemma 1 we can take C =
√

1− 1/
(
n
2

)
≤ (1−κ) for κ = 1/n2.

We need an estimate for ∆ = supx∈SO(n)Wd,2(δx, Px). Let x ∈ SO(n), X =d Px. We
see that X = R(i, j, θ)x for θ ∈ [0, 2π] uniform. The curve

γ(s) ≡ R(i, j, sθ)x, 0 ≤ s ≤ 1

connects x to X inside SO(n). It speed is given by

‖γ′(s)‖hs =
∥∥∥∥ ddsR(i, j, sθ)

∥∥∥∥
hs

.
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Using formula (18) above one can check that

d

du
R(i, j, u) = sinu(di + dj)−

√
2 cosuaij ⇒

∥∥∥∥ dduR(i, j, u)
∥∥∥∥

hs

=
√

2.

Thus

D(x,X) ≤
∫ 1

0
‖γ′(s)‖hs ds =

√
2θ ≤ 2

√
2π.

Since x ∈ M was arbitrary, we see that we may take ∆ = 2
√

2π. We deduce from the
Corollary that

τD,2(ε) ≤

⌈
n2 ln

(
4
√

2πn2

ε

)⌉
.

2

5 Final remarks

• The same ideas used in proving Theorem 1 can be employed to analyze a related
random walk on the group U(n) of n×n unitary matrices. In that case the evolution
from state X(t) to X(t + 1) = S(it, jt)X(t) consists of multiplication by S(it, jt),
where S is drawn from Haar measure on U(2), 1 ≤ it < jt ≤ n are uniform and
S(it, jt) acts as S within the plane spanned by coordinates it, jt and as identity in the
orthogonal complement. The key step in proving such a result is adapting Lemma 1.
Let a∗ be the conjugate transpose of the matrix a. One can show (using tangent
spaces) that if x, y ∈ U(n) are close, yx∗ = eh ≈ id + h for some anti-Hermitian
matrix h with h∗ = −h. One can couple X = S(i, j)x to Y = S(i, j)ehijy, where
hij is the projection of h onto the space of anti-Hermitian matrices acting on the
(i, j)-plane (S(i, j)ehij has Haar distribution on U(2) because S(i, j) does and ehij

is unitary and independent of S(i, j)). The same bounds obtained for Kac’s random
walk are available in this setting.

• One can also consider a variant of Kac’s random walk where θt is chosen from a
density f on [0, 2π] with infx∈[0,2π] f(x) = c > 0. In this case, one can show that
the corresponding Markov transition kernel is (1− 2πc/

(
n
2

)
)1/2-contractive and from

that obtain bounds on the mixing time. To prove contractivity, one notices that f
can be written as a mixture of densities f = w(1/2π) + (1 − w)g, where w = 2πc
and g is another density. One can then modify the proof of Lemma 1 and couple
X = R(i, jθ)x, Y = R(i, j, θ′)y as follows: with probability w, choose θ uniformly
on [0, 2π] and θ′ = (θ − α) mod 2π as in the original proof; with probability 1 − w,
sample θ from g and set θ′ = θ. In the first case, one achieves contraction; in the
second, D(X,Y ) = D(x, y). Putting those facts together implies the desired result.
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• The dimensionality reduction application of [1] discussed in the Introduction does
not require that Haar measure on SO(n) is well approximated, but only that certain
projections behave as they should. It is thus natural to ask whether better bounds
are available in that case. More precisely, Kac’s random walk induces a random walk
on the Grassmanian G(k, n), the set of k-dimensional subspaces of Rn. We conjecture
that this random walk mixes in O (nk lnn) time. Recall that for dimension reduction
we need k = O (ln |S|), which might be much smaller than O

(
n2 lnn

)
; our conjecture

would imply great time savings for n� ln |S|.

• Theorem 2 on local-to-global coupling can be used to reprove some known results.
Consider for instance a Riemannian manifold M with dimension n, distance d and
Ricci curvature lower bounded by K ∈ R. Let P = P (ε) correspond to the ball walk
on M where a step from x consists of choosing X uniformly from the ball B(x, ε)
(under the natural Riemannian volume). Using [14, Theorem 3] and Theorem 2 one
can show that µ 7→ µP (ε) is (1−K/2(n+2)+O (ε))-Lipschitz (thus contractive when
K > 0 and ε is small enough).

Acknowledgement: We thank Yann Ollivier for useful discussions on Ricci curvature for
Markov chains.
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